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Abstract 

To counter response distortions associated with the use of rating scales (aka Likert scales), items 

can be presented in comparative fashion, where respondents are asked to rank the items within blocks 

(forced-choice format). However, classical scoring procedures for these forced-choice designs lead to 

ipsative data, which presents psychometric challenges well described in the literature. Recently Brown 

and Maydeu-Olivares (2011a) have introduced a model based on Thurstone‟s Law of Comparative 

Judgment that overcomes the problems of ipsative data. Here, we provide a step-by-step tutorial for 

coding forced-choice responses, specifying a Thurstonian IRT model appropriate for the design used, 

assessing its fit, and scoring individuals on psychological attributes. Estimation and scoring is performed 

using Mplus, and a very straightforward Excel macro is provided that writes full Mplus input files for any 

forced-choice design. Armed with these tools, using a forced-choice design is now as easy as using 

ratings.  


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Fitting a Thurstonian IRT model to forced-choice data using Mplus 

Typical questionnaire and survey items are presented to respondents one at a time (single-stimulus 

items), which often leads to indiscriminate endorsement of all desirable items by respondents, resulting in 

systematic score inflation. Forced-choice response formats were designed to reduce such biases by 

forcing to choose between similarly attractive options. In forced-choice questionnaires items are 

presented in blocks of two, three, four or more items at a time and respondents are asked to rank the items 

within each block according to some instruction (for instance, in terms of how well the items describe 

their behavior, or attitude). Sometimes, the respondents are asked to indicate only the top and the bottom 

ranks (for instance, select one item that best describes them and one that least describes them).  

One special case of forced choice is the so-called multidimensional forced choice (MFC) where 

each item is assumed to measure only one psychological attribute, and all items within a block measure 

different attributes. MFC questionnaires are popular in psychological assessment industry because it is 

believed that this format is more robust against response sets, halo effects and impression management 

and there is experimental evidence to support this (e.g. Cheung & Chan, 2002; Bartram, 2007; Jackson, 

Wroblewski & Ashton, 2000; Christiansen, Burns & Montgomery, 2005).  

The standard scoring used with forced-choice questionnaires involves adding the inverted rank 

orders of items within blocks to their respective scales. As a fixed number of points are allocated in every 

block, the total number of points on the test is the same for every individual (ipsative data). In other 

words, one scale score can be determined from the remaining scales. Ipsativity leads to some highly 

undesirable consequences, namely:  

1) Scores are relative rather than absolute; therefore, while meaningful intra-individual interpretation 

can be made, comparisons between individuals are problematic. 

2) Construct validity is distorted. Because one scale can be determined from the remaining scales, 

the scales‟ correlation matrix has one zero eigenvalue which prevents the use of factor analysis. 

More importantly, the average scale inter-correlation can be derived exactly from the number of 
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scales and it must be negative – regardless of the true relationships between the measured 

attributes (e.g. Clemans, 1966).  

3) Criterion-related validity is distorted. Due to zero variance of the total score, the correlations 

between a questionnaire‟s scales and any external criterion must sum to zero (e.g. Clemans, 

1966). Consequently, any positive correlations with the criterion must be compensated by 

spurious negative correlations, and vice versa. 

4) Reliability estimates are distorted. Classical reliability coefficients are not appropriate for forced-

choice questionnaires because ipsative data violates the assumptions underlying them, such as 

independence of measurement errors (e.g. Meade, 2004). 

Much has been written about problems of ipsative data (for an overview see Brown, 2010; also 

Baron, 1996), and as the result forced-choice tests have been controversial. These psychometric 

problems, however, are due to the inappropriateness of classical procedures for scoring MFC items, not 

to the forced-choice format per se (Brown & Maydeu-Olivares, 2011a). The problem with classical 

scoring is that it completely disregards the response process that individuals engage in when making 

forced choices. However, because forced-choice blocks are simply sets of rankings (or partial rankings) 

existing response models for ranking data can be adapted for modeling and scoring forced-choice 

questionnaire data.  

Drawing on Thurstone‟s Law of Comparative Judgment (Thurstone, 1927, 1931), Brown and 

Maydeu-Olivares (2011a) have recently introduced an item response theory (IRT) model capable of 

modeling responses to any MFC questionnaire (Thurstonian IRT model). Brown (2010) shows that 

modeling preference decisions in forced-choice questionnaires using this model yields scores on 

measured attributes that are free from the problems of ipsative data. The Thurstonian IRT model is a 

multidimensional item response model with some special features that can be straightforwardly estimated 

using the general modeling software Mplus (Muthén & Muthén, 1998-2010), which also conveniently 

estimates trait scores for individuals. The estimation is fast; however, programming these models in 
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Mplus is tedious and error-prone except for very small models, as one needs to impose parameter 

constraints that reflect the within-block patterned relationships among items. However, the model is 

conceptually so simple that the Mplus programming can be easily automated. With this paper we provide 

a very simple Excel macro that writes the Mplus syntax necessary to fit the IRT model to any MFC 

questionnaire. Furthermore, we provide a detailed tutorial on how to model different types of MFC 

questionnaires and how to score respondents on the measured attributes.  

The paper is organized as follows. We begin by providing general theory for the Thurstonian IRT 

model. Thus, we describe how to code responses to forced-choice questionnaires and how to link these 

responses to the attributes that the questionnaire is intended to measure, building a factor analytic model 

with binary variables (an IRT model). We describe some special features of these models, as well as the 

identification constraints necessary to estimate them. We also show how general multidimensional IRT 

theory can be applied to score individuals. Next, we provide an extended tutorial for modeling specific 

forced-choice designs using simple numerical examples with simulated data. All the datasets, and Mplus 

input files are available for download. In this tutorial, we cover different block sizes (items presented in 

pairs, triplets, quads) and their common and specific features. We cover both full ranking and partial 

ranking designs.  Partial rankings arise when only top and bottom ranking choices (i.e. „most‟ and „least‟ 

choices) are requested to simplify the task of responding to blocks of four or more items. In this case, 

missing data arises and we provide an example of how to deal with this using multiple imputation in 

Mplus.  

Thurstonian IRT Model 

Coding Forced-choice Responses 

Consider a questionnaire consisting of items presented in blocks of n items each. Respondents are 

asked to rank the items within each block. To code their responses, ñ = n(n-1)/2  binary outcome 

(dummy) variables per block are used, one for every pairwise combination of items (Maydeu-Olivares & 

Böckenholt, 2005). For instance, to code a rank ordering of n = 4 items A, B, C and D, one needs to 



MODELING FORCED-CHOICE DATA USING MPLUS     6 



consider outcomes of ñ = 6 pairwise comparisons: whether A was preferred to B, to C and to D; whether 

B was preferred to C and to D, and whether C was preferred to D. To reach the ordering {B, A, D, C}, B 

must be preferred in all pairwise comparisons involving it, and C must be not preferred in any. For each 

pairwise combination l = {i, k}, a binary variable yl is used to indicate the outcome of the comparison:  

 
1, if   item  is preferred to item  

0, if   item  is preferred to item 
l

i k
y

k i


 


. (1)  

Then the ordering {B, A, D, C} can be coded using binary outcome variables as follows: 

Ranking Binary Outcomes 

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} 

2 1 4 3 0 1 1 1 1 0 

Sometimes respondents are only asked to report one item that best describes them and one that 

least describes them. The partial ranking corresponding to our example above would yield one missing 

outcome – the ordering of items A and D is not known: 

Partial ranking Binary Outcomes 

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} 

 most least  0 1 . 1 1 0 

Partial ranking format results in missing binary outcome variables whenever the block size is four 

items or more. These outcomes are missing at random (MAR) because the patterns of missing responses 

do not depend on the missing outcomes; that is, the outcome of the comparison between items that have 

not been selected as „most‟ or „least‟ is missing not because any particular preference would be more or 

less likely, but because no preference was recorded. However, the outcome is NOT missing completely at 

random (MCAR) because the patterns of missing responses can be deduced from the observed choices 

made in the block. For instance, in the example above it is known from the observed responses (item B 

selected as „most‟, and item C as „least‟) that the comparison between the two remaining items, A and D, 

will not be recorded, so that the binary outcome {A, D} will be missing. Thus, given the observed most-

least choices, the pattern of missing outcomes is known for each individual. 
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Modeling Preference Responses in Relation to Latent Traits 

To relate observed binary outcomes to psychological attributes measured by the questionnaire, we 

use the notion of item utility – an unobserved psychological value placed on the item by a respondent. 

The utility of item i is denoted ti. According to Thurstone‟s (1927) Law of Comparative Judgment items‟ 

utilities are assumed to be normally distributed across respondents and to determine preferential choices. 

That is, given any two items, the respondent deterministically chooses the item with highest utility. For 

computational reasons, it is convenient to express Thurstone‟s model using differences of utilities. Let *

ly  

denote the (unobserved) difference of utilities for the pair of items l ={i, k} 

 *

l i ky t t  . (2) 

Then Thurstone‟s law can be written by relating the observed binary outcome to the unobserved 

difference of two utilities (we can think of it as a response tendency),  

 

*

*

1    if     0

0   if     0

l

l

l

y
y

y

 
 


. (3) 

In multi-trait questionnaires, utilities of items are assumed to be governed by a set of d 

psychological attributes (common factors, or latent traits) according to a linear factor analysis model 

 
1

μ λ η ε
d

i i ia a i

a

t


   , (4) 

or, in matrix form  

 =   t , (5) 

where  1 2η ,η ,...ηd  is a vector of common attributes,  is a matrix of factor loadings,  is a vector of 

item intercepts, and  is a vector of unique factors (specification and measurement errors) – assumed to 

be mutually uncorrelated. We let  var   be the factors‟ covariance matrix (for identification we set 
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all variances equal to one so that it is a correlation matrix), and  2 var   be the diagonal matrix of 

errors‟ variances.  

Combining (2) and (4) we obtain a factor model that links the preference response tendency to the 

hypothesized common attributes 

    *

1

= γ η
d

l i k l ia ka a i k

a

y t t


          , (6) 

where the threshold l replaces the difference of the item intercepts:   l i k     . When items are 

presented in p blocks of size n, there are ñ = n(n-1)/2  binary outcomes per block, and the total number of 

binary outcomes in the questionnaire is p  ñ. In matrix form, the (p  ñ) vector of response tendencies y
*
 

of the binary outcomes y is written as 

 * =     y . (7) 

Here  is a (p  ñ) vector of thresholds;  is a (p  ñ)  d matrix of factor loadings; and   is a (p  ñ) 

vector of errors with covariance matrix   2var   . The relationships between the matrices  and  2  

of the Thurstonian IRT model and the matrices  and 2  of the factor analysis model (5) describing the 

relationship between the items and the common attributes they measure are given by  

  A   2 2   A A  (8)

where A is a block diagonal matrix. When n = 2, each block in A is  1 1 , whereas when n = 3, and n 

= 4, they are, respectively, 

 

1 1 0

1 0 1

0 1 1

 
 

 
  

,    

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

 
 

 
 
 

 
 
   

. (9) 
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Parameters of the Independent-clusters Thurstonian IRT Model 

Most confirmatory applications assume that each item measures only one trait, and the factor 

model underlying the item utilities possesses an independent-clusters basis (McDonald, 1999). This 

factorial simplicity is certainly the aim in typical forced-choice questionnaires, and in what follows, we 

concentrate on independent-clusters factorial structures. When questionnaire items measure two or more 

attributes, the general theory in (6) applies. In this case, the IRT model can be estimated in the same 

fashion as the independent clusters; however, additional identification constraints are needed (see the 

Model Identification section).When items i and k measure different attributes, a and b (i.e., a 

multidimensional comparison), equation (6) simplifies to   

    * = γl l i a k b i ky           . (10) 

If instead, i and k measure the same attribute a (i.e., a one-dimensional comparison), equation (6) 

becomes 

    * = γ ε εl l i k a i ky        . (11) 

Thus the Thurstonian IRT model with p  ñ binary outcomes contains: 

1) p  ñ  threshold parameters l. One threshold  μ μl i k     is estimated for each binary outcome 

(i.e. we do not estimate the original intercepts of utilities). 

2) p  n  factor loading parameters. These are the factor loadings of utilities. Two factor loadings are 

estimated for each binary outcome – these relate the response tendency to the two attributes measured 

by the items making up the pairwise comparison. When the block size is n = 2 (i.e., items are 

presented in pairs), each item is involved in one pairwise comparison only, and therefore each 

utility‟s factor loading appears only once in matrix  (for example, see matrix   in (21)). When the 

block size is n > 2, each item is involved in n 1 pairwise comparisons, and therefore each utility‟s 
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factor loading occurs more than once (n  1 times) in matrix  , forming patterns (for example, see 

matrices   for a triplet design in (19), and for a quad design in (20)).  

3) p  n  uniqueness parameters i

 . These are uniquenesses of utilities, and when the block size is n = 

2 (i.e., items are presented in pairs), the residual variance matrix   2var    is a p  p diagonal 

matrix:  

 
3 42

2 1 2

0

p p



 

 

 

 



  
 

  
 
      

.  (12) 

 When the block size is n > 2, there is shared variance between binary outcomes involving the 

same item, and 2  is a (p  ñ)  (p  ñ) block-diagonal matrix, with the following blocks for n = 3 and n 

= 4 respectively: 

 2

3 1 3

2 3 2 3



 

 

  



   

  
 

    
     

,    (13) 

 
2

4

2 3

2 4 2 2 4

3 4 3 4 3 4

0

0

0

 

 

  

  

   

   

   

 

    

     

  
 

   
    

  
    

     
        

 .   (14) 

The above special features of matrices  and 2 complete the definition of the Thurstonian IRT 

model.  

Model Identification 

To identify a Thurstonian IRT model (10) built for MFC items that are designed to measure one 

trait only (also referred to as multi-unidimensional structure in the IRT literature) one needs to set a 
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metric for the latent traits and item errors. The latent traits‟ variances are set to one. To set a metric for 

item errors, for blocks of size n > 2 (items are presented in triplets, quads, etc.) it suffices to fix the 

uniqueness of one item per block. Throughout this paper we use the convention of (arbitrarily) fixing the 

uniqueness of the first item in each block to one. When the block size is n = 2 (i.e. items are presented in 

pairs), no item uniqueness can be identified. In this case, it is convenient to fix the uniqueness of each 

binary outcome (which is the sum of two item uniquenesses as can be seen from (12)) to one. 

The above constraints are generally sufficient to identify most forced-choice designs. A special 

case arises when multidimensional pairs (n = 2) are used to assess exactly two attributes (d = 2). Because 

this model is essentially an exploratory factor model, additional identification constraints need to be 

imposed on some factor loadings. This case is discussed in Example 4. 

When questionnaire items measure two or more attributes, such as in the general case described 

by (6), additional constraints may be needed to identify factor loadings, because only their differences 

can be estimated without constraints. This is similar to the unidimensional model described in (11), where 

setting one factor loading is necessary to identify the model (Maydeu-Olivares & Brown, 2010). 

Non-identified models may occasionally arise when item factor loadings within the same block 

are equal, or indistinguishable from the empirical data. This might happen in designs where positively 

keyed items measure a small number of attributes, or the attributes are positively correlated, so that the 

item parameters are more difficult to estimate accurately (Brown & Maydeu-Olivares, 2011a). When the 

factor loadings i and k are equal (say, they equal ), the difference of utilities in (10) is described by 

     * = γ η η ε εl l a b i ky      . (15) 

In this case, the data is sufficiently described by d1 differences between each attribute and, say, the last 

attribute d.  Indeed, for any pair of attributes a and b, their difference a -b   can be written as (a -d) 

- (b -d). The factor space is therefore reduced and additional constraints are needed to identify the 

model. In practice, it may not be easy to spot such empirical under-identification because no warning of a 
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non-identified model may be given by Mplus. The researcher needs to examine the program output very 

carefully to ensure that everything is as expected. Typical signs of the described special case are that 

estimated factor loadings for one of the factors are close to zero, standard errors of correlation estimates 

between that factor and other factors are large, and factor correlations are not as expected (usually too 

high). In some cases, Mplus might give a warning in the output that „the latent variable covariance matrix 

(Psi) is not positive definite‟, and indicate which factor presents a problem. To remedy this situation, it 

usually suffices to constrain the factor loadings within each block to be equal (without setting their 

values), and setting just one correlation between the latent traits to its expected value (for instance, to a 

value predicted by substantive psychological theory).  

Parameter Estimation and Goodness-of-fit Testing Using Mplus 

After the choices are coded as described above, a multi-unidimensonal model (10) or the 

unidimensional model (11) is fitted to the differences of utilities *

ly . However, the difference variables 

*

ly are not observed, only their dichotomizations yl using the threshold process (3) are observed. Hence, a 

factor model for binary data (the IRT model) is fitted to the binary outcome variables. All that is needed 

is a program capable of estimating such a model. The program Mplus (Muthén & Muthén, 1998-2010) 

conveniently implements all the necessary features.  

The presence of correlated errors, along with the large number of latent traits typically measured 

by forced-choice questionnaires precludes the estimation of the model by full information maximum 

likelihood (Bock & Aitkin, 1981). However, the model can be straightforwardly estimated using limited 

information methods. Unweighted least squares (ULS) or diagonally weighted least squares (DWLS) can 

be used to this end, and the difference between the two is negligible (Forero, Maydeu-Olivares & 

Gallardo-Pujol, 2009). When estimating models with discrete dependent variables, Mplus offers two 

choices of parameterization, unstandardized and standardized parameters, referred to as „theta‟ and 

„delta‟ respectively. The Thurstonian IRT model is estimated as a factor analysis for binary data using the 
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„theta‟ parameterization with the additional constraints on  and 2 described above. Because contrast 

matrices A are not of full rank (Maydeu-Olivares & Böckenholt, 2005), the matrix of residual variances 

and covariances 2 2   A A is also not of full rank. This is by design, and therefore for all forced-

choice models Mplus will give a warning that „the residual covariance matrix (theta) is not positive 

definite‟.  

The goodness of fit of the model to the tetrachoric correlations is tested by Mplus. The program 

provides mean or mean and variance Satorra-Bentler (1994) adjustments to the ULS/DWLS fit functions. 

Mean and variance adjustments provide more accurate p-values at the expense of more computations. 

The mean and variance adjustment for the ULS estimation is denoted as „estimator‟ ULSMV in Mplus, 

and it is denoted WLSMV for the DWLS estimation. All models presented in this article are estimated 

with Mplus using ULS with mean and variance corrected Satorra–Bentler goodness-of-fit tests 

(ULSMV).  

With this article, we supply an Excel macro that automates writing the full code so that all the 

necessary parameter constraints are specified. Moreover, the Excel macro takes care of specifying the 

estimator and parameterization. 

When the number of items per block is n > 2, a correction to degrees of freedom is needed when 

testing model fit. This is because for each block there are r = n(n – 1)(n – 2)/6 redundancies among the 

thresholds and tetrachoric correlations estimated from the binary outcome variables (Maydeu-Olivares, 

1999). With p ranking blocks in the questionnaire, the number of redundancies is p  r. Thus, when n > 2, 

one needs to subtract p  r from the degrees of freedom given by Mplus to obtain the correct p value for 

the test of exact fit. Goodness-of-fit indices involving degrees of freedom in their formula, such as the 

root mean square error of approximation (RMSEA) 

 
 

2χ

1

df
RMSEA

df N




 
,    (16) 
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also need to be recomputed using the correct number of degrees of freedom. When n = 2, no degrees of 

freedom adjustment is needed; the p value and RMSEA printed by the program are correct. 

Estimation of Individuals’ Scores 

The item characteristic function (ICF) of the binary outcome variable yl described, which is the 

result of comparing item i measuring trait a and item k measuring trait b, is given by  

  
2 2

γ λ η λ η
Pr 1 η ,η Φ

ψ ψ

l i a k b
l a b

i k

y
   
  
  

. (17) 

In this function, l is the threshold for binary outcome, i and k are the items‟ factor loadings, and 

2

i  and 2

k  are the items‟ uniquenesses. Therefore, the Thurstonian IRT model can be seen as an 

extension of the normal ogive IRT model (Lord, 1952) to situations where items are presented in blocks 

and the underlying structure is multidimensional.  A special feature of this model is that, when block size 

is n >2, the item characteristic functions are not independent (local independence conditional on the latent 

traits does not hold). Rather, there are patterned covariances among the binary outcomes‟ residuals as 

shown in (13) and (14).  

After the model parameters have been estimated, respondents‟ attributes can be estimated using a 

Bayes modal procedure (maximum a posteriori, or MAP estimator) 

       
111

ln Pr 1 1 Pr 1
2

ll
yy

l l
l

F y y
      

       (18) 

and this is conveniently implemented in Mplus as an option within the estimation process (Muthén, 1998-

2004). When using (18), Mplus makes the simplifying assumption that local independence holds. The use 

of this simplification for scoring individuals has little impact on the accuracy of the estimates (Maydeu-

Olivares & Brown, 2010).  
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Tutorial on Writing Mplus Code with the Excel Macro 

Despite the fact that the factorial models (10) and (11) underlying forced-choice comparisons are 

simple, the programming is complicated by the fact that factor loading and uniqueness for the differences 

y
*
 must be expressed as linear functions of the factor loadings and uniquenesses of the items. There are 

constraints on the parameter matrices  and 2 , which depend on block size, and writing them out is 

tedious and error prone. In subsequent sections we provide details on how to estimate the model for a set 

of examples (using blocks of different size and different numbers of common attributes, etc.) using the 

supplied Excel macro that writes the full Mplus syntax. 

Coding the Data 

Mplus expects the forced-choice responses to be coded using binary outcomes (dummy variables), 

as described in this paper; one line per individual. If, however, the forced-choice data have been recorded 

using rank orders of items within each block, or reversed rank orders as is often the case with already 

“ipsative scored” items, the responses should be recoded as binary outcomes of pairwise comparisons. 

Recall that this coding requires each ranking block of size n to be presented as ñ = n(n-1)/2  pairwise 

comparisons {i, k}, each of which takes value 1 if i was preferred to k, and 0 otherwise. This recoding can 

be easily performed using standard statistical software prior to modeling with Mplus. Alternatively, 

DEFINE commands can be used to recode the data within Mplus. For rank-orderings, binary outcomes of 

all pairwise combinations of n items are computed as „i1i2 = i2-i1;‟ (for ipsative item scores, we use „i1i2 

= i1-i2;‟), and then all outcomes are cut as binary variables using „CUT i1i2 i1i3 … (0);‟.  

For incomplete rankings, preferences between all items not selected as „most‟ or „least‟ in blocks 

of size n  4 should be coded as missing data, using conditional statements, for example:  „IF (i2 GT i1) 

THEN i1i2=1; IF (i2 LT i1) THEN i1i2=0; IF (i2 EQ i1) THEN i1i2=_MISSING;‟. In addition, when 

missing data is present, the missing responses have to be imputed prior to model estimation. This is 

described in Example 2.  
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Writing Model Syntax 

To aid programming of Thurstonian IRT models, we created an Excel macro that can be 

downloaded from the journal‟s website. Excel was chosen because it is widely available, and because it 

enables simple „copying and pasting‟ of questionnaire keys, correlation matrices etc. straight into 

provided cells. At Step 1, the macro just requires as input the name of the data file containing the binary 

outcomes (the data file may contain additional variables), the name of a file to save the respondents 

scores (this is optional), the number of forced-choice blocks in the questionnaire and the block size. At 

Step 2, the user is required to enter the number of attributes measured by the questionnaire, and also 

gives a table for inserting the questionnaire “key”. The “key” is simply a numbered list of all 

questionnaire items, and the user has to indicate which attribute (referred to by its number) each item 

measures. The macro also has an option to indicate any negatively keyed items. These are items designed 

to represent low attribute scores, such as “I keep in the background” to indicate Extraversion. This 

information is optional and is only used for assigning better (negative) starting values for factor loading 

parameters. Finally, Step 3 (also optional) enables the user to provide starting values for the attribute 

correlation matrix. With this information, the Excel macro creates the full Mplus syntax, which can be 

viewed immediately in Excel, and also copied to a ready-to-execute Mplus input. 

Numerical Examples 

Below we present some numerical examples using simulated data. The examples have been 

designed for illustration only and are necessarily very short. Synthetic data, available for download 

together with Mplus input files, was used to better illustrate the behavior of the model. As a general 

foreword for the following examples, we remind the reader that designing forced-choice measures with 

given block size requires careful consideration of several factors – such as keyed direction of items, 

number of measured attributes, and correlations between the attributes (Brown & Maydeu-Olivares, 

2011a).In examples below all these factors have been balanced to create very short but fully working 

“fragments” of forced-choice tests. Such short questionnaires in practice would necessarily yield latent 
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trait estimates with high measurement error. Therefore, these examples should only be used as a guide for 

modeling longer questionnaires. Examples of applications with real questionnaire data are given in the 

Concluding Remarks section.  

Example 1: Block Size n = 3, Full Ranking Response Format. Consider a very simple 

multidimensional forced-choice design using p = 4 blocks of n = 3 items (triplets), measuring d = 3 

common attributes. For simplicity, let the first item in each block measure the first common attribute, the 

second item measure the second attribute, and the third item measure the third attribute, therefore each 

attribute is measured by 4 items. We assume that each item measures a single trait and that the traits are 

possibly correlated (their correlation matrix is ). The data is coded using 4 3 12p ñ     binary 

outcomes in total. 

According to this forced-choice design, the item utilities‟ loading matrix  in equation (4) and the 

pairwise outcomes‟ loading matrix  in equation (7) are: 

 

1

2

3

4

5

6

7

8

9

10

11

12

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0



 
 

 
 
 
 

 
 

 

 
 

 
 
 
 
 


 
  

, 

1 2

1 3

2 3

4 5

4 6

5 6

7 8

7 9

8 9

10 11

10 12

11 12

0

0

0

0

0

0

0

0

0

0

0

0



  
 
  

  
 
  

  
 

  

  
 
  

  
 
  
 
 
 
   

. (19) 

As can be seen, the loading matrix  is patterned, with each utility loading appearing exactly 

twice. The fact that loadings related to comparisons involving the same items are the same (may differ in 

sign) need to be written out in Mplus using the MODEL CONSTRAINT command (automatically written 

by the Excel macro).  
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The item residual matrix is  2 2 2

1 12, ,diag    , and the pairwise outcomes‟ residual matrix 

2  is block-diagonal with elements 2

3 as described in (13). The other model parameters of the 

Thurstonian IRT model are the factors correlation matrix , and a set of p  ñ thresholds  . To identify 

the model, we just need to set trait variances to one, and set the first uniqueness within each block to one.  

To illustrate the discussion we generated responses from N = 2000 individuals using the 

parameter values shown in Table 1. Some factor loadings shown in Table 1 are larger than unity. This is 

because these are unstandardized factor loadings. The data was simulated by generating latent traits  

with mean zero and correlation matrix , errors   with mean zero and covariance matrix 2  and 

computing *      y . These difference values where then dichotomized at zero as per (3). The 

resulting responses are provided in the file „triplets.dat‟, which consists of 2000 rows and 12 columns, 

one for each binary outcome variable.  

 

Insert Table 1 about here 

 

To create Mplus syntax to test this simple model with the supplied data, one can use the Excel 

macro. One would need to specify the data file („triplets.dat‟), the block size (3), the number of blocks 

(4), the number of attributes measured (3), and supply the questionnaire key which in this example will 

look as follows: (1, 2, 3, 1x, 2, 3, 1, 2, 3x, 1, 2x, 3). The numbers indicate which trait is measured by each 

item, and „x‟ indicates that the item is negatively keyed. The latter is optional, as it is only used to supply 

better (negative) starting values for factor loading parameters. Also, starting values for correlations 

between the attributes can optionally be given. Once input is complete, the syntax written by the Excel 

macro can be saved as an Mplus input file, and executed making sure that the file containing the data is 

located in the same directory as the Mplus input file. Our syntax „triplets.inp‟ can be found in the 

supplementary materials; it is also given in Appendix A. 
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After completing the estimation of the supplied dataset, Mplus yields a chi-square test of 
2
 = 

30.21 on 43 degrees of freedom. However, each triplet has r = n(n – 1)(n – 2)/6 = 1 redundancy and there 

are 4 redundancies in total, so that the correct number of degrees of freedom is df  = 39, leading to a p-

value p = 0.84. The RMSEA computed using formula (16) with the correct number of degrees of freedom 

in this case corresponds to the value reported by the program (zero) because the chi-square value is 

smaller than df. The estimated item parameters are reported in Table 1, along with their standard errors. 

We can see in this table that we are able to recover the true parameter values reasonably well. The reader 

must be warned, however, that an extremely short questionnaire represented by this small model would 

not be capable of estimating persons‟ scores with sufficient precision. In practical applications, many 

more items per trait are generally required for reliable score estimation. 

Example 2: Block Size n = 4, Full Ranking and ‘Most-least’ Response Formats. When block 

size, n, is larger than 3, no new statistical theory is involved. Bear in mind, however, that if we wish for 

each item within a block to measure a different trait, the number of traits measured by the questionnaire, 

d, must be equal or larger than block size. In the present example we use p = 3 quads (blocks of n = 4 

items) to measure d = 4 traits. Hence, each trait is measured by only 3 items. Specifically, trait 1 is 

measured by items 1, 5, 9; trait 2 is measured by items 2, 6, 10; trait 3 is measured by items 3, 7, 11; and 

trait 4 is measured by items 4, 8, 12. We provide in Table 2 a set of true parameter values for this 

example.  

When items are presented in quads, 6 binary outcomes are needed to code the responses to each 

quad; hence, 3 6 18p ñ     binary outcomes are needed in total. The utilities‟ factor loadings matrix  

and the pairs‟ loading matrix  are: 
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1

2

3

4

5

6

7

8

9

10

11

12

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



 
 

 
 
 

 
 
 

 

 
 

 
 
 

 
 


 
  

, 

1 2

1 3

1 4

2 3

2 4

3 4

9 10

9 11

9 12

10 11

10 12

11 12

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0



  
 
  
  
 

  
  
 

  
 
 
  
  
 
  
 

 
 
  
 

  

. (20) 

As can be seen, each utility loading appears exactly three times in the pairs‟ loading matrix  . 

The item residual matrix is  2 2 2

1 12, ,diag    , and the pairwise outcomes‟ residual matrix 2  is 

block-diagonal with elements 2

4 as shown in (14). In addition to the factor loadings and uniquenesses, 

the model implies estimating the factor correlation matrix , and a set of p  ñ thresholds . Again, the 

model is identified simply by setting trait variances to one, and setting the first item uniqueness in each 

block to one. 

The purpose of this example is to discuss estimation when the „most-least‟ response format is 

used with ranking blocks of size n > 3. In this case, not all binary outcomes are observed, and the missing 

data is MAR (missing at random), but not MCAR (missing completely at random). Asparauhov & 

Muthén (2010a) illustrate the deficiencies of the least squares estimation under the MAR condition and 

show that multiple imputation approach is effective in addressing these problems. We will use the 

multiple imputation facility available in Mplus when estimating the IRT model for the „most-least‟ data. 

The file „quads_most_least.dat‟ contains a simulated sample of 2000 respondents providing 

„most-least‟ partial rankings. Except for the missing data, the responses are equal to those in the file 

„quads_full_ranking.dat‟, which is given for comparison. Both datasets were generated by dichotomizing 
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difference variables *      y , computed using the true model parameters. In the most-least data, 

the binary comparison involving the two items not selected as „most-like-me‟ or „least-like-me‟ was set 

as missing. 

The file „quads_full_ranking.inp‟, which can be readily generated with the Excel macro, contains 

the Mplus syntax for estimating the full ranking data „quads_full_ranking.dat‟. To generate this syntax, 

one has to specify the block size (4), the number of blocks (3), the number of attributes measured (4), and 

supply the questionnaire key which in this example will look as follows: (1, 2x, 3, 4, 1x, 2, 3, 4, 1, 2, 3x, 

4). The numbers indicate which trait is measured by each item, and „x‟ indicates which items are 

negatively keyed in relation to the measured trait.  

For the full rankings, Mplus yields a chi-square test of 
2
 = 112.20 on 126 degrees of freedom. 

However, each quad has r = n(n – 1)(n – 2)/6 = 4 redundancies, and there are in total 12 redundancies in 

the questionnaire, so that the correct number of degrees of freedom is df  = 114, leading to a p-value p = 

0.530, and the correct RMSEA is 0. The estimated model parameters are reported in Table 2, along with 

their standard errors. 

 

Insert Table 2 about here 

 

Estimation of the Thurstonian IRT model for quads using „most-least‟ response format is 

performed using syntax „quads_most_least.inp‟, which is given in Appendix B. This syntax is identical to 

the syntax for full rankings except that multiple datasets are generated prior to estimation using the 

DATA IMPUTATION command. Here, we order 20 datasets to be generated where missing responses 

are imputed using Bayesian estimation of the unrestricted model (Asparauhov & Muthén, 2010b). This 

multiple imputation is followed by the estimation of the forced-choice model for full rankings on each of 

the imputed datasets, using the ULSMV estimator as usual.  
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When multiple imputations are used, there is no easy way to combine the model fit test statistics 

and other fit indices from the imputed samples. Mplus prints simple averages, which should not be 

interpreted for model fit (Muthén, 2011). Across 20 imputations, we obtain an average chi-square of 
2
 = 

206.15 (SD = 25.01), and using the correct value for degrees of freedom, df = 114, the average p-value is 

p < 0.001, and the average RMSEA is 0.020. For each individual imputation, the model fit has 

deteriorated somewhat compared to when the full ranking data was used, which is generally the case with 

imputed data (Asparauhov & Muthén, 2010b). For comparison, fitting the IRT model straight to  data 

with missing responses „quads_most_least.dat’ results in very poor model fit (
2
 = 1009.06, p = 0.000, 

and RMSEA = 0.063). In addition, the model fitted to imputed data recovers the true parameter values 

well, as can be seen from Table 2, while the model fitted straight to data with missing responses yields 

factor loadings that are too high. Therefore, multiple imputation is the recommended solution to 

estimating the Thurstonian IRT model for partial rankings. 

Example 3: Block Size n = 2, Measuring More Than Two Attributes (d > 2). In this example 

we consider a special case of the general theory: items presented in pairs. In this case, no item uniqueness 

can be identified. It is convenient to assume that both uniquenesses equal 0.5 because in that case the 

residual variance of the binary outcome equals unity, and the factor loadings and thresholds will be 

automatically scaled in the IRT intercept/slope parameterization (17). Another feature of this special case 

is that there are no redundancies among the thresholds and tetrachoric correlations. As a result, the 

degrees of freedom printed by Mplus do not need to be adjusted.  

To illustrate this case, consider three attributes (d = 3), each measured by four items arranged in p 

= 6 pairs (n = 2). Thus, there are 6 1 6p ñ     binary outcomes in total. For this model, the items‟ 

loading matrix  (12  3) and the pairs‟ loading matrix  (6  3) are 
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

 
 


 
 
 
  
 
 

 
 
 

,  

3



 



 

 

 

 

   
 
  

 
   

  
   

   
 

   

. (21) 

It can be seen that presenting the items in pairs as opposed to presenting them one at a time using 

binary ratings halves the number of obtained observed variables (binary outcomes). It can also be seen 

that, given the same number of items, pairs yield least binary outcomes compared to triplets (Example 1) 

and quads (Example 2), hence the pairs design will require more items to achieve a similar amount of 

information. 

The item residual matrix  2 2 2

1 12, ,diag     is diagonal, and the pairwise outcomes‟ residual 

matrix 2 is also diagonal as shown in (12),  2

2 i k
diag     , with 6 elements that are sums of the 

original 12 item residuals. In the Thurstonian IRT model, there are 12 factor loadings, 3 correlations 

between factors, and 6 thresholds to estimate (21 parameters in total). We have only 6 binary outcomes 

providing 67/2 = 21 pieces of information – the model is just identified and the number of degrees of 

freedom is zero. We can still estimate the model parameters but cannot test the goodness of fit of the 

model – for that the number of items in the questionnaire has to be larger.  

Using the Excel macro for creating syntax in this case is no different from the previous models: 

one has to specify the data file („pairs3traits.dat‟), the block size (2), the number of blocks (6), the 

number of attributes measured (3), and supply the questionnaire key which in this example will look as 

follows: (1, 2, 3, 1, 2, 3, 1, 2x, 3, 1x, 2, 3x). The numbers indicate which trait is measured by each item, 

and „x‟ indicates which items are negatively keyed in relation to the measured trait. The syntax written by 

the Excel macro can be saved as an Mplus input file. Our syntax „pairs3traits.inp‟ can be found in the 

supplementary materials; it is also given in Appendix C.  
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The true and estimated model parameters for this example are reported in Table 3. It can be seen 

that, again, the true parameters are recovered well. 

 

Insert Table 3 about here 

 

Example 4: Block Size n = 2, Measuring Exactly Two Attributes (d = 2). In this example we 

consider a further special case – items presented in p pairs (n = 2) with exactly two dimensions being 

measured (d = 2). In this case we have an exploratory two-factor analysis model with p binary variables.  

To see this consider an example where 12 items are presented in p = 6 pairs. For simplicity let‟s 

assume that the first item in each pair measures the first trait and the second item measures the second 

trait. For the Thurstonian IRT model, we obtain the residual variance matrix 2 as described in (12), and 

it is the same as in Example 3. However, while the item factor loading matrix  is an independent-

clusters solution, the pairs‟ loading matrix  has no zero elements: 
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
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
 
 
 

  
 
 
 
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,  

 

 

 

  
 
 

 
 
 
  

. (22) 

Therefore, this is simply an exploratory two-factor model for p binary variables. Since the two 

factors are assumed to be correlated, two elements of  need to be fixed to identify the model 

(McDonald, 1999; p. 181). In practice, this can be easily accomplished by fixing the factor loadings of 

the first item. Any two values will do, provided that the factor loading on the second factor is opposite to 

its expected value  see (22). For this example, since we wish to show how well we are able to recover 

the true solution, we set the factor loadings of the first item to their true values.  
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 To create Mplus syntax using the Excel macro, one has to specify the data file 

(„pairs2traits.dat‟), the block size (2), the number of blocks (6), the number of attributes measured (2), 

and supply the questionnaire key (1, 2, 1, 2, 1, 2, 1, 2x, 1x, 2, 1, 2x). Our syntax written by the Excel 

macro „pairs2traits.inp‟ can be found in the supplementary materials; it is also given in Appendix D.  

Testing this model with the supplied data yields 
2
 = 3.40 on 4 degrees of freedom (which is the 

correct number and does not need adjustment when items are presented in pairs), the p-value is p = 0.494 

and RMSEA = 0. The estimated and the true model parameter values are presented in Table 4 – and it can 

be seen that the model recovers the true parameter values well. 

 

Insert Table 4 here 

 

Concluding Remarks 

Because of their advantages in reducing or counteracting some response biases commonly arising 

when using the rating scales, forced-choice assessments are becoming increasingly popular and forced-

choice measurement is a growing area of research. With development of models suitably describing 

comparative data, such as the Thurstonian IRT model discussed here, or the Multi-Unidimensional 

Pairwise-Preference Model (Stark, Chernyshenko & Drasgow, 2005), and availability of software capable 

of fitting them, such modeling will become more accessible to researchers.  

Despite the ease with which forced-choice data can be tested using the provided tutorial and the 

automated syntax writer (Excel macro), however, one needs to pause and consider all „specialties‟ of the 

forced-choice format and the data arising from it. Because every judgment made in this format is a 

relative judgment, careful consideration is needed to design forced-choice questionnaires that will be 

capable of recovering absolute trait scores from these relative judgments.  

Maydeu-Olivares and Brown (2010) discuss rules governing good forced-choice measurement 

with one measured trait. As can be seen from (11), in the one-dimensional case the discrimination power 
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of each comparison is determined by the difference of factor loadings of the two items involved. Two 

perfectly good, equally discriminating items, therefore, could be put together to produce a useless forced-

choice pair with near-zero discrimination. To maximize efficiency of the forced-choice format in this 

case, one needs to combine items with widely varying factor loadings – for instance, with positive and 

negative loadings, or with high and low positive loadings. If socially desirable responding is a concern, 

special care must be taken to create pairs with no obvious valence. This might be challenging when items 

with positive and negative loadings are combined in one block, and consequently measuring one trait 

with forced-choice items might not be any more robust to socially desirable responding than using single-

stimulus items. The universal benefit of the forced-choice format – removal of uniforms biases, such as 

acquiescence or central tendency responding – will of course remain.  

When multidimensional forced-choice blocks are used, yet more factors need to be taken to 

account. All of the following – keyed direction of items, number of measured attributes, correlations 

between the attributes, and block size – are important (Brown & Maydeu-Olivares, 2011a). For instance, 

when a larger number of attributes (15 or more) are modeled, all positively keyed items may be used to 

successfully recover the individual scores (Brown, 2010) provided that the traits are not too highly 

correlated. However, if only a small number of latent traits are assessed, as was the case in the numerical 

examples in this paper, both positively and negatively keyed items must be combined in blocks in order 

to accurately recover the true model parameters and the individual scores. In this case, considerations of 

socially desirable responding discussed above also apply, although matching positively and negatively 

keyed items on social desirability may be easier when the items measure different attributes.  

In closing, since the purpose of this paper is expository, very short questionnaires were used. Yet, 

IRT parameter recovery and latent trait estimation accuracy depend critically on the number of items per 

dimension. In applications, a larger number of indicators per dimension should be used, leading to more 

accurate item parameter and latent trait estimates than those reported here  see Brown and Maydeu-

Olivares (2011a) for detailed simulation studies results. An additional consideration is that, given the 
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same number of items, smaller blocks (i.e. pairs) produce fewer binary outcomes per items used, and 

therefore provide less information for the person‟s scores estimation than larger blocks (i.e. triplets, 

quads).  

The Thurstonian IRT model has been successfully used with real questionnaire data, with the 

primary objectives to estimate the item parameters and the correlations between the latent traits, and to 

score test takers on the measured attributes. One example is the Forced-Choice Five Factor Markers 

(Brown & Maydeu-Olivares, 2011b), which is a short forced-choice questionnaire consisting of 20 

triplets with both positively and negatively keyed items. Its IRT modeling in a research sample yielded 

successful estimation of the absolute trait standing as compared to the normative scores using rating 

scales (Brown & Maydeu-Olivares, 2011a). Other applications with real questionnaire data include the 

development of the IRT-scored Occupational Personality Questionnaire (OPQ32r; Brown & Bartram, 

2009), and the construct and criterion validity study using the Customer Contact Styles Questionnaire 

(CCSQ; Brown, 2010). These large-scale workplace questionnaires measuring 32 and 16 attributes 

respectively are based on multidimensional comparisons with positively keyed items only. 

In this paper we have provided a tutorial on how to fit the Thurstonian IRT model to any forced-

choice questionnaire design using Mplus. With this paper we also supply an easy-to-use Excel macro that 

writes Mplus syntax for all such designs. Equipped with these tools, the reader can model any forced-

choice data – e.g. estimate model-based correlations between the psychological attributes – adequately, 

without distortions caused by the use of classical scoring procedures. Most importantly, this modeling 

enables access to persons‟ scores on latent attributes that are no longer ipsative. 
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Appendix A 

Mplus Input File for Example 1: Block Size n = 3, Full Ranking Response Format 

TITLE: Example 1 - Model with 3 triplets measuring 3 traits 

DATA: FILE IS triplets.dat; 

 

VARIABLE:  

      NAMES =  

      i1i2 i1i3 i2i3  

      i4i5 i4i6 i5i6  

      i7i8 i7i9 i8i9 

      i10i11 i10i12 i11i12;  

      CATEGORICAL = i1i2-i11i12; 

 

ANALYSIS: 

ESTIMATOR=ulsmv;  PARAMETERIZATION=THETA; 

 

MODEL:  

   Trait1  BY    

 i1i2*1  i1i3*1  (L1) 

 i4i5*-1  i4i6*-1  (L4) 

 i7i8*1  i7i9*1  (L7) 

  i10i11*1  i10i12*1  (L10); 

   Trait2  BY    

 i1i2*-1  (L2_n) 

 i2i3*1  (L2) 

 i4i5*-1  (L5_n) 

 i5i6*1  (L5) 

 i7i8*-1  (L8_n) 

 i8i9*1  (L8) 

            i10i11*1  (L11_n) 

            i11i12*-1  (L11); 

   Trait3  BY    

 i1i3*-1  i2i3*-1  (L3_n) 

 i4i6*-1  i5i6*-1  (L6_n) 

 i7i9*1  i8i9*1  (L9_n) 

            i10i12*-1  i11i12*-1  (L12_n); 

 

Trait1-Trait3@1      ! variances for all traits are set to 1 

 

! optional - starting values for correlations between traits  

Trait1 WITH Trait2*-0.4  Trait3*0; 

Trait2 WITH Trait3*0.3; 

 

! declare uniquenesses  

i1i2*2 (e1e2);   

i1i3*2 (e1e3);    

i2i3*2 (e2e3); 
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i4i5*2 (e4e5);   

i4i6*2 (e4e6);    

i5i6*2 (e5e6); 

i7i8*2 (e7e8);   

i7i9*2 (e7e9);    

i8i9*2 (e8e9); 

i10i11*2 (e10e11);   

i10i12*2 (e10e12);   

i11i12*2 (e11e12); 

 

! declare correlated uniqunesses and set their starting values 

i1i2 WITH i1i3*1 (e1); 

i1i2 WITH i2i3*-1 (e2_n);  

i1i3 WITH i2i3*1 (e3); 

i4i5 WITH i4i6*1 (e4);  

i4i5 WITH i5i6*-1 (e5_n); 

i4i6 WITH i5i6*1 (e6); 

i7i8 WITH i7i9*1 (e7);  

i7i8 WITH i8i9*-1 (e8_n); 

i7i9 WITH i8i9*1 (e9); 

i10i11 WITH i10i12*1 (e10);    

i10i11 WITH i11i12*-1 (e11_n);   

i10i12 WITH i11i12*1 (e12); 

 

MODEL CONSTRAINT: 

!factor loadings relating to the same item are equal in absolute value 

L2_n = -L2; L5_n = -L5; L8_n = -L8; L11_n = -L11; 

 

! pair's uniqueness is equal to sum of 2 utility uniqunesses  

e1e2 = e1 - e2_n;  

e1e3 = e1 + e3; 

e2e3 = -e2_n + e3; 

e4e5 = e4 - e5_n; 

e4e6 = e4 + e6; 

e5e6 = -e5_n + e6; 

e7e8 = e7 - e8_n; 

e7e9 = e7 + e9; 

e8e9 = -e8_n + e9; 

e10e11 = e10 - e11_n; 

e10e12 = e10 + e12; 

e11e12 = -e11_n + e12; 

 

! fix one uniqueness per block for identification 

e1=1;  e4=1; e7=1;  e10=1; 
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Appendix B 

Mplus Input File for Example 2: Block Size n = 4, „Most-Least‟ Response Format 

TITLE: Model with 3 'most-least' blocks measuring 4 traits, with imputation of missing data  

 

DATA: FILE IS quads_most_least.dat; 

 

VARIABLE:     

     NAMES ARE  

     i1i2 i1i3 i1i4 i2i3 i2i4 i3i4  

     i5i6 i5i7 i5i8 i6i7 i6i8 i7i8  

     i9i10 i9i11 i9i12 i10i11 i10i12 i11i12; 

 

    CATEGORICAL = i1i2-i11i12; 

    MISSING ARE ALL *; 

 

DATA IMPUTATION: 

   IMPUTE = i1i2-i11i12(c); 

   NDATASETS = 20; 

 

ANALYSIS:  

ESTIMATOR=ULSMV;    PARAMETERIZATION=THETA; 

 

MODEL:  

Trait1  BY   

 i1i2*1  i1i3*1  i1i4*1  (L1) 

 i5i6*-1  i5i7*-1  i5i8*-1  (L5) 

 i9i10*1  i9i11*1  i9i12*1  (L9);  

Trait2  BY   

 i1i2*1  (L2_n)  

 i2i3*-1  i2i4*-1  (L2)  

 i5i6*-1  (L6_n)  

 i6i7*1  i6i8*1  (L6)  

 i9i10*-1  (L10_n)  

 i10i11*1  i10i12*1  (L10);  

Trait3  BY    

 i1i3*-1  i2i3*-1  (L3_n)  

 i3i4*1  (L3)  

 i5i7*-1  i6i7*-1  (L7_n)  

 i7i8*1  (L7) 

 i9i11*1  i10i11*1  (L11_n) 

 i11i12*-1  (L11); 

Trait4  BY   

 i1i4*-1  i2i4*-1  i3i4*-1  (L4_n) 

 i5i8*-1  i6i8*-1  i7i8*-1  (L8_n) 

 i9i12*-1  i10i12*-1  i11i12*-1  (L12_n); 
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! variances for all traits are set to 1 

Trait1-Trait4@1; 

 

! optional - starting values for correlations between traits 

Trait1 WITH Trait2*-0.4 Trait3*0 Trait4*0.4; 

Trait2 WITH Trait3*0.3 Trait4*-0.3; 

Trait3 WITH Trait4*0; 

 

! declare uniquenesses and set their starting values 

i1i2*2 (e1e2);  

i1i3*2 (e1e3);  

i1i4*2 (e1e4);  

i2i3*2 (e2e3);  

i2i4*2 (e2e4);  

i3i4*2 (e3e4);  

i5i6*2 (e5e6);  

i5i7*2 (e5e7);  

i5i8*2 (e5e8);  

i6i7*2 (e6e7);  

i6i8*2 (e6e8);  

i7i8*2 (e7e8);  

i9i10*2 (e9e10); 

i9i11*2 (e9e11); 

i9i12*2 (e9e12); 

i10i11*2 (e10e11); 

i10i12*2 (e10e12); 

i11i12*2 (e11e12); 

 

! declare correlated uniqunesses and set their starting values 

i1i2 WITH i1i3*1 i1i4*1 (e1); 

 i1i2 WITH i2i3*-1 i2i4*-1 (e2_n); 

i1i3 WITH i1i4*1 (e1); 

i1i3 WITH i2i3*1 (e3); 

i1i3 WITH i3i4*-1 (e3_n); 

i1i4 WITH i2i4*1 i3i4*1 (e4); 

i2i3 WITH i2i4*1 (e2); 

i2i3 WITH i3i4*-1 (e3_n); 

i2i4 WITH i3i4*1 (e4); 

 

i5i6 WITH i5i7*1 i5i8*1 (e5); 

i5i6 WITH i6i7*-1 i6i8*-1 (e6_n); 

i5i7 WITH i5i8*1 (e5); 

i5i7 WITH i6i7*1 (e7); 

i5i7 WITH i7i8*-1 (e7_n); 

i5i8 WITH i6i8*1 i7i8*1 (e8); 

i6i7 WITH i6i8*1 (e6); 

i6i7 WITH i7i8*-1 (e7_n); 

i6i8 WITH i7i8*1 (e8); 

 



MODELING FORCED-CHOICE DATA USING MPLUS     35 



i9i10 WITH i9i11*1 i9i12*1 (e9); 

i9i10 WITH i10i11*-1 i10i12*-1 (e10_n); 

i9i11 WITH i9i12*1 (e9); 

i9i11 WITH i10i11*1 (e11); 

i9i11 WITH i11i12*-1 (e11_n); 

i9i12 WITH i10i12*1 i11i12*1 (e12); 

i10i11 WITH i10i12*1 (e10);  

i10i11 WITH i11i12*-1 (e11_n); 

i10i12 WITH i11i12*1 (e12);  

 

MODEL CONSTRAINT: 

!factor loadings relating to the same item are equal in absolute value 

L2_n = -L2; 

L3_n = -L3; 

L6_n = -L6; 

L7_n = -L7; 

L10_n = -L10;  

L11_n = -L11;  

 

!uniquenesses relating to the same item are equal in absolute value 

e2_n = -e2; 

e3_n = -e3; 

e6_n = -e6; 

e7_n = -e7; 

e10_n = -e10; 

e11_n = -e11; 

 

! pair's uniqueness is equal to sum of 2 utility uniqunesses 

e1e2 = e1 + e2; e1e3 = e1 + e3; e1e4 = e1 + e4; 

e2e3 = e2 + e3; e2e4 = e2 + e4; e3e4 = e3 + e4; 

e5e6 = e5 + e6; e5e7 = e5 + e7; e5e8 = e5 + e8; 

e6e7 = e6 + e7; e6e8 = e6 + e8; e7e8 = e7 + e8; 

e9e10 = e9 + e10; e9e11 = e9 + e11; e9e12 = e9 + e12; 

e10e11 = e10 + e11; e10e12 = e10 + e12; e11e12 = e11 + e12; 

 

! fix one uniqueness per block for identification 

e1=1;  e5=1;  e9=1; 

 

Appendix C 

Mplus Input File for Example 3: Block Size n = 2, Measuring 3 Attributes 

TITLE: Model with 6 pairs measuring 3 traits 

DATA: FILE IS pairs3traits.dat; 

 

VARIABLE:  

      NAMES = i1i2 i3i4 i5i6 i7i8 i9i10 i11i12;  

      CATEGORICAL = i1i2-i11i12; 
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ANALYSIS: 

ESTIMATOR=ulsmv;  PARAMETERIZATION=THETA; 

 

MODEL:  

Trait1  BY   i1i2*1 i3i4*-1  i7i8*1  i9i10*1; 

Trait2  BY   i1i2*-1  i5i6*1 i7i8*1  i11i12*1; 

Trait3  BY i3i4*1 i5i6*-1  i9i10*1 i11i12*1; 

 

! variances for all traits are set to 1 

Trait1-Trait3@1; 

 

! optional - starting values for correlations between traits 

Trait1 WITH Trait2*-0.4 Trait3*0; 

Trait2 WITH Trait3*0.3; 

 

! set uniquenesses of all outcomes for identification  

i1i2-i11i12@1; 

 

Appendix D 

Mplus Input File for Example 4: Block Size n = 2, Measuring 2 Attributes 

TITLE: Model with 6 pairs measuring only 2 traits 

DATA: FILE IS pairs2traits.dat; 

 

VARIABLE:  

      NAMES = i1i2 i3i4 i5i6 i7i8 i9i10 i11i12;  

      CATEGORICAL = i1i2-i11i12; 

  

ANALYSIS: 

ESTIMATOR=ulsmv;   PARAMETERIZATION=THETA; 

 

MODEL: 

Trait1  BY   

 i1i2@.6   ! fixed for model identification 

 i3i4*1 i5i6*1 i7i8*1 i9i10*-1 i11i12*1; 

Trait2  BY   

 i1i2@-.8  ! fixed for model identification 

 i3i4*-1  i5i6*-1 i7i8*1 i9i10*-1 i11i12*1; 

 

! variances for all traits are set to 1 

Trait1-Trait2@1; 

 

! optional - starting values for correlations between traits 

Trait1 WITH Trait2*0; 

 

! set uniquenesses of all outcomes for identification  

i1i2-i11i12@1; 
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Table 1 

True and estimated parameters for Example 1: 3 traits measured by 4 triplets 

par. true est. par. true est. par. true est. 

1 1 1.08 (0.14) 
2

1  1 1 (--)  1 0.5 0.56 (0.08) 

2 0.8 0.86 (0.11) 
2

2  1 1.17 (0.30) 2 -1.2 -1.25 (0.12) 

3 1.3 1.36 (0.14) 
2

3  1 0.88 (0.29) 3 -1.7 -1.73 (0.18) 

4 -1.3 -1.30 (0.17) 
2

4  1 1 (--) 4 0.7 0.62 (0.07) 

5 1 1.00 (0.13) 
2

5  1 0.87 (0.23) 5 1 0.94 (0.10) 

6 0.8 0.80 (0.11) 
2

6  1 1.23 (0.28) 6 0.3 0.30 (0.06) 

7 0.8 0.80 (0.10) 
2

7  1 1 (--) 7 -0.7 -0.67 (0.08) 

8 1.3 1.32 (0.13) 
2

8  1 0.76 (0.26) 8 -1.2 -1.13 (0.09) 

9 -1 -0.97 (0.10) 
2

9  1 0.80 (0.22) 9 -0.5 -0.45 (0.07) 

10 1.3 1.08 (0.11) 
2

10  1 1 (--) 10 0.7 0.63 (0.06) 

11 -0.8 -0.63 (0.08) 
2

11  1 0.89 (0.18) 11 1.2 1.15 (0.09) 

12 1 0.81 (0.08) 
2

12  1 0.79 (0.18) 12 0.5 0.50 (0.06) 

12 -0.4 -0.39 (0.04) 13 0 0.00 (0.05)    

   23 0.3 0.34 (0.05)    

Notes: Standard errors in parentheses. N = 2000. First uniqueness in each block is set to 1 for 

identification, 2 2 2 2

1 4 7 10 1       .  
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Table 2 

True and estimated parameters for Example 2: 4 traits measured by 3 quads 

par. true 
est. full 

ranking 

est. 

most-least 
par. true 

est. full 

ranking 

est. 

most-least 
par. true 

est. full 

ranking 

est. 

most-least 

1 1 1.09 (0.13) 1.04 (0.14) 
2

1  1 1 (--) 1 (--) 1 0.5 0.57 (0.06) 0.56 (0.07) 

2 -0.8 -0.83 (0.09) -0.77 (0.1) 
2

2  1 1.02 (0.19) 0.97 (0.19) 2 -1 -0.97 (0.09) -0.96 (0.1) 

3 1.3 1.25 (0.12) 1.25 (0.13) 
2

3  1 1.47 (0.33) 1.28 (0.34) 3 0.5 0.59 (0.06) 0.6 (0.07) 

4 0.8 0.74 (0.09) 0.69 (0.09) 
2

4  1 1.25 (0.21) 1.22 (0.22) 4 -1.5 -1.5 (0.13) -1.4 (0.13) 

        5 0 0.04 (0.05) 0.02 (0.06) 

        6 1.5 1.57 (0.13) 1.51 (0.13) 

5 -1.3 -1.25 (0.18) -1.25 (0.23) 
2

5  1 1 (--) 1 (--) 7 -0.3 -0.34 (0.06) -0.32 (0.07) 

6 1 1.08 (0.13) 1.08 (0.16) 
2

6  1 0.83 (0.2) 0.78 (0.24) 8 -0.3 -0.36 (0.07) -0.33 (0.07) 

7 0.8 0.8 (0.11) 0.8 (0.12) 
2

7  1 1.25 (0.21) 1.22 (0.22) 9 -0.8 -0.79 (0.1) -0.88 (0.13) 

8 1.3 1.3 (0.14) 1.22 (0.19) 
2

8  1 0.65 (0.27) 0.83 (0.31) 10 0 -0.09 (0.05) -0.09 (0.05) 

        11 -0.5 -0.53 (0.08) -0.47 (0.09) 

        12 -0.5 -0.5 (0.07) -0.5 (0.08) 

9 0.8 0.84 (0.1) 0.9 (0.17) 
2

9  1 1 (--) 1 (--) 13 1.5 1.62 (0.13) 1.6 (0.16) 

10 1.3 1.41 (0.13) 1.38 (0.17) 
2

10  1 1.35 (0.31) 1.37 (0.39) 14 2 2.16 (0.15) 2.19 (0.24) 

11 -1 -1.06 (0.11) -1.14 (0.14) 
2

11  1 0.89 (0.24) 0.81 (0.28) 15 0.5 0.49 (0.06) 0.55 (0.07) 

12 1 0.99 (0.1) 1.07 (0.16) 
2

12  1 1.18 (0.23) 1.19 (0.28) 16 0.5 0.51 (0.08) 0.5 (0.09) 

        17 -1 -1.04 (0.1) -1.05 (0.13) 

        18 -1.5 -1.61 (0.13) -1.71 (0.19) 

12 -0.4 -0.43 (0.04) -0.43 (0.06) 13 0 -0.02 (0.05) -0.03 (0.06) 14 0.4 0.39 (0.04) 0.39 (0.05) 

    23 0.3 0.33 (0.05) 0.35 (0.05) 24 -0.3 -0.29 (0.05) -0.31 (0.06) 

        34 0 0.08 (0.05) 0.10 (0.06) 

Notes: Standard errors in parentheses. N = 2000. First uniqueness in each block is set to 1 for 

identification, 2 2 2

1 5 9 1      . Parameters for full ranking data are based on one dataset; parameters for 

most-least data are averaged across 20 imputed datasets. 
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Table 3 

True and estimated parameters for Example 3: 3 traits measured by 6 pairs 

par. true est. par. true est. 

1 0.6 0.63 (0.12) 1 0.5 0.59 (0.07) 

2 1.0 1.00 (0.17)    

3 0.8 0.81 (0.16) 2 -0.7 -0.66 (0.07) 

4 1.0 0.86 (0.16)    

5 0.6 0.62 (0.16) 3 0.5 0.42 (0.05) 

6 1.0 0.97 (0.18)    

7 0.8 0.73 (0.18) 4 -0.8 -0.82 (0.08) 

8 -1.0 -0.95 (0.20)    

9 0.6 0.58 (0.12) 5 0.3 0.37 (0.05) 

10 -0.6 -0.92 (0.15)    

11 0.8 0.66 (0.11) 6 0.7 0.66 (0.06) 

12 -0.8 -0.77 (0.11)    

12 -0.4 -0.33 (0.09) 13 0 0.07 (0.10) 

   23 0.3 0.36 (0.09) 

 

Notes: Standard errors in parentheses. N = 2000. All item uniquenesses are set to 0.5 for 

identification.  
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Table 4 

True and estimated parameters for Example 4: 2 traits measured by 6 pairs 

par. true est. par. true est. 

1 0.6 0.6 (--) 1 0.50 0.51 (0.04) 

2 0.8 0.8 (--)    

3 0.8 0.81 (0.13) 2 -0.70 -0.64 (0.06) 

4 1.0 1.00 (0.16)    

5 1.0 1.08 (0.15) 3 0.50 0.53 (0.06) 

6 0.6 0.70 (0.16)    

7 0.8 0.63 (0.09) 4 -0.80 -0.72 (0.06) 

8 -1.0 -0.84 (0.11)    

9 -0.6 -0.63 (0.07) 5 0.30 0.29 (0.04) 

10 0.6 0.59 (0.09)    

11 0.8 0.86 (0.12) 6 0.70 0.77 (0.07) 

12 -0.8 -0.85 (0.14)    

21 0 0.16 (0.15)    

 

Notes: Standard errors in parentheses. N = 2000. All item uniquenesses are set to 0.5 for 

identification.   

 


