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We have, by use of inelastic neutron scattering, detected the presence of molecular hydrogen in amorphous hydrogenated car-
bon. We have found the hydrogen to be in a high-pressure, asymmetric environment formed by the compressive stresses in the
a-C:H films. On comparing two samples, we have also found that the sample with higher molecular hydrogen concentration has
a lower total hydrogen composition. This is caused by a higher network density, trapping the molecular hydrogen during network’

growth.

1. Introduction

Hydrogen incorporation in amorphous hydrogen-
ated carbon films plays a key role in determining the
structure and properties of the resulting film, in par-
ticular, in determining the sp?:sp? ratio [1,2]. Di-
rect comparison of Rutherford backscattering and
infrared spectroscopy on a-C:H [3,4] indicates.a.to-

tal hydrogen concentration greater than the bonded

hydrogen concentration. This suggests, but does not
unequivocally prove, the existence of unbonded or
molecular hydrogen.

Molecular hydrogen has been identified in amor- .

phous hydrogenated silicon by numerous tech-
niques, e.g. refs. [5,6], leading to the postulation of
“microbubbles” of molecular hydrogen. There has
been no such evidence for hydrogen molecules in
a-C:H.

Neutron scattering provides the only means of

probing directly the hydrogen environment. The to--

tal neutron scattering cross-section of hydrogen is

several orders of magnitude greater than that for car-
bon. Incoherent inelastic neutron scattering (IINS)
takes advantage of this to yield a scattering function
which can be related directly to the hydrogen vibra-
tional density of states, g(w). Full details of this
technique can be found elsewhere [7,8]. IINS has
recently been used to identify the presence of mo-
lecular hydrogen in one sample of a-C:H from an
observation of the characteristic frequency of rota-
tion [9]. This work represents an extension of that
study.

2. Experimental

‘The amorphous hydrogenated carbon used in these
experiments was produced using a saddle-field ion-
beam source [10]. Sample 1 was deposited within
the source chamber over a period of time from a
mixture of propane, butane and acetylene gases.
Sample 2 was deposited in the conventional way,
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Table 1 ‘
Compositions and densmes of the samples
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C (at.%) H (at.%) p (gem™3)
sample | 0.71 0.29 1.65
sample 2 0.65 0.35 151

from an acetylene precursor gas, onto copper sub-
strates; as a-C:H does not adhere to copper, this
"proved an ideal method for producing the large (~2-
5 g) powder samples required for neutron-scattering
experiments.

A Carlo-Erba CHN combustion analyser was used
to determine the compositions of the samples and
the bulk densities were determined using a residual
volume technique (see table 1).

The inelastic neutron-scattering data were col-

lected at the ISIS pulsed neutron source (Rutherford
Appleton Laboratory) using the TFXA and MARI
instruments, which are, respectively, inverse- and di-
rect-geometry inelastic spectrometers. Full details can
be found elsewhere [11].

3. Discussion

As has been reported previously [9], the TFXA
data show molecular hydrogen clearly in sample 1
only (see fig. 1). The rotation of molecular hydrogen
is predicted to give rise to a peak centred at 15 meV
corresponding to the ortho-para transition (J=0 to
1) [12]. Our data reveal broad peaks at 12.5 and 16
meV, consistent with a distribution of potentials at
different sites hindering the rotation. Silvera and
Nielsen [13] have shown that this would cause the
observed asymmetry in the J=0 to 1 transition. It
has been possible to estimate the bond length from
a weighted average of these peak positions (14+0.5
meV). At 0.72 A, the bond length is lower than that
for gaseous hydrogen (0.75 A), suggestive of a high-
pressure hydrogen environment.

If the molecular hydrogen is in a high-pressure en-
vironment, this must be due to high levels of stress
in the amorphous solid. Compressive stresses have
been extensively studied [14], and have been found
to give an effective hydrostatic pressure of the order
2 GPa in a-C:H. This compares to a pressure of 0.2
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Fig. 1. Inelastic neutron-scattering spectrum for sample 1 in the
2.5-25 meV range showing two lattice vibrations (4.5 and 7 meV)
and the molecular hydrogen rotation (12.5 and 16 meV). (Ob-
tained using the TFXA spectrometer. )
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Fig. 2. Inelastic neutron-scattering spectrum for sample 2 show-
ing the carbon-hydrogen stretch and bend (370 and 150 meV)
and the molecular hydrogen stretch (540 meV). (Obtained us-
ing the MARI spectrometer with 1000 meV incident neutrons.)

to 0.4 GPa for hydrogen in a-Si:H based on Chabal
and Patel’s infrared data [15].

Although the rotation of molecular hydrogen is not
seen in sample 2 (see fig. 2) on TFXA and only
weakly on MARI, the presence of molecular hydro-
gen is clearly indicated by the observation of a peak
at 540+ 6 meV, best -described by a H-H streich
(544.8 meV [16]).
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This may be taken as implying that sample 2 has
a greater proportion of the total hydrogen content
bonded to the carbon; thus, in the TFXA data at least,
the hydrogen rotation is not seen due to the back-
ground of network vibrations. (If sample 2 has a
higher proportion of bonded hydrogen and a higher
total hydrogen content, it must have a higher abso-
lute bonded-hydrogen concentration than sample 1.)
Bonded hydrogen reduces the cross-linking in the
network, resulting in a more open structure, through
which hydrogen could more easily diffuse. Density

measurements are consistent with this, as the higher- ‘

density sample has the higher molecular hydrogen
concentration.

Hydrogen-effusion experiments [17] have shown

a plateau in the hydrogen evolution as a function of
temperature. Although this was initially thought to
be due to loss of adsorbed hydrogen, this has recently
been interpreted as being caused by a densification
of the network [18]. Eventually, this forms a net-
work in which molecular hydrogen is trapped. Fur-
ther supporting evidence for this theory is provided
from work on amorphous silicon [5], which shows
a higher molecular hydrogen concentration after an-
nealing than before. This data can be used to put an
upper bound on the molecular hydrogen of approx-
imately one fifth the total hydrogen concentration.

Our results suggest that during deposition, a den-
sification process, similar to the one observed during
annealing, is responsible for trapping small quan-
tities of molecular hydrogen in all a-C:H samples,
with the proportion of hydrogen trapped as molec-
ular hydrogen increasing with final network density.
McKenzie et al. [14] have recently produced a new
form of a-C:H with a low overall hydrogen content
but avery high network density, in which it is thought
that all the hydrogen present is in the form of mo-
lecular hydrogen.

4. Conclusions

Molecular hydrogen is trapped in both samples
under investigation in these experiments, and prob-
ably is present in all samples of a-C: H, although per-
haps in small quantities. The proportion of molec-
ular hydrogen seems to decrease with increasing
hydrogen concentration, which suggests that in-
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creased hydrogenation leads to a more open network
with fewer sites able to trap the molecular hydrogen
within the a-C:H.

* We have found a split rotation band consistent with
a distribution of hindering potentials at different
sites. From the reduced bond length, we deduce a
high effective pressure and infer a pressure of ~1
GPa from published data.
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