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Abstract

Ultra-dense networks (UDN) constitute one of the most promising techniques of supporting the fifth

generation (5G) mobile system. By deploying more small cells in a fixed area, the average distance

between users and access points can be significantly reduced, hence a dense spatial frequency reuse

can be exploited. However, severe interference is the major obstacle in UDNs. Most of the contri-

butions investigate the interference by designing distributed algorithms based on cooperative game

theory. This paper advocates the application of dense user-centric cloud radio access network (C-

RAN) philosophy to UDNs, thanks to the recent development of cloud computing techniques. Under

dense C-RAN architectures, centralized signal processing can be invoked for supporting Coordinated

Multiple Points Transmission/Reception (CoMP). We summarize the main challenges in dense user-

centric C-RANs. One of the most challenging issues is the requirement of the global CSI for the sake

of cooperative transmission. We investigate this requirement by only relying on partial channel state

information (CSI), namely, on inter-cluster large-scale CSI. Furthermore, the estimation of the intra-

cluster CSI is considered, including the pilot allocation and robust transmission. Finally, we highlight

several promising research directions to make the dense user-centric C-RAN become a reality, with

special emphasis on the application of the ‘big data’ techniques.
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I. INTRODUCTION

The capacity demand for new emerging mobile applications, such as the Internet of things (IoTs)

and three dimensional (3D) wireless video streaming has been growing explosively. The fifth generation

(5G) wireless system of the near future is anticipated to offer a substantially increased data throughput

compared to the fourth generation (4G) system. To achieve this ambitious goal, ultra dense networks

(UDNs) have been widely regarded as one of the most promising solutions relying on small-cell base

stations (BSs) [1]. In UDNs, the average distance between users and small cell BSs is significantly

reduced, hence the link quality is dramatically improved, which further increases the network capacity.

However, the drastic interference generated by the neighboring small cells is a limiting factor in UDNs.

The attainable network performance may even be decreased when the BS density is extremely high [2].

Hence, the interference should be carefully managed in order to reap the potential benefits of UDNs. Most

of the existing contributions deal with the interference by designing partially distributed algorithms based

on powerful game-theoretical approaches [3]. By adopting cooperative game theory, multiple small cell

BSs exchange the necessary information for their coordination through the wired backhaul (BH) links,

which works well for small-scale networks. However, for UDNs, the heavy overhead of coordination

and the increasing cost of deploying the wired BH links will preclude the application of this approach.

Apart from the interference issues, employing more small cell BSs will also increase the maintenance

and operational costs. Furthermore, small cells relying on unity frequency reuse will incur more frequent

handoffs, which leads to a high latency and/or frequent outages. Hence, a new network architecture should

be adopted to support reliable communications in UDNs.

Due to the recent developments in cloud computing and the maturity of multi-core processors, the ultra-

dense cloud radio access network (C-RAN) concept has been widely regarded as a promising network

architecture that can efficiently address the issues arising in UDNs.

The ultra-dense C-RAN architecture is shown in Fig. 1, which consists of three key components:

1) Baseband unit (BBU) pool hosted in a cloud data center, supported by the techniques of cloud

computing, network function virtualization (NFV), software-defined networks (SDN), etc;

2) Low-cost, low power radio remote heads (RRHs) geographically distributed over the coverage area;

3) Wireless fronthaul links that connect the RRHs to the BBU pool.

The main characteristic of dense C-RAN is that all the baseband signal processing units of conventional

small cell BSs have been incorporated in the BBU pool, where the computing resources can be shared

among the BBUs. Then the conventional full-functionality small cell BSs can be replaced by the low-cost,
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TABLE I

DIFFERENT TYPES OF UDN DEPLOYMENT

Type of UDN Functionality Interference Management Connectivity Deployment Cost

Small Cells Fully Functioning Distributed Algorithm Wired Backhaul High Maintenance Cost

Dense C-RAN PHY Layer Functioning Centralized Algorithm Wireless Fronthaul Low Hardware Cost

II. RESEARCH CHALLENGES AND EXISTING SOLUTIONS

In this section, we first summarize the challenges arising in dense C-RAN and then provide an overview

of the existing solutions.

A. Research Challenges

Despite its appealing advantages, there are many technical and deployment challenges associated with

dense C-RAN, which include, but are not limited to, the following aspects:

High computational complexity: In dense C-RAN, the BBU pool usually supports a large number

of RRHs and the number of variables to optimize, such as beamforming-vectors or transmit powers will

become excessive, even in the context of cloud computing.

Stringent fronthaul capacity requirement: In conventional C-RAN, the fronthaul links are typically

fixed links, such as optical fibers or high-speed Ethernet. However, in ultra-dense C-RAN a large number

of fronthaul links are required. Laying wired links requires high operational and maintenance costs.

Additionally, some RRHs may be located at inaccessible places. An attractive alternative is to use wireless

fronthaul links, such as millimeter wave (mmWave) Communication links, which are much more scalable

and cost-effective than fixed links. However, the bandwidth of wireless links is much lower than that of

wired links, which means that the number of users supported by each wireless link is lower.

Huge training overhead for channel state information (CSI) estimation: To facilitate CoMP

transmission, the global CSI should be available at the BBU pool, which constitutes an excessive overhead

for dense C-RAN. The estimation of the global CSI will also impose a high training overhead that scales

with the size of the network. Caire et al. [4] showed that the increasing amount of training overhead

may in fact outweigh the cooperative gains provided by CoMP transmission.

B. State of the Art Solutions

The most common technique of reducing the signal processing complexity is to adopt the related

cluster technique. In general, there are two types of cluster techniques, as shown in Fig. 1: Disjoint
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clustering and user-centric clustering. In the disjoint cluster, all the RRHs in the network are partitioned

into several non-overlapped clusters, and the RRHs in each cluster employ the CoMP technique to serve

the users within the coverage area of this cluster. Although the intra-cluster interference can be mitigated,

the inter-cluster interference still persists. As a result, the cluster-edge users still suffer from inter-cluster

interference. For example, in Fig. 1-(a), user equipment (UE) 1 of cluster 1 suffers from a high interference

imposed by the nearby cluster 2. By contrast, in the user-centric cluster, each user is individually served

by its nearby RRHs and the cluster is formed from the user’s perspective. The scheduled user is the

center of the corresponding cluster. Different clusters may overlap with each other, which will eliminate

the potential cluster-edge effect. Hence, both the intra- and inter-cluster interference can be efficiently

mitigated. Kim et al. [5] demonstrated the benefits of employing user-centric clusters over the cell-centric

clusters. Hence, the user-centric cluster constitutes the focus of this paper.

The fronthaul capacity constraint has been extensively studied, which can be divided into two categories:

the compression strategy and the data sharing strategy. In the compression strategy, the BBU pool first

computes the beamforming-vectors for each RRH. Then, the beamformed signals are generated at the

BBU pool, which are compressed and sent to the corresponding RRHs. The fronthaul capacity is related

to how fine is the resolution of the compressed signals: higher resolutions require a higher fronthaul

capacity. Hence, the compression resolution should be optimized under the fronthaul capacity constraints

[6]. In the second strategy, the beamforming-vectors computed at the BBU pool are directly sent to the

corresponding RRHs. Then, the BBU pool shares each user’s data directly with its serving RRH cluster.

The beamformed signals are generated at each RRH. In this strategy, the fronthaul capacity depends on

the number of users served by each link: a higher number of users requires a higher fronthaul capacity.

Hence, the user-RRH associations should be optimized under the fronthaul capacity constraints [7].

To reduce the channel estimation overhead, a promising technique is to rely on partial CSI case under

the user-centric cluster, where each user only estimates the CSI of the links from the RRHs within

its own cluster (termed as intra-cluster CSI) and only tracks the path loss and shadowing outside its

own cluster (termed as inter-cluster CSI), which are sent back to the corresponding RRHs and then

collected at the BBU pool. These parameters are necessary for the joint CoMP transmission design at

the BBU pool. Indeed, the large-scale fading may be readily tracked since it changes slowly compared to

the instantaneous CSI. The design of CoMP transmission weight vectors under this partial CSI case is a

challenging task. Hence, there is a paucity of contributions [8]–[10] based on partial CSI for dense C-RAN.

To elaborate, compressive CSI acquisition was proposed in [8] for determining the set of instantaneous

CSIs and large scale fading gains. However, its complexity is high, hence cannot be readily implemented
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in dense C-RAN. Lakshmana et al. [9] proposed an innovative beamforming design to maximize the

weighted sum-rate of UEs under user-centric cluster formation for partial CSI, where the path loss was

also incorporated into the optimization problem. However, neither the rate requirements of each user

nor the fronthaul capacity constraints were considered in this paper. Recently, we provided a design

framework in [10] to deal with most of the emerging challenges arising in dense C-RAN, including the

network’s power consumption, the limited fronthaul capacity constraints, the computational complexity

and the channel estimation overhead. However, the intra-cluster CSI was assumed to be perfect in [8]–[10],

which is difficult to achieve in practice.

III. TRANSMISSION SCHEME DESIGNED FOR IMPERFECT INTRA-CLUSTER CSI

For time-division duplex (TDD) C-RANs, the training sequences sent from different users to the same

serving RRH should be mutually orthogonal so that the RRH can distinguish the channel vectors of the

different users. However, the number of pilots required scales linearly with the number of users, which

becomes excessive for dense C-RANs. Hence, the number of time slots remaining for data transmission

will be significantly reduced. To reduce the number of pilots, they may be reused by a group of users

under the condition that none of users in the group is allowed to share the same serving RRH with the

other users. For example, in Fig. 1-(b), UE 1 and UE 2 can reuse the same pilot, since they do not

share the same RRH. It is widely recognized that the pilot reuse scheme will however impose the pilot

contamination issue, which results in sizeable channel estimation errors. Similar problems occur also

in frequency division duplexing (FDD) C-RANs. In the following, we propose a two-stage optimization

method to optimize the transmissions for dense C-RAN: In Stage I, a novel pilot reuse scheme is proposed;

In Stage II, a robust beamforming-vector optimization algorithm is conceived for maximizing the number

of users admitted while considering the pilot contamination incurred by Stage I.

A. Stage I: Novel Pilot Reuse Scheme

The pilot reuse issues have been extensively studied in massive multiple-input multiple-output (MIMO)

systems. The basic idea is to reuse the same pilot within the specific group of users having different angles

of arrival. However, in dense C-RAN, the number of antennas used at each RRH is limited due to the

limited space and hardware cost. Hence, the schemes developed for massive MIMOs are not applicable

in dense C-RANs.

Recently, Chen et al. [11] proposed a novel pilot allocation scheme for dense C-RANs by using

the classic Dsatur graph coloring algorithm [11], which minimizes the number of pilots required for

Page 6 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Page 7 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

pilots τ . For a dense C-RAN, we construct a (K ×K) matrix B, where each element is given by

bk,k′ =







1, if Ik ∩ Ik′ 6= ∅ and k 6= k′

0, otherwise,
(1)

where Ik denotes the set of RRHs that potentially serve user k. The above definitions mean that if user k

and user k′ do not have common RRHs, the corresponding matrix element is set to bk,k′ = 1. Otherwise,

the element is set to zero. Based on matrix B, a unidirectional graph can be constructed for the network of

Fig. 1-(b) as seen in Fig. 2-(a), where the vertices represent the corresponding users. Fig. 2-(b) illustrates

the pilot allocation results after applying the Dsatur algorithm [11], which shows that to adequately serve

all the six users, at least three different pilots are required.

To solve our pilot allocation optimization problem, we first adopt the Dsatur algorithm to find the

minimum number of pilots required for serving all users in the network. If this number is higher than the

number of pilots available, some users should be removed. Otherwise, all users can be admitted. In the

latter case, some pilots may be reused by up to nmax users, while some pilots are not allocated, which

wastes the pilot resources. To resolve this problem, all pilots should be reallocated so that all available

pilots should be used to reduce the pilot contamination. Let us denote the minimum number of pilots

required by the Dsatur algorithm as n∗. In the following, we provide a detailed algorithm to deal with

each case: 1) n∗ > τ ; 2) n∗ < τ . When n∗ = τ , no additional operations are required.

Case I: n∗ > τ . In this case, the number of available pilots is insufficient for supporting all users in

the network, hence some users should be removed. Let us define θk
∆
=
∑

k′ 6=k,k′∈Ū bk,k′ as the degree

of the vertex associated with user k, which represents the total number of users connected to this user.

The user having the largest value of θk should be deleted with high priority, since many users should

be allocated different pilots compared to this user. However, there may exist several users with the same

value of θk, and randomly removing one of them will lead to a reduced performance. Hence, the user

earmarked for deletion should be carefully selected. Intuitively, the user suffering from the highest pilot

interference should be removed. To this end, we define the metric ηk,k′ to quantify the level of pilot

interference between any two users, when they are reusing the same pilot:

ηk,k′ = log

(

1 +

∑

i∈Ik′
αi,k

∑

i∈Ik
αi,k

)

+ log

(

1 +

∑

i∈Ik
αi,k′

∑

i∈Ik′
αi,k′

)

. (2)

where αi,k represents the large-scale fading power from RRH i to user k. Obviously, a higher value of

ηk,k′ means higher pilot interference between these two users, when they employ the same pilot. Then,

we quantify the level of pilot interference incurred by this user by ξk =
∑

k′∈Kπk
\{k} ηk,k′ as our figure

of merit. The user with the largest value of ξk should be removed. Based on this idea, we conceive the
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user selection and pilot allocation method formulated in Algorithm 1. By invoking this algorithm for the

network in Fig. 1-(b) with τ = 2 and nmax = 2, the final assignment is shown in Fig. 2-(c), where four

users are admitted.

Algorithm 1 User selection and pilot allocation algorithm for Case I

1: Initialize matrix B, user set U = {1, · · · ,K}, initial number of required pilots n∗ obtained from the

Dsatur algorithm;

2: While n∗ > τ

3: Find k∗ = argmaxk∈U θk. If there are multiple users with the same θk, remove the user with

the largest ξk;

4: Remove user k∗ from U , i.e., U=U/k∗, and update matrix B with current U ;

5: Use the Dsatur algorithm to calculate n∗ with B and U ;

Case II: n∗ < τ . In this case, we aim for reallocating all the available pilots to all users for additionally

reducing the pilot contamination. Note that in Fig. 2-(b) having three allocated pilots, there may be

measurable pilot interference between user 1 and user 2. If four pilots are available, these two users can

be allocated different pilots as seen in Fig. 2-(d), which enhances the system performance. To this end,

we reconstruct the undirected graph by introducing a threshold ηth. If ηk,k′ > ηth, user k and user k′

have measurable pilot interference if reusing the same pilot, hence they should be connected. Otherwise,

they can reuse the same pilot. Based on this idea, matrix B can be reconstructed as

bk,k′ =



















1, if Ik ∩ Ik′ 6= ∅ and k 6= k′,

1, if ηk,k′ > ηth, Ik ∩ Ik′ = ∅ and k 6= k′,

0, otherwise.

(3)

As expected, a smaller value of ηth will result in more users becoming connected with each other and

hence more pilots are required. In the extreme case of ηth < min{bk,k′}, all users become connected and

the number of pilots required is equal to K. On the other hand, if ηth ≥ max{bk,k′}, the reconstructed

matrix B reduces to the initial B defined in (1), where the number of pilots required is n∗. Since τ < K,

there must exist a ηth value so that the number of pilots required is equal to τ . The bisection search

algorithm can be adopted to find this threshold ηth, but the details of this must be omitted. Again,

Fig. 2-(d) shows the pilot allocation results after using this algorithm.

Page 9 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

B. Stage II: Robust Beamforming-vector Design

In Stage II, we aim for designing the beamforming-vectors by considering the pilot contamination due

to the pilot reuse scheme in Stage I. Specifically, we formulate a transmit power minimization problem,

while considering the following three constraints:

1) Each user’s data rate should be higher than its minimum requirement;

2) Each fronthaul link capacity constraint is imposed;

3) Each RRH has its individual power constraint.

There are four challenges to solve this optimization problem:

1) Since we consider the partial CSI case where only the inter-cluster large-scale fading parameters

are available, the exact data rate of each user is difficult to obtain.

2) Due to the fronthaul capacity constraint and RRH power constraint, this system may not be able

to support all users at their specific rate requirements.

3) The fronthaul capacity constraint contains the non-smooth and non-differentiable indicator function,

which results in a mixed-integer non-linear programming (MINLP) problem that is NP-hard to solve.

4) Due to the channel estimation error, each user suffers from residual self-interference. The conven-

tional weighted minimum mean square error (WMMSE) method of [13] that has been successfully

applied in the perfect intra-cluster CSI scenario [7], [10], cannot be used for solving the problem

considered here.

We provide brief descriptions of the associated methods to address the above four challenges.

First, Jensen’s inequality is used for finding the lower-bound of the exact data rate, which is more

amenable to the design of our algorithm. In [10], we have shown that for the specific scenario of non-

overlapped cluster, the gap between the lower-bound and the exact data rate is within 3% for both sparse

and dense C-RAN scenarios. Hence, a simple correction factor may be used for practical applications.

Second, we construct an alternative optimization problem to deal with the infeasibility of the original

problem by introducing a series of auxiliary non-negative variables. This idea is inspired by [14], which

can maximize the number of users admitted, while simultaneously minimizing the transmit power.

Third, the non-smooth indicator function is replaced by a concave function fθ(x) =
x

x+θ
, where θ is

a small positive value. The transformed problem is the well-known difference of convex (d.c.) program,

which can be efficiently solved by the successive convex approximation (SCA) method under convergence

guarantee.
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Finally, to deal with the fourth challenge, we adopt the semi-definite relaxation approach and formally

prove that semidefinite relaxation is tight with a probability of 1.

C. Simulation Results

We now present our simulation results for evaluating the performance of the proposed algorithms. The

dense C-RAN is assumed to cover a square shaped area of 2 km × 2 km. The numbers of RRHs and users

are set to I = 30 and K = 18, respectively. Both the users and RRHs are uniformly and independently

distributed in this area. It is assumed that each user is potentially served by its nearest L RRHs. Each

fronthaul link is assumed to only support three users, since mmWave communication is employed as the

wireless fronthaul link. The other systems parameters can be found in [15].

We compare our proposed algorithm to the following algorithms:

1) Orthogonal pilot allocation (with legend “Ortho”): As the terminology implies, all users are allocated

orthogonal pilot sequences, hence the maximum number of users that can be admitted in Stage I

is equal to the number of available pilots τ . These τ users are randomly selected from K users.

2) No reallocation operations for Case II in Stage I (with legend “NoCaseII”): This algorithm is

similar to our proposed algorithm, except when Case II would occur, no additional operations are

performed.

3) Conventional pilot allocation method (with legend “Con”): This algorithm is similar to the “NoCa-

seII” algorithm, except when Case I would occur, the users are randomly removed until the number

of required pilots is equal to τ .

4) Perfect CSI estimation (with legend “Perfect”): This is the baseline algorithm, where the intra-

cluster CSI is assumed to be perfectly known. This algorithm is provided to quantify the effect of

channel estimation errors.

Figs. 3 and 4 illustrate the number of users admitted versus the candidate RRH set size L in Stage I

and Stage II of Section III-A and III-B, respectively. It is seen from Fig. 3 that the number of admitted

users monotonically decreases upon increasing the candidate set size L. This is due to the fact that with

a larger candidate RRH set size for each user, more users will become connected with each other, which

requires more pilots. This figure also illustrates the superior performance of our proposed algorithm

over the “Con” algorithm, highlighting the necessity of carefully considering the pilot interference, when

removing users.

It is interesting to observe from Fig. 4 that the number of users admitted by all algorithms (except

the “Ortho” algorithm) initially increases with the candidate set size and then decreases. The reason is
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that when L starts to increase, a higher spatial degree of freedom is available to support more users.

However, when L continues to increase, many users are rejected in Stage I, as seen in Fig. 3. This trend

is different from the widely accepted concept that increasing the candidate set size will always lead to

better performance. Hence, the channel estimation process should be taken into account, when designing

the cluster. This figure also shows the performance advantage of our proposed algorithms over the other

algorithms.

IV. CONCLUSIONS AND FUTURE RESEARCH CHALLENGES

We advocated the application of a user-centric dense C-RAN architecture for UDNs due to its appealing

features such as the facilitation of centralized signal processing, low hardware cost, low Capital Expen-
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diture (CAPEX) and Operational Expenditure (OPEX), etc. However, we also identified the challenge

of requiring a heavy training overhead for estimating all the CSIs for cooperative transmission. As a

remedy, we adopted the partial CSI model, where only the large-scale inter-cluster CSI is available. The

channel estimation required for intra-cluster CSI was also considered, where a novel pilot allocation

scheme was proposed. Then, we developed a robust transmission design by considering the effect of

channel estimation errors. Our simulation results verified the performance advantages of the proposed

algorithm over the existing ones.

Finally, we now highlight several promising research directions to make the user-centric dense C-RAN

more amenable for practical implementations.

Dynamic cluster formations: In this work, the cluster for each user was assumed to be fixed, i.e.

each user is only connected to its nearest L RRHs. However, in practical systems, the cluster sizes for

users should be adapted to the network state, such as the users’ rate requirements or traffic load, each

RRH’s power limit, each fronthaul capacity constraint, etc. Additionally, the channel estimation stage

should be taken into account as seen in Fig. 4, where the network performance may even degrade with

the cluster size. How to optimize the cluster size individually for each user by jointly considering the

above elements remains an inspiring research direction.

User mobility management: User mobility is a very challenging issue in user-centric ultra-dense

C-RANs. When the users move from one place to another, the cluster of RRHs assigned for serving

this user should be adaptively changed. Explicitly, an adaptive mobility management method should be

developed so that the serving cluster can follow each user’s behavior (e.g. mobility and service demands)

and provide data transmission without the users’ involvement. Fortunately, the ‘Big Data’ technique

relying on machine learning is becoming mature, which can track the users’ mobility and then predict

their future locations. By applying this technology, the users’ serving cluster can be formed beforehand

in anticipation that significantly reduces the processing time and meets the targeted quality of experience

(QoE) levels.

Robust Transmission Design for Dense FDD C-RANs: The FDD mode is another alternative

transmission mode to the TDD mode considered in this paper. In dense FDD C-RANs, each user will

estimate its CSI wrt the RRHs within its cluster. Then, the CSI will be quantized and fed back to the

corresponding serving RRHs. In addition to the channel estimation error considered in TDD C-RANs,

other errors will also be introduced, such as the quantization error and that of outdated CSIs. If directly

applying the quantized CSI for joint transmission design, not all the users’ quality of service (QoS) can

be guaranteed. Hence, robust transmission designs have to be developed to guarantee the users’ QoS.
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Channel prediction is another useful method of providing more accurate CSI. Some prediction techniques,

such as Kalman and Weiner filtering can make the performance of the C-RAN network more robust to

the delay effects. Finally, Big Data techniques can also be adopted to predict the channel parameters. In

a nutshell, the future is bright for user-centric design.
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