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ABSTRACT 

Biometrics components are used in many different systems and technologies to verify 

that the user is whom they say they are. In Automated Border Control systems, 

biometrics components used in conjunction with a traveller’s documents to make sure 

the user is whom they say they are so that they can cross into a countries borders. 

The systems are expected to verify the identity with a higher degree than officers who 

manually check travellers. 

Each year the number of travellers crossing through a country borders increases and 

so systems are expected to handle bigger demands; through improving the user 

experience to ensuring accuracy and performance standards increase.  

While the system does bring its benefits through increased speed and higher security, 

there are drawbacks. One of the main issues with the systems is a lack of 

standardisation across implementations. Passing through an automated process at 

Heathrow may be different to Hong Kong. The infrastructure, information, environment 

and guidance given during the transaction will all greatly differ for the user. 

Furthermore, the individual components and subsequent processing will be evaluated 

using a different methodology too.  

This thesis reports on the contrasts between implementations, looking at solutions 

which utilise different biometric modalities and travel documents. Several models are 

devised to establish a process map which can be applied to all systems. Investigating 

further, a framework is described for a novel assessment method to evaluate the 

performance of a system. An RGB-D sensor is implemented, to track and locate the 

user within an interactive environment. By doing so, the user’s interaction is assessed 

in real-time. Studies then report on the effectiveness of the solution within a replicated 

border control scenario. Several relationships are studied to improve the technologies 

used within the scenario. Successful implementation of the automated assessment 

method may improve the user’s experience with systems, improving information and 

guidance, increasing the likelihood of successful interaction while maintaining a high 

level of security and quicker processing times. 
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CHAPTER 1. INTRODUCTION 

The work in this thesis is concerned with user interaction performance with the 

biometric components of Automated Border Control systems. Biometric modalities 

provide an additional step to the verification process of a traveller crossing through a 

countries border. The interaction between a human and sensor plays a significant role 

which will impact the system's decision and the outcome of the process. If a ‘correct’ 

interaction is presented with little to no errors, the biometric sample is likely to be 

accepted for matching. If an ‘incorrect’ presentation is made, then it increases the 

chance that the sample will not be accepted.  If the algorithm decides that the sample 

is poor and is therefore rejected due to not meeting the threshold or by a processing 

error, the user may either try again or queue for manual processing.  

Common biometric applications do not distinguish whether an error is either system 

based (e.g. the system failed to acquire a satisfactory sample) or if an error is user 

caused (e.g. the user presented a sample in such a way that it was difficult for the 

system to obtain a satisfactory sample) and merely wrap the two together.  

Performance assessment of interactions is a challenging area and requires an in-

depth understanding of the subtle difference between system generated and user 

interaction errors. This thesis suggests novel techniques in the assessment of human-

biometric based interactions with two common biometric modalities used in border 

control systems. Unlike existing works described in the literature, this study focuses 

on how assessing user interaction in real time will not only enable improved methods 

of assessment but also how the captured data may enhance the guidance and 

information provided throughout the process.   

In the rest of this chapter, the motivation for this research is further expanded upon. 

Section 1.1 will present a brief introduction to biometric systems along with a summary 

of the potential vulnerability in current performance evaluation techniques. Section 1.2 

will introduce the motivation for this research. Aims and objectives are listed in Section 

1.3. A scope of the work will be explored in Section 1.4. Finally, Section 1.5 will outline 

the structure of the thesis.  
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1.1 Biometric Systems 

Automated Border Control (ABC) systems consist of several components which all 

contribute to the main aim of increasing the level of security in verifying travellers to 

cross a country’s borders. One of the key components of the system, the biometric 

module, aims to reliably recognise or verify a person attempting to pass through the 

border. Many questions are raised during the process, for example, “Is she/he really 

whom she/he claims to be?” or “Is this person using this system authorised to access 

this process?” Moreover, the biometric element is processed alongside other internal 

functions which run in the background; comparing the captured sample against a 

previously enrolled image, checking the traveller against databases, watch lists and 

so forth.  

Research into techniques that can improve the performance of an automated 

recognition system is fundamental. Most applications (e.g. unlocking a phone, 

accessing a website) traditionally verifies a user based on what “she/he remembers or 

knows”, for example, through remembering a password or PIN. For ABC Systems, 

such recognition is also used in conjunction with biometric verification and are typically 

based on tokens possessed by the traveller, such as electronic passports and identity 

cards. However, if the ID card is stolen or a password is known to an unauthorised 

user, security can be breached, especially if the system is unattended. Recognition 

based on what a person is or does can address the problems related to these 

traditional methods. Combining the two is a powerful tool in identifying and 

subsequently verifying a user’s claim of identity.   

Biometric-based systems verify a user based on various parts of the human body or 

human behaviour. Behavioural biometrics usually consists of a user acting such as 

speaking (voice), writing a signature and through walking. Physiological biometrics 

commonly uses face, fingerprint, iris and hand geometry. In general, biometrics 

modalities are based on the following criteria: 

 Universality – every person should have it  

 Uniqueness – it cannot be replicated in two people  

 Permanence – it cannot alter greatly with time 

 Measurability – it can be measured in some form
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Combining biometric-based systems with traditional methods such as PIN codes, 

passwords and keys provide an extra level of security. In ABC systems, it is a common 

scenario for a user to present their passport (token) which contains a facial reference 

image. The token has been pre-validated by the country of issue and is a document 

that verifies the user’s identity. The image is stored locally on the electronic chip 

embedded within the passport, and a live image is captured from the user which is 

then compared by a matching algorithm. If the system accepts the match and the 

documents pass other security checks, the user is authorised by the system and 

therefore can cross the country’s borders.  

Enabling a biometric component within a system has its advantages over using token 

only based methods. For example, standard security methods which may require the 

user to remember a PIN or password can easily be forgotten.  Also, carrying 

cumbersome bunches of keys, tokens or cards can be easily lost or stolen. Biometrics 

guarantee that the user who accesses facilities cannot deny using it (non-repudiation) 

and in several scenarios, do not require the possession of any physical tokens, nor 

rely on the uncertainty of the human memory. However, passports may by-pass this 

rule; the traveller must carry his or her passport when travelling to another country. 

Despite obvious advantages to using biometric components in security systems, 

biometric systems do have some disadvantages and can be vulnerable to several 

issues; imposters, attacks and erroneous interaction with a sensor. Incorrect 

interactions occur due to a number of reasons but can range from when a user does 

not know what they’re doing (confusion), tiredness or simply not knowing they have 

performed an unwanted action.  

1.2 Motivation 

ABC systems largely verify a user based on passport interaction and a facial 

presentation to a camera. Some systems rely on other biometric modalities such as 

fingerprints while others rely on different types of tokens such as electronic national 

identity cards and pre-registered cards, however other combinations do exist.  

Systems that use a combination of an electronic passport (sometimes referred to as 

an ePassport) and face biometrics account for most ABC systems. As the face is 

usually visible, it is the easiest biometric sample to capture. 
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ABC recognition systems are highly influenced by the physical designs and topologies 

of the implementation. Solutions using facial modalities, for example, are directly 

affected by certain components of the system such as the placement of the camera 

and the use of feet symbols, whereby icons are placed on the ground to ensure that a 

user is standing within range of the camera. Users not standing correctly may be out 

of position, possibly resulting in a longer transaction or an erroneous result.  

A major drawback to these automated processes is that they are reliant on compliant 

reference images stored on the token or database. Not only must the enrolled image 

meet certain standards, but the captured image from the biometric component of the 

system must also be meet similar specifications. While this is to be expected, the way 

in which these images are captured, compared and assessed differ from country to 

country and from airport to airport. 

Several factors affect the captured image quality, which can be classified according to 

the relation with the users (physical and behavioural), user-sensor interactions 

(environmental and operational), acquisition sensors and processing systems. Several 

factors, however, should not contribute directly to the quality of the image: 

 Operational environmental (e.g. no interference from daylight) 

 Background and object occlusion 

 Temperature and humidity 

 Illumination and light reflection 

 User’s age, gender, ethnic origin, skin conditions 

Also, performance assessment within these systems typically report on a small 

number of measurements, such as throughput and standard biometric error ratings. 

The result is a simplified measurement that will not necessarily identify why an error 

occurred. Several groups are working on improving analysis of the performance of 

biometric implementations from a user’s perspective but there is little research to 

identify both the task interaction between user and sensor. Typical methodologies 

focus on the user, looking at the user’s (subjective) satisfaction of a process and how 

efficient and effective the system may be perceived.  
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Furthermore, the introduction of new technology in the Action Recognition field has 

enabled human recognition in a wide range of applications. One area looks at skeletal 

tracking using an RGB-D camera, using depth data to map a human’s movement by 

classifying a behaviour. Sensors that can measure the user’s location within a 

specified area can be employed for a variety of scenarios such as for gaming and 

physiotherapy purposes. Many affordable devices are available, increasing the 

popularity of using these tools for research purposes. In addition, there are plenty of 

applications that could benefit from identifying user movements but have not yet been 

studied in any detail.  

Border control scenarios are designed to monitor a single user in a straightforward 

process; the user moves forward, enters a token, submits a biometric sample and exits 

the system. The placement of the camera and screen displaying the information is 

positioned to face the user and capture a frontal image. If the RGB-D camera can 

distinguish the position, body movement and pose for a presentation, specific 

feedback could be presented to guide the user through the process. For example, if 

the user is looking up or down the image may not meet the required standards. It would 

also impact transaction time and add to the already lengthy queues at busy airports 

as the user may delay the system’s ability to capture. Additionally, if the behaviour 

continued without being corrected, the supervising border guard might have to stop 

and redirect the user to either restart the process or divert to manual control.  

The motivation for this work, therefore, seeks to improve the overall transaction 

process when considering the user through their interaction with a system. Exploring 

the application of skeletal tracking within border control scenarios, a sensor that can 

monitor the user’s movement is investigated. The proposed application can then also 

automate the performance assessment, whereby an unsuccessful interaction can be 

tracked and analysed, and possibly identifying key bottlenecks within a system where 

common mistakes occur.   

1.3 Aims and Objectives 

The general purpose of this research is to make recommendations for improving the 

border control process using a robust and efficient tracking system to enhance 

throughput, sample quality and in the reduction of user interaction errors. This work 
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aims to explore the effectiveness of such systems to not only utilise tracking to improve 

performance assessment but to assess if conveying specific information back to the 

user when an erroneous presentation is detected benefits the process. The specific 

objectives of the research are to: 

 Review the literature on biometric and ABC systems as well as user interaction 

assessment methodologies  

 Propose an automated performance evaluation framework to facilitate the use 

of an activity tracking device 

 To explore wherever the information obtained by the device will benefit in the 

performance assessment 

 To explore the effect of information and guidance on user-interaction  

 Make recommendations based on the literature, simulations of a border control 

scenario and results from surveys and questionnaires 

1.4 Scope of the Project 

The list of the work that will be carried out in this study is summarised below and 

explains the areas that will be covered in this research. The areas which will not be 

referred to in this research are also listed. 

This study will only explore user interaction and tracking processing methods within a 

biometric interaction context. The research will look at the effect of user interaction in 

two biometric modalities; fingerprint and facial recognition. In this study, skeletal 

tracking will be explored within a self-service biometric scenario, seeking to replicate 

as many variables as possible when comparing to a live implementation.  

This work will not explore passport interaction. While passport interaction is a 

fundamental component of ABC systems, a high-end passport reader which can read 

both the MRZ and RFID elements of the passport was not available for this study.  

The research will investigate features and relationships based on user interaction 

performance and biometric modality. Through tracking methods whereby certain 

behaviours can be classified, the effect of feedback on erroneous presentations will 

also be studied.  
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1.5 Structure of the Thesis  

The organisation of the thesis is given below: 

 Chapter 2 explores the General Biometric Model, the Human-Biometric Sensor 

Interaction (HBSI) framework and an overview of Automated Border Control 

systems. The ABC section reports on biometric modalities, the use of tokens, 

border control performance assessment methodologies and current obstacles 

 Chapter 3 proposes a framework to assess automated border control 

performance based on identifying general steps in systems and analysing 

further steps to break down the identity claim process 

 Chapter 4 looks at the application of the Kinect sensor, a tracking device 

commonly used for Action Recognition in gaming and physiotherapy activities. 

Specifically, the accuracy and robustness of the device are investigated to 

ensure that the data captured is an accurate representation of the user. The 

success of the results will directly affect the data collections introduced in the 

next chapters 

 Chapters 5 and 6 explore fingerprint and facial interaction. The use of the 

tracking system is explored further, and the automated method of performance 

assessment is reviewed for both modalities. In addition, variables relating to 

the border control process are investigated and studied 

 Chapter 7 presents recommendations based on the findings of the previous 

chapters to improve current processes. This chapter explores information flow, 

biometric modalities and opportunities for tracking and image processing 

elements for not only automated border control systems but biometric 

processes in general. Conclusions, a summary of the contributions of this work 

and suggestions for future work are also provided in Chapter 7 
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CHAPTER 2. LITERATURE REVIEW  

2.1 Introduction 

The following review of literature is composed of three main sections. The first section 

discusses the General Biometric Model and introduces the process flow through the 

biometric system, highlighting the capture, matching and decision processes. 

Traditional system performance measurements are then reported followed by 

presenting the concept of user interaction and the importance it holds in biometric 

systems. 

The second sections discuss The Human-Biometric Sensor Interaction (HBSI) 

framework and the history behind the model. The third section discusses the history 

of border control solutions and the use of the travel documents, investigating specific 

systems and the associated biometric modalities. Furthermore, the design, other 

contributing factors and a discussion of the user’s acceptance of biometrics are 

discussed.  

2.2 Generic Biometric Model 

The General Biometric Model outlines the general process for capturing, matching and 

deciding wherever a biometric is accepted for verification or recognition. 

This section is broken down to the process flow of the model, traditional assessment 

methods of system performance and key insights into user interaction.  

2.2.1 Process Flow  

The process flow of the General Biometric Model outlines the process for capturing, 

matching and deciding the output of the sample. 

Figure 1 demonstrates the model. Typically, each subsystem contributes to the 

recognition process carrying out a task.  

The Data capture subsystem is composed of the biometric capture device and will 

change based on the modality being used. This process requires a presentation to be 

made by the user. The user’s characteristics are presented to a given sensor, which 
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yields the system’s input data based on the biometric measure and the technical 

features of the sensor [1]. 

 

Figure 1: Generic Biometric Model 

The Signal Processing subsystem generates a vector from the biometric sample. 

There are several stages involved:  

 Quality Control – checks that the sample meets a predefined set of quality 

specifications with a goal of ensuring that feature extraction and segmentation 

will be successful 

 Feature extraction – essential features (depending on the biometric used) is 

extracted and localised 

 Segmentation – other information is localised such as detection, alignment, 

sample segmentation, normalisation and enhancement 

Once the features have been successfully obtained, the template is created and sent 

to different parts of the system depending on the required function. In enrolment 

processes, the signal processing subsystem creates a biometric reference from the 
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features and is sent to the enrolment database in the data store subsystem. This 

subsystem changes depending on the specifications for that system; data may be 

stored in a distributed or centralised database.  

Verification or Identification functions are sent to the matching and decision 

subsystem. The matching subsystem compares a feature vector to a single biometric 

reference for verification purposes, or for identification purposes, several biometric 

references. A similarity score is produced for verification and similarity scores for a list 

of potential users for identification.  

The decision subsystem, therefore, decides wherever the sample can be verified or 

identified based on set threshold and criteria. For verification systems, the result will 

either accept or reject the user who claims his/her identity. Identification systems will 

produce an output of candidate lists which contains the user's identifiers for those 

whom biometric references match the sample list. This could either be an empty list or 

a list with a fixed number of users identified.  

2.2.2 System Performance 

Biometric performance refers to the recognition accuracy and speed, the resources 

required to achieve that desired recognition and speed, as well as the operation and 

environmental factors that affect accuracy and speed of a biometric system [2]. 

Performance metrics are captured throughout the entire Generic Biometric Model 

process.  

The International Organization for Standardization defines ISO/IEC 19795, a 

document which describes global standards for biometric performance testing and 

reporting [3] define two types of mandatory metrics that all systems must be able to 

report: error and throughput rates.  

2.2.2.1 Error Rates 

Recording error rates are useful for quantifying the accuracy of the system. These 

rates measure the number of errors that occur during biometric sample acquisition; it’s 

processing and the comparison with the biometric template and further decision 

attempts. There are two error rates which are reported during acquisition and signal 

processing processes:
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 Failure to Acquire (FTA), a measurement of samples which the device failed to 

acquire. It can indicate issues of user performance [4] 

 Failure to Enrol (FTE), the rate at which attempts to create a template from an 

input are unsuccessful, will point to the success of individuals to interact with a 

system [4] 

There are two error rates for the comparison and decision subsystem process: 

 False Non-Match Rate (FNMR) – the rate of samples, acquired through 

genuine attempts, which are falsely declared not to match a biometric 

reference of the same characteristic from the same user who provided the 

original sample 

 False Match Rate (FMR) – the rate of samples, acquired from zero-effort 

imposter attempts, which are falsely declared to match the compared non-self 

biometric reference 

Conventionally the overall performance of all biometric systems, including ABC 

implementations, monitor two key rates: 

 False Rejection Rate (FRR) - the percentage of false rejections made by a 

system 

 False Acceptance Rate (FAR) - the measure of performance that a biometric 

system will incorrectly accept an access attempt by a non-authorised user 

2.2.2.2 Throughput Rates 

Throughput rates measure the speed of use for a system, reporting on the number of 

users that can be processed per unit time based on computational speed and human-

machine interaction. While ISO/IEC 19759 does not define a specific metric, nearly all 

systems report on the measurement of time spent on user interaction and processing 

speed. Several measures are typically recorded as evidenced by multiple studies [5] 

[6] [7]  these are usually: enrolment (time taken for an image sample to be captured) 

and recognition duration time (time taken to perform matching) which is typically 

expressed in seconds, as well as a measurement of speed of the human-machine 

interaction, which should indicate when a user starts an interaction to ending it. 
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2.2.2.3 User Interaction 

The term ‘User Interaction’ can be defined by how the user acts on the system and 

how the system acts on the user [8]. 

All biometric systems require the user to present a sample in some shape or form to a 

sensor. Depending on the modality and the design of the system, the process may be 

intrusive or obtrusive, but for all systems, will require a certain biometric to be 

presented in an accurate and timely manner.  

Depending on the modality chosen, a successful capture for a sample will either 

require a movement requiring the user to act in a certain manner (e.g. the flow of the 

arm/hand for a signature) or a physiological template (e.g. presenting their iris or 

fingerprint in a certain way to a sensor). Both require the user to exhibit the desired 

behaviour. While systems can relay information and instructions to the user during this 

interaction to aid the user, the success of this process will usually rely entirely on 

correct user input.  

Attempts made to a sensor, therefore, can be observed and categorised as either 

‘correct’ or ‘incorrect’. Common incorrect interactions could be where users are 

presenting the wrong finger to a sensor, closing an eye during an iris scan or looking 

away from the camera during facial recognition. Correct presentations, on the other 

hand, could be classified when a required behaviour or sample is presented, e.g. both 

eyes are open for face recognition; the right finger is captured successfully in 

fingerprint verification.   

Improvements in technology have enabled systems to improve the capture of a 

presentation even though an incorrect ‘behaviour’ has been performed.  For example, 

in border control systems, multiple images are captured and the highest quality image 

is selected for matching purposes [9] [10].  

It is common to assume the term ‘User Interaction’ relates specifically to Human-

Computer Interaction (HCI), the field which explores how human beings interact with 

computational devices. In most cases, HCI specifically investigates interaction with 

User Interfaces (UI) and HCI-based systems [11]. 



 

28 
 

HCI usually involves the study, planning and design of the interaction between users 

and computers. It stems from Interaction Design [12] [13], which is defined as the 

practice of: 

 Understanding user's requirements and goals 

 Designing tools for users to achieve those goals 

 Envisioning all states and transitions of the system 

 Considering the limitations of the user’s environment and technology 

Although there is plenty of research available in the area within its field, HCI is not yet 

fully reported when regarding biometric systems, especially when considering the 

interaction in self-service systems. HCI might specifically relate to biometric systems 

when the HCI interaction is based on a biometric, e.g. identifying a user through 

analysing their use of an input device such as a keyboard or mouse. HCI based 

biometrics can be divided into two main categories, Direct and Indirect, according to 

Saaed [14] and Yampolskiy [15]. Direct interactions consider human interaction with 

input devices such as keyboards and mice; Indirect collects information from system 

calls, audit logs and GUI interaction.  

There is, then, a difference between assessing how the user interacts with the system 

and assessing a user through the interaction.  The former is reported through Usability 

Testing, which focuses on the user and aims to assess user satisfaction with a system. 

While HCI does influence biometric systems, there are no standardised definitions or 

methodologies that apply. Belen Fernandez-Saavedra reports [16] that HCI influence 

of performance is focused on system performance and is not widely applied to the 

overall area.  Several institutions work in both areas, the NIST group, the HBSI project 

and the University of Carlos III Madrid are considered the main contributors to the 

area. Belen’s research primarily focuses on the Human-Biometric Interaction, 

considering the many factors that influence performance.  

Research into defining User Interaction specifically within a biometric context has 

largely been led by the Human-Biometric Sensor Interaction (HBSI) project. 
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2.3 The Human-Biometric Sensor Interaction (HBSI) Model  

The Human-Biometric Sensor Interaction (HBSI) Model illustrates how metrics 

measured from biometrics sensors (such as sample quality and system performance) 

can be tied to ergonomics (physical and cognitive) and usability (effectiveness, 

efficiency and satisfaction) to evaluate the overall performance of a biometric system. 

Applying this framework to a system often provides a better understanding of what 

affects a biometric systems performance.  

 

Over the past nine years, the initial team of Kukula and Elliott developed one of the 

first models that linked usability and biometrics. The model (Figure 2 below) has its 

origins at the intersection of usability, human factors, and image quality/performance 

[17] [18] [19].  

 

Initial work discussed the issue of hand placement in hand geometry systems [20] [21], 

based on evidence collected during a biometric feasibility study. The first HBSI  model 

then was shortly introduced in 2005 and continues to build on previous research in the 

area of human-biometric device interaction.  

 

Figure 2: The Original HBSI Model [22] 

The model has been validated against several modalities over the next decade such 

as Fingerprints [22] [23], Iris [24] and Signatures [25]. The next generation of the model 
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has adapted to consider intelligent sensors [26] [27] – those that have some signal 

processing, sample quality and feature extraction intelligence during detection and 

acquisition. Recently the model has begun to consider the introduction of other 

authentication methods, such as the ePassport at an ABC gate. S. Elliott reports on 

the latest research and process model in a recent report [26].  

 

Six different types of metrics were developed based on the HBSI model. The HBSI 

Interaction Framework [23] (Figure 3 below) comprises of; Defective interaction (DI), 

Concealed Interaction (CI), and False Interaction (FI), which are all based on incorrect 

presentations. For example, if an individual interacts with the sensor incorrectly, and 

the sensor does not “see” this interaction, then the framework defines this as a 

Defective Interaction. In this case, it is not the sensor’s “fault”, but further action must 

take place to consider why this happened. Separating a DI from a traditional Failure 

to Detect (FTD) is crucial to understand if it was a user or system generated an error.   

 

 

Figure 3: HBSI Interaction Framework 

Concealed Interactions occur when the subject presents an incorrect biometric sample 

and is accepted by the system as a correct sample. For example, in a single fingerprint 

data collection, this could be when the system is expecting a middle finger, and the 

subject presents a ring finger. The system accepts the presentation and subsequently, 

processes it and stores it as such. Concealed Interactions are incredibly difficult to 
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categories without confirmation that the presentation was incorrect. If a user interacts 

with a device in a real-life scenario without human oversight, who is to say that the 

error was due to an incorrect or that the features were not processed?  

False Interactions is when the system provides feedback to the user of an incorrect 

presentation and is the ideal result in an erroneous scenario. The system correctly 

handles the sample as an error and displays information to the user. Typically, this will 

require the user to restart the process, meaning more time and effort from the user.  

 

Overall defining these metrics in the evaluation performance of the system will enable 

a deeper understanding of the reported metrics such as sample quality and 

throughput. Although the framework provides a benefit in this regard, it does lack, 

however, the ability to automatically detect an incorrect or correct presentation during 

the interaction. The HBSI Interaction Framework is discussed further in Section 2.3.2.  

2.3.1 HBSI Evaluation Framework 

The Evaluation Framework was developed shortly after the conception of the HBSI 

model and outlines the measurements for each intersection introduced in the model. 

The framework is developed through Kukula’s thesis [28] and combines several 

disciplines that have been well researched and documented.  

HBSI Evaluation, then, as previously discussed, can be used as an extension to 

analyse biometric system performance in a much wider sense than that proposed in 

the Generic Biometric Model.  

 

Figure 4: HBSI Evaluation Method Version 1
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The Evaluation Method (Figure 4 above) considers a range of measurements that are 

obtained through presentation and acquisition. Usability assessment is completed by 

analysing user satisfaction, efficiency and effectiveness. Sample quality considers 

traditional metrics such as FTE, FTA and Matching Scores. Alongside system 

performance, human factors may also affect sample quality, such as demographic 

information and anthropometry factors. At the heart of the Evaluation Method, lies the 

HBSI Interaction Framework that considers the categorisations of a user presentation 

to a single sensor. 

 

Figure 5: HBSI Evaluation Method Version 2 

 

The framework then supports a broad range of metrics that are used throughout the 

development and implementation stages of a biometric system. The level of detail that 

this assessment can report could indicate and support deeper, and more dangerously, 

overlooked issues. For example, in ABC systems throughput rate is one of the most 

important factors, directly reporting on the efficiency of a process. If a user presents 

their finger to a fingerprint sensor a total of five times, but only one presentation is 
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detected, then the system would traditionally report four FTDs. However, if the system 

was being evaluated further and was also looking at the time on task, the evaluator 

may question why one attempt took so long. In this scenario, there would be no data 

to analyse and determine the cause.  

The model has evolved since 2010 and has been updated slightly to consider several 

other variables. Figure 5 above demonstrates the latest version of the HBSI Evaluation 

Method [27].  

Version two decomposes usability, ergonomic and sample quality into further specific 

metrics, considering modality specific as well as HBSI and traditional metrics. Sample 

quality metrics here has been combined with signal processing, where the process 

capability of the system can also be measured. 

2.3.1.1 Sample Quality 

Different biometric modalities comprise of their own quality metrics and scores. A 

range of biometric standards published by the International Organisation for 

Standardization (ISO) and by the Electrotechnical Commission (IEC) define 

characteristics that all biometric systems must adhere to ABC systems or otherwise. 

It is important to note that while these standards do state-specific requirements, 

vendors are free to design and implement their quality assessment methods into 

systems if they adhere to the standards for that biometric modality.  

For the quality of a face image, there have been many proposed quality assessment 

methods [29] [30] [31] [32]. An advantage in ABC systems is that it is usually possible 

to capture multiple face images from each subject and select the face image with the 

highest quality [33]. Most ABC systems must, however, adhere to several ISO 

standards which denote several quality metrics.  

The ISO/IEC standard 19794-5 “Standards for Biometric Data Interchange Formats 

(Face Image Data)” [34] reference detailed instructions for lighting, facial pose, focus 

and so on for taking face photos in biometric systems. These standards must be 

adhered to when taking photos for both enrolment and verification stages of the 

process. Requirements are displayed below in Table 1. A further discussion of these 

standards is reported in Chapter 6, Facial Recognition.
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Non-standard lighting or pose and out of focus are among the main reasons 

responsible for the performance degradation in face capture systems [30] [35].  

Research in improvements into algorithms has investigated the robustness of several 

implementations including ABC systems [36].  

Table 1. Face Image Requirements in ISO/IEC 19794-5 

Clause Attribute Constraint 

Scene Posture Control on deviation from frontal 

Illumination Uniformly illuminated with no shadow 
Background Plain light coloured 

Eyes Open and visible 

Glasses No flash reflections, dark tint or heavy 
frames 

Mouth Closed and visible 

Photographic Head position Placed in the centre 
Distance to 
camera 

Moderated head size 

Colour Colour neutral and no red eye 
Exposure Appropriate brightness 

Digital Focus No out-of-focus and in excellent 
sharpness 

Resolution Width constraint of the head 

 

The ISO/IEC 29794-5 Face Image Data standard [37] refers to specified 

methodologies for computation of objective and quantitative quality scores for facial 

images that are utilised in ABC systems. The document details approach to determine 

certain characteristics, such as facial symmetry, resolution and size.  

The standard also suggests that facial quality can be categorised into the static subject 

and dynamic subject characteristics as demonstrated in Table 2 below. Different 

factors affect the quality of the image; static characteristics relate to anatomical 

features of the subject (head dimensions, eye positions) while dynamic characteristics 

consider subject related behaviours during the acquisition process (eyes open, pose).  

Also, other static and dynamic characteristics are considered but mainly relate to 

properties to do with the build and environment of the system; background, the 

influence of lighting and camera characteristics (resolution). 
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ISO/IEC 19794-5 and 29794-5 are reviewed in more detail by J. Sang et al. [35]. The 

research reviews methods to tackle both static and dynamic features. Several 

algorithms are introduced for face image quality assessment including Gabor-Based 

Facial Symmetry, to evaluate changing illumination and improper posture, and DCT-

Based Sharpness, to discern out-of-focus.   

Table 2: Static and Dynamic Features considered in ISO/IEC 29794-5 

Static Features Dynamic Features 

Biological: 
Anatomical 
characteristics (e.g. 
head dimensions, eye 
positions) 
Injuries and scars 
Ethnic Group 
Impairment 
Other factors: 
Heavy facial wears, 
thick or dark glasses 
Makeup 
Jewellery  

Subject Behaviours: 
Closed Eyes 
Expression 
(exaggerated, smiling 
etc.) 
Hair across eyes 
Head Pose 
Subject Posing 
(frontal/non-frontal to 
camera)  

 

While there are many strides to improve these systems from an algorithm point of 

view, ultimately the capture process differs between systems. Additionally, the 

matching process between a stored image on a passport or a token between a 

captured image also changes, making it extremely difficult for standardisation in the 

performance assessment of these systems.  

Fingerprint scanners must produce images that exhibit good geometric fidelity, 

sharpness, detail rendition, grey-level uniformity and grey-scale dynamic range, with 

low noise characteristics as reported by M. Carmen at al. [38]. The required sample 

quality of fingerprint images is defined through several ISO/IEC standards. Following 

on the 19794 series, part 1 [39] defines that the fingerprint scanner produces of a 

certain standard based on image resolution, size, grey level colour range, sample rate, 

light intensity and signal to noise ratio. Parts 2-4 [40] [41] [42] specifies minutiae data, 

pattern spectral data and image data standards. Several studies investigate the 

accuracy and potential issues based on these formats [43] [44] [45].   The sample 

quality of fingerprints is discussed further in Chapter 5. 
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Matching algorithms of fingerprints largely used minutiae-based features, particularly 

restricted to two types of minutiae points; bifurcation and ridge endings. Several 

studies have investigated sample quality measures using these characteristics [46] 

[47] [48]. 

2.3.1.2 Usability 

Performance assessment concerning the interaction with devices (including biometric 

systems) is assessed from either a user perspective or by the effect on system 

performance through interaction. The usability community, in general, is concerned 

with the assessment of a system through reporting efficiency, effectiveness and user 

satisfaction [49] [50] from a users point of view.  

The term usability is defined by ISO 92411-11 [51] by the extent to which a product, 

biometric or otherwise, can be used by subjects to achieve their goals. It can be 

assessed according to three criteria: efficiency, effectiveness and user satisfaction. 

Regarding an ABC system, it is possible to define task performance as effective when 

an interaction supports users who can achieve their goal of successfully crossing a 

border (including the sub-tasks of token reading and biometric verification). The 

interaction with the system is considered efficient if the traveller can pass through the 

process promptly, which is subjective to an individual user but averages at around 15-

20 seconds for European ABC configurations [52] [53] [7] [54]. A user’s (subjective) 

satisfaction can depend on the level of the physical or mental workload that they may 

encounter throughout the process.  

Research in usability evaluation has been largely led by the National Institute of 

Standards and Technology (NIST), who have contributed significantly to studying the 

usability of a wide range of systems [50] [55] [56] [5] [57] [58] [59]. Other studies in the 

area [60] [16] [61] [62] have investigated the influence of usability factors that affect 

biometric performance and user experience in some similar applications. 

Several NIST studies have investigated the impact of many variables on performance 

in biometric systems. Choong et al. reported on several studies on ten-print fingerprint 

capture within a US manual border crossing scenario [55] [5] [63] [64]. Variables 

included: the height of the kiosk, angle of the sensor and impact of information. 
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Usability metrics are reported throughout all four studies on efficiency (time on task), 

effectiveness (task success and quality of the fingerprint) and user satisfaction (post-

task questionnaires looking at binary answers as well as comments). The first study 

[63] investigated the impact of information on user performance using a poster, video, 

and verbal instructions. Participants who received verbal and video instructions 

outperformed users who were shown a poster, resulting in fewer errors and a quicker 

transaction. Another study from the NIST group report on the use of face overlay in 

facial verification systems [65]  which indicated the use of an overlay image improved 

the quality of capture face images.  

Usability is also closely linked to other issues which have been defined throughout 

literature. Acceptability testing or user acceptance testing, analyses how users can 

accept the use of a specific biometric characteristic, method or system for biometric 

recognition [66]. The ergonomic design focuses on the area of interaction between the 

user and the biometric system; analysing tasks, movements, and user behaviours [67]. 

There are many tools used in usability testing. NIST has provided a handbook on 

‘Usability and Biometrics’ [68], outlining a user-centred design approach to aid the 

design and development of biometric technology systems. Common usability 

evaluation methods that are detailed include; cognitive walkthroughs, contextual 

inquiries, requirements analysis, user and task analysis and user evaluation.  

Distinguishing the difference between usability and user interaction is important. 

Whereas usability defines how usable a system may be; whether that is overall or for 

a process or task – user interaction is defined as a combination of movements that 

result in either a successful or unsuccessful presentation made to a sensor [69].  

2.3.1.3 Ergonomics 

The Ergonomic or ‘Human’ Factors in HBSI is the study to achieve an optimal 

relationship between human and machines in an environment. HBSI has previously 

looked at ergonomic design to adopt a system to a user, rather than adapt the user to 

the system [70] [67] which is a common design concern for many implementations.  

HBSI research has defined several relationships between the user, environment and 

the outcome of the algorithm [18] [70]. Figure 6 below demonstrates. 
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Inter-relationships between these groups may impact biometric performance. The 

user-environment relationship will depend on variables such as clothing (e.g. 

protective equipment used in some scenarios may affect the ability to capture a 

sample) and temperature and humidity, which may impact the skin also affect the 

acquisition for some modalities. The environment to algorithm relationship could be 

influenced by external factors such as noise, illumination or busy backgrounds. Finally, 

the user to algorithm relationship may be affected by physiological factors such as skin 

age, colour and moisture or behavioural factors such as finger preference which in 

part can affect recognition. Also, social factors such as hair length or wearing head 

coverings can impact facial and iris recognition due to the occlusion of necessary 

features. 

 

Figure 6: HBSI Ergonomic Design Factors 

 

Biometric systems are heavily dependent on the sensors ability to acquire a sample, 

segment and extract features from (multiple) samples to determine the correct output. 

Common design concerns for any biometric systems include attributing accuracy, 

scale (size of the user base) and usability [2] [71]. In general, ABC systems are 

designed and implemented to overcome many of these issues raised. However, when 

assessing the deployment of these systems, it is important to analyse both ergonomic 

and usability factors.  

2.3.2 HBSI Interaction Framework 

The HBSI Evaluation Framework considers the individual interaction made with a 

biometric sensor. The process allows for an understanding of correct and incorrect 
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behaviours typically occurring within a biometric system. Correct presentations for 

interaction can be categorised as either: 

 Failure to Detects (FTD) are correct presentations that are not detected by the 

system 

 Failure to Process (FTP) within biometric systems can occur due to reasons 

such as problems in segmentation, feature extraction or quality control and is 

a system error generated by the biometric system 

 Successfully Processed Sample (SPS) is the ‘correct’ transaction which results 

from a correct presentation and successful processing 

There are three possible categorisations of incorrect presentations: 

 Defective Interactions (DI) which occur when a biometric sample is incorrectly 

presented and is not detected by the system 

 Concealed Interactions (CI) occur when an incorrect presentation is detected 

by the system but is not handled correctly as an error. An example could be in 

fingerprint recognition where a user, for whatever reason, uses a different 

finger from that of the enrolled one but is still accepted by the system 

 False Interactions (FI) occur when a user erroneously presents their biometric, 

and the system correctly identifies the error as an incorrect presentation 

While the Interaction Framework provides a full range of categorisations, its 

drawbacks lie in requiring manual confirmation of errors. During data collections, the 

interactions are coded and recorded by the researcher as the study progresses. The 

framework is designed to be used for generic purposes and in its current state, for a 

single modality only. Multiple interactions may require a claim of identity, adding an 

element of the framework that is yet to be explored.  

Recent work on the HBSI Model has investigated token presentations made to a 

sensor, creating a process chart that allows the categorisation of False Claims and 

Potential Attacks [26]. 
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2.3.3 The Full HBSI Model 

To provide practitioners and researchers with components that allow the assessment 

of operational times, false claims, attack, and token presentations, new sub-models of 

the HBSI presentation framework have been developed [69]. These new models have 

been integrated comfortably within the HBSI Interaction Framework to produce the full 

HBSI model, allowing a wide range of categorisations to be made within an identity 

claim scenario.  

The Operational Times Model (Figure 7), reported in previous HBSI research [72] 

defines the transaction time that is required to use a biometric system and segments 

the presentation process into individual tasks, demonstrating the token and biometric 

presentation. The research presented by Brockly lays the foundations in automating 

transaction time’s posthoc without the need for a human operator. Although the 

Operational Times Model was developed, it has not been applied in line with the Full 

HBSI framework.  

 

Figure 7: Operational Times Model [72] 

The Full HBSI Model (Figure 8 below) accounts for systems that allow for one or more 

factors of authentication. An example of a one-factor authentication system would be 

a single biometric interaction process, while a multi-factor system may be any 

combination of a token, password, and biometric sample(s). This version of the model 

works to include token, attack and false presentations, looping to the start of the 

process (if necessary) once a method of authentication has been completed.  
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Trending technologies that implement anti-spoofing or liveness detection components 

and the ability to flag potential attacks to a figure of authority for subsequent 

processing were originally not considered in the original implementation of the HBSI 

Model. Therefore, an advantage of using the Full HBSI Model allows the 

categorisations of potential false claims and attack presentations, which are both 

introduced as separate models below. 

The False Claim HBSI Model (Figure 9) occurs when an identity claim is made that 

does not belong to the user, and the system no longer requires an additional factor of 

authentication. This is needed in the event of an “accidental impostor presentation”. 

For example, in a scenario of individuals travelling together, they could accidentally 

swap passports and therefore present an incorrect identity claim to the system.  

Although this is not defined as a malicious attack, it must be classified as an invalid 

claim of identity, and this is when the False Claim Model is used. The model uses the 

same decisions as the HBSI Interaction Framework, but specific to identity claims 

made by the incorrect user. False Claims error metrics are denoted by the subscript 

FC. 

In the case of an ABC system, personnel are employed and trained to supervise 

multiple transactions from different users and are expected to handle exceptions 

where applicable. For example, if a False Claim is made (e.g. an accidental swapping 

of the passport) and the system can detect and subsequently flag the claim to the 

border guard, then personnel will intervene and action the sample as either a Refused 

Sample or Forwarded Sample. It will be important for systems to be able to classify 

false claims as this could lead to breaches of security. 

Systems involving some form of anti-spoofing or liveness detection will leverage the 

Attack Presentation HBSI Model (Figure 10). The HBSI Attack Presentation Model 

confirms that the biometric sample is detected, attempts to classify it as an attack 

sample, and determines if the presentation is suitable for matching to save the sample. 

If the biometric subsystem classifies the presentation as an attack, it either flags and 

forwards the sample to the respective authority or simply flags the sample and refuses 

it. If the presentation is not classified as an attack, it can achieve one of three attack 

HBSI error metrics.  
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Figure 8: The Full HBSI Model
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Figure 9: The HBSI False Claim Model 

 

While improvements to hardware and software are continuously being developed to 

counter specific threats and certain types of attacks in large-scale biometrics systems; 

there is the underlying issue of the possibility of identity attacks.  

Where an identity claim is required, the possible outcome of allowing an attack sample 

through could have devastating consequences in these systems. The HBSI Attack 

Model demonstrates how an attack presentation could be presented to the system and 

if successfully recognised, the output to be flagged to the appropriate operator who 

can intercept the attack. 

There is an obvious case of ABC systems (controlling our borders and preventing 

security/terrorist threats) but how would this be controlled for the case of banking? 

Presentations made here are often not supervised, and so verification attempts are 

usually unattended. For example, if the user was to make an authentication attempt 

using the sensor at work or on the move this opens the device (and perhaps the 

associated token) to a greater risk of an attack. Implementing the ability to enable anti-

spoofing or liveliness detection components in these scenarios will allow the model to 
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be implemented, but this would be difficult to achieve in mobile applications where 

there is no additional oversight.  
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Figure 10: The HBSI Attack Presentation Model 

Future work outside of the scope of this thesis could potentially investigate the effects 

of the environment and training within the HBSI models which may alter the user’s 

behaviour when interacting with a system. It will be important to investigate how the 

design of the sensor can be altered to counter-attack presentations too. However, the 

application of the HBSI model will be able to provide a clearer picture in all cases. The 

work proposed in this thesis focuses on automating the original Interaction Framework 

model, applying the metrics to ABC scenarios and removing the need for coding errors 

by the evaluator during the trial.  
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2.4 Automated Border Control 

Arriving at any international airport will require travellers to process through 

immigration control, whereby upon inspection of the traveller's documents and in some 

cases, biometric data, the border guard or the system will authorise the traveller 

access into the country.  

Travellers who wish to travel internationality must hold a valid passport; a travel 

document which certifies the identity and nationality of its holder [73] [74]. Standard 

passports contain information such as the holder's name, place and date of birth, 

photograph, signature and other identifying information. In the last decade, passports 

have started to move towards including biometric information on a microchip which is 

embedded in the document, making them machine-readable and increasing the 

difficulty of counterfeiting [54]. 

With an increase in international flights and the availability of sophisticated biometric 

solutions, border control systems have adapted to new technology and security 

demands over the last several years.  

In general, an ABC system consists of several components (See Figure 11 for 

example) which include, but is not limited to: 

 Physical barriers (single-door or double-door)  

 Monitoring and control station and equipment for the operator 

 A document reader (optical devices including a radio frequency reader module)  

 A biometric capture device (fingerprint reader, camera) 

 User interfaces (LED signals, audio devices, monitors) 

 Processing units and network drives 

 Cameras/Sensors to monitor queues  

The general process requires the traveller to verify a document at the first stage, and 

if the documents are verified successfully, move to a second stage where biometric 

verification is carried out. A general process flow for ABC processes can be seen in 

Figure 12.
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Although the architecture and design of the system may have changed over the years, 

the core functionality of the system has remained the same.  

 

Figure 11: An example of eGates in Heathrow (London, UK) 

One of the earliest border control systems which used biometrics for verification of the 

traveller was Ben Gurion Airport [75] in Israel in 1985. The system, which is used by 

Israeli citizens only, used hand geometry to validate the traveller’s identity. This 

system is still in use today but has adapted to modern technology to utilise secure 

travel documents such as ePassports and a biometric card, which is given to travellers 

during enrolment.  Hand Geometry recognition required physical contacts between the 

users and the capture device, which lead to user interaction issues. The hand needs 

to be placed correctly around the guidance pegs to trigger the capture. An incorrect 

placement would not trigger capture and cause inconvenience and often required 

supervised training to reduce FTA and FTPs.  

Another early adopter of biometric technology for registered travellers was CANPASS, 

a Canadian programme released in 1995 [75]. At the core, INPASS was a standalone 

kiosk which utilised hand geometry and fingerprint biometrics to verify a traveller's 

identity. The program was eventually replaced in 2004 by the DHS Registered 
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Traveller Programmes (Global Entry, NEXUS), which requires fingerprints and Iris 

scans respectively.  

 

Figure 12: General ABC Process Flow [7] 

 

J. Wayman evaluated the INPASS geometry system [76] which details the system 

concept, implementation and summary of the program. The main findings from the 

report disclosed that the INSPASS, in concept, “has the potential to be a cost-effective 

means of reducing processing time for frequent travellers by automating the primary 

inspection process without sacrificing security.” The report details some weaknesses, 

however; the kiosk design needed improvements. The evaluation disclosed that the 

system monitor and the hand geometry reader were not logically arranged and 

components were placed in awkward places that confused travellers who were using 

the system. Some components were configured to be difficult for left-handed users to 

interact with the machine. User feedback commented that instructions displayed were 

not clear and that there were a high number of false rejects. Another complaint from 

users was that the INSPASS inspection took as long as the manual primary inspection. 

Comments from some travellers noted that they would only use the program if the 

manual inspection queues were long and if the INPASS queue was shorter. 
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In the mid-2000’s border control solutions started to move towards mass verification 

systems, which required modalities that were accessible by the general public. The 

introduction of electronic passports enabled facial verification. However, some pre-

registered traveller programs are still in use and utilise a combination of modalities and 

documents.  

The UK Iris Recognition Immigration System (IRIS) for example, was designed to allow 

enrolled passengers to cross through the UK border controls using automated barriers 

[77] [78]. The system was completely phased out by 2013 and replaced by the eGate 

(face recognition) system. The system would compare live iris images, captured by 

the system, against the iris images stored in the central database. A. Palmer and C. 

Hurrey [78] analysed problems with the system and the events to what led it to be 

retired in favour of eGates. The system suffered from many problems, but there were 

common themes; travellers had trouble lining up their eyes to the camera, resulting in 

a longer transaction time. Some passengers were not recognised at all and would 

have to be sent to the manual control. In the end, the system was not a match against 

the ePassport gate (or eGate) system which was easier to use and more accessible.  

2.4.1 Biometric Modalities  

A wide range of biometric modalities can be found in ABC systems across the globe. 

The most common modality found in both ABC and non-automated systems is facial 

verification, largely due to the access to a reference image stored on an electronic 

passport [7].  

Several systems use fingerprint and iris biometrics. Fingerprints are typically used for 

immigration purposes and are usually found in semi-automated or manual systems as 

opposed to ABC solutions. Fingerprints can also be stored in the second generation 

of ePassports, which led to an increase in the number of systems using fingerprint 

modalities. Iris modalities are commonly used in registered traveller programmes and 

enrolled images are either stored directly onto a token or on a database.  

Surveying systems across the globe, Table 3 below demonstrates some current 

examples and the respective modality used.  
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Table 3: Examples of ABC Systems 

Modality System and Country  

Face eGates (UK), APC (USA), No-Q (Netherlands), easyPass 
(Germany), RAPID (Portugal), APC (USA), Smart Gate 
(Australia/NZ) 

Face & Fingerprint ABC (Spain) 

Fingerprint PARAFES (France), USVISIT (USA), e-Channel (Hong Kong)  

Iris Privium (Netherlands), ABG (Germany), IRIS (UK – Retired), 
CANPASS (Canada) 

Hand Geometry Ben Gurion Airport (Israel), INPASS (US – Retired)  

 

Face recognition is considered socially-accepted, nonintrusive and does not require 

any special training which is some of the reasons why it is favoured as the leading 

biometric modality for border crossing [52]. Facial verification is typically completed by 

comparing a live image to a stored, reference image on an electronic ID (passport or 

identity card). The token is read, and the image is extracted and stored temporarily in 

the system. The camera within the system then captures an image of the traveller and 

makes the comparison.  

According to the BIOPASS II study [7], some ABC systems can capture a sequence 

of images over the course of capture. The system analyses the images from the 

camera in real time and the recognition software processes images to see if they meet 

certain quality requirements (as explained in Section 2.3.1) focus or face orientation).  

In some cases, the camera within the system will automatically adjust to the user’s 

height (e.g. UK eGates in Heathrow) or are in a fixed position (e.g. USA APC Kiosks).  

In general, the biometric face verification system in a common eGate scenario must 

complete six steps: 

1. The system chooses the camera position based on the traveller’s height (if 

installed) 

2. Information is then displayed on a monitor, instructing the user to look at the 

camera 

3. Illumination is automatically adjusted based on environment lights 

4. An image of the face is captured 
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5. Quality assessment is performed as well as determining if the image meets 

ISO standard requirements [34] [37] 

6. Perform matching between the live images captured and the referenced image 

extracted from the document 

Fingerprint recognition features high recognition performance and good social 

acceptance. Fingerprint verification typically consists of four steps: 

1. Information is displayed to instruct the traveller how to position the finger 

2. The fingerprint image is captured 

3. Quality assessment is performed to determine if image(s) meet ISO standard 

requirements 

4. Performing matching between the live images captured and the referenced 

images extracted in the document 

Iris recognition features very high recognition performances and is considered to be 

highly intrusive. 

1. Information is displayed to instruct the traveller how to position their face/eyes 

to the camera 

2. A near-infrared light pulse is used to illuminate the eye, as well as control 

direction and dilution of the pupil 

3. Iris is captured 

4. The live image and the sample contained in the document/database are 

matched 

Research trends in the design of innovative ABC systems typically investigate the use 

of multi-biometrics and less-constrained recognition. Multi-biometrics can increase 

biometric recognition accuracy, usability, and robustness to spoofing attacks, by 

combining multiple biometric sources  [79] [80] [81] [60] [82]. Several studies 

demonstrate the increase of accuracy fusing face and fingerprint biometrics together 

in one system [83] [84] [31]. 

There are some multi-modal systems currently in action, such as the ABC eGate 

system used in Spain [7]. The face image is used as the main biometric modality, and 

fingerprint interaction occurs in three different scenarios:
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1. In the segregated two-step process, fingerprints are used as a token to grant 

exit 

2. During the identity verification process of the Spanish nationals, the live 

captured fingerprint image is used in a Match-on-Card operation, matching to 

the template stored on the Spanish e-ID Card 

3. During the identity verification process of Spanish nationals, the live captured 

fingerprint image is compared against the reference data stored in the chip 

when the travel documents are the Spanish second generation ePassport 

The decision matrix in the original setup of the Spanish ABC system required that the 

result of both biometric modalities comparisons be satisfactory to authorise the 

travellers crossing. If either the facial or fingerprint verification failed, the system 

considered the traveller identity verification process as unsuccessful.  

In a report on the three-month study of the original implementation in 2012 [85] results 

indicated that 96.61% of the Spanish citizens (67,508 travellers in total) who used 

fingerprint-enabled travel documents could cross the border after successful 

fingerprint verification. However, up to 13.34% (FRR) were rejected because of the 

face verification result. The multi-modal implementation trialled in 2013 is based on 

ISO/IEC TR 24722 [86] fusion. In the original scenario, only 85.45% of the travellers 

could use the system. After the introduction of multi-modal biometric verification as 

displayed in Figure 13 below, the biometric overall error rates lowered to 4.78%, 

allowing 95.22% of the travellers to successfully use the system.  

At the core of this fusion, two thresholds were selected for the facial verification 

component; a lower threshold level will reject travellers based on a given score, while 

an upper score will allow the border crossing to travellers who exceed the score. 

Travellers whose facial verification score falls between the lower and upper threshold 

will be required to present their fingerprint for additional verification. If at least one of 

the modality verification fails, the system considers the traveller identity verification 

process as unsuccessful. 

When using biometrics in border control systems, an inevitable trade-off decision 

between FRR and FAR must be made. Lowering the FRR to increase the throughput 
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in ABC systems since fewer passengers are erroneously rejected inevitably results in 

an increased FAR and vice versa. 

 

Figure 13: Multi-Modal Fusion in Spanish ABC eGate Trial [90] 

 

Other research trends investigate less-constrained recognition, which is linked to an 

increase in usability and social acceptance of biometric systems [57] [79]. Contactless 

recognition has been researched by several institutes looking at vein [87] and 

fingerprint [88] [89] and iris [92] modalities.  

Contactless fingerprints have yet to be implemented into ABC systems. However, 

research is pointing in favour of utilising the devices. Several studies have investigated 

the ability to capture fingerprints while the traveller is moving. A report by R. Donida 

Labita et al. [91] performed  an analysis of user acceptability between a touch and 

touchless fingerprint scanner. Results indicated that 96.7% of the participants 
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preferred the proposed touchless system over the touch-based system, with 100% 

considering the system more hygienic. Also, participants considered that the proposed 

system was more privacy compliant. This was due to the perception that no latent 

fingerprint could be left on the system.  

On the move iris recognition acquires images in less constrained environments, 

capturing images as travellers walk past a sensor. A report by J. Matey et al. [92] 

describes the methodology behind at a distance iris capture, which is suitable for 

matching against a database of images. A similar implementation has recently been 

announced for deployment in 2017 in Dubai airports [93]. Dubbed “Iris on the Move” 

(IOM), systems will be able to capture images of the iris up to 3 away. The Dubai smart 

gates will capture both facial and iris biometrics of registered users only. As users must 

be registered, it will allow travellers to use either electronic passports, Emirates ID, e-

gate card or a smartphone as a registered token.  

2.4.2 Tokens and Travel Documents 

Travel documents are used to certify the identity of a traveller when crossing a 

country’s border. Passports are the most common travel documents and are usually 

issued by a country’s government to verify the traveller and their nationality. From 

2006, a new generation of passports introduced throughout the globe included a 

biometric element; a microchip embedded in the documents making them machine-

readable and difficult to counterfeit [73].  

These biometric passports, or as commonly referred to as ‘ePassport’, contain a 

contactless smart card which includes a microprocessor chip and an antenna 

embedded in the front, back or centre page depending on the country’s design. 

Documents and chip characteristics are well documented in several standards 

reported by ISO and the International Civil Aviation Organization (ICAO) [94] [95] [73]. 

Biometric passports may also be referred to as an e-MRTD (A machine-readable travel 

documents equipped with an electronic chip).  

ePassports contain a digitally signed biometric file and various communication 

protocols (as appropriate for the country that issues the passport) as stated in ICAO 

specifications [96]. The digital image of the traveller (the same as the one on the 
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passport page) is stored on the chip in a JPEG or JPEG2000 format. The latter format 

being a newer standard that offers better compression rates for comparable image 

quality. In addition to the position (i.e. coordinates) of certain facial features (e.g. eyes) 

can also be stored on the passport [96].  

The quality of the reference biometric data stored on the passport is extremely 

important and is likely to have a major influence on the systems ability to match a live 

image. Several studies have investigated performance issues within border control 

systems about the quality of the reference image [97] [98] [7] [99]. ISO/IEC 19794-5 

[34] defines requirements for facial images that are to be stored on the passport. The 

specifications include requirements in areas of pose, expression, backgrounds, 

shadows, glasses. Technical requirements are also detailed for focus, colours, radial 

distortion and colour space. See Figure 14 an example of an acceptable image. 

 

Figure 14: Examples of Non-Accepted Images and an Acceptable Image [34] 

Images of iris or fingerprints can also be stored on the electronic passport. However, 

these are optional and are only enrolled if required by the issuing state. These 

reference images can only be used for identity-verification (1:1 matching). Fingerprints 

are typically stored as WSQ (Wavelet Scalar Quantisation – a lossless compression 

format optimised for fingerprints). Two images are usually stored, the image of the left 

and right index finger, however, the passport can hold all ten fingerprint images if 

required (e.g. for certain scenarios such as visa permits). ePassports which contain 

fingerprints may take longer to read than passports without. The chip authentication 

and terminal authentication protocols require transmission of cryptographic keys and 

various certificates which are required to be performed by the chip. Additionally, the 

fingerprints must also be read, which typically add 25kilobytes of data to the 
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transmission. The latest generation and chips, however, are significantly faster and 

can finish the inspection procedure in less than 3 seconds.  

All passports contain a Machine-Readable Zone (MRZ) which is made up of two lines 

at the bottom edge of the document on the data page. When interacting with a passport 

reader, the device scans the relevant region first and then by using optical character 

recognition, recognise individual characters and obtain the digital form of the printed 

data.  

There are two main stages to border control systems; enrolment and verification. 

During verification (or border crossing), a comparison of the biometric features is 

performed outside of the passport by either through a manual or an automated 

process. In either case, authorised bodies can read biometric and other data stored 

on the chip off the passport and compare the stored photos and images of the 

fingerprints/iris to those taken to at the checkpoint/system.  

During verification, tokens/passports are typically authenticated and checked for 

fraudulence [100] [73]. Passports must be inspected for the following during reading: 

 Systems must be able to read the MRZ (via optical character recognition – 

OCR) to be able to perform basic access control authentication 

 Inspection systems must be equipped with the list of country signing 

certification authorities (CSCA) certificates of all countries, whose electronic 

passports are to be validated 

 Check the physical security features of the passport under ultraviolet (UV) and 

infrared (IR) illumination 

Although ePassports are the most common token used in identity claim scenarios, 

several other forms or permits and visas also contain biometric elements. Biometric 

visas are becoming increasingly popular throughout the world. The Biometric Resident 

Permit (BRP) [101] in the UK is given to those who apply to come to the UK for longer 

than six months. This visa contains personal details such as name, date and place of 

birth, fingerprints, a photo of the face and immigration status. 
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Permits/visas such as these are typically not used in ABC systems due the design and 

build of a system (the system may not be built to check immigration status etc.). 

However, in some cases, permits/visas can be used in the same way as a passport 

and act as a token for automated border control. Similarities point to the personal detail 

page of a passport, where personal information is stored as well as an MRZ zone. For 

example, German nationals can hold an electronic ID (e-ID) card which is usable by 

their EasyPass program (A sample can be seen Figure 15) [102].  

 

Figure 15: An example of an Electronic ID [102] 

For systems that do allow additional e-MRTDs to be used other than ePassports, the 

ABC system may need to connect externally to a specific national system which allows 

the validation of the documents for access to its protected data areas.  

Other systems may use registered tokens or pre-registered traveller cards as part of 

a frequent flier program. For example, PRIVIUM is Amsterdam’s Airport Schiphol’s 

service programme for frequent fliers which uses iris verification [53]. 
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During enrolment, the images of the iris are directly stored onto the PRIVIUM 

membership card. At the border crossing, the details on the card are compared to live 

images of the eye. The design of these systems will alter slightly from ABC systems 

which use an e-MRTD as a token. The design and topology of the system will change 

based on the sensor (Privium cards are swiped), the biometric modality, and how the 

information is extracted from the chip and compared.   

Several border control systems use a combination of tokens. The hand geometry 

system at Ben Gurion airport now uses a combination of an ePassport and a smart 

card [103]. The smart card code stores an array of encrypted personal information, 

from criminal histories to measurements of fingers, knuckle shapes and distances 

between joints in hand. Upon arrival, travellers go to a kiosk and swipe their smart 

cards through a reader and then place their hands on a biometric scanner. Once the 

scanner verifies a passenger’s identity, a coupon is printed that allows the traveller to 

continue to the next part of the process. In this second stage, the passport is presented 

to a kiosk, and the document is then verified to authorise the traveller border crossing.  

Table 4 demonstrates several examples of ABC systems and the respective biometric 

modality and token used. A further report of global systems is conducted in Chapter 

3. 

Table 4: Examples of ABC systems, the modality used and the required Token 

Modality Token Required Examples 

Face Passport eGates (UK), eGates (EU), APC (USA), 
No-Q (Netherlands) 

Face Resident Card easyPass (Germany), RAPID (Portugal)  

Face & 
Fingerprint 

Passport or e-ID ABC (Spain) 

 

Although Table 4 presents a few examples, other combinations do exist. The most 

common modality used in ABC systems would be the face verification while using the 

ePassport as the required token. For this study, the work is concerned with automated 

systems only. The design and topologies of these systems differ, however, there are 

various formats that the build and implementation of the solution should follow. Section 

2.4.3 also considers the role of the border guard within an ABC system.
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2.4.3 Design and Other Factors  

Regarding topology, Frontex [104] classifies current ABC systems into three 

categories:  

 One-Step Process (Figure 16, below): when the token verification, identity 

verification and the border crossing happens in one single process 

 

Figure 16: One Step Process [104] 

 Integrated Two-Step Process (Figure 17): when the token verification and 

eligibility to use the system is performed in advance and, if successful, the 

identity verification process is conducted at a different stage in the same 

physical location 
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Figure 17: Two-Step Process [104] 

 Segregated Two-Step Process (Figure 18): when the process of traveller 

verification and the border crossing are completely separated. A further token 

is sometimes required to link both processes, sometimes in the form of a 

biometric sample or ticket 

 

Figure 18: Segregated Two-Step Process [104]
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Systems typically use a combination of physical barriers, full-page token readers, 

visual displays for instructions, biometric capture devices and system management 

hardware and software. The systems may also include uniqueness and liveness 

detection technologies [7] [53] [77] [104].  

Several environmental factors must be considered to for the placement of ABC 

systems. Several constraints are to be expected during early implementation (existing 

infrastructure, cabling, lighting, etc.) but ultimately where systems are placed will 

determine how many travellers use it, how successful it is and what level of 

performance can be achieved [35] [104]. 

Security personnel oversee all aspects of ABC systems at some level. There are two 

main roles in the operation of an ABC system; the one of the operators and that of 

assisting personnel. The operator is responsible for the remote monitoring and control 

of the ABC system. Their most important task is to bring the necessary human factor 

into automated tasks. This is done by: 

 Overseeing the user interface of the application 

 Reacting to any notification given by the system (warnings, errors) 

 Managing exceptions and providing a decision 

 Monitoring and profiling travellers queuing in the ABC line and using the 

eGates to look for suspicious behaviour in travellers 

Assisting personnel are the border guard(s) whose tasks are to handle the exceptions 

that take place at the ABC system, redirect travellers as needed, and assist travellers 

in specific situations (e.g. how to interact with the system if they are unsure). 

2.4.4 Border Control Performance 

It is a particularly difficult task to evaluate an ABC system. Performance is assessed 

based on individual components; technical performance of physical components, 

matching performance, timings, observations of the interaction process and traveller’s 

perception of the system. Evaluating the biometric matching performance will 

determine the overall accuracy of the system, but the calculation may change between 

airports. Many countries include legalisation that limits the collection and storage of 
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biometric data, and in most cases, the thresholds and matching scores are not 

commonly available to the public [105].  

Several reports assess the Operational Reject Rate (ORR), the overall ratio of people 

sent to manual examination from an ABC system [106] [77] [107] [108], and through 

standard biometric throughput and error performance ratings. While standards require 

all systems to report on the biometric component; there is very limited information on 

other systems ORR rate. M.Nuppeny [108] states the target goal for the future 

operation of the German EasyPass system in 2012 was to reach an ORR <10%. From 

this number, a fraction of the ORR from biometrics should aim for <5% and the 

remaining <5% from watch list and documents checks. However, there has not been 

an update whether EasyPass is currently hitting these targets.  

When measuring transaction time, most vendors typically measure the transaction 

time from the point a traveller places the passport on the reader until he/she exits the 

ABC systems, which typically does not exceed the 30 seconds [97] [109] [53] [7]. 

However, there are no current standards to define this measure, and so there is no 

uniform method for measuring transaction time across global implementations. Also, 

systems with multiple biometrics or are part of a segregated two-step process may 

occur longer transaction times or have multiple transaction times associated with the 

process.  

A study on the automatic face recognition for ABC systems based on real data 

recorded of travellers at Schipol Airport [31] investigated the cause of performance 

errors and described how performance tests were concluded for a typical eGate 

scenario. Error rates are discussed based on the matching algorithm used to compare 

images to the enrolled digital passport image. The Receiver Operating Characteristic 

(ROC) test enables the operator to choose a threshold based on a suitable FAR rating. 

To complete the test, each comparison results in a score and is then compared to a 

threshold. The threshold differs between scenarios but is typically set at 30-40%~ [7]. 

If the score is above the assigned threshold and the comparison is an imposter pair 

(e.g. the live image and the digital passport are from different travellers), this results 

in FAR. Likewise, the number of genuine comparisons (both images are from the same 

subject) where the score is above the threshold divided by the total number of genuine 
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gives a Verification Rate (VR). The number of genuine comparisons where the score 

is below a threshold divided by the total number of genuine comparisons gives FRR. 

By the studies definition (Equation 1):  

𝑉𝑅 =  1 –  FRR                 (1)  

The study notes that a common choice for FAR is 0.001 (0.1%) in ABC systems, i.e. 

1 out of 1000 imposters are allowed. This is backed up by several other studies that 

have also noted that this a standard set across the board [110] [111] [112]. With an 

increase of FRR however, of more than a few percent, this could lead to delays and 

longer queues. This is due to an increase in manual checking by a border guard who 

will have to handle a small number out of each 100 genuine travellers, which may not 

be recognised by the system due to constraints outside of their control.  

Cantarero et al. report [85] on ABC performance for some traveller’s groups. FRR was 

reported for Portuguese travellers at 7.42% while FRR for Danish citizens was at a 

huge 21.59%. The average FRR across 31 countries was reported at 12.32% for over 

92,000 interactions. Frontex reports [7] that Vision-box systems used in Portugal have 

a theoretical FRR of 4.25%. However, a study at Algarve University reported 5.2% 

FRR. After the study, the design of the light source was improved and led to a lower 

rate, although the number was not given. Frontex also suggests that there is an 

estimation of 17% of FRR across many systems can be attributed to the use of 

glasses, wearing hats, or occluding the face with hair.  

Transaction time, on the other hand, can be particularly difficult to compare between 

systems. The process can differ greatly between scenarios, resulting in an unclear 

definition of time on task. One system could report on time on task from the moment 

a traveller steps into the eGate system until the system is completed, yet, another 

system may not have barriers and report on the time spent interacting with a biometric 

sensor only. Usability studies on non-border control-biometric systems report on 

efficiency and effectiveness in self-service scenarios and individual component times 

[55] [60]. Research is not widely available on measured total transaction time when 

investigating live scenarios [110] [31].   
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2.4.5 User Acceptance of Biometrics in Border Control Systems 

User acceptance can be defined from the user’s perceived need for a system and the 

utility it provides [113] [66]. The system then must be both convenient and usable to 

remain reliable and trustworthy for passengers to use. There are many considerations 

in biometric usability; information, guidance, ergonomics and more. This section 

reports on the issues surrounding user acceptance and usability issues within a border 

control system context.  

Biometric components in border control solutions can cause problems. In some cases, 

travellers found a modality awkward and time-consuming to use (as documented by a 

user experience study on the now retired UK IRIS programme [114] and the 

challenges of iris recognition in UAE [115].  

A study on multiple verification systems conducted by the UK Passport Service 

(UKPS) [116] also revealed some usability issues which affected system performance 

at an interaction level. More than 10,000 users participated in the study, with some 

750 users who had some form of disability. Results suggested that fingerprint 

recognition was preferred but that some groups were more comfortable with iris 

recognition. Users, who identified as disabled found iris recognition very challenging, 

which was mostly due to the design and setup of the system being tested.  

If the user has previously experienced ‘slow’ system performance or has erroneously 

been denied access, these negative experiences may cause the traveller to avoid the 

process in the future [114]. How the system experience is conveyed through publicity 

documentation and to the public through the news media can also affect the user 

presentation [117]. A positive user experience is typically based on convenience, 

confidence that the system is functioning correctly, and its perceived utility [66].  

There is general conception from users that there is little trust on the use of the 

technology [118] [119]. Biometrics can be considered as sometimes as intrusive 

through both interaction and the subsequent storage of personal data. The UPKS 

report [116] found although most participants rated four systems they tested either 

satisfactory or positive; many raised several usability and acceptance issues. For 
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example, within a fingerprint system, subjects commented on hygiene and the visible 

dirt which was highlighted due to illumination on the sensor.  

Current global consortiums such as the FastPass [120] and ABC4EU [121] projects 

have noted the need to find, standardise and counter non-technical factors. Both 

projects project covers the broader area of border control solutions and considers 

algorithms improvements, benchmarking, queue analysis and more. Relevant papers 

are referenced to throughout this thesis.  

Ylikauppila et al. [119] report on factors affecting UX and technology acceptance 

within ABC systems. Points of view are reported both from a traveller and border 

guard perspective. Data was collected from expert evaluations, passenger 

observations and interviews from border guards. Conducted in 2014, the results detail 

that passengers were still not aware of the overall process, which led to inactivity 

during the use of the ABC system. Passengers reported that they often do not know 

if they can use an ABC system based on what travel documents they are holding. 

According to the observations reported, many travellers who did not have the correct 

travel documents tried multiple times to interact with the system. For passengers 

using the system, observations witnessed struggles with individual components of 

the system, i.e. when to enter or exit the system and where to insert their passport. 

The researchers noted that the traveller’s restless actions caused disruption with the 

capture process, cancelling a transaction which in turn increased time, non-matches 

and rejections as well as retries. Border Guards emphasised the importance of the 

first time experience that travellers have. Positive experiences will influence the 

attitude towards the concept and their willingness to try the system in the future.  

Pirelli [113] notes the importance of usability in border control when considering users 

with a disability. The paper reports on the scale of disability and the associated 

challenges for users interacting with automated systems. The report also suggests 

that users tend to miss key pieces of information during the process and so there 

should be careful consideration of the environment and situation where the system is 

integrated.  

An important topic for travellers using ABC would be the system’s ability to be able to 

communicate with people regardless of native language. Implementations that utilise 
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a Segregated Two-Step Process with an interactive kiosk have an easier task of 

deploying (limited) language options [104], while one-step solutions offer little to no 

choice. These configurations often rely on icons or simple pictorial instructions. 

There is a clear need for consistent presentation and communication of biometric 

processes to maintain successful performance. While there is not a current 

standardised approach to how this is achieved in worldwide systems, some attempts 

have tried to improve usability and acceptance of some systems. In the UK, a number 

of organisations such as the British Standards Institute (BSI) and NIST have 

collaborated on the FaceSymbol project [122], which collected some graphical 

symbols representing facial biometrics.  The workgroup aimed to establish a core set 

of icons to be used in the UK border control systems with the aim to form several 

ISO/IEC reports such as for systems which use face applications [123]. 

The idea to standardise information will make the process across the globe easily 

recognisable, comprehensible and consistent and therefore improve performance. 

However, this is for many, what makes the process confusing. Arriving in a foreign 

country already poses language problems but for those who are new to the airport 

and indeed the country, may have difficulty deciding how to proceed through border 

control. Yee-Yin Choon et al. conducted case studies on Biometric Symbol Design 

[124] prior to the FaceSymbol project. The NIST group evaluated a set of symbols 

intended for use in biometric systems to help users better understand biometric 

operations. There were six studies, with a total of 186 participants from the United 

States and four Asian countries. The survey reported on the matching of a symbol to 

its meaning. Seven symbols were determined to show ‘great promise’, with four 

symbols that were not well received and nine that needed further examination. The 

symbols were later assessed in the FaceSymbol project. See Figure 19 below for 

examples of the proposed symbols from the project.  

To enhance acceptance and to improve the user experience, an ABC implementation 

needs to accommodate: a population with different demographics, language barriers 

and travellers from a variety of cultural backgrounds through the standardisation of 

signage and instructions. Also, to travellers whose interactions may be affected by 

stress, fatigue and a reaction to unfamiliar surroundings. Furthermore, a system must 
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exhibit an ability to convey errors and to offer solutions leading to a more efficient 

process for all travellers. Moreover, this must be able to accommodate user 

performance and acceptance concerns, accounting for confidence, and physical or 

mental workload. 

 

 

Figure 19: Examples of Icons gathered by the FaceSymbol project. From Top-Left across Facial 

Recognition, Look at Camera, Manual Passport Control, Move Hair. From Bottom-Left across: 

Do Not Smile, Open Passport, Remove Hats, Wait. 
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CHAPTER 3. BORDER CONTROL 

INTERACTION 

3.1 Introduction 

There are various approaches to evaluating the performance of Automated Border 

Control systems. As previously discussed in Section 2.4.4, all implementations that 

use a biometric component must report standardised biometric rates such as FAR, 

FRR and FMNR and FMR [104]. Although assessments are not readily available for 

all systems and are typically analysed internally, several studies have reported on the 

performance of the biometric sensor from a range of implementations [7] [53] [61] [52].   

Reporting aspects of throughput of any system is crucial if systems are to improve. 

Time spent on a transaction or interaction will indicate where improvements may need 

to be made, for example, are there bottlenecks due to users not responding correctly 

to or not understanding the information displayed? There is currently not a standard 

definition for reporting transaction times, and therefore metrics differ from vendor to 

vendor. In a common scenario, one system may report on a transaction time measured 

from the point when a user enters their passport into the reader to when he or she 

exits the gate. Another system may define a transaction from the moment a user enters 

the first gate [77]. Different builds and topologies can also cause discrepancies in the 

recorded rates.  

Systems may also report an Operational Reject Rate (ORR), defined as the overall 

rate of travellers rejected from the entire system [108]. This measurement does not 

consider wherever the traveller made a genuine or false interaction, or help identify 

where and why an error was generated. It also does not establish a difference between 

biometric and token interactions or possible system errors, for example, was this was 

due to not establishing a connection to an internal database? Or through a failure to 

read passport chip? 

While these traditional performance evaluation techniques cover the basic operational 

and deployment scenarios of ABC systems, there is further work to be done. To 

understand the behaviours, and the system responses to these, the performance 

scenarios must be measured and analysed in higher detail. In this chapter, three 
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models are proposed to identify and unify the performance assessment process 

against components in implementations across the globe.  

From the survey of multiple ABC systems, a general process is mapped for all common 

implementations. To apply HSBI metrics and to perform a deeper analysis of 

performance and interaction, the Generic Model (GM) is proposed. The model outlines 

a process flow for both the enrolment and verification stages of the border crossing 

process, mapping points where the HBSI model can be enabled to establish metrics.  

Further analysis of the verification stage of the GM reveals the Identity Claim Process 

(ICP), a definition of the formal stages that require the user to submit a token, present 

a biometric which upon successful verification, enables border crossing.  These four 

user-focused tasks are later described in more detail in the Behavioural Framework.  

The research proposed in this thesis investigates the applicability of a tracking sensor 

to analyse user movements and behaviours in real time. Upon identifying the common 

steps involved in a transaction, a breakdown of the desirable and undesirable 

behaviours describes what movements or actions may contribute to performance. 

Further research through data collections in this thesis builds on these established 

behaviours to assess the impact of these actions on performance.  

3.2 Survey of Systems 

ABC systems across the globe use a broad range of biometric devices combining 

either single or multiple sensors. Typically, the process will also require the presence 

of a token, a travel document which aims establish the identity whereas the biometric 

aims to verify. Requirements differ from country to country and have different usage 

implications for travellers depending on the configuration. To facilitate the application 

of the HBSI Presentation Framework to ABC, a Generic Model (GM) was developed 

which is based on existing systems, encapsulating key points and stages across 

implementations.  

To faciliate the development of the GM, 23 global ABC implementations were 

assessed. Systems were selected based on the information available, largely through 

online brochures, reports and in some cases, performance assessments.  
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Table 5 below surveys systems across the globe providing the system name, country, 

token and biometric used as well as the design of the build. 

Table 5: Survey of Global ABC Implementations 

System Name Country Token Biometric Design 

eGate  UK, IRE, FR, 
DE, PRT, NOR, 
ESP, ITL, DNK, 
EGY, POL 

Passport Face One Step 

SmartGate Australia/New 
Zealand 

Passport  Face Segregated 
Two Step 

eChannel/AutoGate Hong 
Kong/Malaysia 

Identity Card 
(eMRTD) 

Finger Integrated 
Two Step  

Automated 
Passport Control 
(APC) 

US Passport Face Segregated 
Two Step 

PRIVIUM Netherlands 
(Schiphol 
Airport) 

Membership 
Card 

Iris Integrated 
Two Step 

PARAFRE France Passport or 
Identity Card  

Fingerprint Integrated 
Two Step 

CANPASS Canada Membership 
Card 

Iris Integrated 
Two Step 

Smart Gate Dubai UEA Identity 
Card, eGate 
card or 
Passport 

Face One Step 

e-Gate Taiwan Passport Face & 
Fingerprint 

Integrated 
Two Step 

Automated Gate Japan Passport  Face & 
Fingerprint 

Integrated 
Two Step 

Passport Control Israel Passport Hand 
Geometry 

Integrated 
Two Step 

 

Out of the 23 systems, three configurations were a segregated two-step system, 

whereby the process is split between a kiosk and gate elements. In both instances, 

the user approaches a kiosk and enters their passport to be read. The user is then 

required to answer a series of questions based on immigration control on a 

touchscreen. Upon successful completion, a receipt/ticket is produced for the traveller 

who will use it as a temporary token for the next step. The traveller will then enter a 

typical eGate setup using the ticket produced from the kiosk. The ticket is then issued 
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back to the traveller who must present the ticket to an immigration officer after 

collecting their baggage. Twelve of the surveyed systems used a one-step solution 

which all used facial verification as the biometric modality. The passport is the most 

common token, used in 18 of the 23 systems.  

Although deviations do exist across implementations, a general process flow can be 

seen throughout the enrolment and verification stages. Looking at both sides to the 

process, a Generic Model is devised based on common steps of the implementations 

surveyed. These systems are composed of both automated (using technologies that 

typically do not require intervention by human operation) and manual elements.  

3.3 Generic ABC Model 

A Generic Model (GM) for ABC systems is devised outlining both the enrolment and 

verification stages of ABC systems. Both stages of the model are built based on the 

systems surveyed in Section 3.2 and through discussion in Section 2.4. The main 

purpose of outlining systems via this method is to permit the identification of automated 

steps within each system, and where possible, highlight areas in a system where it 

may applicable to identify HBSI errors which may occur during a presentation.  

The Enrolment Stage (Figure 20) and Verification Stage (Figure 21) outline the general 

process flow that a traveller must complete for successful ABC crossing. While the 

enrolment stage is typically completed once per token, the verification stage will be 

completed each time a user wishes to cross a country via an ABC system.  

For both parts of the GM, grey sections refer to areas where a form of manual 

intervention is required (e.g. this part must be completed by a border guard). 

Processes were donated by a blue section are automated (e.g. a biometric capture is 

algorithmically assessed, or a component can automatically detect movements via 

sensors within a gate). The white node indicates the starting point for interaction. Exit 

points within the GM, where travellers may be rejected from the system, are shown in 

red, while green nodes denote possible success or approval through a process. 

Orange sections refer to processes where border guard personnel may need to assist 

if the traveller is having difficulty with a certain action (e.g. struggling to complete the 

passport interaction stage).
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Figure 20: Enrolment Stage of the Generic Model
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Figure 21: Verification Stage of the Generic Model 
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To facilitate the work conducted in this thesis, additional nodes have been added 

to points throughout both processes where the HBSI framework can be applied 

and adapted to identify specific behaviours. These are shown in yellow and are 

used for performance interaction assessment purposes. For example, identifying 

HBSI categorisations at biometric capture will allow further classifications to be 

made for that modality. For this first version of the GM, the route map is restricted 

to the major biometric modalities found in ABC systems which are facial, fingerprint 

and iris.  

The first stage of the process will require the enrolment of both biometric and 

personal data to generate a token. After being approved onto a border access 

programme by assessing eligibility (E1), the traveller may be asked to provide 

biometric data at an enrolment centre or via self-captured facial images (E2). As 

discussed previously, passport tokens are typically generated from a passport 

photo, while other systems may require the traveller to physically present their 

sample to a system usually at an airport or a country’s designated embassy or 

enrolment centre.  Enrolment differs from each configuration reflecting the specific 

requirements for that country and the modalities used. HBSI assessment can be 

applied to all outcomes of point evaluation E3 (‘Biometric Data Capture.’) After 

successful biometric capture and processing, the enrolment stage, from a user 

point of view, is completed.  

For the verification stage (Figure 21), the model proposes an outline for assessing 

the transaction for crossing a country’s borders via an automated system. This 

stage of the GM includes a provision to detect the traveller's document (V2), 

enabling the HBSI Full Model as discussed in Section 2.4.  If the user successfully 

enters their token, reading (V3) is performed, and the result is displayed back to 

the user. Upon successful validation of the token (if appropriate), subsequent 

biometric capture (V4) and verification at a local (token) or non-local (database) 

level (V5) of the traveller will lead to either authorisation or rejection to cross the 

border. Some configurations may contain liveness detection components which 

can identify a passenger’s presence (V1). Systems may have built-in sensors that 

can detect a traveller entering the gate, therefore starting the transaction process 

when a traveller enters and displays instructions on the screen. The component 

that detects a travellers presence could be potentially assessed through an 

adapted version of the HBSI Presentation Framework.  
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Whereby identifying possible conditions such as: if the user has entered the system 

correctly, too quickly (e.g. straight after another user has exited), if another traveller 

is detected, or if the traveller is using the system already. Detection of such 

conditions are vital in the first stages of the process as this may alter how the 

system proceeds.  

Table 6: Evaluation Points in the GM 

Evaluation Point Definition Possible Outcome HBSI  

V1 Traveller 
Presence 

Is traveller standing in the 
required area? 

Yes (A2), No 
(Reject/Assist) 

FTD/DI 

V2 Token 
Presence 

Is the token detected? 
Can the MRZ and other 
components be read? 

Yes (A3), No 
(Reject/Assist) 

FTD/DI 

V3 Token Read Was the token 
successfully processed? 

Yes (A4), No 
(Reject/Assist) 

SPS, 
FTP/CI 

V4 Biometric 
Capture 

Which biometric is 
required? Can the sample 
be captured?  

Identify Modality 
(Iris, Finger, Face)  

All 

V5 Data 
Verification 

Matching biometric data 
against information on the 
token 

Performance at 
Database or Local 
Level – separate 
metrics  

N/A 

 

Table 6 shows the evaluation points throughout the Verification Stage of the GM, 

highlighting possible outcomes and HBSI categorisations. There are five stages or 

evaluation points; the user must enter the system (V1 traveller presence), insert 

the token (V2 token presence) and wait for the reading process (V3). After, the 

user must present a biometric (V4) and wait for the result (V5). After successful 

verification, the traveller can cross the border/leave the system. Although there are 

obvious points at which HBSI can be applied to improve the categorisation of 

errors, such as for biometric capture, evaluation points V1, V2 and V3 can also be 

assessed using automated processes. Detecting movements and behaviours 

throughout each of these tasks will enable an efficient and effective process, 

improving the ability to identify why and when an error may occur.  

The verification stage of the GM can be decomposed further into individual stages 

which detail the process that the user must complete for a successful crossing. The 

proposed Identity Claim Process (ICP) framework discussed in Section 3.4 details 

steps of the verification stage, whereby a breakdown of the steps involved can 

outline expected or unexpected behaviours (system or user) for a sub-system 

component.
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3.4 Identity Claim Process 

The Identity Claim Process (ICP) model outlines the eight required steps for a 

system that requires a claim of identity alongside a biometric sample. The ICP can 

only occur during the Verification Stage in the GM and runs parallel to the 

evaluation points (GM Node). In Table 7, a definition of each proposed step and 

the related evaluation points from the GM are detailed. 

Table 7: Identity Claim Process 

Step Title Description GM  

1 System Requires a 
Claim of Identity  

The system may or may not require the 
user to make an identity claim 

V1 

2 User Makes Identity 
Claim  

The user either presents their token or 
submit their travel documents to the 
reader. The user must submit their token 
in such a way that the system should be 
expected to accept it  

V2 

3 Identity Claim 
Accepted by System 

If the token can be read then, it should be 
accepted by the system. If this step fails, 
it is a failure of the token or the system, 
not the user 

V3 

4A Identity Claim 
Corresponds to 
Valid Identity 

The token exists in the database, or the 
token has a valid enrolment sample, 
digital signature, expiry date. The token 
has not been revoked 

V3 

4B Claimed Identity 
belongs to a 
different user 
 

The user may be using a false identity; 
for example, the token may have been 
(accidentally) swapped with a travel 
companion. If the intent was malicious, 
then this counts as an attack  

V3 

5 User Correctly 
Presents Biometric 
to System 
 

A correct presentation can be defined 
when the user presents their biometric 
corresponding to the requirements of the 
system 

V4 

6 Biometric 
Subsystem Detects 
Presentation 

The biometric system correctly detects 
the biometric data and can perform 
subsequent processing. 

V4 

7 Biometric 
Subsystem 
determines that 
presentation is 
suitable for matching 

Biometric subsystem determines that the 
quality of the biometric sample be 
sufficient and can extract features to 
enable biometric matching to take place 

V4 

8 Biometric matching 
validates user 
against claimed 
identity 

If the system is an identification system, 
then this means that the user is 
determined to be an enrolled user. If it is 
a verification system, then the identity 
claim of the user is verified 

V5 
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Each step of the ICP must be completed to achieve successful border crossing. 

By breaking down the process into these tasks, a performance interaction 

assessment can be made at an individual step to identify where an error may 

possibly occur.  

For example, Step 1 (System Requires a Claim of Identity) can only occur during 

the evaluation point V1 as defined in the GM. When a traveller enters the ABC 

system, the ‘interaction’ can be categorised in several ways; the system should be 

able to detect movement and initiate the next step, by displaying information on 

the screen. However, this may not process correctly by failing to detect any 

movement, which will either be the user not moving forward or from the sensor 

failing to detect movement. This stage requires both the user and system to work 

together – the user making the ‘desired’ or ‘correct’ behaviour of walking to the 

system, whilst the system correctly identifies human presence.  

Another example is at Step 3 (Identity Claim Accepted by System), which can only 

occur after Token Read (V3) has been successful, will rely on the system’s ability 

to complete the required verification processes for the presented token.  

To facilitate the model, it is necessary to outline which ICP steps are either directly 

attributed to the user’s behaviour or to a system process. Table 8 reports below. 

Table 8: ICP Steps and Attributions 

ICP Step ICP Description Attribution 

1 System Requires a Claim of Identity System/User 

2 User Makes Identity Claim User 

3 Identity Claim Accepted by System System 

4A Identity Claim Corresponds to Valid 
Identity 

System 

4B Claimed Identity belongs to a 
different user 

System 

5 User Correctly Presents Biometric to 
System 

User 

6 Biometric Subsystem Detects 
Presentation 

System 

7 Biometric Subsystem determines 
that presentation is suitable for 
biometric matching 

System 

8 Biometric matching validates user 
against claimed identity 

System 
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Further work using the model can outline various scenarios for assessment. Table 

9 illustrates several potential system responses for a scenario where the user has 

already entered the ABC system and has successfully had his or her token read 

(Steps 3 and 4A). The traveller has failed the step where they are required to 

present their biometric correctly to the sensor due to incorrectly presenting their 

biometric (Step 5).  

Table 9: Performance Assessment using ICP and HBSI 

ICP Step  

1 2 3 4 5 6 7 8 Potential System Response  HBSI   
Y Y Y Y N N N Y True Match CI 
Y Y Y Y N N Y Y False Non-Match  CI 
Y Y Y Y N N Y N Failure to Process FI 
Y Y Y Y N N N N Biometric Not Presented DI 

 

In this illustrative scenario, only the potential system responses would be in effect 

in conventional assessment metrics. The ideal system response in this example 

would ‘Biometric Not Presented’ whereas a ‘True Match’ would be the worst 

scenario, shadowing a potential security risk. The inclusion of the HBSI framework 

can help to establish cases where the system was correct in the identification of 

the scenario as erroneous (False Interaction) and that the user incorrectly 

presented a biometric sample.  

Therefore, HBSI works both ways, reporting on correct or ‘good’ system 

performance (FI’s) and highlighting potential security threats where the biometric 

is not detected but the system grants access (Concealed Interaction). If the 

incorrect interaction was categorised in real time, feedback could be presented to 

the user with an option to recapture the required biometric sample or if necessary, 

to restart the process (for example, if a biometric sample was only deemed 

acceptable over the required threshold or it failed certain feature checks).   

The ability to track and analyse certain user movements for stages that require an 

action from the user will enable a range of new features that could be adopted for 

biometric systems. Step 1 (System Requires a Claim of Identity), Step 2 (User 

Makes Identity Claim) and Step 5 (User Correctly Presents Biometric Sample) 

could be analysed through several technologies such as image processing 

elements or by using Action Recognition methodologies using a tracking 

component in the system.  
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A system with this capability may enable biometric solutions to produce a higher 

level of quality in guidance and feedback. For example, if movement/object 

tracking could detect non-movements then specific feedback could be produced 

to alert the user in a different format (e.g. produce a sound or display textual 

information based on the language in the passport).  

Upon identifying scenarios with automated processes for detecting movement 

and behaviours, the performance of recognition algorithms, human-computer 

interfaces and the ergonomics of the systems can be analysed further, revealing 

possible areas in the system which could be improved.  

For all forms of testing and analysis, it is important for systems, regardless of 

tracking abilities, to be able to handle certain unwanted actions. Early design 

stages usually address potential ergonomic issues, and usability engineers are 

commonly tasked with making the system accessible, intuitive and user-friendly 

[68].  

During the initial system design, there must always be careful considerations for 

unexpected user and system responses. The research proposed in this thesis is 

concerned with feedback and performance assessment when unwanted actions 

are performed by the user. A typical scenario that is likely to be common in most 

facial recognition implementations is how the system can handle unwanted 

interaction errors, such as looking away from the camera or not fitting in the region 

of interest for capture. For the eGates in Heathrow, these solutions can adjust to 

the height of the user which helps reduce problems of travellers not looking at the 

camera. However, not all systems are purposely built to tackle this hurdle. In 

addition, nearly all ABC systems are limited by the information (through 

standardisation of information such as icons) that is displayed on the monitor. 

Indeed, systems can be restricted in many factors due to the design and 

placement of the physical build as well.  

In summary, the ICP has outlined eight steps of the verification procedure that 

must be successfully completed for the user to complete the ABC process. The 

Behaviour Framework, proposed in this thesis through the next section, outlines 

‘desirable’ and ‘undesirable’ actions for steps of the ICP which require a user 

movement or action. The framework will then lay the foundation in highlighting 

areas which can be assessed in real time by using the proposed methods to 

improve system interaction performance. 
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3.5 Behaviour Framework 

For steps of the ICP where a movement or interaction from the user is required, 

the Behavioural Framework proposed in this section outlines some examples of 

desired, undesired and cautious behaviours that may occur during that specific 

task. The behaviours are defined based on observations made in several usability 

studies of biometric systems [7] [116] [125] [62] [15] and possible categorical errors 

observed in previous studies collected by the HBSI team.  

The impact on these behaviours within a purpose-built system simulating the self-

service environment is compared to performance assessment metrics, to identify 

if the ability to monitor this information sheds any light on user-interaction errors.  

Before identifying behaviours, the specific tasks related to all self-service biometric 

systems need to be identified. Table 10 below outlines four tasks where user input 

is required and its related ICP step.  

Table 10: Overview of the Behaviour Framework 

Task  ICP 
Step  

Entry – Movement from the queue to the designated feet symbols in the 
system. Task requires the user to move in front of the system and place 
baggage in an appropriate setting. The user will then follow instructions on 
the screen 

1 

Token Read – The physical movement of the token to the sensor.  
Requires the user to locate their token and place it on the sensor according 
to instructions on the screen/near the sensor. Most sensors will require the 
token to be placed for several seconds to ensure successful capture. 
Information will likely be displayed confirming the result 

2 

Biometric Read - A physiological sample is required to a sensor. 
Information on a monitor will typically instruct the user to move the required 
body part. The movement or action will differ based on the modality used 
in the scenario  

5 

Exit - Movement from the feet symbols through the gate/to the point of exit. 
Task requires the user to move from the system and remove any baggage 

8 

 

Although human behaviour can at times be unpredictable in an operational 

scenario, common responses can be mapped with the potential to be tracked and 

categorised by systems. The following section breaks down each task and 

identifies typical behaviours that can be observed from both an operational and 

data collection point of view.  
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Certain behaviours can, therefore, lead to ‘desired’ outcomes in the system, which 

in most cases, will result in correct sub-system processing and increase the 

likelihood of successful border crossing for the traveller. These should be the 

behaviours that users should aim to perform to successfully complete each task.  

Table 11 outlines potential behaviours for the Entry task.  

Table 11: Task 1: Entry 

Behaviour Categorisation Impact 

User moves forward in a timely 
manner and steps on the feet 
symbols, placing luggage in an 
appropriate position (e.g. does not 
interfere with equipment) 

Desired Increased efficiency  

User moves forward but does not 
step on the feet symbols in the 
desired location 

Cautious Potential impact on the 
ability to capture in 
subsequent tasks  

User moves forward and places 
luggage in an obstructive manner 
(e.g. in front of equipment)  

Cautious Potential impact on 
interaction for both 
token and biometric 

User does not move forward Undesired Decreases throughput 
and efficiency, might 
require assistance  

 

The desired behaviour for entry would be for the user to move in a timely manner 

to the system and be ready for the following instructions typically displayed on a 

monitor. The impact is likely to improve efficiency as the user demonstrates they 

are aware of the process and what is required from them. Cautious behaviours are 

identifiable through categorisations that could either lead to a ‘good/desired’ or 

‘bad/undesired’ result, however, the categorisation should be made after an 

elapsed period.  

In the example of the user not moving forward, this behaviour could potentially 

demonstrate that the user is not aware of the process and they may be confused 

on how to proceed. Not moving forward could have ramifications for other 

travellers, for example, the queue can build, and therefore new arrivals will be sent 

to the manual control. A border guard will usually be stationed close by to assist 

with the traveller if they do not move forward.   

Table 12 outlines the expected behaviours for Token Read.
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Table 12: Task 2: Token Read 

Behaviour Categorisation Impact 

User presents token in a timely 
manner with appropriate 
pressure and little movement  

Desired Increased efficiency   

User presents token but makes 
small movements making token 
difficult to be read 

Cautious Depends on systems 
ability to capture. Small 
movements maybe 
tolerated 

User presents but does not allow 
sufficient time for reading (either 
through movement or removing 
token to early) 

Undesired Increased likelihood of 
unsuccessful capture  
 

User does not present token to 
the system 

Undesired Unable to continue 
without assistance/until 
behaviour is corrected  

 

Token Read requires the user to present travel documents in a timely manner with 

precision. A successful interaction is likely to improve the rate at which the token 

is read and therefore processed. For several passport scanners, the token must 

be held for several seconds for the information on the chip to be read [104] and so 

the user should not move the documents during reading. The build and design of 

token readers may change between systems and so how the user interacts with 

the sensor will also change. Typical scanners require the passport to be pressed 

down whilst users interacting with some registered traveller programmes may be 

required to swipe a card instead. In this case, the movement is controlled, and 

therefore there is less chance of the document being moved around. However, 

some sensors do give users more range of motion, possibly leading to a higher 

chance of erroneous presentation, especially when juggling luggage and other 

accessories. In some cases, users may remove their passport too early (as 

assessed by information on the screen) which will typically require the process to 

start from the beginning [126] [110].  

Another element to Token Read is the process that follows, Biometric Read. During 

this time users may be watching for more information or making a movement to 

suggest they are preparing for the next task or exiting early.  

Table 13 below details the next task in the Behaviour Framework, the required 

Biometric Read. 
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Table 13: Task 3: Biometric Read 

Behaviour Categorisation Impact 

User presents biometric in a 
timely manner within the systems 
specifications and limits 

Desired Increased efficiency 

User presents biometric but with 
slight/small movements during 
interaction (e.g. small face 
movements, partially moving 
finger that is not severe enough 
to affect the outcome of 
interaction) 

Cautious Most sensors will take 
multiple images and 
process a sample that 
meets a quality 
threshold.  The impact 
will depend on systems 
ability to capture the 
image 

User presents biometric and 
makes significant/erroneous 
movements during interaction 
(e.g. looking away from the 
camera for an extended amount 
of time, placing the wrong finger 
on a camera) 

Undesired Erroneous movements 
will likely increase 
chances of 
unsuccessful 
presentations. Depends 
on systems ability to 
capture a sample 

User does not present biometric 
to the system 

Undesired Usually, results in a 
failure and rejection 
from the system  

 

Possible interaction errors with a biometric sensor have been well covered in years 

of research as discussed throughout Chapter 2. A correct presentation will require 

the user to submit the correct biometric to the sensor within a timely manner. Some 

sensors can adapt slightly to ‘cautious’ behaviours by capturing multiple images 

and choosing the best quality sample through the systems processing algorithm. 

In some cases, users may make an undesired behaviour through incorrect 

interactions, for example, providing the wrong biometric, looking away or making 

too much movement so that the sensor is unable to capture. Interaction errors will 

change with the biometric modality used in the system and this may mean that 

systems that use more intrusive biometrics, such as fingerprints, may be open to 

a higher number of errors and undesirable behaviours. Some fingerprint errors 

could include: not applying enough pressure to the sensor, by not having the full 

finger on the sensor, or applying at an awkward angle.  

Biometric Read is also accompanied by the subsequent processing, where users 

will typically be looking for further information on wherever their sample was 

accepted or not.
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Table 14 below details the behaviours expected for users exiting the system.  

Table 14: Task 4: Exit  

Behaviour Categorisation Impact 

User exits system in a timely 
manner 

Desired Quicker queue  

User is gathering belongings, 
putting items away etc 

Cautious Not as efficient in 
reducing queue  

User does not move forward Undesired Will slow throughput 
and may warrant 
assistance  

 

The task of exiting a system is relatively straightforward; once a decision has been 

made and displayed on the screen, the user should exit the system by the 

designated process, e.g. passing through gates. The impact then is a successful 

transaction that helps to bring down the busy queue, one of the main goal of ABC 

systems. Cautious behaviours could see travellers getting their belongings ready 

and undesirable behaviours where travellers do not move forward, potentially not 

understanding their result or what to do next.  

In general, most systems can account for small movements during the human-

sensor interaction. Token and biometric sensors will be reading on a ‘loop’ – 

looking for the required information until an allotted amount of time has passed. 

Some facial recognition systems such as the UK eGates take multiple images and 

select the best image based on a quality score. However, consistent or severe 

errors in user movement are difficult to control and ultimately will have a higher 

impact on the result, likely contributing to increased time on task and possibly a 

higher chance of a reject from the system. In real scenarios, confusion or 

undesirable behaviours will usually end with some form of assistance from a border 

guard.  

3.6 Research Goals  

Performance assessment in ABC systems is achieved by reporting on the different 

components of the system, such as the speed of the algorithm, error rates captured 

from the biometric sensor and checks against the database. Not all this data is 

made publicly available. However, all systems with a biometric component must 

report on the standardised biometric performance rates such as FAR and FRR.  
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There has yet to be a system or study that assesses the entire transaction, by 

measuring the user movement to the system, their biometric and token sample, 

and if the user has exited the process.   

The ability to gauge the movement of the user throughout the transaction in real 

time will offer significant advantages over other already proposed methods. One 

leading advantage for this proposed solution would allow the system to adapt to 

the user based on their behaviour to prevent potential errors within an interaction. 

Tailored feedback may reduce the likelihood of mistakes and improve various 

usability metrics such as user satisfaction and efficiency.  

There have been several standards produced by ISO/IEC that establish a range of 

icons for use in implementations [127] [128] [129] [130]. See the FaceSymbol 

project for a scope of the icons used in ABC systems which use facial recognition 

[122].  While there are little studies to evaluate the effectiveness of this work, some 

research has investigated other variables that may affect performance; for 

example, through forms of instructions [63], the use of overlays [65] and the impact 

of the placement of sensors on a self-service environment [55].   

Moving forward, research should consider the entire transaction and not just the 

output of individual components or sensors. It is important to consider where the 

user is and if they respond appropriately to a given task. Additionally, the use of 

adaptive information may also improve the process and reduce the likelihood of 

errors.  

Data collections outlined in this thesis highlight the applicability of tracking systems 

in a self-service environment. Enabling the ability to track, record and measure 

actions during an interaction will allow a deeper understanding of where and why 

errors may occur. Furthermore, the data collected will be cross-referenced with 

other studies in the field, comparing the results from the studies to those that have 

previously been obtained for similar systems.   

There are many tools available to enable tracking of the user throughout a process. 

A popular research field which seeks to evaluate body movements is Human Action 

Recognition, which aims to recognise human behaviours within a scenario. Studies 

in this area may use devices equipped with a depth sensor, a component to enable 

computer-aided vision. One sensor that has recently gained favourable attention 

is the Microsoft Kinect sensor, a motion sensing input device originally made for 
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the Microsoft Xbox 360 games console. The Kinect has been used for real-time 

calculations on body movements and skeleton detection. Chapter 4. Kinect 

Stability, investigates the application of the Kinect further, discussing research in 

the field and the stability of the data captured.  
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CHAPTER 4. KINECT ANALYSIS 

4.1 Introduction 

Action Recognition, by definition, aims to recognise the actions and goals of one 

or more users from a series of observations, either through manual or automated 

means [131]. Recent technological advances have enabled Activity Recognition 

using a range of sensors and components, whereby devices are used to model a 

broad range of human activities using computer-vision methodologies.  

Research into Action Recognition is highly active due to its extensive applications 

such as human-computer interfaces [132], human-robot interaction [133] and video 

surveillance [134]. With advances in the last decade and the availability of low-cost 

sensors, several systems have been introduced for recognising specific human 

actions in certain scenarios. Some examples include human recognition through 

shape analysis [135] and body motion skeleton tracking [136] [137]. There are two 

distinct areas within the field; Sensor-Based Activity Recognition which uses 

sensors (such as an accelerometer, GPS, microphone) to establish either a single 

user, multiple users or group activity [138] [139] [140].  

The other leading field is Vision-Based Activity Recognition, which aims to track 

and understand the behaviour of users using computer-aided vision, usually 

through video sequences or digitised video data [141]. Zhang et al. [142] review 

several methodologies within the area and highlight a relatively new trend of 

research using depth-based sensors.  

One device that is commonly used for motion sensing based recognition is the 

Microsoft Kinect, a device that enables users to control and interact with a console 

or computer without the need for a controller [143]. Typically, users interact with 

the device through gestures and spoken commands for gaming purposes. The 

Microsoft Kinect device is from the RGB-D (Red-Green-Blue & Depth) camera 

family that are increasingly utilised in the detection of human activities. The depth 

camera enables 3D capture, allowing the ability to generate real-time skeleton 

models of people with different body positions. The Kinect is one of the most 

affordable, whole-body markerless motion capture technology that is appropriate 

for both home use [144] and a range of other applications thanks to the support of 

the Microsoft Software Development Kit (SDK) [145].  
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There have been two iterations of the Kinect device. Microsoft introduced the 

Kinect Version 1 (V1) in 2010 to expand the service offered by the Microsoft Xbox 

360 games console and therefore enable motion tracking in some games. The 

device was adopted by PC systems in 2012, with Microsoft introducing the first 

version of the SDK Kit to allow developers to create applications for specific 

scenarios. The Kinect Version 2 (V2) was introduced as part of the Xbox One 

console in 2013 and later released as Kinect for Windows in 2014.  

There are several differences between the Kinect V1 and V2 devices. The Kinect 

V2 can quantify body motion by tracking the 3D coordinates of 25 anatomic joint 

centroids (Figure 22) compared to the 20 joints captured on the older Kinect V1. 

 

Figure 22: Skeletal Tracking Map for Kinect V1 [146] 

Other technical differences between the devices are displayed in Table 15 below.  

Table 15: Feature Comparisons of the Kinect V1 and V2 

Feature Kinect V1 Kinect V2 

Colour Camera 620 x 480, 30FPS 1920 x 1080, 30FPS 
Depth Camera 320 x 240 512 x 424 
Max Depth Distance ~4.5m ~4.5m 
Min Depth Distance 40cm (near mode) 50cm 
Horizontal Field of View 57 degrees 70 degrees 
Vertical Field of View 43 degrees 60 degrees 
Tilt Motor Yes No 
Skeleton Joints Defined 20 25 
Full Skeletons Tracked 2 6 
USB Standard 2.0 3.0 
Supported OS Win 7-10 Win 8-10 
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The Kinect device uses skeletal tracking features to recognise users and follow 

their actions. Using the infrared (IR) camera, the Kinect V2 can recognise up to six 

people in the field of the view of a sensor. The application can locate the joints of 

the tracked users in 3D space and track their movements over a transaction. The 

sensor is designed to recognise users standing or sitting, and facing the Kinect 

instrument. Sideway poses provide information-processing challenges regarding 

the part of the user that is not visible to the sensor, so the device works best when 

viewing the user from a frontal view. The field of view of users is determined by the 

settings of the IR camera. In the default range mode, which is used in this study, 

the Kinect can recognise people standing between 0.8m and 4.0m away from the 

device, however for optimal results, Microsoft recommends users be between 1.2m 

and 3.5m away from the apparatus. The device also works best when the tracked 

user is within 43.5 degrees of the sensor [143]. Figure 23 below provides the 

Vertical Field of View in the default range.  

  

Figure 23: Vertical Field of View for Kinect V2 [143] 

The distance of objects within the camera's range of view is calculated from time-

of-flight analysis of reflected light beams, which yields a depth model of 

surrounding structures [147]. Based on machine learning techniques, the SDK 

application detects human shapes. It further provides an artificial skeleton based 

on 25 artificial anatomical landmarks (‘Kinect Joints’) projected into these shapes 

based on depth data.  
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3D coordinates define each joint position; X, Y and Z and is presented in a 

Cartesian coordinate system. The (0, 0, 0) point represents the sensor, and all 

other points are measured regarding the position of the sensor. Refer to Figure 24 

below for more information.  

 

Figure 24: (a) Kinect Depth space and (b) skeleton space: X is the horizontal axis; Y 

vertical and Z is the position of the depth axis [143] 
  

To summarise, the X is the distance in the horizontal axis; increases to the left 

decreases to the right. Y vertical increases are going up and decreases going 

down. The Z-axis distance; by standard, is measured from the Kinect X Plane 

(Figure 24) rather than the distance from the sensor.  

Additionally, all values are reported in metres. So, for example, a standard 

CameraSpacePoint (or joint) [-1.5, 2.0, 2.5] is located 1.5m to the left 2.0m metres 

above and 2.5 metres from the sensor. The CameraSpacePoint is then reported 

for each of the 25 joints for each frame. Both Kinect sensors output 30 frames per 

second.  

The Kinect cannot ‘see’ a single joint directly; it calculates joint position based on 

multiple body parts (or CameraSpacePoints), and the orientations of those joints, 

which produces the skeletal map of the user. There lies one of the sensors’ 

shortcomings, results are reported from the sensors point of view and will require 

adjustment for accurate reporting. For example, if the sensor is tilted slightly 

downwards, joints position will be slightly warped due to the sensors ‘view’. Take 

the foot joint, the sensor will consider the depth to be closer than the head. 

Therefore some joints will appear closer to the sensor than the actual field. The 
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easy method to correct the vision would be to make sure the sensor is adjusted to 

be on a level with the person being recorded. However, this is not always possible 

in certain situations such as those in self-service environments, where users will 

be off different heights and will require the user to move closer or further from the 

sensor.  

The Kinect can be programmed to calculate the map of skeletal points by 

distinguishing the body from the floor using the FloorClipPlane [148] [149]. Each 

skeleton frame contains a floor-clipping-plane vector, which defines the plane the 

user is standing on and returns a 4-floating point value in the Hessian normal form 

(Equation 2 below)   

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0                                              (2) 

The Kinect sensor returns equation 2 as a vector (X,Y,Z,W), where (X,Y,Z) denotes 

the camera origin to the floor plane such that it is a perpendicular intersection with 

the floor plane. The W value is the magnitude and indicates the height of where 

the Kinect sensor is positioned in relation to the floor plane. If W is equal to 0, it 

means the field of view is limited, meaning there are likely to be objects blocking 

the field of view. The accuracy of the data reported by the Kinect is improved if the 

sensor has information of the FloorPlane [148] [149].  

To measure the distance between the floor and a joint, the Point-Plane Distance 

Formula is used (Equation 3) [150]. Where (A,B,C,D), represents the 

FloorClipPlane formula (X,Y,Z,W) and (x,y,z) the joint location from the sensor. X 

returns the height.f 

𝑋 =
|𝐴𝑥+𝐵𝑦+𝐶𝑧+𝐷|

√𝐴2+𝐵2+𝐶2
                                                   (3) 

The result of using the above calculation allows the 3D position of any joint to be 

calculated from the distance from the floor.  The information can then provide data 

on the height of a certain joint from the floor, which is useful for certain 

measurements such as comparing the exact user’s height against calculated 

height. There is a potential disadvantage for calculating height with this method, 

especially in a self-service environment. If the sensor is too close to a user and 

cannot get an accurate reading of the FloorClipPlane, there is likely to be higher 

variance in the reporting in the subject’s height as inference will occur. 
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Regarding tracking, Microsoft makes recommendations to operators to ensure 

more accuracy when tracking users within the optimum range [146]. For example, 

interference with the IR sensor through wearing baggy or reflecting clothing or 

contrasting colours may affect the devices ability to locate a joint.  Also, the 

environment in which the sensor operates will also affect results - low-lighting areas 

work better than brightly lit scenarios. Initial trials in this study looked at the lighting 

conditions before data collection, ensuring adequate lighting and space for the 

sensor to track accurately. Section 4.3 details more information on the effect of 

these variables on data collected throughout this work.   

The Kinect SDK can identify the tracking state through the Joint.TrackingState 

property. A joint can either be ‘tracked’, ‘inferred’ or ‘not-tracked’. Each state is 

reported alongside the positional data for each frame. Tracked data signifies that 

the Kinect could fully determine the joints position and therefore confidence in the 

accuracy of the data is very high. Non-tracked means that there is no joint data 

available and inferred states are determined when the Kinect must rely on tracking 

data to report on the joints location, often signifying it couldn’t fully track the joint. 

Since inferred states are calculated, the confidence level in the data is low  [146]. 

The Kinect SDK enables joint information to be adjusted (smoothed) across frames 

to minimise jittering and stabilise the joint positions over time. There are five 

smoothing parameters; Smoothing, Correction, Prediction, JitterRadius and 

MaxDeviationRadius [151]. The smoothing filter is based on Holt Double 

Exponential method. For this study, JitterRadius and MaxDeviationRadius were 

adjusted to 0.05 and 0.04 to filter any positions that deviate from raw data. The 

values were based on the C# example provided by Microsoft [151] which was 

recommended for scenarios such as gesture recognition in games. The filter 

provided some smoothing while retaining minimal latency, which was ideal when 

exploring self-service scenarios.  

Kinect Accuracy, then, focuses on the 3D skeletal joint accuracy of the V2 sensor 

when used in a self-service biometric interaction environment. Although the Kinect 

has many uses through the ability to track a user, at this stage, the positional data 

and identifying regions in 3D space is key to enhancing the information displayed 

to the user throughout the transaction process. Research in this chapter 

investigates capturing joint data in multiple scenarios and seeks to report on the 

accuracy, identifying if the captured transaction is a truthful representation of the 
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user’s movements. If successful, the outcome of the study will enable automated 

assessment methods within self-service scenarios such as border control 

implementations, and by doing so, enable biometric systems to enhance the ability 

to categorise performance metrics as well as relay high-quality feedback and 

information to the user. 

Investigating previous work with both versions of the Kinect will establish its 

capabilities and in its stability and accuracy within multiple testing scenarios. A 

small data collection is introduced to verify the sensor's abilities to track a user 

within a border control scenario accurately.  

4.2 Previous Work 

Research into both versions of the Kinect device has typically investigated human 

Activity Recognition, using state of the art machine learning paradigms for 

applications such as posture and gesture analysis.  

The ability of both devices to capture stable and reliable data is characteristically 

the primary concern for these studies through investigating the feasibility to track 

movements within specific scenarios. However, with the introduction of the 

Windows for Kinect V2 in 2013, there are only a handful of studies to date that has 

begun to utilise the upgraded device’s capabilities. The Kinect V1, on the other 

hand, has been extensively investigated, particularly in its ability to accurately 

report 3D depth data. A study by Khoselman and Elbernik [137] inquire into the 

geometric quality of depth data obtained by the Kinect V1 sensor. Through 

calibration and error analysis, the report found the accuracy of the depth 

component to be in error ranges of a few millimetres up to a maximum range of 

400mm. The study recommended that depth data for mapping applications should 

be acquired within a 1 to the 3-metre range. The Kinect pose estimate is compared 

to more established motion detection techniques that used LED marker 

technology. Results found that in controlled body posture (standing, raising arms), 

the accuracy of the joint estimation was comparable to motion capture. However, 

where there was occlusion through sitting down, non-distinguishing depth (limbs 

were close to the body) or clutter (other objects in the scene) then the depth 

information was not as reliable. Variation between methods, for the V1 device, was 

found to be about 10cm. 
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Several studies use the Kinect device to investigate posture in a range of users. 

Obdržálek et al. [152] performed accuracy and robustness analysis of the Kinect 

V1 skeletal tracking in six exercises for the elderly population reporting on a high 

degree of precision for classified movements. Patients were asked to perform a 

variety of tasks such as sitting down, swinging a leg forward and lifting the knee 

up. Hoai-An et al. [153] report on a classification algorithm for human fall 

recognition based on Kinect V1 skeletal data.  The Support Vector Machine (SMV) 

algorithm is programmed to recognise several fall and non-fall activities in different 

scenarios. Three experiments are conducted with a database from the human 

skeleton captured by the Kinect. Results conclude that the SMV algorithm could 

recognise falling scenarios with up to a 91.3% accuracy in the classification of a 

movement.  In summary, the study concluded that future work would need to 

consider more scenarios to establish posture accuracy.  

Clark et al. [154] report on the feasibility of the Kinect for postural control 

assessment. Twenty healthy subjects were asked to perform three tests; forward 

reach, lateral reach and single-leg eyes-closed standing balance. The Kinect data 

was compared to a 3D motion analysis system which had ‘comparable’ high inter-

trial reliability and concurrent validity for most of the measurements. However, 

some biases were reported for some measures when looking at the sternum and 

pelvis evaluations. Several other papers have examined the body tracking 

accuracy for specific applications in physical therapy, such as upper extremity 

function evaluation [155], assessment of balance disorders [156], full-body 

functional assessment [157] and movement analysis in Parkinson's disease [158].  

Improving the degree of accuracy in the reporting of joint position data obtained by 

Kinect has also attracted research into using multiple cameras. Asteriadis et al. 

[159] and Tong et al. [160] investigated using multiple Kinect V1 cameras for 

capturing joint position and depth data. A major problem for capturing any 

information from a single sensor setup is the occlusion of certain body parts, which 

is typically due to the placement of the sensor and the ranges it operates within. 

Both studies introduced several multiple camera setup methods from different 

perspectives to exhibit advantages, such as increased accuracy, and reduced 

shortcomings, as well as to reveal potential methodologies for image acquisition in 

Activity Recognition. 
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Yang et al. [161] report on early accuracy evaluations of the depth component of 

the Kinect V2. The study investigates accuracy distribution, depth resolution, depth 

entropy, edge noise and structural noise to assess the performance of the depth 

camera. The study reports ‘good accuracy’ if the object is within the optimal range 

as previously defined by Microsoft (47.5-degree angle and between 0.5m -3m 

distance), averaging a depth accuracy error of up to 2mm in some scenarios. The 

report concluded that some variables might affect the Kinect’s V2 performance, 

like the V1 sensor. Reflected objects and light-absorbing material (like carbon 

black) could cause issues with the IR light emitted by the Kinect sensor. However, 

there was no reported data establishing these differences in the depth components 

accuracy.  

Dehbandi et al. [162] use depth data from the Kinect V2 to quantify upper limb 

behaviour and reports on the stability of the results. The sensor was placed on a 

tripod which stood at 0.92 metres from the floor; subjects were required to sit on a 

table placed 2.7m away from the sensor and consequently were within optimal 

tracking range of the Kinect V2. The study used the Wolf Motor Function Test 

(WMFT) protocol, an automated algorithm to collect data and classify behaviour. 

The score the WMFT produces details subject assessment of task performance in 

three areas; time, functional ability and strength. Each user was required to perform 

15 functional tasks, with a maximum of 120s allocated for each. Movements 

required the subject to be in a seated position, and therefore only used 16 of the 

25 available joints for analysis, not using any joints below the Hips. The WMFT 

calculated a classification algorithm and demonstrated up to a 91.7% classification 

accuracy with only six classification errors across the experimental conditions.  

A feasibility trial of using the data from the Kinect V2 to determine postural stability 

in ‘healthy’ subjects was reported in early 2017 [144]. Twelve subjects were 

recruited and instructed to perform a sequence of postural stability tasks while on 

top of a force platform. The data were compared to the force platform and the 

Kinect V2 to quantify the degree to which the Kinect V2 was returning reliable data. 

An evaluation of the results showed a strong agreement between the Kinect and 

force platform classifiers, reporting a task classification of 87.8% accuracy in 

predicting which of the tasks were being performed. 

Gonzalez-Jorge et al. [164] reported on the results of accuracy and precision tests 

on both the Kinect V1 and V2 sensors. The results were performed for different 
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ranges and changing the inclination angle of the sensor. Results at a 1m range 

show similar precision for both sensors, Kinect 1 accuracy values ranging between 

2mm and 12mm for a 1m range and between 4mm and 25mm for a 2m range. The 

Kinect 2 shows higher accuracy values between 0.1mm and 7.5mm for 1m range 

and 5m to 7mm for a 2m range. For precision, both sensors showed a decreasing 

result with an increase of range, although it was more prominent with the Kinect 1. 

For a 1m range, both sensors reported a standard deviation between 1.5mm and 

6mm. At a 2m range, however, the Kinect 2 could provide a higher precision with 

values lower than 8mm while the Kinect 1 was over 10mm in most scenarios.  

While most studies have reported on the Kinect’s ability to report on depth data or 

the accuracy of classifying a movement based on an algorithm, there is little 

research into analysing the accuracy of the joint positions obtained by the Kinect 

V2. Moreover, there is little to no research of using the sensor in a self-service 

environment whereby positional data is used to identify where the location of 

certain joints and relay information based on those conditions.  

4.3 Data Collection 

Three scenarios were designed to test the stability of the joint positional data 

captured within limits of a self-service environment. The main goal of this data 

collection was to ensure that the V2 sensor could track multiple joints accurately 

for stationary and movement based tasks. Joint location data is analysed to assess 

consistency across the transaction, confirming if movement measured by the 

sensor is made by the user and not what the sensor infers. The three scenarios 

were captured with the user facing the sensor and within the optimal limits of the 

sensor. 

The first task required users to stand still on feet markers at three different locations 

from the sensor. The first position was at 1.0m, the second 1.3m and the third 1.6m 

away from the centre of the sensor. The markers on the floor indicated where each 

user was required to stand. The purpose of this experiment was to examine the 

variance in joint data over the transaction period. Each of the five participants was 

asked to stand still for a total of twenty seconds at each marker. During the task, 

the user was requested to keep joint movement to a minimum.
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The second task requested users to move their right arm from their side to moving 

the arm forwards so that the arm was perpendicular to the floor. This was to mimic 

the token/fingerprint interaction movement. The goal of this task was to check the 

stability on the other joints not in motion when there is movement from other body 

parts. Each user was required to repeat this movement twice throughout the 

interaction, five seconds apart, again, on the 1.6m, 1.3m and 1.0m markers. 

The final task required the users to walk between an additional marker 1.9m from 

the sensor. Users were asked to walk to the 1.3 marker, and then back to the start. 

The aim of the task is to establish stability in tracked joints across the movement 

in the interaction. The results from this task will outline the Kinect V2’s ability to 

track a new user both enter and exit a self-service system. Results for this task 

largely assessed the Z measurement for all joints.  

4.3.1 Data Capture  

The system used for this data capture was built in collaboration with Purdue 

University (Indiana, US). The software was developed to further the work in HBSI 

automation, e.g. to detect and categorise errors in real time rather than using 

manual methods during post-processing. Z. Moore reports on classifying Human-

Biometric Sensor Interaction errors in real time using an iris recognition system 

[165].  

The Kinect system developed could export each frame with a timestamp, skeletal 

joint and X, Y and Z plane values from the 3D body point to an external file for 

analysis. The distance between the head joint and the floor plane was also 

calculated, reporting on the W metric for Head Joint only. All coordinates are 

displayed in metres.  Additionally, the tracking state was obtained for each joint, 

identifying wherever the point was tracked, inferred or not tracked.  

4.3.2 Users 

Five users were recruited for this data collection. The only selecting criteria were 

that participants must be able to walk without the use of equipment. Participants 

were asked not to wear any obtrusive clothing (e.g. baggy hoodies, hats, bags) 

that may affect the stability tests. The participant’s height and shoulder width were 

recorded for each trial. Height was measured from the floor to the tip of the head, 

and shoulder width was measured from each shoulder across the chest. 
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4.3.3 Scenarios 

Scenarios are based on the three tasks as previously described. Each participant 

was required to complete each task once but for each required distance. Task 3 

was only performed one time.  

4.3.4 Guidance and Training 

Participants were given guidance on where to stand for this data collection to 

comply with the goals for the data collection. Tasks were described to participants 

before capture and information were given during task indicating participants when 

to move (e.g. for Task 2 participants were asked to raise their hand within a five-

second interval).  

4.3.5 Experimental Setup  

The Kinect V2 device was positioned on a professional tripod. The sensor was 

placed at the height of 1.8m from the ground and initially positioned 1.0m away 

from the feet symbols put on the floor. The camera was positioned so that all users 

would be within 43.5 degrees in the range of view (the recommended optimal 

range). However, the distance between user and device changed based on what 

task was being performed. Initial testing of the Kinect device confirmed the 

presence of the FloorClipPlane value.  

4.3.6 Recording 

Only the positional data from the Kinect device was recorded for this trial.  No 

personal information or video footage of the participant’s interaction was recorded.  

The data captured comprised of coordinate information for all 25 skeletal joints 

over the course of the transaction. Data was captured when subjects were in 

position, and each transaction was timed for a total of 20 seconds. 

4.3.7 Data Storage 

No sensitive information was captured from any of the participants. Skeletal 

information was stored on a spreadsheet and given a unique code based on the 

user, task and distance from the camera. The Kinect Data was stored on a secure 

hard drive backed up regularly at the University of Kent. No other information were 

obtained regarding the identity of participants other than the participant’s height 

and shoulder width.  
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4.4 Results 

The results for each task will report on the percentage of fully tracked joints, the 

measured participant's height (defined from the distance of the head joint to the 

floor plane (W) and the measured distance between participant’s shoulders, 

through calculating Euclidean distance between the Shoulder Left and Right joint 

locations. Descriptive statistics and visual graphs will identify any abnormalities in 

the accuracy of obtaining information from the user. Results are separated by each 

task. Table 16 below details each participant’s measured height and shoulder 

width. Both measurements were conducted with a tape measure, reporting on the 

measurement in metres.   

Table 16: Participants Height and Shoulder Width for Kinect Interaction 

Participant  Height Shoulder 
Width 

1 1.82m 0.325m 

2 1.68m 0.290m 

3 1.75m 0.315m 

4 1.66m 0.340m 

5 1.88m 0.330m 

 

4.4.1 Task 1 

Users were asked to stand stationary on three different markers on the floor; 1.6m, 

1.3m and 1.0m away from the centre of the Kinect Device. Table 17 below details 

some joints that were Fully Tracked for each of the three markers. 

 

Table 17: Percentage of each Joint that were Fully Tracked for Task 1, Kinect Interaction (%) 

Joint 1.0m 1.3m 1.6m 

Head 100.00  100.00  100.00  
Neck 100.00 100.00  100.00  
ShoulderLeft 100.00 100.00  100.00  
ShoulderRight 100.00 100.00  100.00  
ElbowLeft 88.58 100.00 100.00 
ElbowRight 88.98 100.00 100.00 
WristLeft 78.69 100.00 100.00 
WristRight 75.25 100.00 100.00 
HandLeft 55.25 100.00 100.00 
HandRight 49.64 100.00 100.00 
SpineShoulder 100.00 100.00  100.00  
SpineMid 100.00 100.00  100.00  
SpineBase 98.85 100.00 100.00 
HipLeft 95.50 100.00 100.00 
HipRight 94.56 100.00 100.00 
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Overall, it can be observed that for stationary users at 1.3m and 1.6m distance 

from the sensor that there is a high degree of reported full tracking.  Users 1.0m 

away from the sensor were not able to be tracked as accurately due to some body 

parts were not in range of the sensor and therefore marked as inferred.  

The average height of the user is compared to the calculated height taken from the 

head joint to floor measurement for each task. The value measured by the Kinect 

was calculated as an average over the entire transaction.  

Table 18: Participant Height: Measured against (Median) Calculated for Task 1: Kinect 

Interaction 

Participant  Height 1.0M  1.3M  1.6M  

1 1.82 1.90 1.86 1.83 
2 1.68 1.72 1.69 1.67 
3 1.75 1.74 1.75 1.77 
4 1.66 1.74 1.65 1.65 
5 1.88 1.72 1.82 1.84 

 

As Table 18 demonstrates, the calculated height for each participant was accurate 

for tasks where users were standing further away from the camera. Higher 

deviations were recorded when calculating height for users standing 1.0m away 

from the system. Figure 25 demonstrates below.  

 

Figure 25: Box Plot Diagram for Calculated Participant Height for 1.0m (Kinect Interaction) 

 

Calculated height varied highly for participants standing 1.0m away from the 

sensor. In some cases, a participant’s calculated height varied up to 0.25m from 
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the physical height of the user. While the Kinect could fully track the head joint for 

all distances, the most likely reason for the high variance was possibly due to 

occlusion of the floor plane by the positioning of the user. Users who were closer 

toward the camera may inhibit the sensors ability to detect the floor plane. As 

results for the lower body (Hip Joints and below) were either reported as inferred 

or non-tracked for 1.0m, this is the most likely reason for the result.  

Table 19 below shows a comparison of the measured and Euclidean (calculated) 

distance between Shoulder Left and Shoulder Right joints measured by the 

researcher and by the sensor respectively. The Euclidean distance calculated 

based on an average measurement across the joints across all frames for all three 

interactions.   

 

Table 19: Standard Deviation between Measured and Euclidean Calculated Shoulder 

Distances for Distance for Task 1  

User Measured 1.0m st.dev 1.3m st.dev 1.6m st.dev 

1 0.325m 0.338m 0.0842 0.327m 0.01568 0.384m 0.01568 
2 0.290m 0.315m 0.0931 0.359m 0.01431 0.323m 0.02431 
3 0.315m 0.312m 0.0954 0.311m 0.01546 0.333m 0.03546 
4 0.340m 0.345m 0.0530 0.344m 0.05830 0.325m 0.02830 
5 0.330m 0.327m 0.0841 0.338m 0.06431 0.366m 0.01431 

   

There was a minimal difference between the physical and sensors measurement 

of the length between the shoulders in all tasks. Standard Deviation closes in for 

participants standing further away, indicating more accuracy for measuring the 

distance between shoulder joints. Although this was for users who were standing 

completely still, it is a result that defines the Kinect’s ability to track accurately within 

an optimal view range.  

In addition to looking at the accuracy of the calculated participant height and 

distance between shoulder Joints, Table 20 below reports on the average variance 

in the movement for all joints across the three distances. With the inclusion of the 

smoothing filter which was applied , an ideal result is a smaller variance between 

data for each frame.  

For stationary capture, 1.3m or higher for this scenario results in more tracking with 

the Kinect Sensor V2. For tracking the lower body, a lower variance is measured 

for users at the 1.9 markers. However, this distance may be impractical because 
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on facial capture and with the inclusion of additional luggage that may be placed 

by the user’s side. 

Table 20: Mean-Variance for Z Joints across Task 1. (‘+’ variance <0.005, ‘++’ variance 

<0.0005) for Kinect Interaction 

Joint 1.0m 1.3m 1.6m 

Head + ++ ++ 
Neck + ++ ++ 
ShoulderLeft + ++ ++ 
ShoulderRight + ++ ++ 
ElbowLeft + ++ ++ 
ElbowRight + ++ ++ 
WristLeft + ++ ++ 
WristRight + ++ ++ 
HandLeft + ++ ++ 
HandRight + ++ ++ 
SpineShoulder + ++ ++ 
SpineMid + ++ ++ 
SpineBase + + ++ 
HipLeft + + ++ 
HipRight + + ++ 

 

Although there are no formal requirements for how far the camera should be 

located from the user, facial capture must be at a 45-degree angle and able to 

capture photos from users who are between 1.4 and 2.0m tall (Kinect V2’s Field of 

View) [104]. Standing too far away from the camera may result in lower quality 

images, which may lead to lower verification rates.   

4.4.2 Task 2 

The second scenario introduced a movement with the right arm while users were 

standing still on one of the distance markers. Users were asked to imagine there 

was a fingerprint sensor in front of them and to move to presenting their finger to a 

sensor while keeping still and looking forward. The movement was repeated twice 

with a five-second delay between each movement. Users will not make the same 

movement (i.e. move their wrist to an exact location each time) when repeating an 

action. The goal of this task was to first, check that joints were able to be tracked 

as accurately when compared to stationary movement in Task 1 and secondly, 

ensure that the body position is represented in the data. The results also detail the 

accuracy of the Kinect by again comparing the height of the user and the 

measurement across the shoulders. 
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Most joints will be stationary, and there should only be movement in joints relating 

to the right arm. These results will be shown through investigating variances in data 

over the course of the transaction.  Firstly, Table 21 below details the percentage 

of joints that were classed as fully tracked throughout the interaction for all users.  

Table 21: Percentage of Joints that were Fully Tracked for Task 2, Kinect Interaction (%) 

Joint 1.0m 1.3m 1.6m 

Head 100.00  100.00  100.00  
Neck 100.00 100.00  100.00  
ShoulderLeft 100.00 100.00  100.00  
ShoulderRight 100.00 100.00  100.00  
ElbowLeft 92.06 100.00 100.00 
ElbowRight 91.47 100.00 100.00 
WristLeft 87.29 100.00 100.00 
WristRight 85.25 100.00 100.00 
HandLeft 74.25 100.00 100.00 
HandRight 76.11 100.00 100.00 
SpineShoulder 100.00 100.00  100.00  
SpineMid 99.86 100.00  100.00  
SpineBase 97.54 100.00 100.00 
HipLeft 95.50 100.00 100.00 
HipRight 94.56 100.00 100.00 

 

Table 21 details a high percentage of fully tracked joints for users standing 1.3m 

and 1.6m away for the sensor. The sensor had some difficulty with tracking joints 

for users 1.0m away from the sensor, with less than ideal results for following the 

movement in the specific joints required for the task.   

The measured and calculated distance between shoulder joints is compared in 

Table 22 below. Calculated joints are taken as an average over the transaction 

including the movement of extending the right arm.   

Table 22: Participant Shoulder Width: Measured against (Mean) Calculated for Task 2, Kinect 

Interaction 

User Measured 1.0m st.dev 1.3m st.dev 1.6m st.dev 

1 0.325m 0.352 0.0957 0.330 0.01218 0.332 0.01461 
2 0.290m 0.325 0.0846 0.285 0.01651 0.285 0.01253 
3 0.315m 0.294 0.0995 0.317 0.01366 0.318 0.01574 
4 0.340m 0.368 0.0794 0.338 0.04590 0.345 0.01689 

5 0.330m 0.287 0.0942 0.335 0.03235 0.376 0.01720 

 

Even with the arm extension, the Kinect could distinguish the distance between 

shoulder joints accurately for users 1.3m and 1.6m away for the sensor. Users 
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were asked not to make any major movements using their shoulder and by 

extending the right arm forward only, which enabled the shoulder joint to remain 

consistent across the scenario. The results indicate a slightly larger standard 

deviation when compared to Task 1. However, this was to be expected as there 

was a small movement in both position and rotation in the movement.    

To gain an insight into the Kinect’s vision, Figure 26 below shows some joints 

involved in the right arm extension which was tracked over the length of the 

transaction.  

 

Figure 26: Critical Joint Co-ordinates for an Individual Participant for Task 2, 1.6m for Kinect 

Interaction 

The data reported for one participant's interaction details the movement of the right 

arm moving forward. The ElbowRight joint remains consistent across the scenario, 

highlighting only precise movement for ElbowRight and WristRight joints.  

Participant Height was again investigated to compare the stability of the 

measurement of the distance between the Head joint to the floor plane. Table 23 

below reports.  

The accuracy of the Kinect sensor again increased for subjects further away at 

1.3m and 1.6m. A larger inaccuracy was reported for users at 1.0m away, with an 

average difference of up to 0.14m. 
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Table 23: Participant Height: Measured against (Mean) Calculated for Task 3, Kinect 

Interaction 

Participant  Height 1.0M  1.3M  1.6M  

1 1.82 1.96 1.80 1.85 
2 1.68 1.71 1.67 1.67 
3 1.75 1.69 1.75 1.77 
4 1.66 1.70 1.64 1.68 
5 1.88 1.83 1.86 1.86 

 

To conclude, Table 24 below details the average variance in depth joint data across 

the interaction, stating different thresholds for levels of differences. While a lower 

variance in stationary joints are favourable (joints should not be moving as much 

compared to the joints that are used in the movement), it is expected that there 

should be a higher variance for joints associated with moving the right arm forward 

(marked with an ‘m’).  

Table 24: Mean-Variance for Z Joints across Task 2 (‘m’ variance >0.005, ‘+’ variance <0.005, 

‘++’ variance <0.0005) for Kinect Interaction 

Joint 1.3m 1.6m 1.9m 

Head + ++ ++ 
Neck + ++ ++ 
ShoulderLeft + ++ ++ 
ShoulderRight + ++ ++ 
ElbowLeft + + ++ 
ElbowRight m m m 
 WristLeft + ++ ++ 
WristRight m m m 
HandLeft + ++ ++ 
HandRight m m m 
SpineShoulder + ++ ++ 
SpineMid + ++ ++ 
SpineBase + + ++ 
HipLeft + + ++ 
HipRight + + ++ 

 

As Table 24 demonstrates, a higher variance in joint data was found for the critical 

and associated joints for the right arm movement. A larger variance was obtained 

during the movement of the right arm for all critical joints. Although this is to be 

expected with a movement, it shows that those other joints during the interaction 

remain very stable and that there was minimal movement recorded during the 

process. Of course, this was a controlled scenario and results will differ in live 

testing; however, this task has proven that the Kinect can accurately track the user 

within this type of scenario within the setup reported.  
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4.4.3 Task 3 

For the final task, users were asked to simply move forwards from the 1.9m marker 

to the 1.3m and back to the start by walking backwards. The data recorded in this 

study will have very high variances in the joint co-ordinates due to the movement, 

but the main idea of this task was to assess the ability to measure the skeleton 

across the scenario. The results then look at the ability for the Kinect Sensor to 

establish the user at and between the 1.9 and 1.3 markers. The user stopped 

movement at both markers indicating the start; middle and end of the transaction 

respectively. To begin, however, Table 25 below details the percentage of joints 

that were fully tracked in this scenario.  

Table 25: Percentage of Fully Tracked Joints over Task 3 for Kinect Interaction 

Joint Task 3 

Head 100.00  
Neck 100.00 

ShoulderLeft 100.00 
ShoulderRight 100.00 

ElbowLeft 98.59 
ElbowRight 97.85 

WristLeft 89.25 
WristRight 88.44 
HandLeft 81.58 
HandRight 83.37 

SpineShoulder 100.00 
SpineMid 100.00 

SpineBase 100.00 
HipLeft 98.70 

HipRight 99.46 

 

The sensor again could track most joints to a high degree of accuracy. While this 

may seem lower than previous studies, it is important to remember that users were 

walking towards the camera and therefore as they got closer, the Kinect tracking 

state may turn from tracked to infer for some joints, especially those in the lower 

body.  

To determine the Kinect’s ability to track movement within the task, Figure 27 below 

detail several joints tracked distance over the course of the transaction. The joints 

selected in this task follow the spine from the base to the head. 
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Figure 27: Spine Joints Location for an Individual Participant over Transaction Period for 

Kinect Interaction 

 

Figure 27 above displays the depth data for many joints for an individual 

interaction. The smooth curve represents the movements of many joints 

associated with the spine. This figure outlines the smooth transaction of a user 

walking forwards (towards the sensor) and then back to the sensor. 

Table 26 below details the calculated distance between the shoulder joints for 

users moving towards and backwards from the sensor. The user was facing 

towards the sensor for the entire transaction, so there were no significant 

movements in the joint position. 

Table 26: Standard Deviation between Measured and Euclidean Calculated Shoulder 

Distances for Task 3  

User Measured Task 3 Difference st.dev 

1 0.325m 0.345m 0.02 0.1357 
2 0.290m 0.281m -0.009 0.1251 
3 0.315m 0.295m -0.02 0.0972 
4 0.340m 0.364m -0.024 0.0855 
5 0.330m 0.348m 0.018 0.0994 

 

Results indicate that the movement did impact the sensors ability to measure the 

distance between the two joints accurately. When compared to previous scenarios, 

the standard deviation and average calculated position differ from the ground truth 

data. The deviance in these results indicates that there were discrepancies in the 

reported joint position across the task. As explained in Section 4.1, the sensor 

0

0.5

1

1.5

2

2.5

J
o
in

t 
Z

 L
o
c
a
ti
o
n
 (

M
)

Length of Transaction (20s)

SpineBaseZ SpineMidZ SpineShoulderZ

NeckZ HeadZ



 

107 
 

‘sees’ a joint from the point of origin and so as the subject moves closer or away 

from the sensor, the calculated distance is likely to change due to the new position 

of the studied joints. However, while the standard deviation was relatively high, the 

calculated average for users 1-3 was less than +/- 10cm. An average difference of 

24cm and 18cm was reported for users 4 and 5.  

Looking at the accuracy of calculating participant height, Table 27 reports on the 

calculated descriptive statistics for Task 3.  

Table 27: Participant Height: Measured against (Average) Calculated for Task 3: Kinect 

Interaction 

Participant  Height Task 3  st.dev 

1 1.82 1.84 0.0113 
2 1.68 1.70 0.0195 
3 1.75 1.74 0.0200 
4 1.66 1.63 0.0114 
5 1.88 1.86 0.0214 

 

Although this was a straightforward task, the results once again indicate the 

sensors ability to map a user in motion to a high degree of stability. The next part 

of this chapter discusses the outcomes of this experiment in further detail. 

4.5 Conclusions  

The results confirm the Kinect V2 sensor’s ability to track user movements within 

controlled scenarios accurately. Introducing the Kinect in Section 4.1, the capacity 

to measure accurate positional data by correct positioning of the sensor and 

smoothing techniques is outlined. Additionally, a comparison of the improvements 

over the original sensor is made while discussing the ability to use the 

FloorClipPlane to improve the likelihood of precise information and to also obtain 

data such as the distance of a joint from the floor.  

Previous research described in this chapter outlines the devices features and 

limitations through various studies. Studies using both Kinect devices typically 

report on the accuracy of depth data and the ability to classify a movement using 

a predetermined classification algorithm. Additional sensors introduced increase 

accuracy but require extra room to set-up, a luxury ABC system may not have. The 

most common conclusion from the literature review demonstrates the optimal 

position for a sensor is within Microsoft’s recommended guidelines for setup. 

Studies on the accuracy of the positional data obtained by both devices are limited. 
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There is very little to no work available on the Kinect’s ability to distinguish body 

positional data to track the user in real time.  

In this chapter, three tasks were presented to ascertain the Kinect’s ability to track 

movements over a 20-second transaction. The goal was to establish the Kinect’s 

ability to track a single user within in a self-service scenario. 

Trials with the Kinect sensor throughout the state of the art research agree that the 

device can accurately track the human skeleton when used in ideal conditions, e.g. 

through the optimal positioning of the sensor, by making certain movements and 

wearing non-interfering clothing. The latter may be a factor when investigating 

border control scenarios, as travellers may be wearing baggy clothing, accessories 

and backpacks. However, if implemented, a recommendation may be only to use 

fully visible joints that can be fully tracked throughout the interaction; upper body 

joints may provide enough information for facial verification scenarios. The benefit 

of the Kinect is that each joint reveal information about the user’s position. For 

instance, if they are too far from the sensor or are in movement. By comparing the 

position of multiple joints, a representation of the user’s body can be obtained.  For 

face verification, it may only be necessary to determine the head position, as this 

is the only ‘object’ and that is physically required. The only time other joints maybe 

required is for token and fingerprint interactions; assessing if a movement has been 

made to a sensor and whether there are errors within that interaction.  

The inclusion of bags, loose items of clothing and luggage may cause unreliable 

results in tracking the joints in the body, leading to inferred and non-tracked data. 

This will have an impact on the ability to capture within an ABC verification process, 

mainly due to the restrictive build and design of these systems. The results outlined 

in this Chapter indicate that the optimal position for a stable set of joints is for 

sensors placed 1.3m to 1.6m away from the user. While the Kinect can fully track 

several joints at 1.0m away, there were larger discrepancies in the accuracy of 

measuring distance between joints. The trade-off then is the design of the ABC 

system; the build of the eGate is usually between 2-3m in length but this could vary 

between systems. The token and biometric sensor is then usually positioned 

toward the back end of the ABC systems, but close enough to the user that no 

additional effort should be needed. This then limits where a sensor such as the 

Kinect can be placed, as another 1.3-1.6m from a sensor may require larger builds 

in already restricted spaces.   
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If the sensor were ever to be trialled in deployment scenarios, caution would be 

needed to make sure users place luggage to the side and to assist with tracking 

as much as possible. Removal of hats will aid tracking of the face and will be 

required for face capture regardless. Fingerprint Interactions will be even trickier, 

the placement of the Kinect, gate and fingerprint sensor may inhibit the ability to 

capture joint movements within that scenario.  

Nevertheless, the sensor has its advantages within controlled self-service 

scenarios. Capacity to measure and obtain certain metrics such as joint positional 

data may enable systems to develop dynamic feedback, identifying correct or 

incorrect presentations in real time and enhancing the quality of the guidance given 

to the user. Additionally, measuring users by looking for everyday movements, the 

height of the traveller and so forth has scope beyond live deployments of a system. 

In operational testing, flaws may be highlighted by analysing captured data. By 

coupling positional data with performance assessment may reveal anomalies 

during an interaction, answering questions such as how long does the transaction 

take to complete and why? Are users struggling to interact with a sensor? Are there 

any obstacles the user is having the difficulty that may affect time on task or sample 

quality? The ability to track and analyse movements then may highlight problematic 

areas within the system.  

In summary, the key contributions from this chapter are as follows:  

 A review of literature in the human Activity Recognition field, specifically 

looking at the applicability of the Kinect Sensor within a self-service 

environment. Differences between both versions of the Kinect are explored. 

The research proposes different techniques and methodologies in 

improving the accuracy of the data reported by the device 

 Investigation of the Kinect’s ability to accurately report on the joints position 

and location in three scenarios; standing still, moving an arm forward and 

walking forwards and then backwards 

 The initial study with the Kinect has outline optimal position of the sensor 

for the next data collections 

Chapter 5 and 6 introduce the Kinect V2 sensor to facial and fingerprint 

interactions, defining the applicability of using the sensor within a self-service 

environment using the two biometric modalities. 
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CHAPTER 5. FINGERPRINT INTERACTION   

5.1 Introduction 

The main aim of this study was to explore the ability to track and analyse the impact 

of erroneous behaviours on fingerprint interaction. Also, multiple sensors are 

compared between a flat and a raised surface to compare HBSI metrics. 

Fingerprint Interaction in ABC systems has been previously reported in Chapter 2.  

A system was developed to enable users to interact with a self-service fingerprint 

system. The implementation uses the Kinect V2 sensor to track the user’s position 

by collecting and analysing the user’s actions involved throughout the transaction.    

In addition to exploring the tracking accuracy in a self-service fingerprint system, 

the Kinect program also took the first steps into HBSI automation, categorising 

interactions in real time using positional data. The program is therefore referred to 

as the HBSI Automation program for this study.  

Fingerprint Interaction can be analysed via several measures in biometric systems; 

biometric transaction times (throughput), quality of the sample and the matching 

score against previously enrolled images. A statistical analysis is provided to 

establish wherever the variables introduced in this study have a significant impact 

on throughput and sample quality metrics.   

5.2 Data Collection 

The experimental procedure details the setup, the information recorded and users 

recruited to the study. Additionally, this section details what guidance and training 

are given to participants.  

5.2.1 Experimental Setup 

Feet symbols were placed centrally in front of a kiosk to indicate to participants 

where to stand. Although the use of feet symbols is typically to provide visual 

instructions to users where to stand during facial verification [7], the purpose of 

including these in this study was to make sure participants were within the range 

for both Kinect recording and fingerprint interaction. There were no physical gates 

or barriers used for this collection due to the size of the room.  
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Five fingerprint sensors were stationed on a pedestal kiosk. The kiosk was 100cm 

tall and 105cm wide. The pedestal used in this collection was an ideal height for 

the experiment, matching the height of most systems that use a fingerprint 

modality. The NIST study on user interaction with fingerprint devices for kiosks of 

different height [55] previously determined that from the analysis, a height of 0.91m 

yielded faster performance results and was the most comfortable for travellers in 

the US-VISIT scenario.  

The sensors were positioned on an adjustable slope platform (Figure 28 below) 

which could be positioned at a flat angle or a gradient of 20 degrees. The angle 

was measured using a protractor. The slope mechanism was securely positioned 

in the centre of the kiosk to limit the movement of sensors throughout the study.  

 

Figure 28: Slope Adjustment Mechanism with Fingerprint Sensors  

 

The fingerprint devices that were used in this data collection were collected from 

several resources. Two of the fingerprint sensors, the UPEK touch and swipe 

sensors, were purchased from a UK distributor. The other three sensors had 

previously been purchased and stored for research use within the School of 

Engineering and Digital Arts at the University of Kent. Table 28 below details the 

sensor type and original manufacturer. All sensors were connected via USB 2.0.   

Each sensor was separated on the kiosk by 5 cm (Figure 29). These distances 

were checked after each experiment to ensure consistency across scenarios. The 

front of the sensor was measured to be around 1.0m away from the Kinect sensor. 
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Participants viewed instructions from the system on an 18” BENQ monitor, which 

was placed on a free-standing custom-made iron stand placed 45 cm behind the 

kiosk.  

Table 28: Sensors in Fingerprint Interaction 

Sensor Type Resolution Image 
Size 

Manufacture 

UPEK Eikon 
Solo Swipe   

Capacitive  508ppi 144 pixels 
(width) 

Digital Persona, 
Inc.  
Previously by 
UPEK, Inc. 

UPEK 
EikonTouch 
700 

Capacitive  508ppi 256 x 360 
pixels 

Digital Persona, 
Inc.  
Previously by 
UPEK, Inc. 

Hamster IV  Optical  508ppi  258 x 336 
pixels  

SecuGen  

Hamster Pro 
20  

Optical  500ppi  300 x 400 
pixels  

SecuGen  

CrossMatch 
Verifier 300 
LC 2.0 

Optical 500ppi 31 x 31 
mm 
capture 
area 

Cross Match 
Technologies 
Inc.  

 

 

Figure 29: Sensor Setup for Fingerprint Interaction (From Left to Right: Eikon Swipe, Eikon 

Touch, Hamster IV, Hamster Pro and Crossmatch LC) 

The biometric acquisition and processing component was based on the 

Neurotechnology MegaMatcher SDK (Version 8.1) [166]. The MegaMatcher SDK 
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is designed for large-scale Automated Fingerprint Identification Systems (AFIS) 

and multi-biometric systems developers. The fingerprint engine is based on the 

NIST Minutiae Interoperability Exchange (MINEX) [167] which is a fingerprint 

template standard, which creates the possibility of a fully interoperable between 

tokens and systems. The standard is capable of matching rolled and flat 

fingerprints. Enrolled images captured during the initial stages were matched using 

the algorithm.  

Two computers were used for data capture, both controlled by the investigator. 

One computer ran the Neurotechnology MegaMatcher program, on a Windows 7 

System. The computer was placed on the pedestal, positioned below the monitor. 

Two monitors connected to the PC where the display was extended over both 

monitors. The other computer operated the Kinect HBSI Automation and ISpy 

Surveillance Software [168] on a Windows 10 based system. Additional effort was 

made to separate both the kiosk area from any computers, cables and other 

devices that would not be found in a typical border control setting.  

The Kinect V2 sensor was placed 1.3m away from the sensors, 1.8m off the floor. 

The tilt was angled centrally toward the users.  Video footage was captured by four 

Logitech HD webcameras using the ISpy Surveillance Program; one camera (C2) 

was set up to record an overview of movements on the feet icons so the positioning 

of users could be categorised. Two cameras recorded footage of the fingerprint 

interactions, one from a top-down view (C1) and one (C3) from a side view. See 

Figure 30 for the room layout configured for Fingerprint Interaction.   

Figure 30 details the experimental room. Data capture is initiated when the user is 

standing on the ‘Start Position’, which is marked by tape on the floor which was 

2.4m away from the sensor. Users walked toward the feet symbols, which were 

25cm in length. The front tip of the symbols (toes) was 1.15m away from the 

sensor, and the back of the icons (heel) was 1.4m away from the Kinect V2 Sensor. 

All video footage was compared against the Kinect categorisations and evaluated 

in Section 5.3.1. 
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Figure 30: Experimental Room Setup (All measurements provided are in metres) for 

Fingerprint Interaction 

5.2.2 Recording  

Data was collected from several resources. The Neurotechnology MegaMatcher 

SDK captured biometric samples with timestamp information, which was used to 

calculate timings (time taken to complete a task, overall time etc.) 

Fingerprint images and their respective NFIQ score were captured and stored on 

a secure hard drive. NFIQ is an image quality algorithm that was engineered by 

the NIST Biometric Image Software (NBIS) package [169]. The NFIQ algorithm 

reports quality scores on a nominal scale from one to five, with one being perceived 

as the best quality and five being the lowest. However, in the Neurotechnology 

program used in this system, the NFIQ algorithm is reported on a reverse scale, 

where images are rated a star quality; five for best quality and one for being the 

lowest. 
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An advantage of the NFIQ algorithm is that it is an open source tool for measuring 

the quality of fingerprint images independent of the fingerprint verification software 

used. Although not currently used during verification at border control, NFIQ ratings 

can provide an insight into the quality of captured images across a range of 

scenarios. Popular among previous work, acquired fingerprint images often have 

set enrolment thresholds for prints from the thumb, index finger, middle finger and 

ring finger at a NFIQ of one or two. In this data collection, all enrolled index finger 

images were captured at a NFIQ of four or five (reversed scale).  

Matching Score was determined by VeriLook 5.1 SDK provided by 

Neurotechnology [166]. The Finger Matcher performs fingerprint template 

matching in 1:1 verification, matching the enrolled image against the captured 

images. The matching threshold is linked to FRR, the higher the threshold, the 

lower is FAR and higher FRR. Table 29 details the matching thresholds.  

Table 29: Matching Threshold to FAR (as reported by Neurotechnology [166]) 

FAR  Matching 
Threshold (Score) 

1% 24 
0.1% 36 
0.01% 48 
0.001% 60 
0.0001% 72 
0.00001% 84 
0.000001% 96 

 

Three web cameras were set up to record video footage of the experiment, defining 

ground truth actions throughout the tasks. Video footage was reviewed after the 

experiment, and the actions/behaviours were recorded on a spreadsheet, defining 

each a timestamp for each task and notes on the images. A personal profile (not 

identifying the user) was collected and established post-data collection. See Table 

30 below for further information on the data gathered.  

As discussed previously in our Behavioural Framework defined in Section 3.5, 

there were four behavioural led tasks to this data collection experiment. Aligning 

these critical movements to our Behavioural Framework allows the breakdown of 

performance measurement at a task level. Table 30 below explains the behaviour 

led tasks and their associated variables for this experiment. 
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Table 30: Recorded Information for Fingerprint Interaction 

Information Description Resource 

Timestamp – HH: MM: 
SSS.SS  

Printed and Exported to 
individual log file identified 
by a unique code and 
scenario number – 
processed when a form is 
first displayed 

Neurotechnology 
MegaMatcher SDK 

Fingerprint Image  Jpeg file Neurotechnology 
MegaMatcher SDK 

Fingerprint NFIQ Score Quality Score (1-5) Neurotechnology 
MegaMatcher SDK 

Behaviours/Movements Video Footage (.avi file) Cameras/ISpy 

Personal Profile See Section 5.2.3 Questionnaires  

Task Evaluation See Section 5.2.3 Task Evaluation 
Form 

Skeletal Joint Data   See Section 5.3.1 HBSI Automation 
Kinect Program  

 

Table 31: Fingerprint Interaction Tasks and Associated Variables 

Task  Related Variables  

Entry (1) – Movement from 
starting position to feet 
symbols. 
Defined between FeetForm 
and ReadyForm 

FeetForm (Timestamp)  
Feet_1 (Behaviour) 
ReadyForm (Timestamp) 
Time_1 (Time taken to complete) 

Biometric Read (2) – The 
movement of placing the 
finger onto the sensor 
Defined as interaction 
between ReadyForm  
And CapturedForm 

ReadyForm (Timestamp) 
Face_2 (Behaviour)  
Finger_2(Behaviour) 
CapturedForm(Timestamp) 
Time_2 (Time taken to complete) 

Biometric Accept (3) – 
Response from System 
Defined between 
CapturedForm and 
TrialCompleteForm  

CapturedForm (Timestamp) 
Face_3(Behaviour) 
Time_3 (Time taken to complete) 
TrialCompleteForm (Timestamp) 

Exit (4) – Movement from 
system to starting position  

Feet_2 (Behaviour)  
Overall Time (Total Time) 
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In addition, some face behaviours were captured to see wherever the participant 

was looking at the screen or their fingerprint.  See Table 31 for reference to the 

forms which were displayed. 

In total, four forms were displayed. Each form was based on icons adapted from 

ISO standards [104] and was shown on the freestanding monitor. Each form was 

displayed at the start of the four critical tasks involved in the interaction process 

(Table 32).  

Table 32: Form Description for Fingerprint Interaction 

Form Description 

Feet Form Form displays instructions requesting the user to move 
to the feet symbols 

Ready Form  Displays instruction to the user to present finger to the 
sensor 

Captured Form Informs user capture is successful 

Trial Complete Form Informs user process is over and to exit system 

 

Behaviours were encoded a numerical value to assist in statistical analysis and are 

assessed in the Kinect analysis Section 5.3.1. Table 33 below describes the 

information collected from the Personal Profile, ABC Questionnaire and Task 

Evaluation forms. Results are further discussed in Section 6.3.2.5 and Section 7.2.  

Table 33: Collected Information for Fingerprint Interaction 

Personal Profile  ABC Questionnaire  Task Evaluation  

Gender, Ethnicity, Height, Age, 
Handedness 

Terminology (Yes/No) Information 
Evaluation (1-5)  

Accessibility Experience 
(Yes/No) 

Fingerprints (1-5) 

Fingerprints Captured Before, 
Fingerprint Training 

Training 
(Yes/No) 

Results (1-5)  

ABC Systems Before, If yes, 
which modality 

Knowledge of Biometric 
Systems (Yes/No)  

Conclusion 
(Descriptive 
Feedback)  

Times Travelled, Travel 
Alone/Companions 

Descriptive Feedback 
(On ABC Systems, 
airports, atmosphere, 
queues)  

Illness, Hours of Sleep 
Accessories 
Temporal Illness (Burns, Cuts)  

 

Table 34 summarises each system used in the study and the various devices and 

output associated. 
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Table 34: Various systems, connected devices and output files for Fingerprint Interaction 

System Device(s) Output 

Windows 10 PC – HBSI 
and Kinect Automation 
Program 

Kinect 
Sensor 

BodyValues spreadsheet, 
containing timestamps and 
processed x, y and z 3D spatial 
coordinates. Records 30 frames 
per second 

Windows 10 PC – ISpy 
Surveillance System 

Cameras 1-3 Video clips recorded at 720p from 
each camera. All recordings are 
initiated on movement detection 
and end after 10 seconds on non-
movement within the detection 
zone 

Windows 7 PC – 
Customised 
Neurotechnology Program  

Fingerprint 
Scanners 
(1,2,3,4 & 5), 
Monitor  

Timestamps when the process 
was started, each form was 
displayed, the fingerprint was 
captured. Fingerprint Samples 
with associated NFIQ ratings 

 

Additional information such as which HBSI categorisations and the number of 

assists were noted during on paper during data collection.   

The General Model of the System can, therefore, be defined through Table 35. The 

associated steps from the GM are identified, and the information displayed to the 

user to initiate an action. The system used in this experiment did not contain a 

token reader. 

Table 35: General Model of the system for Fingerprint Interaction 

 

 

 

 

 

 

 

5.2.3 Users 

For this pilot study, participation was open to anyone over the age of 18. Individuals 

were recruited based on availability and the ability to communicate in English. 

There was no specific criteria for participants based upon their previous use.  The 

following demographic information examined the participants: 

GM Step Form Assessment 

V1 User enters system Welcome Form Kinect 

V4 Presentation of 
biometric 
characteristic 

Fingerprint Form Kinect, HBSI 

V4 Sample Acquisition 
and Processing 

Processing Form Kinect, HBSI 

V5 Biometric 
Subsystem Decision 

Matched Form HBSI 
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 Age: 18-24, 25-34, 35-44, 45-54, 55-64, 65+ 

 Gender: Female, Male, Other 

 Handedness: Left, Right or Ambidextrous 

 Height: In centimetres  

 Country of Origin 

 Accessibility: participants were asked to state any attributes regarding 

Accessibility 

Also, several more questions included in the demographic questionnaire helped to 

build a personal profile of subjects. Information collected beyond the demographic 

information above is discussed further in Chapter 7 Recommendations.  

 Have you had your fingerprints electronically captured before? Yes/No 

 Have you used an Automated Border Control system before? Yes/No 

 Have you had any training to use a fingerprint of facial biometrics before 

this data collection? Yes/No 

 Have you travelled by air in the last three months? Yes/No 

 How many times do you travel abroad in a year?  

 Do you follow the latest technological updates? 

 Do you typically travel alone, with companions or with both when travelling 

abroad? 

 Have you experienced any symptoms of illness in the last few days? (Cold, 

Flu, etc.)? 

 How many hours of sleep did you receive last night? 

 Please indicate wherever you are suffering from any temporary illnesses 

and if so, where are they located? (e.g. cuts, bites, burns, allergies) 

When an individual arrived for their visit, they were instructed to read the 

Participant Information Sheet (PIS), ask any questions about the study and if they 

were comfortable to sign the consent form.  

Participants were informed that if they wished to withdraw from the study that they 

could do so at any time. However, no participants withdrew from the data collection.  

To participate in this study, each participant provided consent to the collection of 

his or her profile (demographic information), fingerprints and video recordings of 

their interaction with the fingerprint sensors. Each participant was assigned a 

unique identification number that was linked to the video, fingerprint images and 
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Kinect data. Names were not associated with the data collected. However, video 

recordings did include footage of the participant’s face, which was used to analyse 

individual behaviours.   

Subjects were required to enrol their fingerprints before interaction. Ten 

fingerprints of all fingers were collected on a CrossMatch LC Guardian sensor, a 

duplicate of the fifth sensor used in this data collection.  

All fingerprints captured from participants were deleted immediately after obtaining 

both NFIQ quality and matching scores. All data was analysed offline and saved 

securely on a computer hard drive that was protected by a password. 

The data collection had minimal risk of stress or discomfort for participants 

throughout the experiment. All participants could withdraw from the study at any 

time. Participants were also given plenty of time to study the PIS and ask questions 

before the experiment. Ample rest time was given between attempts to maintain 

an acceptable level of comfort during the study. Participants were not subjected to 

any level of additional risk when using the fingerprint sensors then they would do 

so when interacting with conventional devices such as phones, laptops, and USB 

drivers. 

Seven participants were female and 13 males. Nineteen were right-handed and 

one participant was left handed. All 20 subjects stated that they travelled abroad 

by aeroplane in the previous year. However, only five identified that they used an 

ABC system upon returning to the country.  Nineteen participants typically travelled 

with companions while only one subject travelled alone. All 20 participants held a 

current electronic passport.  On average, participants slept for 7.4 hours the 

previous night before starting the data collection. Some participants stated that 

they were wearing additional accessories, such as glasses, a hat and contact 

lenses. Although contact lenses would have no effect on this study, accessories 

and items of clothing may influence the Kinect’s ability to track skeletal data by 

interfering with skeletal tracking points as discussed in Chapter 4. See Figure 31 

for a breakdown of descriptive demographics.    
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Figure 31: Gender and Handedness for Fingerprint Interaction 

 

None of the participants identified themselves as having any accessibility 

problems, however one person identified as having a temporary illness, where the 

researchers noted that the subject’s right index fingers had very slight burns.  

Prior use of biometric systems was self-reported to understand participants and 

their previous experience with ABC systems further. 50% of participants stated that 

they had previously used an ABC system before. However, all twenty subjects 

expressed that they were aware of the process at airports. Of the 50% who had 

used an ABC system before, 100% previously used an ABC system which uses 

facial images. None of the subjects had previously interacted with a border control 

system which implements fingerprint verification.  

Fifteen subjects stated they had previously used an electronic fingerprint system 

before and of those five had received a form of training before using the system. 

All five subjects said that this was for immigration purposes.  

One participant out of the ten that had previously used an ABC system before 

identified that they received some form of training before using an ABC system for 

the first time (a UK eGate system) by interacting with a border guard officer.  

Figure 32 below details the frequency of the height of participants for the study. 
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Figure 32: Height Distribution for Participants for Fingerprint Interaction 

 

Questions asked for the Task Evaluation questionnaire were based on a 1-5 Likert 

Scale with one being strongly disagreed, and five being strongly agreed. Users 

were asked eleven questions regarding their use of the system.  

1. I was given enough information to complete the task 

2. I found the process easy to complete 

3. I completed the task without any difficulty 

4. The information provided clearly described what to do during the process 

5. It was clear when the process begun 

6. The prompts given on the screen were clear 

7. I was confused by the entire process 

8. The order of the capture process was clear 

9. It was clear when the process had been completed 

10. This experiment will benefit me when I use ABC systems in airports 

5.2.4 Scenarios 

Each participant was required to attempt fingerprint recognition for all five sensors, 

on both the slope and non-slope setting, for a total of ten interactions. Users were 

allocated a random order to complete the scenarios. This was done to minimise 

the effect of order in performance as well as in user’s habituation. Each Scenario 

represented a fingerprint sensor and slope setting; Table 36 below demonstrates 

the possible combinations.
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Table 36: Fingerprint Device and Slope Setting Combinations for Fingerprint Interaction 

Scenario Fingerprint Device Slope Setting 

1 UPEK Swipe No Slope 

2 UPEK Touch No Slope 
3 Hamster IV No Slope 
4 Hamster Pro 20 No Slope 

5 Cross Match Guardian LC No Slope 

6 UPEK Swipe Slope  

7 UPEK Touch Slope 
8 Hamster IV Slope 
9 Hamster Pro 20 Slope 
10 Cross Match Guardian LC Slope 

 

5.2.5 Guidance and Training 

Participants were asked to read the Participant Information Sheet (PIS), which 

explained the purpose of the study also, to explain confidentiality issues such as 

where their fingerprints were stored and how long each sample would be saved 

for. Upon the completion of the consent form paperwork, the researcher started the 

video and Kinect recording. 

Participants were asked to complete three surveys during the trial. One survey 

collected demographic and information to compile a personal profile, while the 

other surveys were for Task Evaluation and ABC Knowledge.  Task Evaluation is 

discussed in Section 5.3.5 and results from the ABC Knowledge questionnaire are 

reviewed in Chapter 7.  

Each participant was asked to follow instructions on the monitor without any further 

information from the researcher. Users were instructed that they might only ask 

questions if they were completely stuck and unsure how to proceed.   

The researcher communicated which sensor the participation should interact with 

before each trial. Each sensor was labelled 1-5. Instructions prompted the user to 

interact with a fingerprint sensor. After a result was shown on the monitor, the 

process was repeated but for a different sensor for ten times. The researcher 

maintained a record log of any assistance that was required throughout the 

experiment. 
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5.2.6 Data Storage 

At the end of each trial, the image of the fingerprint was saved to a secure, local 

drive and the timestamp of when each form was displayed was saved to a log file 

in a text document. Each fingerprint was given a unique identifier to keep 

anonymity.   

The database was of a sensitive and personal nature. Hence it was stored on a 

secure server where access to the database was limited to the investigator. The 

size of the database after the images and video footage was deleted was around 

400mb.  

5.3 Performance Analysis 

Performance analysis will be split into two categories; Kinect and HBSI 

Assessment.  The main objective of the performance analysis is to identify the 

impact of the various variables introduced into this study affect on the interaction 

with the system and to determine how well the system performs compared to 

analysis from other similar implementations.  

An investigation of the Kinect data will serve to ensure that data collected 

throughout the data collection is an accurate representation of the movement and 

to ensure the data captured can be used for behavioural analysis. The Kinect 

Analysis section reports on the tracking states, stability and the critical movements 

that were tracked throughout the experiment. The application and analysis of this 

data, if viable, will seek to enable the successful use of skeletal tracking within a 

range of biometric systems.  

The HBSI assessment section details presentations and an evaluation of the 

system including reporting on the sample quality, usability and ergonomic factors. 

The presentation framework outlines correct and incorrect interactions throughout 

the study, investigating where errors may lie. In some scenarios, results are 

compared to previous studies conducted by NIST. 

Performance Analysis ultimately investigates four main behavioural led tasks, 

based on the Behavioural Framework defined in Chapter 3.  Table 37 below details 

each task, a definition and the expected behaviour.
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Table 37: Task Analysis for Fingerprint Interaction 

Task Definition Expected Behaviour 

1 Start of the transaction (entry) – user moves 
towards feet symbols on the floor and stands 
within the designated area 

User stands on feet 
symbols, looks at 
screen awaiting 
further instruction 

2 Information is displayed on the screen 
requesting the user to place their finger on the 
sensor (biometric presentation) 

User moves right arm 
forward, placing right 
index finger on sensor 

3 Information on the screen confirms successful 
capture, processes and displays result 
(biometric read)  

User moves right arm 
away from the sensor 

4 Systems display information to confirm trial is 
over and to move forward – end of the 
transaction (exit) 

User moves way from 
feet symbols back to 
the starting area  

 

As there was not a token sensor present in this task, Task 2 and 3 seek to monitor 

the actions of the human-biometric interaction and the response to the system 

capture process. The four tasks will be subject to analysis throughout this chapter.  

5.3.1 Kinect Analysis 

Following from Chapter 4, Kinect Analysis, the concept of tracking states and 

performance analysis have previously been defined. Results from this chapter 

have proven the Kinect’s ability to accurately track a single user within a self-

service environment when the sensor is placed 1.3m away from the user. For this 

data collection, critical and associated tracking joints are defined for the behaviours 

tracked throughout the four tasks. Furthermore, tracking states and accuracy tests 

are reported and compared to the results obtained in Chapter 4. The ability to track 

specific movements successfully within a self-service environment will change the 

way we capture metrics, improve data collection scenarios and enable higher 

levels of quality feedback.  

5.3.1.1 Definitions  

To achieve a Successfully Processed Sample, the ideal HBSI result, the four 

critical tasks are required to be completed which enable the system to classify the 

presentation correctly. In summary; the user must move towards the feet symbols, 

place his or her finger on the device, remove the finger, and upon instruction, leave 

the designated area. Table 38 below details the definition of tracking for each task, 

identifying critical and associated joints that are tracked and analysed in real time. 
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The required 3D space coordinates are also stated. Successful completion of all 

four tasks should lead to a Successfully Processed Sample, having an overall 

positive impact on the quality and matching score.  

Table 38: Kinect Task Definitions for Fingerprint Interaction 

Task  Definition 3D Space Critical  Associated 

1  The user should be 
standing still on feet 
symbols 

Z  Hip Left, Hip 
Right 

Spine, Shoulders, 
Neck and Head 

2  User should move 
their right arm 
towards the sensor, 
placing their finger 
on the device  

X, Z Right 
Shoulder, 
Elbow, 
Wrist, Hand 

Shoulders, Neck, 
Head 

3 User should move 
right arm away from 
sensor 

X, Z Right 
Shoulder, 
Elbow, 
Wrist, Hand 

Shoulders, Neck, 
Head 

4 User should leave 
the designated area  

Z  Hip Left, Hip 
Right 

Spine, Shoulders, 
Neck and Head 

 

It is imperative that the critical joints for each task be considered fully tracked by 

the Kinect Sensor to ensure a high level of confidence that the data is an accurate 

representation of the user within the scenario. As discussed in Chapter 4, the 

sensor will only mark a joint as tracked if the sensor can fully establish the joints 

location based on the devices mapping algorithm. Critical and associated joints for 

this data capture will require the specified joints to be fully tracked so that the 

mapping of the skeleton is a highly accurate as possible.  

5.3.1.2 Tracking States 

Before analysing the Kinect data in detail, the first step was to ensure that only the 

fully tracked joint data was used. The main issue described in this data collection 

was the inclusion of the pedestal, which would remove the Kinect’s ability to track 

joints in the lower body. To ensure that only fully tracked joints are used, the next 

process involved removing inferred and non-tracked information. Table 39 below 

describes the overall data tracked for all joints per scenario.  

Inferred tracking information was devised from the Kinect sensor guessing the 

position of skeletal points that were out of range of the camera such as the ankle 

and knee. The system could infer these positions based on the available data from 

the hip joints and above. However as previously described from Section 4 an 
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inferred joint is not an accurate presentation and is an estimate given by the 

sensor.  

Table 39: Overview of Tracking States for all users in Fingerprint Interaction 

Scenario % Tracked % Inferred % Not Tracked 

1 82.13% 17.85% 0.02% 

2 81.52% 18.48% 0.00% 

3 83.83% 16.17% 0.00% 

4 83.49% 16.51% 0.00% 

5 80.61% 19.37% 0.02% 

6 84.68% 15.32% 0.00% 

7 84.18% 15.82% 0.00% 

8 84.08% 15.92% 0.00% 

9 84.26% 15.74% 0.00% 
10 84.14% 15.86% 0.00% 

 

To investigate tracking states further, Table 40 below describes the percentage of 

joints ‘fully’ tracked for all users on each task. 

Table 40: Fully Tracked Joints per Task (Dark Grey highlights critical joints for a task, Light 

Grey Associated joints) for Fingerprint Interaction 

Joint Task 1 Task 2 Task 3 Task 4 

Head 100% 100% 100% 100% 
Neck 100% 100% 100% 100% 
ShoulderLeft 100% 100% 100% 100% 
ShoulderRight 100% 100% 100% 100% 
ElbowLeft 100% 100% 98.74% 100% 
ElbowRight 100% 100% 100% 100% 
WristLeft 96.58% 77.11% 73.57% 96.25% 
WristRight 100% 100% 100% 100% 
SpineTop 100% 100% 100% 100% 
SpineMid 100% 100% 100% 100% 
SpineBase 88.89% 100% 98.77% 97.58% 
HipLeft 100% 100% 100% 100% 
HipRight 100% 100% 100% 100% 
KneeLeft 34.11% 32.58% 30.33% 41.58% 
KneeRight 33.25% 28.58% 31.13% 40.25% 
HandLeft 74.58% 75.28% 71.58% 68.56% 
HandRight 70.22% 100% 100% 64.68% 
FootLeft 10.58% 5.58% 6.11% 13.21% 
FootRight 11.25% 4.58% 5.58% 12.55% 

 

As Table 40 indicates, all critical joints (dark grey) for each associated task 

achieved a 100% tracking state and therefore based on previous stability tests in 

Chapter 4, were considered as usable for the following analysis.  
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5.3.1.3 Critical Tasks 

The Behavioural Framework, as described in Section 3.5, outlines four tasks 

involved in the interaction process at a level where identifiable behaviour can be 

observed and defined in tracking by the Kinect. Through specifying a task, an 

analysis of the behaviours performed will provide insight into the movements users 

make through interaction, and how these may impact the performance of a system. 

Based on both preliminary testing on a range of subjects and through Kinect 

stability testing in Section 4, the Kinect system was configured to categorise 

different behavioural codes for certain skeletal joint locations at the end of the four 

tasks. Location points were defined based on the experimental setup procedure. 

For example, by physical measurement, the user is standing on the feet symbols 

when they are standing between 1.15 to 1.40m away from the sensor. The sensor 

was aligned centrally to the symbols on a level with the user at 1.75m off the 

ground.  

A definition was recorded by the Kinect HBSI Automation program to the log file 

depending on the joint location at the end of each task. For example, for Task 1, if 

the Hip Left and Hip Right joint met the requirements of >=1.15m && <=1.40m for 

the Z coordinate measurement, a GFEET01 metric was recorded. GFEET01 is 

defined as when the user is standing on the provided feet symbols, based on the 

physical measurements discussed in Section 5.2. Likewise, if there was no 

movement recorded (Hip Left and Hip Right are >=2.4m, the starting position), then 

a RFEET04 has been registered to the log file. Each task described below details 

the behaviour and the requirements for a Kinect definition.  

Task 1: Entry 

Participants were required to move and stand on feet symbols at the start of each 

transaction. Symbols were directly placed in front of the kiosk centrally to the Kinect 

sensor. Instructions based on ISO standards were displayed on the monitor 

informing a subject to move towards the system.  

The feet symbols, which are traditionally used in ABC systems, have many 

advantages in this data collection such as limiting the range of the captured data 

and identifying a region of interest for where users should be standing for 

interactions to begin. The main purpose for feet symbols, however, serves as a 
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standpoint for face capture in operational scenarios, where standing in the required 

area will likely have an impact on accurate face capture.   

Table 41 below details the behaviour recorded and the Kinect definition for Task 1 

entry.  

Table 41: Behavioural Framework for Task 1: Entry (Fingerprint Interaction) 

Code Behaviour Kinect Definition 

GFEET01 The user approaches feet symbols and 
aligns feet to stand on the symbols 
correctly 

HL & HR Z <= 
1.40m && >= 
1.15m 

GFEET02 The user approaches feet symbols and 
feet are very slightly (2-5cm) off the feet 
symbols 

HL & HR Z <= 
1.45m && >= 
1.10m 

OFEET01 User is slightly off centre but standing on 
the symbols 

HL & HR X>= 
±>.01m && Z 
<=1.40m && >= 
1.10m 

RFEET01 User is stood in front of the feet symbols HL & HR Z<= 
1.15m 

RFEET02 User is stood behind the feet symbols HL & HR Z>= 
1.45m 

RFEET03 The user has not moved to feet symbols 
and is standing still 

HL & HR Z >= 2.4m 
&& Minimal 
variance 

 

Kinect definitions were determined by the placement of feet symbols described in 

the experimental room layout in Section 5.2.3.  As any joints below the knee were 

not fully tracked, behaviours were based on Hip Left and Hip Right joints (on the 

assumption that these are directly above the feet and therefore have the same 

depth distance from the sensor). Larger variances such as GFEET02 allow users 

to be on symbols but not necessarily within the full area.  

Although it is realised that these behaviours will have a larger impact on face 

recognition (which was not captured in this study), it is necessary to identify if the 

Kinect sensor can capture the movement of the user before initiating the next task.  

Identifying these behaviours in real time would be beneficial for real-life application. 

If a RFEET03 behaviour is detected for example, and categorised after the allotted 

time, the system could attempt to alert the user or to change perhaps the method 

it communicates (e.g. icon instructions to text/audio). It would also enable the 

system to categorise the error in such a way that it would indicate a user fault, not 

a system generated an error. 
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Table 42: Observed and Tracked Behaviours for Task 1: Entry for Fingerprint Interaction 

Task 1 (Entry) 

 Observed Kinect 
Behaviour N % N % 
GFEET01 157 77.7 161 79.7 
GFEET02 44 21.8 41 20.3 
RFEET01 1 0.5 0 0 

 

Table 42 above presents the observed and Kinect measured Task 1 entry 

behaviours for the Fingerprint Interaction. 95.5% of the interactions resulted in ideal 

behaviours, where participants followed instructions and made correct use of the 

feet symbols. The Kinect categorised that 100% of the interactions were positioned 

correctly on the feet symbols, incorrectly identifying that one interaction was slightly 

too far forward. The significance of the RFEET01 behaviour has implications for 

biometric interaction. If this behaviour was repeated within a facial biometric 

modality system, it is likely that the user would be too close to the camera and 

therefore would not meet the requirements of the capture process.  

It could be a possibility that the fingerprint scanners were placed in such a location 

that the user may have had to adjust themselves before interaction. A larger 

frequency of RFEET01 classifications could reveal insights into the design and 

build of a system, maybe resulting in an adjustment of the placement of symbols.  

Task 2: Biometric Read 

Previous work (as discussed in Section 4.2) with the Kinect V1 device has 

demonstrated it is unsuitable for determining finer activities such as finger 

movements. Kinect V2 is also unable to distinguish individual fingers and can only 

refer to Hand Tip Joint as an extension of the hand; through identifying either one 

or all five fingers. Therefore Task 2 for Fingerprint Interaction focuses on hand and 

wrist placement, with the assumption that users are making a correct presentation 

with their finger.  

To begin this task, the user must be standing within the feet symbols (GFEET01, 

GFEET02 or OFEET01) which is a pre-requirement from Task 1. Any movement 

was recorded, for instance, if the user took a step back. However, all participants 

remained within the required area. Table 43 below details the different behaviours 

for the data collection and the Kinect’s tracking requirements for those movements. 
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Table 43: Behavioural Framework for Task 2: Biometric Read for Fingerprint Interaction 

Code Behaviour Kinect Definition 

GFING01 The user places finger on the 
sensor, wrist and hand joints 
are inside detection zone 

RightWrist and RightHand 
Joints Z <= 1.0m 

RFING01 Vigorously adjusts finger  High Variance in X or Y for 
Wrist/Hand Joints (>0.02m 
every 30frames) 

RFING02 User presents incorrect finger Absence of Right 
Wrist/Hand. Left Wrist/Hand 
movement detected instead  

RFING03 Not swiping (Swipe sensor 
only) 

No movement detected in X 
or Z for Wrist/Hand Joints 

 

Table 44 below demonstrates the observed and tracked behaviours for Task 2; 

Biometric Read. The results indicate that the Kinect can track full movements of 

the user’s right arm for this self-service scenario, but without the finesse of tracking 

an individual finger. The Kinect was unable to detect finer movements such as 

adjusting the finger or removing the finger too early. A setback for this system 

design was from only tracking the wrist and hand joints for interaction purposes. If 

the wrist and hand were stationary and within the required area, there was no 

following methodology to track the movement of the finger (e.g. the finger may be 

raised above the sensor at an angle, or only partially on the sensor). From ground 

truth data, this did not occur during this data collection, but it is possible that this 

undesired movement may take place in possible future implementations.  

Table 44: Observed and Tracked Behaviours for Task 2: Biometric Read in Fingerprint 

Interaction  

 

 

The Kinect could distinguish all the correct presentations made to the sensor. The 

individual occurrence of RFING02 was observed both during the data collection 

and through video footage. The HBSI automation program classified the movement 

as a correct interaction. The sensor, in this case, was unable to detect the dynamic 

Task 2 (Finger) 

 Observed Kinect 
Behaviour N % N % 
GFING01 188 94.5 189 95.0 
RFING01 1 0.5 0 0.0 
RFING02 4 2.0 4 2.0 
RFING03 6 2.0 6 3.0 
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movement as observed in the video footage. The presentation was still categorised 

as a ‘correct’ presentation as data shows the hand and wrist joints were within the 

required region. 

Task 3: Biometric Accept 

This task proceeds Biometric Read, and for most systems, information is displayed 

to inform the user that their biometric sample has either been accepted or rejected 

after processing sub-system elements have been completed. The desired action 

for this task would be for the user to remove their sample from the sensor and to 

proceed to the next stage, Exit. There should be a very short delay between Tasks 

2, 3 and 4. 

Although this task signifies the end of the interaction, it is an important stage to 

assess when attempting to understand the impact of the information to the user.   

For this system and step, the classification is determined by the user who should 

remove their hand from the sensor – which is an indication that they have perceived 

the information as confirming the biometric sample has been read and processed. 

The implementation can either display the ‘captured’ or ‘rejected’ form – in both 

cases; these are simple pictorial images usually depicting a tick or a cross. Table 

45 below details the behaviour and Kinect measurements.  

Table 45: Behavioural Framework for Task 3: Biometric Accept 

Code Observed Behaviour Kinect 

GHAND01 User removes hand from the 
sensor  

Right Wrist and Hand 
Joints Z > 1.0m 

FHAND02 User does not remove hand Right Wrist and Hand 
Joints Z <= 1.0m 

 

Table 46 below details observed and tracked behaviours for all scenarios in this 

data collection. The Kinect sensor correctly classified all hand movements for this 

task. The sensor could correctly detect that the hand had been removed from the 

sensor.  

Table 46: Observed and Tracked Behaviours for Task 3: Biometric Accept for Fingerprint 

Interaction 

Task 3 (Face) 

 Observed Kinect 
Behaviour N % N % 
GHAND01 195 100 195 100 
FHAND02 0 0 0 0 
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Task 4: Exit 

This task occurred after the interaction process (Task 2-3) had been completed 

and information had been displayed to the user relaying successful or unsuccessful 

capture. In either case, the user is expected to leave the station and return to the 

starting position. Table 47 details the behaviours below.  

Table 47: Behavioural Framework for Task 4: Exit for Fingerprint Interaction 

 Observed Behaviour Kinect 

GLE01 The user leaves the station Hip Joints >1.45m 

RLE01 The user does not leave the 
station 

Hip Joints <=1.45m 

 

Table 48 details the observed and tracked behaviours for Task 4: Exit.  Again, all 

behaviours were classified correctly for this short study.  

Table 48: Observed and Tracked Behaviours for Task 4: Biometric Accept for Fingerprint 

Interaction 

Task 4 (Exit) 

 Observed Kinect 
Behaviour N % N % 
GLE01 200 99.0 200 99.0 
REL01 2 1.0 2 1.0 

 

The sensor could correctly detect the behaviours as confirmed by manual 

observations.  

5.3.2 HBSI Assessment  

The HBSI model can be used to evaluate both system performance and individual 

transactions. This section uses the Kinect V2 device to analyse both the 

presentation framework and evaluation method in a real-time scenario, analysing 

movements to identify errors within a transaction.   

5.3.2.1 Presentation Framework  

The application of the skeletal tracking system with the Kinect device enabled the 

first steps into HBSI automation, the ability to categorise presentations in real time 

based on body movements and positions. Figure 33 below details the adapted 

HBSI Presentation Framework, using the Kinect sensor to identify correct or 

incorrect interactions.  
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In addition to the main functions of the Neurotechnology MegaMatcher SDK, logical 

assessments were added to enable the automated categorisation of HBSI 

presentations. 

The HBSI automation program was configured to assess movements for each of 

the four tasks as previously described in Section 5.3.1. Each task was specified 

certain conditions that the Kinect was searching for, e.g. the position of a hip or 

wrist joint within certain fixed parameters of the Kinect device.  The specification 

for these limits was based on the knowledge that joint locations should be within 

certain regions at certain points throughout the transaction. For example, for Task 

1, users should be within a certain distance that is the fixed location of the feet 

symbols on the floor. See Section 5.2.1 for the room setup and distances the 

sensor and the kiosk and feet symbols.  

The main 3D coordinate that was tracked in this study was the Z distance, the 

distance of the joint from the sensor. As this was preliminary work with the Kinect 

to investigate the capability of the device, other coordinates were only used when 

looking for variances in data (e.g. no movement on the X or Y plane).  

Table 49 demonstrates the scores for the ‘good’ behaviours as previously 

described in Section 5.3.1. When a good behaviour was met, a ‘score’ was given 

based on successful completion of the task.  
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Figure 33: HBSI with the Kinect V2  
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Table 49: Kinect assessment limits and associated score for Fingerprint Interaction 

Task Control Limit Score 

1 Z-Distance for Hip Left/Right < 1.45m & >1.10m  1 

2 Z-Distance Wrist is < .01m away from sensor  
X-Variance Wrist is <.0005m for swipe sensor 

3 

3 Z-Distance Wrist is > .01m away from sensor  
X-Variance Wrist is <.0005m for swipe sensor 

1 

4 Z-Distance for Hip Left/Right >1.35m 1 

 

When a behaviour led task was documented by the Kinect, a counter incremented 

to a total of six points. One point was awarded for completing task one, three and 

four; three points have been granted for task 2. Task 2 was deemed the ‘critical’ 

task of the experiment and therefore rewarded a higher score. If the counter 

reached 4 points or above, then the system determined a ‘correct’ presentation, 

while a score of three or lower determine an ‘incorrect’ presentation.  

To categorise a HBSI metric, the system required two key components; a score 

obtained from the behavioural tasks and either the presence or absence of a 

fingerprint sample. For this initial study, the researchers had to confirm the 

presence of a sample to the HBSI program by the end of the transaction. This was 

because the two systems (MegaMatcher and HBSI automation) were run on two 

separate computers. Therefore, while the process automated the classification 

process, the system was not fully automated due to a form of input required by the 

observer.  

Table 50 below demonstrated the logical assessment required for a HBSI 

categorisation.  

Table 50: HBSI Assessment for Fingerprint Interaction 

HBSI Behaviour Completed 
Tasks 

Processed 
Sample 

False Interaction Incorrect Yes Yes 
Concealed Interaction Incorrect Yes No 
Defective Interaction Incorrect No No 
Successfully Processed Sample Correct Yes Yes 
Failure to Detect Correct Yes No 
Failure to Process Correct No No 

 

Table 51 below displays the frequency of categorisations, comparing automated 

versus manual HBSI categorisations. 
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Table 51: Frequency of HBSI Categorisations for Fingerprint Interaction 

HBSI Categorisation Automated  Manual 

False Interaction 0 0 

Concealed Interaction 10 4 

Defective Interaction 4 7 

Successfully Processed Sample 185 188 

Failure to Acquire 3 3 

Failure to Detect 0 0 

 

All manual observations were recorded by the researcher during data collection 

and further verified by the camera footage post-data collection.  

Of the total 202 presentations made to each sensor, 185 were classified as correct 

presentations and were successfully processed by the system.  

All three Failure to Acquires occurred due to a system crash during sample 

acquisition. These were processed as correct presentations through a Kinect score 

and an absence of a processed sample.  

The system categorised Fourteen incorrect presentations. Four of these incorrect 

interactions were categorised when a user presented their left finger instead of 

their right. In these cases, the presentations should be classified by the system as 

Concealed Interactions. The system determined six more CI’s from a split of 

categorisations that through manual observation, should have been defined as DI’s 

and SPS’s.  

There were four instances of users not swiping correctly for the first time when 

interacting with a swipe sensor. Three occurrences were due to no swiping 

movement and one instance of minimal movement during the reading process. 

These were classified correctly by the Kinect as a Defective Interactions through a 

lack of deviation in movement as set by the control limits. 

There were recorded Failure to Detect (FTD) errors for this data collection.  

5.3.2.2 Evaluation Framework 

This next section reports on sample quality, user satisfaction, efficiency and 

effectiveness metrics as defined in the HBSI Evaluation Framework. Identifying 

and analysing usability in any scenario testing is critical to understand how and 

why people use a system or product.  
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5.3.2.2.1 Efficiency 

The efficiency component of the HBSI Model reports the speed in which users can 

complete the tasks for which they use an ABC system.  

 In this section, following efficiency metrics are reported: 

 Successful Task Completion 

 Time on Task 

 Number of Assists 

A total of 202 interactions were recorded for Fingerprint Interaction. Of the 202, 

195 were completed successfully.  

Time on Task, for this experiment, was defined from the point in time when 

instructions were displayed asking the user to present their finger, to the end of the 

task where the fingerprint image had been captured and processed. For each 

response variable for time on task, the factor of angle and participant height against 

the sensor was considered. The timing data was not normally distributed therefore 

we used the non-parametric Kruskal-Wallis test. Table 52 below details 

significance for Time on Task.  

Table 52: Significance of Variables on Time on Task (“+”: p<0.05) for Fingerprint Interaction 

Sensor Sensor Angle Participant Height Mean Time    

1 + - 15.78s 
2 - - 12.35s 
3 - - 9.30s 
4 - - 8.90s 
5 - - 9.60s 

 

The effect of angle was the only variable that had a significant effect on time on 

task for the swipe sensor only. The effect of subject height or angle on other 

sensors did not have an impact on time on task. However, it can be noted that the 

swipe sensor took longer to complete whereas non-swipe sensors have a lower 

average time on task.  

Figure 34 below details the difference between the average Time on Task for 

sensors both on a flat and raised surface. 
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Figure 34: Mean Time on Task for Fingerprint Interaction 

 

When comparing results to previous studies on different sensors and angles, the 

findings in this study show similarities. The Usability Testing of Height and Angles 

of Ten-Print Fingerprint Capture from NIST [55] found an impact on time on task 

when looking at the table height. The height of the table had a significant effect (p 

= 0.01) for a left thumb sample on time on task while participant height had an 

impact for right slap, left slap, and both thumbs for one (of two) sensor studied. In 

summary, the NIST study reported no significant effect due to angle, table height 

or subject height for the time required to complete a fingerprint task for both 

scanners except for the tasks described previously.  

Fifteen interactions required assistance from the researcher. The researcher 

communicated each assist verbally. Of the 15 interactions, seven of the assists 

were verbal commands to swipe the finger for Sensor 1. Feedback from 

participants suggested that the information provided was unclear and left subjects 

confused initially. All subjects who received a verbal communication completed the 

task. The remaining eight assists were from a combination of prompting 

participants to walk to the sensor (4), remove finger (2) and step away from the 

system (2).  
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5.3.2.2.2 Effectiveness 

In this section, following efficiency metrics are studied: 

 Total time is taken to complete transaction 

 Number of attempts 

Each user was only allowed one attempt per scenario unless there was a system 

fault (freezing, crash) which occurred three times.  

Time Taken to Complete (or Transaction Time) was defined between the point the 

Kinect started tracking the subject from the start position and to the point in time 

the final piece of information had been shown indicating that the fingerprint had 

been successfully processed. The time taken to exit after the last instruction was 

displayed was not included in this analysis. Time Taken to Complete is an 

important aspect of studying as it directly relates to throughput rates and the rate 

at which passengers can be processed through ABC systems. Average Time 

Taken to Complete is reported in Figure 35 below. 

 

Figure 35: Mean Time to Complete for each sensor for Fingerprint Interaction 

 

Figure 35 demonstrates the average time taken to complete the transaction for 

each sensor. Swipe sensors took on average much longer to complete than its 

non-swipe counterparts. Sloped positioned sensors 1 to 4 took slightly longer to 

complete than its non-sloped surfaces. 
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A Kruskal-Wallis test is used to see if there was a statistically significant difference 

for factors of sensor, angle and subject height on Time Taken to Complete. The 

distributions of NFIQ were statistically significant between groups, H (4) = 

76.805 p = < .005. Table 53 identifies if the variables were statistically significant.  

Table 53: Statistical Significance for Average Time to Complete (“+”: p<0.05) for Fingerprint 

Interaction 

Sensor Sensor 
Angle 

Participant 
Height 

Median 
Time 
Taken to 
Complete 

1 + + 38.31s 
2 + - 24.32s 
3 - - 25.26s 
4 - - 20.32s 
5 - - 23.11s 

 

Time Taken to Complete is typically a difficult factor to compare for system 

performance due to a nonstandard practice for reporting the measurement. 

However, most studies seem to follow the route of measuring the time from the 

start of the transaction until the last piece of information has been conveyed [97] 

[7].  

A significant relationship was found for the angle of the slope for sensors one and 

two as well as the height of the participant for sensor one.  

Although the data provides interesting results for the effect of the angle and 

participant height on Time Taken to Complete the interaction, these results may 

not necessarily outline errors in performance. In a standard performance report, 

throughput metrics will be declared, and feedback from users may be reported to 

distinguish if there were any reasons behind a higher transaction time. 

5.3.2.2.3 Sample Quality 

This part of the study reports on the quality of captured images and investigates 

which variable (angle, sensor, subject height) impacts the quality of the samples 

obtained. The analysis of sample quality is based on two factors; the NIST 

Fingerprint Image Quality (NFIQ) and the matching score against the enrolled 

image. The NFIQ quality rating was recorded for all fingerprint interactions during 

both the enrolment and verification components of the experiment.  
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Seven fingerprints were not captured successfully due to either system errors or 

erroneous user presentations as discussed in previously in Section 5.3.2 HBSI 

Assessment.  

NFIQ ratings were totalled for the ten individual scenarios in Figure 36 below. As it 

can be observed from the chart, Sensor 1 (sloped and non-sloped surface) had a 

higher frequency of lower rated NFIQ samples. A higher frequency of the best 

quality samples was collected from Sensor 5 (Sloped and sloped surface).  

 

Figure 36: NFIQ Score in Fingerprint Interaction 

To investigate the significance of the angle of the slope on NFIQ ratings for sensor 

pairs, a Sign test was conducted to study the difference between the slope vs non-

slope sensors.  Results are displayed in Table 54 below.   

Table 54: Significance of Sensor Angle for NFIQ (“+”: p<0.05) for Fingerprint Interaction 

Sensor Median Significance 

1 3 + 

2 4 - 
3 4 - 

4 4 - 

5 4 - 
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A significant result was found for the swipe sensor only when comparing NFIQ 

results on slope vs non-slope tasks. Interestingly, a lower mean NFIQ of 2.62 was 

found for the swipe sensor on a flat surface, compared to a 3.64 NFIQ when 

captured on a slope. There were no other statistically significance between NFIQ 

for an angle on other sensor pairs. Figure 37 below compares mean NFIQ between 

sensors.  

 

Figure 37: Mean NFIQ between Slope Settings for Fingerprint Interaction 

To investigate sample quality further, a Kruskal-Wallis test is used to see if there 

was a statistically significant difference for factors of the sensor, angle height and 

subject height on NFIQ. The distributions of NFIQ were statistically significant 

between groups, H (9) = 40.479, p = < 0.005. Table 55 identifies if the variables 

were significant.  

Table 55: Statistical Significance for Angle and Participant on NFIQ (“+”: p<0.05) for 

Fingerprint Interaction 

Sensor Angle Participant 
Height 

Median NFIQ 

1 + - 3 
2 - - 4 
3 - - 4 
4 - - 4 
5 - - 4 
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The results demonstrate similarities with the NIST studies on fingerprint interaction. 

Although one relationship was found between the two possible angles for the swipe 

sensor, there were no other significant relationships between sensor pairs for both 

participant height and angle of the surface. The study on usability testing of height 

and angles of a fingerprint captured by two sensors from the NIST group [55] also 

demonstrate no significant results for sensor pairs on different angled surfaces. No 

other studies have investigated an effect on NFIQ for swipe sensorsc at an angle 

so results can only be reasonably compared to NIST’s work. Swipe sensors, 

however, are not used in ABC scenarios, and therefore the outcome of the 

research may have little impact on this area.  

Determining the matching score for captured images is a crucial element to ABC 

scenarios as samples must meet a quality threshold value to enable traveller 

verification for border crossing.  In this study, the captured image in the verification 

element of the task is compared against the enrolled index finger sample that 

matched ISO token standards. The average Matching Scores for all sensors are 

reported in Figure 38 below.  

 

Figure 38: Mean Matching Score for Slope Settings in Fingerprint Interaction 

A Kruskal-Wallis test is used to see if there was a statistically significant difference 

between factors of the sensor, angle height and subject height on Matching Score. 

Table 56 identifies if there were significances between the variables described.  
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Table 56: Statistical Significance for Angle and Participant Height on Matching Score (“+”: 

p<0.05) for Fingerprint Interaction 

Sensor Angle Participant 
Height 

Median 
Matching 
Score 

1 + - 0.45 
2 - - 0.53 
3 - - 0.65 
4 - - 0.66 
5 - - 0.75 

 

Table 56 reveals one statistically significant relationship for matching score for 

sensor one between sloped and non-sloped variables, as did Table 54 for NFIQ 

samples. Matching scores did improve for each sensor but this not due to either 

angle or participant height. No other studies are looking at matching score against 

usability aspects of a system (e.g. sensor placement, types of information, 

participant variables).  

If variables are having an impact on throughput or other areas, then analysing 

tracked skeletal data could highlight why these factors may be having a significant 

effect on the performance.  

Section 5.4 Data Analysis begins to investigate these relationships further with 

these preliminary findings. 

5.3.2.2.4 User Satisfaction 

A task evaluation was conducted to assess user satisfaction with the system. The 

main goal was to assess wherever the user perceived the system to be efficient. 

Answers were collected after all ten trials and so Figure 39 details the response to 

several questions directly relating to the performance of the system. Further results 

are discussed in Chapter 7, Recommendations.  
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Figure 39: Mean Score for Task Evaluation Questions for Fingerprint Interaction 

 

Users indicated they were given enough information to complete the task (Q1) and 

found the process relatively easy to complete (Q2). Information provided to the 

user was seeming clear (Q3-6). Users also indicated that the process was not 

entirely confusing (Q7) and that capture process was clear (Q8) and very clear the 

process had completed (Q9). Users revealed that they were likely to use an ABC 

system in the future based on their experience with the system in this study (Q10).  

Although User Satisfaction is an important aspect to understand in any system, the 

feedback detailed for Fingerprint Interaction is somewhat flawed, the user 

concluded the metrics based on their entire process. Therefore, their answers may 

be skewed based on their whole experience rather than their interaction with an 

individual sensor.  

5.4 Data Analysis 

This section differs from performance analysis in respect to seeking answers to 

defined research questions. The main objective of this part of the research was to 

compare positional and movement data from the Kinect against the impact on 

performance. However, the first two questions seek to answer some unexplored 

relationships in the literature. 
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Question 1 

The hypothesis was that users who used ABC systems before provided better 

fingerprints samples regardless of previous fingerprint usage. The theory was that 

previous users had a better understanding of information and the process involved. 

However, because the sample size for this collection was relatively small compared 

to large-scale scenario testing, a null hypothesis was assumed. A chi-squared test 

was conducted to reveal wherever there was any significance between the two 

groups (Previous ABC users and non-ABC users). Figure 40 demonstrates the 

difference between the groups for the total number of NFIQ samples.   

 

Figure 40: A comparison of NFIQ scores between users who previously used any form of 

ABC System Before (Fingerprint Interaction) 

A chi-square statistical test was performed to examine the relationship between 

previous ABC users and NFIQ quality score. There was no statistical significance 

found, Χ2 (3, N = 197) = 2.18, p =.53. As stated previously, zero subjects had 

previously used an ABC system with a fingerprint modality before the experiment 

but had used systems which used facial recognition.  
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Question 2  

The next research question investigated the relationship between the user and 

sample quality and stated that people who used electronic fingerprint capture 

devices before provided higher quality fingerprint samples. Figure 41 below 

demonstrates the relationship between the two groups.  

 

 

Figure 41: A Comparison of NFIQ scores between users who have submitted their 

fingerprints to an electronic system before (Fingerprint Interaction) 

 

A chi-square statistical test was performed, and no relationship was found between 

previous electronic fingerprint system users and the NFIQ quality score, Χ2 (3, N = 

197) = 1.962, p =.580. Only five subjects had no previous experience using an 

electronic fingerprint capture system before the experiment. 

 

Question 3  

In this section, the relationship between performance and natural movement during 

an interaction is studied. Specifically reporting on the impact of wrist movement 

during fingerprint interaction. It is expected that there are naturally tiny variances 
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recorded for wrist and hand joints during fingerprint interaction due to movement 

of the finger. However, there should only be any substantial movements in data for 

the swiping movement for the swipe sensor (Sensor 1). Skeletal data for the Right 

Wrist Joints were given the fully tracked status during Tasks 2 and 3, and so data 

captured throughout the study obtained a high degree of accuracy. However, as 

with all tracking systems, there will always remain a minimal variance in the data 

collected. Therefore, the analysis will be based on the average variance for all 

users in both X and Z axis data for the Right Wrist joint over the course of Task 2.  

 

The ability to capture this data within testing scenarios will reveal potential usability 

issues with the system before deployment. For example, does the placement of 

sensors provide discomfort or awkwardness in interaction? It could require a user 

to reposition them for a better sample. If this is the case, is this measurable? From 

user feedback, there was no reported awkwardness of using any of the sensors.  

 

In addition to the benefit of analysing these movements through testing before 

deployment, the ability to detect larger than average (or spike) variances in 

movement could also enable enhanced information to be relayed in an attempt to 

control the unwanted action (e.g. icons/instructions to keep your hand/finger still).  

 

To compare this relationship, the first step is to investigate the variance in 

movement captured for the Right Wrist Joint during physical interaction (Task 2: 

Biometric Capture). This is the period where the arm is within the detection zone, 

and the participant has placed their finger on the sensor for reading. Figures 42 

and 43 below report on the average variance for both X and Z 3D space 

coordinates (measured in m) over the period participants were interacting with a 

fingerprint sensor.  

 

As results indicate, the average variance for both X and Z coordinates for the Right 

Wrist Joint was mostly consistent throughout each scenario except for sensor three 

on a non-slope platform. For variance in the X coordinate, it would be expected 

that there is very little to no movements during biometric reading.  There was an 

expected variance for Sensor 1 for both the slope and flat surface; however, there 

was a higher variance for the X coordinate for the non-sloped version, suggesting 

users moved their wrist joint more vigorously during the interaction.  
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Figure 42: Mean X Variance for Task 2 Right Wrist Joint for Fingerprint Interaction 

 

 

Figure 43: Mean Z Variance for Task 2 Right Wrist Joint for Fingerprint Interaction 

 

Sensor three on a sloped surface reported in a high variance in both x and z data 

on a flat surface. Studying the form factor of sensor 3 (see Section 5.2.2), the 

design was different to other sensors. The housing was much taller and had a 

smaller size for the reader. The result suggests that users had difficulty to keep 

their wrist still during the interaction. Observations and video footage support this 

case; participants seem to adjust their wrist to place their finger comfortably on the 
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sensor; however, through performance assessment, there were no outliers with 

NFIQ or throughput metrics. There was also no reported awkwardness of using the 

sensor as the post-questionnaire reports. 

 

Table 57: Statistical Significance of X Variance for Right Wrist Joint on NFIQ and Throughput 

during Task 2 (“+”: p<0.05) for Fingerprint Interaction 

Scenario NFIQ Throughput  

Spearman Sig Spearman Sig 

1 .187 - -.025 - 

2 .346 - .028 - 

3 -.293 - -.087 - 

4 .514 + .010 - 

5 .202 - .013 - 

6 .091 - .357 - 

7 .018 - -.217 - 

8 .032 - 0.97 - 

9 -.003 - -.057 - 

10 .330 - -.274 - 

 

Table 58: Statistical Significance of Z Variance for Right Wrist Joint on NFIQ and 

Throughput) during Task 2 (“+”: p<0.05) for Fingerprint Interaction 

Scenario NFIQ Throughput  

Spearman Sig Spearman Sig 

1 .319 - .505 + 

2 .062 - -.048 - 

3 .156 - -.107 - 

4 .056 - -.283 - 

5 .089 - -.066 - 

6 -.013 - .013 - 

7 -.034 - .053 - 

8 .264 - .187 - 

9 -.103 - -.121 - 

10 .030 - -.138 - 

 

The Z co-ordinate variance also provides insight into the interaction, users, on 

average, made more frequent movements for the non-sloped version of the sensor 

three compared to a sloped version, further supporting the difficulty in using this 

sensor. To investigate the impact of these variances on sample quality and 

transaction time, a Spearman's Correlation was performed. Tables 57 and 58 

above provide insight into the interaction of multiple fingerprint sensors.  
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From the data collected, it is evident that the wrist variance measured through this 

task did not have a significant effect on sample quality or throughput metrics. Two 

relationships were identified, however; a High X variance in wrist movement for the 

fourth sensor on a flat slope did influence NFIQ. Additionally, there was also a 

relationship found between Time on Task and the sloped swipe sensor, stating that 

a higher variance increased time; however, this was to be expected for a swiping 

scenario. Therefore, as there were spikes in variances in the data for sensor three, 

this did not have an impact on the performance metrics recorded in this study. 

 

In summary, while it is a useful tool to be able to measure the wrist movement and 

location from the sensor, from these results the conclusion is that there is not a 

meaningful impact from wrist variance on performance.  

Question 4 

Studying positional data such as where users are standing during interaction and 

the implications of that position on performance, has yet to be assessed in 

academic literature. Traditionally, feet symbols are placed within self-service 

systems to guide the user to stand within an optimal camera view to capture a face 

image. Additionally, the vendor sets where the symbols are placed, and as such, 

this will differ between systems and airports. There are currently no standards to 

determine where symbols should be put unlike many other forms of information 

within a border control environment. It is assumed that feet symbols are placed 

based on testing throughout the development cycle, but this is not largely 

discussed. It is possible that the placement of these feet symbols may affect more 

than just the quality of the face biometric presented to a camera.  Also, multi-

biometric systems, which may combine both face and fingerprint modalities, may 

require users to stand in the same area for both interactions. Therefore, it is a 

possibility that where users stand may influence their performance during an 

interaction with different modalities.  

For this data capture, feet symbols were placed directly in front of the pedestal 

kiosk, centrally placed 1.15m and 1.35m from the Kinect. Participants were not 

given specific instructions to stand on the feet symbols; however, information 

displayed on the screen did suggest to users to stand on the symbols. Therefore, 

the data captured by the Kinect sensor can report the stationary position of the 

user during interaction. The analysis will then identify where the user is standing 
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for a scenario and if there is a statistically significant effect on performance. Table 

59 below provides an insight into the average position for users across the ten 

scenarios during the interaction process (Task 2: Biometric Read).  

Table 59: Hip Position during Task 2 Biometric Read for Fingerprint Interaction  

 Hip Left Hip Right  

Scenario X Y Z X Y Z 
1 -.056 -.141 1.251 .079 -.144 1.241 

2 -.046 -.140 1.348 .086 -.144 1.338 
3 -.030 -.133 1.347 .105 -.136 1.339 
4 -.014 -.137 1.341 .120 -.140 1.337 
5 -.010 -.142 1.347 .127 -.145 1.338 
6 -.070 -.127 1.269 .143 -.125 1.252 
7 -.049 -.152 1.337 .162 -.149 1.365 
8 -.029 -.146 1.348 .110 -.148 1.341 
9 -.006 -.162 1.569 .134 -.163 1.350 
10 -.010 -.148 1.356 .128 -.150 1.356 

 

Table 59 reveals that users were positioned on the feet symbols between 1.2-1.4m 

(the feet symbols were 20cm long). It seems subjects stood slightly closer for the 

swipe sensors (Scenario 1 and 6) than other sensors.  

As discussed previously, Hip Left and Hip Right joints were 100% fully tracked for 

Task 2 and therefore retained a high degree of confidence in the accuracy of the 

recorded data.  

Figures 44 and 45 below provide an insight into the Z coordinate variance for both 

Hip Left and Hip Right joint during the interaction (Task 2) process.  

Both figures show the average Z variance for Hip Position during fingerprint 

interaction. Results indicate that users are making moving closer towards the 

sensor four on a sloped surface and slightly further away on a flat surface. This 

data differs from our previous research question, which did not highlight any 

significant movement in the wrist movement for Scenarios 4 and 9. The information 

here suggests that users must alter the way they stand to interact with the sensor. 
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Figure 44: Mean Z Variance for Flat Surface sensors for Fingerprint Interaction 

 

 

Figure 45: Mean Z Variance for Sloped Surface sensors Fingerprint Interaction 

 

Otherwise, results remain relatively stable between surfaces. If users are 

positioning themselves further or forward during the interaction, this could lead to 

new questions. It could be based on sensor placement, the design of the system 

or perhaps other external factors. Ultimately, from this ability to report this 

information, the main goal will be to assess wherever there is an impact on 

performance. To assess if there was a relationship, a Pearson’s correlation was 

performed. Table 60 demonstrates the results. 
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Table 60: Statistical Significance of HipRight Z Variance on NFIQ and Throughput on Task 2 

(“+”: p<0.05) for Fingerprint Interaction 

Scenario NFIQ Throughput  

Pearson Sig Pearson Sig 

1 -.271 - .311 - 

2 .031 - -.177 - 

3 .146 - -.008 - 

4 .090 - .531 + 

5 .265 + .010 - 

6 .190 - -.112 - 

7 .254 - -.010 - 

8 .115 - -.038 - 

9 -.025 - -.054 - 
10 .069 - -.255 - 

 

For both Hip Left and Hip Right Joints, a statistical relationship was found between 

variance (how much the user is moving) and throughput for the fourth sensor on a 

flat slope (Scenario 4). Although there was not a significant impact on NFIQ, it 

seems users had to adjust themselves during fingerprint interaction. Looking for 

feedback and observations for Scenario 4, our findings did not reveal any 

difficulties during data collection.  

Looking back further at Table 57 for Question 3, a significant relationship was found 

between Right Wrist Joint X variance and NFIQ for the fourth sensor on a flat 

surface. These relationships show through tracking that there may be underlying 

problems with the sensor possibly due to the size, shape or placement. Without 

these tracking methods, this may not be a result likely to be found during regular 

testing of biometric systems.  

5.5 Summary  

Self-service biometric systems are increasingly implemented across the globe for 

verification and identification solutions. Although there has been a range of studies 

investigating usability and performance assessment, the work undergone in this 

chapter has provided initial steps into studying the applicability of using movement 

tracking in this type of environment. 

This chapter has identified the novelty of applying a tracking system to data 

collection methods. The results have demonstrated the ability to detect HBSI 

categorisations based on skeletal positional data within a biometric testing 

scenario. These first steps using the Kinect sensor has enabled the transition from 
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a manual to an automated method for performance assessment. Alongside HBSI 

categorisation, the ability to categorise different joint positions during the 

interaction has also been introduced. Through this approach, the system can 

determine if a certain joint is within the desired area before proceeding to the next 

task (e.g. a user’s wrist must be detected near the sensor for fingerprint interaction 

to begin) which may reduce the likelihood of an error occurring further in the 

process. 

Investigating skeletal data, results have highlighted unexpected variance in some 

joints throughout multiple scenarios. Further analysis has highlighted a significant 

effect on some variables on performance metrics such as NFIQ and throughput 

results. This initial work has revealed a potential unique ability to dwell deeper into 

operational design and testing before biometric systems are fully deployed.  

Future testing should consider looking and classifying the impact of erroneous 

presentations only, determining the sensors ability to classify unlike incorrect 

behaviours in more detail in addition to assessing the consequences of those 

actions on both sample quality and throughput. Users in this study were asked to 

complete the scenario based on the information provided on the screen, revealing 

a high frequency of successful captures.   

While this study was to investigate the applicability of gathering positional data 

initially, the next study will begin to consider improving information feedback based 

on this novel assessment method. Tracking movements and actions of a user 

within a controlled environment have the potential to increase throughput and the 

quality of the biometric sample obtained. Conducting a usability assessment of this 

initial system has identified similarities to other systems while introducing a new 

methodology for performance evaluation.  

In summary, the chapter has contributed: 

 Foundations for the HBSI Automation Program, a system to automatically 

categorise a presentation made to a sensor 

 Results outline the effect on performance based on multiple variables 

such as user’s height, the sensor used and angle of the slope 

 A methodology to assess users position within a controlled environment, 

aiding the system’s ability to detect movements and presentations to a 

sensor before relaying task-specific instructions
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CHAPTER 6. FACIAL INTERACTION 

6.1 Introduction 

Facial interaction is the leading biometric used in border control scenarios and is, 

therefore, the main modality employed in implementations across the globe. The 

design, build, and the information displayed throughout the interaction process for 

these systems differ between vendor and country and maybe a confusing process 

for users. There are a number of recommendations and standards participating 

countries must adhere to; such as the quality of the image stored on the biometric 

passport and certain symbols used throughout the process. It is not known how 

much of an impact this information has on the interaction process. For instance, is 

there a difference in performance between variations of the system based on the 

information displayed during facial interaction? Some systems, such as the eGates 

in Heathrow, UK, display a mirror image of the user on the screen during capture. 

Other systems, such as the APC kiosks in the US offer simple pictorial information 

to ‘look at the camera’, pointing upwards to the camera built into the system. This 

chapter focuses primarily on building upon the success of the previous data 

collections using skeletal tracking methods to assess human-biometric 

performance within the facial biometric modality.   

One of the research goals of this study is to investigate the impact of information 

in facial biometric systems and uses skeletal tracking to enhance performance 

assessment further. There are three main categorical groups for information 

displayed within a system; icons by itself, icons with added text, and text by itself. 

Textual information is rarely used within border control scenarios due to the 

language barriers between countries, but for countries to the east, textual 

information may be more common.   

Information in this study is relayed as ‘dynamic’ feedback to the user, whereby their 

presentation is processed in real time by the Kinect Sensor and feedback is 

displayed based on individual elements of correct or erroneous interactions. For 

example, if the users head is tilted, outside of the acceptable region, then feedback 

will be produced on the screen to correct the user’s presentation. The analysis of 

the data captured will consider several additional variables such as; joint data, yaw, 

pitch, roll of the face presentation, wherever the eyes closed and the subject’s 

facial expression. 
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This implementation consisted of using skeletal tracking to automate the HBSI 

process further enabling a fully automated assessment based on user tracking. 

The overall design and build of this system were similar to the previous data 

collection, mimicking the size and layout of a self-service e-Gate without the use 

of barriers or gates.  

Facial Interaction can be assessed through many means; reporting on sample 

quality, time on task and usability assessments, which look at efficiency, 

effectiveness and user satisfaction for any given system.  

The biggest problem with non-standardisation between systems is the effect on 

acquisition. Face images captured by a system must meet requirements set by 

various ISO publications (as discussed in Chapter 2), but matching is widely led by 

the country and the designer of the system, which will choose a threshold for a 

quality that samples must meet.  

ISO/IEC JTC 1/SC 37 [128] [127] is the technical committee who develop the 

standardisation of biometric technologies. To date, there are 121 published ISO 

standards from the workgroup with 30 currently under development. The 

committee is made up of six working groups (WGs) that carry out standardisation 

in specific areas within biometrics. Table 61 reports on the current areas covered.  

Table 61: Working Groups within the ISO/IEC JTC 1/SC 37 Technical Committee 

WG Area 

WG1 Harmonised Biometric Vocabulary  

WG2 Biometric Technical Interfaces 

WG3 Biometric Data Interchange Formats 

WG4 Technical Implementations of Biometric 

Systems 

WG5 Biometric Testing and Reporting 

WG6  Cross-Jurisdictional and Societal Aspects of 

Biometrics  

 

The image captured during the border crossing process must match an enrolment 

image within a certain threshold, typically stored in an electronic document such 

as a passport. Algorithms are used to match the captured image against the 

enrolment image while completing other jobs: checking for fraudulence in the 
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reference image, checking the image against a watch list and internal databases. 

The outcome of the matching process is determined by the various factors such; 

the quality of the enrolled passport, which the ABC process cannot control, and the 

threshold for FRR and FAR rates and quality of the stored image. However, both 

factors differ from country to country and even between implementations used 

within those countries. The protocols for storing a passport image in one country 

may differ from another, and the image stored on the travel documents may have 

different static and dynamic properties from another countries passport. The focus 

for ABC systems then is to ensure that the captured image meets a required 

standard.  

The general approach to the face image format for border control systems requires 

developers to specify the required format of the image, compression and the best 

practices for taking images within that system.  

 

Figure 46: ISO 19794-5 Flowchart of Interchange Formats [34] 

 

ISO/IEC 19794-5 Biometric data interchange formats – Part 5: Face Image data 

[34] from WG3 describes the interchange formats for facial recognition systems. 

Figure 46 above details a flowchart for interchange formats as defined by 19794-

5. In brief, the requirements for face images used are as follows:
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 Basic: Specifies a record format and what image data to use. It does not 

detail a mandatory scene (environment), photographic or digital 

requirements 

 Frontal: A face record that adheres to additional requirements to the Basic 

standard which is appropriate for frontal face recognition (automated) and 

human examination (manual). Frontal photos then, must either be full or 

token: 

o Full: Includes the full head with all hair and in most cases, neck and 

shoulders. Full Frontal is the standard used for ePassports 

o Token Frontal: Specifies frontal images with a specific geometric 

size and eye positioning based on the width and height of the image. 

The images may be used in manual situations or for specific 

identification scenarios. However, this standard is typically not used 

in automated border control scenarios due to the specific geometric 

requirements that cannot always be replicated in different passports 

All frontal images, however, must adhere to specific requirements, namely: 

 Pose 

o Full-face frontal pose should be used. Rotation of the head should 

be less than +/- 5 degrees from frontal in every direction (yaw, pitch 

and roll) 

 Expression 

o Should be neutral (non-smiling) with both eyes open (not wide open) 

and mouth closed 

 Background 

o The background should be plain and contain no texture containing 

lines or curves that could cause problems when matching. 

Background should be a uniform colour or a single colour pattern  

 Lighting 

o No shadows or point light source (Flashes). Should be equally 

distributed across the face. Multiple or diffused balanced sources or 

other lighting methods can be used 

The enrolled image stored on the passport must also adhere to scene constraints, 

such as no hair covering the front of the face, no shadows, no sunglasses or glare 
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on glasses. Glasses, in general, are accepted as they if they do not obstruct the 

eyes. Hats and other accessories must also be removed. 

With these standards in mind, this data collection focuses on capturing images that 

adhere to addressing these standards in real time. Rather than through the 

traditional practice of capturing several pictures and assessing the quality of the 

image based on the best sample, the system proposed in this chapter will require 

the user to be presenting the required pose and expressional requirements for the 

capture process to begin. Background and lighting will be controlled and tested 

before trials, and all images will be assessed against the full-frontal standard to 

ensure conformity.  

Also, the way guidance and information during the transaction is displayed to the 

user will also be examined. There have been various research before on the impact 

of instruction and guidance within the interaction process [65] [63] [8] but largely 

from a non-automated environment. Although studies conclude that different types 

of feedback do have an impact on performance, to date there is no work on specific 

or ‘dynamic’ feedback that is adapted based on the user’s biometric interaction. As 

the information displayed on the screen changes between trials, results may 

indicate differences between scenarios and may offer an insight into future best 

practices.  

This chapter then, introduces the second data collection, using the Kinect sensor 

to assess, capture and process a user’s face image.  As discussed in Chapter 5, 

the Kinect sensor is an accurate, low-cost, RGB-D camera that can be used for a 

variety of scenarios. So far, the device has been used to measure the user’s 

position, pose and movement in both simple movements and through fingerprint 

interaction.  In this chapter, the ability to assess the face presentation is introduced, 

enabling the system to assess face pose and expression. 

HBSI Interaction assessment is fully automated, and data from the Kinect is cross-

referenced alongside traditional HBSI evaluation metrics. The impact of 

information through feedback is analysed and discussed.  

6.2 Data Collection 

A border control system using facial interaction is typically designed to match a 

captured image during the transaction process against a previously captured 
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image enrolled on a token such as an electronic passport. Both photos must meet 

ISO defined standards and meet a threshold when comparing the two images. 

Border control solutions may be automated or semi-automated, but in most 

situations, the system will involve the user walking to a camera, presenting their 

(face) image and waiting for a result before continuing through a gate or barriers. 

The data collection conducted in this chapter uses the HBSI assessment method 

to categorise performance of the system, looking at efficiency, effectiveness and 

to a degree, user satisfaction.  

The system used in this study is an enhanced version of the HBSI automation 

program used in Chapter 5. However, instead of collecting fingerprints through a 

secondary program, the HBSI program was configured to capture images by using 

a combination of skeletal tracking and image processing elements. Through this 

method, the face pose and body position can be tracked and analysed in real time.   

Section 6.2 presents the methodology used for this data collection, detailing the 

experimental setup of the system, the scenarios the users face and the settings for 

recording. The demographics of the users are discussed, and guidance, training 

and how the data is stored is also considered.  

6.2.1 Experimental Setup 

The hardware setup for this data collection consists of a Kinect V2 device, multiple 

web cameras, a PC and a display monitor. The scenario and layout were 

configured similarly to the Fingerprint Data Collection in Chapter 5. However, there 

were several differences, the first being the removal of the pedestal and the 

fingerprint sensors. The Kinect sensor was placed directly on top of the monitor 

instead of behind as it was in the previous data collection.  

Feet symbols were placed centrally in front of the kiosk, 1.6m away from the 

monitor, to indicate participants where to stand. The feet symbols measured 25cm 

in length. The use of feet symbols during facial interaction is crucial to capturing 

the biometric of a user as it dictates the range of the camera. There were no 

physical gates or barriers used for this collection due to the size of the room used. 

Figure 47 below demonstrates the layout of the room used for data capture. 

 A Logitech HD camera was placed on a tripod on the table for enrolment photos. 

Further information on enrolment images is discussed in Section 6.2.3.
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Two web cameras were configured to capture video footage of each trial to enable 

ground truth comparisons. Cameras were set up in the experiment (overview, C1) 

and above the feet symbols (feet view, C2). All video was captured in 720p.  

A white backdrop and a lamp were placed behind and in front of the Kinect, Sensor 

V2 to adhere to the environmental conditions for full frontal images. More 

information on the effect of this setup is discussed in Chapter 6.2.3.  

The Kinect V2 sensor was fixed on the top of the monitor which was measured to 

be 1.6m from the ground. The camera component of the Kinect V2 was positioned 

in the centre of the monitor. The sensor was angled downwards slightly at 10 

degrees to account for users of a slightly smaller height but remained within the 

recommended 43.5-degree optimal range. The tilt also enabled the sensor to 

detect the floor at all distances.  

 

Figure 47: Experimental Setup of the Face Interaction System 
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The camera component of the Kinect V2 was configured this way to comply with 

full frontal standard [34]. A range of images at different angles and monitor heights 

were captured and compared with a range of participants with different heights 

before selecting a final position. The position of the sensor also closely resembles 

many other systems where the camera is placed directly atop of the screen.  

6.2.2 Scenarios 

Each participant was required to attempt facial recognition a total of ten times. 

Users were allocated a group at random. Each group was designated a type of 

information that would be displayed on the screen. The three groups were; Text, 

Text and Icons or Icons by itself. Each user was required to complete five 

interactions from their allocated group in a random order as well five baseline 

scenarios. The baseline scenarios were based on current live implementations. 

Users were then allocated a random order to complete all ten scenarios to minimise 

the effect of order in performance as well as in user’s habituation. The user was 

not made aware of which order or what information they would be attempting on 

screen. The information displayed is detailed further in Table 62 below. 

Table 62: Scenarios and Information for Face Interaction System 

Scenario  Information  Specific Information  

BASE01 Baseline  Look at Camera Image (UK) 
BASE02 Look at Camera (US)  
BASE03 Mirror Image (UK)  
BASE04 Mirror Image with Text (US eGate) 
BASE05 Camera Icon with arrow pointing 

towards camera (EU eGates) 
ICONS01 Icons Large ISO Icons (centred) 
ICONS02 Small ISO Icons (centred) 
ICONS03 Large ISO Icons w/ Live Image 

ICONS04 Medium ISO Icons (Top) 
ICONS05 Medium ISO Icons (Bottom) 
TEXT01 Text English 
TEXT02 French 
TEXT03 German 
TEXT04 Japanese 
TEXT05 Czech 
ICONS&TEXT01 Icons & 

Text 
English & Small Icons 

ICONS&TEXT02 English & Large Icons 
ICONS&TEXT03 On Top 
ICONS&TEXT04 On Bottom 
ICONS&TEXT05 Large Icons/Small Text 
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The information presented to the user was considered ‘dynamic’, during the 

capture process feedback was displayed that adapted to the user’s presentation. 

The baseline group, however, displayed traditional ‘static’ information, where there 

was no assistance on the screen to correct erroneous presentations.  

Dynamic feedback, for this study, is defined as a reactive information through 

which the skeletal data and face pose is analysed in real time, and appropriate 

feedback is given. Dynamic feedback could include presenting guidance to the 

user in an attempt to address the following issues: 

 Tilt head left or right to correct Roll 

 Lift head up or down to correct Pitch 

 Face camera straight to correct Yaw 

 Remove glasses  

o Only if glasses were obstructing the cameras ability to take a picture  

 Remove Hat/Accessories  

o If detected (the system could not obtain 100% tracking for the joint 

due to occlusion) 

 Stop Smiling  

o To provide a neutral expression 

If all the conditions were met according to the Kinect based evaluation, then a 3-

second countdown was displayed. The system would then capture a series of quick 

photos (on average 5-6 images) over a two second period. Users were then 

instructed that the process was over and that they should exit the system.  

Non-baseline scenarios in this study displayed dynamic feedback in different ways, 

such as in; different languages (text), simple large or small icons, either on the 

bottom of the screen or on the top (icons) or a mixture of both (icons and text). 

Several scenarios included a live image with a combination of icons and text.  

The Baseline scenarios (BASE01-05) were based on the information displayed in 

real life implementations across the globe (e.g. EU eGates in the UK, Germany, 

Japan) and did not provide any form of dynamic feedback.  

Apart from the type of information and feedback displayed during the interaction, 

all other variables were kept the same throughout the transaction.  
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Figures 48 below displays some of the visual differences between several of the 

baseline scenarios.  

 

Figure 48: Difference in Scenarios for Face Interaction. Top Left: BASELINE01. Top Right: 

BASE0LINE2. Based on information in eGates (UK) 

 

6.2.3 Recording 

Most of the data was collected from the HBSI Automation package. The 

Neurotechnology MegaMatcher biometric SDK (from Chapter 5) was not used 

during data capture and was only used for post-processing purposes to check the 

quality of the image.   

The (HBSI Automation) Kinect package was developed by the Purdue University 

and University of Kent team. The SDK was updated to capture additional data 

using the Face Basics Package introduced by Microsoft in 2015 [146]. Face Basics 

can detect additional features by using image processing techniques such as; 

expression, wherever the user is wearing glasses, face pose rotation (yaw, pitch 

and roll) and wherever the eyes were open or not for each frame. The results were 

also logged in addition to the joint data as described in previous studies.   

Timing information, collected through time stamps, was previously collected from 

the Neurotechnology SDK in previous data collections but was captured from the 

HBSI Kinect program. Timestamps were printed for each frame and in a separate 

log file when each form was displayed. Timestamps are used to calculate timings 

(time taken to complete a task, overall time).  

Two Logitech HD C920 cameras were configured to record video footage of the 

experiment, allowing ground truth actions to be compared against automated HBSI 

categorisations. Specific behaviours and any other relevant information, such as if 

assistance was given, is registered as observation notes throughout the interaction 
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for each user (see Section 6.4) and compared to video footage after the 

experiment. A personal profile (not identifying the user) was collected and 

established for post-data capture analysis. See Table 63 below for further 

information on the data gathered. 

Table 63: Recorded Information for Face Interaction System 

Information Description Resource 

Timestamp –  
HH: MM: SSS.SS  

Printed and Exported to 
individual log file 
identified by a unique 
code and scenario 
number – processed 
when a form is first 
displayed 

HBSI Automation 
Kinect Package 

Face Image  Jpeg file HBSI Automation 
Behaviours/Movements 720p Video (.avi file) Logitech HD C920 
Personal Profile See Section 6.2.4 Questionnaires  
Kinect Data  See Section 6.3.1 HBSI Automation 

 

Subjects were allocated to a group at random (Text, Text and Icons or Icons). All 

guidance was presented on the same standing monitor as in Chapter 5. Users 

were presented a total of five forms/screens during the interaction. Each form 

represented a stage in the system (e.g. move to feet, look at screen, capture and 

process complete). Scenarios adapted icons and other symbols based on the 

ISO/IEC 24779-1 standards [127]. Each form was displayed at the start of the four 

critical tasks involved in the interaction process (Table 64).  

Table 64: Forms displayed in Face Interaction System 

Form Description 

Feet Form The form displays instructions requesting the user to 
move to the feet symbols. 

Ready Form  Displays instruction to the user to present their face to 
the camera 

‘Dynamic’ 
Processing Form  

Instructions that either 1) gave feedback to correct 
presentation or if presentation correct 2) to countdown 
to capture  

Captured Form Informs user capture is successful 

Trial Complete Form Informs user process is over and to exit system 

 

As discussed previously in the Behavioural Framework defined in Section 3.5, 

there were four behavioural led tasks to this data collection experiment. Token 

Interaction was not used during this study and so the third and fourth task 
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investigated the presentation and response to the result. Aligning these critical 

movements to our Behavioural Framework allows the breakdown of performance 

measurement at a task level. Table 65 below explains the behaviour led tasks and 

their associated variables for this experiment.  

Kinect Categorisations or Behaviours were recorded by the Kinect HBSI program 

and encoded with a numerical value to assist in statistical analysis. Results are 

assessed in the Kinect analysis section, 6.3.1. For Task 2, Biometric Read, specific 

errors were categorised, and a tally of the number of errors presented was 

collected. See Section 6.3.1 for further analysis.  

Table 65: Facial Interaction Tasks and Associated Variables 

Task  Related Variables  

Entry (1) – Movement from starting position to 
feet symbols 
Defined between FeetForm and ReadyForm 

Timestamp 1 
Kinect Categorisation  
 

Biometric Read (2) – The movement of 
presenting the face to the sensor 
Defined as the interaction between ReadyForm 
And CapturedForm.  
** Dynamic Form appears during this process 
relaying feedback to the user 

Timestamp 2 
Kinect Categorisation 
Kinect Specific Error  
 

Biometric Accept (3) – Response from System 
Defined between CapturedForm and 
TrialCompleteForm  

Timestamp 3 
Kinect Categorisation 

Exit (4) – Movement from system to starting 
position  

Timestamp 4 
Kinect Categorisation 

 

Table 66: Personal Profile and Task Evaluation for Face Interaction System 

Personal Profile  Task Evaluation  

Gender, Ethnicity Height, Age, 
Handedness 

Information 
Evaluation (1-5)  

Accessibility Results (1-5) 

Facial Images Captured Before Conclusion 
(Descriptive 
Feedback) 
 

ABC Systems Before, If yes, which 
modality 
Times Travelled, Travel 
Alone/Companions 
Illness, Hours of Sleep 
Accessories 
Temporal Illness (Burns, Cuts)  
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In addition to the performance analysis performed, a personal profile and task 

evaluation form were collected from users prior and after the data collection 

respectively. Personal profiles help to establish the user base and provide a scope 

on the data captured. Table 66 below describes the information collected from the 

Personal Profile, ABC Questionnaire and Task Evaluation forms. The information 

collected may provide an insight into differences in results between scenarios.  

The main goal of collecting data from both the personal profile and task evaluation 

forms was to build a ‘profile’ of users based on their demographic data as well as 

looking at some non-technical factors. The non-demographic information collected 

is discussed in Chapter 7, Future Recommendations. Section 6.2.4 discusses the 

demographics further while Section 6.3.2 HBSI assessment looks at the results 

from task evaluation questionnaire.  

Questions asked for Task Evaluation were based on a 1-5 Likert Scale with one 

being strongly disagreed, and five being strongly agreed. Users were asked ten 

questions regarding their use of the system:  

1. I was given enough information to complete the task 

2. I found the process easy to complete 

3. I completed the task without any difficulty 

4. The information provided clearly described what to do during the process 

5. It was clear when the process begun 

6. The prompts given on the screen were clear 

7. I was confused by the entire process 

8. The order of the capture process was clear 

9. It was clear when the process had been completed 

10. This experiment will benefit me when I use ABC systems in airports 

Face pose detected is achieved by the infrared component of the Kinect V2 sensor. 

The image is analysed through the camera in real-time, the head pose is deduced, 

and facial expressions can be collected. Embedded in the HBSI Automation 

program, data is collected on face rotations throughout the transaction. To enable 

a capture of the face image in Task 2, the rotation of the head must be less than 

±5-degree rotation in each direction. The rotations must stay within these limits for 

three seconds which is then followed by a series of quick captures. Once the 

countdown has ended, and the capture process has started, which takes roughly 

1-2s to complete, multiple images are taken of the face. There is a small possibility 
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that the pose may change if the user is distracted during this period, so the best 

image is chosen for matching.  

For analytical purposes, poses are ranked base on the rotations. Giving a ‘ranking’ 

to a pose enables a range of statistical tests to be conducted for data analysis and 

enables categorisation to be made.  For example, a presentation may have a 1-

degree rotation for both yaw and pitch, but roll rotation may be measured as 3 

degrees. While this is nearly a perfect presentation (the user is looking straight on 

with a slight tilt to the left or right), for this study, this presentation was given a 

‘good’ ranking, to account for the roll rotation. Table 67 below demonstrates ranked 

associations for face pose for this data collection. ISO specifications indicate any 

presentation within ≤ ± 5 degrees should be an acceptable sample for face 

matching.  In addition, for the face presentation to be a rank 3 presentation or 

above; tracking elements required the eyes to be open, the mouth closed and the 

body skeleton within the required range of the camera. During initial testing, 

however, the mouth closed/no smiling expression had a poor accuracy of 68% (of 

ten users tested) and so was not used for analysis in this study.   

Table 67: Yaw, Pitch and Roll Rankings for Facial Interaction (Dark grey rows refer to 

accepted presentations) 

Rank Association Yaw Pitch Roll 

1 Perfect < ± 1 < ± 1 < ± 1 

2 Good < ± 3 < ± 3.5 < ± 3.5 

3 Acceptable ≤ ± 5 ≤ ± 5 ≤ ±5 

4 Unacceptable > ± 5 > ± 5 > ± 5 

5 Poor > ± 7.5 > ± 7.5 > ± 7.5 

6 Very Poor >± 10 >± 10 >± 10 

 

Throughout the data collection, users were asked seven questions relating to the 

information they had just received during the scenario. The questions asked were: 

1. Was it clear when the task was begun 

2. Was clear when to face camera for capture 

3. Were the on-screen instructions clear 

4. Was it clear how to position to the camera 

5. Was it clear when the capture process was complete 

6. Was it clear what the result was 

7. Are you confident you completed the face capture process as intended 
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Each user answered either yes or no before continuing. Results are discussed in 

Section 6.3.2.1.  

6.2.4 Users 

Sixty participants (28 men and 32 women) were recruited without any special 

requirements. The only condition for taking part was that users must be over the 

age of 18 (a requirement to use ABC systems) and able to speak English.  

Forty users were aged between 18-24 years old; eleven are 25-34, three 35-44, 

five are 45 to 54 and one person is between 55-64 years old.  

Looking at the diversity of the participants, thirty-four of the participant’s primary 

language was English. Four users were Italian, and three were Spanish. Nineteen 

users were from different parts of the globe such as Hong Kong, Iran, France and 

Slovakia.  

None of the users had any issues regarding accessibility. Eleven participants were 

wearing glasses before the experiment began. Four participants were wearing 

daily contact lenses, and five users were wearing scarves. Users wearing glasses 

were asked to remove them for the enrolment but not for the verification stage of 

the trial. 

Ten participants had reported that they were suffering from a temporary illness 

such as cold and headaches before the trial started. However, none of these 

factors were likely to have a significant effect on a presentation.  

Users were also asked if they had used an ABC system previously and wherever 

they had a passport style photo taken within the last year. Twenty-two participants 

stated they had not had a passport style photo taken while 38 users did. Regarding 

wherever participants had used an ABC system before, 39 users had while 21 

stated they had not.  

On average, users had slept 7.24 hours the night before which might signify that 

the users may be well rested and are alert; a possible contrast to real users in ABC 

systems.  

6.2.5 Guidance and Training 

Participants were asked to read the Participant Information Sheet (PIS), which 

explained the purpose of the study in addition to confidentiality issues such as 
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where their facial images were stored and how long each sample would be saved 

for on storage.  

Upon the completion of the consent form paperwork, the researcher enrolled a 

passport style photo on a Logitech HD camera.  

During the experiment, each participant was asked to follow instructions on the 

monitor and was instructed not to ask for any further information from the 

researcher. Users were instructed that they might only ask questions if they were 

completely stuck.  

The researcher maintained a record log of any assistance that was required 

throughout the experiment.  

Users were only allowed one attempt per scenario. As the system was built to 

correct erroneous presentations, through HBSI assessments the only errors that 

should be categorised are Failures to Acquire and Defective Interactions.   

6.2.6 Data Storage  

At the end of each trial, the facial image was saved to a secure, local drive and the 

timestamp of when each form was displayed was saved to a log file in a text 

document. Each face image was given a unique identifier to keep anonymity.  The 

database was of a sensitive and personal nature. Hence, it was stored on a secure 

server where access to the database was limited to the investigator. The size of 

the database after the images and video footage was deleted after the data 

collection.  

6.3 Performance Analysis  

Performance analysis will be split into two categories; Kinect and HBSI 

Assessment.  The main objective of the analysis is to determine the impact of 

information given through guidance on the screen on the transaction and if the 

introduction of face tracking throughout the interaction can highlight any 

performance issues.  

As before, performance analysis will focus on the four critical tasks. The only tasks 

that have a change in the required behaviours are Task 2 and 3, Biometric 

Presentation and Read, which focused on a facial interaction rather than the 

fingerprint presentation. Table 68 below details more information on the task, its 

definition and an expected behaviour from a user. 
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Table 68: Task Breakdown and Expected Behaviours for Face Interaction System 

Task Definition Expected Behaviour 

1 Start of the transaction (entry) – user 
moves towards feet symbols on the 
floor and stands within the 
designated area 

User stands on feet 
symbols, looks at screen 
awaiting further instruction 

2 Information is displayed on the 
screen requesting the user to 
present their face to the camera 
(biometric presentation). 

User stands still and looks 
at the camera, remaining 
still 

3 Information on the screen confirms 
successful capture, processes the 
sample and displays result 
(biometric read).  

The user should continue 
to watch screen looking for 
information. In real 
scenarios, may grab bags 
etc. 

4 Systems display information to 
confirm trial is over and to move 
forward – end of the transaction 
(exit) 

User moves way from feet 
symbols back to the 
starting area  

 

6.3.1 Kinect Analysis 

Following from Chapter 4 Kinect Analysis and Chapter 5 Fingerprint Interaction, 

the concept of tracking states and performance analysis using the Kinect sensor 

has previously been defined and studied. Results from these chapters have proven 

the Kinect’s ability to track a single user within a self-service environment with a 

high-level of confidence that the movements pertain to the user. The data collection 

introduced in this study will focus on facial interaction and will further explore critical 

and associated tracking joints for behaviours tracked throughout the four critical 

tasks. Furthermore, face tracking elements such as the yaw, pitch, and roll rotation 

will be analysed in further detail, analysing how users present themselves to the 

sensor during the interaction. Tracking states and accuracy tests will be compared 

against the benchmark set in previous data collections.  

6.3.1.1 Definitions 

To achieve a Successfully Processed Sample, the ideal HBSI result, the four 

critical tasks are required to be completed successfully in order. In summary; the 

user must move towards the feet symbols, follow instructions on screen, look at 

the camera and upon instruction, and leave the designated area. Table 69 below 
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details the definition of tracking for each task, identifying critical and associated 

joints that are tracked and analysed in real time.  

Although this task did not require any specific movements of certain limbs for 

biometric interaction, such as the right-hand movement tracked in fingerprint 

interaction, it did require users to look at the camera for face capture. In addition 

to these joints, face tracking elements; yaw, pitch, roll and expression were 

considered. These variables, while not technically joints, will be referred to as 

‘critical’ points for this study. The required 3D space coordinates are also stated. 

See Table 69 for more information.  

Table 69: Behaviour Definitions for each task for the Face Interaction System 

Task  Definition Coordinate Critical 
Joint 

Associated 
Joint 

1  The user should be 
standing still on feet 
symbols 

Z  Hip Left, Hip 
Right 

Spine, Shoulders, 
Neck and Head 

2  User is following 
instructions on 
screen (dynamic 
feedback) and is 
facing camera 

X, Z Head, Neck 
 
Yaw-Pitch-
Roll* 
Expression 

ShoulderLeft, 
ShoulderRight, 
SpineTop, 
SpineMid 

3 Feedback informs 
user of successful or 
unsuccessful capture  

X, Z Head, Neck 
 
 

ShoulderLeft, 
ShoulderRight, 
SpineTop, 
SpineMid 

4 User should the 
designated area  

Z  Hip Left, Hip 
Right 

Spine, Shoulders, 
Neck and Head 

*Not joints but are critical to this step  

Associated joints should have a fully tracked status to ensure a higher degree of 

accuracy in critical joints. However, there are no set requirements on where these 

should be positioned in the scenario.  

6.3.1.2 Tracking States 

Looking at individual joints further, Table 70 details the percentage of fully tracked 

joints per task for all users across all scenarios.  

Observing the data, all critical and associated joints achieved fully tracked status 

for each of their respective tasks. Fully tracked critical joints testifies that the Kinect 

sensor was accurately tracking users within this scenario with a ‘high’ confidence 

level in the data 
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Table 70: Percentage of Fully Tracked Joints across all Tasks for Face Interaction. (Dark 

grey refers to critical joints and lighter grey associated) 

Joint Task 1 Task 2 Task 3 Task 4 

Head 100% 100% 100% 100% 
Neck 100% 100% 100% 100% 
ShoulderLeft 100% 100% 100% 100% 
ShoulderRight 100% 100% 100% 100% 
ElbowLeft 100% 100% 98.74% 100% 
ElbowRight 100% 98.75% 97.69% 100% 
WristLeft 96.58% 89.87% 92.55% 96.25% 
WristRight 100% 91.11% 93.57% 100% 
SpineTop 100% 100% 100% 100% 
SpineMid 100% 100% 100% 100% 
SpineBase 88.89% 100% 98.77% 97.58% 
HipLeft 100% 100% 100% 100% 
HipRight 100% 100% 100% 100% 
KneeLeft 34.11% 32.58% 30.33% 41.58% 
KneeRight 33.25% 28.58% 31.13% 40.25% 
HandLeft 74.58% 100% 91.58% 68.56% 
HandRight 70.22% 100% 100% 64.68% 
FootLeft 10.58% 5.58% 6.11% 13.21% 
FootRight 11.25% 4.58% 5.58% 12.55% 

 

Furthermore, the analysis in this section focuses heavily on the face pose, through 

analysing the yaw, pitch and roll of a presentation. While face movements may 

change drastically throughout a presentation; the sensor does not measure these 

elements the same way as joints. Face tracking is only enabled when the head 

joint is fully tracked, reporting on a continuous number referring to the degree of 

rotation.  Figure 49 below details the mean yaw, pitch and roll recorded for all users 

and scenarios across the four tasks 

 

Figure 49: Mean Yaw, Pitch and Roll Rotations across all the four tasks for Face Interaction  
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As Figure 49 demonstrates; yaw, pitch and roll remained relatively consistent 

across all tasks. The average results demonstrate that users were typically 

exhibiting a good presentation and were looking towards the camera and monitor 

for information. For Task 2, biometric interaction, all three rotations improved 

during facial interaction before falling significantly for Task 4: exit, which was to be 

expected when users are turning and walking away. Although this data was an 

average of all users who are of different heights and sizes, a further analysis 

throughout this chapter will determine if other variables affected the captured face 

pose rotations.  

6.3.1.3 Critical Tasks 

The Behavioural Framework, as described in Section 3.5, breaks down 

the critical tasks involved in the interaction process at a level where identifiable 

behaviour can be tracked by the Kinect device. An analysis of the actions recorded 

will provide insight into the movements users naturally make throughout an 

interaction and wherever these have a significant impact on performance.  

Like the Fingerprint Collection, the Kinect was configured to detect certain 

behaviours based on joint locations and image processing elements for each task 

as described in Section 6.2.3. The definition of the behaviour was logged to a 

record file with a timestamp for each task. Task 1 and 4 were almost identical to 

Task 1 and 4 from the fingerprint study concerning the movement the user makes 

towards the system. However, the Z-depth location changed slightly to account for 

the new system setup (feet symbols were placed slightly further away to achieve 

the requirements for a face image). Task 2 and Task 3 behaviours changed from 

a focus on right arm movement to facial position, with emphasis on the face pose.  

Task 1: Entry 

Participants were required to move forward and stand on feet symbols which were 

directly placed in front of the monitor. Instructions based on ISO standards were 

displayed on the monitor. See Figure 50 for an example of an icon displayed on 

the screen.  
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Figure 50: Feet Symbols used for Task 1: Entry  

Table 71 below details the behaviour recorded and the Kinect definition for Task 1: 

Entry. Each OFEET or RFEET code (a cautious or undesired behaviour) was 

logged for each frame until a GFEET code was achieved. Dynamic feedback 

instructed users to either move either backwards, forwards or to the left or right if 

the desired position had not been achieved.   

Table 71: Behavioural Framework for Task 1: Entry for Face Interaction 

Code Behaviour Kinect Definition 

GFEET01 The user approaches feet symbols and 
aligns feet correctly on the symbols. 

HL & HR Z <= 1.6m 
&& >= 1.35m 

GFEET02 The user approaches feet symbols and 
feet are very slightly (2-5cm) off the feet 
symbols. 

HL & HR Z <= 
1.65m && >= 1.3m  

OFEET01 User is slightly off centre HL & HR X>= ±.05 
&& Z <=1.65m && 
>= 1.3m 

RFEET01 User is in front of the feet symbols HL & HR Z <= 
1.35m 

RFEET02 User is behind the feet symbols HL & HR Z > 1.65m 
&& <=2.0m 

RFEET03 The user has not moved to feet symbols 
and is standing still. 

HL & HR Z >= 2.8m 
&& No variance 

 

Where users are standing will have a larger impact on facial interaction. Standing 

too close or too far from the camera will make capture difficult. Although this system 

can detect the body in real time and relay information to the user by either asking 

them to step forwards or backwards (RFEET01 and RFEET02), problems can still 

occur. The most problematic error could be RFEET03, which may indicate that the 

user is distracted or confused on what to do. Identifying this in a real-time scenario 

could prompt extra assistance for a border guard through flagging procedures. 
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Table 72 below details the categorisation of the final behaviour recorded at Task 

1: Entry.  

Table 72: Observed and Tracked Behaviours for Task 1: Entry in the Facial Interaction 

System 

Task 1 (Entry) 

 Observed Kinect 
Behaviour N % N % 
GFEET01 554 92.3 552 92.0 
GFEET02 44 7.3 48 8.0 
RFEET01 2 0.3 0 0.0 

 

Of the 600 transactions, 37 transactions (6.1%) relayed dynamic information, 

requesting the user to either make an additional movement backwards, forwards, 

left or right. Baseline scenarios did not relay dynamic information to the user. All 

scenarios resulted in the user being in the correct position as determined by the 

Kinect.    

Task 2: Biometric Capture  

The capture process for Facial Interaction relies on two parts; 1) where the user is 

standing and their posture. Users should be standing upright looking forward 

towards the camera and 2) the head presentation, measured through the yaw, pitch 

and roll rotation. The eyes should be open and users should have a neutral 

expression.  To begin this task, the user must be standing within the feet symbols, 

if any movements were detected, information requested the user to correct their 

position before continuing.  

Table 73 below details the classification of the face presentation that was tracked 

for Task 2. The requirements for those movements are also detailed and require 

the head joint to be in range as well as a required rank presentation to form the 

behaviour code. See Section 6.2.3 for rankings in face rotation.  

A very high percentage (93%) of presentations for this task was classified as 

‘good’ interactions. Immediately recognising a good presentation to the camera 

should indicate that users are receiving the information correctly. Once an 

interaction was considered as a GFACE behaviour, the capture process could 

begin.  A countdown began on screen, counting down from 3 seconds.  

A successful countdown indicates the start of Task 3. 
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Table 73: Behavioural Framework for Task 2: Biometric Capture for Facial Interaction 

Code  Behaviour  Kinect Definition 

GFACE01 
 

Ideal presentation. Straight face 
pose and little to no movement 

Rank 1 Presentation 
Head Z <1.60m && >= 
1.35m 

GFACE02 Good presentation. Straight face 
pose, with little to no movements 

Rank 2 Presentation 
Head Z <1.65m && >= 
1.30m 

OFACE01 Looking to the side/up/down very 
slightly that might affect capture  

Rank 3 Presentation 
Head Z <1.65m && >= 
1.30m 

OFACE02 Minor movements in rotation that 
might affect capture  

Rank 4 Presentation 
 

RFACE01 
 

Some noticeable movements 
during capture (e.g. looking to 
side slightly) 

Rank 5 Presentation 
 

RFACE02 Severe noticeable movements 
(e.g. looking down, looking away)  

Rank 6+ Presentation 
 

 

Table 74 reports on the frequency of tracked behaviours for the Facial Interaction 

System.  

Table 74: Tracked Behaviours for Task 2: Biometric Read in the Facial Interaction System 

Behaviour N Percent 

GFACE01 523 87.3 
GFACE02 34 5.7 

OFACE01 17 2.8 
OFACE02 0 0 

RFACE01 20 3.3 
RFACE02 5 0.8 

 

Twenty-five interactions (4.1%) were considered as an ‘incorrect’ interactions 

(RFACE). However, these were corrected using the dynamic feedback system. To 

advance to Task 3, presentations were required to be considered a ‘correct’ 

interaction, so appropriate information was given to users to help them adjust their 

presentation. Through this system, there were no issues at this stage, and all users 

(100%) advanced to Task 3. Specific errors captured during this stage using the 

Kinect tracking is assessed in Section 6.3.2 HBSI Assessment.  

Face Presentations are broken down further by information group. Table 75 details 

the frequency of classifications per group for Task 2.



 

180 
 

Table 75: Face Classifications for Task 2 by Information Group 

Information Behaviour N Percent 

Baseline GFACE01 256 88.9 
GFACE02 14 4.9 
OFACE01 8 2.8 
RFACE01 10 3.4 

Icons GFACE01 93 92.0 
GFACE02 5 5.0 
OFACE01 1 1.0 
RFACE01 2 2.0 

Icons & Text GFACE01 81 81.0 
GFACE02 10 10.0 
OFACE01 4 4.0 
RFACE02 5 5.0 

Text GFACE01 93 84.5 
GFACE02 5 4.5 
OFACE01 4 3.6 
RFACE01 8 7.4 

 

Task 3: Biometric Accept  

Biometric Accept, for this system, takes place during the sub-system capture 

process. Successful capture presented a green tick on the screen after the 

countdown process displayed in Task 2. Unsuccessful captures were presented 

with a red cross. This task is primarily assessed on the overall quality of the image 

captured and the time taken to capture. However, Kinect tracking was still enabled 

for this task and the data captured measured if the user was standing still, to 

measure if participants were waiting for the next instruction. This mimics a border 

control system which will display information after successful matching to indicate 

that the user is free to pass through the barrier/exit the system.  

This task will then focus on user position through looking at Hip Placement (where 

users are standing) and Head Position (are users still looking at the screen during 

post-capture) like the two previous tasks. Table 76 below detail the requirements 

for tracking for Task 3.  

Table 77 details the behaviours tracked by the Kinect sensor and observed by the 

researcher. Twenty-four of the interactions failed at this stage due to Failure to 

Detect and Failure to Process errors (discussed in Section 6.3.2) and therefore 

were not processed by the Kinect sensor. No users moved before the system 

displayed the next piece of information. 
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Table 76: Behavioural Framework for Task 3: Biometric Accept for Facial Interaction System 

Code Observed Behaviour Kinect Definition 

GPOS01 User is standing still and 
looking at camera waiting for 
further instructions 

Head, Hip L and Hip 
R Z <1.65m && >= 
1.35m 
Rank 1-3 Presentation 

OPOS01 The user is getting ready to 
move, but still standing in the 
same area. Not necessary 
looking at the camera 

Head, Hip L and Hip 
R <1.65m && >= 
1.30m 
Rank 3+ Presentation 

RPOS01 User is moving away from 
system before process has 
completed and information has 
changed on screen 

Head, Hip Left and 
Hip R >1.65m 
 

 

Table 77: Observed and Tracked Behaviours for Task 3: Biometric Accept for the Facial 

Interaction System 

Task 3 (Face) 

 Observed Kinect 
Behaviour N % N % 
GPOS01 575 95.80 555 96.68 
OPOS01 25 4.16 19 3.30 
RPOS01 0 0 0 0 

 

Task 4: Exit  

This task occurred after the interaction process (Task 2-3) had been completed 

and information had been displayed to the user depicting successful or 

unsuccessful capture. In either case, the user is expected to leave the station and 

return to the starting position. Table 78 details the behaviours below. 

Table 78: Behavioural Framework for Task 4: Exit for Facial Interaction 

Code Observed Behaviour Kinect Definition 

GLE01 The user leaves the station Hip Joints Z 
>=1.60m 

RLE01 The user does not leave the 
station/does nothing 

Hip Joints Z < 
1.60m  

 

Table 79 Observed and Tracked Behaviours for Task 4: Exit for the Facial 

Interaction System. Again, all behaviours were classified correctly for this short 

study. 
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Table 79: Observed and Tracked Behaviours for Task 4: Biometric Accept in the Phase 1 

Data Collection 

Task 4 (Exit) 

 Observed Kinect 
Behaviour N % N % 
GLE01 600 100 576 100 
REL01 0 0 0 0 

 

The ability to track critical tasks throughout a transaction has advantages in 

tracking specific behaviours or actions. Desired actions will lead the user through 

to the next task or stage of a system, and can positively impact system 

performance through on-the-spot training and improve presentation errors and 

thereby increase the likelihood of successful capture and subsequent verification 

or identification.  

6.3.2 HBSI Assessment 

The HBSI model is used to evaluate both system performance and individual 

transactions by looking at a range of correct and incorrect presentations made to 

a sensor. The Kinect V2 sensor analyses the interaction based upon the four 

defined tasks and allocates a weighting to the behaviour based on the impact on a 

potential presentation.  

6.3.2.1 Presentation Framework 

The application of the skeletal tracking system with the Kinect device enabled HBSI 

presentations to categorise interactions in real time based on body movements 

and face positions. 

The HBSI Automation system was configured to assess movements for each of 

the four tasks like the system used in Chapter 5 Fingerprint Interaction, but 

changing requirements for Task 2 and 3 from a right arm movement to a face 

presentation. Each task specified certain conditions that the Kinect was searching 

for, e.g. the position of the hip joint and elements of a facial presentation within 

fixed parameters. The parameters and the score allocated to each task is defined 

in Table 80 below.
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Table 80: HBSI Scores for each task for Facial Interaction 

Task Control Limit Score 

1 Z-Distance for Hip Left/Right < 1.65m & >1.35m 1 

2 Head & Neck Joint = Z < 1.6m 
Yaw-Pitch-Roll = ± 5-degree rotation (Rank 3 or 
better) 

3 

3 Head & Neck Joint = Z < 1.6m 
Yaw-Pitch-Roll = ± 5-degree rotation (Rank 3 or 
better)  

1 

4 Z-Distance for Hip Left/Right >1.6m 1 

 

HBSI categorisations follow the same formula introduced in Chapter 5, Section 

5.3.2. The system requires two components for a classification; a score obtained 

from the behavioural tasks and either the presence or absence of a facial image. 

A combination of an image and score of 4 or above resulted in an SPS. Failures 

were reported for each task (Task 2 was a FTD presentation, Task 3 FTP). Table 

81 details the manual and automated classifications for Facial Interactions. 

Table 81: Manual and Tracked HBSI Categorisations for Facial Interaction 

 Observed Kinect 

HBSI N Percent N Percent 
CI 0 0.0% 0 0.0% 
DI 2 0.3% 0 0.0% 
FTD 22 3.6% 22 3.7% 
FTP 2 0.3% 2 0.3% 
SPS 574 95.6% 576 96.0% 

 

Automated HBSI categorisations for this data collection resulted in a very high 

amount of correct interactions through identifying a high number of Successfully 

Processed Samples (96.0%) with just 24 interactions resulted in either through a 

failure to acquire or process. There were two manual observations of a Concealed 

Interaction (Incorrect presentation but accepted as a correct) where users were not 

looking directly at the camera during capture. Through post-analysis, the users 

were slightly looking away in both cases.  

However, the system accepted these two presentations as correct and did not 

record Defective Interactions or Concealed Interactions. Reviewing video footage 

both users gave an incorrect presentation but looked away during capture. The 

absence of many other CI and DI classifications was because the system required 

users to present a correct presentation to the system. Incorrect presentations were 
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analysed in real time, and appropriate feedback was given to ensure correct 

presentations.  

6.3.2.2 Evaluation Framework  

This section reports on the HBSI evaluation framework component, identifying 

metrics in efficiency, effectiveness, user satisfaction and sample quality.  

6.3.2.2.1 Efficiency 

Through HBSI Classifications, 574 presentations (95.6%) were completed and 

marked as a Successfully Processed Sample (SPS) on a first attempt. Two 

presentations were accepted as completed automatically by the system but should 

have resulted in a reject and requested the user to re-attempt their interaction. 

However, these presentations were altered during the capture sequence, which 

the system automatically began after assessing correct presentation. Twenty-four 

presentations failed to process correctly, which all occurred due to a system failure 

during Task 3. This was a mixture of Failure to Detects and Failure to Process 

through system generated errors. As stated previously, users were only given one 

attempt per scenario and were not allowed to repeat even if the system crashed.  

A major advantage of using ABC systems is its ability to increase throughput for 

travellers crossing a countries borders. The average time taken to cross the border 

via manual control is on average 32 seconds [104] while automated systems take 

on average 17 seconds to complete a transaction [31] [52]. Although systems differ 

in the method time taken to capture is measured, typically a transaction time is 

reported between the moment a user steps inside the gate to the point in time the 

exit gate opens. Time Taken to Capture then, is for the time taken to complete an 

interaction with a sensor. This measurement may change between system due to 

design and vendor but in all cases, the time taken to complete an interaction is an 

indication of how quickly users are proceeding through the process.  

Timestamps were captured for the following events throughout the data collection: 

 1) System Started 

 2) Kinect Recording  

 3) Information Shown (Task 1) Feet Symbols    

 4) Information Shown (Task 2) Dynamic Feedback 

 5) Information Shown (Task 2) Capture Sequence 

 6) Image Captured (Task 3) Captured 
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 7) Thank You (Task 4) Completed 

Time Taken to Capture is measured between Task 2 and Task 3, more specifically 

between Dynamic Feedback (4) and Image Captured (6) events.  Table 82 below 

details the descriptive statistics for Time Taken to Capture based on the 

information displayed to the user.   

Table 82: Time Taken to Capture for Facial Interaction 

Type of Information 
Displayed 

Mean Median Minimum Maximum 

Baseline 7.47s 6.22s 4.85s 12.34s 

Icons 6.92s 6.23s 5.12s 22.14s 

Icons & Text 8.82s 6.22s 5.15s 15.65s 

Text 7.85s 6.23s 5.22s 13.02s  

 

Results indicate that information with icons only provided the best results. Users 

who completed the Icon scenarios took an average of 6.92s to complete the task, 

saving almost two seconds of Icons & Text which took the longest to complete at 

8.82s. Baseline information, which is based on the information provided in live 

scenarios, performed somewhat in the middle, close to results from other systems 

[77] [7] [104]. It was expected that the addition of dynamic feedback for non-

baseline groups would decrease the time taken to capture, but it is possible that 

presentations took longer to capture because of the time taken by users to 

understand the displayed errors. Feedback from users did indicate that the 

scenarios that used a form of text took extra time due to the additional time required 

to read and understand the information that was displayed. Indeed, scenarios in 

the text group were in different languages, so a larger time on task was to be 

expected.  

A Welch T-Test was conducted to investigate the impact of the type of information 

against the baseline group. Each participant was allocated to a ‘group’ based on 

either icons, icons and text, or text. Participants were compared to a different group 

to ensure that the assumptions of the test were met. Results indicate a difference 

with a between-subjects design and are displayed in Table 83 below. 
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Table 83: Welch T-Test results for Time Taken to Capture Differences between Information 

Groups 

Group t df p 

Icons 1.921 329.79 .167 

Icons & Text 2.298 113.13 .132 
Text 0.58 208.37 .809 

 

Table 83 details the results from the test which indicates that there was no 

statistical significance between the adaptive information to the baseline groups for 

time on task. However, this simply accounts for all users and scenarios and not for 

any specific information displayed.  

The focus of this study was to investigate the impact of different types of 

information on the transaction process. The four groups consisted of different 

scenarios within, forming subgroups for information. For example, three groups 

each contained a single scenario which displayed a live mirror feed to the user. 

Other groups contained variances of larger or smaller icons and text or relayed 

information towards the top or bottom of the screen. Therefore, a statistical analysis 

is conducted in the next section which investigates if there were any significant 

differences between these types of scenarios.  

Several set-ups include a live image or ‘feed’ of the user during the transaction. 

The general purpose of displaying the feed is to provide a visual basis for users to 

make their presentation. While there is no research to back this hypothesis up, the 

survey presented in Chapter 2 demonstrated that 24% of configurations displayed 

a mirror or live image feed during the transaction.   

Three groups each contained one scenario which contained a live feed during the 

transaction. Table 84 below demonstrates the overview of results for time on task 

for scenarios that used a live-image against scenarios with non-live images.  

 

Table 84: Descriptive Statistics for Time taken to Capture for Live and Non-Live Scenarios 

for Facial Interaction 

Type of 
Information 

N Mean Median Minimum Maximum 

Live Image 168 7.39s 6.24s 4.85s 36.14s 
Non-Live Image 408 7.82s 6.22s 5.15s 56.21s 
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Studying the results further, a paired samples T-test was conducted to determine 

if there was a statistically significant difference between the inclusion of a live 

image compared to a non-live image.   

As there were only three scenarios that included a live image, paired comparisons 

were made against the closest matching scenario within that group. For example, 

if the other information such as text or icons and text were in a similar position. The 

baseline scenario was compared to its UK counterpart. Table 85 reveals the results 

below.  

Table 85: Paired Sample T-Test Results for Live and Non-Live Image Scenarios 

Live Image Scenario Non-Live Image 
Scenario 

t df p 

BASE03 BASE01 .639 112 .524 
ICONS03 ICONS01 -2.37 36 .023 
ICONS&TEXT03 ICONS&TEXT01 -4.78 41 .636 

  

Results indicate a significant difference in the means for time to capture for the 

system displaying a live feed with icons and against a non-live feed version with 

just icons. Both scenarios displayed icons along the top side of the screen, which 

was directly below the camera. The non-live scenario had larger icons to 

compensate for space. However, the size of the live feed image filled roughly 80% 

of the screen size. Icons displayed at the top of the screen is more likely to benefit 

users who are making incorrect presentations while focusing on the camera. The 

average difference between these scenarios was 1.34s. However, other similar 

comparisons did not draw significant results which suggest a live feed does not 

necessarily benefit users within a transaction.   

Similar dependent T-tests were conducted for other group comparisons to be 

made. Table 86 details descriptive statistics in time to capture between groups with 

large icons/text and small icons/text. 

Table 86: Descriptive Statistics for Time to Capture for large icons/text and small icons/text 

for Facial Interaction 

Type of Information N Mean Median Minimum Maximum 

Large Icons/Text 90 6.58s 5.95s 4.88s 8.56s 
Small Icons/Text 90 7.74s 6.23s 5.21s 10.32s 
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Large icons/text resulted in a slightly faster average when recording time is taken 

to capture. Comparing similar scenarios, Table 87 details results for information 

with bigger icons/text against their smaller counterparts.   

Table 87: Paired Sample T-Test Results for Large and Small Information for Face Interaction 

Large Information Small Information t df p 

ICONS01 ICONS02 -2.54 36 .002 
ICONS & TEXT 02 ICONS & TEXT 01 -3.78 38 .432 

 

Table 88 details results for information displayed on the bottom of the screen 

against the top. 

Table 88:  Descriptive Statistics for Time taken to Capture for Large Icons/Text and Small 

Icons/Text for Facial Interaction 

Type of Information N Mean Median Minimum Maximum 

Top Icons/Text 90 6.58s 5.95s 4.88s 8.56s 
Bottom Icons/Text 90 7.74s 6.23s 5.21s 10.32s 

 

Information provided at the top of the screen performs slightly better by almost a 

full second. A paired sample T-Test reveals if this was a significant effect or not 

between matching scenarios within the same information groups. Table 89 reports. 

 

Table 89:  Paired Sample T-Test Results for Information displayed at the Top and Bottom of 

the screen for Face Interaction 

Information Top Information Bottom t df p 

ICONS04 ICONS05 -1.94 36 .001 
ICONS&TEXT03 ICONS&TEXT04 -4.28 38 .325 

 

Results indicate that there was a significant difference between information with 

icons on the top against icons along the bottom of the screen. Adaptive information 

was displayed just below the camera, in the direct eyesight with the camera so did 

not require the users to adjust their face pose.  

6.3.2.2.2 Effectiveness 

The Kinect system can adapt to the user's presence and therefore this had a 

significant effect on completion rate. Completion rate is calculated as a percentage 

of tasks completed out of the possible 600. As the HBSI assessment stated, 574 

interactions were completed which resulted in a 95.6% task completion rate.  
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As this system was fully automated, there were no recorded assists from the 

observer during the data collection. Errors were recorded through the HBSI system 

and automatically processed based on detecting joint and face movements outside 

of the desired regions.  

While this research has explored the ability to automate errors, it is crucial to 

understand if the impact of being able to classify these errors in real time can 

improve system performance. Understanding the relationship between errors and 

time taken to complete a task will be key in going forward to developing new 

implementations.  

The total number of errors observed for each transaction was tracked by the sensor 

and confirmed through observations and video footage. Like the data captured in 

Chapter 5, Fingerprint Interaction, errors were defined as when an undesirable 

behaviour was performed during the interaction. These errors could have an impact 

on the user’s interaction and be therefore tracked and processed through the HBSI 

system. As stated in Kinect Analysis, Section 6.3.1, the overall presentation was 

allocated a code based on the final presentation (GFACE01 etc.) made to the 

sensor, however, the number and what type of errors were also tracked.  

Table 90 below defines all possible errors that were captured during Task 2: 

Biometric Read. When an error was identified, dynamic feedback was displayed to 

correct the incorrect presentation. Some errors may have a larger impact on the 

performance than others. For example, displaying feedback for users who are not 

looking toward the camera or turning their head away will likely cause a greater 

time taken to complete the task.  

To investigate further, several relationships are assessed. The quantity of errors 

against time on task is investigated, with a hypothesis that more errors totalled will 

have a greater impact on time. Table 91 below details the overall number of errors 

that occurred during a single task for all scenarios. 
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Table 90: Possible Errors and their associated sources for Facial Interaction 

Possible Error Kinect Tracking Confirmation  Potential Impact  

Wearing Glasses Image 
Processing  

Final Image Low-Medium. 
Depends on glass 
frame  

Not standing on feet 
symbols 

Body Tracking Video Feed Low-High  

Rapidly turning head 
to the side  

Image 
Processing 
(Face, yaw, 
pitch) 

Video Feed High 

Not looking directly 
into camera during 
capture (Face 
Presentation 4+)  

Image 
Processing 
(Face, yaw, 
pitch) 

Final Image Medium-High 

Looking away, up, or 
down  

Image 
Processing 
(Face, yaw, 
pitch) 

Final Image High 

Raising head up or 
down  

Image 
Processing 
(Face, yaw, 
pitch) 

Video 
Feed/Final 
Image  

High 

 

Table 91: Descriptive Statistics for Total Number of Errors and Time to Capture for Facial 

Interaction 

Total Number of Errors N Mean Median Minimum Maximum 

0 404 7.49s 6.21s 4.85s 55.65s 
1 168 8.00s 6.24s 5.18s 60.32s 
2 20 8.49s 6.21s 5.20s 40.10s 
3 7 8.55s 6.22s 5.95s 18.17s 

  

From looking briefly at Table 91 above, a larger number of errors seemed to have 

a small effect on time to capture. Table 92 breaks down the totals the number of 

errors based on the type of information shown.  

A two-way ANOVA was performed to test for an interaction effect between the total 

number of errors and type of information on time is taken to capture. A statistically 

significant interaction was found between type of information and the number of 

errors on time taken to capture, F (7, 561) = 17.615, p = <0.05, partial η2 = .180.  

Table 93 below details the post hoc analysis through pairwise comparisons, 

revealing a statistically significant difference between the total number of errors 

within each information group.  
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Table 92: Number of Errors per Information Group for Facial Interaction 

Type of 
Information 

No of 
Errors 

N Percent Average Time 
to Capture  

st.dev 

Baseline 0 215 78.75 6.24s 0.50s 
1 37 13.55 8.02s 3.52s 
2 14 5.12 13.12s 6.17s 
3 7 2.56 17.56s 8.34s 

Icons 0 91 92.85 6.34s 0.48s 
1 4 4.08 12.09s 2.79s 
2 3 3.06 16.08s 5.97s 
3 0 0.00 - - 

Text 0 87 89.69 7.06s 5.37s 
1 5 5.10 12.39s 6.19s 
2 4 4.12 16.84s 6.03s 
3 1 1.03 18.24s - 

Icons & Text  0 96 88.88 6.84s 3.75s 
1 8 7.47 8.38s 2.85s 
2 3 2.80 17.89s 3.92s 
3 0 0 - - 

 

Table 93: Two-way ANOVA results between Number of Errors and Information Groups (‘+’ 

indicates p < .005) for Facial interaction 

Information Number of Errors 

0 1 2 3 
Baseline + + + + 
Icons + + - + 
Text + + + + 
Icons & Text + - + + 

 

In nearly all cases, the total number of errors had a significant impact on the time 

taken to capture. There was no evidence of a significant relationship between 

transaction time for users who made two errors for the icons group and one error 

for the icons and text group. Overwhelmingly, a larger number of errors did have 

an impact on transaction time throughout the four groups.  

Identifying which of these errors occur in real time and relaying information to the 

user will benefit in correcting erroneous presentations and provide a form of 

guidance to users. As a statistically significant relationship was found between the 

number of errors and time on task, the next step would investigate specific errors 

which may have a higher impact on the time taken to capture. Establishing that 

there is a significant relationship then enables a full analysis of interaction to take 

place. For example, consider the scenario where the user is presenting their face 

image to a system which displays a live feed image with icons on the top. Results 
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have indicated that there is a difference in time taken to capture between live and 

non-live scenarios in the first instance, showing us that live feed scenarios were 

slightly quicker to complete. Data has also shown that the more errors that are 

performed during the transaction, the higher the impact on transaction time.  

6.3.2.2.3 User Satisfaction 

Like Chapter 5, user satisfaction is reported on a minimal level due to the nature 

of the data collection. 

A task evaluation was conducted to assess user satisfaction with the system. The 

main goal was to assess wherever the user perceived the system to be efficient. 

Answers were collected after all ten trials and so Figure 51 details the response to 

several questions directly relating to the performance of the system. Further results 

from the survey are discussed in Chapter 7, recommendations.  

 

Figure 51: Mean Score for Task Evaluation Questions for Face Interaction 

 

Results remained consistent for each information group. Users indicated they were 

given enough information to complete the task (Q1) and found the process 

relatively easy to complete (Q2) with the icon group leading with a result of 4.83 

out of 5. Information provided to the user seemed to do the job, describing what to 

do during the process (Q4-5) although users did find some of the prompts 

confusing (Q6).  Users did indicate that the entire process was not entirely 

confusing (Q7) and that capture process was clear (Q8) and very clear that the 

process had completed (Q9). Question Ten, although not directly relating to user 
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satisfaction, did ask if the user would use ABC systems in the future based on this 

system, only the Icons & Text group did not state that they strongly agreed when 

compared to the other two groups. 

Although this information is useful, the three groups did perform a total of ten 

scenarios, which combined baseline scenarios in addition to scenarios from the 

adaptive groups. Therefore, the results are not an indicator on the scenarios 

themselves but rather the general overall system that users interacted with.  

However, after completing each scenario, the user was asked a series of questions 

relating to the information they had just seen. Due to time constraints, answers 

were recorded as a yes or a no. Figure 52 below details the percent of each group 

that answered yes to each question. The Questions are previously defined in 

Section 6.2.3. 

Throughout all scenarios users indicated that it was often clear when the process 

began (83.19%) and when the process was over (86.59%). For many, it was 

unclear what the result of the system was (49.40%), but this was likely because 

the system did not have physical gate opening to indicate success. Information 

displayed in stand-alone kiosks must make the result clear and visible, so travellers 

are not confused.  

Many were clear about the capture process. Most users knew when it was clear to 

the face the camera (78.27%) and to position themselves accordingly (66.84%). 

Scenarios differed greatly in responses on how to position themselves to the 

camera, with an expected lower result for the text-based scenarios. Language-

based scenarios are not recommended for border control scenarios, but several 

systems do use some text (such as the eChannels in Hong Kong). Baseline 

scenarios also performed poorly, indicating that users may not understand fully 

how to present themselves to the camera in systems that relay simple information. 

Information with icons improved, however, reporting up to 89.5% of satisfied users. 

Overall, it seemed that users reported a higher level of clarity when engaging with 

the system that used enhanced icons to adapt feedback during the presentation.



 

194 
 

 

Figure 52: Percentage of Users who answered ‘Yes’ to Task Evaluation Questions in Face 

Interaction System 

 

6.3.2.2.4 Sample Quality 

Separate from traditional usability measurements, sample quality relates to the 

image captured during the transaction. This section investigates: 

 Compliant Images 

 Identification Matching  

Images were only captured once they met the Kinect’s specifications as part of the 

system’s objective was to test the ability to capture images based on skeletal 

tracking and image processing. The Kinect program did not verify users against an 

enrolled image during the transaction, however during post-processing images 

were assessed based on the ISO full frontal standard and compared to the enrolled 

image and given a matching score.   

The Aware PreFace program was used to determine if an image met ISO Full Front 

image standards. Successful images are marked as compliant and non-successful 

as noncompliant. Figure 53 below details the frequency of images captured across 

all scenarios and wherever they were ISO compliant.
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Figure 53: Frequency of Compliant and Non-Compliant Images for all scenarios in Facial 

Interaction 

 

As it can be seen in Figure 53, many images conformed to ISO full frontal standards 

across all scenarios. BASE01 and BASE02 had a lot of non-compliant images with 

35 complying with the standard and 25 that did not. For Scenario 17, Text and 

Icons 02, there were no reported non-compliant images. Grouping the images to 

information only, Table 95 below displays the frequency of compliant and non-

compliant images against information shown.  

Table 94: Number of Compliant and Non-ISO compliant images for Information in the Facial 

Interaction System 

Compliance Baseline Icons Text Icons&Text 

Non-ISO 41 11 6 17 
ISO  248 90 93 93 
Total 289 101 99 110 

 

Furthermore, compliant and non-compliant images are compared against the 

behaviour code determined at the end of Task 2 by the Kinect sensor. Table 96 

reports. 
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Table 95: Compliant and Non-Compliant Images based on Task 2 Presentation 

 GFACE01 GFACE02 OFACE01 RFACE01 RFACE02 

Non-ISO 74 6 9 12 2 

ISO  449 28 8 8 3 

Total 523 34 17 20 5 

 

A total of 80 images (13.42% of all images) were analysed as non-compliant ISO 

images. These images, during the interaction process, were determined by the 

system as presenting a ‘good’ facial presentation with little to no errors. Several 

users who provided an incorrect presentation were accepted as an ISO-compliant 

image. This could be because a system takes several images during capture and 

the user-adjusted their presentation during the process.  

A Chi-Square test revealed that there was a statistically significant association 

between the classifications for the face presentations (Task 2) and wherever an 

image was ISO compliant or not (Table 95). The test revealed a significant result 

χ2 (4) = 25.403, p < .001. Considering this result further, the focus was to 

investigate the difference between groups. 

A Chi-Square test was conducted to see if there was a statistically significant 

association between the types of information received on compliant images. The 

baseline group was not included in this test as it would violate the assumption of 

independence of observations. The test revealed a significant result χ2 (2) = 

13.064, p = .001. 

Post hoc analysis involved pairwise comparisons using the Z-test of two 

proportions with a Bonferroni correction. The proportion of users who used 

information with icons only was statistically significantly higher than other groups, 

p < .05. The proportion of ISO compliant images for users in the text and icons and 

text group was not statistically significant differences, p < .005.
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Matching Score was determined by VeriLook 5.1 SDK provided by 

Neurotechnology [166]. The Face Matcher performs facial template matching in 

1:1 verification, matching the enrolled image against the captured images. Images 

must be near frontal face standards, with a rotation deviation of up to 15 degrees 

in any direction, meaning erroneous images captured were matched against the 

enrolled image.  The matching threshold is linked to FRR, the higher the threshold, 

the lower is FAR and higher FRR. See Section 5.2.4 for the link between thresholds 

and FAR.  

 Looking at matching score between the enrolled and captured image, Table 96 

reports on the scores across scenario.  

Table 96: Descriptive Statistics for Matching Score for Information Groups in Face 

Interaction 

Information Mean Median st.dev 

Baseline 61.63 63 8.45 
Icons 71.36 77 14.78 
Icons & Text 60.89 59 10.08 
Text 64.18 68 12.23 

 

Again, Icons performed slightly better than the other groups with a lead of an 

average score of 71.36, demonstrating that icons provided higher quality images 

in both matching score and the number of images conforming to standards.  

A Kruskal-Wallis test was conducted between the three main groups to see which 

had a statistically significant effect on the matching score. There were no outliers 

in this data, as assessed by inspection of a boxplot. Median scores were 

statistically significantly different between groups, χ2 (2) = 34.75, p = <.001. 

Pairwise comparisons were performed using Dunn’s 1964 procedure with a 

Bonferroni correction for multiple comparisons. Adjusted p-values were presented. 

The post hoc analysis revealed statistically significant different scores between 

comparisons between icons and the other two groups (p < .001). There was no 

significant relationship between text and text and icons.  

Looking at the Icon group, Table 98 below details the descriptive statistics between 

the individual scenarios within the scenario, investigating if there were any 

significant differences between the five scenarios. 
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Table 97: Descriptive Statistics for Matching Score for Icon Scenarios in Face Interaction 

Information Mean Median st.dev 

ICONS01 72.44 77 13.85 
ICONS02 72.16 76 15.98 
ICONS03 73.00 79 16.49 
ICONS04 67.94 68 14.02 
ICONS05 70.78 77 14.60 

 

Matching score between the scenarios was very similar, with only ICONS04 

performing slightly with a score of 67.94.  

6.4 Data Analysis  

While Performance Analysis seeks to investigate the relationship between 

variables obtained only through results HBSI and Kinect methods, Data Analysis 

explores the relationship between several variables further, seeking insight to 

questions that have yet to be explored in recent research.  

Question 1 

Wherever a user has previously used an ABC system that used the face modality 

was also considered against the impact on performance. It is theorised that 

increasing the use of a system will increase the overall rate of performance on 

subsequent systems. However, this is not necessarily true within border control 

systems. Systems change by design, requirements and through information 

displayed between different vendors and countries.  

A two-way ANOVA was conducted to examine the effects of previous use with ABC 

systems and type of group on time is taken to capture. Outliers were assessed by 

inspection of a box plot, and normality was assessed using Shapiro-Wilk's 

normality test for each cell of design and homogeneity of variances was assessed 

by Levene’s Test. There were no outliers, residuals were normally distributed (p > 

0.5), and there was the homogeneity of variances (p = .072). 

The interaction effect was not a statistically significant, F (2, 292) = .662, p = .517, 

partial η2 = .004. Pairwise comparisons were run, and p-values were Bonferroni-

adjusted, again, there were no statistically significant differences found.  
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Question 2 

An important variable in ABC systems that may impact the interaction is the subject 

height. Some systems can adapt to the user’s height by automatically moving the 

camera to the eye level of the user. In some cases, such as the eGate scenarios 

in Heathrow, the monitor will also travel with the camera to match the user’s height.  

For this data collection, height is considered against performance through 

assessing a relationship between sample quality and time spent on the task. Users 

are grouped based on their height. Table 98 reports the average time to capture 

for each user across all scenarios.  

Table 98: User Height and Descriptive Statistics for Time to Capture in Face Interaction 

User Height N Mean Median Minimum Maximum 

150-155 10 7.86s 6.24s 5.66s 6.45s 
155-160 90 7.91s 6.22s 5.18s 8.43s 
161-165 110 8.79s 6.20s 5.12s 7.25s 
166-170 100 7.68s 6.29s 5.17s 5.15s 
171-175 69 7.81s 6.21s 5.16s 8.11s 
176-180 80 7.19s 6.23s 5.51s 12.38s 
181-185 60 7.18s 6.21s 3.44s 9.15s 
186-190 40 6.34s 6.20s 3.44s 8.60s 
191-195 40 7.03s 6.27s 3.58s 7.25s 

 

To determine wherever that was an impact on the time taken to capture based on 

height, gender, type of information shown (baseline, icons etc.) and group. A 

multiple regression analysis was performed. See Table 99 below. 

Table 99: Summary of Multiple Regression Analysis for Time to Capture in Face Interaction 

(* p <.05; β = unstandardised regression coefficient, SE = standardised error of the 

coefficient; B = standardised coefficient) 

  β SE B 

Intercept 6.753 5.11  
Gender 4.15 .20 0.48 
Height -.005 .049 -.005 
Type .042 .070 .025 
Group -.038 .105 -.015 

  

Table 99 reports on the multiple regression results. All four variables were not 

found to impact time on task significantly.   
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6.5 Summary 

In this chapter, an adaptive facial interaction system has been explored and tested 

with over sixty users. The participants were recruited mostly consisted of students 

from the university, but most had indicated that they had previous experience of 

using biometric systems such as ABC gates. Each user was requested to complete 

ten scenarios, always forming of at least five ‘baseline’ scenarios, systems that are 

based on current ABC systems and five ‘dynamic’ scenarios. 

Dynamic scenarios (formally split into three groups; Icons, Text and Icons and 

Text) analysed user interactions in real time using the Kinect Sensor. The adaptive 

system required users to perform a correct movement before succeeding to the 

next task; move to the system, look at the camera, stay still for capture and finally 

exit the system. If the user did not present an ideal demonstration to the camera, 

specific information was provided to correct the presentation.  

The Kinect sensor was not only used to capture face images but to automate the 

HBSI process by using skeletal tracking. The results were compared against 

manual observations and enabled a vast range of performance metrics at the end 

of each transaction. The system could automate the assessment of interactions 

and log the results for further analysis. Improving the system performance 

assessment this way allows vendors to investigate a range of information such as 

behaviours, movements, system errors as well as traditional metrics such as 

biometric verification rates.  

Ground truth comparisons revealed that the system had an extremely high ratio of 

automating the HSBI categorisation process, in most cases, resulting in over 90% 

of correct automated classifications. Although used in a controlled environment, 

testing self-service biometric systems before deployment in this way may enable a 

deeper revelation into the flaws of a system. 

In general, the icon group performed slightly better than the other information 

groups provided. Users who were presented adaptive icons provided a higher 

throughput result (6.92s) and were more likely to provide an ISO compliant image 

(91%) and a higher matching score against the enrolled image (71.36 at >0.001% 

FAR). Statistical tests revealed in many cases that there were significant 

differences between the information groups and where the placement of guidance 

was given.  
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In summary, this chapter provided the following: 

 A report on the investigation into the effect of information displayed on the 

screen, looking at the impact of different sizes and layouts of icons, 

language and a combination of icons and text 

 A performance assessment based on HBSI with an interest in throughput 

and sample quality, detailing how the inclusion of the Kinect sensor can 

enable a deeper picture of user movements and interactions 

 Combining the HBSI framework with Facial Interaction capture to enable 

automated categorisations of an interaction, using face tracking ability of 

the Kinect sensor to detect, categorise and capture a user’s face based on 

specific requirements 
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CHAPTER 7. RECOMMENDATIONS AND 

CONCLUSIONS 

7.1 Introduction 

This section reports on the recommendations and findings based on the research 

presented in this thesis. The analysis conducted throughout this work has 

highlighted several novel approaches to the assessment and implementation of 

biometric systems. A highlight of the work was the introduction an automated 

method of assessing user interaction errors within self-service biometric systems, 

harnessing skeletal tracking methods to detect and analyse a user’s position.  

In this chapter, the key findings and contribution of the research are reported in a 

summary of the work covered in this thesis. This will be followed by a discussion 

of the significant research findings of this work, making recommendations for both 

biometric and border control processes. Also, the future of border control systems 

is discussed, ending with a summary and a closing statement.   

7.2 Key Findings and Contributions 

Airports across the globe are progressively installing ABC systems to improve 

security, streamline the travelling process and working towards facilitating a better 

passenger experience. In this work, performance assessment through user 

interaction was studied in two standard biometric modalities utilised in ABC 

systems. Each study attempted to replicate an automated eGate system, a solution 

to automatically verify travellers identify and allow border crossing. 

Biometric performance is traditionally assessed through two common areas; error 

and throughput metrics. Standard measures such as FTA, FTE and FRR, can 

sometimes mask the true reason behind why an error occurred. Harnessing the 

HBSI method allows for a full categorisation of a range of metrics that will benefit 

in analysing system performance. Evaluating user behaviour for each task and 

mapping out all possible scenarios within the system will be crucial to configuring 

and adapting system responses. By applying the HBSI framework, this may lead 

to enhancing areas of system performance, helping to reduce errors and enhance 

overall usability of ABC systems for travellers worldwide.
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The Generic Model can be used to standardise the mapping of ABC configurations 

to identify where variations and similarities lie. Having defined both the enrolment 

and verification stages of any given system through distinguishing components 

used, individual interactions with each sensor can be analysed using the HBSI 

method. Looking at the verification stage of the GM, a breakdown of tasks from 

both a user and system point of view are reported in Identity Claim Process model. 

ICP demonstrates a framework for each step of the verification stage and identifies 

user and system responsibilities. The methodology can be used to identify 

conditions where the HBSI Presentation Framework can be implemented or 

adapted to specific situations and sensors.   

For example, a system categorisation would be in effect in conventional 

assessment metrics for users who may present an incorrect finger for fingerprint 

verification. The ideal system output would be ‘Biometric Not Presented’ whereas 

if the system concluded a ‘True Match’, then there could be a potential security 

risk in play. Current performance assessment on biometric modalities would not 

distinguish a system error from a user-generated one. The inclusion of HBSI can 

help to establish cases where the system was correct in the identification of the 

scenario as erroneous (False Interaction) or that the user incorrectly presented a 

biometric sample. If a HBSI categorisation could be automated during this 

process, the likelihood of a security risk would be reduced as the incorrect 

presentation would be detected before the system handled the sample.  

Human Activity Recognition is a large, growing field that aims to study tools to 

assess and classify movements for many scenarios. The Kinect V2 sensor is a 

tool used for tracking the user using skeletal tracking. The device is being adopted 

quickly by the Activity Recognition community, using the sensors depth 

component for a broad range of activities. The device reports on 25 joint locations 

in 3D space, providing the opportunity to track user movements within a certain 

range of the sensor. Research in the area has already established the Kinect’s 

ability to provide accurate results but has not yet been adopted for assessing and 

assisting user interactions within a biometric system scenario. 

Chapter 4 introduced three tasks to test the Kinect’s ability to measure and follow 

a user’s movement, assessing if the outcome would enable the applicability of the 

device to a full biometric interaction. Data indicated that the Kinect was highly 

accurate in measuring user’s height and the distance between shoulder blades. 
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Movements were precisely identified and reported in relation to each of the five 

users. Again, the sensor was able to fully track the user within the controlled 

environment. In addition to a report on the findings, a wide range of literature using 

the Kinect was also introduced earlier in the chapter. Research indicates the 

accuracy of the different sensors within the Kinect camera.   

Implementing the Kinect camera or a similar sensor could enable automated 

assessment of traveller interactions. Introducing methods to assess the user 

through the introduction of new tools such as face tracking or image-processing 

elements will provide many benefits. For instance, for the tired or stressed traveller, 

introducing an automated feedback system to relay information to the user on how 

to correct their presentation, e.g. look up, open eyes will begin the first steps into 

offsetting incorrect behaviours. The information can only be presented if the sensor 

was not able to detect certain features or joints within a required location. Further 

work will be needed to identify common presentations and appropriate methods in 

responding to users making incorrect interactions.   

The two data collections in this study evaluated the sensors ability to track a user 

within a controlled, self-service environment. Chapter 5, Fingerprint Interaction, 

introduced a program to automate the process of classifying HBSI in real time, 

analysing an incorrect or correct presentation based on simple joint tracking 

locations. For example, if the user was standing in the correct place and their right 

hand/wrist joint was in the required zone, the sensor would determine that a correct 

presentation had taken place. The procedure has only enabled the first step of 

identifying actions within this type of scenario. This initial activity was somewhat 

crude, as classifying this interaction does not reveal detail in the finer fingerprint 

movements. However, the results indicate that the system may be better suited for 

face recognition systems.   

On Fingerprint Interaction, the results summarised from the study confirm findings 

from previous reports conducted by the NIST group. There was little effect on 

performance, through sample quality and throughput, based on user’s height, the 

sensor used and angle of the slope. Several key relationships were found for a 

swipe sensor, but unfortunately, the swipe-based sensor has little applicability in 

ABC systems.   

The additional benefit of studying fingerprint interaction and the various variables 

that were introduced into the study was to not only investigate the impact on 
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performance but also to display how the Kinect sensor can reveal anomalies in the 

user’s interaction. By cross-referencing performance data with skeletal information, 

the performance assessment provides a much deeper insight into the user’s 

interaction. Facial Interaction improves the automation process further, combining 

biometric capture, processing and evaluation with skeletal tracking elements. The 

HBSI automation system utilises the face-tracking package from the Kinect SDK 

to provide real-time information on the face by; reporting on both face pose and 

expression. The system was better suited for facial interaction, as the location and 

position of the user would be more important for these scenarios.  

The study introduced three different types of information through feedback and 

instruction to the user; simple pictorial icons, language (text) and a combination of 

the two. All icons were based on pictorial instructions that have been previously 

defined by various ISO working groups. Language, although not commonly 

employed in these types of systems, sometimes do appear and may throw the user 

off the process. A combination of the two is rare, but the goal of the study was to 

assess if any information yielded better performance results than the others.   

In conclusion, this research may contribute to an improvement in the detail and 

accuracy of reporting of system performance in ABC systems. The application of 

the HBSI framework will allow a range of metrics, defining a set of interaction 

measurements which must be a priority (while adhering to the systems intended 

use) in the design and implementation of these public systems. Reporting on the 

six HBSI presentation metrics will allow a deeper understanding of where problems 

lie within a system. The models proposed will enable the breakdown of the process 

so that each stage can be assessed beyond the traditional reporting of a system 

level error. In defining a process map, user and system handlings are measured at 

each key component.  

The main contributions in this thesis are the following: 

 A study and review of the literature in Biometrics, HBSI and 

Automated Border Control systems. Additionally the full HBSI model 

is proposed, considering metrics beyond the single traditional 

human-sensor interaction.  

 The design and production of two models that can be used to 

identify and evaluate ABC systems. The Generic Model (ABC) 
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identifies a general enrolment and verification process where the 

HBSI evaluation framework can be applied throughout significant 

steps of the process. Building on this, the ICP framework 

decomposes the verification stages of the Generic Model (ABC) to 

highlight which steps can be attributed to a user and/or system 

based input or response. The Behaviour Framework identifies 

several key actions that can be taken at specific user-interaction 

steps throughout the verification process 

 The development of a tracking system to improve performance 

assessment and assist with user interaction errors in both facial and 

fingerprint systems. A study using the Kinect device is documented 

to establish the stability and reliability of the data returned by the 

sensor for use within a self-service scenario.  

 Analysis of two ABC systems based on common biometric 

modalities found in border control processes.  

 A report on the recommendations to improve current processes, 

exploring the results obtained from the fingerprint and facial 

chapters and suggesting suitable considerations for future design 

and implementation of ABC systems.    

7.3 Limitations & Recommendations 

Based on the findings and contributions presented in this study, the 

recommendations are as follows: 

 Implementing the HBSI Framework will enable vendors to provide a 

methodology for assessing system performance by considering metrics 

beyond traditional error ratings. The HBSI model is continually updating and 

expanding; recent versions have been introduced to include the 

categorisation of token presentations, looking at false claims, attacks and 

the full interaction beyond a single modality interaction 

 Introduce an additional sensor such as an RGB-D camera that can track 

the user’s skeleton within an ABC scenario. The results may be beneficial 

in ensuring that the correct position, posture and movements of the user 

are detected before starting a user-based task. The main advantage of 

implementing this system is it would enable the ability to relay dynamic 

feedback that can tailor instructions to the user based on their presentation 
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 Tackling standardisation, the Generic Model and Identity Claim Process 

enable process flows that outline common themes between scenarios. 

Identifying user and system processes early on within the design stage of 

an ABC solution will allow implementations to assess the performance of a 

transaction beyond individual elements of the system 

 Improve process flow for travellers; simplifying information will make 

progress efficiency and effectiveness. The results from Facial Interaction 

suggest that systems that present dynamic feedback using icons will yield 

a higher rate of performance over current versions of the system 

In addition to the main conclusions, participants were presented with several 

questionnaires throughout the studies that were intended to identify their 

knowledge on border control and biometric solutions. Out of 80 users, 69 stated 

that they followed the latest technological updates and understood the basic idea 

of a biometric system. Sixty percent of users had used a form of biometric 

verification processes for everyday purposes such as interacting with their phone 

or laptop. Seventy percent of the users had used an ABC system in the last year, 

using an eGate type system within the last year, 20% of those used a system that 

required an eMRTD or national ID card instead of a passport. All users indicated 

that they had used a facial interaction type system.    

The Task evaluation surveys assessed the capability of the tested system through 

providing clear instructions (as discussed in Section 5.3.2 and 6.3.2). The 

questionnaire also gave the opportunity for participants to share their thoughts as 

well as their recommendations based on their interactions. 

Out of eighty participants, at least 70% of users identified that, at some level, they 

did not trust the storage and use of biometrics, 15% suggested that they do not 

trust the storage of their data within government systems. Several users suggested 

that systems should detail a higher level of transparency with how biometric 

systems use and store their sensitive data. 85% of users did not know that their 

fingerprints could be kept on an electronic passport whereas 50% of users 

understood how the facial image captured in an ABC system was compared 

against their passport photo. Several comments suggested that they thought the 

UK Border Control held a national database of travellers with their details and 

photos on. Just 25% of the participants understood how biometric systems work, 

through capture, processing and matching against a previously captured sample. 
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45% of participants did, however, agree that use of biometrics provided a speedier 

process of crossing the border. 

One of the most common items of feedback from participants refers to the use of 

similar systems and comparing the process between the study and real 

implementations. 82% of subjects suggested that while the system was alike in 

many ways, the lack of feedback for facial interaction on some of the baseline 

scenarios was consistent with their own experiences. The common conception 

from users was that during the process they did not know if they performed the 

interaction correctly or incorrectly, and in some cases reported that during the live 

scenario, some processes during the interaction would fail without providing any 

feedback. One of the most certain recommendations then is to make the 

information available simple, informative and above all, transparent in the process 

it is showing. Further work with the feedback displayed within any system should 

consider the user’s interaction and their response to processes that may fail. Also, 

providing feedback through assessing a ‘good’ interactions and providing a result 

to the user may increase the likelihood of desired behaviours. This may cause 

other travellers who are in the queue to repeat the actions, as it is often the case 

that those who are waiting to use the system will tend to repeat the actions of those 

who went before them.  

Further work will be required to attribute HBSI to the use of token presentations 

and other processes such as a user entering or exiting the system. A limitation of 

this study was not using the Kinect to assess a token interaction or evaluate the 

full interaction, considering the combination of multiple presentations using a token 

and a biometric. The design of travel documents through its dimensions, materials 

and quality of electronic and data components changes from country to country 

and will inevitably have an impact on the speed and accuracy of the token reading 

process. Passport readers are not readily available and if purchased from a 

supplier, are extremely expensive. There are several programs available to interact 

with basic features of a passport but firstly, the device typically will interact with the 

MRZ field only (ABC systems read the RFID chip), and due to the security features 

contained within, it would be difficult to combine the process with a biometric 

matching algorithm. One idea was to recreate the dimensions of a token reader 

and to produce a ‘mock-up’ of a passport, to enable a study to collect Kinect and 

HBSI data. However, the conditions in which a token is presented to a system 
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would be difficult to replicate, as the design of any travel document needs to be 

carefully considered. In addition, in live scenarios, the token needs to be held for 

several seconds to a sensor while internal processes take place which would not 

be possible to replicate to a full extent in a research environment. Gschwandtner 

et al. [170] report further on the difficulty of simulating the piece of hardware.  

 

Further data will be required from a wider range of participants and live 

implementations to validate the contributions of this work further. Also, more work 

is needed in categorising user behaviours and the effects these have on the 

system. In any case, when performing data collections that aim to replicate a 

border control scenario, care must also be taken to make sure that certain 

conditions that are prevalent in a live scenario are replicated as closely as possible. 

In a controlled environment, non-technical factors such as stress or tiredness will 

not be able to be easily replicated, and thus, the significance of these factors will 

be difficult to assess. 
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7.4 The Future of Border Control Processes 

Border control solutions have changed dramatically throughout the last decade 

with thanks to the introduction of the ePassport and improvements in capture 

technology. Looking at the verification process, the future of border control systems 

looks promising in making the traveller experience more intuitive and user-friendly.  

Considering recent news, a new trend in the implementation of systems is using 

biometrics on-the-move, facilitating a non-stop and contactless verification process 

for travellers [93] [171]. Recently unveiled, the systems which are described as a 

“new multi-context facial recognition technology”, can be used for a range of 

applications in the airport: check-in, boarding and at border control.  

Research with contactless fingerprint scanners is becoming increasingly popular 

due to the development in the imaging technology field. Introducing methods to 

capture fingerprints without touching the sensor introduces some benefits such as 

distortion-free fingerprint acquisition (no pressure needed) and free from hygienic 

issues. Contactless technology is somewhat limited by the environment they 

operate in. If the sensor is capturing multiple fingerprints, then the sensor must be 

able to scale and capture fingerprints from subjects who may present at different 

distances. The sensors ability to capture at various ranges is limited, and so there 

are likely decreases in the capacity to focus and capture a high-quality image. 

Another major implication will be how the users interact with the sensor, users by 

instinct may touch the surface regardless, and so the surface will need to be 

regularly cleared to ensure there is no interference with the sensors ability to 

capture. Attention will be required to make sure that users are educated to use the 

system property. The limitations may outweigh the benefits, especially when 

considering an ABC scenario. Contactless sensors are more apt to appear in semi-

automated border control solutions where a border officer may be present and may 

perhaps to be used for enrolment purposes only.  

The ABC process is complex, and many factors contribute to the performance. 

Some uncontrollable factors such as social, psychological and ethnic factors will 

with no doubt, be one area which systems should be targeting to attempt to at least 

monitor and oversee in the future. Accounting for these non-technical factors may 

increase system performance, but to do so will require special attention to the 

design and development of both the build and user interface implemented into a 

system.  
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There are three key components to systems that should always be considered; the 

user, the environment and the system itself. The system should consider both the 

environment it operates within and the profile of the individual traveller. The 

passenger's experience will determine the longevity of a system and therefore the 

overall operation. The traveller’s demographic information will influence their ability 

to use a given system. For example, elderly users may be more likely to avoid 

using a system due to impairments. Users who are likely to have a bad first 

impression of a system are unlikely to use the system again and may prefer manual 

control methods. These are just some of the many challenges that the ABC system 

faces.  

The design and build of the system should then consider the traveller's previous 

experience, training and attitude towards biometric systems. A first step should be 

to improve the information available in both before and during the interaction 

process. Information before queuing for the system will increase the general 

awareness of the process while displaying clear and precise information during the 

interaction will guide users to a successful transaction. The system status should 

be visible, and indications of progress should be given to enhancing the user’s 

experience. The research proposed in this thesis, therefore, will provide ABC 

systems with a foundation to improve the process flow and guidance provided 

throughout the transaction process.  
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