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ABSTRACT 

 

The ability to predict human pharmacokinetics in early stages of drug development is of 

paramount importance to prevent late stage attrition as well as in managing toxicity. This 

thesis explores the machine learning modelling of one of the main pharmacokinetics 

parameters that determines the therapeutic success of a drug – volume of distribution. In 

order to do so, a variety of physiological phenomena with known mechanisms of impact on 

drug distribution were considered as input features during the modelling of volume of 

distribution namely, Solute Carriers-mediated uptake and ATP-binding Cassette-mediated 

efflux, drug-induced phospholipidosis and plasma protein binding. These were paired with 

molecular descriptors to provide both chemical and biological information to the building of 

the predictive models.  

Since biological data used as input is limited, prior to modelling volume of distribution, the 

various types of physiological descriptors were also modelled. Here, a focus was placed on 

harnessing the information contained in correlations within the two transporter families, 

which was done by using multi-label classification. The application of such approach to 

transporter data is very recent and its use to model Solute Carriers data, for example, is 

reported here for the first time. On both transporter families, there was evidence that 

accounting for correlations between transporters offers useful information that is not 

portrayed by molecular descriptors. This effort also allowed uncovering new potential links 

between members of the Solute Carriers family, which are not obvious from a purely 

physiological standpoint. 

The models created for the different physiological parameters were then used to predict 

these parameters and fill in the gaps in the available experimental data, and the resulting 

merging of experimental and predicted data was used to model volume of distribution. This 

exercise improved the accuracy of volume of distribution models, and the generated models 

incorporated a wide variety of the different physiological descriptors supplied along with 

molecular features. The use of most of these physiological descriptors in the modelling of 

distribution is unprecedented, which is one of the main novelty points of this thesis. 

Additionally, as a parallel complementary work, a new method to characterize the predictive 

reliability of machine learning classification model was proposed, and an in depth analysis 

of mispredictions, their trends and causes was carried out, using one of the transporter 

models as example. This is an important complement to the main body of work in this thesis, 

as predictive performance is necessarily tied to prediction reliability. 
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1. Introduction - Part I: Volume of Distribution and 

Drug Discovery 

 

1.1. Relevance of ADME to Efficiency within the Pharmaceutical Industry. 

The development of combinatorial synthesis capabilities that started in the 1980s was 

responsible for an estimated 800-fold increase in the amount of compounds synthesized in 

a year (Scannell et al., 2012). This allowed the generation of hundreds of thousands of 

compounds in a short period of time and, as a result, was expected to boost efficiency in 

drug discovery. However, this expectation was not observed, as in the last two decades the 

number of new compounds brought to market did not increase, with one of the main reasons 

being undesirable Absorption, Distribution, Metabolism and Excretion (ADME) 

characteristics (Tian et al., 2015, Cook et al., 2014). 

In fact, as of 1997, the reported portion of clinical failures due to pharmacokinetics alone 

was 39% (Kennedy, 1997, Prentis et al., 1988), being reported in several works as the main 

cause for failure around this time period (van de Waterbeemd and Gifford, 2003, Kennedy, 

1997, Waring et al., 2015, Prentis et al., 1988). However, a recent analysis of AstraZeneca’s 

pipeline between 2005 and 2010 shows pharmacokinetics/pharmacodynamics (PK/PD) 

issues have decreased immensely, with only 15% of failures being attributed to PK/PD 

issues in phase I (Cook et al., 2014). In line with this, another recent analysis of four of the 

main pharmaceutical companies (Waring et al., 2015), referring to the same period of time, 

shows a 25% failure rate ascribed to PK/bioavailability in phase I. Similar to what was 

observed for the AstraZeneca’s cohort, here too the period of 2006 to 2010 shows that only 

10% of analysed compounds (N=243) have failed due to these types of issues. Such 

improvement can be partly attributed to the fact that, in a way to address and reduce such 

large attrition rates associated to PK issues, ADME properties started to be evaluated 

earlier in the drug discovery process, which prompted the need for large-scale screening 

methods (Boyer et al., 2015). One of the steps towards scaling up ADME screening was 

the implementation of plate-based in vitro assays to measure key PK properties. This was 

followed by the integration of in silico tests to the already used in vitro and in vivo tests 

(Honorio et al., 2013, Kharkar, 2010, Peakman et al., 2015). Indeed, looking at 

AstraZeneca’s 2005-2010 cohort data, prior utilization of computational screening models 
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for PK prediction can be found as one of the factors that reduced the frequency of PK-

related attrition (Cook et al., 2014).  

In silico ADME predictions have become ubiquitous as an important decision-making tool 

in the pharmaceutical industry (Kharkar, 2010), which is demonstrated with examples such 

as the in silico screen for efflux prediction that Eli Lilly adopted in place of an in vitro screen 

(Desai et al., 2013) – which will be discussed in further detail in section 2.8. Still, despite all 

improvement achieved throughout the last decades, attention should be drawn to the fact 

that, in both studies (Cook et al., 2014, Waring et al., 2015), the rate of failure due to PK/PD 

issues is significantly lower in preclinical stages (3%) than it is in phase I (15% and 10%). 

This is important to address as the cost of the withdrawal of a candidate drug increases 

exponentially as one moves further along the development pipeline (Wishart, 2007). Clearly, 

there is still room for improvement, as the most problematic PK cases still go unnoticed 

from preclinical studies into phase I. 

The importance of addressing and optimizing ADME in early stages is not only justified by 

the reduced likelihood of attrition due to problematic PK properties, but it also helps directing 

animal testing for safety and efficacy as it provides some degree of information that will 

allow better dosing decisions in animal studies. This possibly avoids common problems 

associated with higher dosage administrations such as solubility issues or other formulation 

challenges (Peakman et al., 2015). 

 

1.2. Motivation for Exploring Distribution through in Silico Modelling 

As established earlier, PK has a very important role in determining failure during drug 

development. In particular, distribution (addressed as volume of distribution) has, alongside 

clearance, a paramount role in determining the duration of action, as the two relate directly 

to the elimination half-life, which is used for dose optimization and the establishment of 

appropriate dose regimens (Smith et al., 2015). While early stage in vitro automated assays 

can be performed to gauge distribution by testing the extent of interaction with different 

transporters, which can be used to infer an estimate for the extent of distribution, estimation 

of volume of distribution (Vd) itself still relies mainly on allometric scaling from animal data 

(Hop, 2015). Retrospectively looking at the performance of allometric estimation of Vd 

(corrected for animal plasma binding) showed 69% of predictions were within a two-fold 

deviation from clinical data (Smith and Baillie, 2015). However, this entails that protein 

binding assays have to be performed as well, since not accounting for this interspecies 

difference increases the error. Allometric scaling is also associated with other shortcomings 
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that arise from other sources of interspecies differences, which render it somewhat 

unpredictable. This will be discussed further in section 1.9.  

Something as simple as low Vd can render unfeasible the use of a highly active, non-toxic 

drug due to its inability to properly reach the tissue in sufficient amount to elicit the desired 

response. Properties like this are often not discovered until human trials, which means that 

any drug withdrawals are extremely expensive for the company. As established earlier, in 

silico characterization of PK properties had a central role in reducing clinical stage attrition 

in the last decade and, as a result, computational models are a promising and inexpensive 

tool to minimize late drug attrition rate due to an unwanted distribution profile, as well as 

providing early information that guides dosage scheme design for first in-human trials. 

Among these, quantitative structure-activity (or property) relationships (QSAR or QSPR) 

have long been implemented in the drug discovery and development process. QSAR 

models of Vd have been able to achieve a level of predictive performance close to that of 

animal models (i.e. 2-3 fold error) (Gleeson et al., 2011), which further supports computer 

models as a competitive screening tool. 

Because, as established earlier, there is still a significant portion of poor-PK candidates that 

are being approved to proceed into clinical trials, there is still a need to improve the 

capability of the in silico filters to detect such candidates early in the screening process. As 

a result, the work presented in this thesis consists mainly of an effort to provide new sources 

of model features i.e. molecular descriptors that might help elucidate the physiological 

processes that rule distribution, and consequently help modelling this endpoint. 

 

1.3. A Brief Context in Pharmacokinetics 

Pharmacokinetics can be defined as the study of the course of a compound (typically a 

xenobiotic) through the body upon administration. This course is composed of four main 

components, namely Absorption, Distribution, Metabolism and Excretion, which are usually 

referred to as ADME. Even though distinct, these can occur simultaneously and are 

interrelated at many levels (Fan and de Lannoy, 2014). 

Upon being administered orally, a compound progresses through the lumen of the 

gastrointestinal tract where it is absorbed through the epithelial lining. The absorbed fraction 

will first go through the liver (via the portal vein), where it is amenable to undergo first-pass 

metabolism and biliary excretion, and the remaining unchanged compound will then reach 

systemic circulation where it is distributed to various tissues. At the same time, as the 
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compound is carried by blood perfusion, it can reach metabolizing organs, such as the liver, 

where it is transformed by different enzymes such as the CYP450 members. Besides the 

liver, many other tissues are metabolically active (e.g., lungs, skin, brain, etc) (Curry and 

Whelpton, 2017, Fan and de Lannoy, 2014). 

Both the metabolic derivatives and the unchanged portion of the drug can be excreted as 

they reach various possible excretory and metabolizing organs, from which the liver 

(through biliary excretion) and kidneys are typically the most influential organs at this stage 

(Fan and de Lannoy, 2014). 

This process, schematized in Figure 1.1, controls the duration of residence and the amount 

of drug that reaches the desired site of action, as well as the undesired locations that lead 

to toxicity.   

Other routes of administration exist, such as intravenous, intraperitoneal, or subcutaneous, 

among others, however the process explained above remains unchanged from the moment 

a drug reaches circulation. The only major changing factors between administrations are 

the amount and speed at which a drug reaches systemic circulation. 

 

Figure 1.1. Process flow of Absorption (A), Distribution (D), Metabolism (M) and Excretion (E), 

encompassing the different processes through which an orally administered compound is submitted. 

This process is named ADME. 

 

1.4. The Drug Distribution Process 

Upon reaching systemic circulation (either through absorption or intravenous 

administration), a compound will be quickly distributed to highly perfused organs such as 

the kidney and the liver. This corresponds to the central compartment, where an equilibrium 

with systemic circulation occurs quasi-instantaneously. Additionally, the drug can be 

distributed to poorly perfused organs, and a second equilibrium with systemic circulation 

will occur. This corresponds to the peripheral compartment. This process is represented in 

Figure 1.2., and is called the two-compartment model. The ability to distribute to peripheral 
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tissues determines the extent of distribution (Wallace et al., 2011) and, overall, how a 

compound distributes across the body is a key determinant of its safety and efficacy 

(Gleeson et al., 2011). 

Some of the main chemical determinants of the pharmacokinetics of a drug in general, and 

distribution in particular, are lipid solubility, molecular weight (Wallace et al., 2011) and 

ionisation state (which also affects the lipid solubility). Besides chemical features, there are 

physiological factors that drive distribution, such as blood flow rate, active transport and 

binding to plasma proteins or tissue structures (Wallace et al., 2011). 

 

Figure 1.2. Two-compartment distribution model that accounts for tissue partition. 

A measure used to represent the extent of distribution of a compound across tissues is 

volume of distribution, Vd, which simply shows how a drug dose relates to measured 

systemic concentration, as shown in Equation 1.1. 

Vd =
Dose

Cplasma
   (Eq. 1.1.) 

Dose represents the mass of compound that effectively reaches the systemic circulation 

(bioavailable dose), and Cplasma represents the resulting concentration achieved in plasma 

upon administration. As a result, Vd does not represent a real physiological volume, 

however it may (but not necessarily does) reflect the relative ability of a drug to reach or 

accumulate at different tissue locations. Volumes of 3-5 L indicate that the compound is 

mostly limited to the intravascular space, whereas volumes of 30-50 L indicate an ample 

distribution throughout the total body water and, hence, the ability to likely reach the 

intracellular space. It is, however, possible to reach a Vd larger than total body water, 

through the occurrence of tissue partition phenomena (Wallace et al., 2011, Smith et al., 

2015). Here, the displacement of a drug to tissues and its accumulation at certain tissues 

leads to a decreased plasma concentration, which is simply perceived as increased dilution 

of the drug in body water, as represented in Figure 1.3 (Wallace et al., 2011, Holford and 

Yim, 2016). 
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There are different volume terms derived from different stages of the pharmacokinetics 

curve of concentration versus time. However, the Volume of distribution at steady state 

(Vss) is the most used parameter as it is estimated by non-compartmental techniques (there 

is no underlying assumptions for its calculation) and it represents the apparent distribution 

in steady state conditions (stable equilibrium between the rates of input and output of a 

drug). As a consequence, this is the most appropriate value (and the most straightforward 

to obtain) for use in drug design (Smith et al., 2015). 

 

Figure 1.3. Representation of the relationship between observed values of Vss and their respective 
distribution into the different tissue spaces. 

 

Vss is determined by the net contribution of plasma and all available compartments (i.e. 

tissues) to which a drug can distribute, and their respective volumes. In addition to this, the 

relative ratio of binding in plasma and in tissue defines the degree to which each of these 

compartments is occupied. As the bound fraction of drug is in equilibrium with the respective 

unbound fraction in both sides of the membrane, as shown in Figure 1.4, the latter can be 

used to represent binding extent as these are easier to measure.  

Following this, Vss can be expressed as shown in Equation 1.2, where Vp represents the 

volume of plasma, Vt is the volume of any given tissue, and fup and fut are the fractions of 

unbound drug in plasma and tissue, respectively. 

Vss = Vp + ∑ (Vt ×
fup

fut
)      (Eq. 1.2) 

As Equation 1.2 entails, binding to plasma proteins and to tissue structures is a major 

modulator of Vss. Besides this, there are a number of determinants, of either 
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physicochemical or physiological nature, that modulate the distribution process and affect 

the measured Vss, which are discussed next. 

 

 

Figure 1.4. Membrane partition equilibrium. Only the fraction of free drug, Fu, will be able to cross 
the biological membrane, and this is determined by both the extent of binding to the tissue structures 
(FbT) and to the plasma proteins (FbP). 

 

1.5. Physicochemical Determinants of Distribution 

Given Vss is the result of the extent of partition across biological membranes into different 

tissue compartments throughout the body, one can establish that physicochemical factors 

that affect permeation will affect Vss. According to the Fick’s law of diffusion, it has been 

established that only the unbound portion of a compound is free to undergo passive 

permeation. As a result, the acidic/basic character of a compound is one of the key factors 

of Vss as it determines the formal charge in physiological pH. According to their ionization 

state, compounds will interact with plasma proteins and tissue structures differently. For 

instance, acid species are more prone to bind (very strongly) to albumin, whereas basic 

species will preferably interact with α-1 acid glycoprotein as well as albumin (Smith et al., 

2015, Curry and Whelpton, 2017). The ionization state also drives tissue binding as basic 

compounds, for example, are more prone to interact with acidic phospholipids in the plasma 

membrane and hence, more prone to tissue partition. In fact, the level of 

phosphatidylcholine in different tissues correlates with the relative levels of tissue partition 

of several positively charged compounds in physiological conditions. Lipophilicity 

determines the binding affinity to compounds that are amenable to interact with plasma 

proteins, and additionally it determines the extent of tissue and/or membrane binding of 

charged and neutral compounds (Smith et al., 2015). 
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As a result of this, basic compounds have a tendency to be extracted from systemic 

circulation and are normally associated with relatively larger Vss, whereas acids will tend to 

remain in the intravascular space or extravascular water as these have a high amount of 

albumin (Smith et al., 2015). 

However, as noted by Smith (Smith et al., 2015), small Vss values do not necessarily imply 

an inability to partition into the site of action in a tissue, and the previous physicochemical 

considerations are general observations that do not always apply. When considering the 

unbound fraction only, some acidic compounds are able to partition into tissues at the same 

ratio as neutral or basic compounds do, despite large differences in Vss. 

 

1.6. Physiological Determinants of Distribution 

1.6.1. Tissue and Plasma Protein Binding 

One of the most important physiological determinants of Vss is binding to structures in or 

outside tissues, and this factor is tied to the electrolyte type of the drug, as established 

earlier. A high degree of binding to tissue and low binding in plasma will generate increased 

Vss (given FuP/FuT > 1) (Smith et al., 2015, Curry and Whelpton, 2017). In the tissue, 

different compounds are able to bind to different macromolecules such as phospholipids, 

DNA, and carbonic anhydrase or acetylcholinesterase in red blood cells (Curry and 

Whelpton, 2017). In plasma, binding can occur to plasma proteins such as albumin and α-

1-acid glycoprotein mentioned already, as well as (α-, β- and γ-) globulins and lipoproteins 

(Yanni, 2015, Smith et al., 2015). 

Binding and its resulting entrapment in lysosomes has very marked effects on distribution, 

leading to very large observed Vss values. This phenomenon is called drug-induced 

Phospholipidosis (PL) and will be explored in more detail later in this chapter. 

 

1.6.2. Blood Perfusion and Transfer across Membranes 

Distribution is directly controlled by blood flow, as this controls the rate at which compounds 

are brought in contact with any given tissue. As mentioned earlier in this chapter, high 

perfusion (occurring, for example, in the liver), leads to quicker equilibration between tissue 

and plasma and larger amounts of drug will be partitioned into highly perfused tissues. On 

the other hand, poorly perfused tissues, such as the adipose tissue, experience slow 



Introduction - Part I: Volume of Distribution and Drug Discovery  

 
9 

equilibration with plasma and receive a lower amount of drug (Yanni, 2015). A summary of 

the main organs and tissues and their blood flow is shown in Table 1.1. 

 
Table 1.1. Standard blood flow in different human tissues, arranged in descending order (Yanni, 
2015). 

Tissues 
Blood Flow 

(mL/min) 

Lungs 5000 

Liver 1350 

Kidney 1100 

Muscle 750 

Brain 700 

Skin 300 

Bone 250 

Heart 200 

Fat 200 

Spleen 77 

Thyroid 50 

 

In order for a compound to reach a tissue compartment it has to be able to cross its 

biological membranes using one or more of the available permeation routes such as 

paracellular passive diffusion (through pores between cells), transcellular passive diffusion 

(through the cell membrane’s lipid bilayer), protein-mediated transport or endocytosis (entry 

through the formation of a vesicle). Consequently the structure of the epithelia will pose 

different levels of hindrance to permeation (Fan and de Lannoy, 2014, Curry and Whelpton, 

2017, Yanni, 2015). Locations such as the liver (Fan and de Lannoy, 2014, Curry and 

Whelpton, 2017) or the brain (Cipolla, 2009) are formed with tight junctions which limit 

paracellular diffusion to relatively small molecules (up to 200 g/mol). Additionally, the 

presence or absence of fenestrations in peripheral capillaries that serve different tissues 

can change the access of a drug to a tissue (Curry and Whelpton, 2017). 

 

1.6.3. pH and Electrochemical Gradients 

The pH gradient observed between different compartments is also a driver of partition, 

following the general principle that unionized species encounter less hindrance when 

traversing biological barriers than their ionized counterparts (Fan and de Lannoy, 2014). A 

pH of 7.4 in the extracellular medium is, for example, slightly larger than the intracellular pH 

(~7.2), which is, in turn, much larger than the lysosomal compartment pH (~ 5) (Casey et 
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al., 2010). Variable pH determines the equilibrium between ionized and non-ionized 

species, following the Henderson-Hasselbalch equation (Equations 1.3 and 1.4).  

pKa (acid) = pH + log
[non−ionized]

 [ionized]
      (Eq. 1.3) 

pKa (base) = pH + log
 [ionized]

[non−ionized]
     (Eq. 1.4) 

As a result, depending on the compound’s pKa and its electrolytic nature, it preferentially 

distributes to different locations (Smith et al., 2015, Curry and Whelpton, 2017). Acids tend 

to concentrate in the more basic compartments, and bases tend to passively diffuse towards 

more acidic environments (Curry and Whelpton, 2017, Yanni, 2015). This is theoretically 

valid, however actual concentration gradients between compartments might be smaller 

given the constant flow of fluids between both places (Yanni, 2015). Similarly to pH, 

electrochemical gradients also drive partition across compartments. Electrochemically-

driven partition occurs, for example, in mitochondria where a large potential difference 

exists, while pH-driven partition is prone to occur, for example, in lysosomes (Smith et al., 

2015). 

 

1.6.4. Membrane Transporters 

Another modulator of distribution is protein-mediated transport, which can deplete or 

concentrate drug at any given compartment (Smith et al., 2015). Drugs that undergo uptake 

by membrane transporters will be displaced to the tissue (intracellular or interstitial space), 

reaching larger tissue-to-plasma ratios, whereas efflux will displace drugs to the plasma, 

leading to smaller tissue-to-plasma ratios (Wagner et al., 2016). Even though the effect of 

transporters is often deemed negligible towards Vss when compared to the effect of the 

unbound fraction (Smith et al., 2015), there are several examples of drugs (e.g. 

antiretrovirals, antihyperglycemics, hepatitis antivirals, guanethidine, sympathomimetics or 

paraquat) in the literature that are highly concentrated in tissue spaces due to transporter 

uptake (Wagner et al., 2016, Curry and Whelpton, 2017). 

Additionally, transporter-mediated partition, as well as pH- and electrochemically-driven 

partition have important implications on the pharmacology and toxicology of drugs, as these 

outcomes are dependent on local distribution effects (i.e. accumulation on the site of action 

or on undesired cellular sites). This can be valid even when no impact over global Vss is 

visible (Smith et al., 2015).  
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There is a large amount of evidence of transporters, such as the P-glycoprotein (P-gp), that 

directly affect ADME as well as safety and, as a result, P-gp efflux assessment has become 

mandatory in all drug development campaigns. P-gp is part of a large family of efflux 

transporters called the ATP-Binding Cassette (ABC), which has an important role in ADME. 

Another key family is the Solute Carrier (SLC) transporters, which mediate uptake. Both 

families will be further described in the next section (Yanni, 2015). 

 

1.7. Membrane Transporters and Their Role in Drug Distribution. 

PK plays a major role in the success of a drug candidate to meet desirable properties during 

drug discovery and development. PK properties such as permeability, oral bioavailability, 

half-life and drug-drug interactions may all be affected by the binding of drug candidates to 

transporter proteins (Giacomini et al., 2010, Ballard et al., 2012). The FDA currently 

recognises the importance of transporter proteins in modifying drug exposure levels and as 

a source of potential drug-drug and drug-food interactions (FDA, 2012). There are mainly 

two super-families of transporters that are targeted in pre-clinical studies: The ATP-Binding 

Cassette (ABCs) and the Solute Carrier (SLCs) transporters. They are generally associated 

with clinically relevant impact on the efficacy, adverse effects and drug disposition profile of 

drugs, which derives from their important role as determinants of tissue access (Kharkar, 

2010, Chu et al., 2013, Giacomini et al., 2010). As a result, ABCs and SLCs are the primary 

research focus in drug development (Wang et al., 2015) and the potential for efflux and 

uptake mediated by these transporters is typically studied during the preclinical stage to 

better propose clinical studies to address the precise impact of a given protein or group of 

proteins (Giacomini et al., 2010). 

There are more than 400 transporters in these two superfamilies identified in the human 

genome. To this date many of those have been cloned and characterized. In drug 

development the focus is turned to transporters expressed in the liver, the kidney, intestine, 

and in the blood-brain barrier endothelium (Giacomini et al., 2010).  

 

1.7.1. ATP-Binding Cassette (ABC) Transporters 

The ABC family is composed (in humans) of 48 membrane transporters that are grouped in 

seven families from ABCA through ABCG (or ABC1, MDR/TAP, MRP, ALD, OABP, GCN20 

and White, respectively). They show, in general, close homology over two ATP-binding 

domains and 12 putative transmembrane domains implicated in the efflux of xeno- and 
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endobiotics (Locher, 2016, Lai, 2013a), however this structure is not strictly observed in 

some cases, as will be pointed out later in this section. Most of the 48 ABCs are thought to 

mediate efflux, and in some cases they exhibit an outstanding substrate polyspecificity 

(Locher, 2016). The structures of the various transporters differ considerably but all of them 

have two separate domains: (1) the hydrophobic transmembrane domain (TMD) (or 

membrane-spanning domain, MSD), that has specific drug-binding sites; and (2) the 

nucleoside-binding domain (NBD). Although always present, different arrangements of both 

domains are found in the ABC proteins. The classical ABC transporter contains two domains 

of each type; however, they can also be formed by the dimerization of two half ABC proteins 

(like in the case of BCRP), or by two NBDs and three MSDs (like with MRP2) (Lai, 2013a). 

Although always present, TMDs have diverse structures and are characterized by alpha-

helices included in the bilayer (normally 12 alpha-helices, 6 per monomer). The alpha-

helices recognize several substrates, which prompts reversible conformational changes 

that allows the crossing of the membrane (Lai, 2013a). 

The name of this family of proteins – ABC – derives from the fact that it has a highly 

conserved ATP-binding cassette sequence motif. The ATP-binding domain is found in the 

cytoplasmic side, and it contains a signature C motif, specific to each family member, as 

well as two sequences – Walker A and B – present in all ABC transporters. These are highly 

conserved motifs where ATP is hydrolysed. The ABC transporters pump the substrates from 

the cytoplasm into the extracellular medium against their gradient by utilizing the energy 

released from ATP hydrolysis (Ford et al., 2010, Locher, 2016, Lai, 2013a). They are also 

responsible for transporting compounds from organelles into the cytoplasm, and some ABC 

members act as ion channels (Ford et al., 2010, Locher, 2016).  

The currently established mechanism of efflux consists of an ATP-fuelled shift between an 

inner-facing “V”-shaped position that binds any given substrate and an outer-facing position 

(where the in-facing “V” gets inverted) that releases it into the extracellular medium (Ferreira 

et al., 2015, Locher, 2016). The inner-facing position corresponds to a high-affinity binding 

state that suffers conformational modifications induced by substrate binding and ATP 

hydrolysis, which leads to the adoption of a low-affinity conformation (the outer facing 

position) that releases the bound compound into the extracellular medium (Ferreira et al., 

2015, Locher, 2016). 

The binding sites are hypothetically accessible to the ligands from the inner core of the 

plasma membrane, or directly from the cytoplasm. The former would be expected to apply 

to strongly lipophilic compounds, which would tend to diffuse into the inner core of the 

membrane and be transferred from there into the binding pocket (Locher, 2016). 
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ABCs transport a wide variety of endogenous and exogenous compounds, which range 

from ions to macromolecules, via an ATP-dependent mechanism (Pinto et al., 2014, 

Marquez and Bambeke, 2011). These transporters are highly expressed in a variety of 

tissues, some of which are some important distribution barriers that are associated with 

drug absorption and distribution impairment (Szakács et al., 2008). 

Efflux is one of the biggest challenges in pharmacotherapy and many ABC transporters 

have been demonstrated to have clinical relevance (Locher, 2016). The ability of a tissue to 

remove a compound from the intracellular compartment to the extracellular medium is used 

as a defence mechanism against metabolites and other noxious compounds, but at the 

same time it limits the bioavailability of various therapeutics in several tissues. This 

phenomenon hinders the success of a number of therapeutic regimens ranging from anti-

cancer therapy to antibiotics. Often it is observed that various cases of therapeutic failure 

are associated with the overexpression of one or more efflux transporters, among which 

ABC proteins play a major role (Ferreira et al., 2015). Examples of ABCs that are strongly 

associated with multidrug resistance are Breast Cancer Resistance Protein (BCRP1 or 

BRCP, ABCG2), P-glycoprotein (P-gp, MDR1, ABCB1), and the Multidrug Resistance-

associated Proteins (MRP1-7, ABCC1-6 and 10) (Pinto et al., 2014, Marquez and Bambeke, 

2011). ABC transporters have also been implicated in the pathophysiology of Alzheimer’s 

disease (Cascorbi et al., 2013), diabetes and atherosclerosis (Allen et al., 2015). 

 

P-glycoprotein (P-gp) 

This transporter is found in the small intestine, blood-brain barrier, and in excretory cells 

such as kidney proximal tubule epithelial cells and hepatocytes, and as a consequence it is 

important in the control of CNS access, intestinal absorption, and in urinary and biliary 

excretion (Giacomini et al., 2010). This transporter has been intimately connected to 

multidrug resistance and the resulting cancer therapy failure (Alfarouk et al., 2015). 

P-gp contains 1280 amino acids and a molecular weight of 170 kDa. It has two symmetrical 

halves linked by an (approximately) 75-amino acid linker, distributed in 12 transmembrane 

helices and two NBDs. Five substrate-binding sites have been identified up to date. In order 

to accommodate the ability to transport several structurally unrelated drugs, P-gp is 

proposed to function through an induced-fit mechanism in which there are changes to the 

transmembrane segments, although the clear transport mechanism is yet to be established.  

So far three transport mechanisms have been proposed. Initially P-gp was though to act as 

a pore that allows direct passage from the cytoplasm to the exterior of the cell. Following 

this, it was proposed that this transporter would act as a flippase, transporting molecules 
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between both membrane leaflets (from the inner to the outer) and ultimately into the external 

medium. The currently accepted theory of transport mechanism is that P-gp attracts 

substrates trough hydrophobic interactions, acting as a hydrophobic “vacuum cleaner” (Lai, 

2013b, Ferreira et al., 2015). This hypothesis is based on the notion that, once on the 

membrane, the hydrophobic region of a substrate is naturally more soluble in the 

hydrophobic inner leaflet, thus building up in the membrane’s core. Being on this region 

allows it to diffuse laterally to the transporter’s binding pocket also located on the inner core 

of the membrane. Substrates are thought to access the binding cavity through two entrance 

gates (between TM4 and 6; and between TM10 and 12). Once the substrate binds, this is 

thought to prompt P-gp to undergo conformational changes that open its cavity to the 

extracellular side of the membrane, and subsequent exit of the substrate (Ferreira et al., 

2015). 

The P-gp substrates’ molecular weights range from 300 to 2000 Da, often being 

amphipathic or hydrophobic organic cations (Giacomini et al., 2010, Lai, 2013b). P-gp binds 

to a wide variety of structurally unrelated ligands, and this has been explained through 

ligand-inducing change in conformation – known as the induced fit hypothesis (Ford et al., 

2010). 

According to the plasma membrane composition, it exhibits different temperatures of 

transition between fluid liquid-crystalline and rigid gel phase (Ferreira et al., 2015). 

Following the hydrophobic vacuum cleaner hypothesis, as the compounds are extracted by 

P-gp from the inner core of the lipid bilayer, it is logical that membrane composition will 

directly affect efflux, given that the ability to partition into the membrane will depend on the 

membrane’s constitution. Furthermore, the lipid environment surrounding P-gp also impacts 

its ATPase activity and its ability to bind to ATP (Ferreira et al., 2015). On the other hand, 

increasing amounts of P-gp on the plasma membrane have shown to decrease tm. A causal 

relationship has been demonstrated between the alteration of membrane properties (i.e., 

fluidity and morphology) induced by a number of small molecules and the modulation of 

affinity to the membrane, P-gp expression, and P-gp location and function (translocation 

causing ATPase inhibition) (Ferreira et al., 2015). 

 

Breast Cancer Resistance Protein (BCRP) 

BCRP belonging to the ABC subfamily G, different from either the MRPs’ or P-gp’s family. 

This transporter shows a high degree of tissue expression overlap with MRP2 and P-gp, 

being expressed in the liver, placenta, kidney, brain and intestine, among others, which 

might indicate some level of cooperation or redundancy in tissue protection responses. 
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BCRP is able to efflux various structurally diverse compounds, and has been attributed to 

have some degree of substrate overlap with P-gp (Lai, 2013d). Its ligands include antivirals, 

tyrosine kinase inhibitors, HGM-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, 

antibiotics and flavonoids. BCRP is also involved in the transport of sulfate conjugated 

drugs, preferentially over glucuronide- or glutathione-conjugates. 

BCRP is formed by 655 amino acids and six (predicted) transmembrane helices 

(differentiating if from the typical 12-transmembrane domain structure of the ABC family), 

having a weight of 72 kDa. At least two binding sites have been proposed, but how these 

formed in the functional protein is still unclear (Lai, 2013d, Giacomini et al., 2010).  QSAR 

analysis suggests that N-C(Heterocyclic ring) seems to favor drug interaction with the 

transporter; also fused heterocyclic rings containing two substituents on a carbocyclic ring 

have been identified as patterns that promote molecular recognition (Giacomini et al., 2010).   

 

Multidrug Resistance Proteins (MRPs) 

In this work two particular MRPs have been addressed – MRP1 and MRP2 – so this section 

will focus mainly on these. Both MRP1 and MRP2 are composed of 6+6+5 helices, arranged 

respectively in three membrane-spanning domains, two nucleotide-binding domains and a 

linker. There is evidence indicating that there are at least two binding sites; one is proposed 

to be involved in direct binding and the other in allosteric binding, regulating the affinity to 

the former site (Lai, 2013c). 

MRP2 is formed of 1545 amino acids and exists as a 190 kDa phosphoglycoprotein. It is 

typically found on major physiological barriers like the liver, kidney, intestine or the placenta. 

MRP2 has an important role in extracting endogenous metabolites, such as bile salts, 

conjugated bilirubin or conjugated drug metabolites, into the bile. As with BCRP and P-gp 

covered earlier, MRP2 transports a variety of structurally diverse drugs and their 

metabolites. Structural patterns that determine molecular recognition include two lipophilic 

regions (such as aromatic rings) and an anionic ionisable group. Accordingly, QSAR studies 

indicate lipophilicity, hydrogen bond elements, polarizability and aromaticity as critical for 

binding. MRP2 is thought to be the main transporter in the biliary and renal excretion of 

organic anions (both parent drugs and their metabolite conjugates) (Lai, 2013c). 

MRP1 is expressed in a number of tissues as well and it plays a key role in transporting 

sulfate-, glucuronide- and glutathione-conjugated compounds (Pinto et al., 2014). In the 

liver, MRP2 and OATPs act synergistically as evidenced through the example of 
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pravastatin. This drug is uptaken into the liver by the latter, and afterwards excreted from 

the liver into the bile by the former (Lai, 2013c). 

 

1.7.2. Solute Carriers (SLCs) 

SLCs form the largest superfamily of transporters (composed of 456 members spread 

across 52 subfamilies), and the second-largest among membrane proteins (Cesar-Razquin 

et al., 2015). The proteins in this family contain multiple TMDs and mediate the crossing of 

membranes either against or with the concentration gradient. Besides occurring on cellular 

plasma membranes, SLC transporters are also found on organelle membranes 

(endoplasmic reticulum, mitochondria, Golgi apparatus, etc.). The members of this family 

were originally named according to the general form of “SLC” + #family + “A” to “E” 

specifying the subfamily; however, this nomenclature has changed and now there are 

different designations for the various proteins of this superfamily (Lai, 2013a). Members are 

allocated to the various families according to a minimum of 40% amino acid sequence 

similarity, and they are assigned to subfamilies with a minimum of 60% sequence identity 

(Hagenbuch and Stieger, 2013).  

The SLCs can be passive transporters (uniporters), if transport is powered by differences 

in electrochemical potential and substrates are therefore moved down their concentration 

gradient, or alternatively they can be secondary active transporters (both symporters and 

antiporters), if substrates are transported against their electrochemical gradient by being 

paired with the transport of an ion down its concentration gradient. Antiporters specifically 

can be of two types: solute-cation or solute-solute transport (Lai, 2013a). 

From a pharmaceutical standpoint, SLCs seem to have garnered great interest, since they 

have the potential to be used as facilitators of the delivery of drugs to their targets (e.g., 

PepT1 for gastrointestinal mucosa and blood brain barrier (BBB) crossing) (Lai, 2013a). 

Additionally, they are also of great interest as pharmacological targets. An example of such 

relevance can be seen with OATP1B1 (also known as SLCO1B1), which drives a 

preferential distribution of statins into the liver versus the muscle, hence allowing acceptable 

therapeutic index by enabling a relatively lower extent of statin-related myopathy. In a more 

extreme scenario, SLCs have been found to be the single driver of availability at the binding 

site (e.g., YM155 is a cancer drug candidate which relies solely on SLC35F2 for entry into 

tumour tissue) (Winter et al., 2014). As a result of their role in mediating the distribution of 

drugs into or out of the site of action, SLCs are also associated with drug-drug and drug-

nutrient interactions that are caused by competitive transport. Additionally, SLCs also play 

a key role in different physiological mechanisms, and roughly 190 mutated SLCs have been 
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implicated in disease states (Cesar-Razquin et al., 2015, Artursson et al., 2013, Ishikawa et 

al., 2016).  

Despite this clear importance of SLCs in health-related research, in a recent review Cesar-

Razquin et al (Cesar-Razquin et al., 2015) reported this superfamily as having the most 

skewed distribution of publications across its members, where a few SLC members hold 

the bulk of publications dedicated to the SLC superfamily, leaving most unexplored. It was 

suggested in this review that exploring this group of underexplored proteins can potentially 

uncover relationships amongst SLCs, which in turn may guide future experimental 

exploration as well as uncover interesting druggable properties that guide drug discovery 

(Cesar-Razquin et al., 2015). 

 

Peptide Transporter 1 (PEPT1) 

PEPT1 is primarily known as a key facilitator of peptides’ (specifically di- and tripeptides) 

absorption; however, it also modulates the disposition of many xenobiotics, which will 

typically show some steric resemblance to PEPT1’s natural substrates (i.e. 

peptidomimetics, e.g beta-lactam antibiotics) (Brandsch, 2013, Flaten et al., 2011). It is 

expressed in a variety of tissues. 

PEPT1 is formed by two sets of six transmembrane alpha-helices, and substrate transport 

is fuelled by H+ symport. One binding site has been identified, in a hydrophilic cavity, 

however this is not capable of accommodating larger compounds such as valacyclovir or 

tetrapeptides (Fowler et al., 2015, Flaten et al., 2011), which hints at the possibility of at 

least another binding site.  

The transport mechanism has been proposed to follow a rocker-switch movement which 

has recently been expanded to a double scissors hypothesis, where two blades, one from 

each scissors, open in concert to each side of the membrane. The transporter alternates 

between outward and inward facing conformation, where it requires the apo conformation 

to switch into the outward conformation, and it needs to be bound to a substrate (holo 

conformation) and at least one proton to switch back into the inward conformation (Fowler 

et al., 2015). 

 

Organic Cation Transporter 1 (OCT1) 

OCT1 belongs to the SLC22A subfamily. This subfamily includes the OATs (significant 

human isoforms: URAT1, and OAT1-4 and 7) and the electrogenic OCTs (isoform 1-3). The 
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OCT1-3 are composed of 542-556 amino acids, with 12 predicted alpha-helical 

transmembrane domains (Lai, 2013f, Giacomini et al., 2010). 

OCTs exhibit broad substrate specificity, but OCT1 typically transports type I cations (fixed 

charge) of hydrophilic nature and low molecular weight in a sodium-independent process. 

However, it is also capable of transporting anions (Lai, 2013f, Giacomini et al., 2010). 

Pharmacophore studies have concluded that hydrophobicity and positive charge are 

important elements for molecular recognitions by OCT1 (Lai, 2013f).  

Despite the literature reporting OCT1 as primarily expressed in the liver, with minimal 

expression in other tissues (Lai, 2013f), this has been confirmed to be incorrect with recent 

direct protein quantification in a large number of tissues, reported in the human proteome 

atlas (Uhlén et al., 2015). Nonetheless, OCT1 plays an important role in facilitating hepatic 

excretion of compounds. 

 

Organic Anion-Transporting Polypeptide (OATPs)  

OATPs (or SLCOs) have a characteristic 12 transmembrane-helix structure and 5 

extracellular loops. This family is found in different tissues including the BBB, intestine, liver 

and muscle, where they play a key role in modulating absorption and overall tissue access. 

Typical OATP substrates are amphipatic anions, however they can also be neutral or 

zwitterionic in nature, and they include compounds such as steroid conjugates, bile acids, 

oligopeptides, thyroid hormones, and various different drugs (Lai, 2013e, Giacomini et al., 

2010). OATPs represent a high risk for drug-drug interactions and, as a result, both the 

American and European drug agencies (FDA and EMA) require an in vitro characterization 

of the interaction with OATP1B1 and OATP1B3 for every drug candidate eliminated 

hepatically, as these are they key modulators of biliary excretion (Lai, 2013e). OATP2B1 

has a relatively narrower substrate specificity than the two former transporters (Lai, 2013e). 

The OATPs are generally thought to have various binding sites. OATP1B1, for example, 

has been proposed to have at least two different binding sites, one with higher affinity and 

the other with lower affinity, and OATP2B1 has also been proposed to have multiple binding 

sites (Shirasaka et al., 2012, Tamai and Nakanishi, 2013). 

The uptake mediated by several OATPs (e.g. OATP2B1) has been demonstrated to be 

promoted by acidic extracellular pH (Hagenbuch and Stieger, 2013) and it is thought to be 

coupled with the efflux of glutathione and glutathione conjugates. Co-transport of 

bicarbonate has also been proposed, however there is contradictory evidence that points 
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both to the enhancement and inhibition of uptake paired with bicarbonate efflux (Lai, 2013e, 

Giacomini et al., 2010). 

 

1.8. Phospholipidosis and its Role in Drug Distribution 

Lysosomal trapping plays a major part in tissue binding, therefore being a key driver of 

distribution, and it has gained increased importance with regard to distribution and toxicity 

(Logan et al., 2013). Lysosomal uptake of xenobiotics (also called lysosomotropism) can 

develop into a disorder where there is an excessive accumulation of phospholipids and 

xenobiotic in the tissue, called (drug-induced) phospholipidosis. These phospholipidosis-

inducing xenobiotics are typically (but not necessarily) cationic amphiphilic drugs, which are 

prone to partitioning into the lysosome as, inside this compartment, the non-ionized form 

finds a more acidic pH which drives the protonation and subsequent conversion into the 

ionized species. As summarized in Figure 1.5, while the ionized fraction is unable to cross 

the membrane, the non-ionized fraction gets depleted with continued partition of neutral 

drug into the lysosome. As the concentration of the ionized base increases inside the 

lysosome, so does the medium pH. This means that all enzymatic processes that normally 

take place at pH 5 will be less favourable (Shayman and Abe, 2013, Smith, 2016). From 

this point there are several proposed mechanisms to explain the increase in phospholipid 

content inside the lysosome, with all theories indicating the impairment at some level of the 

lipid metabolism pathway, by interacting with either lipids or lipid-related enzymes 

(Shayman and Abe, 2013). 

The affected cells exhibit myeloid or lamelar bodies (membranous, concentric structures 

consisting of deposits of undegraded lipids) in the cytoplasm and an overall “foamy” 

appearance. This phenotype is only confirmed with transmission electron microscopy, and 

has been reported in different types of cells (alveolar and lymphoid tissue macrophages, 

hepatocytes, renal epithelial cells, neurons, or bile canalicular cells, among others) 

(Shayman and Abe, 2013, Reasor et al., 2006, Anderson and Borlak, 2006). 

Phospholipidosis is associated with impaired lysosomal protein degradation, compromised 

ability for endocytosis, induced formation of free radicals as well as compromised immune 

response. Alternatively to being identified as a toxicity mechanism, due to the occurrence 

of previously listed outcomes, there is also a theory that phospholipidosis is an adaptative 

defense mechanism, and is not intrinsically toxic. This theory claims that drugs that are 

potentially toxic to other locations inside the cell are sequestered into lysosomes and 
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excreted bound to lamellar phospholipid-rich bodies. The lamellar bodies are then cleared 

upon secretion by macrophages (Shayman and Abe, 2013, Anderson and Borlak, 2006). 

 

 

Figure 1.5. Representation of the ion partition equilibrium that drives basic compounds to be 
entrapped in the lysosome. 

Due to this concentration effect that characterizes phospholipidosis, there are important 

implications to Vss and tissue distribution patterns. There is evidence of drugs, such as 

quinacrine, which exhibit intracellular concentrations several hundred times larger than in 

the extracellular medium, and lysosomotropic compounds are frequently associated with 

unusually large Vss values (Logan et al., 2013). It is worth noting that interspecies 

extrapolation is unreliable, and even with human cell culture phenotypical evidence may 

take days and even months to develop, which has prompted the interest in in silico 

approaches to predict phospholipidosis (Reasor et al., 2006). 

Interestingly, both the concentration of drugs in the lysosome and their elimination (reversal 

of lamellar bodies) from within the cell are associated with transporters (Reasor et al., 2006, 

Shayman and Abe, 2013). 

 

1.9. Experimental Determination of Drug Distribution Parameters. 

In vivo determination of Vss typically relies on the collection of systemic concentrations 

(typically in plasma but also possible in blood) of a drug over a period of time after 

intravenous administration. The value of Vss can be derived from the administered dose 

and its resulting area under the curve (Fan and de Lannoy, 2014). 

Drug distribution is most commonly investigated with in vivo animal models in preclinical 

stages (Yanni, 2015). However, relying on animals to extrapolate human PK has been 

demonstrated to be complex as well as unreliable (Tsaioun et al., 2016). Various OATPs, 
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for example, are found in preclinical species but are absent in humans, which creates 

possible issues in extrapolating findings from preclinical stages into human trials (Lai, 

2013e). Due to the need to improve both throughput capacity and predictive power, as well 

as the need to reduce animal testing, it has become common to also use in vitro and in 

silico models to predict distribution during drug discovery. These played a vital role in 

improving the efficiency in the pharmaceutical industry, as discussed in the first section of 

the Introduction (Yanni, 2015, Tsaioun et al., 2016). 

In a typical drug discovery workflow, plasma protein binding is measured during hit-to-lead 

screening, followed by lead optimization where tissue distribution is studied in one rodent 

species. Lastly, prior to administration in humans in Phase I, for advanced lead optimization, 

a candidate’s distribution is assessed on one non-rodent species (dogs or non-human 

primates) and on one rodent species (Tsaioun et al., 2016, Zhang et al., 2012). 

For plasma protein binding determination, a number of assays are used by the 

pharmaceutical industry such as equilibrium dialysis and ultrafiltration, which have high 

throughput (allowing 96-well plate testing). Other used methods include ultracentrifugation 

and chromatographic separation, and some less used methods such as exclusion 

chromatography, dynamic dialysis and circular dichroism (Yanni, 2015). 

Animal studies for the assessment of the distribution of drug candidates are done through 

the administration of radiolabelled drug. Such studies include mass balance and 

quantitative whole-body autoradiography. In these, the labelled drug is administered orally 

or intravenously to the animal. In mass balance studies blood samples are collected over 

time, and tissues, urine and faeces are collected at specific times to determine whole-body 

distribution. The second technique, autoradiography, allows mapping distribution across all 

tissues and organs with time, however with the caveat of requiring a large amount of animals 

for each time point, and the inability to distinguish between metabolites and the parent 

compound (Yanni, 2015). 

Radiolabelled studies are also performed in humans, namely positron emission tomography 

and magnetic resonance imaging allow monitoring the distribution of a drug into different 

organs. However, both in animals and humans, radiolabelled studies have the disadvantage 

of presenting possible safety risks associated with radioactivity exposure. Additionally, the 

cost and labour-intensive work associated with producing radiolabelled compounds makes 

this a prohibitive approach to investigate a drug’s distribution, especially in humans (Yanni, 

2015).  

Drug distribution is also assessed by carrying out in vitro transporter studies. The standard 

parameter used for classifying a compound as a substrate or non-substrate of a given 
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transporter is the observed efflux/uptake ratio between the basal-to-apical partition and the 

apical-to-basal partition across a cell culture monolayer. This will typically be used to 

monitor the uptake by a given transporter of interest. However, it should be noted that if a 

cell line which expresses a variety of transporters, such as Caco-2, is used it is likely that 

the observed efflux ratio is a result of several transport routes (Crivori et al., 2006). 

Some in vitro assays to carry out transport interaction studies include membrane vesicle 

assays where cells transfected with ABC transporters (or membrane vesicles obtained from 

transporter-expressing organs) are incubated with and without ATP to investigate 

dependencies between ATP content and permeation (Yanni, 2015, Tsaioun and Kates, 

2012, Zhang et al., 2012). As a refinement of the vesicle assays, oocyte transport 

expression systems are used. These have also been reported to allow more precise 

assessment of transport by a specific transporter than cell lines (Shirasaka et al., 2012), 

which are another model to carry out transported impact studies. 

Cultured cell models typically use Caco-2 or MDCK-transfected cells to study both efflux 

and uptake. Caco-2 cells have the advantage of differentiating into polarized enterocytes, 

acquiring tight-junctions and expressing transporters in a way that resembles the human 

epithelium. These are commonly employed in bi-directional permeability assays. As for 

transfected cell lines, such as MDCK, CHO, HEK293 or LLC-PK1, they have the advantage 

of allowing to study isolated (typically over-expressed) transporters (Yanni, 2015, Tsaioun 

and Kates, 2012, Zhang et al., 2012). 

The impact of transporters on distribution into specific tissues can also be assessed by 

using primary cell lines such as hepatocytes, proximal tubular cells, or co-cultures of glial 

cells and brain capillary endothelial cells (Yanni, 2015, Tsaioun and Kates, 2012). However 

primary cell culture is more challenging from the technical point of view. For more specific 

analyses, primary cells collected from genetically polymorphic human subjects, or from 

transporter-deficient animals, are used. To address tissues such as the brain, MDCK cells 

expressing P-gp are commonly used as they form tight junctions also found in the blood-

brain barrier (Yanni, 2015, Tsaioun and Kates, 2012). 

In situ organ perfusion models are the closest surrogate of in vivo drug transport 

physiological processes, with the liver perfusion being the most used model. After a drug is 

perfused through the organ, it is possible to determine the amount of uptaken drug among 

other outcomes (Zhang et al., 2012). 
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1.10. Summary 

One of the main standing issues in pharmaceutical industry is the still high attrition rates. 

However, important strides have been made towards managing this issue among which is 

the strategic decision to address the ADME profile early on. This was first done with in vitro 

models and followed by in silico models. Using computational approaches has proven to be 

a very useful and inexpensive tool to helping flag potential ADME-related issues. The ADME 

profile consists of the four main processes that administered compound undergo, namely 

Absorption, Distribution, Metabolism and Excretion, and this thesis is focuses on the 

distribution component.  

Distribution is the group of phenomena that drive the partition of a substance between the 

various compartments in an organism and, as such, it determines the extent to which a drug 

reaches its site of action or a site of toxicity. Distribution is typically represented as a 

measure of volume called volume of distribution (Vd), and it is most reliably determined in 

steady state conditions (Vss). Many physiological and physicochemical factors play a role 

in modulating distribution, among which transporters have a large and complex impact. Two 

families of transporters are of particular importance: the ABCs and the SLCs. Another very 

important factor with drastic impact on distribution, which has been relatively underexplored 

is phospholipidosis. 

Current experimental methods to characterise distribution range from simple in vitro assays 

to cell-based and animal assays. These present some limitations related to the fact that 

these are typically low throughput, expensive and resource intensive, which prompted the 

exploration of computational alternatives to predict distribution, such QSAR models, which 

derive a link between chemistry and a biological outcome. 

  



Introduction Part II: QSAR modelling - Theory and Applications to Drug Distribution  

 
24 

2. Introduction Part II: QSAR modelling - Theory and 

Applications to Drug Distribution 

 

2.1. Introduction to QSAR modelling 

In the field of drug discovery it has become crucial to understand and establish a 

correspondence between a given activity or property of interest and the chemical structure. 

This field of research is generally named as Quantitative Structure-Activity Relationship 

(QSAR), even though it can be used to investigate not only the relationship between 

structure and activity, but also property, toxicology or selectivity. However, given that the 

methodologies of the four variants are the same, they are normally referred as QSAR, which 

will be done throughout this work (Gedeck et al., 2010).  

The applicability of QSAR to any given problem relies on the premise that, in that particular 

problem, the variation in a measured property (e.g., binding, dissolution, inhibition, etc.) 

across a range of compounds is attributed (or at least correlated) to structural, chemical or 

physical variations (Goodarzi et al., 2013). In practice, a QSAR model is built by establishing 

a mathematical function that relates features (or descriptors) of compounds and their 

respective property readout. This function is typically produced by a machine learning 

algorithm (Roy et al., 2015). 

The rationale behind having QSAR modelling as a competitive alternative to other available 

methods is two-fold. Firstly, as physicochemical features can be determined much more 

efficiently than the endpoint property of interest (determined in vitro or in vivo), 

computational predictive models offer a great reduction in cost, labour, and time (Goodarzi 

et al., 2013, Gedeck et al., 2010). To illustrate the difference in time-scale and cost between 

both scenarios, the patch-clamp technique used as an in vitro model of the hERG blockade 

consumes many research grade chemicals and requires one person for one work day, while 

a (previously trained) QSAR model to predict the same endpoint generally takes a few 

seconds and negligible effective cost (Gedeck et al., 2010). In fact, when analysing this 

scenario objectively, the first method is also a predictive model that has limited predictive 

power (Recanatini and Cavalli, 2008). The only exception to the short time required for in 

silico prediction is when high-level quantum mechanics is applied (Gedeck et al., 2010); 

however, precisely for this reason, these methods are more of an exception than the rule.  
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The second advantage of QSARs is that they are able to produce predictions on new, 

theoretical compounds, without requiring that these be synthesized. This means saving 1-

2 weeks of synthesis in an optimistic scenario (Goodarzi et al., 2013, Gedeck et al., 2010). 

To assure the quality of QSAR models, there are some general criteria that need to be 

followed during the construction of any QSAR model, and guidelines on this regard have 

been published (Tropsha and Golbraikh, 2010, Tropsha, 2010, Fourches et al., 2010). 

These guidelines will be briefly enumerated here, and further expanded in the next 

subsections. Firstly, the training set should be composed of sound experimental data, in 

order to avoid providing conflicting or fictitious patterns to the machine learning algorithm. 

This dataset should be annotated preferably with interpretable descriptors (Gedeck et al., 

2010), and when a large pool of descriptors is available, feature selection must be carried 

out. This is one of the most important approaches to improve the predictive performance of 

a QSAR model (Goodarzi et al., 2013), and will be discussed further in a separate 

subsection. Once the dataset is ready for modelling, using reliable and robust algorithms is 

also important to assure that a useful QSAR is produced (Gedeck et al., 2010). 

After the QSAR model has been built a comprehensive validation procedure is necessary 

to properly gauge its predictive performance. It has been demonstrated that the fit of the 

data used to build the model cannot be used as evidence of the model’s predictive power 

or generalizability, and strategies like cross-validation and external-set testing are required  

(Yousefinejad and Hemmateenejad, 2015). It is also necessary to assess the model’s 

confidence in outputting new predictions and this can be addressed through the 

characterization of the applicability domain. Another criterion that has been receiving 

increasing attention is the construction of interpretable models. This usually entails a power-

to-interpretability trade-off, which is not straightforward to balance depending greatly on the 

expectations and needs that drive a given modelling task. However, considering that the 

real-world use of these tools needs regulatory and governmental approval, one could say 

that interpretability becomes increasingly more important, since it is translated into more 

confidence from the decision makers in a given predictive model (Gedeck et al., 2010). 

 

2.2. Molecular Descriptors 

Molecular descriptors are formal numerical representations of molecular structure, derived 

from a defined molecular representation using a specified algorithm (Danishuddin and 

Khan, 2016). Molecular descriptors play a key role in establishing statistical models of 

various endpoints of interest in health research and toxicology, among other areas. 
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Currently there are more than 5000 descriptors divided into different categories according 

to complexity (i.e. information content) of molecular representation (Consonni and 

Todeschini, 2010), and the information they encode typically depends on the algorithm used 

for their calculation as well as the kind of molecular representation. The simplest type of 

molecular descriptors – constitutional descriptors – characterizes compounds according to 

atom type of fragments in the molecule, as well as bulk physicochemical properties, such 

as the number of hydrogen acceptors. These descriptors do not account for molecular 

topology, hence they are not able to distinguish between isomers (Consonni and 

Todeschini, 2010, Danishuddin and Khan, 2016). 

The second category in terms of complexity of molecular representation relies on the 

topological representation of molecules, and for this reason descriptors belonging to this 

group are named topological or 2D-descriptors. These descriptors take into account internal 

atomical arrangements and play a significant role in drug design, virtual screening, lead 

discovery and combinatorial library design, among others. Topological descriptors carry 

information about molecular shape, size, branching as well as heteroatomic and bond 

content. The calculation of these descriptors derives from a molecular graph rendition of a 

molecule (Consonni and Todeschini, 2010, Danishuddin and Khan, 2016). 

At a higher level of complexity there are 3D (or geometrical) descriptors, which are derived 

from three-dimensional molecular conformation. Geometrical descriptors have high 

information content and are typically employed towards the discrimination between similar 

molecular structures and/or conformations, also encoding information on van der Waals 

areas across the molecular surface. As a direct consequence of this, they require geometry 

optimization, which makes them considerably more computationally expensive. 

Additionally, flexible molecules can be associated with several conformations, which entails 

an increasing complexity in finding a solution for the conformation state (Consonni and 

Todeschini, 2010, Danishuddin and Khan, 2016). 

4D descriptors form the most complex type of descriptors as they result from the interaction 

energies between a probe and a grid-bound molecule (Consonni and Todeschini, 2010). 

However, as pointed out by Consonni and Todeschini, descriptor complexity does not 

equate to its informative/predictive value, and this is determined on a case-by-case 

scenario, across the different types of endpoints to be modelled. For this reason, descriptors 

should be selected in a data-driven manner, through feature selection procedures, as 

explained next. 
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2.3. Feature Selection in QSAR 

The new paradigm for data science has now shifted onto high dimensionality and/or large 

sample size. Highly dimensional datasets are typically associated to a high level of noise 

that is introduced by experimental error and by the fact that data comes from different 

sources (Tang et al., 2014). Further noise is introduced from the presence of irrelevant or 

redundant independent variables (normally named features), which can dilute meaningful 

patterns in the data. As a consequence, if used as they are, highly dimensional datasets 

are normally associated with training impairment (mostly due to overfitting that comes from 

chance correlations) in the construction of machine learning models – this is broadly 

referred to as “the curse of dimensionality”. Therefore, whenever dealing with such 

datasets, the implementation of a pre-treatment routine prior to model training is of 

paramount importance (Goodarzi et al., 2013, Tang et al., 2014, Aggarwal, 2014). 

Dimensionality reduction is among the most used pre-treatment techniques for noise 

reduction through the removal of redundant and irrelevant variables. These techniques 

usually contribute to improved model generalizability and learning performance, as well as 

lower computational cost of training.  Feature selection selects a small set of features that 

is able to maximize relevance and minimize redundancy with respect to the endpoint target 

of interest. Furthermore, the subset of selected features increases the model’s 

interpretability (Goodarzi et al., 2013, Tang et al., 2014). In addition, normally a biological 

activity or property only requires a relatively small set of descriptors to be properly modelled 

into a QSAR (Goodarzi et al., 2013). 

Feature selection algorithms can be broadly divided into filter, wrapper, and embedded 

methods (Bolón-Canedo et al., 2013, Saeys et al., 2007, Goodarzi et al., 2013), however 

only filter and wrapper methods are pre-processing methods. Filter methods score the 

features with respect to an intrinsic property of the data (e.g. the correlation between each 

feature and the class variable) and the highest scoring features are kept. Wrapper methods 

carry out a feature search that is guided by the performance of the machine learning 

algorithm to be used to build the QSAR model, so that the set of features that maximizes 

the cross-validation predictive performance is selected. This is carried out through an 

iterative process where a given candidate feature set, which is chosen by the searcher, is 

evaluated by the machine learning algorithm, which trains a tentative model with the 

candidate feature set. The performance obtained by this model is used to bias the direction 

of the search for the following iteration (Aggarwal, 2014). Lastly, embedded methods carry 

out feature selection during the training stage and are specific to the machine learning 

algorithms to which they are associated (Bolón-Canedo et al., 2013).  
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Comparing a filter and a wrapper approach, the latter is expected to yield more informative 

feature sets as it accounts for the bias in the learning algorithm, evaluating features in a 

context closer to the actual modelling task (Huang et al., 2007, Aggarwal, 2014). However, 

wrapper methods tend to be much more computationally expensive than filter methods, 

since the former need to run a machine learning algorithm many times, unlike the latter. 

 

2.3.1. Genetic Algorithms 

In a Genetic algorithms (GA) search, the algorithm finds a solution to a problem by applying 

the principle of natural evolution (survival of the fittest) to a population of chromosomes 

(candidate solutions represented as sets of features), which are submitted to genetic 

operators in an attempt to filter out non-critical information along the search process. Such 

genetic operators are crossover (the features in a pair of chromosomes are mutually 

exchanged) and mutation (a random turn on/off of one or a few single features in a 

chromosome) (Goodarzi et al., 2013).  

In a genetic search the full list of features is randomly sampled into N subsets (with N 

determined by the user). This can be viewed as a random first set of N guesses of what a 

good feature set might be. These N subsets are then evaluated with a merit function and a 

percentage of the subsets are picked, from which subsets are paired according to their merit 

scores (higher is paired with higher) to mutually exchange a portion of their features 

(crossover operation). This is followed by random selection of features (under a pre-defined 

probability) to add or remove. At this point a new group of N child subsets are obtained, 

corresponding to the first generation (or first iteration) of the genetic search. The child 

subsets are evaluated with the merit function and the process repeats for a pre-defined 

number of generations. At the end of the process, a final group of N feature subsets is 

obtained, and the highest scoring subset is selected as the solution found by the search 

(Goldberg 1989).  

In WEKA the merit function (Hall 1999) is defined by Equation 2.1: 

Merit =
k ×mean(feature−class correlation)

√k+k(k−1)×mean(feature−feature correlation)
  (Eq. 2.1) 

The advantage of using a GA as a feature selection algorithm is its ability to perform a global 

search (i.e., they are less likely to get trapped into local optima in the search space), thus 

tending to cope better with interaction between features. GAs are also capable of covering 

a large search space in a robust manner (Goodarzi et al., 2013, Tang et al., 2014). However, 
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a GA is rather prone to overfitting and, since it is a non-deterministic method, its success 

depends on the randomly generated initial population of chromosomes. To take into account 

this non-determinism, it is recommended to run repeated searches from different initial 

starting points in the dataset (Goodarzi et al., 2013).  

 

2.3.2. Greedy Stepwise 

Greedy Stepwise search (GS), or simply termed greedy search, performs a search through 

the space of features where it either starts with the empty feature set and tentatively adds 

new features, one at a time (forward search), or it starts with the full set of features and 

tentatively removes individual features (backward search). At each step, the best local 

decision is made regarding which feature to add or eliminate, respectively, such that 

changes maximize a merit score, defined by Equation 2.1. It is worth noting that no 

backtracking is carried out.  As a result, with each new step, the search becomes 

increasingly limited, so GS guarantees to find a local optimal solution but not the global 

optimal one (Blum and Langley, 1997, Witten et al., 2011). The trade-off is that GS is robust 

against overfitting, and computationally inexpensive (Tang et al., 2014).  

Greedy search strategies (within wrapper models) have been reported as very successful 

options for feature selection, since they are robust against overfitting and computationally 

advantageous (Tang et al., 2014).  

 

2.3.3. ReliefF 

Contrarily to some other feature selection algorithms, Relief algorithms (where ReliefF 

belongs) do not assume conditional independence of features. This makes ReliefF more 

appropriate to handle problems which entail considerable feature interaction. Additionally, 

ReliefF is efficient and aware of context information, being able to capture local 

dependencies which are normally missed by other methods. This is a robust algorithm 

which can deal with noisy and incomplete data, and has good ability to preserve sample 

similarity in a supervised learning context (Robnik-Šikonja and Kononenko, 2003, Bolón-

Canedo et al., 2013, Zhao et al., 2013). Overall, ReliefF has shown excellent performance 

in real world machine learning applications (Zhao et al., 2013). 

This algorithm evaluates features by iteratively selecting an instance at random and 

evaluating its k nearest neighbours of the same class (nearest hits) and its k nearest 

neighbours of a different class (nearest misses). The algorithm will reward features whose 
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values effectively discriminate the current instance’s nearest hits from its nearest misses, 

by increasing their weight (Robnik-Šikonja and Kononenko, 2003). 

 

2.3.4. Correlation-based Feature Selection 

Correlation-based feature selection (CFS) is a filter algorithm that ranks features according 

to the correlation amongst themselves as well as their correlation with the dependent (class) 

variable. CFS searches for a feature set where features maximize the observed correlation 

with the dependent variable, while penalizing feature inter-correlation. The net effect of both 

these factors is quantified through a merit score (Bolón-Canedo et al., 2013). 

The CFS algorithm works by first discretizing the numerical features in the training data, 

followed by an exhaustive calculation of feature-feature and feature-class correlations. This 

is paired with a user-selected searching algorithm (e.g. greedy search or genetic search) 

that searches through the feature space, and then the merit scores are calculated. The 

feature set that produces the highest merit during this search is kept to yield the final 

reduced-dimensionality dataset (Hall and Smith, 1999).  

 

2.4. Machine Learning in QSAR: Regression and Classification 

The machine learning methods used to build QSAR models are automated statistical tools 

that harness chemical and structural patterns towards describing a given target response. 

These are divided into two main groups of methods – Regression and Classification – which 

are employed to handle continuous (quantitative) and categorical (qualitative) response 

variables, respectively (Roy et al., 2015). Within both categories, the selection of the 

employed machine learning algorithm relies on two main aspects and their relative 

importance for the task at hand: interpretability and predictive power. Both aspects are 

important and offer different advantages, however they generally do not coexist in the same 

algorithm. As a result, one has to strike a balance between both aspects when modelling 

any given endpoint, which involves attributing priority to either interpretability or predictive 

power. This issue divides the machine learning community, and the QSAR community in 

particular (Fujita and Winkler, 2016). Whether emphasis is placed on either interpretability 

or predictive power depends on the purpose of the model’s use. In cheminformatics, 

especially when modelling clinically relevant endpoints, the transparency of the model 

allows shedding light on the phenomenon captured by the dependent variable (Freitas, 

2013). 
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2.4.1. Regression 

The task of modelling a continuous response is called regression, and it can be divided into 

two types: linear and nonlinear. In linear regression there is a continuous response Y that 

occurs as a function of one or more independent variables (also called predictors or 

features) X in a linear manner. If there is more than one independent variables, the applied 

method is defined as multiple linear regression. These predictors are weighted with 

coefficients (a, b, … z), as shown below (James et al., 2013). 

Y = a + b·X1 + … + z·Xn       (Eq. 2.2) 

The coefficients (and predictors, if any feature selection procedure is used) are estimated 

in order to minimize the discrepancy (or residual) between observed (𝑦𝑖) and predicted (𝑦̂𝑖) 

response, which is measured by the sum of squared residuals (James et al., 2013), as 

shown in the following equation, where N stands for the number of instances. 

∑ (yi − ŷi)
2N

i=1        (Eq. 2.3) 

Equation 2.2 assumes a linear and additive nature between the response and the 

predictors, however this assumption can easily be violated if predictors show any sort of 

interaction amongst themselves. This can be overcome by allowing any number of 

predictors to be combined in one same additive term (James et al., 2013). 

The linear regression described so far is produced by restricting the machine learning 

algorithm to learn a linear pattern between the various predictors and the response. Even 

though linear models are straightforward to implement and allow easy inference and 

interpretation, if a non-linear pattern exists between predictors and response, linear 

regression cannot appropriately model the problem at hand. In real-world data the 

assumption of linearity is, at best, an approximation and will very often not be applicable at 

all. There are several non-linear methods to address such scenario, namely polynomial 

regression, regression based on smoothing splines, generalized additive models, local 

regression and step functions (James et al., 2013). 

 

2.4.2. Classification 

The task of modelling a qualitative (also called categorical) response is called classification. 

Contrarily to regression, where the aim is to establish (through training) which numerical 

values the response Y takes throughout the span of one or more predictors, the main aim 
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in classification is to find numerical thresholds (called decision boundaries) in the predictor 

space that best separate the different categories or classes (values of the dependent 

variable), as represented in Figure 2.1. Such boundaries may be described linearly or non-

linearly. Using the established boundaries, the built models predict the class of an instance, 

often through initially predicting the probability of each available class (James et al., 2013).  

 

 

Figure 2.1. The square represents the full dataset available for training. The data is sorted using 
decision thresholds applied to Predictors A and B, which separate the data from two different classes 
(depicted in yellow and red, respectively). 

 

Examples of classification algorithms are (linear and multiple) discriminant analysis, logistic 

regression, k-nearest neighbours, decision trees and other tree-based methods (such as 

random forests or boosted trees), support vector machines (SVMs), neural networks, and 

Naïve Bayes, among others (James et al., 2013, Madan et al., 2013, Aggarwal, 2014). 

 

2.5. Machine Learning Algorithms 

2.5.1. Decision Trees 

Decision trees predict the value of the response variable, also called the output (which can 

be either continuous or categorical) by arranging data according to a range of successive 

partitions of the input space. This is done by carrying out a greedy search through all 

available descriptors (features), and determining which decision splits provide the greatest 

gain in each successive node, i.e. the most accurate partition of instances according to their 

correct class (for classification) or numerical partition of the response (regression). This 

process is recursively applied until all instances in each final node (leaf node) are of the 

same class or same subportion of the response range. During this tree growth phase, pre-
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pruning can be used consisting of some termination criterion (e.g. the minimum number of 

instances in a node) that is meant to control tree complexity. After the tree is fully grown, it 

undergoes pruning in the post-pruning phase to avoid overfitting and allow better 

generalizability. There are different pruning techniques, from which three are available in 

WEKA, the software used for model building throughout this work: reduced-error pruning, 

subtree replacement and subtree raising (Kotsiantis, 2013, James et al., 2013). However, 

as no pruning technique outperforms the other in all datasets (Kotsiantis, 2013), the pruning 

should be optimized for each different decision tree built (which has been done throughout 

this work, as explained in the Methods section 3.4.1).  In classification each leaf node with 

be assigned the majority class of its instances, whereas in regression it will be assigned the 

average of the response of its instances.  

One of the most widely used and successful decision tree algorithms is C4.5., proposed by 

Quinlan (Quinlan, 1993) as it shows a good balance of speed and predictive power 

(Kotsiantis, 2013, Witten et al., 2011). A more recent version, called C5.0 (no reference 

available, developed by Ross Quinlan and available in www.rulequest.com/see5-info.html), 

was developed to improve efficiency in memory usage and computational speed however 

there are instances where comparative studies show that C4.5 still outperforms, or 

produces equivalent performance to C5.0 (Rokach and Maimon, 2015, Galathiya, 2012). 

One of the advantages in C5.0 is that is typically produces smaller rulesets (Galathiya, 

2012), hence making it easier to interpret. Decision trees have a very intuitive structure, 

which makes it easy for a user to understand the decision path that produced each 

prediction (Freitas, 2013). Additionally, this machine learning method can accommodate 

high-dimensional data while maintaining the ability to identify and ignore irrelevant 

variables, which makes this one of the best options for interpretable models for data 

containing various distinct underlying mechanisms that produce the modelled response. 

However, decision trees typically obtain relatively low predictive performance (Yousefinejad 

and Hemmateenejad, 2015, Kotsiantis, 2013) when compared, for example, with SVMs or 

neural networks (Hastie et al., 2009). Lastly, while non-linearity affects their predictive 

performance, decision trees appear to be robust to heteroscedasticity and multicollinearity 

(Kotsiantis, 2013). 

In this thesis decisions trees were applied (as a standalone method) exclusively to output 

data of categorical nature, using the C4.5 algorithm implemented by Quinlan (Quinlan, 

1993), so this shall be described in more detail. 

Starting from a set of features that describe an output class, the problem originally has 

maximum entropy (worst separation of classes). The algorithm evaluates the information 
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gain (or entropy loss) achieved for splitting the data using each available feature, and 

selected the feature with larger information gain in a greedy fashion. Information gain can 

be described as the increased ability to separate classes from the previously observed class 

ratio, as can be calculated with Eq. 2.4. 

IG, i = Entropyi−1 − Entropyi   (Eq. 2.4) 

Entropy = ∑ −
Nc

Ntotal
× LOG2 (

Nc

Ntotal
)m

c=1   (Eq. 2.5) 

 

This feature will compose the first node, which will split the data into two subgroups. From 

this point onwards, C4.5 applies the procedure to all features (including the feature used in 

the first node) to generate subsequent child nodes that continue to split the subsets 

originated under each node, so as to maximize class separation. As mentioned earlier for 

decision trees in general, the extent to which this recursive data splitting occurs is controlled 

by a stopping parameter (e.g. minimum instances per child node) or by post-pruning 

(decision tree “simplification”). (Quinlan, 1993, Witten et al., 2011) 

 

2.5.2. Random Forests 

The reasoning behind random forests (and any other ensemble method) draws from the 

empirical value of committee decision making, where predictions are overall more robust. 

In random forests, a set of random decision trees are built where the individual trees make 

individual decisions (predictions) for each instance, and instances are classified according 

to the majority vote (in classification) or according to an average of the numerical predictions 

of the members of the ensemble (in regression) (Hastie et al., 2009, Aggarwal, 2014). In 

the Random Forest algorithm built by Breiman in 2001, in order to build a random forest, 

bootstrap subsets of training instances are used to train each tree, and a small set of 

features are randomly selected and made available to the creation of each node. The 

feature assigned to create the split for each node corresponds to the feature that produces 

the highest information gain (Equation 2.4), also calculated from entropy (Equation 2.5). 

To keep the process unbiased, no pruning is applied to each tree (Breiman, 2001). 

Producing a group of trees in such manner allows compensating for the instability of single 

decision trees caused by small changes in the training set (Strobl et al., 2007). As a result, 

this algorithm works towards reducing the variance in the prediction of the response variable 

(as many other algorithms do), as well as reducing the bias in that prediction (Breiman, 
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2001). It assures convergence (by the Strong Law of Large Numbers (Hazewinkel, 1993), 

whereby, in a sequence of random variables, their averages tend to constant values with 

probability of 1) and, consequently, it is relatively insensitive to overfitting (Breiman, 2001). 

Additionally, Random Forests cope with the “small n, large p” issue (small number of 

instances, large number of features) and, as with decision trees, they can handle scenarios 

of highly correlated descriptors and can capture non-linear feature-response relationships 

(Boulesteix et al., 2012, Hastie et al., 2009). However it should be noted that, despite being 

relatively robust, this algorithm becomes at increased risk of overfitting when there are a 

small number of informative features among a large total number of variables, and a small 

feature sampling size is set during training (Hastie et al., 2009). Additionally, negligible gains 

come from imposing a limit to tree growth (Hastie et al., 2009), which means this should 

generally be avoided as such constraints are also introducing additional bias. Random 

Forests are one of the most successful (Biau, 2012) and most widely used algorithms in 

bioinformatics and chemoinformatics modelling, and a diverse list of examples is provided 

in the literature  (Boulesteix et al., 2012).  

As both regression and classification versions of random forest are employed in this work, 

it is useful to provide additional detail regarding the differences between their 

implementation, with particular emphasis on how such differences take shape in WEKA. 

The overall process explained earlier is applicable to both cases, however two main 

differences exist between them: how features are selected and how the predictions are 

computed. In classification, features are selected as explained in the previous section on 

decision trees (2.5.1), where at each point a feature that produces the largest information 

gain compared to the previous state of the data is selected to form a new decision node. 

However, while here the corresponding entropy is calculated from class separations 

achieved with a given tentative split, this cannot be applied to a regression problem where 

the output is of continuous nature. As a result, WEKA compute information gain from 

variance measured before and after a given decision split, and the descriptor producing the 

largest variance decrease will generate the largest information gain and will, consequently, 

be selected for the current decision node (Information obtained from inspecting the source 

code for the RandomTree function in WEKA). Regarding how prediction are computed in 

both modelling scenario, in classification the final predictions are obtained by gathering the 

majority class votes across the forest, while in regression the final predictions result from 

taking the average value obtained from the training instances that are allocate to a given 

final leaf node, and performing an instance-wise averaging these individual predictions 

across the tree. 
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2.5.3. Boosted trees 

Boosted trees rely on the notion that it is easier to average many rough rules than it is to 

find a single highly predictive rule, so this technique produces many poorly performing 

models and combines their output to yield a more powerful committee. As the name implies, 

this algorithm learns through a technique called boosting where fitting is done by iteratively 

increasing the emphasis placed on poorly predicted instances. Boosted trees are applicable 

to both classification and regression problems (Elith et al., 2008, Hastie et al., 2009). 

In practice, boosted trees are trained through the sequential fitting of weak decisions trees 

where, at each step (or boosting iteration), weights are increased in training samples with 

a poorly predicted response, and decreased for correctly predicted instances. Such tracking 

of fitting quality is done through a loss function which can adopt different types (e.g. 

exponential or binomial deviance for classification problems, and absolute loss or squared-

error loss for regression, among others). This will force the algorithms to focus on the most 

challenging examples, as more iterations are performed. After the last iteration, the full set 

of predictions for each instance is submitted to weighted majority voting to output the final 

predictions across the dataset. This means that the final predictions will be mainly 

influenced by the more accurate classifiers in the committee (Hastie et al., 2009, Aggarwal, 

2014). 

The main attractive feature in boosted trees is that it is able to minimize error rate during 

learning even for committees formed of near-random classifiers such as decision stumps. 

Furthermore, compared to simpler approaches such as decision trees, boosted trees 

provide (often dramatically) improved accuracy, however interpretability and computational 

cost are sacrificed to achieve that (Hastie et al., 2009). 

In a regression context, the boosted trees will be trained by initializing a fitted function with 

a zero value and assigning the residuals to the observed response Y. Training will then be 

an iterative process of fitting each subsequent tree not to the actual response Y, but to the 

current residuals (as a function of the independent features). The new resulting regression 

tree will then be added to the fitted function, so that the residuals are updated. As in 

classification, a shrinkage parameter, used to control the boosting learning rate, is applied 

in association to the output of each iteration (James et al., 2013). 
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2.6. Multi-label Classification 

Up until this point all explanations regarding classification and the corresponding machine 

learning algorithms were applicable to a training scenario where there is a single response 

variable (regardless of the number of classes contained in it). This is the traditional machine 

learning paradigm, where among n training instances (compounds) in the dataset, each 

instance is assumed to be associated with a single response (called class label). As a result, 

this is called a single-label problem, and each compound is classed under one label 

(response), e.g. active or inactive. However, there are cases where instances, due to their 

complexity, might have various simultaneous responses, which is the same as saying that 

an instance is associated to a set of various labels rather than just one. By contrast to the 

previous situation, this is called a multi-label problem. Modelling such complex sets of 

endpoints will produce a multi-label classifier (Zhang and Zhou, 2014, Carvalho and Freitas, 

2009). Formally these two scenarios can be defined as follows: 

In a single-label problem, each object is represented by an instance and each instance is 

in turn associated to a single label. As a result the problem can be formally characterized 

by an instance space 𝛸 = (𝑥𝑖: 1 ≤ 𝑖 ≤ 𝑛), where n is the number of instances,  and a label 

space  𝐿 = (𝑦𝑗: 1 ≤ 𝑗 ≤ 𝑞), where q is the number of labels, where each instance 𝑥𝑖 ∈ 𝛸 is 

associated to a label 𝑦𝑖 ∈ 𝐿. Thus, each instance represents a property (or set of properties) 

of an object and each label represents its semantics (Zhang and Zhou, 2014). In traditional 

supervised learning each instance is assumed to be associated with a single semantic 

meaning, which means that the main goal here is to learn from a training set ((𝑥𝑖 , 𝑦𝑖)| 1 ≤

𝑖 ≤ 𝑛) and produce a function 𝑓: 𝛸 → 𝐿. (Zhang and Zhou, 2014) 

Alternatively, in a multi-label problem, objects have various simultaneous meanings, which 

means that an instance is associated with a set of labels rather than just one. So, in this 

scenario the machine learning algorithm is used with the goal of learning a function ℎ: Χ →

(0,1)|𝐿| from a training set ((𝑥𝑖, 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑛) formed by instances assigned with a subset of 

labels 𝑌𝑖 ⊆ 𝐿. Hence, for every new instance the trained classifier h(∙) will predict h(x) ⊆ 𝐿 

(Zhang and Zhou, 2014, Luaces et al., 2012). 

The interest in learning from multi-label datasets has recently started broadening into a 

variety of fields, and applications that span from genomics to music. Hence, this research 

field is quickly evolving (Tsoumakas et al., 2010, Zhang and Zhou, 2014). 

Supervised learning from multi-label data can be divided into two main types of task: multi-

label classification, which concerns models that produce a bipartition of the labelset into 
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irrelevant and relevant; and label ranking, in which the model outputs ranked class labels 

according to the relevance to a given instance (Tsoumakas et al., 2010).  

A common methodological approach to handle multi-label classification problems is 

problem transformation, where an initially multi-label problem is transformed into one or 

several single-label problems. A regular single-label classifier is then applied to each single-

label problem, and the separate predictions from all the single-label classification tasks are 

finally gathered in the multi-label prediction phase. There are a number of different families 

of problem transformation methods (Read et al., 2009).  

The task of machine learning applied to multi-label problems has two main problems. Firstly, 

they have an increased computational complexity compared to the single-label counterpart. 

As consequence, depending on the number of labels, more complex machine learning 

algorithms may not be practical to use, which obviously hinders scalability. Secondly, the 

very nature of multi-label data encompasses new levels of uncertainty due to the fact that 

each instance is associated with an indeterminate number of labels and there can be 

interdependency between labels (Luaces et al., 2012). Even if label dependency is not 

known a priori, one cannot safely exclude that possibility, which is why one of the main 

goals in multi-label classification is to enable the detection of these relationships. 

Correlations between labels potentially hold important information about the modelled 

problem, and accounting for this is crucial in facilitating the machine learning algorithm in 

learning the various responses (Gibaja and Ventura, 2014). As a result, a major goal in 

multi-label classification is to enable the detection of these relationships.  

 

2.6.1.  Binary Relevance (BR) 

One of the most widely used problem transformation methods is Binary Relevance (BR), 

which, as mentioned in the general definition above, decomposes the multi-label problem 

into a binary problem for each label separately, following a so called one-against-all 

approach. When applied, the classifier will predict the 0/1 distribution in every separate 

label, ignoring the information from all the remaining labels (Read et al., 2009, Luaces et 

al., 2012). The separate predictions from all the single-label classification tasks are finally 

gathered into one multi-label prediction (Luaces et al., 2012, Read et al., 2009). Formally, 

BR can be defined by training |𝐿| binary classifiers 𝐶𝑖, 1 ≤ 𝑖 ≤ |𝐿|. Each classifier will be 

associated to a label 𝑙𝑖 and will be used to predict the class of each instance under that 

label. In practice this means that the classification algorithm uses all the occurring instances 
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under a given label as positive and all the remaining instances as negative instances 

(Madjarov et al., 2012).  

Even though it is popular, BR has the major drawback of assuming label independence. In 

practice, by separating the labels one is, in fact, losing potential information; and it has been 

pointed out that, as a result, predictions produced from BR are likely to contain too few or 

too many labels, or even impossibly coexisting labels in practice (Read et al., 2009, Luaces 

et al., 2012). Another problem of using this kind of multi-label method is that one is tacitly 

assuming that missing labels and negative label observations merge, both of them 

belonging to the non-positive observations group, so to speak. In other words, one would 

be considering missing label and negative label observations as the same. This is obviously 

a flawed assumption. However some authors still argue that despite its obvious flaws, BR-

based methods also have valuable features (Read et al., 2009, Luaces et al., 2012), in 

particular its simplicity and relatively good computational efficiency.  

It is widely accepted by the machine learning and data mining community that accounting 

for inter-label dependency is of paramount importance in several multi-label classification 

problems. One of the most commonly used and straightforward methods to allow this is the 

label powerset (LP) method, in which the original multi-label problem is transformed into a 

single label problem in which each class is a combination of labels (or label subsets) 

occurring in the dataset. However, since all possible combinations of labels observed in the 

dataset have to be covered, this usually translates into a large number of different classes. 

In fact, in most cases the number of possible label combinations (or classes) grows 

exponentially as dataset size increases, potentially reaching tens of thousands of classes. 

This is associated with a high computational complexity that is upper-bounded by 

min(|D|,2|L|), where D represents the number of data points.  In practice, this means that this 

method is suitable only for datasets with a relatively small number of labels (Read et al., 

2009).  

 Turning back to the main drawback of BR, a practical and easily implemented alternative 

to overcome the assumption of label independence is the Classifier Chain (CC) method, 

which is able to cope with label dependency (Read et al., 2009). In this technique, the 

different labels originating from single-label models communicate the learned information 

to each other, in a sequential fashion. This will be further explored below. 

Regardless of any weaknesses, BR still remains in use as the main baseline for multi-label 

classification. Furthermore, Luaces and colleagues (Luaces et al., 2012) argue that it should 

not be regarded merely as a baseline for the multi-label classification task, as they 

demonstrate with synthetic, noisy datasets that for high numbers of labels BR seems to 
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outperform a CC ensemble. Interestingly, they demonstrated also that with increasing label 

dependency (even at higher degrees than the current benchmark datasets) the 

performance of BR is comparable to that of a CC ensemble, which actually goes against 

what is generally established in multi-label machine learning.  

 

2.6.2.  Classifier Chain (CC) 

Generally speaking, BR is more known by its shortcomings, and rarely regarded for its 

advantages. However, this is a very intuitive, simple method associated with comparatively 

low computational costs, scaling linearly with the increase in the number of labels. 

Moreover, it is able to optimize various loss functions, training can be performed with any 

binary learning algorithm, and it can be easily parallelized (Read et al., 2009, Luaces et al., 

2012). As already mentioned, on the other side of the spectrum lie methods like LP, which 

have the advantage of coping with label interaction and transforming the data without any 

loss of information, but have the disadvantage of being prohibitively expensive during 

training in many cases. Therefore, it seems logical to use a method that compromises 

between BR and LP, which is the case of CC. Indeed, as experimentally shown by Read et 

al. (Read et al., 2009) for 6 benchmark datasets, CC shows only a slight, negligible increase 

in computational cost while significantly improving the predictive performance in almost all 

datasets. This was also demonstrated by Luaces et al. (Luaces et al., 2012), who extended 

the analysis to synthetic datasets distributed along a wider range of numbers of labels. As 

a result, CC appears to fall in an optimal region in terms of the cost-to-predictiveness trade-

off. 

As in BR, CC uses |𝐿| binary classifiers, where each classifier deals exclusively with the 

binary relevance problem for each label. The main difference is that in CC the classifiers 

are linked in a chain, which extends the feature space of each BR problem (or link of the 

chain, in this case) by taking into account the 0/1 predicted values of all previous labels. 

This results in the production of a chain of binary classifiers 𝐶𝑖, ⋯ , 𝐶|𝐿|. The multi-label 

classification is achieved by |L| steps: at the first link in the chain, 𝐶1 predicts the value (1 

or 0, i.e. presence or absence of the label) for the respective label 1, given the training 

instances available for the classifier associated with that label. This involves computing the 

first class label’s probability: Pr (𝑙1|𝑥1,𝑗). For the following links, the prediction is computed 

for each successive label, given the current classifier’s training instances and the predicted 

label value for the previous labels in the chain. This involves computing the i-th class label’s 

probability: 𝑃𝑟(𝑙𝑖|𝑥𝑖,𝑗, 𝑙1, ⋯ , 𝑙𝑖−1). By propagating predicted label values from one classifier 

to the following ones, CC accounts for label correlations (Read et al., 2009); however this 
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is done without overwhelming the classification algorithms with all possible combinations in 

the label space, which makes the multi-label classification task much simpler. The main 

shortcoming of this method is the fact that it relies on the order of the chain. Due to the 

sequential nature of a CC model, error is propagated through the chain as prediction are 

fed forward and used as features in the following single-label elements of the CC. As a 

result, if a poorly learned variable is put in first place it will produce a set of poor predictions 

which will form a bad source of information for the following variable that are subsequently 

modelled. On the other hand, this scenario will be drastically different if this initial variable 

is put in last place, instead, and has a change of receiving additional information produced 

from other variables which might mean it will be modelled more accurately. The second 

scenario will more likely produce an overall better performing CC model. As a result of this, 

to address the effect of label order, if the set of labels is sufficiently small, an exhaustive 

comparison of all label combinations can be performed to find the optimal ordering. 

Alternatively, for larger feature sets, this can be overcome by employing an ensemble of 

CCs (ECC) (Luaces et al., 2012). However, Madjarov et al. (Madjarov et al., 2012) showed 

that, when compared to each other in terms of the average performance across all available 

benchmark datasets, ECC does not differ statistically from CC in most of the commonly 

used evaluation measures, and in some cases it is even outperformed by CC (even though 

not significantly). Genetic algorithms have also been applied to efficiently search for an 

optimal arrangement of label. The authors offer a possible explanation for this phenomenon: 

CC is a stable method, and so ECC does not offer any significant improvement in predictive 

performance. This, associated with the fact that the training time with CC is much closer to 

that for BR than ECC, makes CC a very appealing method. 

 

2.7. QSAR Models’ Predictive Performance and Reliability 

The evaluation of predictive performance is done based on two components – internal and 

external validation – which both occur after a model has been built. In internal validation, 

cross validation (CV) strategies are used. While fitting can be improved by merely adding 

more features, cross validation fitting performance tends to decrease in such situations. The 

CV strategies can be leave-one-out or leave-many-out, however it has been established 

that leave-one-out CV is no longer appropriate in most cases and it should, whenever 

possible, be replaced by leave-many-out CV (also known as k-fold CV), as this gives a more 

reliable estimation of model generalizability (Yousefinejad and Hemmateenejad, 2015, 

James et al., 2013). This is due to the trade-off between bias and variance. While leave-

one-out CV is less biased than k-fold CV, it has much higher variance. This results from the 
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fact that the leave-one-out predictions are output by models trained on almost identical 

training data, so they are highly correlated, which is associated with higher variance. This 

variance will expectedly be overestimated in relation to the error in the external data, hence 

not being an appropriate surrogate to be used in model optimization or estimation of 

generalizability (James et al., 2013). 

In cross validation, a user-set number of partitions is applied to the dataset, and each 

partition is iteratively set aside for testing, while the remaining partitions are used to build a 

model. The model is then tested on the excluded (testing) partition. This is done in such a 

way that it allows setting aside every partition exactly once (Alexander et al., 2015). Even 

though it is useful, internal validation is not sufficient to evaluate predictive performance as 

it is known to show overly optimistic performance (Alexander et al., 2015, James et al., 

2013). Testing the model on external data which was not used in any part of model training 

and optimization is a more stringent way to estimate the model’s true performance, and it 

is considered the gold standard among the community (Yousefinejad and Hemmateenejad, 

2015, Alexander et al., 2015). It is recommended that 20-30% of compounds in the full 

dataset are set aside for external testing (Yousefinejad and Hemmateenejad, 2015). 

 

2.7.1. Applicability Domain 

As pointed out by Eriksson (Eriksson et al., 2003), end users of a QSAR model will only 

trust its predictions if they are supported by evidence that the chemical space used for 

training covers newly tested compounds. As a result, any chemistry-response relationship 

model needs to demonstrate not only good accuracy but also reliability for external 

predictions. While the former is straightforwardly assessed using performance measures, 

the latter is addressed by characterizing the model’s applicability domain (AD), which 

consists of the input space (chemical space, in the context of cheminformatics) 

circumscribed by boundaries inside which the model has reliable and defined performance 

(Toplak et al., 2014). This has the important role of reducing the propensity for non-apparent 

extrapolations, i.e. predictions done within input range, however associated with a poorly 

modelled inner region of such range.  

The currently adopted European Chemical Regulation (REACH) promotes the use of in 

silico models as a replacement for in vitro and in vivo testing for the evaluation of chemical 

entities. However, results derived from approaches such as QSAR should only be used if 

the respective model is compliant with four main criteria, among which is the demonstration 

that the applicability domain of the model appropriately covers new predictions (Madan et 
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al., 2013). This demonstrates the importance of this component of computational modelling 

and prompted the exploration of this topic in the context of this thesis’ data. 

There are several reviews and comparative studies on AD methods available in the 

literature (Jaworska et al., 2005, Netzeva et al., 2005, Sahlin et al., 2014, Dragos et al., 

2009, Sushko et al., 2010a, Sahigara et al., 2012, Mathea et al., 2016), which focus on 

either distinguishing inliers from outliers, or high accuracy compounds from low accuracy 

compounds. Contrarily to the modelling task where a response variable can be used to 

assess the predictive ability of the model, there is no response variable for the true inclusion 

in the AD, given its subjective nature. Therefore, the characterization of a model’s AD is 

exploratory by nature. While there is no way of objectively determining the accuracy of 

forecasts on inclusion/exclusion criteria of new queries within the AD, one is able to estimate 

the utility of a certain AD in a real-world scenario by applying it to naïve data. 

Much like machine learning methods, available AD characterization methods are broadly 

divided into two types: unsupervised AD, which relies solely on descriptor space and 

supervised AD, which uses the relationship between descriptors and the output variable. 

Examples of unsupervised AD are range-based methods (coverage determined by the 

range of each individual descriptor), convex hull (coverage determined by the smallest 

convex area that contains all training compounds), distance-based methods (coverage 

determined by distance to training set) and density-based methods (coverage defined by 

density of training space in areas affecting new compounds). Unsupervised methods have 

many limitations that stem from the difficulty to capture the multidimensional structure of the 

data. Multiple problems arise, such as the distortion of distance measures by the presence 

of correlation between descriptors, or by the existence of a highly dimensional space. On 

the other hand, if descriptors are used individually a compound might be deemed well 

covered by some descriptors and not by others. In addition they rely on the assumption of 

a smooth input-output landscape where predictions are less reliable as compounds distance 

themselves from training space, in a somewhat proportional manner. This is easily violated 

in a real world scenario, where small input changes lead to a dramatic change in the output 

response, and where roughed patches on the structure-activity landscape are more difficult 

to properly capture by a machine learning algorithm. For example, a compound might be 

well covered by descriptor space but might belong to a completely different class, and a 

(perceivably) remote compound is not necessarily unreliably predicted.(Mathea et al., 2016, 

Netzeva et al., 2005, Jaworska et al., 2005, Kaneko and Funatsu, 2017) 

As a result, supervised AD is more capable of detecting such situations as it uses the 

machine learning task to infer on the reliability of a new compound. As a consequence this 
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is generally regarded as being superior to unsupervised approaches, as it tries to capture 

directly the propensity for unreliable predictions. In this context reliability can be derived 

from the distance to decision boundaries (for classification), the level of agreement in an 

ensemble of models or the prediction probability. (Mathea et al., 2016) 

 

2.8. QSAR Models for the Prediction of the Drug Transport 

This section will provide an overview on the different approaches used, to date, to models 

transporter data. The same will be done for Volume of Distribution in Chapters 6 and 7, as 

in these chapters a direct comparison to the literature is beneficial during the discussion of 

results obtained. 

Sedykh et al. (Sedykh et al., 2013) reported the QSAR modelling of various ATP-Binding 

Cassette transporters (ABCs) (all 4 transporters considered in this thesis) and Solute 

Carriers (SLCs) (PEPT1, OCT1 and OATP2B1) , and by accounting for the models’ 

applicability domain they were able to generate overall high predictive performance across 

all transporters. Majority class undersampling was applied to PEPT1 and MRP2 data, where 

only the least similar compounds to the minority class were removed. 

Very recently (during the same period the work in this thesis was being developed), Ose et 

al. (Ose et al., 2016) reported Support Vector Machine (SVM) classification QSAR models 

for ABC and SLC data, however these were built on from data merged from physiologically 

related transporters (OATP1B1+OATP1B3; OCT1/2+MATE1/2-K; MRP2/3/4) into a single 

response class. They trained an SVM classification model on a very limited number of 

descriptors (ranging from 4 to 7) which were selected partly selected by empirical criteria 

and partly by feature selection). These models showed high prediction performance, 

however they are not applicable to predict whether a compound is likely to be a substrate 

of any one particular transporter. Additionally they have modelled BRCP1 and P-gp, 

individually, where the models were able to reach good predictive performance for the latter, 

but low precision for the former. 

After the development of the work in this thesis, Shaikh (Shaikh et al., 2017) also reported 

on modelling of a variety of ABC and SLC transporters and created ensemble QSAR models 

for each transporter. Data was gathered from the same source as used in this thesis (i.e. 

Metrabase (Mak et al., 2015)) and PEPT1, OCT1, OATP1A2, OATP1B1, OATP1B3, 

OATP2B1, BCRP, P-gp MRP1 and MRP2 substrate and non-substrate datasets were 

modelled. However note that these datasets were completed with putative non-substrates 
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(to overcome imbalance) that corresponded to compounds that undergo passive 

permeation. Putative non-substrates corresponded to 0-42% of the total dataset, which 

means that they are more frequent than actual non-substrates in some cases. They have 

also applied some physicochemical filters to make the chemical space more tractable to the 

training step, and have used protein-derived descriptors that encode both intrinsic 

transporter properties and protein-ligand interaction. They report the performance of the top 

models, however this appears to have resulted from a selection based on the external 

validation dataset. This incurs in the risk for overfitting and performance values obtained by 

models tested in the same dataset that was used previously for the selection of such models 

should be analysed conservatively. 

It should be noted that using passive permeation as counter-examples trained against 

substrates of any given transporter has an associated risk of producing a model that merely 

learns to distinguish passive diffusion from any kind of active transport (being insensitive to 

the actual transporter being modelled). 

 

2.8.1. The ABC Superfamily 

P-glycoprotein (P-gp) 

Various QSAR models of P-gp substrate prediction have been carried out and are generally 

associated with higher predictive power than structure-based methods of pharmacophore 

(effluxophore) models (Broccatelli, 2012).  

Initially, a relatively small amount of data was used (N=195). Lima et al (de Cerqueira Lima 

et al., 2006) used this dataset annotated with a range of molecular descriptors to produce 

a range of QSAR models and obtained an accuracy in external data (ca. 25% of the data) 

of 81% for their best model (which was trained using a support vector machine (SVM)) (de 

Cerqueira Lima et al., 2006). Cabrera and colleagues added observations to this dataset 

and applied additional quality filters where borderline substrates and bound but non-

transported compounds were removed. They reported 77.5% accuracy in external 

compounds from their linear discriminant analysis model. Huang et al (Huang et al., 2007) 

and Wang et al (Wang et al., 2011) also modelled the dataset from Cabrera et al. and, not 

surprisingly, both produced SVM models of much larger accuracy in external data (90% and 

88%, respectively) set aside from the full dataset.  

Crivori et al (Crivori et al., 2006) trained a partial least squares discriminant analysis model 

on a relatively small set of data (N=53) and upon testing it in a significantly larger external 

dataset (N=272), they were able to report 72.4% accuracy. This is perhaps partly caused 



Introduction Part II: QSAR modelling - Theory and Applications to Drug Distribution  

 
46 

by the fact that they have assigned to the substrate group two compounds that would be 

considered “indeterminate” cases, as they had an efflux ratio (ER) < 2. 

Gombar et al (Gombar et al., 2004) also trained a discriminant analysis model but on a 

larger proprietary dataset (still relatively small, N= 95), having applied more stringent 

parameters than Crivori et al. when assigning data to either substrates or non-substrates 

(substrates if ER > 2, and non-substrates if ER <1.5). In this case, despite having used 

more data for the training than Crivori et al., which would theoretically lead to better 

interpolation, their model shows a worse specificity than a model trained with half of the 

data (73.9% versus 75.0%, respectively). Even though overall accuracy is deceivingly larger 

in Gombar et al. (86.2%), this is actually a worse model as it shows larger imbalance 

between sensitivity and specificity – for a precise definition of these terms see Chapter 3. 

The main reason here appears to be related to class representation and class imbalance, 

where Crivori et al. used 58.5% non-substrates, whereas Gombar et al. used only 32.6% 

for training. This demonstrates the relevance of class imbalance towards predictive power, 

which can counteract applied criteria to improve data quality. 

Gupta et al. (Gupta et al., 2010) used a very large proprietary training set of 24,995 

compounds. These authors applied yet another threshold criterion for the classification of 

compounds where compounds are considered substrates if ER ≥ 2.5. The allocation into 

training and test sets was done in such a way that assures maximum variety among the 

same group of compounds. In this work, a number of different machine learning algorithms 

were used to train the models (SVM, recursive partition forest, C5.0 and random forest). An 

additional 18,413 new compounds were used for testing, and this yielded somewhat varied 

performances across the different machine learning algorithms. SVM was surprisingly the 

lowest performing model, with very low specificity (52%) and C5.0 was the best performing 

model with high sensitivity and specificity (85% and 77%, respectively). 

Desai et al (Desai et al., 2013) reported different chronological variations of a bagging trees 

P-gp efflux model developed on a large proprietary dataset, in which they allocated 

compounds into substrates and non-substrates using yet another ER threshold value (i.e. 

substrate if ER > 3, otherwise non-substrate). Different time cohorts of data (ranging from 

863 to 1945 compounds) were used to build the bagging model and they showed overall 

80% predictive accuracy. Their QSAR model (which was built from manual in vitro P-gp 

efflux assay) proved to be more reliable as a predictor than an alternative automated P-gp 

efflux assay, and thus the latter was discontinued and replaced by the QSAR model. 

Broccatelli (Broccatelli, 2012) took a different choice from other works relying on open-

access data, and tested P-gp efflux modelling with a single, high quality source. This tested 
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the feasibility of prioritizing the minimization of noise at the cost of loss of information. He 

built several models using a small dataset of 150 compounds whose efflux measurements 

were available from the Netherlands Cancer Institute, and were exclusively determined on 

MDCK-MDR1 Borst cell lines. His best model (which was built using a random forest 

algorithm) showed 84% accuracy and a high balance between sensitivity and specificity 

(80% and 86%, respectively) in an external dataset of 37 compounds. This model showed 

the highest predictive power, when compared to other works that also used highly 

consistent datasets derived from one single source of efflux ratio data, namely Desai et al.’s 

and Gupta et al.’s work; even though these used a training set one to two orders of 

magnitude larger. This might appear counterintuitive, however this might be due to the fact 

that these two other works used proprietary data, which may mean that they cover a larger 

amplitude of chemical space that originates from the normal practice of companies to 

actively explore new scaffolds and therapeutic families. This might hinder the prediction 

performance. 

 

Breast Cancer Resistance Protein (BCRP) 

Contrarily to P-gp, BCRP has much fewer QSAR models reported in the literature, and all 

published in recent years. Hazai et al.(Hazai et al., 2013) and Gantner et al.(Gantner et al., 

2013) built BCRP efflux QSAR models (using, respectively, SVM and MLR/ LDA methods) 

on datasets of similar size (263 and 262 compounds, respectively). They have obtained 

comparable performance (73% and 74.5%, respectively), even though the former allocated 

considerably more data to training (N=223) than the latter (N=164). Zhong et al. (Zhong et 

al., 2011) used a smaller set (N = 137) of compounds to also train an SVM model, which 

yielded an even better accuracy of 85% in 40 external compounds, which is probably due 

to the fact that training was paired with a round of GA feature selection and a parameter 

optimization method (conjugate gradient). 

More recently, Ose et al. (Ose et al., 2016) built a multi-label binary relevance model for a 

number of SLC and ABC transporter endpoints. For each transporter they have trained a 

separate SVM model where experimentally confirmed substrates are classified against 

expert-suggested non-substrates. The model predicting BCRP was able to identify 21 out 

of the 27 available substrates, however looking at the full set of predictions shows that the 

model predicted a total of 56 compounds as being substrates. As the 35 exceeding 

compounds may or may not be substrates, it is unclear whether the model has properly 

learned the BCRP endpoint or it just overfitted (as it classified more than half of the external 

dataset as substrates). 
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Multidrug Resistance Proteins 1 and 2 (MRP1 and MRP2) 

There are very few QSAR models on either MRP1 or MRP2 substrate data. Initially a model 

of MRP2 built on 1204 putative substrates and non-substrates was reported, indirectly 

derived from the correlation between cytotoxicity and MRP2 mRNA levels. This however 

did not yield good results in 44 external, experimental observations which showed a 

sensitivity well below 50% (Pinto et al., 2012).  

Additional attempts to model MRPs, reported by Ose et al. (Ose et al., 2016), Sedykh et al. 

(Sedykh et al., 2013) and Shaikh et al. (Shaikh et al., 2017) have been discussed at the 

beginning of section 2.8, as these work report on multiple transporters simultaneously. 

 

2.8.2. The Solute Carriers (SLCs) Superfamily  

As SLCs have very few ligand-based QSAR models reported in the literature, these have 

been discussed in the same section, at the beginning of section 2.8, because applicable 

works typically address different transporters at the same time. These are namely the works 

by Ose et al. (Ose et al., 2016), Sedykh et al. (Sedykh et al., 2013) and Shaikh et al. (Shaikh 

et al., 2017). 

 

2.9. Summary 

Considering this thesis is in the intersection of two disciplines - pharmacokinetics and 

machine learning - this chapter provided an overview of the theoretical principles behind the 

machine learning methodology (QSAR modelling) applied to address different 

pharmacokinetics questions posed throughout this work. 

In order to develop a QSAR model, a series of steps should be followed, comprising data 

curation, calculation of chemical features, feature selection which finally lead to model 

development using statistical machine learning. According to the nature of the output 

variable (continuous versus categorical) different feature selection and machine learning 

algorithms can be employed. Regarding the latter, one of the main points of focus of this 

thesis is multi-label methods, which allow harnessing links or correlations between different 

distribution phenomena, ultimately aiding in the ability to model such phenomena.  
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After a model has been developed, its ability to derive useful predictions should be 

assessed, and the different types of performance assessment were discussed. Lastly, 

beyond determining the level of accuracy in predictions, it is important to characterize the 

model’s applicability limits, defined as the applicability domain. 

Lastly, a summary of the state of the art in terms of QSAR models applied to the various 

pharmacokinetics endpoints addressed by this thesis was provided. 
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3. Methodology and Workflow 

3.1. Datasets 

3.1.1. ABC Efflux Dataset 

A dataset of 1493 compounds was compiled from the substrate data available in the 

Metrabase database (Mak et al., 2015) (accessed in October 2014) for six ABC 

transporters: BCRP1, MDR1, MRP1, MRP2, MRP3 and MRP4. All instances were divided 

into two classes: substrates and non-substrates. The collection of SMILES provided was 

checked for repetitions and isomers using ACD Labs, and mixtures were removed. 

Repetitions were merged and, for cases of conflicting information, the principle of minimum 

evidence was applied, by which all compounds with at least one case of reported substrate 

property were regarded as potential substrates and so, they were classified as substrates. 

This is a valid approach considering that all the initial data collected from Metrabase was 

selected based on quality standards (Mak et al., 2015). 

The resulting dataset contained 1493 compounds which showed a negligible imbalance in 

class label distribution for larger transporter classes, i.e. BCRP1, MDR1, MRP1 and MRP2 

compounds, with the substrate to non-substrate ratio of 1.7, 1.3, 1.0 and 1.2, respectively. 

However, for the smaller transporter classes, namely MRP3 and MRP4, the ratio was 

around 2.5, which led to insufficient number of non-substrates for modelling and validation. 

Therefore, these two transporters were eliminated and the remaining four transporters were 

investigated, using a final dataset of 1462 compounds spread across transporters as shown 

in Figure 3.1. 

 

Figure 3.1. Schematic summary of transporter overlap represented in the Venn diagram. Below each 
transporter label are the total number of instances (in a square) in the full dataset, and the 
corresponding number of substrates and non-substrates. S: substrates, NS: non-substrates. 



Methodology and Workflow  

 
51 

3.1.2. SLC Uptake Dataset 

Substrate and non-substrate data was retrieved from Metrabase (Mak et al., 2015) 

(accessed in November 2015), and the binding profiles of all available SLC transporters 

were collated. This corresponded to OATP1A2, OATP1B1, OATP2B1, OATP1B3, OCT1 

and PEPT1. Even though data on the Apical Sodium Dependent Bile Acid Transporter 

(ASBT) was also available for analysis, this was removed later due to lack of sufficient 

amount of data to allow acceptable external model testing.   

Regarding the annotation of molecular descriptors in this dataset, this was done using the 

structures provided as SMILES codes were analysed and validated using ACD labs. All 

duplicates and pairs of isomers were checked using ChemSketch. Duplicated entries were 

merged when exhibiting agreeing responses, and when contradicting responses were found 

(4.3% of the observations) the respective entry was annotated as substrate, following the 

principle that, if a compound has at least one substrate report, it is likely to be a substrate, 

following the same reasoning applied to the ABC Efflux Dataset (Section 3.1.1). As a result, 

substrate/non-substrate data for a total of six transporters were used for QSAR modelling, 

where each transporter corresponds to a class label in the multi-label classification task 

carried out in this work.  

The dataset had a total of 760 unique compounds spread across 980 instance-label cases 

distributed as shown in Table 3.1. The full compound vs labels matrix was 21.5% filled in 

and had a label cardinality of 1.3 (i.e., on average, there are 1.3 labels per instance).  

 

Table 3.1. Distribution of substrates (S) and non-substrates (NS) across the different transporters in 
the SLC dataset. 

 S NS 

OATP1A2 55 24 

OATP1B1 95 37 

OATP1B3 58 26 

OATP2B1 47 64 

OCT1 159 88 

PEPT1 246 81 

 

3.1.3. Volume of Distribution Dataset 

The Vd dataset compiled by Obach et al (Obach et al., 2008) was used in the QSAR 

modelling. This dataset is composed by Vd measurements obtained exclusively from 

human intravenous administration, in steady state. The SMILES codes for the compounds 

in the dataset were retrieved from the provided names using the pubchempy module in 
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python. Retrieved SMILES were checked against a separate retrieval operation of CAS-to-

CID search on DrugBank, followed by CID-to-SMILES conversion using the online tool 

available in PubChem. The few mismatching cases (N=9) found when comparing the two 

sources of SMILES were clarified through manual retrieval.  

The final list of SMILES codes was then standardised using the MolVS python package, 

which entailed standardisation of chemotypes and tautomers. A comparison of canonical 

SMILES allowed identifying pairs of repeated 2D structures where pairs of isomers were 

kept (given that 3D descriptors will be used); otherwise, for pairs of canonical + isomeric 

structures, only one instance was kept (based on the availability of observations from the 

included physiological variables in the dataset – see below). The final dataset was 

composed of 665 compounds. 

Regarding the annotation of the dataset with physiological descriptors, given the 

physiological implication of protein-mediated transport, phospholipidosis (PL), and plasma 

protein binding (PPB) in the distribution of numerous compounds, these were added as 

physiological descriptors (PDs), used alongside a set of molecular descriptors (MDs). 

Specifically, twelve PD variables were added: drug-induced PL, ABC transport (mediated 

by P-gp, BCRP, MRP1 and MRP2), SLC transport (mediated by PEPT1, OCT1, OATP1B1, 

OATP1B3, OATP1A2 and OATP2B1) and PPB. 

Transporter Binding Data was retrieved from the ABC and SLC datasets described in 3.1.1 

and 3.1.2, and compounds in the Vd dataset were annotated with a binary response. The 

same was done for Drug-Induced PL Data which was retrieved from different sources 

available in the literature(Lowe et al., 2012, Goracci et al., 2013, Orogo et al., 2012, Bauch 

et al., 2015, Muehlbacher et al., 2012) as well as from ChEMBL (removing repeated 

observations from the previous references). From these, Goracci et al(Goracci et al., 2013) 

and Lowe et al (Lowe et al., 2012) were regarded as the gold standards, as their data is 

obtained from electron microscopy measurements (the highest quality source for 

phospholipidosis data). The remaining sources are herein termed as “secondary”. As a 

result of this criterion, whenever the full set of measurements for a given compound shows 

conflicting responses, the responses from those two sources are kept and the remaining 

conflicting data is ignored. When no information is provided from any of these two sources, 

information from any of the other sources is accepted, given that two or more competing 

observations for the same compound have to agree in order to be accepted. For 5 instances 

there were no agreement between multiple secondary sources, so their PL observations 

were discarded. 
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Whenever applicable, phospholipidosis or transporter information associated to a given 

isomer is assigned exclusively to the corresponding isomer entry in the Vd dataset. 

Otherwise, it is assigned to the corresponding non-isomeric equivalent entry. 

As the number of entries in the Vss dataset where an experimental response for transport 

or PL could be retrieved were limited, the non-existent responses were completed with 

predictions. Each of the 10 transporter variables were filled in with the output produced by 

two multi-label models (chapter 4 and 5) applied in a preprocessing step. This was also 

applied to PL, where predictions were obtained from a previously trained model on the 

benchmark PL dataset curated by Goracci. This model was trained prior to the initiating the 

work in this chapter, by using physicochemical descriptors (obtained as explained in section 

3.2) and random forest classification paired with prior greedy search feature selection, 

implemented in WEKA (Hall et al., 2009) under default conditions. These conditions were 

selected after preliminary optimization, based on the highest performance in an internal 10-

fold cross validation on the training set (not using the testing set). Given that the dataset 

used is unbalanced, a cost of 2 was assigned to the false negatives (while false positives 

remained with the default cost of 1) during training. The model was built on 80% of the 

dataset and tested on the remaining 20%, showing high sensitivity (0.857) and specificity 

(0.711) on the test set. 

To allow differentiation of the transporter predictions and the PL predictions according to 

their quality, they were used in the form of class probabilities (rather than categorical class 

predictions). A schematic representation of this process can be found in Figure 3.2. Here, 

for each transporter, experimental observation is annotated as substrate (1) or non-

substrate (2) – shown in black. All missing experimental observations (e.g. compound #1 

for BCRP1) are completed with the predictions probabilities drawn from the substrate class 

of each transporter’s classification model (i.e. probabilities up to 0.5 represent a predicted 

non-substrate, probabilities above 0.5 represent a predicted substrate) – shown in blue. 

 
Figure 3.2. Completion of missing transporter binding data with the prediction probabilities obtained 
from the different respective multi-label classifier.  
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Lastly, regarding the annotation with Plasma Protein Binding (PPB) Data, this predictor was 

submitted to the same procedure of completing missing observations with predicted data. 

For this reason, a prior step of PPB modelling had to be carried out. In order to maximize 

the achieved predicted power, the PPB data provided by Obach et al was not used and, 

instead, a larger dataset was used. The PPB dataset deposited in ChEMBL by AstraZeneca 

was used the single source of data (assay reference CHEMBL3301361) being composed 

of 1614 compounds. No other data source was added onto this dataset as this was deemed 

sufficiently large (relative to the scale of the Vss dataset) and doing so reduces the chance 

of noise that results from inter-laboratory experimentation. The data was modelled using 

physicochemical descriptors (obtained as explained in section 3.2) and a random forest 

model (of 200 trees, optimized by 10-fold CV) paired with greedy search pre-processing 

feature selection. Eighty percent of the data was used for training, and the resulting model 

yielded a 7.9% mean absolute error in the test set; PPB predictions obtained were used to 

fill in missing data.  

 

3.2. Molecular Descriptors 

All molecular descriptors used as input variables throughout this work were calculated using 

ACD/labs logD and Molecular Operating Environment (MOE 2013 in chapters 4, 5 and 8; 

MOE 2015 in chapters 6 and 7). Prior to any calculation, input structures obtained in form 

of SMILES codes were washed and standardized. As a portion of descriptors calculated in 

MOE are dependent on the 3D conformation of a compound, all structures were submitted 

to a minimization protocol beforehand. An initial molecular mechanics minimization was 

performed (further information on the used method is provided in the Methods section of 

each experimental chapter), followed by a subsequent refinement with quantum mechanics 

minimization (using the PM6 method).  

No single charge-assignment method was selected over any other, across homologous 

descriptors, as it has been shown that different charge assignment methods have led to 

variable success in modelling different datasets in the past (Mittal et al., 2009). This allows 

a data-driven selection of charge-related molecular descriptors using PEOE vs PM6 

methods, as well as various descriptors derived from semi-empirical methods, AM1, PM3 

and MNDO. 

All invariant or mainly empty descriptors were excluded, as well as repeated and spatial 

coordinates-dependent descriptors. Descriptors with predictions of activity/response 

endpoints (such as mutagenicity) were also excluded. pKa and pKb values, calculated for 
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the most acidic and basic species, were used to calculate the ionized fraction of acid, base 

and zwitterion at 7.4, as well as the unionized fraction. After this, pKa and pKb were 

excluded.  

 

3.3. Feature Selection 

Five feature selection techniques were employed throughout the work presented in this 

thesis, and the underlying theory that explains how they function has been given in section 

2.3. All feature selection methods were run using the training set only, and they can be 

divided into three filter methods, namely Genetic Algorithm search (GA), Greedy Stepwise 

search (GS) and ReliefF (RfF); and two wrapper methods, namely the C4.5 Decision Tree-

Genetic Algorithm (C4.5-GA) and Random Forest-Greedy Stepwise search (RF-GS). These 

were implemented using the popular data mining tool WEKA (version specified in each 

chapter), following the setting described below. 

Filter methods were implemented with the CfsSubsetEval attribute evaluator paired with GA 

and GS search algorithms. CfsSubsetEval is WEKA’s implementation of correlation-based 

feature selection evaluation, which scores features by rewarding strong correlations to the 

dependent (class) variable, and penalizing strong correlations to other features (Witten et 

al., 2011). 

For the GA feature selection, the GeneticSearch algorithm was used, being set for 0.8 and 

0.01 crossover and mutation probabilities, respectively; and both the population size and 

the number of generations were set to 100, to allow sufficient exploration of the feature 

space. GS was carried out using the GreedyStepwise, using the default settings.  

RfF was carried out with the ReliefFAttributeEval, which does its own evaluation (i.e. this 

was not paired with CfsSubsetEval), and was run using default settings which coincide with 

previously reported used settings (Spolaôr et al., 2013).  

The wrapper methods were implemented with ClassifierSubsetEval where the two search 

algorithms (GS and GA) were combined with two classifiers (respectively RF and C4.5 

decision trees, using the RandomForest and J48 implementations in WEKA) to run the two 

resulting wrapper methods: RF-GS and C4.5-GA. In C4.5-GA, the settings for the wrapper 

GA were the same as the ones used for the filter GA. As for the C4.5 classifier within the 

wrapper, the pruning method was optimized by an internal (using the training set) 10-fold 

cross validation. When applicable, the confidence factor was optimized in a range between 

0.1 and 0.5 (with a 0.1 step). All other parameters within C4.5 were set to default values. In 

the RF-GS method the trees were limited to a maximum depth of 3, as the focus is tree 



Methodology and Workflow  

 
56 

number not tree depth. The number of trees (ranging from 1 to 25) was optimized using the 

internal 10-fold cross-validation root-mean squared error. 

To minimize local-minima effects that have been particularly reported for GAs (Shahlaei, 

2013), for all feature selection methods an internal 10-fold cross validation was re-run 

multiple times (the exact number will be specified when applicable, in each chapter) using 

different random seeds.  

 

3.4. Machine Learning Algorithms 

Throughout the work presented in this thesis, from chapter 4 to 8, inclusive, the following 

machine learning methods were employed to model different endpoints, using Weka (Hall 

et al., 2009)  (version 3.6 or 3.8, specified in each chapter). 

 

3.4.1. Decision Trees 

Decision trees were built using the C4.5 implementation in Weka – J48. The optimal pruning 

method was selected from the three available methods (reduced-error pruning, subtree 

raising and subtree replacement) based on the lowest Mean Absolute Error (MAE) in an 

internal 10-fold cross validation. When applicable (i.e. when the pruning method was not 

reduced-error pruning), the confidence factor was optimized in a range between 0.1 and 0.5 

(with a 0.1 step), using an internal 10-fold cross validation as well. All other C4.5 parameters 

were set to default values. 

 

3.4.2. Random Forests (for Classification and Regression) 

Random Forest (RF) and Boosted Regression Trees (BT) were used. Both were 

implemented in WEKA using the RandomForest function and the AdditiveRegression 

method wrapped around the RandomTree learner. For the tuning of the algorithm’s 

parameters in both cases, the optimal parameter values were selected based on the lowest 

Mean Absolute Error (MAE) in an internal 10-fold cross validation using the training set. For 

RF tuning, the number of trees was optimized in a range between 100 and 1000 

(considering increments of 100). As for BT, the number of randomly sampled features at 

each node was set to 9 (the same value as used by default in the RF algorithm), the number 

of iterations was optimized between 100 and 1000 (again, in increments of 100) and 
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shrinkage was optimized between 0.05 and 1 (in increments of 0.05). All other parameters 

in both algorithms were used as default in Weka.  

 

3.4.3. Boosted Trees 

Boosted classification trees (BCT) were trained by wrapping the boosting algorithm 

implementation in WEKA, multiBoostAB, around the C4.5 decision tree algorithm, J48, and 

were tuned using an internal 10-fold cross validation. The conditions for the embedded J48 

trees were inherited from the previously optimized J48 models within the current chapter, 

the number of committees (or iterations) was optimized ranging from 10 to 100, and the 

number of subcommittees was set to the squared root of the committee size as 

recommended by the author(Webb, 2000). 

Regarding the boosted regression trees (BRT) the AdditiveRegression wrapped around the 

RandomTree learner was used. For the tuning of the algorithm parameters, the optimal 

parameter values were selected based on the lowest Mean Absolute Error (MAE) in an 

internal 10-fold cross validation using the training set. The number of randomly sampled 

features at each node was set to 9 (the same value as used by default in the RF algorithm), 

the number of iterations was optimized between 100 and 1000 (in increments of 100) and 

shrinkage was optimized between 0.05 and 1 (in increments of 0.05). All other parameters 

in both algorithms were used as default in Weka.  

 

3.5. Predictive Performance Evaluation Measures 

3.5.1. Evaluation Measures for Classification 

As established earlier in section 2.6, single-label and multi-label data have different 

structures and, as a result, the models they generate have to be evaluated using 

performance measures designed for either a unique endpoint label or multiple coexisting 

labels, respectively. 

 

Single-label model assessment  

The single-label performance measures used for single-label model assessment are 

defined below (Eriksson et al., 2003), where TP, TN, FP and FN stand for the numbers of 

true positives, true negatives, false positives and false negatives, respectively (Fawcett, 
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2006). The measures listed below are called Sensitivity (Sen), specificity (Spe), Matthew’s 

correlation coefficient (MCC), and the geometric mean between Sen and Spe (G-mean).   

 

Sen =
TP

TP+FN
        (Eq. 3.1) 

Spe =
TN

TN+FP
       (Eq. 3.2) 

MCC =
TP×TN−FP×FN

√(TP+FN)×(TN+FP)×(TP+FP)×(TN+FN)
   (Eq. 3.3) 

G − mean = √SEN × SPE    (Eq. 3.4) 

 

Multi-label model assessment  

Several multi-label predictive accuracy measures were used, namely the harmonic mean 

between precision and recall (F1), Precision (P) and Recall (R), calculated according to 

Tsoumakas and Katakis (Tsoumakas and Katakis, 2007, Tsoumakas et al., 2010). 

Hamming Loss (HL) was used solely to monitor the impact of each label on the multi-label 

model’s predictive performance, during model building. 

 

Hamming Loss =
1

N
∑

|Yi∆Zi|

|L|
N
i=1     (Eq. 3.5) 

F1 =
1

N
∑

2|Yi∩Zi|

|Zi|+|Yi|
N
i=1     (Eq. 3.6) 

P =
1

N
∑

|Yi∩Zi|

|Zi|
N
i=1       (Eq. 3.7) 

R =
1

N
∑

|Yi∩Zi|

|Yi|
N
i=1       (Eq. 3.8) 

 

In these measures, Yi and Zi correspond to the set of observed and predicted labels, 

respectively, for the i-th compound, N corresponds to the number of compounds (instances) 

in the dataset, and |L| corresponds to the number of modelled labels. The Δ symbol denotes 

the symmetric difference between two sets of label values (observed and predicted, in this 

case), which is equivalent to the exclusive-or (also known as “XOR”) boolean operation.  
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To overcome bias coming from unbalanced classes, a balanced accuracy (bACC) was used 

when assessing predictive performance. This measure consists of the average G-mean 

across every label j (which, in turn, can be considered as the single-label balanced 

accuracy). To evaluate the predictive performance considering the balance between the 

two classes across instances, ΔPR measures the average deviation in precision and recall 

between substrates and non-substrates. 

 

bACC =
1

|L|
∑ √Senj × Spej

|L|
j=1      (Eq. 3.9) 

∆PR =
|PS−PNS|+|RS−RNS|

2
    (Eq. 3.10) 

 

3.5.2. Evaluation Measures for Regression 

The measures used for assessing the predictive performance are the Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), coefficient of determination (R2) and the 

Geometric Mean Fold Error (GMFE), calculated as defined in the literature (Polishchuk et 

al., 2016, Alexander et al., 2015, Freitas et al., 2015). Additionally, the Mean Fold Error 

(MFE) and the percentage of data within 2- and 3-fold error (FE) thresholds were calculated 

for the best final models within each applicable chapter. Consider that predicted, 𝑦̂, and 

observed, 𝑦, values are log-transformed. 

MAE =
∑ |(y−ŷ)|

N
  (Eq. 3.11) 

RMSE = √
∑(y−ŷ)2

N−1
  (Eq. 3.12) 

R2 = 1 −
∑(y−ŷ)2

∑(y−y̅)2
  (Eq. 3.13) 

FE = Antilog10(|y − ŷ|)  (Eq. 3.14) 

GMFE = Antilog10(MAE) (Eq. 3.15) 
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3.6.  Applicability Domain (AD) and Activity Cliffs 

For any QSAR model, it is necessary to define the domain of applicability to ensure its 

reliability in the prediction of properties of compounds in an external, independent dataset 

(from a data source different from the one used to build the model). To determine the AD, 

the distance to the model based on the standard deviation (STD) of the predicted values 

(or labels) from an ensemble of various models was used, as this has been shown to be 

the most successful method in quantifying predictive reliability across chemical space in the 

data (Sushko et al., 2014, Dragos et al., 2009, Sushko et al., 2010a, Tetko et al., 2008, 

Tetko et al., 2013). This technique capitalizes on the concept that the disparity between 

predictions computed from a group of models (ensemble) is a direct consequence of 

prediction reliability. A small standard deviation will equate to highly reliable predictions, 

whereas a larger value signals unreliable predictions. It has been demonstrated that the 

disagreement between models leads to a better separation between reliable and unreliable 

predictions compared to traditional structure-based measures (Tetko et al., 2013). 

An ensemble of models is trained (independently from the actual QSAR models) using 

random samples of training set data, each sample comprising 80% of the training set 

compounds. 

 

STD = √
∑(ym−y̅)2

N−1
    (Eq. 3.16) 

 

STD values are calculated for each compound using Equation 3.16 above. Here, 𝑦𝑚 is the 

class label prediction using model m and 𝑦̅ is the average of all prediction outputs for this 

compound by N models. For classification models (which is the case here) the class label 

predictions ym take the form of probabilities. By setting increasingly larger STD thresholds 

(with increments of 0.05), which can also be perceived as increasing distance to the model’s 

reliability core, more compounds become included in the model’s AD. By performing this 

kind of scanning through the model’s space, one is able to establish a profile of reliability 

(measured in % correct predictions, otherwise called accuracy) as a function of STD. 

 

To further explore a model’s domain of applicability, it is useful to identify cases that might 

appear covered by the training space but are actually associated with a high level of 

predictive error. A well-known example of this are activity cliffs.  
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To search for possible activity cliffs, the similarities between all pairs of compounds were 

calculated using the well-known Tanimoto coefficient (Tc) applied on 1024 bit Morgan 

circular fingerprints (equivalent to the extended connectivity fingerprints [ECFP], calculated 

using the RDkit module in python), for a radius of 2. Following the criteria for activity cliffs 

used by several authors (Iyer et al., 2013, Wassermann et al., 2011, Stumpfe and Bajorath, 

2012), activity cliffs corresponded to compound that have a different class than the majority 

class of the corresponding 3 nearest training neighbors, which must all show a tanimoto 

coefficient > 0.55 to the analyzed compound. This threshold has been reported as a 

sensible value above which compounds are visibly similar (Iyer et al., 2013, Stumpfe and 

Bajorath, 2012, Wassermann et al., 2011). 

 

3.7. Visualization 

In order to explore the distribution across chemical space of different datasets (or 

subportions of it) used throughout this work, t-Distributed Stochastic Neighbor Embedding 

(t-SNE) (Maaten and Hinton, 2008) was chosen as the multidimensional scaling (MDS) 

technique. This technique is one of the most successful in conserving the multidimensional 

structure of the data during its projection into a low-dimensional plot (Maaten and Hinton, 

2008). t-SNE starts by taking the all the pairwise Euclidean distances in high-dimensional 

space and converting them into conditional “proximity” probabilities, which can be seen as 

similarities. These probabilities (or similarities) are computed such that probability of a given 

b (or similarity between a and b) corresponds to the probability of b being picked as a 

neighbor of a, with neighbours being picked under a Gaussian probability density function 

centered at a. This means that in close high dimensional proximity the conditional probability 

between two points is high and becomes infinitesimal for distance points. The same is done 

for low dimensional space, where low-dimensional Euclidean distances are converted into 

low dimensional conditional probabilities, but now using a student t-distribution. If similarity 

in high-dimensional space correctly models similarity in low-dimensional space, between 

any two points, the corresponding high- and low-dimensional conditional probabilities are 

equal. As a result of this, a new low-dimensional space that recapitulates the original relative 

arrangement or points can be derived from minimizing the disparity between both sets of 

conditional probabilities.(Maaten and Hinton, 2008)  

Other well-known multi-dimensional scaling techniques such as principal components 

analysis (PCA) or SMACOF (more frequently known as classical MDS) are linear in nature 

and focus on maintaining large distances during the high–to-low dimensional space 

conversion. PCA, for example, is simply concerned with maximizing the variance of each 
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one-dimensional projection derived from the original data. Hence, such linear techniques 

lack the ability to keep small distances between the two spaces. This becomes a major 

shortcoming for high-dimensional data that lies on, or near low-dimensional, non-linear 

topological space. (Maaten and Hinton, 2008) 

In this thesis t-SNE was employed, for the purpose of visualization, over a set of 1024-bit 

Morgan circular fingerprints (RDKit-equivalent of ECFP4), calculated for a radius of 2. To 

compute the t-SNE projection, an implementation in python, provided by the developer 

(https://lvdmaaten.github.io/tsne/#implementations), was used. The t-SNE projection was 

done using a perplexity of 30, an early exaggeration factor of 12 and a pre-processing step 

with Principal Components Analysis, where the top 50 dimensions are kept for the t-SNE 

calculation. 

 

3.8. Project Workflow 

The final endpoint pursued in this thesis is the prediction of the human volume of 

distribution. As established in the Introduction – Chapter 1, this is an endpoint of great 

relevance in a drug development context, but at the same time it entails a complex interplay 

of physiological processes. The study of the volume of distribution and its driving factors 

was carried through the main workflow shown in black arrows in Figure 3.3. In addition, a 

complementary workflow on applicability domain development was carried out, marked by 

the grey arrow. 

 

Figure 3.3. General outline of the thesis’ workflow. 

 

Workflow 1: Exploiting the Role of Physiological Data in the prediction of Vd  

https://lvdmaaten.github.io/tsne/#implementations
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The main workflow is connected with arrows filled in black in Figure 3.1. This stream of work 

was organised to achieve a QSAR model for the prediction of Vd. For complex problems, 

such as this one, machine learning approaches can be effectively used to harness relevant 

information and uncover underlying processes which will help inform what drives the 

modelled endpoint in the first place. However, in order to do so, one needs informative input 

to feed into a machine learning algorithm. The classical approach adopted so far towards 

modelling volume of distribution via machine learning is mainly using easily attainable 

molecular descriptors, and despite some success having been achieved with some 

predictive models in the literature, this still remains a challenging endpoint to model for large 

and varied collections of compounds.   

To directly tackle this issue in the attempt to improve predictive performance, as well as 

further the understanding of distribution and what drives it, this thesis will explore the 

hypothesis that adding input variables of physiological nature may improve the ability to 

model Vd. As presented earlier in this chapter, transporters are the main drivers of 

distribution, which makes them likely to be useful as input features. Additionally, drug-

induced phospholipidosis and plasma protein binding are important determinants of Vd and 

have also been integrated as input in the Vd modelling process in this thesis. However, the 

relatively limited availability of experimental data renders this a prohibitive approach. Hence, 

in order to circumvent this issue some of the various physiological descriptors were 

modelled beforehand, and the learned responses output by the trained models were fed 

into the modelling of Vd. 

 

Workflow 2: Exploring Applicability Domain Characterization of Pharmaceutical Data 

In a complementary stream of work, this thesis will discuss the development of a novel 

applicability domain, which is one of the main current concerns in the field of 

chemoinformatics. Usually any given work focuses on either the modelling task or the 

applicability domain characterization task, however addressing both sides in the same body 

of work may provide importance context to each of them as, in fact, modelling and 

applicability domain characterization are conceptually co-dependent. Therefore, this part of 

the thesis will create a bridge between mispredictions (and what causes them) in their 

respective QSAR model and how they are perceived in terms of reliability in the established 

applicability domain.  

The developed applicability domain algorithm will attempt to capture local properties of the 

data that determine reliability, namely density, bias and precision. Note that this will be the 

first attempt to harness information on bias associated with the training set to establish a 
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QSAR model’s boundaries for reliability. This will be developed using the P-gp binding 

model as basis for the development of the algorithm, and will be benchmarked using two 

publicly available datasets used in the past for AD benchmarking (the Ames mutagenicity 

dataset and the CYP450 inhibition dataset). 

 

3.9. Summary 

This chapter described the details on datasets used, the calculation of descriptors used as 

independent variables, the employment of the different statistical methods for feature 

selection and machine learning. Additionally, the different evaluation metrics were provided, 

as well as details on applicability domain and activity cliff characterisation, and data 

visualization. 

Finally an overview of the thesis workflow was described. Two main types of endpoints will 

be modelled in this thesis:  

(1) Transporter data, where machine learning will be employed to differentiate between 

substrates and non-substrates for each of different ABC and SLC transporters. Multi-label 

methods will be used for the modelling of this data, which is motivated by the existence of 

overlap between different transporters; 

(2) Volume of distribution data (reported at steady state, Vss), where information learned 

from the previous models will be fed into the machine learning algorithm as input features, 

thus allowing covering a wider range of data (as it cover missing observations in the data). 

A total of 12 physiological input features were used in the modelling of Vss drawn from 

transporter data, plasma protein binding data and phospholipidosis data. Additionally, 

transporter expression data will be used as a way to provide differential weight to the 

different input transporter features. 
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4. Multi-label Classification of ATP-Binding Cassette 

(ABC) Transporters 

 

4.1. Introduction 

As established in the Introduction chapter, ABCs are one of the main targets under focus in 

drug discovery and development, as major determinants of druggability given their potential 

to hamper absorption and distribution, as well as to potentiate excretion. Additional interest 

in this family of transporters comes from their role in multi-drug resistance in various cancer 

cells.  

However, uncovering the underlying patterns that drive molecular recognition and 

subsequent efflux by ABC members still remains a challenge mainly due to the poly-specific 

nature of substrate recognition by these transporters. QSAR appears to be a particularly 

well suited method to predict ABC transport efflux, since it has been shown that substrate 

recognition relies on global physicochemical profiles rather than following the key-and-lock 

ligand binding model (Marquez and Bambeke, 2011). The potential of using QSAR to 

predict ABC transporter substrates during the R&D process has already been demonstrated 

by Desai et al. (Desai et al., 2013), who reported the successful replacement of an in vitro 

automated assay with a QSAR model to predict P-gp substrates in an early stage of the 

drug development pipeline of Eli Lilly.  

Knowing that there is some degree of overlap between the binding patterns of different ABC 

members (Marquez and Bambeke, 2011, Wind and Holen, 2011), this can be exploited as 

a complementary source of information to aid the learning of the efflux process of different 

transporters. Multi-label classification is a suitable approach for this purpose as it accounts 

for overlapping information between different responses, which are addressed as a whole 

as opposed to the traditional single-label classification approach which looks at each 

transporter individually. The theoretical basis of multi-label classification has been detailed 

in the introductory Chapter 2 (section 2.6). 

This chapter explores the creation of a multi-label QSAR of four major ABC transporters, 

namely BCRP1, MDR1/P-gp, MRP1, MRP2, with this being the first reported attempt to 

distinguish substrates from non-substrates of multiple ABC transporters using a multi-label 

classification approach. The goal of this study was to assess the potential value of taking 
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into account the data overlap amongst transporters in terms of the predictive accuracy of 

the classifier, as well as finding molecular characteristics that are unique to, or overlap 

between, the substrates of various transporters. The two previously mentioned multi-label 

classification schemes, Binary Relevance (BR) and Classifier Chain (CC), were employed; 

where the main difference between them is the presence of communication between 

transporter models, respectively.  

A comprehensive validation routine including the characterization of the applicability domain 

(AD) and activity cliffs were carried out for the models. The predictive performance was 

analyzed against each model’s applicability domain and activity cliff analysis, in the attempt 

of providing a more holistic, in-depth interpretation of the models’ true worth. At the moment 

of publication, to the knowledge of the authors in the article, this is the first reported multi-

label classification model for the prediction of ABC substrates and non-substrates, providing 

insight on transporter relationships with regard to binding patterns. 

The contents of this chapter have been published in Molecular Informatics, under the 

following reference: Aniceto N, Freitas AA, Bender A, Ghafourian T: Simultaneous 

prediction of four ATP-binding cassette transporters substrates using multi-label QSAR. 

Molecular Informatics. 2016. 35. 514–28. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 

Reproduced with permission. 

 

4.2. Methods 

4.2.1. Dataset  

Prior to any modelling or modelling-related task the ABC efflux dataset (described in 

Chapter 3) was submitted to a stratification procedure as described by Sechidis et al. 

(Sechidis et al., 2011). The authors show that this procedure leads to data subsets with 

more balanced class label distributions in a series of benchmark datasets. That is, this 

procedure maximizes transporters distribution across different data partitions. The 

stratification procedure was implemented in R using the provided pseudo-code by Sechidis 

et al. Consequently, the dataset was divided into training, (internal) validation and test set 

in a proportion of 3:1:1 (895 + 299 + 299 compounds), respectively, with similar distribution 

of substrates and non-substrates in all three subsets. Given the presence of a number of 

experimental conditions that can be optimized, in order to maximize the chance to select a 

set of conditions that retains ability to successfully predict unseen data, it is necessary that 

such optimization is guided by intermediate testing. Doing this with a subset of data outside 
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of the training set gives a more reliable assessment of performance when compared to 

using cross validation performance. This subset corresponded to the internal validation set. 

At the same time, to avoid overfitting and properly test the built model after all optimization 

has been done, a seconds split of the data should be reserved for final testing. This 

corresponded to the test set. In this work the test set was exclusively used to test the final 

models produced. As a future reference, the same principle was applied to all work carried 

in this thesis. The class imbalance across all four labels was deemed negligible, ranging 

between 1.0 and 1.7 (see Figure 3.1). 

 

4.2.2. Molecular Descriptors 

Molecular descriptors were calculated from SMILES codes retrieved from Metrabase (Mak 

et al., 2015). Structures were prepared for calculation following the specifications in the 

methodology section 3.2. In this work, molecular mechanics minimization was performed 

with the MMFF94x forcefield. The MOE version used was v 2013. A total of 338 molecular 

descriptors were obtained and submitted to feature selection. 

 

4.2.3. Feature Selection 

Even though the C4.5 algorithm incorporates its own embedded feature selection (see 

section 2.5.1), it has been reported to overfit, producing very large trees. In order to 

minimize the risk of overfitting it is recommended that feature selection is employed prior to 

training (Kohavi and John, 1997). 

A total of five feature sets derived from the five different feature selection techniques 

(Genetic Algorithm Search, GA; Greedy Stepwise Search, GS; ReliefF, RfF; decision 

trees+Genetic Algorithm Search, C4.5-GA; and Random Forest-Greedy Stepwise 

search,,RF-GS) described in Chapter 3 were produced for each of the four ABC 

transporters’ subsets. These resulted from ranking all available features and taking the top 

20 top ranked features (for tied ranking features within the top 20 threshold value were also 

included). All calculations were done using WEKA 3.6. Each of the feature sets was 

subsequently used to train a C4.5 model, for each of the labels (transporters). In order to 

select the best feature selection method for each transporter label, C4.5 models were 

trained with the different feature sets. These models were then tested on an independent 

internal validation data subset. This corresponds to a total of 20 experiments testing five 

different feature sets for each of the four ABC transporters. The best feature set for each 

transporter was selected according to the highest Matthews correlation coefficient (MCC) 

and geometric mean between sensitivity and specificity (G-mean) in the internal validation 

set (Zhou et al., 2015), both defined by Equations 3.3 and 3.4, respectively. A summary of 
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performance obtained for all feature selection + transporter is provided in Appendix I 

(Section 11.1). 

 

4.2.4. Multi-label QSAR models 

The best C4.5 models (using the best feature selection conditions) produced from the 

feature selection optimization step were selected for each of the training sets (BCRP1=288, 

MDR1=580, MRP1=111, MRP2=145). 

The multi-label Binary Relevance (BR) model was obtained by gathering the predictions 

from these four best single-label models into one global prediction output. In this case, 

whenever a new query compound needs to be predicted it would be passed through all four 

ABC models and a set of label predictions would be produced. For the multi-label classifier 

chain (CC) model, the schematic representation of CC is depicted in Figure 4.1. The 

transporters were ordered according to descending order of dataset size, based on the 

theoretical expectation that larger datasets will have a better chance of providing useful 

information to smaller datasets than the other way around. Accordingly, the order of the 

labels in the classifier chain was P-gp/MDR1 > BCRP1 > MRP2 > MRP1. To build the multi-

label CC model each label (transporter) in the 4-label chain uses the best descriptor set 

previously optimized for the BR model. In addition, as it can be seen in Figure 4.1, each 

label in the CC model uses prediction sets from previously available labels.  In summary, in 

the CC model every label (transporter) in the chain is trained using the prediction sets from 

all previous labels, along with a set of molecular descriptors (previously selected). To 

illustrate this, label #3 for example, will be trained with a set of molecular descriptors as well 

as class predictions for label #1 and #2. 

Overall each transporter was submitted to an independent and parallel process of feature 

selection, model optimization and training, and finally testing. All these steps were 

performed in parallel on the same datasets for CC and BR in order to: 1) allow comparability 

between both types of model at every level, and 2) assess the value of addressing the 

overlap in the data, by fixing all other conditions in both modelling workflows. Throughout 

the paper the following notation <single-label model> - <multi-label model> will be used 

whenever a specific single-label model within the CC or the BR models is mentioned.  
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Figure 4.1. Schematic representation of multi-label classifier chain training. 

4.2.5. Model Validation 

Both BR and CC multi-label models were assessed and compared for their predictive 

performance through the various measures provided in section 3.5. This evaluation was 

done at the multi-label level, and at the single-label level as well (by looking at each label’s 

performance within a given multi-label model). 

Additionally, the models were assessed regarding their applicability domain (AD). The AD 

of all the single label models used in the generation of multi-label BR and CC models was 

characterized, by using STD scores (calculated as defined in the Methods section) as a 

measure of predictive reliability. As a complement to the AD analysis, potentially relevant 

activity cliffs were identified, by locating compounds of high similarity (structurally) but with 

opposite responses. Similarity was measured as the Tanimoto coefficient of Morgan 

fingerprints, and the threshold for significant Tanimoto coefficient was set to a minimum of 

0.55. 

 

To assess the chemical space of the ABC efflux dataset with relation to the real-world drug 

chemical space, the ABC transporter data was overlaid against the DrugBank chemical 

space. This was done using t-SNE multidimentional scaling performed on the full DrugBank 

data and the ABC efflux data. 

 

4.3. Results and Discussion 

4.3.1. Multi-label QSAR models 

In this work, the main goal was to model four ABC transporters in such a way that allows 

accounting for possible underlying correlations between labels (i.e. transporters). Multi-label 

classification is the appropriate approach to achieve this. The multi-label models were built 
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using a decision tree learner (C4.5), as this machine learning algorithm has a visual and 

transparent nature that allows interpretation of the effects of the features on the predicted 

labels. Furthermore, decision trees can cope with different scales in the descriptors and 

they can also handle both continuous and categorical data efficiently and robustly (Dehmer 

and Varmuza, 2012).  

By comparing a multi-label method that accounts for label interaction (i.e., CC) with an 

alternative method that assumes labels to be independent (i.e. BR) one is able determine 

whether label interaction (i.e. correlation between the binding profiles), in fact, exists among 

the different ABCs. Both multi-label classifiers were trained using the best features selected 

by various feature selection methods for each transporter, and they differ only in the use of 

previous label predictions as additional features (in the case of CC). The rational for the use 

of multi-label methods was the overlap observed in the dataset, as can be seen from the 

results of the Chi-squared test measuring the correlations between labels (Table 4.1). 

These multi-label methods were compared in terms of their predictive accuracy in the 

classification of various ABC transporters’ substrates and non-substrates.  

 

Table 4.1. Values of the Chi-squared test measuring correlation between labels. The smaller the 
Chi-squared value, the stronger the chance of true correlation. 

 MDR1 MRP1 MRP2 

BCRP1 0.001 0.001 <0.001 

MDR1  <0.001 0.679 

MRP1   <0.001 

 

Within each multi-label model it is necessary to make sure that each one of its single-label 

models provides a reasonable input to the global multi-label model. Firstly, the best single-

label C4.5 model for each transporter was selected out of a pool of five models obtained 

from various pre-processing feature selection methods. The results showed that the GS 

method led to the best model for BCPR1, while C4.5-GA led to the best models for MDR1 

and MRP1; and ReliefF led to the best model for MRP2 (Appendix I, Table A1.1). Table 4.2 

shows the performance of the best single-label models. Secondly, to validate the inclusion 

of each label, the impact of removing or adding a label on the overall performance of BR 

and CC models, respectively, was assessed using the Hamming Loss, with respect to the 

internal validation set (Figure 4.2). Note that the Hamming Loss measure ignores interaction 

between labels, since its value depends on whether or not each label was correctly 

predicted by itself, regardless of the predictions of the other labels. Both BR and CC models 

show a constant impact in Hamming Loss by the presence of all labels, which is depicted 

by a constant Hamming Loss value as the chain grows, in the CC, and when different labels 

are removed in turn, in BR (Figure 4.2). This observation justifies the presence of each label 
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in the multi-label models. The same is observed in the test set where no particular label 

stood out in terms of impact on Hamming Loss performance (Figure 4.3) which means no 

label is causing degradation of the predictive performance.  

 

Table 4.2. Test set performance of the single-label models for individual transporters using the best 
set of features with (CC) or without (BR) the use of the predicted ABC binding class of the preceding 
transporters in the classifier chain. Values expressed in percentage. 

 MDR1 
 

BCRP1 
 

MRP2 
 

MRP1 

 
(n=195) 

 
(n=87) 

 
(n=41) 

 
(n=36) 

 

C4.5-

GA 

 

GS  
GS  

pMDR1 

 

RfF  

RfF  

pMDR1 

pBCRP1 
 

C4.5-

GA 

C4.5-GA 

pMDR1  

pBCRP1  

pMRP2 

G-mean 66.8  76.3 76.7  74.4 74.4  58.9 59.0 

Sen 79.1  84.5 77.6  69.2 69.2  84.2 74.0 

Spe 56.5  69.0 75.9  80.0 80.0  41.2 47.1 

MCC 36.6  53.4 51.4  47.4 47.4  28.3 21.6 

 

 

At the multi-label level, Table 4.3 indicates a good performance with an overall F1 of 

approximately 70% for both BR and CC models. Even though this represents a 30% error 

rate, it is considered a good prediction performance in light of how challenging it is to model 

the current data. This is due to the large level of noise and ambiguity in the data, which is 

discussed later in the discussed section, as well as in light of the imbalance of information 

provided for substrates versus non-substrates. The results also show that both models 

performed very similarly. However, attention must be drawn to the fact that the modelled 

data is imbalanced both at the label level (i.e. some transporters have a higher proportion 

of substrates than others) and, to a lesser extent, at the class level (i.e. within each 

transporter there is more substrates than non-substrates). This means that commonly 

employed measures, such as F1, precision and recall, will be leveraged by the majority 

label and the majority class, and therefore they are not ideal to assess these imbalanced 

problems. Alternatively, balanced accuracy (bACC) is designed to overcome this issue. 

Table 4.3 shows that bACC has a higher score for CC. Additionally the CC model shows 

less discrepancy between the ability to predict substrates and non-substrates, shown by the 

absolute difference between precision and recall (ΔPR). This means the CC model achieves 

the best balance in terms of classifying both substrates and non-substrates. 

Moreover, a comparison of single-label (individual transporter) models used to develop BR 

and CC (Table 4.2) shows that the two single-label models that include a predicted label as 

a feature (BCRP1, and MRP1) have improved Sen-to-Spe balance (values highlighted in 

gray), which supports the existence of label correlations and the advantage of taking them 
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into account when modelling ABC transport data by using CC instead of BR. The model for 

MRP2 stayed at the same level of accuracy, which means that information from other 

transporters used in the CC model (left-hand side) recapitulates information from chemical 

nature used in the BR model (right-hand side). 

 

 

  

Figure 4.2. Impact of each label on the overall performance of the CC and BR models, tested on the 
internal validation set. The graph for CC depicts the evolution of the model’s performance as labels 
are being added to the chain, whereas the graph for BR depicts the model’s performance when each 
of the labels is removed, in turn. 

 

      

Figure 4.3. Impact of each label on the overall predictive test performance of the CC and BR models. 
The graph for CC depicts the evolution of the model’s performance as labels are being added to the 
chain, whereas the graph for BR depicts the model’s performance when each of the labels is 
removed, in turn. 
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Table 4.3. Summary of performance measures of the final BR and CC models in the test set. 
Underlined font marks the values that are better than their direct counterpart models.  

Performance measures Equation 

used 

BR CC 

F1 3.6 69.6 % 69.2 % 

bACC 3.9 68.7 % 69.0 % 

Precision 3.7 70.4 % 70.0 % 

Recall 3.8 70.0 % 69.6 % 

ΔPR 3.10 20.6 % 17.4 % 

 

Overall, despite the substrate overlap between various members of the ABC transporters 

mentioned earlier and by others in the literature (Vastag et al., 2011, Bentz et al., 2013), 

BR and CC yielded very similar predictive performance statistics. On the other hand, it is 

apparent that the predicted MDR1 class (pMDR1) is favored over molecular descriptors in 

the BCRP1 model, and the predicted MRP2 class (pMRP2) is preferred in the MRP1 model, 

as evidenced by the preferential selection of these features as one of the top five model 

features (compare BR and CC features in Table 4.4 and Table 4.5). There are several 

possible explanations for the lack of a significant improvement of CC comparatively to BR 

(Table 4.3). The first possible explanation may be that labels have close to no interaction, 

which means that the classifier chain has nothing to capitalize from. However, Table 4.1 

shows that all pairs of labels, except one, have a significant correlation, so the issue with 

regard to this hypothesis may be instead the relatively low label density (the compound vs 

label matrix is only 23% populated in the training set), which reveals scarcity of multi-label 

cases (i.e., compounds with measured binding in several transporter systems). The second 

possible explanation may the fact that the BR model depends on the individual quality of 

each single-label model; while the quality of the CC model depends also on the quality of 

the prediction of the previous labels in the chain. In fact, in a CC model every flaw in any 

given label (transporter) will be carried on to the following labels in the chain, as opposed 

to BR, in which the shortcomings of a model have no effect on the remaining labels. 

Even though the final overall statistics show no marked numerical improvement from 

accounting for label interaction, focusing only on this can give an overly simplistic view. 

When results are analyzed as a whole, there are several pieces of evidence of the value of 

using label interaction in the modelling of the ABC QSAR. In two of the three single-label 

models, built by the CC method, where previous labels were available, previous label 

information was spontaneously selected by the decision tree building algorithm. 

Furthermore, this singular change in the entire modelling process coincided with more 

parsimonious models, which showed more balanced Sen to Spe ratio. This is a very 



Multi-label Classification of ATP-Binding Cassette (ABC) Transporters  

 
74 

valuable improvement given that this modelling task would naturally tend towards higher 

Sen, brought on by the relatively larger amount of substrates than non-substrates. Class 

imbalance within each label is known to have yielded poor models in the past (Sedykh et 

al., 2013, Newby et al., 2013), and being able to mitigate this issue without using any type 

of aiding technique (i.e., over-/under-sampling or misclassification cost) is notable. 

 

4.3.2. Molecular Descriptors in Single-label Elements of BR and CC  

As it was explained in previous sections, the molecular descriptors used in C4.5 models 

have been selected by the best pre-processing feature selection methods for each 

transporter dataset followed by the embedded C4.5 feature selection. Among the five 

feature selection methods, C4.5-GA features yielded the best results for the majority of 

single-label models.  The purpose of using a wrapper rather than a filter method is to select 

a feature set that ideally best copes with the classification algorithm’s biases. However, 

given the complex nature of these transporters it is expected that different feature-selection 

methods are best suited for the predictions of different labels, and indeed this has been 

observed in the results. 

Roughly the same number of molecular descriptors was provided to the C4.5 algorithm for 

the modelling of each transporter, however the number of descriptors used to build each 

tree decreased along the order of the labels in the chain, i.e. MDR1, BCRP1, MRP2, and 

MRP1. Moreover, recall that the same set of molecular descriptors was provided to C4.5 

for the single-label constituents of the BR and CC models, but single-label elements of CC 

employ additional predictors, i.e. the predicted label (substrate vs. non-substrate) of the 

previous transporter(s) in the chain. 

Given the large number of molecular descriptors incorporated in some C4.5 models, these 

descriptors can be ranked according to their statistical importance and the most important 

molecular descriptors may be identified. Tables 4.4 and 4.5 show the importance of 

molecular descriptors in C4.5 models for different transporters in BR and CC models, 

respectively. These molecular descriptors have been described in Appendix I, A1.2. In order 

to calculate the feature importance, the molecular descriptors used in the models were 

ranked according to the number of compounds that were directly affected by each descriptor 

at any point of the tree. In this way, descriptors selected earlier on for nodes closer to the 

root of the trees are more important than those selected later on (closer to leaf nodes) to 

classify a smaller number of compounds. Table 4.5 shows that the molecular descriptors 

selected by the C4.5 algorithm for BCRP1 and MRP1 include a transporter substrate class 

predicted by the previous transporters in the chain, and both predicted labels used in both 

models affected more than 50% of the training data (see Table 4.5).  



Multi-label Classification of ATP-Binding Cassette (ABC) Transporters  

 
75 

Due to the design of the CC model that placed the MDR1 transporter as the first label in the 

chain, the single-label MDR1 model used in both multi-label BR and CC models is the same, 

i.e. no predicted ABC label was used as a feature in the modelling of this transporter. As a 

result, the MDR1 descriptors reported in Tables 4.4 and 4.5 are the same. For BCRP1, a 

comparison of Tables 4.4 and 4.5 shows that some of the molecular descriptors in the BR 

model have been replaced by the predicted MDR1 class as an important feature in the CC 

model of BCRP1. On the other hand, the single label MRP2 model developed by C4.5 did 

not pick predicted MDR1 or predicted BCRP1 labels, and only molecular descriptors were 

selected as the model features. As a result, the top descriptors used in the single label 

MRP2 models within both BR and CC models are the same (see Table 4.4 and 4.5). For 

MRP1 models, a comparison of Tables 4.4 and 4.5 shows that the models developed for 

CC and BR are different, as the predicted MRP2 labels have been used in the multi-label 

MRP1 model built by the CC model. The MRP1 model for CC used the predicted MRP2 

label as the second most important feature replacing the polar volume.  

 

Common features between transporters could be an indication of the degree of shared 

substrates. MDR1 and MRP1 both share the same best feature selection method (C4.5-

GA) and there is some degree of feature overlap (around 5 features) between them. MDR1 

shows the strongest correlation with MRP1 (Chi-squared test, p < 0.001, Table 4.1), and in 

fact there is a considerable amount of common substrates and non-substrates between 

them (n=34 and n=12, respectively out of 61 common compounds). The overlap of 

substrates between various ABC transporters is a well-established phenomenon (Matsson 

et al., 2009). For instance, it was reported that drug resistance to daunorubicin derives from 

a synergy between MRP1 and MDR1 activities (Legrand et al., 1999).  

The nature of the molecular descriptors incorporated into the single label C4.5 models can 

provide clues for the molecular characteristics of a compound associated to molecular 

recognition by a transporter as its substrate (See the Appendix I, Table A1.2). Extending 

this reasoning to the multi-label perspective, looking at the composition of the decision tree 

models, molecular descriptors show some overlap between different transporter models, 

which supports the multi-label approach from a mechanistic standpoint. In particular, 

features of MDR1 and BCRP1 substrates have some similarity as both transporter’s 

substrates are bulky and flexible, and contain hydrophobic moieties. MDR1 substrates are 

highly branched, good electron acceptors (such as in hydrogen bonds) and contain 

quaternary ammoniums, while BCRP1 substrates contain large positively charged surface, 

have aromatic rings and may be a non-drug-like molecule. The correlation of these two 

transporters is evidenced by the fact that the predicted MDR1 label is a very useful feature 

for the classification of BCRP1 transport.  
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Table 4.4. Descriptor importance calculated from the relative amount (%N) of compounds classified 
using every given feature within the BR model. Predicted labels are suffixed with the feature set that 
originated them. See Appendix I, A1.2 for descriptor definitions. 

MDR1 
(C4.5-GA) 

%N BCRP1 
(GS) 

%N MRP2 
(RfF) 

%N MRP1 
(C4.5-GA) 

%N 

VDistMa 100 Num_Rings_4 100 ast_violation_ext 100 Q_VSA_POL 100 

FCharge 85 Q_VSA_FPPOS 94 PEOE_VSA_FPNEG 65 vsurf_Wp1 70 

a_nH 80 SlogP_VSA7 82 vsurf_CW2 61 Q_VSA_FPPOS 53 

b_max1len 64 b_ar 68 reactive 54 FCASA+ 38 

PM3_LUMO 63 opr_nring 53 Fi(B) 34 chi1v_C 34 

PEOE_VSA+6 52 a_nF 30 b_rotR 24 b_rotR 30 

SMR_VSA2 45 glob 24 opr_leadlike 16 b_max1len 15 

a_acc 27 a_ICM 23 Q_VSA_FHYD 12 Kier3 14 

b_ar 25 PEOE_VSA-3 22 vsurf_HB2 11   

dens 22 LogD(6.5) 19 Fi(A) 4   

PEOE_VSA-6 20 MNDO_LUMO 18     

Num_Rings_5 16 SMR_VSA4 9     

FCASA- 13 LogD(5.5) 5     

vsurf_Wp5 11 PEOE_VSA-4 3     

vsurf_Wp6 10 PEOE_VSA-1 2     

SlogP 8 vsurf_R 2     

Rule_Of_5 8 LogD(7.4) 2     

PM3_E 8       

MW 3       

vsurf_CW8 2       

PEOE_VSA_NE
G 

2       

Polarizability 2       

 

On the other hand, molecular features of MRP2 and MRP1 substrates are also similar in 

terms of polarity and hydrophilicity of the molecular surface. MRP2 substrates may contain 

reactive groups defined as nitrogen, oxygen and sulfur atoms with polar negative surface 

area, while MRP2 substrates are flexible in addition to large polar and hydrophilic surface 

area. Furthermore, the predicted MRP2 binding class can be used as a significant feature 

for the prediction of MRP1 transport. MDR1 and BCRP1 were more associated with explicit 

aromaticity-related features, whereas MRP1 and MRP2 where predominately more 



Multi-label Classification of ATP-Binding Cassette (ABC) Transporters  

 
77 

associated with hydrophilicity-related properties, which could be tied with the fact that MDR1 

and MRP2 were used as predictors in both BCRP1 and MRP1 models respectively. 

 

Table 4.5. Descriptor importance calculated from the amount of compounds classified using every 
given feature within the CC model. Predicted labels are suffixed with the feature set that originated 
them. See Appendix I, A1.2 for descriptor definitions. 

MDR1 
(C4.5-GA) 

%N BCRP1 
(GS) 

%N MRP2 
(ReliefF) 

%N MRP1 
(C4.5-GA) 

%N 

VDistMa 100 Num_Rings_4 100 ast_violation_ext 100 Q_VSA_POL 100 

FCharge 85 Q_VSA_FPPOS 94 PEOE_VSA_FPNEG 65 pMRP2_ReliefF 70 

a_nH 80 SlogP_VSA7 82 vsurf_CW2 61 vsurf_D7 46 

b_max1len 64 b_ar 62 reactive 54 b_rotR 30 

PM3_LUMO 63 pMDR1_C4.5-GA 55 Fi(B) 34 Q_VSA_FPPOS 24 

PEOE_VSA+6 52 opr_nring 48 b_rotR 24 rings 17 

SMR_VSA2 45 glob 46 Q_VSA_FHYD 12 b_max1len 14 

a_acc 27 a_nF 30 vsurf_HB2 11   

b_ar 25 PEOE_VSA-3 22     

dens 22 MNDO_LUMO 21     

PEOE_VSA-6 20 vsurf_CW2 19     

Num_Rings_5 16 LogD(6.5) 19     

FCASA- 13 a_ICM 9     

vsurf_Wp5 11 LogD(5.5) 7     

vsurf_Wp6 10 SMR_VSA4 7     

SlogP 8 a_aro 4     

Rule_Of_5 8 PEOE_VSA-4 3     

PM3_E 8 vsurf_R 2     

MW 3 LogD(7.4) 2     

vsurf_CW8 2       

PEOE_VSA_NEG 2       

Polarizability 2       

 

 

4.3.3. Applicability Domain and Activity Cliffs 

By applying the STD method as per Sushko et al. (Sushko et al., 2010a), it is possible to 

observe an overall declining trend of accuracy as a function of STD, across the majority of 

the single-label models (Figure 4.4). Exceptions to this trend will be further explored.  
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There are two main important aspects to consider for the quality of an AD profile, similarity 

of overall profiles/trends (i.e. similar slope direction) and a decreasing accuracy as the 

chemical space moves away from the model’s core. Exploring Figure 4.4 points to only two 

cases where the requirements above have not been met; these are MDR1-BR and MRP2-

BR in the validation set. This is not seen for the corresponding CC model, MRP2-CC, (note 

that the MDR1 single-label model is the same in both BR and CC models). There is also a 

mild case of disparity between validation and tests sets for BCRP1 (although only at the 

first iteration of STD increments). While this disparity happens for BR, in the CC model all 

trends start at a higher point and tend to decrease with STD (although this is not done in a 

perfectly smooth way, as expected from any kind of AD analysis). 

Interestingly, even though MRP2 models show the exact same performance statistics at the 

single-label level (Table 4.2), there is a marked difference between the AD profiles of its BR 

and CC single-label models developed using a 10-fold bagging ensemble, depicted in 

Figure 4.4. This is evidence that the presence of previous labels allowed establishing a 

more reliable AD of the model. Even though both MRP2-CC and MRP2-BR yielded equal 

predictive performance, MRP2-CC allows a better definition of its applicability as both 

external datasets show the same trend of accuracy vs STD (Figure 4.4). As the AD method 

is insensitive to bias and relies solely on precision, low STD scores may happen due to a 

systematic misprediction in all models in the ensemble rather than a reliable (correct) 

prediction. This systematic misprediction in the low STD area was the case in MRP2-BR. 

On the other hand, the presence of two extra features in MRP2-CC (the two previous labels 

in the chain), which were picked for 3 of the 10 bagged models, helped overcome the 

systematic bias in modelling MRP2 data. Therefore, MRP2-CC allows establishing a 

threshold of prediction reliability that imitates the reliability trend in external data. As a result, 

these observations consist of a proof of concept of the value of using CC for the purpose of 

modelling ABC substrate data. 

Lastly, it should be noted that, for some labels, the increase in accuracy is not significant 

for smaller STD values. This is due to the quality of the trained model that may not allow a 

high level of precision (agreement between the ensemble models). Still, even if there is a 

small gain in accuracy at a given threshold, this still entails a decreased risk of producing a 

wrong prediction, and thus the respective AD profile is useful in guiding the prediction 

acceptance. 

Even though this analysis gives insight into a model’s overall predictive performance across 

the data, it is convenient to further pinpoint activity cliff regions. To this end, activity cliff 

analysis was used in this study to identify areas of high complexity in the structure-activity 

data. Table 4.6 shows that a considerable portion of activity cliffs coincides with 

mispredictions. These can be areas of higher complexity in terms of the structure-property 
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relationship that require more compounds and/or better use of molecular descriptors that 

would capture some subtle chemical variation (Maggiora, 2006). These can also result from 

unreliable experimental data (i.e., if a substrate is incorrectly presented to the learning 

algorithm as a non-substrate, even if it is correctly predicted as substrate it will be perceived 

as a misprediction) (Sedykh et al., 2013). 

 

Recall that three single-label models in the multi-label classifier chain could use previous 

labels as descriptors (considering that MDR1, as the first label of the chain, cannot use 

previous label descriptors). The fact that in two out of those three models a considerable 

portion of the activity cliffs was associated with mispredictions shows the correlation 

between both. It should be pointed out that in both BCRP1 models (produced by the BR 

and CC methods) there were two compounds that were mispredicted in the former model 

while being correctly predicted in the latter. 

 
Table 4.6. Comparison between activity cliffs (ACs) and mispredictions within them – values in 
brackets are the percentage of activity cliff compounds that are mispredicted by the models. 

 

Transporter model 
Number of 

ACs 
mispredicted 

Number of  
ACs 

MDR1 (BR/CC) 9 (50%) 18 

BCRP1 (BR &CC) 4 (40%)a 10 

MRP1 (BR & CC) 2 (100%) 2 

MRP2 (BR & CC) 0 2 

 

As an example, Figure 4.5 depicts the distribution of mispredictions (false negatives and 

false positives) for the BCRP1 BR model overlaid with the substrates and non-substrates. 

It can be seen that activity cliffs are mainly located in areas of sparse data especially at the 

extremities of the plot. 

Mispredictions were further analyzed for their distribution along the test set chemical span 

of each of the molecular descriptors used in the various decision trees (all distribution 

graphs are shown in Appendix I, Figures A1.1-7). For all models in BR and CC, 

mispredictions overlap with correct predictions in the test set. Furthermore, it is common to 

find both mispredicted compounds close to the center-values, and correctly predicted 

compounds near data limits (and even outside the training range). 

The validation and test sets were also analyzed for their distribution with respect to the 

training chemical span. This revealed no apparent trend in terms of misprediction 
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concentration in chemical space, with the mispredicted compounds often showing 

scattering centered at the median of each descriptor. As a matter of fact, mispredicted 

compounds seem to follow the distribution of the training set, being more densely located 

near the median and scattering away from it in a somewhat parallel manner. Additionally, 

both in MDR1 and BCRP1 datasets, despite some compounds being clear outliers with 

respect to certain individual descriptors, as seen in Appendix I, Figures A1.1-7, falling 

outside the maximum range of the training set ([0;1], standardized data) they were 

successfully predicted by their respective models. However, these observations were 

exceptions and, overall, the validation sets were found within the maximum range of each 

descriptor in the training set. 

 

 

 

 validation set test set 

BR 

 
 

CC 

 

 

Figure 4.4. Applicability domain evaluated with respect to the validation and test sets. Recall that 
accuracy has been defined as the fraction of correct predictions out of the total number of predictions 
that fall within any given threshold (set in the axis labeled “STD”). 

 

Apart from the applicability domain and activity cliff analysis, it is useful to analyze the range 

of chemical diversity covered by the models built, in order to support the validity of their 
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future predictions. This was achieved by overlaying the data from the four transporters with 

the DrugBank dataset using a t-SNE multidimentional scalling projection of the Euclidean 

distances (Figure 4.6). Considering that DrugBank holds the full span of chemical variety in 

real-world drug space, this analysis provides a gauge of the diversity in the data used in this 

work. Despite the scarcity of data in some transporter datasets, they were all evenly spread 

across the chemical space of the entire DrugBank dataset (more than 6000 instances). This 

means that the models incorporate a wide chemical variety in the training, which 

strengthens their potential usefulness as a predictive tool. 

 

 

Figure 4.5. Mispredictions and activity cliffs of the BCRP1-BR model; Training data were projected 
into a 2D map using t-SNE, and the location reflects the Euclidean distance between ECFP4 
fingerprints. The Tanimoto coefficient was not used as a visualization measure as it produces plots 
with very distant points. However, using the Euclidean distance conserves visually the relative 
neighborhood of each point. activity cliffs are marked with a cross; FP: yellow; FN: red; training 
substrates: black; training non-substrates: white.  
 

The performance of the models developed in this work has to be evaluated in light of the 

high level of noise in any kind of large transporter dataset. Several factors are known to 

contribute to the considerable inter-laboratory and even inter-experimental variability in 

permeability/efflux assays. Some frequently reported examples are sensitivity to varied 

culture protocols and conditions, genetic variations of MDR1 (and other transporters) 

leading to variable pump functionality, and variable expression levels of various ABC 

transporters and even different additional transporters (i.e. Solute Carriers) (Ganta et al., 

2008, Vastag et al., 2011). There are also parallel metabolizing enzymes and alternative 
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active transport systems. The variability is therefore a significant factor within a single 

dataset built from different sources using different cell models (Bentz et al., 2013). As a 

result, the BR and CC models should be evaluated in light of realistic maximum obtainable 

performance. In an ideal scenario a perfect model would correctly classify 100% of 

unambiguous cases (correctly belonging to their assigned classes), and would correctly 

classify 50% of ambiguous cases (given that probabilistically only 50% are actually correctly 

classified to begin with).  

 

 

Figure 4.6. Chemical space coverage of MDR1/P-gp (A), BCRP1 (B), MRP2 (C) and MRP1 (D) with 
respect to the DrugBank complete dataset. The ABC datasets are represented in red in their 
respective scatterplots, and DrugBank data is depicted in white. The plots result from a t-SNE 
multidimentional scalling projection of ECFP4 fingerprints, and the two axes are projected dimension 
1 and 2 obtained from the t-SNE embedding. 

 

Applying this reasoning to this work’s dataset translates into a maximum accuracy of 98% 

since the dataset has 61 ambiguous responses (i.e. reported as substrate and non-

substrate from different sources) across 1493 compounds, hence 2% will theoretically be 

mispredicted. However, this is a conservative estimate, due to the inter-laboratory variations 

affecting the accuracy of a given label in the literature, where the majority of compounds in 

the dataset have only one experimental measurement. It must be noted that in the 

construction of Metrabase, the allocation of substrate and non-substrate labels was carried 

A B

C D
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based solely on the recommendation of the original literature reference (Mak et al., 2015). 

However, different literature sources have differing criteria and threshold values (in addition 

to varying experimental techniques) for classifying a compound as substrate (Broccatelli, 

2012). A threshold of 2 for the efflux ratio is normally used by researchers, while the 

borderline interval is [1.8-2.5] (Broccatelli, 2012). In fact a maximum accuracy of 86% has 

been reported for MDR1 efflux assays (Broccatelli, 2012). In an overall appreciation of the 

feasibility of using the models presented here, as a substitute of the gold standard cell 

assays, these models are able to produce valid predictions in 70% of the cases, while the 

Borst cell assay (n=91, see Broccatelli et al (Broccatelli, 2012)) produced usable prediction 

in 76% of the cases considering that contradictory replicates (n=16) and borderline values 

(n=6) cannot be used to trustfully classify a given compound. 

In this study, even for models that were trained on datasets with balanced classes, the 

specificity is always considerably lower than the sensitivity, which means that the models 

are generally more capable of identifying substrates than non-substrates. However, this is 

not unprecedented as several other works on MDR1 substrate prediction listed in the 

literature (Broccatelli, 2012) have reported the same issue. Comparing the results of two 

previous works where efflux ratios of 2 (Broccatelli, 2012) vs 2.5 (Gupta et al., 2010) have 

been used as threshold values, models with higher threshold values generally lead to lower 

specificity as expected. It can be hypothesized that the main underlying cause for a 

tendency for poor Spe is the fact that some substrates also have high passive permeability. 

This leads to cases of substrates that cannot be identified by permeability measurement 

methods (falsely identified as a non-substrates), which will translate into spurious data in 

the non-substrate class (Broccatelli, 2012). 

To contextualize the potential utility of the CC model proposed here, as of 2012, Tsaioun 

and Kates (Tsaioun and Kates, 2012) reported a 15% increase in phase 2 failures, 50% of 

which are due to lack of efficacy. However, many of these failures are CNS-targeted clinical 

trials where lack of efficacy is caused by an underlying failure to permeate the BBB. It is 

safe to say that, considering the polyspecificity of MDR1 in addition to the presence of a 

large variety of other ABC exporters on the BBB, a large portion of this attrition rate could 

probably be associated to some extent with the efflux of the drugs in question. In fact, in 

retrospect it is possible to identify cases where, if this work’s models had been used, it 

would have been possible to avoid very expensive clinical trials through the prediction of 

the substrate ability of different ABC substrates. Two examples from the test set are 

sunitinib and dasatinib, both predicted as MDR1 and BCRP1 substrates based on CC and 

BR models. Sunitinib failed a phase II clinical trial (NCT00923117) for the treatment of 

glioblastoma due to lack of efficacy. The probable cause for such late failure was that this 

drug has poor ability to permeate the BBB, which is most likely due to MDR1 and BCRP1 
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efflux (Oberoi et al., 2013). In retrospect, if the models herein developed had been applied 

to sunitinib, it would have been possible to avoid a failed clinical trial, since both BR and CC 

were able to predict this compound as a substrate of both transporters. Even if the trial was 

carried out, the use of a predictive model like the one reported here would at the least 

maximize the chances of success with the concomitant administration of an inhibitor. A 

similar scenario was observed for dasatinib, which showed no effectivity in a clinical study 

with 14 patients (Lu-Emerson et al., 2011).  

 

4.4. Conclusions 

This chapter reports two multi-label models for the prediction of various ABC transporter 

substrates and non-substrates, namely BCRP1, MDR1/P-gp, MRP1 and MRP2. The multi-

label classifier chain (CC) method, which accounts for label (transporter) interaction, was 

compared with the binary relevance (BR) method, which does not consider interaction. Both 

models showed good predictive power, as expressed by F1 values (weighted average of 

precision and recall) and a balanced accuracy of approximately 70%. Even though the CC 

model showed no marked improvement in terms of the general performance measures, a 

closer analysis revealed several evidences of the benefit of taking into account label 

interaction. Firstly, despite the natural tendency for a relatively poorer ability to classify non-

substrates (as they are the minority class, and are also more prone to containing noisy 

data), the CC model showed more balanced single-label models that compromised slightly 

sensitivity to gain some specificity. This translates into a lower ΔPR measure (average 

deviation in precision and recall) for the CC model, indicative of less discrepancy between 

the ability to predict substrates and non-substrates. Secondly, two of the single-label models 

used other predicted labels in preference to the molecular descriptors during the CC 

training, leading to improved Sen to Spe balance. Thirdly, the two MRP2 single-label models 

within CC and BR, despite showing the same predictive accuracy performance, resulted in 

two very different applicability domain profiles. While MRP2-CC allowed establishing a more 

reliable accuracy vs STD profile, which emulates more closely the reliability profile in 

external data, MRP2-BR was not able to achieve this. It is hypothesized that the presence 

of previous label predictions allowed overcoming a systematic bias in the ensemble 

predictions, as this is the only aspect that changed between BR and CC. These 

observations consist of a proof of concept of the utility of addressing transporter overlap 

when modelling a QSAR, and possibly more marked effects could be obtained with a more 

populated matrix of instances vs transporters. 
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An analysis of the molecular features showed that there is some degree of overlap between 

transporters in terms of the molecular features responsible for substrate recognition, which 

supports the multi-label approach from a mechanistic standpoint.  

Overall, the models revealed to be robust and of acceptable predictive performance, 

especially considering the complexity of trying to uncover unspecific mechanisms of 

substrates recognition by the ABC family members. 
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5. Using Multi-label Classification to Explore the Link 

among the Solute Carriers (SLCs) Transporter Family 

 

5.1. Introduction 

Following the previous chapter, where the ABC transporters were explored due to their 

important role in distribution, in this chapter the same rationale is applied to the Solute 

Carriers (SLCs) superfamily. These transporters play a key role in the ADME processes 

and are also associated with a wide range of disease states, which makes them a target of 

high potential in health research. However, SLCs are one of the most underexplored 

families of transporters, and membrane proteins in general (Cesar-Razquin et al., 2015). 

As SLCs directly affect the disposition of drugs across a wide variety tissues, they are likely 

to have informative value if used as predictors of Vd, which prompts the QSAR modelling 

of their uptake profile with the end goal of helping the Vd modelling later on, as discussed 

in the Workflow in Chapter 3. 

In a classification problem, such as the prediction of substrates for SLC-mediated transport, 

where multiple responses (transport by different SLCs) coexist for an individual drug, 

handling each transporter response individually will undeniably overlook possible 

interactions between them. Such interactions carry potentially important information which 

may facilitate the learning of patterns that characterize the problem (Gibaja and Ventura, 

2015). So, instead of developing independent (classifier) models, one for each response 

(called label), a multi-label classifier will incorporate all responses simultaneously. 

Consequently, in order to uncover the potential relationships between SLC members, a 

multi-label approach should be taken, where the binding profiles of different transporters 

are modelled together (Gibaja and Ventura, 2015). As established in the Introductory 

Chapter 2 and evidenced in the work in Chapter 4, Classifier Chains (CC) is a particularly 

suited technique to address potentially correlated responses, as this technique is able to 

harness the information contained in any label overlap towards improving the overall 

modelling performance (Gibaja and Ventura, 2014). Recall that for a set of L individual SLC 

labels (where each label consists of transport data for a given transporter), this technique 

produces L classification models which communicate the learned information to each other, 

in a chained fashion (Gibaja and Ventura, 2014, Gibaja and Ventura, 2015). As done for 

the ABC family previously (Chapter 4), by comparing a CC model with an equivalent multi-
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label model that handles each transporter individually (Binary Relevance, BR), one is able 

to effectively test whether taking into account the data overlap (i.e. transporters’ 

substrate/non-substrate overlap) is beneficial and, from this, conclude whether there is, in 

fact, a meaningful correlation between transporters. 

In this work substrates and non-substrates from six SLC transporters were available from 

the SLC uptake dataset (see section 3.1.2), namely Peptide Transporter 1 (PEPT1), 

Organic Cation Transporter 1 (OCT1), and four Organic Anion-Transporting Polypeptide 

transporters (OATP1B1, OATP1B3, OATP1A2 and OATP2B1). Given that label order has 

a large impact on the predictive performance of a CC model, an exhaustive exploration of 

all label combinations was carried out. More information on the impact of label order and 

how to address this have been provided in section 2.6.2. This also allows exploring the 

relationships among the different SLC transporters. This is the first attempt to both using 

multi-label classification to model SLC data and to perform an exhaustive exploration of 

transporter combinations. 

 

5.2. Methods 

5.2.1. Dataset and Molecular Descriptors 

 The SLC dataset (see Methods Chapter 3) was split into training, internal validation and 

test sets in a proportion of 3:1:1. As the current problem has six different labels, and each 

compound is allocated to a different number of labels, this partition was done by an 

implementation in R of a stratification procedure (Sechidis et al., 2011) that maximizes the 

distribution balance of all labels and both classes (substrates and non-substrates) under 

each label in the three subsets. A full account of the spread of data across labels in the final 

dataset is presented in Table 5.1. The training set was used for pre-processing of the 

molecular descriptors and model development, the validation set was used for any 

optimization tasks (feature selection optimization and tuning of model’s parameters), and 

the test set was used exclusively for model testing (after the selection of the best model). 

The dataset was annotated with molecular descriptors obtained from MOE 2013 and 

ACD/logD suite v12.5, as explained in Chapter 3. 

 

5.2.1. Pre-processing feature selection.  

To maximize the ability to model each transporter, five different feature selection methods 

were carried out, using WEKA 3.6. These are three filter methods, namely Greedy Stepwise 
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search (GS), Genetic Algorithm (GA) and ReliefF, and two wrapper methods, namely 

Random Forest-Greedy Stepwise search (RF-GS) and C4.5 (C4.5) Decision Tree-Genetic 

Algorithm search (C4.5-GA). For full information on the used parameters and procedure of 

feature selection please refer to section 3.3. 

 

Table 5.1. Distribution of labels across the training (TR), internal validation (IV) and test (TE) subsets. 
S and NS denote substrates and non-substrates, respectively. 

Transporters 
(labels) 

 TR IV TE 
S:NS ratio 

(class imbalance) 

OATP1A2 
S 33 11 11 

2.1 
NS 16 4 4 

OATP1B1 
S 58 18 19 

2.4 
NS 24 7 6 

OATP1B3 
S 34 11 13 

2.3 
NS 15 5 6 

OATP2B1 
S 29 10 8 

0.8 
NS 36 14 14 

OCT1 
S 93 33 33 

1.6 
NS 53 18 17 

PEPT1 
S 147 51 48 

2.9 
NS 50 17 14 

 

 

5.2.2. Multi-label QSAR modelling  

As the purpose of this effort was to investigate the relationships between transporters, a CC 

technique was selected as the learning scheme due to its ability to account for potential 

transporter correlation (called label interaction in the multi-label machine learning context). 

If a given set of compounds has several measured response variables, e.g. interaction (or 

lack thereof) with several transporters (each called a label within the data mining context), 

there is a possibility of correlation between labels, and if correlations are indeed present, 

exploring them reduces the complexity of the learning task (Gibaja and Ventura, 2014). 

In this work, compounds are classed as substrate or non-substrate of each of the six 

transporters (labels) and the SLC dataset was used to train models in a feedforward chain 

sequence, implemented as follows. A classifier for label #1 (the first transporter) is trained 

(using molecular descriptors as the model features) and feeds its prediction set (predicted 

class for the compounds) to the classifier for label #2 (the second transporter in the chain), 

which is, in turn, trained using label #1 predictions alongside molecular descriptors. The 

classifiers for label #2 and label #1 then feed their class predictions forward to the classifier 
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for label #3, and so on. Note that each label model, i.e. a model for a single transporter, 

within a multi-label scheme is called a single-label model. In summary, any available prior 

predictions will be used as a feature at any point in the chain alongside the molecular 

descriptors, so the classifier for label #6 will use predictions from labels #1 through #5 as 

additional features to complement the molecular descriptors. Predicted labels used as 

descriptors are generically termed “pLabel(s)”, where specific pLabels are named by 

prefixing the label in question with a “p” (e.g pMDR1). 

To allow full exploration of all types of interactions between labels, an exhaustive search of 

all possible combinations of chain sequences was carried out, as shown in Scheme 5.1. 

This entails that all label permutations (orderings) in a 6-label chain are tested; and, for 

each of the possible combinations of shorter chain sizes, all possible permutations for that 

combination are also tested. As this problem is focused on addressing all 6 transporters, 

shorter chain sizes will be completed, by default, with alternative standalone single-label 

models, as demonstrated in Scheme 5.1. Note that standalone single-label models are 

originated from an alternative BR model that is built as the non-label interaction baseline 

comparator to the CC model. In summary, the hypotheses being tested in this study are 

two-fold: Is there any benefit from accounting for transporter overlap? If so, which 

transporters’ substrate prediction benefits from information from other transporters? 

 

 

Scheme 5.1. Schematic representation of the exploration space of possible label (transporter) 
combinations. Note that all but the last line in the scheme represent different formats of the CC model 
of varying lengths, and the last line represents the BR alternative model. 

 

In order to maximize predictive accuracy, prior to building the label combinations 

represented in Scheme 5.1, each label’s modelling conditions (classifier algorithm and 

feature set) were optimized and a selected single-label model was established for each 
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transporter. To this end, each label was modelled with each of the five available feature 

sets generated by the five feature selection methods, and the best classifier-feature set 

pairs were selected based on the performance on the validation set. This was done for three 

different classifiers available in WEKA: C4.5 (J48), RF (RandomForests) and boosted C4.5 

trees (multiBoostAB + J48), which were tuned using 10-fold cross validation. For the C4.5 

models, the pruning was tuned as per section 3.4. For the RF the number of trees was 

optimized (ranging between 2 and 1000 trees, with a step of 50 trees). For the boosted trees 

(BT), the conditions for the embedded C4.5 trees were inherited from the previously 

optimized C4.5 models, the number of committees (or iterations) was optimized ranging 

from 10 to 100, and the number of subcommittes was set to the squared root of the 

committee size as recommended by the author (Webb, 2000). Additionally, whenever a 

classifier failed to generate a good model for a certain label (G-mean < 0.7, where G-mean 

is defined in section 3.5), the algorithm was re-run using the feature set that previously 

generated the model with the highest G-mean, and a misclassification cost (optimized 

between 2 and 6) was applied to penalize mispredictions of the minority class – that is, the 

cost of misclassifying an instance of the minority class is multiplied by a number between 2 

and 6, whilst the cost of misclassifying an instance of the majority class remains 1. 

Two labels (PEPT1 and OATP1B3) produced models with non-acceptable performance 

(i.e., they had either sensitivity or specificity below 0.5, in the validation set) with any of the 

above classifiers. As a result, special methods were applied to them. Initially, the synthetic 

minority over-sampling technique (SMOTE) was applied following the re-running of the best 

modelling conditions up to this point, for each transporter respectively. This showed 

acceptable performance for OATP1B3, but not for PEPT1. To overcome this, PEPT1 was 

submitted to an under-over bagging (UOBag) procedure similar to a procedure in the 

literature (Galar et al., 2012), which led to acceptable performance. This consisted of a 

series of 10 runs where, in each run, the dataset was submitted to SMOTE, which added 

50 (100%) instances to the minority class, followed by undersampling of 47 (32%) instances 

in the majority class (to reach two balanced classes), and 80% random sampling from the 

total resulting data. The sampled subset was then used to build a C4.5 model (using 

parameters inherited from prior C4.5 optimization) with an applied misclassification cost of 

2 to each false positive prediction achieved during training. This generated an ensemble of 

ten C4.5 models that form the final UOBag model. 
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5.2.3. Performance evaluation and Applicability Domain 

The single-label models contained in each multi-label model were assessed with Sen, Spe 

and G-mean. The multi-label performance measures used were F1, Hamming Loss, bACC, 

Sen-L, Spe-L (label-wise sensitivity and specificity). These have been calculated as 

descried in section 3.5. 

To enrich the analysis of the models’ performance, the external set was tested for the 

presence of activity cliffs. This allows understanding and pinpointing any shortcomings of 

the models under evaluation. To search for possible activity cliffs, the similarities between 

external (test) compounds and all training set compounds were computed. Any instance 

that has a different class from the majority class of the closest three training neighbors with 

a Tanimoto coefficient > 0.55 to the analysed compound was deemed to be an activity cliff.  

In order to define the reliability of predictions output by the QSAR models, it is necessary to 

define their applicability domain (AD). In this study, the AD of all the single-label models 

used in the best model was characterized. To establish the AD, the standard deviation of 

an ensemble of models (STD) (Tetko et al., 2008) was used, as described in Section 3.6. 

This measure has been shown to correlate well with reliability of external predictions 

(Sushko et al., 2014, Dragos et al., 2009, Sushko et al., 2010a, Tetko et al., 2008). A small 

disparity in the ensemble (small STD) will (likely) equate to highly reliable predictions. 

However, one should keep in mind that small STD can also result from systematic bias. By 

computing the percentage of correct predictions (accuracy) within increasing thresholds of 

STD scores, one is able to establish the model’s AD profile by sorting the data into higher 

reliability areas and lower reliability areas. As the different test sets are relatively small, 

during the binning of the data each STD threshold step was required to include at least 3 

new instances. This is done to avoid bins composed of too few compounds, thus making 

each point minimally representative of the occupied STD range. 

 

5.2.4. Statistical tests.  

To objectively determine the significance of the difference in performance between the best 

CC model and the baseline method, the BR model, a paired Wilcoxon signed-rank test was 

carried out (given that all Shapiro-Wilk tests indicate non-normal distributions), according to 

expert recommendations (Japkowicz and Shah, 2011). The test compares the performance 

of a set of equivalent (between classifiers) and independent trials performed for the two 

single-label classifiers. This was adapted to a multi-label setting, by considering as a trial 

the set of multi-label predictions for each instance. This allows conserving the trial 
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independence conditions, and the assumption of equivalence between the respective trials 

of both classifiers. The statistical test was performed on the individual elements of Hamming 

Loss and F1 measures (for each compound in the test set), produced by the BR and CC 

models.  

To test the value contributed by each individual transporter, a comparison of performance 

between CC models with and without each of the transporters was also done using the 

paired Wilcoxon signed-rank test.  

As all analyses were performed in a large sample size, the appropriate large-sample Z 

approximation to the statistical test was applied to avoid misleading significant differences 

brought by a test score that approaches normality (Corder and Foreman, 2009). 

 

5.2.5. Visualization of chemical space.  

In order to visualise the chemical space of the SLC data and analyse the overlap of different 

transporters, t-SNE (Maaten and Hinton, 2008) was applied for multidimensional projection 

as detailed in Chapter 3. A single run of t-SNE projection was applied to the full set of 

compounds in the SLC multi-label dataset. 

 

5.3. Results and Discussion 

5.3.1. Multi-label model optimization and testing.  

Prior to training the multi-label models, the modelling conditions for each label (transporter) 

were optimized. From a set of 5 possible feature selection techniques, and 3 possible 

classifiers (with and without misclassification cost), the best combination of features, 

classifier and cost was optimized for each label, based on the highest internal validation 

performance (best G-mean). Table 5.2 summarizes the optimal conditions achieved for 

each label. 

As shown in Scheme 5.1, a total of 1951 multi-label models were produced (1950 CC 

models + 1 BR model). From these, the best model was selected based on the highest 

average bACC on the validation set. In this CC model, the order of labels was OCT1, 

OATP2B1, OATP1A2, PEPT1, OATP1B1 and finally OATP1B3. Its predictive performance 

on the test set, at a single-label level, is summarized in Table 5.2. The results can be 

compared with Table 5.3, where the test performance of the corresponding single-label 
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models from the BR multi-label model (non-label-interaction equivalent of CC) is 

summarised. 

 

Table 5.2. Single-label test set performance of the best CC model. Predicted transporter binding 
labels used as features are generically presented with the respective transporter prefixed by the letter 
“p”.  

Label 
Best 

classifier 

Best 
feature 

selection 

Best 
misclassification 

cost 

Sen 
(%) 

Spe 
(%) 

G-mean 
(%) 

Labels 
present as 
features in 
the models 

#1: OCT1 C4.5 C4.5-GA Equal cost 90.9 64.7 76.7 

Not 
applicable; 
first label in 
chain 

#2: OATP2B1 C4.5 RF-GS 1.3*FN 50.0 85.7 65.5 pOCT1 

#3: OATP1A2 BT GS Equal cost 90.9 25.0 47.7 
pOCT1, 
pOATP2B1 

#4: PEPT1 
C4.5 

(UOBag) 
GS 2*FP 81.3 57.1 68.1 

pOCT1, 
pOATP2B1, 
pOATP1A2 

#5: OATP1B1 RF C4.5-GA 3*FP 68.4 83.3 75.5 

pOCT1, 
pOATP2B1, 
pOATP1A2, 
pPEPT1 

#6: OATP1B3 
RF 

(SMOTE) 
GA Equal cost 92.3 66.7 78.4 

pOCT1, 
pOATP2B1, 
pOATP1A2, 
pPEPT1, 
pOATP1B1 

 

Table 5.3. Single-label test set performance for the BR model equivalent to the best CC model. 

Label Sen Spe G-mean 

OCT1 90.9 64.7 76.7 

OATP2B1 50.0 100.0* 70.7 

OATP1A2 90.9 25.0 47.7 

PEPT1 68.8 57.1 62.7 

OATP1B1 68.4 83.3 75.5 

OATP1B3 84.6 66.7 75.1 

 

At a multi-label level (i.e. looking at the set of classifiers), the CC model showed improved 

performance compared to the BR model (Table 5.4), across almost all performance 

measures, with the exception of Spe-L. However, this can be attributed to an increase in 

Spe from 85.7% to 100% for the OATP2B1 label within the BR model, as the remaining 
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single label models have the same Spe values in Tables 5.2 and 5.3. Even though both HL 

and F1 are not statistically different between models (p > 0.05), this was expected given 

that both models output a very similar set of predictions, which does not allow for a 

differentiation at a global scale. 

 

Table 5.4. Multi-label performance obtained on the test set. Recall that HL is to be minimized, whilst 
the other measures are to be maximized. Statistical testing was only carried out for the instance-
based measures, as explained in the Methods section 5.2. 

 measure BR CC p-value 

Label-

based 

bAcc 68.1 68.7 n.a. 

Sen-L 75.6 79.0 n.a. 

Spe-L 66.1* 63.8 n.a. 

Instance-

based 

HL 26.4 22.8 p = 0.164 

F1 70.7 71.9 
p = 0.128 (S);  

p= 0.671 (NS) 

n.a. – non applicable. *results from single-label performance measure marked in Table 5.3 (see text). 

 

In order to understand the factors that led to the superior multi-label performance of the CC 

model, both models were compared at the single-label level. Tables 5.2 and 5.3 show that 

three out of the six labels in the multi-label CC model show no improvement over the 

standalone single-label models; on the other hand, PEPT1 and OATP1B3 show 

improvement in the CC model, which results from a marked increase in Sen accompanied 

by maintained Spe. The classifiers for both PEPT1-CC and OATP1B3-CC selected all 

available previous labels as predictors, and considering that the introduction of previous 

label predictions was the only differing aspect between the BR and the CC models, it can 

be concluded that this was the driving factor of the improved performance of PEPT1-CC 

and OATP1B3-CC. Moreover, it should be highlighted that all previous label predictions 

used in the modelling of PEPT1 refer to transporters that seemingly have no obvious 

structural (Schlessinger et al., 2013b) or physiological link (Cesar-Razquin et al., 2015) to 

it (Schlessinger et al., 2010). The only common denominator between PEPT1 and the 

remaining transporters is the fact that their families (SLC15, SLC22 and SLC21/SLCO) all 

belong to the alpha-group of the major facilitator superfamily, which entails some level of 

homology in their type of folding (Höglund et al., 2011). It is known that PEPT1 binding relies 

on very specific three-dimensional requirements of distance and chirality(Foley et al., 2010) 

which may be difficult to properly portray even when using three-dimensional molecular 

descriptors. The use of predicted labels (prediction of binding to other transporters) as 



Using Multi-label Classification to Explore the Link among the Solute Carriers (SLCs) Transporter 
Family  

 
95 

additional features may supplement the molecular descriptors used in this work to aid a 

better prediction of PEPT1 uptake. 

The SLC22 (where OCT1 belongs) and SLCO (where the OATPs belong) families show a 

relatively high degree of aminoacid sequence similarity (Schlessinger et al., 2013a, 

Schlessinger et al., 2010). These observed links between transporters in the CC model will 

be later explored in more detail. 

Regarding the CC model’s accuracy, except for OATP1A2, which showed very low Spe, all 

the other labels show acceptable predictive performance despite the high degree of class 

imbalance for most transporter labels. It should be noted that OATP1A2 has been 

associated with the largest chemical space among OATPs (Tirona and Kim, 2014), which 

potentially makes the task of modelling its substrate recognition patterns more difficult. The 

sheer quantity of pattern types is perhaps larger than the instances occurring under each 

pattern, which makes for a much shallower input provided to the learning algorithm. This 

possibly justifies the poor performance obtained for this transporter. Nonetheless, the 

obtained multi-label performance of the CC model (Table 5.4) showed a good level of quality 

with a 22.8% error rate (Hamming Loss) across all compound-transporter pairs, and an F1 

score above 70%. However, as usual in any QSAR effort, all transporters’ models have an 

overall higher propensity for correctly predicting substrates than non-substrates. This 

makes the CC model better suited for early screening (as opposed to late-stage prediction) 

where a higher false positive (false substrate) rate is less damaging to the long term success 

of the drug development project than the opposite scenario (higher false negative rate, 

which leads to false hits being moved forward across the pipeline). 

Regarding the source of mispredictions in the CC model, one might consider the fact that 

the data used in the modelling comes from different sources that employ a variety of 

experimental designs and analytical methods to assign a compound as a substrate or non-

substrate. Different laboratories can yield large variations in transporter function and 

expression. Furthermore, differences in experimental conditions potentiate the variability of 

obtained results (Artursson et al., 2013). This generates noise, which hinders the ability of 

the algorithm to properly learn any patterns between structure and response. Furthermore, 

as pointed out by Tu et al (Tu et al., 2013), any transporter substrates capable of high 

passive permeability will not be detected as substrates in permeability experiments. 

Consequently, actual substrates will be wrongly assigned to the non-substrate class, which 

will hinder the learning task as similar structure patterns will be found in both the non-

substrate and substrate classes. In this work, where a compound had been reported as 

both as substrate and non-substrate of a transporter by different literature sources, the 
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compound was assigned to the substrate class following the principle of minimum evidence 

of substrate capability (i.e. even one single positive evidence of substrate capability shows 

that a compound is a substrate under certain experimental conditions). There was a total of 

5 observations in the test set with such conflicting literature class assignments, among 

which only one was mispredicted under the CC model.  

 

5.3.2. Model Validation 

The nature of the automated exhaustive search through the different classifier chain orders 

does not accommodate an in-process trimming of potential outliers detected through AD 

analysis, before a set of predictions is fed forward across any given classifier chain. 

Furthermore, even if such in-process control was feasible, it would likely increase the 

degree of overfitting as outlier removal would be guided by an AD established using the 

validation set. This would be, to some extent, as controversial as simply removing 

mispredictions from the prediction set of a label before it is fed to the following labels. As a 

result of this, the AD analysis established for the best model (CC) is reserved to a 

prospective use, where it will aid the prediction acceptance decision. The contribution of 

outliers fed to any of the following labels during the training of a chain will likely be picked 

up during AD analysis of external predictions, as decision paths constructed from such 

outliers will be associated with a higher level of disparity between ensemble models. As a 

direct result, new instances that use such decision paths will be more likely to fall outside 

the AD for an established acceptance threshold (using the STD method). The established 

AD profiles (Appendix II, Figure A2.1-6) should be used with care as the amount of data in 

the test set of some transporters is so small that it might not convey representative accuracy 

values. This can be seen in the OATP2B1 model, where the level of precision does not 

correlate with accuracy. Examples such as this one are extremely challenging to 

characterize with respect to their AD. Nonetheless, every established AD allows the 

selection of a subset of the data associated with a reduced risk of mispredictions (even 

OATP2B1 where the lowest STD threshold shows the lowest error rate). 

Lastly, in order to properly gauge the value of the built models, their prediction performances 

have to be evaluated in light of the content in activity cliffs. Knowing that these are located 

in areas where the structure-response relationship is more complex and changes 

unpredictably (Maggiora, 2006) or they result from incorrect class assignments (Sedykh et 

al., 2013), one would expect that the machine learning algorithm will mispredict them. 

Results (Appendix II, Table A2.1) show PEPT1 data contained a considerable amount of 

activity cliffs, which also indicates it is a challenging label to model as discussed before. 
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Other than PEPT1, all other transporters were associated with a relatively low number of 

activity cliffs, in comparison with the number of mispredictions. This shows that activity cliffs 

content is not likely to have considerably hindered the learning tasks. 

 

5.3.3. Impact of each transporter label on the global predictive performance 

To assess the impact of each label on the best CC model and the BR model, each label 

was isolated and the performance of the remaining multilabel model was calculated using 

Hamming Loss for the BR model. While the BR architecture allows simulating the full 

classifier without each of the existing labels, this kind of analysis is not possible for the CC 

model. The CC model is built in an incremental manner; therefore the only way to test a 

label’s impact on the model is by measuring the HL of the chain upon the addition of each 

label to the chain. Note that labels that are not in the chain are used in the model anyway, 

but they are used as non-linked single label components (similar to the BR model).  

Figure 5.1(1) shows that, while most labels appear to have similar impact over the global 

performance of the BR model, removing OCT1 is associated with a larger-than-normal 

penalty (i.e, increase in Hamming Loss), which indicates that the respective single-label 

model is contributing with a high predictive performance. On the other hand PEPT1 is 

contributing with the largest amount of error, as removing it from the multi-label BR model 

leads to a marked decrease in the HL value (recall this is an error measure). Given these 

observations alone, PEPT1 would be expected to be one of the labels that potentially benefit 

the most from being in a multi-label setting that utilises label interaction (i.e. the CC 

scheme), while OCT1 would be expected to offer support in the modelling of other labels. 

Both expectations were indeed observed through the marked improvement of the predictive 

performance of PEPT1 in the CC model compared to the BR model (Tables 5.2 and 5.3), 

and through the fact that OCT1 occupies the first position in the best CC model (Table 5.2). 

The analysis of the label impact on predictive performance in the CC model shows an 

overall decrease in Hamming Loss as the chain grows (See Figure 5.1(2)). This shows that 

each new label is modelled with an added level of accuracy when compared with BR single 

label models. Recall that the set of labels shown in each point of Figure 5.1 is completed 

with the remainder BR single-labels, so each newly added label is replacing its BR 

equivalent in the prior iteration. Taking this into account, this multi-label scheme showed to 

be robust to any noise across the 6-label CC model. The data point corresponding to the 

“no interaction chain” refers to a setting where there is no link (or chain) connecting the 

labels, and they are modelled independently from each other. This showed to be poorer or 

equivalent is performance to any stage of the construction of the CC model. 
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Figure 5.1. (1) The impact of each label over the global Hamming Loss of the BR model, computed 
on the test set. The impact is measured by calculating the HL of the full multi-label model upon 
removal of each label. Recall that HL is meant to be minimized. (2) The impact of replacing the single 
labels from the BR model with the single label components of the CC model with increasing chain 
length. The impact is measured by calculating the HL of the full multi-label model upon addition of a 
new label to the chain (rather than using the BR equivalent of the single labels). The order of labels 
in the chain follows that of the selected CC model. *The term “no interac. chain” refers to the scenario 
where there are no links between labels (i.e. the BR model). The dashed line connecting the first and 
second data points in the CC plot conveys the discontinuous nature between the two.  

 

It is worth noting that the significance of previous labels is seen throughout all the models 

generated (in the exhaustive combinations of chain sequences) and not just in the best 

model discussed above. As such, an exhaustive analysis of label contribution in a multi-

label modelling context showed that previous label predictions were very frequently selected 

as a descriptor for the modelling of any given transporter, which demonstrates that the value 

of using transporters as predictors among each other was not an exception found in the 

best achieved model. This is another evidence supporting the correlation between 

transporters with respect to their substrate profiles. 

Looking into two-label chains where the predicted label #1 is used as the only predictor of 

the label number #2 can also provide useful information about how labels relate to each 

other. To this end the first transporter label in each possible 2-label chain was modelled 

using the optimal conditions (as done for all of the other CC models in this study), and its 

output was used as the only descriptor to model the following label in the chain using the 

C4.5 (decision tree) algorithm. From this exercise there are only two possible outcomes: 

either a one-descriptor tree is produced (with pLabel being the descriptor) or no tree is 

produced as pLabel is not statistically significant for the partitioning of label #2. This process 
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is more appropriate to test the relationships between the different transporters than running 

a statistical test of each correlation, given that the latter implies a symmetric (bidirectional) 

correlation and the former only assumes unidirectional correlations (while allowing the 

identification of bidirectional correlations). Given the complex nature of the problem under 

study it is possible that some of the relationships between transporters are in fact 

asymmetric (unidirectional), where transporter A offers information relevant to B, but B does 

not do the same for A (Gibaja and Ventura, 2014). 

The summary of results in Table 5.5 (criterion B) identifies three links: 1) OATP1B1 and 

OATP1B3 are shown to mutually correlate to each other, as the pLabel from each 

transporter is selected into a decision tree to model the other transporter; 2) pOATP1A2 

was selected as a predictor of OATP1B3, and 3) pOCT1 was identified as a predictor of 

PEPT1. Surprisingly pOATP2B1, which appears in second position in the best CC model, 

was not selected as a predictor for any of the transporters. However assessing labels in a 

two-by-two fashion is perhaps a harsh method to ascertain the significance of relationships 

between transporters. For example pOATP2B1 may be a predictor for a sub-group of 

compounds already partitioned by a molecular descriptor, rather than for all compounds. As 

a label receives a certain input, this can alter significantly the learned patterns, especially if 

different sources of input complement each other’s information. As a result, the binding 

patterns of the OATP2B1 label, for example, might be learned very differently, which will 

transform what this label outputs to the remainder of the classifier chain, thus rendering it a 

potentially advantageous predictor of the following transporter models.  

Additionally, two factors might explain the absence of other relationships present in the 

selected CC model from the two-label chain analyses above. Firstly, C4.5 is clearly a 

suboptimal learning algorithm as, in many cases, it was not the optimal training algorithm 

(Table 5.5). This was used here for its straightforward and transparent output, and it may 

have overlooked weaker correlations. Secondly, some of the correlations might not be 

global (and may occur in a specific region of chemical space), hence not being observed 

without any additional chemical information. 

To assess whether there is any link between a single-label’s predictive performance and its 

position in the CC model, the top 10 performances of a given label, at each of the six 

possible positions, were averaged. Figure 5.2 shows that all labels benefit, though to 

different extents, from being located somewhere between the second and the last position 

of the classifier chain as opposed to being in the first position (where no information from 

other labels is available). This is another evidence in support of the hypothesis of 
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intercorrelation between the transporters’ binding profiles – this essentially means that all 

transporters benefit, to some degree, from previous label information. 

 

Table 5.5. Summary of proposed links between SLC transporters, determined from four different 
approaches. Criterion C is a summary of the results presented in Appendix II, Table A2.2, and 
criterion D is derived from the results presented in Appendix II, Table A2.3. 

 Criterion A Criterion B Criterion C Criterion D 

endpoint 

top 5 predictor 

in the best 

model 

Statistically 

significant 

predictor in a 

two-label chain 

Statistically 

significant in Obs 

x Obs 

Chi-Square 

correlation 

Statistically 

significant in 

pLabel x Obs 

Chi-Square 

correlation# 

OCT1 n.a. none none n.a. 

OATP2B1 pOCT1 none none none 

OATP1A2 
pOCT1 

none 
OATP1B1 

OATP1B3 
none 

PEPT1 

pOCT1 

pOATP1A2 

pOATP2B1 

pOCT1 OATP1B1 pOCT1 

OATP1B1 none 

 

pOATP1B3 

OATP1A2 

OATP1B3 

PEPT1 

none 

OATP1B3 
pOATP1B1 pOATP1B1 

pOATP1A2 

OATP1B1 

OATP1A2 

pOATP1B1 

# Each observed endpoint was only tested with the eligible pLabel variables (i.e. the pLabels from the transporter models in 

lines above it, which were made available during its training). OATP1A2, for example, has two possible pLabels against which 

it is tested (pOCT1 and pOATP2B1) which precede it. 

 

In agreement with other observations discussed earlier in this chapter, OATP1B3 was the 

transporter that most benefitted from being pushed further towards the end of the chain, 

showing an overall trend (except when in the second position) of increasing predictive 

performance as its position approaches the end of the chain. On the other hand, 

observations regarding OCT1 and OATP1B1 indicate that despite benefitting from being 

trained with information from other labels (i.e. trained later in the chain’s order), these 

transporters show the least extent of benefit from this. This is evidenced by the smallest 

improvement in predictive performance from being at the top of the chain compared to being 

at any of the following positions. This aligns with the fact that OCT1 occupies the first 

position in the best multi-label model. 
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Figure 5.2. Average over the top 10 G-mean of each class label at every position in the 6-label chain. 
The highest G-mean points are marked with a black outline. 

 

5.3.4. Features determining SLC binding 

Looking at the relevance of features in a model can provide clues to their relationship with 

the modelled response. The feature importance was computed from the frequency of 

compounds that pass through the decision split(s) based on that feature. This measure was 

also corrected for node purity (i.e. ratio of correct instances in a given decision split). The 

latter feature importance measures are presented in Table 5.6, for BR and CC models, and 

the former measure is available in Appendix II, Tables A2.4 and A2.5. 

As shown earlier, in the CC model all prior label predictions were selected by the transporter 

models in the chain (See Appendix II, Table A2.6 for the summary of molecular descriptors 

and Appendix II, Table A2.7 for a full list of used features). The current and following 

sections will discuss these findings in more detail, focusing mainly on the predicted label 

features. Recall that previous label predictions are represented by the name of the 

respective transporter prefixed with the letter “p”. 

OCT1 was not applicable for modelling using previously predicted labels, as it was the first 

label in the chain. For the second label in the chain, namely OATP2B1, predicted OCT1 

binding (pOCT1) revealed to be informative in distinguishing between OATP2B1 substrates 

and non-substrates, being used to sort out a third of the training set. It appears that OCT1 

substrates can be both substrates and non-substrates of the OATP2B1 transporter, 

depending on the chemical context, whereas OCT1 non-substrates are likely substrates of 

OATP2B1. The single alteration of adding the pOCT1 descriptor from the BR model to the 
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CC model led to an attenuation of what seems to be a pronounced overfitting in the BR 

model (maintained Sen score, but Spe changes from 100% to 86%), as the decision splits 

that follow the split with a_don have a smaller combined error rate in the CC model (95% 

versus 84% combined node purity in the BR model). 

 

Table 5.6. Descriptor importance for the BR model, measured in percentages of predicted and 
correctly predicted instances covered by each of the descriptors. For the sake of simplicity this table 
only shows up to the 10th most important feature, however some models used more features, as 
shown in Appendix II, Table A2.7. Their definitions are available in Appendix II, Table A2.6. 

OCT1 OATP2B1 OATP1A2 

BR 
(% correct N) 

CC 
(% correct N) 

BR 
(% correct N) 

CC 
(% correct N) 

BR 
(% correct N) 

CC 
(% correct N) 

CASA- 
(96.5) 

PSA 
(93.0) 

PSA 
(96.9) 

vsurf_EDmin2 
(28.6) 

vsurf_EDmin2 
(26.2) 

LogD7.4 
(84.8) 

vsurf_HB2 
(75.8) 

vsurf_HB2 
(79.7) 

Nratio 
(25.0) 

Fu 
(24.3) 

PM3_dipole 
(78.5) 

PEOE_VSA_FPNEG 
(65.0) 

PEOE_VSA_FPNEG 
(69.0) 

NumRings6 
(23.9) 

NumRings6 
(24.3) 

a_aro 
(38.4) 

PEOE_VSA_FHYD 
(51.2) 

PEOE_VSA_FHYD 
(55.1) 

Fu 
(22.2) 

pOCT1 
(23.4) 

vsurf_HB6 
(30.3) 

a_don 
(34.3) 

a_don 
(38.2) 

LogD5.5 
(19.6) 

a_don 
(23.3) 

lip_violation 
(21.4) 

AM1_E 
(28.1) 

pOCT1 
(32.0) 

SlogP_VSA1 
(19.4) 

SlogP_VSA1 
(16.0) 

vsurf_ID2 
(15.8) 

 
PM3_dipole 

(21.3) 
vsurf_DD13 

(18.0) 
FASA_H 

(12.9) 

FCASA+ 
(3.8) 

 
 

a_don 
(15.3) 

Nratio 
(11.5) 

Q_VSA_PNEG 
(4.1) 

FASA_H 
(10.6) 

PEOE_VSA-1 
(10.7) 

   
PEOE_VSA-1 

(10.3) 
LogP 
(9.1) 

PEPT1 OATP1B1 OATP1B3 

BR 
(% correct N) 

CC 
(% correct N) 

BR 
(% correct N) 

CC 
(% correct N) 

BR 
(% correct N) 

CC 
(% correct N) 

AM1_HF 
(83.1) 

AM1_HF 
(62.2) 

FiA 
(34.4) 

FiA 
(39.0) 

vsurf_ID6 
(28.8) 

pOATP1B1 
(26.5) 

ast_violation_ext 
(42.8) 

pOCT1 
(53.2) 

PEOE_VSA_NEG 
(33.7) 

PEOE_VSA_NEG 
(28.1) 

vsurf_ID5 
(24.6) 

vsurf_ID6 
(25.6) 

SlogP_VSA6 
(39.9) 

FiA 
(39.9) 

vsurf_ID7 
(20.6) 

vsurf_ID7 
(18.3) 

vsurf_ID1 
(21.1) 

vsurf_ID1 
(18.6) 

Ro5 
(30.5) 

pOATP2B1 
(38.8) 

vsurf_EDmin2 
(18.5) 

vdw_vol 
(17.8) 

ast_violation 
(18.6) 

vsurf_ID2 
(18.2) 

Fu 
(17.2) 

Ro5 
(24.2) 

Q_VSA_FPPOS 
(16.7) 

Q_VSA_FPOS 
(17.5) 

vsurf_ID2 
(18.5) 

vsurf_ID5 
(17.6) 

FiA 
(17.3) 

ast_violation_ext 
(17.8) 

SMR 
(16.3) 

Q_VSA_FPPOS 
(17.1) 

NumRings6 
(17.4) 

NumRings6 
(15.6) 

a_nO 
(12.7) 

pOATP1A2 
(13.8) 

vdw_vol 
(16.2) 

SMR 
(16.4) 

vsurf_ID7 
(16.8) 

vsurf_R 
(13.6) 

PSA 
(11.6) 

LogD7.4 
(13.0) 

Q_VSA_FPOS 
(15.1) 

vsurf_EDmin2 
(16.2) 

b_1rotN 
(16.1) 

FRB# 

(12.4) 

a_acc 
(10.5) 

SlogP_VSA6 
(11.5) 

vsurf_CW2 
(14.9) 

glob 
(16.1) 

AM1_Eele 
(14.3) 

ast_violation 
(12.0) 

a_hyd 
(10.2) 

FiAB 
(9.7) 

vsurf_Wp6 
(14.8) 

vdw_area 
(14.5) 

Index of Refraction 
(14.1) 

b_1rotN# 

(11.6) 

 

For the modelling of OATP1A2, prior information on OCT1 and OATP2B1 predicted binding 

(pOCT1 and pOATP2B1) was made available in addition to molecular features in the CC 

model. However, only pOCT1 occupied a place in the top 5 most important features of the 
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OATP1A2 model (Table 5.6). Of course, the relationship with pOCT1 is of a complex nature 

in the boosted trees model, as can be seen from the two-label chain models discussed 

earlier (criterion B in Table 5.5) where the use of pOCT1 (as the single feature) did not yield 

a statistically significant partitioning of the OATP1A2 data. It is likely that pOCT1 can predict 

OATP1A2 substrate/non-substrate class for only a certain fraction of data.  

Both pOCT1 and pOATP2B1 revealed to be highly informative in the prediction of PEPT1 

binding profile (Table 5.6). Notably, as shown in Table 5.6, pOCT1 is used to correctly sort 

more than half of the training data across the decision tree ensemble. In the relevant fraction 

of compounds whose classification is affected by these two features in the decision tree 

model, predicted non-substrates of OCT1 and OATP2B1 are likely to be also non-

substrates of PEPT1. This is evidenced by the fact that in six (out of ten) decision trees, the 

ensemble branches composed of “pOATP2B1 = non-substrate” and/or “pOCT1 = non-

substrate” mainly lead to the non-substrates of PEPT1. In the fifth position of the chain was 

OATP1B1, which was modelled using the predictions output by four previous labels in the 

chain (pOCT1, pOATP2B1, pOATP1A2 and pPEPT1) along with molecular descriptors. 

Despite all four having been selected as features in the decision tree ensemble (as seen in 

the full set of descriptors used in each model, available in Appendix II, Table A2.7), they 

exhibit a low feature importance score in the RF model. As mentioned earlier, this should 

not be interpreted as insignificance of such features, but rather a possible role of fine 

separation between substrates and non-substrates. 

Finally, for the modelling of the OATP1B3 single-label within the CC model, all previous 

label predictions were made available. Among these, pOATP1B1 was the top feature in 

terms of coverage of instances. This was expected considering that OATP1B1 and 

OATP1B3 are characterized by overlapping substrate specificity profiles (Kusuhara et al., 

2013), as well as physiological cooperation (Karlgren and Bergstrom, 2016, Sharifi and 

Ghafourian, 2016) and 80% overlapping amino acid identity (Ho and Kim, 2014).  

 

5.3.5. Relationships between transporters across chemical space 

In this study four different approaches were used to uncover potential relationships between 

the six SLC transporters, and the resulting findings are summarized in Table 5.5 and Figure 

5.3. Each of the analyses consists of a criterion in support, or lack thereof, of any 

relationship between any given pair of transporters.  Some of these have been previously 

reported in the literature; however, some new correlations have been identified in this work. 

Overall, an ample variety of relationships is suggested. 
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Figure 5.3. Predicted transporter relationships inferred from the four types of correlation criteria used 
in this work (see Table 5.5). Criteria A and B refer to predictor/predicted relationships, and criteria C 
and D refer to direct numerical correlations between transporters. 

 

The identification of a predicted transporter binding as a key (top 5) predictor in the best 

multi-label model (criterion A in Table 5.5) is theoretically the strongest evidence of a link 

between two transporters and, as a result, the findings from criterion A were highlighted in 

Figure 5.3. This is the strongest evidence because it is the only one that simultaneously 

takes into account chemical context and new binding information acquired from the multi-

label learning scheme. Criterion B was discussed earlier and it confirms two of the 

relationships proposed by criterion A; these are the significance of pOCT1 in the 

classification of PEPT1 and the significance of pOATP1B1 in the classification of OATP1B3 

substrates/non-substrates. This criterion also suggests predictive relations between 

pOATP1A2 and OATP1B3, and between pOATP1B3 and OATP1B1 substrates/non-

substrates. 

It is worth comparing criteria C and D, as they are both statistical tests between pairs of 

transporters but yielded different results. The fact that some of the significant correlations 

found using experimental data only (criterion C) were not found using predicted data 

(criterion D) might result from the fact that chemical space is greatly expanded in the latter, 

and what might be a local correlation (for example OATP1A2-OATP1B1) might not be 

applicable when a broader space is considered. On the same line, correlations found in 

criterion C that are not present in criterion A do not necessarily mean the correlation is not 

important in the produced models, and it simply means that it affects a relatively small 

amount of compounds (hence not appearing in the top 5 important features, criterion A). As 

previously established, addressing specific locations of the data can be crucial for the 

success of a model. 
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In order to further understand these relationships, the distribution of various transporters’ 

substrates across chemical space was analysed using a t-SNE projection (Figure 5.4), 

which shows a considerable area of overlap in the global chemical space of molecular 

recognition. However, Figure 5.4 also shows there are portions of space that are mainly 

populated by specific transporters. This will be discussed in more detail along with the label 

interactions found in the CC model. 

A link between OATP1B1 and OATP1B3 has been demonstrated at a physiological 

(expression profile) (Karlgren and Bergstrom, 2016, Cesar-Razquin et al., 2015), structural 

(Ho and Kim, 2014), and substrate specificity (Kusuhara et al., 2013, Sharifi and 

Ghafourian, 2016) level, and additionally these are the major isoforms present in the liver 

(Tu et al., 2013). Moreover, protein quantification across a wide range of tissues shows that 

these transporters are both exclusively found in the liver (see Appendix II, Table A2.8). In 

this study the interdependence at the substrate level was also observed by using all four 

correlation criteria (as shown in Figure 5.3). In fact, when training the OATP1B3-CC model, 

the learning algorithm had access to the prediction sets of all other five transporters, but 

only pOATP1B1 was shown to be of considerable importance, appearing as the feature with 

the highest importance (Table 5.6). As for OATP1B1-CC, this label did not have access to 

pOATP1B3 during training, and (similarly to OATP1B3) none of the remaining available 

prior label features occupied a top position in the importance ranking. Therefore, as 

expected, Figure 5.4 shows a high degree of overlap between OATP1B3 and OATP1B1 

chemical spaces. 

Regarding the remaining two OATPs in this study, OATP1A2 belongs to the same family 

(OATP1) as OATP1B1 and OATP1B3, which entails that the three share a relatively high 

level of similarity, and OATP2B1 is phylogenetically more distant (Hagenbuch and Stieger, 

2013). Despite the overlap of chemical space between OATP2B1 and the three members 

of OATP1 family, shown in Figure 5.4, pOATP2B1 did not prove to be very important in the 

OATP1A2-CC model (it is not one of the top 5 top predictors of OATP1A2, though it is still 

used as one of the predictors in the BT model), nor did it appear highly significant in 

OATP1B1-CC or OATP1B3-CC models. Criteria B-D in Table 5.5 also point to an overall 

lack of correlation between OATP1 family and OATP2B1 (in both directions). However, the 

argument can be made that affecting a small number of instances (as seen in the BT model 

for OATP1A2-CC) can, but not necessarily does, mean low importance. Depending on the 

specific situation, the fine decision splits in the BT model affecting a certain set of chemical 

compounds could hold crucial information relevant to specific portions of the chemical space 

(and hence not ranking highly in the feature importance measure).  
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Figure 5.4. t-SNE multidimensional scaling of the Morgan Fingerprints calculated for the full SLC 
dataset (substrates and non-substrates). However, to allow a more straightforward visualisation, only 
substrates were plotted. 

 

Focusing on OATP1A2, as expected from the relative phylogenetic proximity discussed 

earlier, this showed various accounts of substrate specificity correlation to OATP1B3 and 

OATP1B1 (i.e., in Table 5.5, OATP1B1, criterion C; OATP1B3, criterion B and C). 

The most visible, and impactful, case of label interaction was seen in the PEPT1-CC model. 

In this model, the largest number of previous label descriptors is present in the top positions 

of label importance, with pOCT1 and pOATP2B1 being in the top 5, and pOATP1A2 in the 

7th place. A separate t-SNE multidimensional scaling of the Morgan fingerprints (Figure 5.5) 

calculated for substrates and non-substrates of PEPT1, OCT1, OATP2B1 and OATP1A2 

was performed to show the substrates of these few transporters more clearly than that 

depicted in Figure 5.4.  Figure 5.5 shows that OCT1 substrate space covers a region of 

PEPT1’s chemical space, and OATP2B1 and OATP1A2 substrates cover a different 

(though partly overlapping) region of PEPT1’s chemical space. This is indicative of 

cooperation rather than redundancy of these predicted labels in the identification of PEPT1 
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substrates, which might be one of the reasons behind the simultaneous presence (as high 

importance features) of these transporters in the PEPT1 model. One evidence that supports 

this hypothesis is the fact that from a total of 116 rules that make up the PEPT1-CC model, 

32 rules have both types of input, 37 rules have only pOCT1, and 29 rules have only 

pOATP2B1 and/or pOATP1A2 inputs. 

 

Figure 5.5. t-SNE multidimensional scaling of the chemical space occupied by PEPT1 and the prior 
label features present in top positions of the PEPT1-CC model. t-SNE was applied to Morgan 
fingerprints folded over 1024 bits. The green area corresponds to the OCT1 occupancy in chemical 
space, and the orange area corresponds to OATP2B1/OATP1A2. The dotted line corresponds to 
PEPT1’s region. 

 

The link between OCT1 and PEPT1 is further supported by the fact that pOCT1 is both 

picked as a descriptor in a single-descriptor tree model of PEPT1, and that these two 

transporters’ substrate/non-substrate class show significant correlation (see Table 5.6, 

criterion B and C, respectively). As explained earlier, PEPT1 has not shown any type of 

correlation or link to any of the transporters studied here in terms of expression profile or 

structure similarity (which were the only large-scale analysis of correlation carried thus far, 

as mentioned earlier), and yet it shows to benefit the most from information regarding other 

transporters’ binding. 

The predicted binding profile of OCT1 (pOCT1) appears to hold useful information regarding 

other transporters, namely OATP1A2 and PEPT1, as well as OATP2B1. In the special case 

of OATP2B1, despite the low feature importance of pOCT1, it has been shown to clearly 

benefit the prediction. To be more specific, the introduction of the pOCT1 descriptor in the 

OATP2B1-CC decision tree only affected 21 (a third of) instances, however this factor led 
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to a decrease in classification imprecisions (impurity at the final nodes) from 3 to 1 (see 

Figure 5.6 and 5.7). The new split created by this feature led to a new, higher quality 

decision path, and as the trees of both BR and CC models are the same up to this point, 

this makes pOCT1 arguably one of the most important features to address OATP2B1 

transport. Table 5.6 shows various occurrences of OCT1 (either observed or predicted) as 

being correlated to various transporters listed above.  

 

Figure 5.6. Modelling OATP2B1 substrates and non-substrates without information from other 
transporter labels. Compare this to Figure 5.7 where, upon introduction of prior label information, the 
decision tree is maintained exactly the same and the last node (in grey) is replaced by pOCT1, this 
allowing further splitting. 

 

According to data reported in the human protein atlas (www.proteinatlas.org), OCT1 is 

widely spread throughout the body, being the most ubiquitous transporter of this study (see 

Appendix II, Table A2.8), and OATP1A2 (Roth et al., 2012) and OATP2B1 (Tamai and 

Nakanishi, 2013, Yarim and Koksal, 2010) are also expressed in a variety of tissues as 

depicted in Appendix II, Table A2.8, being co-expressed with OCT1 for several of their 

locations (the breast is the only exception). As for PEPT1, it is highly expressed in the 

intestine (Tashima, 2015) and the gallbladder (Appendix II, Table A2.8). Despite being only 

co-expressed with OCT1, its QSAR model selected OATP1A2 and OATPB1 as predictors 

as well, which points to an interaction between transporters that goes beyond simple co-

expression in the same tissues. Furthermore, despite OCT1 being one of the main hepatic 
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uptake transporters of drugs, its exact physiological role beyond this is still 

speculative.(Liang et al., 2015) 

 

Figure 5.7. Modelling OATP2B1 substrates and non-substrates with information from other 
transporter labels. Compare this to Figure 5.6 where the introduction of prior label information 
(pOCT1) allowed further splitting and improved class separation. 

 

Driven by the expectation that the activity of any given SLC transporter is likely to affect, or 

be correlated to, the activity of other members of this transporter superfamily (Cesar-

Razquin et al., 2015), an extensive exploration of relationships between co-expression 

profiles (at RNA level) was only able to identify statistically significant correlations between 

OCT1+OATP1B3, OATP1B1+OATP1B3, OCT1+OATP1B1 and OATP1A2+OATP2B1 

(considering only the six transporters covered in this study) (Cesar-Razquin et al., 2015). It 

has been speculated that co-expressed proteins across tissues and conditions (like the 

examples above) are functionally dependent (Cesar-Razquin et al., 2015). While evidence 

of relationships between some of these transporters’ substrate spaces was found, 

OATP1A2 and OATP2B1 do not show to correlate in terms of substrate profile. In addition, 



Using Multi-label Classification to Explore the Link among the Solute Carriers (SLCs) Transporter 
Family  

 
110 

several other substrate specificity correlations were uncovered, which have not been 

reported to date. Some of the new proposed correlations are not apparent, for example 

OCT1+OATP1A2 or PEPT1+OCT1, as the identified pairs transport substrates of different 

chemical nature. However, it is apparent that the propensity to be transported by one 

transporter can predict the substrate/non-substrate class of the other. 

Overall, the most important practical implications from the observations gathered in this 

work regarding the connection among the SLC family, encapsulated in Figure 5.3, are two-

fold: firstly, if a compound has been tested for uptake against, for example, OCT1, 

OATP2B1 and OATP1A2, there is the possibility of predicting the binding to PEPT1 more 

reliably than just doing so from chemical data alone. For transporters like OATP1B1 or 1B3, 

this has direct relevance towards managing the risk for certain outcomes such as liver injury. 

Secondly, the hypothesis of a more complex relationship between transporters may prompt 

experimental exploration and lead to new discoveries of physiological drivers of drug 

disposition, which may be useful for aims such as new tissue-targeting approaches or better 

management of pharmacodynamics (activity and/or toxicity). 

 

5.4. Conclusions 

As presented in this chapter, SLC transporters are an appealing target of research as they 

are both underexplored and have a high potential in drug discovery and development 

applications. These proteins are widely associated with disease states and are also some 

of the main controllers of the ADME processes. At the same time the (Q)SAR studies on 

SLC binding, available up to this point, are both few and limited in their chemical space (i.e., 

performed mostly on series of analogous compounds). In this work a QSAR model of six 

different SLCs, namely OCT1, PEPT1, OATP1A2, OATP1B1, OATP1B3 and OATP2B1 

was developed using a chemically diverse dataset. As there is some degree of overlap 

between binding profiles of the different SLC transporters, this study aimed to address the 

potential correlation between them in the QSAR modelling by using a multi-label 

classification technique called Classifier Chain (CC) that utilizes possible label correlations 

to aid the learning algorithm. To explore all potential interaction between transporters, all 

possible chain arrangements (including chains of smaller sizes and various orders) were 

built. 

This study reports several pieces of evidence in favour of a variety of relationships between 

the modelled SLC transporters. From the exhaustive exploration of a total of 1950 possible 

CC models, the best CC model showed an overall good predictive performance across all 
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transporters, with the exception of OATP1A2 model’s low accuracy for non-substrate 

identification (specificity). Additionally, it showed improved performance when compared to 

Binary Relevance (BR) model that assumes no label interaction. In some cases, the prior 

transporter predictions had a very central role in the classifiers, as they were used to classify 

a large amount of compounds into substrates and non-substrates. However, in some cases 

(e.g. the OATP1B1-CC single-label model), these prior transporter features were involved 

in the classification of only a small portion of compounds. Furthermore, by analysing the ten 

best models at each position in the chain, for each of the six transporters, results showed 

that every transporter benefits from being trained with information from other transporters.  

The correlations uncovered by the presence of previous transporter features in each of the 

trained single-label models was further explored by analysing the chemical space overlap 

between each transporter and its prior transporter predictors. Additionally, these findings 

were complemented by statistical testing of transporter correlations (using both predicted 

and observed compound profiles), as well as by using each transporter as the single feature 

in a simple decision tree model. This confirmed the already identified (or proposed) 

transporter correlations, like OATP1B1+OATP1B3, and uncovered new potential 

correlations in terms of the relations between substrate space of these transporters, 

including relations between different OATPs and PEPT1, which belong to different protein 

families. 

Current knowledge on the links between SLCs is based on structure similarity or expression 

profile correlations. The results shown here add to this knowledge and propose that SLCs 

might be correlated in terms of substrate specificity, which is not covered by structure 

similarity or expression profile correlations. 
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6. The Impact of Membrane Transporters and 

Phospholipidosis in Modelling Volume of 

Distribution 

6.1. Introduction 

As established in section 3.8 (Project Workflow), modelling volume of distribution (Vd) is the 

main end goal of this thesis. After modelling some of the main transporters that drive 

distribution - described in Chapters 4 and 5 - the output produced by both modelling efforts 

will now be incorporated (as input) in the construction of a Vd model. 

Recall that Vd is a measure of drug distribution, which expresses the theoretical volume in 

which a given dose of drug appears to be distributed, based on the observed plasma 

concentration (Holford and Yim, 2016), For instance, if 600 mg of a drug are administered 

intravenously and the resulting plasma concentration is 6 mg/L, this means that the drug 

appears to be diluted in 100L - this volume, however, surpasses the physiological limit. As 

a result, the measured Vd typically does not represent an actual physiological volume, but 

rather the extent of binding to any physiological structures and partition into tissue 

compartments. 

Among the different variants of Vd that can be determined, Vd at steady state (Vss) is the 

most reliable (Smith et al., 2015), as drug input equals the rate of output. As a result, Vss 

is the net result of intracellular space access and the extent of binding to various tissue and 

plasma components, when all these processes reach equilibrium (del Amo et al., 2013). 

As can be anticipated by this property, distribution is a key determinant of the drug’s ability 

to reach its target tissue in required concentrations, hence determining the administered 

dose. Additionally, distribution is also decisive in determining drugability, as it might provide 

clues to the ability of a drug to reach target tissues and/or off-target tissues (which might 

lead to toxicity issues). In fact, Vd has been correlated to the likelihood for toxicity 

(Sutherland et al., 2012). 

An example of this is compound GEN-203, which exhibits high levels of distribution into 

tissues and a high Vd, likely attributed to intracellular accumulation. This phenomenon was 

rationalised as the mechanism by which GEN-203 elicited severe liver and bone marrow 

toxicity (Hop, 2015). In scenarios such as this one, the early prediction of Vd is very useful 
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for flagging any potentially toxic candidates, and could potentially help preventing attrition 

cases not only attributed to direct PK issues, but also toxicity issues. 

During the drug development process, human Vd estimates are usually obtained from in 

vivo animal studies, where some form of animal-to-human scaling is performed (Louis and 

Agrawal, 2014), but relying on animals to extrapolate human PK has been demonstrated to 

be complex as well as unreliable (Tsaioun et al., 2016) – as discussed in section 1.9. 

Alternatively, estimates obtained from in vitro tissue-binding assays are also used (Zhang 

et al., 2012, Yanni, 2015, Tsaioun et al., 2016). However both these methods present the 

major drawback of requiring the synthesis of all candidates, as well as being expensive and 

time consuming. This renders such approaches prohibitive as high throughput screening 

methods. Quantitative-Structure Activity Relationship (QSAR) is an alternative option 

amenable to high throughput screening of human Vd in very early stages of drug 

development, as QSAR modelling just relies on chemical characteristics of compounds to 

infer the Vd. 

As established in the Introduction Chapter 1, physicochemical features such as electrostatic 

and lipophilic profile (Waters and Lombardo, 2010) of the molecule can determine the drug 

distribution to a large extent, but these are only responsible for the unspecific components 

of the distribution phenomena, such as passive membrane permeation. Other more specific 

phenomena also modulate distribution, namely transporter-mediated efflux and influx, and 

drug-induced phospholipidosis, with both having several documented examples of their 

direct effect on Vd (Dantzig et al., 2004, Smith et al., 2015, Funk and Krise, 2013). This 

prompted the incorporation of drug transport as well as phospholipidosis as physiological 

features, alongside physicochemical features, in QSAR modeling for the prediction of Vd.  

For this, the 10 ABC and SLC transporters, previously modelled in Chapters 4 and 5, were 

used in conjunction with phospholipidosis. Combining different physiological processes is 

desirable given that, for example, different transporters are known to work in concert to 

control the distribution of compounds in polarized cells present in different tissues such as 

the lung, intestine, liver and kidney (Dantzig et al., 2004). 

With the exception of tissue partition coefficients, used by Freitas et al (Freitas et al., 2015) 

as predictors of Vss, no other specific physiological phenomena such as transporter uptake 

or phospholipidosis have ever been used as input variable in the modelling of Vss, which is 

the main innovation brought by this work. There has been, however, a work (Hanumegowda 

et al., 2010) where the authors used Vss as a predictor of phospholipidosis which, in a 

sense, validates the decision to use the latter as a predictor of the former. However, while 

from a computational standpoint this is a valid premise (as the two are indeed correlated 
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with each other), conceptually Vd is the net effect of all parallel processes of binding to and 

permeation across different tissues and biological structures, in which phospholipidosis is 

included. The contribution from phospholipidosis necessarily affects the volume of 

distribution (even if the effect is small), however the volume of distribution has no necessary 

implication over phospholipidosis. 

Additionally, other unspecific biological binding features (i.e. serum albumin binding and 

membrane binding) (Sui et al., 2009, Hollósy et al., 2006) have also been used as predictors 

of Vss in computational models. 

This chapter explores, for the first time, the potential value, from a data mining perspective, 

of using transporter and drug-induced phospholipidosis data in the prediction of human Vss. 

Additionally, motivated by the shortage of experimental data available to annotate the 

volume of distribution dataset, this study will also explore the feasibility of complementing 

experimental data with predicted data across the different physiological predictors used in 

the modelling process. In order to validate the results obtained, extensive comparisons 

against the literature through two benchmark external test sets used by in two other works 

(Gombar and Hall, 2013, Lombardo and Jing, 2016) was also performed. 

 

6.2. Methods 

6.2.1. Volume of Distribution (Vd) Dataset and Descriptors 

The Volume of Distribution Dataset (Section 3.1.3) was used in the QSAR modelling. As a 

point of reference, logVss data can be visualised in an ordered bar chart, Figure 6.1. The 

data retrieval, molecular descriptors (ACD and MOE descriptors) and physiological 

descriptors (drug-induced phospholipidosis (PL), and ABC and SLC transporters) 

annotation on the Vd dataset was done as described in Section 3.1.3 and section 3.2 (note 

that, for the current chapter, the plasma protein binding descriptor present in the dataset, 

described in Section 3.1.3, was not used). Recall that, since the data that composes the 

physiological descriptors was obtained experimentally, the missing data in these variables 

was completed with predictions output by QSAR models of ABC and SLC transporters (built 

in the two previous chapters). The same was done for PL, where predictions were obtained 

from a QSAR model that was trained from molecular descriptors. This process is 

summarized in Figure 6.2, and the full details on data sources and annotation procedures 

are provided in section 3.1.3. The final dataset used for the modelling consisted of log-

transformed Vss (logVss), 304 molecular descriptors (MDs) and 11 physiological 
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descriptors (PDs), namely MDR1, BCRP, MRP1, MRP2, OATP1A2, OATP1B1, OATP1B3, 

OATP2B1, OCT1, PEPT1 and PL. Prediction-completed features are prefixed with “p”. 

Tentatively, PL was used in the modelling as containing exclusively experimental data (ePL) 

or containing experimental data completed with prediction (pPL). Molecular descriptors 

were calculated as explained in section 3.2, and the MOE 2013 version was used for this. 

 

Figure 6.1. Data points ordered by ascending logVss. 

 

6.2.2. QSAR Model Development 

To create the QSAR models for the prediction of Vss, the data was split into 60% for training 

(N=398), 20% for testing (N=133) various modelling conditions (enumerated in Table 6.1) 

and for selecting the candidate models, and the remaining 20% (N=134) was set aside 

exclusively for final testing of the two best candidate models. All pre-processing and model 

training was carried using WEKA version 3.8 (Hall et al., 2009). 

Two different regression methods – Random Forest (RF) and Boosted Regression Trees 

(BRT) – were tested using, respectively, the RandomForest function or the 

AdditiveRegression wrapped around the RandomTree learner, all implemented in WEKA 

3.8. For the tuning of the algorithm parameters in both cases, the optimal parameter values 

were selected based on the lowest Mean Absolute Error (MAE) in an internal 10-fold cross 

validation using the training set. For the RF model, prior to modelling, the number of trees 

was optimized in a range between 100 and 1000 with increments of 100. As for BT, 

considering this was carried by wrapping a boosting algorithm around a random tree 
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algorithm, variable subsets of features were used to build the committee of models. The 

number of randomly sampled features was set to 9 (the same value used by the RF 

algorithm for the current dataset size), the number of iterations was optimized between 100 

and 1000 in increments of 100, and shrinkage (applied to weight update) was optimized 

between 0.05 and 1 in increments of 0.05. All other parameters in both algorithms were 

used as default in WEKA.  

The regression algorithms were tried in conjunction with two different correlation-based 

feature selection (CFS) methods, different variations of feature sets and different types of 

PL data. All combinations were tested to find the optimal combination of regression method, 

feature selection method, feature type, and PL data content, as well as to study the impact 

of some variables of interest (namely, feature type and the nature of the PL feature). The 

different variants under each experiment variable are summarized in Table 6.1. 

Feature selection was tentatively performed on the whole feature set (with both PD and MD 

features), on PDs only or on MDs only. Alternatively, merging the feature sets obtained from 

separate feature selection procedures performed separately on MDs and on PDs was also 

attempted. This was done to cover the possibility of the feature selection methods being 

overwhelmed by the much larger number of MDs, which would bias the selection towards 

picking them over PDs. 

 

Table 6.1. Optimized modelling parameters. 

Experimental conditions 
to optimize 

Variations tested 

Feature type  
(provided to feature 
selection method) 

All features 
physiological descriptors only 
molecular descriptors only 
physiological + molecular descriptors (selected separately) 

Feature Selection Method 
Genetic Search (GA) 
Greedy Search (GS) 
No Feature Selection 

Regression Method 
Random Forest (RF) 
Boosted Trees (BT) 

Nature of the PL feature 
Experimental PL (ePL) 
Experimental PL completed with predicted class probabilities 
(pPL) 

 

Regarding model evaluation, the systematic comparison between different models was 

done using the validation set, as the test set is exclusively used for final model testing. The 

measures used for assessing the predictive performance are the Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), coefficient of determination (R2) and the 
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Geometric Mean Fold Error (GMFE), calculated as defined in the section 3.5.2. Additionally, 

the percentage of data within 2- and 3- fold error (FE) thresholds was calculated for the two 

best final models. 

To analyse the role of PDs in the modelling of Vss, the content of PDs found in the best 

obtained model (with respect to the internal validation set) was assessed in detail. To do 

so, the types and number of PD combinations encountered was analysed, and the Vss 

coverage that they offer. In addition, this study also evaluated PDs with respect to their 

observed feature importance, which corresponds to the sum of the correctly modelled 

training compounds which depend on a given PD for their prediction (Freitas, 2013). 

 

Figure 6.2. Modelling workflow. 
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6.2.1. Benchmark Comparison with Previous Vss Models 

In order to further evaluate the best models in this work, and especially to determine the 

value of adding physiological information to the regularly used molecular descriptors, the 

best model obtained (with respect to the test set) was compared against the models 

reported in two other previous works by testing all models on two fixed test sets, used 

respectively by Gombar et al (Gombar and Hall, 2013) and Lombardo et al (Lombardo and 

Jing, 2016). Gombar et al trained their models on the same data in this work’s dataset 

(Obach dataset), while Lombardo et al used an extended Vss dataset, gathered recently. 

This benchmark comparison was extended by re-training this work’s best model with the 

Lombardo Vss dataset, as well as retraining Lombardo et al’s best model with the addition 

of PDs. For the first retraining, a new random forest was developed following a re-run of the 

GA feature selection step and optimization of the number of trees, since the previously used 

modelling parameters were optimized for a considerably smaller (Obach et al) dataset. For 

the second retraining, the modelling conditions optimized by Lombardo et al were directly 

used (since both the learner and the dataset are the same, no tuning is necessary); this 

consisted of a random forest of 500 trees, 33 selected molecular descriptors, 11 sampled 

descriptors per split, and a minimum tree node size of 10. 

Note that, upon cleaning this extended dataset, 10 pairs composed of an entry with a 

mixture of optical isomers and another with one of its optical isomers were identified. This 

conflict was solved by keeping only the isomer, thus avoiding overlapping instances. 

Additionally, three synonyms were found and merged by averaging their Vss values. 

 

6.2.2. Applicability Domain and Data Visualization 

In order to define the feasibility of the best model developed in this work, its Applicability 

Domain (AD) was characterized using the STD method (Tetko et al., 2008), as described in 

Section 3.6. To visualize the data, t-SNE multidimensional scaling was used following 

section 3.7. 
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6.3. Results and Discussion 

6.3.1. The Impact of Different Types of Input Data in Modelling Vd 

As explained in Section 6.2, four sets of modelling parameters (listed in Table 6.1) were 

explored and optimised in this work: the feature type, feature selection method, regression 

method, and the nature of the PL variable. Following tuning of each algorithm’s parameters, 

the resulting best models for each combination of the modelling parameters were tested on 

the validation set and the predictive accuracies were summarized in Tables 6.2 and 6.3. 

When varying only the type of features used, in the great majority of cases (for 9 out of 12 

modelling blocks in Tables 6.2 and 6.3, i.e. 12 different regression/feature selection 

combinations with either ePL or pPL) physiological information accompanied by chemical 

information produced the best model – comparing MAE values within each regression- 

feature selection block in both Tables 6.2 and 6.3, where blocks are delimited by a thicker 

border line. A detailed list of features used is provided in Appendix III, Tables A3.1-8. 

Additionally, in 7 out of 8 cases in Tables 6.2 and 6.3, models using both sets of separately 

selected PDs and MDs yielded lower (better) MAE values than models using just selected 

MDs or just selected PDs. Both these observations demonstrate that features carrying 

information about the physiological processes that drive distribution seem to be necessary 

in order to improve the modelling of Vss. Even though molecular descriptors used in 

isolation have not led to a markedly lower predictive performance of Vss, this 

underperformance is observed systematically across the various modelling conditions, 

which means that molecular descriptors alone are a suboptimal input for modeling Vss. 

Similarly, using physiological features alone was also not sufficient as the only source of 

input. This outcome is expected given that Vss has a large unspecific component that does 

not depend on transporter-mediated efflux or lysosome entrapment. 

The two best models (8a and 16a) were selected for final evaluation in the test set, based 

on the lowest MAE on the validation set. Firstly, note that both models used pPL (rather 

than ePL), which follows the overall superiority of the pPL-derived models compared to 

models using just experimental PL data (compare Tables 6.2 and 6.3), as will be discussed 

in the next section. In addition, both models used a variety of physiological features. In the 

case of model 16a, this model was trained with features from a previous GA feature 

selection step. Even though there are many more features of chemical nature, various 

physiological features were still selected into the model (pPEPT1, pMRP2, pPL, pOCT1, 

pMRP1, pOATP1B1), alongside MDs (listed in Appendix III, Table A3.2). Considering that 

the feature selection method minimizes inter-descriptor correlation, the presence of both 

feature types, PDs and MDs, shows that these physiological descriptors offer additional 
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information to the one carried by molecular descriptors. As for model 8a, this was trained 

with a descriptor set that resulted from two separate feature selection runs applied to MDs 

and PDs. As with model 16a, various PDs were present in the model (pPEPT1, pBCRP1, 

pPL, pMRP2, pMRP1, pOATP1B1), alongside different MDs (listed in Appendix III, Table 

A3.6). 

 

Table 6.2. Predictive accuracy on the validation set, using ePL. The number of compounds in the 
training and validatiom sets were 398 and 133 respectively. The two best models (selected for further 
analysis) from both Table 6.2 and 6.3 are highlighted in bold. Regarding the feature content available 
in pre-processing, “all feature” corresponds to 315 features being made available, “MDs” 
corresponds to 304 features, “PDs” corresponds to 11 features, and “FS-MDs + FS-PDs” 
corresponds to separate feature selection procedures performed on 304 MDs and 11 PDs. FS: 
feature selection. *both models resulted from the same input feature set, hence same performance. 

Regression 
Method 

Model Feature 
Selection 

Feature content 
available in pre-

processing 

Feature 
types 

present in 
the model 

R2 RMSE MAE GMFE 

Random 
Forest 

1* GS all features MDs 0.431 0.4587 0.3385 2.18 

2* GS MDs MDs 0.431 0.4587 0.3385 2.18 

3 GS PDs PDs 0.084 0.6162 0.4692 2.95 

4 GS 
FS-MDs + FS-

PDs 
MDs, PDs 0.433 0.4577 0.3357 2.17 

5 GA all features MDs, PDs 0.465 0.447 0.317 2.07 

6 GA MDs MDs 0.444 0.454 0.318 2.08 

7 GA PDs PDs 0.084 0.616 0.469 2.95 

8 GA 
FS-MDs + FS-

PDs 
MDs, PDs 0.474 0.442 0.307 2.03 

9 None all features MDs, PDs 0.473 0.447 0.318 2.08 

10 None PDs PDs 0.271 0.522 0.380 2.40 

11 None MDs MDs 0.438 0.4594 0.3266 2.12 

Boosted 
Trees 

12 GS all features MDs 0.194 0.581 0.441 2.76 

13 GS MDs MDs 0.194 0.581 0.441 2.76 

14 GS PDs PDs 0.011 0.794 0.599 3.98 

15 GS 
FS-MDs + FS-

PDs 
MDs, PDs 0.371 0.487 0.360 2.29 

16 GA all features MDs, PDs 0.461 0.447 0.322 2.10 

17 GA MDs MDs 0.458 0.449 0.318 2.08 

18 GA PDs PDs 0.011 0.794 0.599 3.98 

19 GA 
FS-MDs + FS-

PDs 
MDs, PDs 0.447 0.453 0.321 2.09 

20 None all features MDs, PDs 0.458 0.451 0.319 2.09 

21 None PDs PDs 0.212 0.566 0.413 2.59 

22 None MDs MDs 0.466 0.4468 0.3138 2.06 
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Table 6.3. Predictive accuracy on the validation set, using pPL. The two best models (considering 
both Table 6.2 and 6.3) are highlighted in boldface. The selection of these two models was based on 
the lowest MAE among all available models. The number of compounds in the training and validation 
sets were 398 and 133 respectively. *both models resulted from the same input feature set, hence 
same performance. 

Regression 
method 

Model 
Feature 

Selection 

Feature content 
provided in pre-

processing 

Feature 
types 

present in 
the model 

R2 RMSE MAE 
GMF

E 

Random 
Forest 

1a* GS all features MDs 0.431 0.4587 0.3385 2.18 

2* GS MDs MDs 0.431 0.4587 0.3385 2.18 

3a GS PDs PDs 0.160 0.5817 0.424 2.66 

4a GS 
FS-MDs + FS-

PDs 
MDs, PDs 

0.447 0.4519 0.3273 2.13 

5a GA all features MDs, PDs 0.469 0.445 0.308 2.03 

6 GA MDs MDs 0.444 0.454 0.318 2.08 

7a GA PDs PDs 0.160 0.582 0.424 2.66 

8a GA 
FS-MDs + FS-

PDs 
MDs, PDs 

0.474 0.442 0.306 2.02 

9a None all features MDs, PDs 0.453 0.455 0.322 2.10 

10a None PDs PDs 0.267 0.523 0.371 2.35 

11 None MDs MDs 0.438 0.459 0.326 2.12 

Boosted 
Trees 

12a GS all features MDs 0.197 0.581 0.441 2.76 

13 GS MDs MDs 0.194 0.581 0.441 2.76 

14a GS PDs PDs 0.053 0.769 0.588 3.87 

15a GS 
FS-MDs + FS-

PDs 
MDs, PDs 

0.348 0.498 0.370 2.34 

16a GA all features MDs, PDs 0.511 0.425 0.304 2.01 

17 GA MDs MDs 0.458 0.449 0.318 2.08 

18a GA PDs PDs 0.053 0.769 0.588 3.87 

19a GA 
FS-MDs + FS-

PDs 
MDs, PDs 

0.448 0.453 0.316 2.07 

20a None all features MDs, PDs 0.482 0.441 0.316 2.07 

21a None PDs PDs 0.216 0.584 0.412 2.58 

22 None MDs MDs 0.466 0.4468 0.3138 2.06 

 

To compare these two models and establish which one is expected to perform better in 

unseen data, their performance on the test set was analysed (Table 6.4). The coefficient of 

determination (R2) is larger and 5 out of 6 error measures are better for model 8a, which 

makes this the overall best model. Model 16a was only better in terms of the percentage of 

compounds with predicted Vss within 2-fold error (FE). 

Comparing the use of predicted versus experimental PL values in the modelling of Vss 

shows that, in 10 out of 12 models where PL was available during model training, the 

predictive accuracy was higher with pPL, i.e. experimental data complemented with the 

predicted phospholipidosis. Note that the compound set is the same for the dataset 

annotated with pPL or ePL (with the presence of about two-thirds of missing data being the 
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only difference between datasets), and the distribution of Vss values associated with 

missing PL does not vary considerably from that of measured PL (see Appendix III, Figure 

A3.1). Therefore, the increase in predictive performance from using pPL is due to an 

increase in information content brought by filling in missing PL values (otherwise ePL, which 

covers the same range of Vss values and is experimentally derived, is composed of higher-

quality data, and would have produced higher quality decision splits). This also opens a 

new opportunity to enhance the modelling of Vss, since the completion of physiological 

variables with predicted responses is fully computational as it does not require any further 

experimental data, which means this could be applied in a high throughput context. 

 

Table 6.4. Predictive performance of the two best models on the test set. 

Model conditions Feature content R2 RMSE MAE GMFE 
Within 
2-FE 

Within 
3-FE 

8a RF-GA FS-MDs + FS-PDs 0.560 0.4497 0.3391 2.18 56.0 73.1 

16a BT-GA all features 0.529 0.4606 0.3453 2.21 58.2 71.6 

 

 

6.3.2. Further Assessment of the Selected Model 

The best model shows a good overall performance, with a coefficient of determination of 

0.56 for the test set, which is close to expert recommendation (R2 > 0.6) (Alexander et al., 

2015). Furthermore, as seen by the scatter plot of predicted versus observed logVss (Figure 

6.4.A) for the test set, the majority of external instances were predicted within a fold error 

of 3 (73.1%). Plotting the predicted against the observed logVss shows the characteristic 

tendency for underprediction near the upper limit of Vss, also observed in previous work 

(Freitas et al., 2015). By looking at the correlation shared between variables in the dataset, 

tested using a Spearman rank-order correlation test with Bonferroni correction, where 

statistically significant correlations, in red, are quite sparse. This does not mean that 

variables do not correlate, but rather, that they might hold local correlation amongst each 

other. This encourages tackling the problem at hand (predicting Vss) with machine learning, 

which allows harnessing such local relationships. 
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Figure 6.3. Correlation significance of all-against-all variables in the best model. Significant 
correlation between two variables is identified in red. This resulted from a Spearman rank-order 
correlation test with Bonferroni correction. 

 

Looking at Figure 6.4.A it is possible to identify four evident outliers, which are labelled in 

the Figure’s legend. Among these, pentamidine showed the highest error, which can be 

attributed to extensive and strong binding to lysosomes and extensive phospholipidosis 

(Filippone et al., 2011) with a resulting extensive tissue deposit (WHO, 2013). Although 

phospholipidosis is present in the model as a feature, this is clearly not sufficient for such 

extreme cases. One reason for this is that phospholipidosis data used here (and the only 

type of data available in sufficiently large amount for modelling) is binary yes/no in nature. 

This ignores the potency of drugs in causing phospholipidosis and hence the extent of the 

effect on Vss of individual drugs. Consequently, this limits the ability in capturing and 

predicting high Vd values due to extensive PL. Similarly, chloroquine also exhibits extensive 

tissue binding attributed to extensive phospholipidosis (lysosomal entrapment) (Zheng et 

al., 2011). Risedronic acid is known to be trapped in the bone (Watts and Diab, 2010), 
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resulting in high Vss. In the case of tigecycline the evidence is limited as this is a relatively 

more recent drug, a tetracycline analogue. It undergoes extensive tissue partitioning and 

has been reported to reach more than 20 times higher intracellular concentration than 

extracellular when a specific cell type (polymorphonuclear neutrophils) was studied (Ong et 

al., 2005). This cell accumulation as well as the formation of complexes with metal ions 

(Barbour et al., 2009) seems to contribute to its much higher volume of distribution than 

structurally similar tetracyclines. 

Even though this model accounts for such effects as phospholipidosis or protein-mediated 

transport, these four compounds were still largely mispredicted. One main reason discussed 

earlier is that all experimental data in the physiological features is binary, which eliminates 

the ability to account for the extent of the physiological properties such as extent of 

phospholipidosis or the propensity of being transported by specific substrates. Hence, these 

parameters, although very useful as seen in the reported results, may prove inadequate in 

case of drugs with strong specific interactions with transporters or extreme cases of 

phospholipidosis. One other reason for such mispredictions can be a lack of sufficient 

chemical coverage in specific regions of the Vss response, which hinders the ability to learn 

local structure-response relationships. Examples of this are risedronic acid and tigecycline. 

Looking into the region of logVss that they occupy (i.e. [0.75, 1.15]) (Appendix III, Figure 

A3.2) shows that the training span of some of the main descriptors does not cover these 

two outliers. During training, this range of logVss was only covered by FiA values in the 

range [0, 0.134], and as a result compounds taking these FiA values were located closer to 

the unity line (i.e. above the outlier line in Figure 6.4.B), while these two outlier compounds 

have an FiA of 1, outside the training range. A similar situation occurs with vsurf_CW6. 

Considering that these features are both among the top 10 most important features, it is 

understandable why these compounds are mispredicted. Additionally, the other 5 of the top 

10 features have values out of the training range in at least one of the outliers. 
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Figure 6.4. A) Predicted LogVss versus Observed logVss regression plot of the best model (8a). 
Four evident outliers are highlighted in grey (132: chloroquine; 478: Pentamidine; 536: Risendronic 
acid; 605: Tigecycline). B) Highlight of the region occupied by two outliers: 536 and 605. 

 

 

The applicability domain profile built for this model (Figure 6.5) establishes a very robust 

relationship between predictive error and the level of disagreement (STD score) amongst 

the trees in the random forest of model 8a. In fact, all four outliers previously discussed 

would have been identified, in a real prospective testing scenario, as low confidence 

predictions, as they are only covered at STD values of at least 0.05, which is relatively large 

considering it coincides with the point at which the last third of instances start being covered. 

 

Figure 6.5. Applicability domain profile of model 8a. The data points are annotated with the 
percentage of the test data that is being covered as the AD limits are relaxed (i.e. the STD score 
increases). 
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Regarding the chemical content in the model, as expected, the top features in model 8a 

carry information on ionization state and lipophilicity (FiA, logD(10), log(7.4) and FiB), which 

have been widely implicated as determinants of the Vss (Ghafourian et al., 2006). In a 

correlation analysis between logVss and different molecular features, ionization state 

showed the strongest impact on logVss (Gleeson, 2008, Smith et al., 2015). As acids 

strongly bind to positively charged albumin, they are more prone to be confined to 

intravascular space; conversely, bases do not undergo such strong binding and instead 

have more affinity to membranes and tissue structures which contain negatively charged 

phospholipids (Smith et al., 2015, Gleeson, 2008, Zhivkova et al., 2015). Lipophilicity 

(clogP) combined with ionization (neutral and basic) state have also been correlated to 

distribution (Gleeson, 2008, Zhivkova et al., 2015, Ghafourian et al., 2006). However, given 

that the relationship between chemistry and the volume of distribution has already been 

extensively explored with several prior QSAR works on this same dataset and others 

(Zhivkova et al., 2015, Berellini et al., 2009, Ghafourian et al., 2006, Freitas et al., 2015, Lu 

et al., 2016, del Amo et al., 2013), this study will focus on the quantitative and qualitative 

impact of the different physiological features that have been selected into the final model, 

which is the main novelty aspect being explored here. 

Recall that the best model (8a) was preceded by two parallel steps of feature selection 

performed separately on the PDs and MDs (and then the two sets of selected features were 

merged). This means that only six PDs were provided to the modelling step, however all six 

were selected into the model (see Appendix III, Table A3.6). From these, the physiological 

descriptor that shows the highest importance (as it participates in the modelling of the 

largest number of instances) is pPEPT1, implicated in the modelling of 24.5% of the 

instances. This is relatively high compared to the 47.1% affected by the most important 

descriptor (FiA) in the random forest that constitutes model 8a. Other physiological 

descriptors selected into the model were pPL, pMRP1, pMRP2, pBCRP1 and pOATP1B1. 

Looking into the content of the top nodes across the trees in the forest provides additional 

information on the importance of features in a given modelling task (Freitas, 2013), and in 

the random forest (1000 trees) constituting model 8a all the previously mentioned 

physiological descriptors occupy the top node in at least one tree, ranging up to 26 trees 

(see Appendix III, Table A3.9). 

There are examples of the direct impact of each of these transporters in the volume of 

distribution of drugs (Dantzig et al., 2004, Grover and Benet, 2009). It is not clear  why 

PEPT1 is the top physiological feature, but it is not unreasonable, however, to attribute this 

to the fact that PEPT1 is located in a variety of tissues; whereas, for example, OATP1B1 

(the least important PD) is regarded as liver-exclusive (see tissue content summary in 
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Appendix II, Table A2.8). In addition to any possible biological explanation, the quality of 

the output (i.e. predictive accuracy) will likely influence the use of these features in the 

random forest. Note that all types of available sources of physiological information (i.e. 

phospholipidosis, ABC transport and SLC transport) are present in this model.  

To ascertain whether these different features provide complementary information or are 

redundant as predictors of Vss, their presence in the random forest model was analysed in 

more detail. As seen in Table 6.5, a maximum of 5 (out of 6 available) transporters present 

in the same rule were observed across 56 rules containing 5 transporters as predictors. 

These 5-transporter rules were found in five different combinations (note that a given 

combination might occur in different rules, and might be accompanied by molecular 

descriptors). Table 6.5 shows that information of physiological nature (either isolated or in 

combinations) was used in 64% of the total set of rules in this random forest model, which 

also supports the value of accounting for transport information as well as drug-induced PL.  

An analysis of the distribution of logVss values of the final leaf nodes affected by each 

combination of physiological descriptors was also carried out, and the results are shown in 

Appendix III, Figure A3.3 and Table A3.10. Overall a great diversity of rule combinations 

associated with different median Vss indicates a large degree of polyvalence, where 

different combinations of different features are able to cater to different locations in the Vd 

chemical space. Two examples of this are the two most extreme cases, combinations AU 

(logVss = - 0.665) and D (logVss = 0.460), where they share three features (MRP2, BCRP1 

and OATP1B1), out of a total of 4 and 5, respectively.  

Table 6.5. Frequency of combination sizes of physiological descriptors occurring in the same rule. 
The rules where these combinations occur may or may not contain molecular descriptors as well. 
64% of the full collection of if-then rules contain at least one PD. 

Number of PDs 
in combination 

Rule count 
% of full set 

of rules 

1 88969 41.8 

2 38250 18.0 

3 8172 3.8 

4 950 0.4 

5 56 0.03 

 Total = 64% 

 

Finally, to identify if there is any correlation between the content of the combinations and 

the median Vss, the different combinations were plotted using multidimensional scaling to 

visualize the relative proximity between different combinations and their Vss simultaneously 

(Figure 6.6).  
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Figure 6.6. Visualization of proximity between the 61 unique label combinations (listed in Appendix 
III, Table A3.10) using t-SNE multidimensional scaling, where each combination is transformed into 
a binary vector where 1 represents the presence of a label and 0 its absence. This is done with 
respect to a total of 6 different features found in the full RF model (8a). Only the single-label 
combinations have been annotated in the figure, as a way to identify the relative locations of the 
features in the plot. Note that the plot does not represent absolute distances, but rather relative 
distances. Contrary to all other single-label combinations, MRP2 is not at the edges of the plot, which 
can be attributed to it being present in more combinations than all the others. Ascending values of 
logVss are portrayed from small (blue) to larger (green) circles.  

 

To generate this plot, all unique combinations (N=61), listed in Appendix III, Table A3.10, 

were converted into a binary “on/off” vector where each bit corresponds to one of the 6 PDs. 

For example, the combination {pPL + pPEPT1} is represented as {0,1,0,0,0,1} where the 

2nd and 6th locations are “on” as they correspond to the place of pPL and pPEPT1 for all 

combinations. This set of 6-bit vectors was submitted to t-SNE projection which attempts to 

arrange combinations according to their relative similarity (so absolute locations should not 

be interpreted). Larger (and greener/light brown) points indicate larger median Vss, 

whereas smaller and blue points indicate smaller median Vss. 

There appears to be a separation between larger Vss, found in the vicinity of both PEPT1 

and BCRP1, from smaller Vss. Such separation can be tentatively demonstrated using a 

visually-derived separation line (orange). This could indicate that combinations of 

physiological features containing PEPT1 + BCRP1 (and MRP2 to some extent) tend to be 

present in prediction rules handling higher Vss, as opposed to rules containing 

combinations of PL, MRP1 or OATP1B1. 

To further validate the presence of the physiological descriptors in the best model, the 

feature set provided to train model 8a (which results from feature selection using GA search) 

were used to train a simpler M5 model tree. This has the main purpose of challenging the 
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possibility of the various PDs being present in the model only by chance, as an effect of 

training a very large ensemble (1000 trees) of unpruned trees. As shown in Table 6.6, the 

M5 model tree using CFS-GA-selected features produced 4 rules containing 3 out of the 6 

PDs provided to modelling. Additionally, when providing the entire feature set (MDs and 

PDs) to training, the obtained M5 model also contained PDs (3 out of 11) (Table 6.6). Both 

observations show that PDs are deemed as valuable predictors even in a much simpler 

model with a single model tree. Note that, regarding the M5 model obtained using all 

features, the 11 PDs competed against 304 MDs, and in a model comprised of one single 

rule 3 PDs were selected among 47 total descriptors. If the information carried by these 

selected PDs was redundant with respect to MDs, the chance of the former to be picked 

into the model would be considerably smaller than the latter. 

Table 6.6. Summary of the results obtained by the M5 model tree built with different sets of 
descriptors. The best performance values are highlighted in bold and underlined. This exercise tests 
the ability of PDs being selected in a harsher embedded feature selection environment, and is not 
meant to create alternative (competitive) models to the RF and BT models. 

  
All descriptors 

(11 PDs + 304 MDs) 

descriptors selected 
by CFS-GA 

(6 PDs + 41 MDs) 

R2 0.445 0.469 

MAE 0.368 0.338 

RMSE 0.478 0.461 

 

1 rule;  
pBCRP1,  

pOATP2B1,  
pPEPT1 

4 rules;  
pMRP2,  
pPEPT1,  

pPL 
 

 

6.3.3. Comparison with Other Works on Vd Modelling 

The dataset used in this work is regularly used as a benchmark for the modelling of volume 

of distribution (del Amo et al., 2013, Gombar and Hall, 2013, Zhivkova et al., 2015, Zhivkova 

and Doytchinova, 2012, Demir-Kavuk et al., 2011), which allows a fairer comparison 

between different works.  

Del Amo et al (del Amo et al., 2013) opted to remove challenging compounds from this 

dataset (i.e. 4 biphosphonates which are known to accumulate in the bone tissue, and 2 

anti-malarials), whereas in this study these compounds were kept to challenge the 

modelling exercise and keep the modelling conditions as close as possible to a real world 

scenario. Additionally, in their work external testing is either performed on compounds 

evenly sampled within the model’s chemical space, or compounds that are found inside the 

applicability domain boundaries. It is likely that this might have produced an overoptimistic 

predictive accuracy. 
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Gombar and Hall (Gombar and Hall, 2013) used this same dataset but removed a 

considerable number of compounds that were found outside a chemical space limit, and 

have used test compounds that were not sampled from Obach dataset. Some of these 

external test compounds came from Berellini et al (Berellini et al., 2009), who modelled 

Obach dataset as well. They allocated the full dataset used in this work into the training set, 

and tested the predictive performance on a very limited dataset of 29 compounds, collected 

outside the Obach dataset. 

Zhikova and colleagues used the Obach dataset, but they only modelled basic drugs 

(Zhivkova et al., 2015) or acidic drugs (Zhivkova and Doytchinova, 2012). The argument of 

modelling acids and bases separately in order to properly address their different distribution 

patterns (Zhivkova et al., 2015, Zhivkova and Doytchinova, 2012) is not applicable if 

regression algorithms that can naturally create such partitions are used, like the tree-based 

methods used here. In fact, this is precisely what was observed in the results, where the 

best model showed that many trees within the random forest have, as top nodes, features 

that explicitly characterize ionization type (FiA and FiB) (see Appendix III, Table A3.9). 

Additionally, past studies have demonstrated that this approach of modelling acids and 

bases separately does not yield improved predictive performance (Ghafourian et al., 2004, 

Ghafourian et al., 2006), So, the full available data can be modelled as a whole, which also 

has the advantage of allowing one to account for common features between different 

chemical groups such as acids and bases. 

Demir-Kavuk et al.(Demir-Kavuk et al., 2011) removed 86 compounds from this dataset, for 

which any of the descriptors could not be calculated. This will likely limit the applicability of 

the model. Still, despite the removal of so many compounds, their best model obtained a 

GMFE of 2.08 in an external test set which is slightly superior to the best model (2.18) in 

this work, probably due to their decision towards a more optimistic modelling of Vss (i.e. 

modelling under less challenging conditions, with the removal of compounds from training 

and test sets that are more difficult to parameterize in descriptor calculation software). 

The study reported by Freitas et al. (Freitas et al., 2015) has used the most similar approach 

to the current work, to date. In this work, predicted tissue partition coefficients were 

introduced as descriptors into the modelling of Vss. Similarly to the findings observed here, 

their work showed a small improvement in the ability to model Vss when some physiological 

features were introduced into the modelling. Although the source of physiological input 

(tissue:plasma partition coefficients) was very different from the sources used in this work, 

the overall modelling process was relatively similar to this one in terms of random allocation 

of compounds to testing, the same sources of molecular descriptors, and similar type of 
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tree-based ensemble algorithm. While their best model had a GMFE of 2.29, the current 

best model had a GMFE of 2.18, which is slightly better and might indicate an improvement 

in predictive accuracy when providing transporter and phospholipidosis information to the 

modelling process.  

Louis and Agrawal (Louis and Agrawal, 2014) used a much smaller dataset (97 training 

instances and 24 test instances) which is, with some exceptions, a part of the Obach dataset 

composed of a more limited Vss range ( [-1, 1.32] ) and annotated with descriptors of 

chemical nature only. 

 

6.3.4. Benchmark Comparison on a Benchmark Test Set 

There are two recent works (Gombar and Hall, 2013, Lombardo and Jing, 2016) that have 

tested their models in external test sets, and provided the complete set of predictions 

obtained, which allows direct comparison of the models’ predictive power with this work. 

Gombar and Hall (Gombar and Hall, 2013) used the same dataset used here to build the 

QSAR models, whereas Lombardo and Jing (Lombardo and Jing, 2016) used a larger Vss 

dataset (N = 1096). Comparing this work’s predictive performance against that of Gombar 

and Hall (scenario 1) allows assessing the value of introducing physiological information 

into modelling, as this is the major difference between both modelling routines – other 

secondary changes are present, like the removal of problematic compounds, however these 

are considered minor. On the other hand, a comparison against Lombardo and Jing 

(Lombardo and Jing, 2016) (scenario 2) allows determining the value of increasing chemical 

space through the increase in observation count (quantitative improvement) versus 

providing enriched input through the addition of physiological information (qualitative 

improvement).  

In scenario 1, the best model in this chapter (8a) showed improved performance in all 

calculated measures for an external set of 30 compounds taken from Gombar et al (Gombar 

and Hall, 2013), as shown in Table 6.7 and Appendix III, Figure A3.4. Considering the 

smaller training set size used in this study (Gombar and Hall: N = 569; this work: N = 398), 

the better performance of model 8a in external prediction is notable (other things being 

equal, more data should lead to better performance). As a result, the superior performance 

of model 8a may be attributed to the availability of physiological input during training, or the 

modelling scheme used in this work which are the major differences between both works. 
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Table 6.7. Summary of predictive performance from Gombar and Hall (Gombar and Hall, 2013) and 
this work (model 8a), evaluated on an external dataset (N = 30).  

  
models in (Gombar and 

Hall, 2013) 

 
m_8a 

(this work) 
SVM MLR 

MAE 0.205 0.264 0.422 

GMFE 1.604 1.835 2.641 

MFE 1.869 1.995 5.430 

 

Regarding scenario 2, with the external set of 34 compounds obtained from Lombardo and 

Jing (Lombardo and Jing, 2016), it can be observed that despite the fact that model 8a was 

trained with a significantly smaller training set (N=398 versus N=1096), it is still able to show 

comparable performance to other models as seen in Table 6.8. This model could also 

overcome some extreme mispredictions which were still mispredicted by model 8a, but to 

a lesser extent (See Appendix III, Figure A3.5. to compare the plotted observed vs predicted 

for models in Table 6.8). Furthermore, 53% of model 8a’s predictions show smaller error 

than RF_33 (which is the model with the smaller MAE value in Lombardo and Jing 

(Lombardo and Jing, 2016)). This supports the validity of the selected (best) model and may 

also indicate the value brought by accounting for physiological processes. 

To further determine the value of using physiological features in the modelling of Vss in a 

larger chemical space, the best model from both this chapter and that from Lombardo et al. 

were trained with Lombardo’s entire dataset of 1096 compounds and the resulting models 

were used for the prediction of the external test set of scenario 2. Note that the modelling 

algorithm used in both models is random forest. The difference between Lombardo’s model 

and model 8a is the features used in the analysis (different Volsurf+ molecular descriptors).  

In addition, different algorithm parameters were used as per the original study, i.e. no 

minimum node size set for this work’s model and a minimum node size of 10 for Lombardo 

et al, and descriptor sampling per split set to WEKA’s default for the current model versus 

11 for Lombardo et al. To test the effect of physiological descriptors, both models were 

tested with and without the presence of these descriptors. Still, despite the different 

conditions, using both the current set of parameters and Lombardo et al’s set of parameters 

yielded the same conclusion: including PDs improves predictive performance across all 

measures, as summarized in Table 6.9. 

 

Table 6.8. Summary of predictive performance measures from Lombardo and Jing (Lombardo and 
Jing, 2016) and this work, evaluated on an external dataset (N = 34).  

  
models in (Lombardo and Jing, 

2016) 
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m_8a 
(this 
work) 

RF_33 PLS_11 
consensus 
RF_33 and 

PLS_11 

MAE 0.305 0.302 0.363 0.317 

GMFE 2.017 2.003 2.308 2.073 

MFE 2.276 2.300 2.970 2.510 

 

Lastly, it should be noted that the difference between retrained m_8a and the retrained 

Lombardo’s model can be explained by the fact that the latter was selected in the original 

publication as the best (standalone) model based on the performance obtained on this same 

test set. As a result, comparing both models is not fair as Lombardo’s model is bound to be 

superior for this particular test set, hence why this study focuses on comparing presence or 

absence of PDs within each model. 

Table 6.9. Summary of predictive performances from the different variants of the Vss modelling 
conditions. All performances result from testing the models on a fixed, common dataset. 

  Retrained m_8a model 
 Retrained 

Lombardo’s model 

 
m_8a 

(this work) 
MDs only MDs & PDs 

 MDs 
only 

MDs & 
PDs 

MAE 0.305 0.322 0.318  0.300 0.293 
GMFE 2.017 2.104 2.080  1.993 1.962 
MFE 2.276 2.728 2.689  2.290 2.253 

Number of 
predictions with 

the smallest error 
8 7 7  4 5 

 

Lastly, it should be noted that, surprisingly, model 8a was the one generating the highest 

rate of the smallest prediction errors (out of all 5 models in Table 6.9), which means that it 

shows the highest number of predictions associated with the smallest error across all 5 

alternative models. 

There is an alternative theoretical hypothesis that transport holds no significant additional 

value based on the fact that many correct Vss predictions are made from compounds that 

undergo protein-mediated transport (Berellini et al., 2009). However, the impact of transport 

may vary across compounds, and a given compound that is transported and generates a 

2-fold error is perceived as being correctly predicted. Perhaps accounting for the transport 

effect in this case would reduce the error from 2-fold to closer to 1 (perfect prediction). 

Indeed, this is what the current work demonstrates, whereby the addition of physiological 

information to the modelling improves the model’s performance in a systematic manner. 
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6.4. Conclusions 

Modeling distribution using only the chemical information of compounds has proven difficult, 

since such an approach does not successfully account for the specific interactions between 

drugs and the physiological system that govern Vd. When modelling Vss, mispredictions 

are generally attributed to transport or tissue binding processes, and this is to some extent 

the general assumption even for unexplainable mispredictions, as seen in the literature (del 

Amo et al., 2013, Lombardo and Jing, 2016). This demonstrates the importance of 

addressing transporters in modelling drug distribution.  

This chapter explored the impact of using key physiological processes as input information 

in the modelling of human Vss. However, as descriptors of this nature are obtained 

experimentally, it was proposed that physiological features could be modelled in a prior step 

(some of which was done in chapters 4 and 5), and the learned (predicted) responses would 

be used to complete the data on experimental responses. At the limit, this could potentially 

be used as the standalone source of physiological information. The physiological 

parameters used in this work capture information about the potential of drugs to be 

transported by ABC or SLC transporters (substrate/non-substrate data) and the potential of 

drugs to accumulate in tissues through drug induced phospholipidosis (again a categorical 

variable). 

It was observed that, across different variations of regression methods or feature selection 

techniques, adding physiological descriptors improves the predictive performance of Vss in 

the great majority of cases. Additionally, it was observed that using predicted physiological 

data to fill in missing experimental observations, specifically regarding phospholipidosis, 

improved the predictive performance in the majority of cases, when compared to using just 

experimentally observed PL responses.  

To validate the main premise of this chapter that physiological descriptors are useful 

features in Vd modelling, the best model obtained in this study was compared to: (1) a 

model built on the same dataset as the one used here, and (2) a model built on a 

considerably larger dataset, both only using molecular descriptors. Direct comparisons were 

possible through testing on two relatively small external datasets (one used by each of the 

mentioned models), which revealed that the best model in this work performed better than, 

or similarly to, previous models, and the incorporation of physiological descriptors improves 

models obtained by both methods.  

The work presented in this chapter not only shows the value of using transporter and 

phospholipidosis data as input descriptors for the modelling of the Vd, but also opens a 
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precedent for the possibility of predicting physiological responses and using those 

predictions to complete missing data, in order to aid the learning of the Vd QSAR model. 
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7. Accounting for Transporter Binding, Transporter 

Tissue Expression, Phospholipidosis and Plasma 

Protein Binding in the Modelling of Volume of 

Distribution 

 

7.1. Introduction 

The main premise of Chapter 6 was that, in order to better address the modelling of volume 

of Distribution (Vd), there is a need to account for the interplay between the specific and 

unspecific components of distribution, which are driven by both physiological and chemical 

factors. Chapter 6 approached this problem by considering the net effects of these factors 

across the entire human body, handled as a whole. However, this has the limitation of not 

considering that such determinants vary across the full collection of tissues in the body. In 

light of the recent availability of expression profiles of a wide range of proteins across a 

range of tissues, available with the Human Protein Atlas (Uhlén et al., 2015), it has been 

hypothesized that the information on the expression profiles of key transporters that drive 

distribution can be used to help predicting Vd.  

As the transporters considered in Chapter 6 are expressed to different extents in different 

tissues, as discussed in the Introduction Chapter 1, and reiterated with the data from the 

Human Protein Atlas, taking into account tissue expression could, theoretically, refine the 

information carried by the ABC and SLC binding descriptors used in chapter 6. Additionally, 

another extension of the approach used in the previous 6 is the incorporation of plasma 

protein binding as one of the descriptors. This feature has been considered to be among 

the physiological factors with the largest, direct influence over Vd (Curry and Whelpton, 

2017).   

Such wealth of features of physiological nature combined for the modelling of Vd is 

unprecedented, as previous works only went as far as using using tissue partition 

coefficients in Vd modelling (Freitas et al., 2015, Paixão et al., 2014), plasma protein binding 

or membrane binding (Sui et al., 2009, Hollósy et al., 2006). 
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7.2. Methods 

7.2.1. Volume of Distribution Dataset 

The dataset described in Section 6.2.1 was also used in this chapter. However, contrarily 

to Chapter 6, here plasma protein binding (PPB) was also used as an additional 

physiological descriptor. The final dataset used for the modelling consisted of log-

transformed Vss (logVss), 304 molecular descriptors (MDs) and 11 physiological 

descriptors (PDs): PPB, drug-induced phospholipidosis (PL), 4 PDs referring to ABC efflux 

(mediated by P-gp, MRP2, BCRP and MRP1) and 5 PDs referring to SLC uptake (mediated 

by OCT1, PEPT1, OATP1B1, OATP1B3, and OATP2B1). In chapter 6 OATP1A2 was used 

as a physiological descriptor. However, as the purpose of this work is to explore the effect 

of accounting for transporter expression levels, and OATP1A2 did not have any reported 

expression data in the used source (see Section 7.2.2) at the time this study was carried 

out, this was excluded as a descriptor. Recall that, as explained in Section 3.1.3 in the 

general Methods Chapter as well the methods section 6.2.1 of the previous chapter, missing 

data from the PDs is filled in with the respective predictions. As done in chapter 6, these 

PDs where predicted responses were added to the pre-existent experimental data are 

prefixed with a “p”. 

 

7.2.2. Tissue Expression for the Correction of Transporter Data 

In order to refine the transporter descriptors, transport data was corrected with expression 

levels of the ABC and SLC transporters, which were gathered from The Human Protein 

Atlas platform (www.proteinatlas.org). These are derived from high quality direct 

quantification through western blot. Expression levels are reported in four main qualitative 

levels: high, medium, low and not detected. These were converted into fraction equivalents, 

namely, 1, 0.6, 0.3, and 0, respectively. Three different expression correction schemes were 

tried, as explained below. The corrected PDs are suffixed with “_c”, standing for “corrected” 

(done in addition to the “p” prefix). 

Scheme #1: Each transporter response (R) was corrected by being multiplied by the sum, 

across all available tissues, of the product of the corresponding expression level (Et) and 

the tissue weight (Wt), as shown in Equation 7.1, where t indexes a tissue. 

R × ∑ Et × Wtt  (Eq. 7.1) 

http://www.proteinatlas.org/
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Scheme #2: To explicitly test the idea of transporters contributing as a whole to produce the 

observed Vss, all transporter values obtained from scheme #1 were summed into a single 

feature (a more abstract descriptor), for each compound in the dataset. This new feature 

(named “distribution”) can be regarded as the global transport effect, and was used in place 

of the original transporter features. 

Scheme #3: To further refine the impact of different transporters towards Vss, efflux towards 

excretion is differentiated from efflux towards interstitial space and/or systemic circulation. 

The first efflux scenario will be attributed a negative penalty p = -1, while the second will be 

assigned a negative penalty p = -0.286, which corresponds to the ratio of interstitial volume 

to intracellular volume (12 : 42 L) (Equation 7.3). 

 

{
R × ∑ Et × Wtt                for uptake

R × ∑ −p × Et × Wtt     for efflux
  (Eq. 7.3) 

To address the possibility of the tissue weights spanning across 3 orders or magnitude, all 

schemes described above were repeated with scaling of tissue weights, by applying a log 

transformation. In preliminar analyses, given the two best model produced (based on the 

validation set MAE) were achieved with no tissue weight scaling, the use of no scaling was 

selected as the optimal setting for modelling and became the focus of this chapter’s 

discussion. 

 

7.2.3. QSAR model building 

In chapter 6 boosted regression trees (BRT) and random forests (RF) were the two 

regression algorithms tested, both paired with genetic algorithm search (GA) and greedy 

stepwise search (GS) feature selection (FS) algorithms. Since the dataset remains the 

same, and the best overall combination was RF paired with GA, these conditions were 

maintained here. As a result, to build the QSAR models, the GA pre-processing step was 

carried out by re-running the search 10 times using variable random seeds, and picking the 

features that were selected in at least 5 of those 10 runs. All feature selection parameters 

are described in section 3.3. The final feature set was then fed into the RF regressor, which 

was tuned using 10-fold cross validation applied on the training set, where the number of 

trees was optimized in a range between 100 and 1000 (at increments of 100). Different 

variations of feature sets were tested, namely: all features submitted to FS (FS-All), PDs 
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used directly (PDs) or submitted to FS (FS-PDs), and two separate feature selection 

routines applied to MDs and PDs separately, and merged afterwards (FS-MDs + FS-PDs). 

This means that, for conditions containing “PDs”, scheme #1 and #3 models had access to 

10 PDs (9 transporter variables + 1 PL) while scheme #2 models had access to 2 PDs 

(“distribution” + PL). 

All pre-processing and model training was carried using WEKA version 3.8 (Hall et al., 

2009). 

 

7.2.4. Retraining the Best Model with Plasma Protein Binding and Using a 

Larger Dataset 

Upon selection of the best model, this was retrained with an additional physiological 

descriptor – PPB. This feature has been widely accepted as a predictor of Vss, and it was 

introduced as a feature to test whether providing it to the modelling step using the same 

procedure used for the remaining physiological features in this work would bring any value 

to the modelling of Vss. To make the problem more challenging (so as to avoid an overly 

optimistic scenario), a situation of sparse data availability was simulated by ignoring the 

available PPB data provided in the Obach dataset, and using the AstraZeneca dataset 

instead, which was also used to build a QSAR model from which prediction for missing PPB 

data were obtained(see Section 3.1.3). This also allows for a larger dataset from which to 

train a predictive PPB model, thus maximizing the chances for a better performing model. 

Additionally, the best model conditions were reapplied to a larger, more recent Vss dataset 

published by Lombardo and Jing (referred to as the “Lombardo dataset” from this point 

onwards). To do this, a pre-processing feature selection step using GA was applied to this 

dataset, following the previously described procedure, and the resulting feature set was 

used to train a random forest model. The modelling conditions were optimized using 10-fold 

cross validation using the same procedure applied for the other models in this work. As 

Lombardo and Jing also provided their modelling conditions, this allowed recreating their 

models for further assessment of the impact of using physiological descriptors. As this same 

procedure was applied in the previous chapter, for more details on the processing of this 

dataset and the applied modelling conditions, the reader can refer to Section 6.2.3. 

 

7.2.5. Comparison against Previous Models Using a Benchmark External Set 

In order to challenge the value of adding physiological descriptors, this work’s best model 

was compared to two other works by Lombardo and Jing (Lombardo and Jing, 2016) and 
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Gombar and Hall (Gombar and Hall, 2013). As described in the previous section, the former 

was obtained from a larger Vd dataset, while the latter was obtained from the same dataset 

as used in this work (Obach dataset). This comparison was done through two external 

datasets, used by each publication respectively. 

 

7.2.1. Model Evaluation and Validation 

Measures of predictive performance such as the coefficient of determination (R2), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), Geometric Mean Fold Error 

(GMFE), calculated as shown in Section 3.5.2, were used to compare the different 

modelling conditions tested. All comparisons were done based on the validation set. To 

select the best candidate model, all different models were compared using the validation 

set performance, and the two best modelling schemes were selected based on the lowest 

MAE. In addition, the percentage of predictions within 2- and 3-fold error (FE) were used to 

compare the two best candidate models. Upon selecting these, they are compared based 

on the test set and the best model is finally selected for further evaluation. 

To validate the best model, its applicability domain was also characterized by using the 

standard deviation of an ensemble of predictions (named STD) as a reliability measure 

(described in Section 3.6). t-SNE muldimensional scaling was used for visualization. 

 

7.3. Results and Discussion 

7.3.1. Overall Evaluation of Model Performance 

Following the work in Chapter 6 where protein-mediated transport and drug-induced PL 

were found to be useful predictors of Vss, and the interaction of compounds with several 

transporters had an important impact on the final model, this current chapter aims at 

exploring further the impact of transporter interactions by applying corrections based on 

tissue expression levels of these transporters. To do so, the measured protein expression 

levels across a range of tissues were used to refine the information content provided by the 

likelihood for efflux and uptake of compounds (expressed as a probability that spans 

between 0, for extremely likely non-substrates, and 1, for extremely likely substrates).  

The landscape of relative expression levels of transporters across tissues is represented in 

Figure 7.1. This information was used to correct the transport data, where expression was 

used in its absolute values, as well as relative values (adjusted for direction of transport), 

as detailed in Section 7.2. From the four expression correction schemes tested, scheme #3 
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seemed the most promising one as it is the most physiologically accurate, being the only 

which accounts for the location of transporters in the cell membrane (i.e. apical or 

basolateral side) across different tissues. Surprisingly, scheme #3 did not produce any of 

the 2 best models (Table 7.1). 

 

Figure 7.1. Expression levels of the transporters used in this work across a range of tissues, retrieved 
from the Human Proteine Atlas project. 
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Furthermore, for models derived from feature selection applied to the entirety of available 

descriptors (M1, M5, M9 and M12), all transporter expression correction schemes except 

scheme #3 marginally reduced the MAE relative to the best baseline model (i.e. best no-

correction model, see legend of Table 7.1 for details). This might be an indication that 

distinguishing between efflux towards excretory fluids and efflux towards the blood is not a 

useful correction approach for transporter data (at least not in the way it was done here). 
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Table 7.1. Summary of the internal validation performance of the various modelling conditions tested. 
They are compared with the best model obtained in Chapter 6 (named there as model 8a), here 
identified as “best previous” in this current Table. All models under the same modelling block as the 
best model (i.e. regression + feature selection conditions that produced the best model) are here 
considered as the baseline, and identified as such in this Table. Here, “baseline” means the best 
scenario using no form of transporter expression correction. The two best models, selected based 
on the lowest MAE are highlighted in boldface. The downward arrows indicate an improvement 
against the equivalent baseline (no correction) models. 

Expression 
Correction 
Scheme 

 
no expression correction (BASELINE) 

 

 

   
MAE R2 RMSE GMFE 

Features 
Used 

None 

M1 FS-All  0.3079 0.469 0.445 2.03 MDs, PDs 
M2 FS-PDs  0.4240 0.160 0.582 2.66  
M3 PDs  0.3706 0.267 0.523 2.35  

M4 
FS-MDs + FS-PDs 
(Best in Chapter 6) 

 0.3056 0.474 0.442 2.02 MDs, PDs 

         

 

 
expression correction 

     MAE R2 RMSE GMFE PDs Used 

Scheme 
#1 

M5 FS-All ↓ 0.3003 0.5013 0.432 1.9967 3 transp. 

M6 FS-PDs ↑ 0.4380 0.1352 0.5919 2.7416  

M7 PDs ↑ 0.3800 0.2586 0.5282 2.3988  

M8 FS-PDs + FS-MDs ↑ 0.3057 0.4758 0.4409 2.0216 4 transp. + pPL_c 
         

Scheme 
#2 

M9 FS-All ↓ 0.2954 0.5057 0.4291 1.9742 pPL_c 

M10 PDs ↑ 0.4716 0.0747 0.6225 2.9621  

M11 PDs + FS-MDs ↓ 0.3039 0.4818 0.4389 2.0133 
distribution + 

pPL_c 
         

Scheme 
#3 

M12 FS-All ↑ 0.3096 0.4732 0.4426 2.0399 4 transp. 

M13 FS-PDs ↑ 0.4387 0.1354 0.5925 2.7460  

M14 PDs ↑ 0.3770 0.2637 0.5264 2.3823  

M15 FS-PDs + FS-MDs ↑ 0.3083 0.4698 0.4437 2.0338 4 transp. + pPL_c 

 

The two best models produced here (M5 and M9) were both generated from previous 

feature selection procedures applied to all features simultaneously. Despite the 

overwhelming number of molecular descriptors competing against few physiological 

descriptors (10 and 2 physiological descriptors initially available for the modelling process 

– preprocessing and training – of M5 and M9, respectively), the latter were still selected into 

the final descriptor set, used for model building. In model M5 the physiological descriptors 

in the final set consisted of 3 expression-corrected transporter descriptors (pBCRP1_c, 

pMRP2_c and pOATP1B1_c with substrate/non-substrate data, see Table 7.3) and for 

model M9 only pPL was selected. 

These two selected candidate models were tested on the (left-out) test set (0.3237 and 

0.3286 for M5 and M9, respectively). Based on this, model M5 was further evaluated, as 

will be discussed below. 
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Regarding the validity of predictions in the test set, upon which one relies to draw 

conclusions about the value of using expression-corrected transport data to improve the 

ability to model Vss, Figure 7.2 shows that there is a robust correlation between the STD 

scores (which are here used as the predictive reliability measure) and predictive error in 

unseen data. This means that the model can be used prospectively with confidence, as the 

STD value serves as a good surrogate of relative expected error for predictions.  

 

 

Figure 7.2. Applicability domain profile of model M5 (the best model on the test set). The test data 
is sorted according to their STD score, and their respective MAE values within increasing STD score 
threshold are recorded.  

 

7.3.2. Impact of Expression-corrected Transporter Features 

The best model with transporter-expression correction was generated from applying feature 

selection to the full set of features (M5), contrarily to the best model with no expression 

correction, which was trained with feature selection applied to both physiological descriptors 

and molecular descriptors, separately (M4). Despite being subject to feature selection 

alongside a much larger number of molecular features (304 molecular descriptors and 11 

physioloical descriptors), some of the physiological descriptors were selected in the final 

subset (pBCRP1_c, pOATP1B1_c and pMRP2_c).  Even though a relatively small 

percentage of compounds was affected by any of these three transporters, with pBCRP1_c 

showing the largest descriptor importance (13.9%), looking into the composition of the 

random forest model actually shows that both pMRP2_c and pOATP1B1_c were found at 

the top node in 16 and 4 trees, respectively (out of a total of 600 trees). Finding a descriptor 

close to (or at) the top node is a strong indicative of the meaningful role of such descriptor 

towards the modelled output variable (Freitas, 2013).  
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Table 7.2. Summary of predictive performance measured on the test set (N=134) for the best model 
in this work (M5) and the best model from Chapter 6 (8a).  

 

Best 

Models 

 

conditions 

 

Feature 

content 

 

R2 

 

RMSE 

 

MAE 

 

GMFE 

 

MFE 

Within 

2-FE 

(%) 

Within 

3-FE 

(%) 

8a RF-GA 
FS-MDs +  

FS-PDs 
0.560 0.4497 0.3391 2.18 2.99 56.0 73.1 

M5 RF-GA FS-All features 0.582 0.4353 0.3237 2.11 2.84 59.7 72.4 

 

Table 7.2 shows that using protein expression-corrected transporter data led to an 

improvement in the ability to predict Vss, showing an MAE of 0.3237 vs 0.3391 when no 

expression correction was applied (model 8a). Beyond MAE, all performance measures, 

except for % predictions within 3-FE, were better for the current chapter’s best model, M5. 

Additionally, 58.2% of the prediction errors were reduced when compared to the best model 

trained in the absence of expression correction. As seen in Figure 7.3, these 58.2% (shown 

as the filled circles) include the instances associated with the largest prediction errors. In 

fact, almost all compounds in the right-hand side of the plot, which fall outside the 3-FE 

threshold (indicated by the dashed lines), are predicted with higher accuracy when using 

transporter-expression correction (when compared to model 8a). The improved predictions 

include four problematic compounds pointed out in previous works as well as in Section 6.3 

as being particularly challenging to predict due to extensive binding to different tissue 

structures(WHO, 2013, Watts and Diab, 2010, Barbour et al., 2009, Zheng et al., 2011) 

(pentamidine, chloroquine, risedronic acid and tigecycline). 

As the relationship between chemistry and Vss has already been extensively discussed in 

the literature, when discussing the chemical descriptors of the best model (M5) the focus 

will be placed on discussing the presence of physiological descriptors in the model. 

However, it should be pointed out that, besides the high importance in model M5 of 

expected descriptors such as ionized fraction and lipophilicity (which occupied the top 

positions in the random forest’s trees in Chapter 6), a new descriptor implemented in MOE 

(h_pavgQ) has been found to have the highest feature importance in model M5. This is a 

descriptor calculated using Extended Hückel Theory, which is a semi-empirical quantum 

mechanics method that takes into account local resonance and electron withdrawing effects 

(Labute et al., 2014). In particular, h_pavgQ is the average total (formal) charge, a pH 

dependent parameter calculated based on the relative concentration of various protonation 

states of the molecule. This parameter conveys similar information to fractions of anionic, 

cationic, zwitterionic and unionized forms of a molecule at different pH values, which are 

calculated from the acidic and basic pKa values (Ghafourian et al., 2006). These fractions 
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were found to be major predictors of VD as distribution of compounds may be limited for 

acidic compounds such as nonsteroidal anti-inflammatory drugs with strong plasma protein 

binding, whereas basic compounds may be able to accumulate in the phospholipid 

membranes (Ghafourian et al., 2006, Freitas et al., 2015). 

 

 

Figure 7.3. Scatter plot of test set predictions obtained by the best model with transporter-correction 
expression (model M5). Filled circles indicate predictions which show a smaller error compared to 
the best model with no transporter-expression correction in Chapter 6 (model 8a). Compare to Figure 
6.4 to see the improvement for the outlier predictions. 

In the previous attempt to model this same dataset without transport-expression correction 

in Chapter 6, even though exactly the same training set was used as well as the same 

feature selection and regression algorithms, there was a marked difference in the 

physiological descriptors that were selected into the model. In Chapter 6 and pPEPT1, pPL, 

pMRP1, pMRP2, pBCRP1 and pOATP1B1 were selected and used in the best achieved 

model (see Appendix IV Table A4.1 for full list of descriptors of model 8a), while in the 

current work the first three of these descriptors were not selected in the best model (M5). 

This difference is especially significant, as one of them (pPL) encodes information on 

experimental and predicted phospholipidosis (completed missing experimental data), and 

its absence associated with improved performance goes against the observations in 

Chapter 6, where pPL consistently improved the majority of the models produced. However, 

while the selection of a descriptor is evidence of its informative value, the failure to select a 

descriptor does not imply a lack of informative value. It might be the case that pPL was not 

selected due to the selection of other descriptors which were correlated with pPL or even 
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more informative than this descriptor (making the selection of pPL unnecessary), as M5 

(contrarily to 8a) resulted from feature selection applied to the full set of features (making 

pPL redundant). 

 

Table 7.3. Full list of descriptors used in the best model (M5), and their relative importance (in 
parenthesis), calculated as the percentage of correctly predicted training compounds, over the total 
number of training compounds that go through a decision node containing each of the descriptors in 
the model. 

Descriptors in model M5 

h_pavgQ (42.2) LogD(5_5) (16.5) 

FiA (35.2) chi1 (16.4) 

LogD(10) (35.1) vsurf_W7 (16) 

vsurf_HL1 (26.4) dipole (15.7) 

FiB (25.3) vsa_acc (15.1) 

ASA_P (24.9) vsurf_Wp5 (14.3) 

vsa_pol (23.6) vsurf_IW5 (14) 

vsurf_HB2 (23) pBCRP1_c (13.9) 

LogP (21.7) vsurf_ID8 (13.7) 

FASA_P (21.6) VAdjMa (13.2) 

PEOE_VSA_FPPOS (21.1) AM1_dipole (13.2) 

PM3_HOMO (20.5) vsurf_DD13 (12.3) 

vsurf_HB1 (20.4) pMRP2_c (12.2) 

PEOE_VSA_FPOL (20.2) vsurf_Wp6 (11.9) 

Q_VSA_FPOL (20.1) PEOE_VSA+5 (11.4) 

a_ICM (20) a_nO (11.2) 

SMR_VSA0 (19) vsurf_DD23 (10.6) 

AM1_HOMO (18.6) a_don (10.2) 

SlogP_VSA1 (18.6) Num_Rings (9) 

vsurf_HB3 (18.4) PEOE_VSA-2 (8) 

Q_RPC- (18) Halogen_ratio (6.5) 

PEOE_VSA-0 (17.6) FiAB (5.4) 

vsurf_ID2 (17.5) SlogP_VSA6 (5) 

Q_VSA_FPNEG (17.5) chiral_u (4.8) 

PEOE_VSA_PPOS (17.3) pOATP1B1_c (3.6) 

Surface_Tension (17.2) Num_Rings_4 (3.6) 

LogD(6_5) (16.8) Rule_Of_5 (3.4) 

density (16.6) b_triple (1.1) 

Kier3 (16.6)  

 

Lastly, similarly to what was done in Chapter 6, in order to challenge the contribution of the 

three physiological descriptors in the model, the model was retrained under the same 

conditions as the best model, with the only change being the removal of physiological 

features. As the best model consists of a very large ensemble (a random forest of 600 

trees), it is possible that the presence of the physiological features is not advantageous and 

merely results from the combination of chance and the fact that the random forest is built 

with unpruned trees. Despite this possibility, removing the PDs yielded degradation of the 

model’s performance (validation set MAE = 0.3003 vs 0.3044, with and without PDs, 

respectively). Curiously, removing three molecular descriptors of the same level of 
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importance as these three physiological features improved the model (validation set MAE 

= 0.3003 vs 0.2951, for the original and removed-descriptors model, respectively).  

 

7.3.3. Impact of Accounting for Plasma Protein Binding  

Despite the fact that PPB, as a property, is by far regarded as the most impactful 

physiological determinant of Vss (generally speaking, and especially compared to the 

remaining physiological features used in this work), including this as a feature did not 

produce improvement to the best model. First, putting pPPB through feature selection, 

alongside all other descriptors, produced a feature set that did not include pPPB 

(considering the full set of features provided to train the best model). As this might have 

resulted from overfitting to a suboptimal set of features during the pre-processing step, 

which is a common pitfall of genetic search, or purely due to chance (where other correlated 

features were selected instead), this was examined further by adding pPPB directly into the 

feature set provided to build the best model. This led to practically equivalent performance 

(validation MAE = 0.3003 vs 0.3004, with and without pPPB, respectively). However, in this 

alternative model pPPB showed higher feature importance than any of the three 

physiological descriptors used in the original best model (M5, listed in table 7.3), affecting 

the prediction of 20.8% of instances. This is an indication that pPPB is in fact a predictor of 

Vss. The full list of combinations (15 in total) of physiological descriptors for this model is 

provided in Table A4.2, compared to the combinations in M5. 

The inability to produce an improved model does not mean PPB is not a good predictor of 

Vss, but rather it can just mean that this feature is very strongly correlated with other good 

predictive features. In this latter case, given the selection of any of the other features 

strongly correlated with PPB, there would be no need to include PPB in the model. 

 

7.3.4. Benchmark Testing of the Effect of Expression-Corrected Transport 

and Plasma Protein Binding (PPB) as Predictors of Vss 

Gombar and Hall (Gombar and Hall, 2013) used the Obach dataset to build QSAR models 

for Vss (as used in this work) and, given they provided individual predictions obtained in an 

external set, this allows a direct, benchmark assessment of the impact of adding 

physiological descriptors as predictors, as this is the major variation between both works. 

Additionally, Lombardo and Jing (Lombardo and Jing, 2016) also provide an external set of 

predictions, however they used a larger Vss dataset (N = 1096). Such external set allows 

for a benchmark testing of the value of qualitative improvement (enriching input through the 
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addition of physiological information) versus quantitative improvement (increasing chemical 

space by increasing the number of observations).  

For the first benchmark testing scenario against Gombar and Hall, where the modelled 

dataset was the same, Table 7.4 shows that M5 shows improved performance for all 

performance measures used. This is particularly notable since Gombar and Hall applied 

two approaches that in general tend to improve predictive accuracy: they have applied 

physicochemical filters to assure a more tractable chemical space; and they have allocated 

more data for training (N=569) than in this work (N=398). Despite the expected advantage 

brought by these approaches, M5 still outperformed the models by Gombar and Hall, which 

demonstrates the value of using physiological predictors to model Vss. However, M5 did 

not outperform the best previous model, model 8a. On the other hand, it is important to 

highlight that the best model from Gombar and Hall was built using a support vector machine 

(SVM), which is known to be very sensitive to the set of parameters used (Mantovani et al., 

2017), which usually does not happen (at least to the same extent) for RF. It could be that 

the SVM overfitted during parameter tuning, leading to loss in predictive performance.   

 

Table 7.4. Comparison of predictive performance between the current best model (M5), the models 
by Gombar and Hall (Gombar and Hall, 2013) and the previous best model (8a), evaluated on a 
common external benchmark dataset (N = 30). SVM and MLR stand for support vector machine and 
multiple linear regression respectively. 

 
 

 
models in (Gombar and 

Hall, 2013) 

 
M5 

(current work) 
8a 

(previous 
work) 

SVM MLR 

MAE 0.209 0.205 0.264 0.422 

GMFE 1.619 1.604 1.835 2.641 

MFE 1.880 1.869 1.995 5.430 

 

Comparing the results reported here with Lombardo and Jing’s results, as mentioned 

earlier, M5 did not outperform their best model. However, despite the considerably smaller 

chemical space, M5 was still able to show comparable performance to other models as 

seen in Table 7.5. As seen for the comparison against Gombar and Hall, model 8a still 

outperformed the current best model. Both these observations might indicate that applying 

expression correction to transporters might not be adding value to the modelling task, 

however this dataset is much smaller than the test set used in this work and might not allow 

for the effect of such correction to be noticeable. In support of this possibility, there are 

particular improvements that might otherwise show the value from using expression-

corrected transport data, as follows. 
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In their original publication, Lombardo and Hall point out three compounds in their external 

set which are systematically and grossly mispredicted: CG200745 (6.2 FE), dobesilic acid 

(4 FE) and GPX150 (5.2 FE). The predictive ability for these compounds has improved 

considerably using model M5 with transporter expression, as they show FE values of 3.5, 

3.6 and 2.7, respectively. Rather than focusing on the numerical improvement itself, this 

indicates overcoming a systemic limitation found when molecular descriptors alone are 

used. Additionally, this has also shown an improvement comparatively to the previous 

model reported in Chapter 6 (model 8a), and both these observations support the 

importance of using transporter data corrected for tissue expression levels to aid the 

modelling of Vss. 

Table 7.5. Comparison of predictive performance between the current best model (M5), the models 

by Lombardo and Jing (Lombardo and Jing, 2016) and the previous best model (8a), discussed in 
Chapter 6, evaluated on a common external benchmark dataset (N = 34). RF_33 and PLS_11 stand 
for random forest and partial least squares, respectively (number suffixes stand for the number of 
features used). 

 
 

 
Lombardo and Jing (Lombardo 

and Jing, 2016) 

 
M5 

(Current 
work) 

8a 
(previous 

work) 
RF_33 PLS_11 

consensus 
RF_33 and 

PLS_11 

MAE 0.3064 0.305 0.302 0.363 0.317 

GMFE 2.025 2.017 2.003 2.308 2.073 

MFE 2.337 2.276 2.300 2.970 2.510 

 

7.3.5. Testing the Use of Physiological Predictions in Increased Chemical 

Space  

To allow further testing of the role of PPB, PL, and expression-corrected transport as 

predictors of Vss, the Lombardo dataset was modelled with these additional descriptors, 

which were paired with either (1) this work’s set of descriptors, and the current optimal 

modelling conditions or (2) their set of descriptors and their optimal modelling conditions 

(re-training), and each situation was compared with their equivalent built without PDs. 

Similar to what was observed in chapter 6, in both situations (modelling with best conditions 

in this work or re-training using the best conditions in Lombardo et al. (Lombardo and Jing, 

2016)), adding PDs improved the ability to model Vss relatively to just using molecular 

descriptors (see Table 7.6).  

Contrarily to what was found for model M5, when the Lombardo dataset was annotated with 

the collection of descriptors used in this work and submitted to feature selection, PPB and 

pPL were selected into the final feature set. However, this model was still outperformed by 

M5, which is surprising given the considerably smaller chemical space of the latter 
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compared to the former. Comparing both “MDs & PDs” models and M5, the superiority of 

Lombardo’s retrained model can be explained by the fact that this model has been selected 

as the best candidate based on the performance on this very test set, which creates a 

misleading outperformance.  

Table 7.6. Comparison of the predictive performance of modelling the expanded Vss data with and 
without physiological descriptors (PPB, PL and expression-corrected transport descriptors). This is 
referred to as “retraining”, as the modelling conditions were all kept, and merely reapplied to the 
larger dataset. The models were tested in the same external set (N=34) provided by Lombardo and 
Jing. 

  
Retrain with current best 

conditions 
 Retrain with original 

best conditions 

 

M5 
(current 

work’s best 
model) 

MDs only 
(baseline) 

MDs & PDs 

 
MDs only 
(baseline) 

MDs & 
PDs 

MAE 0.3064 0.322 0.318  0.300 0.285 

GMFE 2.025 2.104 2.081  1.993 1.962 

MFE 2.337 2.728 2.572  2.290 2.208 

Available PDs 
for modelling 

pBCRP1 
pMRP2 

pOATP1B1 
n.a. 

PPB 
pPL 

pPEPT1 
pOATP1B1 

pBCRP1 
pMRP2 

 n.a. all 

 

It should be noted that both situations where Lombardo’s dataset was modelled produced 

a larger FE error than the best model in this work (M5), for all three challenging compounds 

mentioned in the previous sections. In addition, the models using PDs produced smaller FE 

in almost all situations (except in one out of six pairwise comparisons between modelling 

with and without PDs). 

In a recent publication (Korzekwa and Nagar, 2017) a PBPK prediction of Vss has been 

published using predicted PPB and a small number of physicochemical descriptors, and 

while its MFE is considerably lower (1.6) than any of the models in Table 7.6, which might 

depict this as a superior alternative to Vss prediction. However, it is important to note that 

all models in the work were developed and tested on the same, rather small, set of 

approximately 60 compounds. This is a classic example of a set of conditions that lead to 

high risk of overfitting and, hence, all interpretation of these results should be made 

conservatively. In addition this model relies on experimental physicochemical data to 

produce the PPB predictions. Perhaps a future option would be to replace the experimental 

data with in silico predictions of physicochemical descriptors, and test whether the resulting 

PPB predictions can be used in the current QSAR modelling scheme. 
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7.4. Conclusions 

This study followed up on the findings in Chapter 6, where a positive impact of using 

physiological descriptors in the modeling of Vss was reported, and tested the hypothesis of 

further improvement of the predictive performance when accounting for tissue-specific 

transporter expression. Additionally, there was the aim of testing whether using plasma 

protein binding data would bring any improvement to the previous best model’s predictive 

performance. 

In this work the best produced model was able to further improve the observed performance 

of the best model in Chapter 6. However, in the current work’s best model only transporter 

data (and not plasma protein binding data) was used as predictors (as opposed to the work 

in Chapter 6, where the best model used PL as well). The improvement was especially 

noticeable for the most challenging compounds, and the majority of predictions were 

associated with a decreased error when comparing to Chapter 6.  

In the current best model, physiological descriptors showed a relatively low feature 

importance but, on the other hand, they have been found as top nodes in a number of trees 

across the random forest. This means that they are informative as predictors of Vss. 

To validate the premise that expression-corrected transporter descriptors are useful 

features in Vd modelling, the best model in this study (M5) was compared to: (1) a model 

built on the same dataset as the one used here, and (2) a model built on a considerably 

larger dataset, using the performance on a benchmark external dataset as means of direct 

comparison. While M5 outperformed the model without physiological descriptors in case 

(1), it showed marginally worse performance than the best model without physiological 

descriptors in case (2). Considering that the difference in performance between M5 and the 

best model in (2) is very small, this is quite surprising, given that case (2) resulted from a 

model trained on a much wider chemical space.  

Despite the apparent outperformance of the model in case (2), built without any 

physiological input, as observed for the test set in this work, the benchmark comparison 

exercise revealed that the most problematic compounds showed decreased error in their 

predictions. 

Finally, the strongest evidence of the value of using expression-corrected transport data 

and PPB was the fact that the two models built from the Lombardo dataset (larger than the 

currently used dataset) were improved when these physiological features were used, versus 

when trained from molecular descriptors alone. Even though PPB did not improve the 

performance of model M5 when added into the feature set, this might be due to the presence 
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of other descriptors with strong correlations with PPB, which overshadow the useful 

additional contribution of PPB as a descriptor. Also, considering that there is a large 

proportion of compounds with missing (unknown) values for the PPB descriptor, completing 

missing data in the PPB descriptor with predictions derived from a highly accurate PPB 

predictive model could improve the quality of this descriptor when modelling Vss. 
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8. A Novel Applicability Domain Method: Reliability-

Density Neighbourhood (RDN) 

8.1. Introduction 

This chapter serves the purpose of complementing the remaining chapters where QSAR 

models have been developed, by focusing on applicability domain characterization and its 

vital role in model validation. The ability to define the boundaries of the chemical space 

where a QSAR model can be reliably used is a necessary condition to assure the reliability 

of new predictions, which makes it an essential step for model validation. These boundaries 

correspond to the model’s applicability domain (AD) and this chapter describes a novel 

method for AD characterization. 

The theoretical goal in defining a model’s AD is to identify “safe” and “unsafe” regions for 

prediction, which informs about reliability at various subregions across chemical space. In 

practice this defines the extent to which a Quantitative Structure-Activity Relationship 

(QSAR) model (reliably) tolerates new compounds (Eriksson et al., 2003, Carrio et al., 

2014). 

So far, there is no clear focus in the community for assessing whether an AD established 

with training data is able to successfully determine if a new prediction may be accepted or 

not. QSAR modellers often implement any given AD method and merely determine the 

portion of the external data (and its predictive accuracy) falling within the established 

boundaries, without any assessment of the ability of the AD boundary to differentiate 

between “acceptable” and “unacceptable” new predictions. Therefore, it is impossible for 

the user to validate and trust an arbitrary threshold. Applying a threshold and showing that, 

inside the region defined by that threshold, predictions have higher accuracy, as carried out 

in some previous work (Sahigara et al., 2012, Fjodorova et al., 2011) provides useful 

information, but ignores the possibility of localized inner “holes" in the chemical space where 

the model is unreliable.  

A useful AD should relate similarly to the predictive reliability in the training set and in an 

external dataset. This means that both the training set and an external set should ideally 

have an AD profile that shows similar trends of degradation of predictive performance with 

increasing distance to the AD core (here the term “core” can be interpreted as the sum of 

one or more centroids in the AD, where predictive confidence is maximum). Ideally, a valid 

AD would be sufficiently robust and not affected by changes in dataset, thus allowing the 
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maintenance of the general AD premise by which a model’s performance degrades as the 

queried instances get farther away from the training chemical space.  

The majority of currently available AD methods usually focus on a single property of the 

data, for example similarity, descriptor range, density or response-range (or ensemble-

range). A list of methods across categories can be found in the literature (Kaneko and 

Funatsu, 2014). However, several works support the need to combine different properties 

(such as response, density and similarity) to achieve a reliable characterization of a model’s 

AD (Kaneko and Funatsu, 2014, Sheridan, 2012, Sahigara et al., 2013). Furthermore, most 

methods address data globally (e.g., location with respect to global feature span or density 

across global feature set), even though it is well established that the modelled data can 

exhibit very different properties in a local level versus the global level. 

In this work a new AD method, named Reliability-Density Neighbourhood (RDN), is 

proposed. This method maps external predictions with regard to distance to the model 

space while taking into account the reliability of nearby training instances. Note that, in this 

context, reliability is the net effect of two distinct effects, bias and precision. As a result, 

RDN accounts for the variable nature of different data localities both in terms of multi-

dimensional localization (as multiple dimensions are input into the distance calculation) and 

predictive reliability.  RDN borrows features from two other previously published methods – 

the standard deviation (STD) method (Tetko et al., 2008) and the k-Nearest Neighbours 

density (dk-NN) approach (Sahigara et al., 2013). 

Figure 8.1 shows a schematic depiction of the RDN AD, where density and reliability are 

mapped across chemical space showing densely populated and more reliable areas in 

darker blue, transitioning into white regions of sparse and/or unreliable data.  

 

Figure 8.1. Schematic representation of how RDN explores chemical space. 
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This work also focuses on the role of feature selection in AD characterization, as an AD is 

only as explanatory as the ability of its molecular features to chemically distinguish 

mispredictions from correctly predicted instances. The optimization of the set of molecular 

descriptors used as input to compute neighbour distances is, therefore, another novel 

aspect of AD characterization introduced with this method. 

The last novel aspect explored in this chapter is the importance of evaluating AD 

robustness, which was accomplished through the introduction of a new scoring scheme to 

evaluate the robustness and qualitative value of AD techniques. 

The contents of this chapter have been published in the Journal of Cheminformatics, under 

the following reference: Aniceto N, Freitas AA, Bender A, Ghafourian T. A novel applicability 

domain technique for mapping predictive reliability across the chemical space of a QSAR: 

reliability-density neighbourhood. Journal of Cheminformatics, 8, 69.(Aniceto et al., 2016a) 

Free for reproduction by the authors under the Creative Commons Attribution License 4.0. 

 

8.2. The Reliability-Density Neighbourhood Algorithm 

As the dk-NN approach proposed by Sahigara and colleagues (Sahigara et al., 2013) was 

the basis from which RDN was built, this will be described. This explanation will be built 

upon to transition into the RDN algorithm; its novel parameters and their contribution to the 

overall mechanism of this new technique will be discussed. 

The dk-NN AD technique uses the k-NN principle combined with the concept of adaptive 

kernel techniques in Kernel Density Estimation (KDE) to detect local neighbourhoods within 

the data. This approach capitalizes on the notion that any given dataset can have a very 

different behaviour at the local level when compared to the global behaviour. In this method, 

the average Euclidean distance (using standardized descriptors) between each training 

compound and its k nearest neighbours is computed (Euclidean distance is calculated using  

Equation 8.1), which is used to calculate a reference value (RefVal) set at Q3 + 1.5 × IQR 

(also known as the Tukey’s outlier fence (Horn and Pesce, 2006)), where Q3 is the 3rd 

quartile and IQR is the interquartile range calculated as the difference between the 3rd and 

the 1st quartiles of the list of average distances. The neighbourhood width threshold for each 

individual training compound (Di) is then calculated as the average distance to all its training 

neighbours with distance values closer or equal to the RefVal. By establishing different local 

thresholds, this addresses the variation of data density across the dataset. 
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Given that the dk-NN AD is limited only by the degree of emptiness of the different regions 

occupied by the data (i.e., a sparse region will render its occupiers a smaller distance 

threshold, under a given established k value, as these instances will have no neighbours 

within the average overall distance to the k-th nearest neighbour), it would be logical to tailor 

each different neighbourhood (i.e. coverage width around each training instance) according 

to their reliability. Here, reliability is a function of both bias and precision as explained below. 

Euclidean Distance(a, b) = √∑ (ai − bi)
2n

i=1   Eq. 8.1 

Following the theoretical principle that, for more reliable predictions, an ensemble (set) of 

models, M, will have a high degree of agreement and consequently a smaller STD (standard 

deviation) value, one would expect that regions where a clear, smooth structure-activity 

relationship is found would generate more robust predictions that are less susceptible to 

changes in the learning task (i.e., changes in the data partition within the ensemble). 

Alternatively, regions with a less stable landscape will rely greatly on the data partition used, 

thus generating larger differences between different models (Sahlin, 2013). However, as 

STD values only measure the level of precision, the rate of agreement between the set of 

predictions and the real responses needs to be used to overcome cases of systematic bias 

towards an incorrect classification. More precisely, a systematic bias occurs when most 

predictions are close to each other, but all are wrong, as represented by the point filled in 

black in Figure 8.2.  These predictions would be captured by the algorithm as high-reliability 

predictions if only an STD correction was used. Therefore, the combination of bias and 

precision is an appropriate correction factor for reliability, Wi. 

 

Figure 8.2.  Relationship between agreement and standard deviation across the members of an 
ensemble in the P-gp validation dataset. In this case STD translates into accordance among a set of 
predictions (i.e. precision), whereas Agreement refers to the level of bias in that set of predictions. 
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Taking this notion into account, the RDN AD method herein proposed was created by 

introducing a weighting term to the dk-NN algorithm, as defined in Equation 8.2, which 

measures the reliability associated to each training instance. 

 

    (Eq. 8.2) 

The first term (1-STD) measures precision and the second term (agreement) measures 

bias. In this equation, the weighting factor  𝑦𝑖,𝑚̂  is the predicted class probability for 

compound i, output by model m, among M models in the ensemble; 𝑦𝑖̅ is the average 

predicted class probability by the ensemble model; 𝑌𝑖 is the experimental response; and 𝑌𝑖̂ 

is the prediction output by the QSAR model. As STD and agreement take values from 0 to 

1, Wi will also take this range of values. 

For each training instance i, Wi will be multiplied to the respective threshold distance Di, 

calculated as previously explained. As STD is the deviation between an ensemble of 

predictions, 1 – STD is the precision rate. A high precision will translate into a high 1 – STD 

value which will, in turn, contribute to a large Wi, and consequently to a small reduction of 

Di. As for the agreement term, increasing values translate into a decreasing level of bias. 

As such, a large agreement will entail a small penalization to Di. To illustrate the use of Wi, 

the space (neighbourhood) covered by a given training point will be penalized proportionally 

to its degree of unreliability, i.e., for STD=70% and agreement = 35%, a reliability of 10.5% 

is obtained, which leads to a very large 89.5% reduction of coverage attributed to its training 

instance. The effect of correcting neighbourhood distances for their reliability is 

demonstrated in Figure 8.3. The complete flow of the described RDN algorithm is 

summarized in Scheme 8.1. 

  

Figure 8.3. Scheme of the reliability correction of the distance Di attributed to training compound i. 
The sphere’s radius, Di, will be decreased proportionally to the reliability of compound i. For example, 
if (1-STD)×agreement is 80%, Di will be reduced by 20% of its initial value, which means that the 2 
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of the initial 3 external instances that were covered by compound i will end up outside the 

neighbourhood coverage area associated with this training compound. 

The success of addressing local bias and precision, as well as local distance to training has 

been demonstrated by Sheridan (Sheridan, 2012); however they have sorted the data into 

several bins, which renders comparative analysis and the implementation of the AD rather 

difficult. A continuous performance characterization should allow the localization of gaps in 

the data/model’s chemical space in a more user-friendly way.  

 

Scheme 8.1. Pseudo-algorithm of the Reliability-Density neighbourhood (RDN) applicability 
domain technique. 

As the obtained individual thresholds associated with each training instance depend on the 

Euclidean distance between compounds, which in turn depends on the descriptors used, 

this chapter proposes the approach of pairing this AD technique with a feature selection 

technique applied in a preprocessing step (before running the classification algorithm). 

ReliefF was chosen, originally proposed by Kononenko et al. (Kononenko et al., 1996), as 

this algorithm searches for a feature set that maximizes the separation of classes in the 

response variable within local neighbourhoods (Spolaôr et al., 2013). ReliefF has been 

shown to detect relevant features even in very crowded (feature-wise) datasets, whilst being 

resilient to noise (Bolón-Canedo et al., 2013, Robnik-Šikonja and Kononenko, 2003). 

ReliefF is particularly well suited for AD definition due to three paramount properties: a) it 

evaluates descriptors separately and solely on their ability to separate classes; b) it takes 

into account the local neighbourhoods when evaluating each feature; c) identifies 

useless/irrelevant features that would only contribute with noise (Hall and Holmes, 2003). 

Regarding the first property, while ReliefF allows the selection of highly correlated features, 
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its performance is unaffected by the existence of correlation itself (Kantardzic, 2011); 

contrarily to QSAR modelling, this is expectedly a desirable feature for a successful AD as 

highly correlated features turn out to be complementary in chemical space coverage. This 

is further explored in the Results and Discussion section of this chapter (section 8.4).   

Considering that a QSAR model is focused on distinguishing between two different 

responses, and its AD is focused on discriminating between correct and incorrect 

predictions, it is expected that the molecular descriptors that are best suited for the former 

will not necessarily be the most appropriate for the latter, as previously suggested 

(Sheridan, 2012). In fact, Sheridan and colleagues (Sheridan et al., 2004) have shown that 

descriptors used to define the model’s boundary do not have to coincide with the descriptors 

used to build that same model. Furthermore, note that an AD technique which does not rely 

on the features used by the QSAR model allows comparable implementation in both the so-

called transparent methods (e.g. decision trees) and “black box” methods (e.g., artificial 

neural networks). Thus, the herein proposed AD method is paired with the ReliefF routine 

for feature selection. 

 

8.3. Methods 

8.3.1. Building of the QSAR model 

To evaluate the performance of the currently proposed AD, the QSAR model previously 

built with the P-Glycoprotein (P-gp) dataset (extracted from the multi-label ABC efflux 

dataset) was used (see Chapter 3 for further details regarding data retrieval and 

preparation). This is a classification dataset annotated with substrates and non-substrates. 

Essential details will be reiterated here, as full details on the pre-processing feature 

selection and modelling procedures can be found in Chapter 4. 

Recall that a decision tree was trained using 60% of data (training set), optimized using 

20% of the data (internal validation set), and tested on the remaining 20% (test set). Pre-

processing feature selection was performed prior to training, by submitting the training set 

to the five feature selection methods described in Chapter 3 (ReliefF, GS, GA, RF-GS, C4.5-

GA). The C4.5-GA wrapper method was selected to build the final decision tree model as it 

generated the feature set associated with the highest validation performance. The resulting 

decision tree was used to produce class predictions, which were later used to evaluate AD 

performance. Note that the feature selection task undertaken within the model building 
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process (described under this subsection) must not be mistaken for the feature selection 

role in establishing AD characterization. These two are separate and independent tasks. 

 

8.3.2. Feature Selection in AD characterization 

To establish an optimal feature set utilized in the RDN algorithm, more specifically in the 

calculation of the Euclidean distance between the compounds in the P-gp dataset, different 

thresholds of feature ranking using ReliefF were applied, namely the top 20, 50, 100 and 

200 features, as well as the entire feature set of 334 molecular descriptors. This led to 5 

feature sets that were tested in the original dk-NN algorithm. For comparison, the C4.5-GA 

features used to train the QSAR model were also used, as it is a common practice to use 

the model’s features to describe the AD. RDN was not used to assess the effect of the 

descriptor sets as this would introduce additional noise to the system (due to different 

variables in play) and could confound the comparison between feature sets. As dk-NN takes 

into account solely the Euclidean Distances between compounds, this allows a more 

straightforward observation of the effect of the feature set. Furthermore, a selection of the 

best feature set candidate(s) in RDN would increase the risk for parameter overfitting. At 

the end of this stage the two best candidates were selected for further testing with RDN. 

 

8.3.3. Consensus Standard Deviation (STD) Applicability Domain 

Even though the STD measure was embedded in the RDN algorithm as part of the 

correction factor, this is a standalone AD method that has obtained very good performance 

in sorting predictions according to their reliability. As a result, STD was used as the gold 

standard method against which RDN was compared (Sushko et al., 2014, Dragos et al., 

2009, Tetko et al., 2008, Sushko et al., 2010a). Note, however, that the results of dk-NN 

and KDE methods will also be reported for comparison (these methods are explained further 

below). 

For the implementation of the STD method, a 10-fold C4.5 bootstrap routine was performed 

following the procedure in the methodology Chapter 3. This resulted in 10 decision trees 

which were used solely to produce reliability estimates in the form of overall deviation 

among the 10 sets of predictions, while class predictions were taken from the decision tree 

model reported in Chapter 4. The STD value was calculated for each compound according 

to Section 3.6. 
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Contrarily to the QSAR model whose output is ultimately qualitative (an instance is assigned 

to the class of highest probability), the actual value of the probability was used towards the 

quantification of reliability. Consequently, probability calibration by Laplace smoothing (for 

a detailed outlining see (Chawla, 2006)) has been used during the training of the ensemble 

model. Laplace smoothing compensates for the small number of compounds in a tree node, 

thus preventing overly optimistic probabilities at very small nodes. 

 

8.3.4. Reliability-Density Neighbourhood Applicability Domain 

The RDN AD was implemented as described in the Algorithm section 8.2, being run 

iteratively at increasing k values, ranging from 1 to 65 (weighted) nearest neighbours (NN), 

which corresponds to approximately 100% coverage of the data (as obtained empirically). 

This allows to scan the chemical space from denser areas to sparser areas. Preliminary 

results showed that using the distance step size to the first NN directly was not ideal, as the 

AD RefVal led to a too wide AD (with more than 50% of data falling within the nearest 2-3 

neighbours region). This is because this region is more densely populated, thus being highly 

sensitive to even small increases in the distance threshold (see Figure 8.4). Therefore, it is 

necessary to make sure that the initial neighbourhood thresholds increase slowly. Then, as 

the AD boundaries get larger, it is affordable to have larger distance increases at each step. 

To this end, the RDN algorithm was run at a third of the determined neighbourhood distance 

from k = 1 to 30, then half of the neighbourhood distance was used for k = 31 to 40, and 

finally for k values > 40 the distance was used directly as computed. However, this setting 

can be tailored by the user, and different distance step sizes can be used to obtain different 

levels of detail in the plots of accuracy vs percentage of data in the AD. As exemplified in 

Figure 8.4, initially applying smaller increments in distance thresholds (right-hand side) 

allows a slower inclusion of data into the AD, which consequently improves sensitivity at the 

inner core of the model. 

As originally implemented in the dk-NN algorithm, a query must fall within the 

neighbourhood threshold of at least one training instance in order to be considered inside 

the AD. This prompted the assessment of the impact that the number of required training 

neighbours has on the overall performance of the AD. To do so, the algorithm was tested 

with different minimum required k values which offer coverage to new instances, ranging 

from 2 to 30. 

For the calculation of the RDN AD profile, Wi (Equation 8.2) is calculated for each training 

instance to correct their neighbourhood radius distance according to their level of precision 

and bias. For the P-gp model, STD was calculated from the deviation observed across a 
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10-fold bagged decision tree ensemble, as shown in section 3.6. Regarding the values of 

agreement, these were calculated by determining the frequency of predictions in the 

ensemble which were correct (i.e. matching the observed class).  

 

 

Figure 8.4. Schematic representation of the difference between the RDN algorithm without (left) and 
with (right) distance step adaptation. The grey point represents a training instance, and the black 
points depict external instances scattered across a 2D projection of the 20 molecular feature matrix. 
Smaller increases in radius around the training instance in grey increase sensitivity in measured 
accuracy across the AD landscape. 

 

8.3.5. Comparison with dk-NN and KDE AD Methods 

For a comparison, STD and dk-NN methods have been implemented as they both are 

integrated in the RDN algorithm. The implementation of both was done as described earlier. 

Additionally, Kernel Density Estimation (KDE) has been used for its specific features which 

address data from a different perspective. Similarly to k-NN, KDE addresses data density, 

however the former focuses on local neighbourhoods, whereas the latter addresses overall 

data density across descriptor space. Since RDN accounts for both density and predictive 

reliability, it is worth evaluating both density in chemical space (both locally and globally) 

and response distribution separately. KDE was computed using KernelDensity within the 

sklearn python module, in which a Gaussian kernel was used and the bandwidth was 

selected from an online platform (http://176.32.89.45/~hideaki/res/kernel.html) of bandwidth 

optimization created by Shimazaki and Shinomoto (Shimazaki and Shinomoto, 2010). The 

implementation of KDE followed the procedure outlined elsewhere (Jaworska et al., 2005). 

The density distribution model was established from the first principal component obtained 

from the training set, and the validation and test sets were matched against it to test the 

hypothesis of density being correlated with predictive accuracy (i.e., accuracy decreases 

with decreasing density).  
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Furthermore, as the P-gp model was built using a decision tree learner, it is worth monitoring 

misprediction occurrences with respect to the chemical span in the decision tree’s branches. 

This analysis aimed at identifying any trends within the decision tree’s chemical space 

subpartitions.  

8.3.6. Quantitative Comparison Between AD Methods 

In order to establish which AD method yields the best performance, a scoring function was 

proposed which aims for a quantitative, objective comparison between methods. This 

scoring function evaluates two features: (1) robustness, by measuring the similarity between 

the AD profiles of two external datasets, and (2) proximity to a smooth descending AD profile 

(accuracy vs the AD-produced measure of prediction confidence). 

This scoring function is meant for the scoring of continuous ADs, not being suited for in-out 

binary type approaches. As any AD method is only reliable if it is robust when submitted to 

different subsets of the same dataset, this AD scoring function will quantify the ability of an 

AD to produce the same outcome in two different external datasets Y and Z. In an ideal 

scenario, where the AD of a model is mapped in a robust manner across the training data, 

Y and Z would yield two perfectly matching curves of accuracy vs distance-to-model (DTM). 

This indicates that the model’s reliability readout (i.e., a trend between predictive 

performance and the AD measure) is not being affected by the specific dataset being 

evaluated, but instead the AD is robust enough to describe the predictive reliability across 

the data. Additionally, in the curves for both datasets Y and Z, the accuracy inside the AD 

boundaries should decrease steadily as a function of DTM, as it is theoretically expected 

that a model’s performance will degrade as the distance to the training space increases. 

Equation 8.3 quantifies both aspects and produces a final score. 

 

AD score =
1

Fadded,[1;P]
∑ WPi ×P

i=2 |yi − zi| + WPi     (Eq. 8.3) 

 

In this AD scoring function, (yi - zi) quantifies the accuracy difference at each AD distance i, 

and WPi stands for weighted slope mismatch penalty at distance i, which measures the 

mismatch between the curves’ directions at each distance interval. This will cover the entire 

curve of measured ACC vs AD measure across all points, P. A weighted measure was used 

for the slope mismatch explained below. More specifically, as each distance point is 

associated with a given amount of newly added instances (Nadded) into the AD, the slope 
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mismatch penalty is weighted according to how many instances have been added at a given 

distance interval (Equation 8.4). 

 

WPi = SMP[i,i−1] ×
Nadded,i(y+z)

Ntotal(y+z)
   (Eq. 8.4) 

 

As the AD is expanded (DTM is being increased), the directions of the two curves are 

monitored using a term that penalizes slope mismatch between the curves, the Slope 

Mismatch Penalty (SMP). A qualitative penalty scheme that differentiates the various types 

of mismatch was set, described as follows (see Figure 8.5): 

The slope, m, of any segment in an AD curve (between distances i and i-1) can be m = 0, 

m > 0 or m < 0. Considering the requirement that accuracy should decrease with respect to 

distance-to-model, it is reasonable to consider m<0 as the desirable case, m=0 as less 

desirable and m>0 as the least desirable case. As such, a multiplicative penalty of 1 (i.e. no 

penalty) has been attributed to a negative slope and the penalty doubles consecutively for 

a null slope and a positive slope (i.e., 2 and 4, respectively). This set of penalties was 

optimized to allow a correct scoring of a positive control (a visibly highly similar pair of 

curves) and negative control (a visibly highly dissimilar pair of curves), such that the former 

is the least penalized and the latter is the most penalized scenario. To compare two 

corresponding pair-wise segments, each segment on both curves is attributed a penalty 

according to its individual slope. The resulting product of the individual penalties of those 

two equivalent segments between i and i-1 of the curve corresponds to SMPi. The various 

possible scenarios are exemplified in Figure 8.5, where they are organized from the most 

desirable to the least desirable (from A to F, respectively).  

The weighting of SMP by the amount of data points that are added to the applicability 

domain with each step of increased distance-to-model allows accounting for different local 

densities, which is necessary considering that a shift in the slope direction is more significant 

if it is caused by the addition of, for example, 50 new data points than by 2. As the scoring 

function is comparing each pair of corresponding points in both Y and Z curves, the numbers 

of instances under such pair of points are added together and divided by the total number 

of instances of both, to allow comparison between AD techniques that produce a different 

amount of distance-to-model points. 
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Figure 8.5. Representation of the different possible Slope Mismatch Penalties, organized from the 
most desirable (ideal) scenario in A to the least desirable scenario in F. 

 

In addition, the absolute difference of accuracy (|yi - zi|) under the same distance-to-model 

value (X-axis) is also included in the AD scoring function. This corresponds to the underlying 

concept of the Fréchet distance commonly used to measure curve similarity (Efrat et al., 

2006). However, this is not a decisive aspect, since a shift in absolute accuracy values will 

not have any impact in the decision of accepting or rejecting any given prediction, as long 

as the AD curves match in shape (i.e., the highest accuracy occurs at the same region for 

both curves). As a result, this is included with the sole purpose of allowing to differentiate 

between two pairs of curves where, in each pair, both curves have exactly the same shape 

within the pair, but one pair shows larger deviation of absolute accuracy values. To prevent 

this parameter from having a large impact on the total score (which would be inappropriate), 

it was added as coefficient of WP, as depicted in Equation 8.3.  

Lastly, as different AD techniques cover a different amount of data with their first iteration, 

which can be regarded as the AD’s core, it is desirable to differentiate between AD 

techniques according to their resolution at the model’s core. It is more useful to cover 5% 

of the total data with the first iteration than 50% of the data, as the user has no information 

regarding the accuracy vs distance relationship across that portion of the data. As a result, 

the final sum across all distances i is divided by the fraction of covered data from the first 

iteration to the last (Fadded); as this value approaches 1, the resolution at the model’s core 

increases, and the final sum is increasingly less inflated. 
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8.3.7. Testing on Benchmark Datasets 

To exclude the possibility of an exceptional performance under the P-gp dataset, two 

benchmark classification datasets were tested: the Ames mutagenicity dataset (“Ames 

levenberg” model entry, referred to as “Ames” from now on) and the CYP450 inhibition 

dataset (“CYP450 modulation e-state” model entry, referred to as “CYP450” from now on). 

To avoid any additional bias, the datasets were previously modelled (Sushko et al., 2010b) 

and the predictions were used as provided at the OChem QSAR modelling repository 

(https://ochem.eu/home/show.do). To allow testing the robustness of the AD profile, the 

validation datasets retrieved from OChem were split into two. Therefore, in this work, AD 

was evaluated in the P-gp model using the validation and TE, and the AD of the two models 

of benchmark datasets was assessed by splitting the provided external dataset into two 

sets of data. The Ames dataset comprised a training set of 4358 compounds, and two 

external sets of 1089 and 1090 compounds. The CYP450 dataset comprised 3743 training 

compounds, and 1870 compounds in each of the external test sets. 

To maximize direct comparability, the source of the feature set used in every AD technique 

implemented for each dataset was kept fixed. As the purpose of this study is to validate the 

observed profile with the P-gp model, upon which the RDN technique was optimized, the 

feature selection procedure used in this case (i.e., top 20 features selected by ReliefF) was 

applied to the benchmark datasets. This potentially avoids background confounding that 

might perturb the effect of the AD method being applied to a given dataset. 

For the calculation of the RDN AD for the two benchmark models, STD was used as 

provided in the OChem platform (calculated using the same method as described in this 

paper). As the output probabilities of each model of the ensemble were not available for the 

benchmark models, the agreement values were calculated from the inverse of the difference 

between average predicted probability and the observed value (so, an average predicted 

ensemble probability of 0.23 for an observed class value of 0 equates to 1 – |0 – 0.23| = 

0.77 agreement). Even though this is more skewed than the frequency of correct 

predictions, it still represents the majority vote (or the overall predictive trend), to some 

extent. In fact this is a more conservative way to calculate the agreement, since larger 

agreement values are only achieved when the majority of the predictions also have a value 

close to the expected class, and it is no longer sufficient that the majority is merely beyond 

(above or below) a threshold of P=0.5. 

Note that, to allow a closer analysis of the rate at which data is being included at each 

iteration of each AD method, all AD profiles will be presented in the form of Accuracy as a 

function of amount of data included into the AD. As different AD techniques often generate 

https://ochem.eu/home/show.do
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different types of threshold values (number of neighbours, standard deviation, and density 

percentile), this standardization also allows a simpler and more intuitive visual analysis of 

the readouts. However, attention must be paid to the fact that the actual establishment and 

use of each technique relies solely on the output measures. So, two profiles for the same 

technique applied to the same dataset under different parameters (e.g., a different set of 

features) might generate a percentage of 15% and 70% of included data, respectively, 

within their first iteration. If this first iteration is measuring the average distance to the first 

nearest neighbour, both cases will compute this distance differently (due to the use of 

different parameters), which will in turn generate a larger or smaller inclusion of data. 

 

8.4. Results and Discussion 

8.4.1. The Role of Feature Selection in Establishing the RDN Method’s AD 

for the P-gp Dataset 

Firstly, the original dk-NN was implemented on the validation set using different sets of 

features to assess the impact of different sizes of the feature set. Figure 8.6 shows very 

different AD curves for different features used. Interestingly, the feature set leading to the 

best validation performance in the P-gp model development (Aniceto et al., 2016b), namely 

C4.5-GA-derived features, revealed to be far from acceptable for AD characterization using 

this technique, as the smallest achievable region around the AD core includes almost the 

entire dataset (91.8% coverage) and it shows an accuracy of 0.685 – which is below the 

baseline accuracy of the global validation set at 0.691. This is in line with the theoretical 

expectation that the training of the QSAR model and the calculation of the AD are two 

different tasks, as already explained earlier in the chapter. 

The AD profiles built from all features and from the ReliefF top 20 features were the best 

ones, showing signs of decreasing degradation as the distance to the model’s core 

increases. As this indicates the possible ability of these two feature sets to locate higher 

quality predictions at the model’s core, both feature sets, namely the ReliefF top 20 features 

and all features, were tried in the RDN AD development as well as the model’s feature sets, 

C4.5-GA, for comparison. Figure 8.7 shows that by using the ReliefF top 20 features a better 

resolution is achieved at the model’s core. More precisely, using all features leads to the 

inclusion of ~80% of the external data at the first iteration, while using the ReliefF top 20 

features, only ~62% of the data is included in the first iteration. Also, both the ReliefF top 

20 and C4.5-GA curves show a statistically significant difference (Wilcoxon paired signed 
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rank test, p = 0.0270, carried at a 95% confidence level after a failed Shapiro-Wilk normality 

test).  

 

 

Figure 8.6. Comparison of different feature sets used in the dk-NN AD by Sahigara et al (Sahigara et al., 2013), 

applied to the P-gp validation set. The baseline value (i.e., accuracy corresponding to 100% data inclusion) for 
the IV set is 0.6907. 

 

In addition, the RDN AD developed by using the ReliefF top 20 features shows a visible 

decline in accuracy as the distance to the model’s core is increased (by addition of new 

data). This shows an improvement when compared with dk-NN AD developed by this same 

set of molecular descriptors (compare Figures 8.6 and 8.7). This means that penalising the 

distance thresholds attributed to each training instance according to their reliability 

(measured in STD and agreement) is useful towards mapping an AD with a higher quality 

core. 

Results show that neither of the feature options commonly used in AD development – i.e. 

the model’s descriptors or all available descriptors (Tropsha and Golbraikh, 2010, Dragos 

et al., 2009) – were appropriate for this dataset. The lack of ability to differentiate high 

reliability regions and low reliability regions across the chemical space when using all 

features is probably a sign of an overwhelming amount of noise that prevents the algorithm 

from taking advantage of meaningful variables. This goes against expert recommendation 

that all available features should be used (Tropsha and Golbraikh, 2010). Even if these 

observations do not necessarily apply to each and every QSAR problem, they should at 

least raise awareness to the fact that a feature selection routine should be carried within 

the task of AD characterization. 

It would be theoretically expected that C4.5-GA would lead to a better AD characterization 

as it yielded a better learning performance which, in practice, means that it generated a 
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decision tree better able to differentiate the two classes. However, the herein reported 

results show that ReliefF was visibly better able to generate more informative features with 

respect to misprediction-correct prediction separation (Figure 8.7). Considering that 

classification errors happen by lack of ability to differentiate the two classes at certain 

regions of the chemical space, it is possible that features that directly address class 

differentiation are more explanatory in these problematic locations of the structure-activity 

landscape.  

The reason why ReliefF outperforms C4.5-GA in this particular task might be because it 

selects relevant features even if they are highly correlated to other highly ranked features 

(Kantardzic, 2011, Hall and Holmes, 2003). This is possibly advantageous when defining 

the AD as two features might be highly correlated but still necessary to provide chemical 

coverage at specific locations of the data, which can be interpreted as feature cooperation 

– recall that feature dependencies can potentially hold information that an isolated feature 

cannot represent, as exemplified by Dragos et al. (Dragos et al., 2009) (highly correlated 

hydrogen bond donor capacity and (positive) charge provide potentially essential 

information when combined). This ability to capture local idiosyncrasies and to uncover 

informative label interactions are some of the strongest characteristics of ReliefF (Bolón-

Canedo et al., 2015, Hall and Holmes, 2003, Bolón-Canedo et al., 2013), and it has been 

recommended as useful when the task can take advantage of strong feature interactions 

(Hall and Holmes, 2003). 

 

 

Figure 8.7. Comparison between RDN applied to the P-gp validation dataset using the ReliefF top 20 features, 

all features or the features selected by C4.5-GA. Note that this implementation of RDN corresponds to using 
the distances directly from the k-average nearest neighbour (i.e., the distance shrinking to 1/3 and 1/2 has not 
been applied yet at this point, as explained later in the discussion). 
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In addition, using a wrapper means the bias of the C4.5-GA feature selection algorithm 

interacts with the bias of the C4.5 learning algorithm (Tang et al., 2014, Liu et al., 2010). 

Tetko et al. (Tetko et al., 2008) reported that using the descriptors previously used to train 

the model does not lead to a better AD. This is in line with the observation that the features 

used for the modelling did not yield the best AD. Given that ReliefF generated high quality 

AD for the benchmark dataset (discussed below), this study proposes that this technique 

is, in principle, particularly well-suited for AD mapping. 

 

8.4.2. Implementation of the RDN-AD Using the ReliefF top 20 Feature Set 

Even though using the ReliefF top 20 features yielded a visible improvement in the AD 

quality, Figure 8.7 shows that, at this point, the RDN technique is still insufficient in mapping 

the reliability close to the model’s core, as taking into account the region up to the average 

1st nearest neighbour satisfies more than 60% of validation data. Hence it can be deduced 

that the supposed inner-most region of the AD is far too large to be able to sort predictions 

for their reliability. This led to the implementation of three different distance steps as the 

neighbourhoods are increased (as described earlier in this chapter, Section 8.3). It was 

hypothesized that, as regions closer to the AD’s core are expected to have more data, this 

area requires smaller steps for increasing distance, and as distances to the training data 

get larger the distance increment step can also increase. Applying this modification in 

distance step size did in fact bring a marked improvement in the quality of the AD core, as 

depicted in Figure 8.8 by the higher accuracy value at the first iterations of ReliefF top 20. 

As explained before, recall that the percentage of included data is a mere result of an 

underlying distance-to-model threshold measure. As a result, the first point in both profiles 

corresponds to the same iteration (which in this case is the respective average distance to 

the first nearest neighbour). Additionally to this, ReliefF top 20 also yielded better resolution 

at the AD’s core (a smaller portion of data included at the first iteration, which allows a more 

gradual monitoring of quality across chemical space). 

Furthermore, there is a marked difference between the initial dk-NN-derived profiles and 

the final RDN profiles (Figure 8.8, A vs B). Considering that the dk-NN method can be 

regarded as the backbone of the RDN technique, this marked improvement in the ability to 

sort external set predictions according to their reliability is attributed to taking into account 

the local bias and precision (the correction factors), as well as allowing a slower increase 

of the AD span (i.e. slower scanning from the core to the outer regions of chemical space).  

Figure 8.8 B shows that even though the accuracy vs size of the AD is not a smooth profile, 

it shows a very similar trend between the two external sets (validation and test sets). There 
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is a main accuracy drop in the RDN AD at around 15% of data in the AD, which corresponds 

to a specific Euclidean distance from every training instance. So, it is probable that the 

chemical space corresponding to instances that fall around this distance is problematic. As 

a consequence, more importantly than having perfectly smooth profiles of degradation with 

respect to distance to the model, it is a priority that the established AD profile (in this case 

through the validation set) is able to correctly characterize how new data will behave, in a 

robust manner, across chemical space. One should remember that other issues of the 

model are being brought along with any AD assessment, i.e., activity cliffs, experimental 

errors in the response variable, and specific shortcomings of the machine learning task 

undertaken (e.g. overfitting).  

 

Figure 8.8. Comparison between dk-NN (A) and RDN (B) ADs, both computed using the top 20 ReliefF selected 

features applied to the P-gp dataset. RDN was implemented with different distance increase steps as explained 
in the Section 8.3. 

Note that the percentage of inclusion and accuracy are cumulative. So, as the model space 

is being further explored, whenever an unreliable region is reached the detrimental effect of 

poor accuracy associated with compounds in this region will be propagated to the following 

regions, and their accuracy values will be deteriorated. This means that, when a low quality 

patch is found around the area corresponding to 15% of included data, this will decrease 
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the accuracy at the following regions, which means that quality at the location of 23% 

inclusion would actually be higher than the observed 74%. 

In an attempt to establish the cause for the abrupt decline observed at the beginning of the 

AD curve in Figure 8.8 B, the compounds entering the AD around 15% of included data 

were analysed. The descending part of the curve that precedes this point corresponds to 4 

compounds being added through 4 distance steps (4 iterations of the algorithm), which in 

itself indicates this is a sparse region of the model. As a consequence, it is understandable 

that 3 of those 4 instances are mispredicted, given the theoretical link between data density 

and predictive confidence. It would be very difficult for the model to properly establish any 

link between structure and activity dependence with such scarcity of information on both 

aspects. 

Looking into the absolute maximum (model’s core) of the AD, it was observed that the 18 

molecules covered at this point are generally very dissimilar (similarity matrix in Appendix 

V, Figure A5.1), showing a 0.1137 median Tanimoto coefficient of ECFP4 fingerprints, 

which spanned between 0.029 and 0.71. This rules out the assumption that the model’s 

core corresponds to a cluster of data – which would render this AD very limited for new 

data; instead the model’s core is spread across chemical space, into various smaller sub-

portions of the core. 

 

Figure 8.9. Visual representation of the RDN AD across two projected dimensions of the input set of 
molecular descriptors. Larger (light gray) circles are established from training instances with higher 
density and/or higher reliability (small bias and large precision), and as circles decrease in size (dark 
gray, and orange) this indicates less dense/reliable regions of training space. External test 
predictions (black) are placed onto chemical space and if covered by any of the training circles they 
are deemed as being within the AD, for the established distance threshold. 
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Figure 8.9 shows a graphical depiction of the neighbourhood circles around the training 

space, and how the external set scatters with respect to it. 

 

8.4.3. Comparison between RDN and STD ADs 

Ensemble standard deviation (STD) and STD-related methods are arguably some of the 

most successful AD techniques in the literature (Sushko et al., 2014) (see comparative 

studies in (Tetko et al., 2008, Dragos et al., 2009, Sushko et al., 2010a)). As a result STD 

was set as the “gold standard” comparator, and comparisons will be made with respect to 

test set performance, and degree of matching between validation set and test set. 

Figure 8.10 shows the STD AD profile for training, validation and test sets as a plot of 

accuracy vs the standard deviation between the ensemble predictions. Firstly it is important 

to note how misleading it is to use the training set to define the AD, as commonly done by 

QSAR practitioners. As clearly shown in Figure 8.10, the training set gives an overly 

optimistic reliability profile across STD, which stems from the natural tendency for 

overfitting, and also possibly due to the systematic bias for the external sets. In this 

scenario, it is preferable to have a conservative reliability profile given by the validation set, 

which is what was done with the RDN AD above. 

 

Figure 8.10. Accuracy across STD tiers for the different P-gp datasets.  

 

Even though STD shows a very smooth profile on the test set, this does not mean that STD 

outperforms RDN, as the addition of new compounds is based on the standard deviations 

of predictions by various ensemble models, which is a more supervised procedure than 
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RDN (Figure 8.8 B) where compounds were being added based on the corrected distance 

to training space. In addition, Figure 8.10 shows that there is a marked difference between 

test set and validation set accuracy profiles across the AD, which renders this technique 

unpredictable with new data. This difference stems from the fact that low STD does not 

necessarily mean high quality of prediction, and it merely translates into high precision of 

the machine learning task – the lack of sensitivity to bias is the main flaw of this method, 

which is addressed in the newly proposed RDN method through the addition of the 

weighting term Wi (which accounts for both precision and bias). Therefore, different datasets 

suffer, to different extents, from systemic bias when training a QSAR model. This 

phenomenon can be demonstrated by the notable impact that accounting for bias (by using 

the agreement measure) has in both profile smoothness and inner-core quality (Figure 

8.11). If agreement is taken into account, situations of high precision-high bias (affecting 

the quality of the STD AD) are overcome for the validation set. This observation further 

supports the use of both precision and bias measures as correction factors in the RDN 

algorithm.  

The RDN outperforms the STD method as the former shows similarity between the accuracy 

profiles of both P-gp external datasets (validation an test sets) as well as showing similar 

accuracy levels for these two sets, which is an evidence that this AD method appropriately 

addresses data locality, while the STD AD method shows high discrepancy between the 

two sets (as depicted in Figure 8.10).  

 

Figure 8.11. STD AD taking into account different agreement levels in the P-gp validation dataset. 

 

To demonstrate the utility of RDN, consider one of the compounds with the lowest ensemble 

STD scores in our test set (Pemirolast, shown in Fig. 12, has an STD of 0.0284). According 

0.500

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

0
.3

1

0
.3

3

0
.3

5

0
.3

7

0
.3

9

0
.4

1

0
.4

3

0
.4

5

0
.4

7

0
.4

9

0
.5

1

0
.5

3

>
0
.5

5

A
c
c
u

ra
c

y

No agreement
limit

> 0.6

> 0.7

> 0.8

> 0.9



A Novel Applicability Domain Method: Reliability-Density Neighbourhood (RDN)  

 
175 

to its STD score, this compound would be deemed very reliably predicted, however it is 

actually systematically mispredicted. In contrast to STD, the RDN applicability domain only 

covers this compound at around 70% data coverage. As a result RDN is effectively able to 

overcome this systematic bias and correctly identify this as a lower-reliability prediction.  

As RDN AD describes a consistent relationship between distance-to-model (or RDN 

distance) and accuracy in two external datasets, it should be used as a measure of 

prediction confidence across the chemical space, rather than merely a single point AD 

threshold where some compounds are included while others are excluded. Hence, instead 

of assigning compounds as in- or out-of-domain, they should be associated with different 

prediction confidences. This is a more sensible use for the AD, as it would be up to the end 

user to select the maximum acceptable error rate level. 

 

Figure 8.12. Example of an external set compound (Pemirolast) whose prediction is misleadingly 
deemed reliable when using the STD method. However, the RDN correctly associated this with low-
reliability prediction, which matches the misprediction outcome observed for this compound. 

 

Furthermore, as shown by RDN and, to a lesser extent, by STD (Figures 8.8 and 8.10), this 

continuous AD characterization allows mapping the reliability landscape across the data. 

This can be used to identify problematic regions in the model, which is more productive than 

merely accepting or excluding predictions (as in the leverage AD, for example). For 

example, using Figure 8.8 B the predicted P-gp queries that fall in regions up to 13%, and 

between 22-27% of included data (which can be traced back to an underlying Euclidean 

distance threhsold) are expected to be more reliably predicted according to the AD profile. 

The AD profile also shows that from 70% inclusion onwards, there is a much higher 

probability of compounds being mispredicted.  

Additionally, the impact of the minimum requirement for the amount of training neighbours 

was investigated (ranging between 2 and 30 as described in the Methods section 8.3) and 

the results revealed no benefit from increasing the amount of neighbours (see Appendix V, 

Supplement A5.1 “Impact of the minimum required number of training neighbours”).  
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8.4.4. Complementary Analysis with Other AD: Diagnosing Mispredictions 

Descriptor range has been used as a simple way of defining the applicability domain of a 

QSAR model. Here, in order to identify whether mispredictions are more commonly found 

outside the chemical span of the model, the descriptor range of the training set compounds 

at each of the branches in the decision tree model was computed. This strategy was 

previously proposed by Tong et al. (Tong et al., 2004), however, the descriptor range was 

limited to the instances actually passing through each of the tree branches, instead of 

considering the descriptor range of the entire dataset. The rationale behind this approach 

is that a given tree ramification may, for example, establish that class 1 has MW > 100 

g.mol-1 and class 2 has MW ≤ 100 g.mol-1, which are one-sided limits. This means that a 

query with MW = 50 g.mol-1 is able to pass through that node even though the training cases 

that pass through the same node have MW ranging [70-100]. In reality, this compound is 

outside the range “known” by the trained model, and will be detected as such by this 

approach (process illustrated in Figure 8.13). Curiously, the 62 test instances that fell 

outside the respective branch’s descriptor range were associated with 72.6% accuracy, 

while the compounds inside the descriptor range showed 67.7% accuracy. This shows that 

falling outside training range is not necessarily the cause of misprediction. This justifies and 

further supports the use of an AD, like RDN, that identifies possible problematic regions 

within the data. 

 

Figure 8.13. Schematics of the branch span assessment. 

 

On the other hand, a method such as KDE, which is one of the most sophisticated AD 

approaches known for being able to detect empty regions in the data (Sahigara et al., 2012), 

also shows marked unpredictability in new data (Figure 8.14). Its utility is based on the 
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expectation that empty or less populated regions equate to weaker predictive performance 

due to insufficient chemical information. Figure 8.14 shows that the two external sets show 

different profiles (taking into account a comparison between the slopes of equivalent 

segments of both curves). This suggests that even looking at the inner space in descriptor 

range (which is the case with the KDE method), as opposed to looking at the descriptor 

range, does not appear to be sufficient by itself, as density appears to relate to predictive 

accuracy in a non-robust manner (Figure 8. 14). However, the figure still shows some level 

of correlation between density and predictive performance. Low percentage of data 

coverage indicates higher density thresholds in the density plot across the first principal 

component (used to calculate the density distribution model), and as this threshold is 

decreased (the AD boundaries get expanded) there is an overall trend of decreasing 

accuracy. Nevertheless this is still a very rough trend, and the fact that accuracy does not 

evolve in the same manner in both datasets, as data coverage is increased, indicates that 

addressing data density is not sufficient as a standalone AD measure, but it could be a 

useful parameter towards the characterization of a model’s AD. This corroborates the 

inclusion of this property in the RDN algorithm. 

 

Figure 8.14. KDE results on validation and test sets of the P-gp dataset. 

 

8.4.5. Evaluation of RDN on Benchmark Datasets 

To validate the utility of RDN, this was applied to two previous models built from benchmark 

data, Ames and CYP450. Note that the two benchmark datasets were modelled using 

neural network training, while the P-gp data was modelled with a decision tree method.  

Additionally, recall that the same feature selection method was used for all AD methods 

across all datasets (ReliefF top 20 features).  
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Both benchmark modelled datasets resulted in a smooth, decreasing curve of accuracy vs 

percentage of included data in the AD with RDN (which directly translates into distance to 

the model) (Figures 8.15 and 8.16). Furthermore, the shape of the curve in the two external 

datasets within each benchmark dataset is similar. In addition to RDN, Figures 8.15 and 

8.16 show that STD and dk-NN also generate curves of similar shape for the two external 

sets, however this was not the case for KDE. This reinforces the need to test a model’s AD 

in two different sets of data.  

The main difference between RDN and STD with respect to the Ames model was that RDN 

profiles differed only in absolute accuracy values and maintained a similar overall curve 

shape for the two external sets, whereas STD revealed a significant difference in shape 

between the two curves at the core of the AD. This is very likely due to systematic bias in 

the model, which produces agreeing predictions in the ensemble which are consistently 

incorrect (i.e. a low STD for incorrect predictions). As in the RDN method, both precision 

and bias are accounted for, this shortcoming has been overcome. 

For CYP450 a similar overall performance to that with Ames has been obtained. Moreover, 

in this case, both external subsets showed very similar absolute accuracy values. STD 

performed also very reliably with CYP450 but, once again, there is more oscillation of 

accuracy near the core of the model than with RDN. This oscillation is however not so 

marked that it would lead one to question STD’s robustness across other data. However, 

this is another example of a possible systematic bias that the ensemble STD could not 

overcome. 

Results from both datasets confirm the validity of RDN as a method to appropriately define 

the applicability domain of a QSAR, by allowing a robust mapping of local predictive 

reliability across chemical space. Recall that this AD technique is completely independent 

from the model, and the AD is established solely using the training set. New predictions are 

merely sorted into different regions of the AD landscape after span of coverage around the 

training set has been set, at each iteration of the algorithm. The fact that correctly predicted 

instances show higher probability of being found near the training instances that are less 

biased and more precisely captured by the QSAR model demonstrates that, as theoretically 

expected, the reliability of a neighbourhood is inherited by its occupiers. 

Furthermore, the independent role of density with respect to determining predictive reliability 

can be assessed by dk-NN and KDE as both sort the data according solely to density, where 

dk-NN does it at a local level, whereas KDE does it on a global scale. According to Figures 

8.15 and 8.16, both KDE and dk-NN methods fail to achieve a descending level of accuracy 

with distance from the model’s core. In addition, in both Ames and CYP450, the two different 
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external subsets show different profiles, indicating that density and predictive performance 

vary unpredictably with respect to each other. As with the Pgp model, the Ames model also 

shows an overall slight descending trend with KDE and dk-NN. This supports the hypothesis 

that utilizing density information (both local and global) could play a role in the determination 

of a robust AD.  

 

 

Figure 8.15. All four AD methods applied to the Ames model. Each of both lines in each graph 
corresponds to the same partition of the test set. Each line type represents one of the two external 
test sets from the Ames dataset. 

 

On the other hand, the fact that the two CYP450 external datasets show quite different 

profiles with KDE, and this same technique has very different outcomes between all three 

datasets, indicates that this method is not reliable as a standalone measure for AD 

determination and there may be other factors that should be taken into account.  While 

global density appears to have an unpredictable role in predictive reliability, one cannot 

conclude that density has no role in the establishment of an AD, as when it is addressed at 
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a local level in the dk-NN method, it shows very low resolution at the core, which might be 

hiding meaningful correlations with accuracy. 

 

 

 

Figure 8.16. All four AD methods applied to the CYP450 model. Each of both lines in each graph 
corresponds to the same partition of the test set. Each line type represents one of the two external 
test sets from the Ames dataset. 

 

8.4.6. Assessment of the AD Quality using a Scoring Function 

Here a scoring function is proposed to numerically measure the efficiency of an AD curve 

(see the Methods section 8.3). Using this function leads to the same conclusions obtained 

from visual analysis of the AD profiles (scores are summarized in Table 8.1). According to 

the AD scoring function, Ames and CYP450 show more similar external set curves with 

RDN than with STD, which indicates that RDN is in general a more robust method for AD 

profiling. On the other hand, KDE obtained the worst (highest) score in all 3 models. Despite 
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what was previously established regarding the value of RDN, here the quality score points 

to the superiority of STD for the P-gp dataset. Recall that the quality score favours 

descending, smooth curves, and indeed STD has a smoother profile; however, RDN has 

the advantage of robustly locating poor quality regions (as discussed earlier). This shows 

that the scoring function may not necessarily follow the qualitative assessment of the AD 

profiles. Note that this study does not claim that RDN performs better than STD in all 

possible scenarios and datasets; instead, as with model development, the best AD method 

must be evaluated and the best method adopted in a case-by-case situation within every 

modelling effort. It is possible that some datasets suffer more from the effects of bias and 

hence they would benefit from RDN to overcome the systematic bias aspect of the STD 

method. This could explain why Ames and CYP450 models showed a very strong 

correlation between accuracy and distance to training space using RDN, and the P-gp 

model shows a poorer trend. 

As explained in the Methods section 8.3, in the calculation of the scoring function, the impact 

of any given sub-segment of the AD curves is corrected for the amount of data it is 

associated with. Consequently, even though visually all points in an AD curve carry the 

same weight, the proposed scoring scheme allows assigning the correct weight to each 

point according to the number of implicated instances. As a result, even though, in a 

comparison between CYP450-STD and CYP450-RDN, the AD characterization of the 

models with STD appears to be as robust as the RDN in the AD profile figures, STD is in 

fact associated with more data being located in uncertain regions of chemical space. 

 

Table 8.1. Summary of AD score across all three models studied. Lower AD scores indicate a better 
scenario, translating into higher similarity to an ideal AD curve (smooth and decreasing trend of 
accuracy as a function of the AD span), and it also translates into a closely matching pair of two 
external set curves (which translates into a higher level of robustness). The lowest scores for each 
dataset are highlighted in boldface. 

 AD Score 

 RDN STD dk-NN KDE 

P-gp 4.40 2.79 6.82 8.14 

Ames 1.29 1.92 4.48 9.26 

CYP450 1.01 2.85 7.84 13.00 

 

In order to support the validity of this AD robustness score, it is worth analysing the 

contribution of simpler measures (or concepts) that are incorporated in the newly proposed 

score. The details of such analysis are available in Appendix V (Supplement A5.2 
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“Complementary assessment of simpler curve similarity measures“), where it can be seen 

that none of the two parameters that constitute the proposed score, i.e., the pairwise 

similarity and the absolute difference between the curves, are sufficient on their own in 

assessing the quality of an AD profile; and the proposed scoring function is the most 

appropriate measure of AD robustness.  

The fact that P-gp data is smaller and very noisy makes it more difficult for AD development.  

The P-gp data generated a poorer model (inferior test accuracy) (Aniceto et al., 2016b), 

with a higher rate of mispredictions than Ames and CYP450 models, which makes the task 

of defining a smooth AD profile considerably harder. The noise in the P-gp data comes from 

the variable threshold used in various sources to consider a compound as being a substrate 

(Broccatelli, 2012), as well as the very large level of experimental uncertainty (Bentz et al., 

2013). Furthermore, P-gp binding is notably known as being a very complex phenomenon 

driven by outstanding polyspecificity (Chufan et al., 2015), which makes it naturally prone 

to error or bias in the experimental data. 

 

8.5. Conclusions 

The utility of a QSAR relies on the theoretical assumption of a smooth relationship between 

independent features and the dependent variable (Maggiora, 2006), which allows its use 

for interpolations. However, as in reality the model’s landscape is not entirely smooth, it is 

crucial to map rugged regions across chemical space, since identifying these regions is the 

only way of assuring that the model can be safely used for future predictions (Krein et al., 

2012). The applicability domain establishes where the Structure-Activity relationship is 

smooth (i.e., where the dependency between structure and property holds). These rough 

“patches” in the structure-activity landscape could be due to input errors, abrupt changes in 

activity/property known as activity cliffs, or lack of chemical coverage due to data scarcity. 

It is proposed here that the adequate feature set optimized for the characterization of the 

AD can, in theory, reveal the problematic regions if the AD is optimized using external sets. 

By testing the AD performance with new data (external set), this increases the probability 

of having compounds falling in such “unseen” regions of structure-activity. As a result, the 

poor ability to predict these compounds will pinpoint the locations where the model should 

not be used. To address this issue, this study introduced a novel AD characterization 

method that considers the impacts of local data density, as well as the precision and 

robustness of predictions across the chemical space. In addition, the role of feature 
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selection paired with the AD technique was also addressed, challenging the usual 

inheritance of features previously selected for the model development.  

The new AD technique proposed in this work, named Reliability-Density Neighbourhood 

(RDN), is a hybrid technique, joining features from a density k-NN approach (which is here 

referred to as dk-NN) and the standard deviation of an ensemble model (named STD), as 

well as additional novel features like bias correction.  The RDN AD allows taking into 

account: (1) sparse regions by mapping data density, as well as (2) local precision and bias. 

At the same time, this method was paired with ReliefF, which selects a set of molecular 

descriptors optimized to allow maximum separation between the classes to be predicted by 

the model. This method was applied to three different QSAR datasets and was compared 

with other established AD methods. Using the RDN AD allowed to improve the original 

distance-to-model method (dk-NN), which can be regarded as a simpler version of RDN. 

This improvement was visible through the increase of the accuracy at the core of the AD. 

RDN showed to be a robust AD technique that maintains an expected profile where 

performance degrades with increasing distance to the model in an external set. This 

technique showed overall better performance in comparison with the established STD 

method, as well as when compared with KDE, across all three datasets with a very strong 

correlation with accuracy. 

The results presented here indicate that a given applicability domain needs to be assessed 

by the use of more than one external dataset to investigate the robustness of the AD. The 

two external sets can be compared in terms of accuracy vs distance-to-model profiles to 

indicate the reliability of a proposed AD. In this chapter, a scoring function to assess the 

quality of a given AD was also presented. The scoring function takes into account both 

robustness and the strength of the correlation with accuracy. As a result the assessment of 

robustness is proposed as standard procedure during the characterization of an AD, which 

can be done by evaluating the similarity of the relationship between accuracy and an AD 

measure for the two external subsets. This is a paramount aspect to take into account; 

without this there is no indication that a given AD can maintain its established accuracy 

profile across chemical space with new data. 

This work challenges the common notion that either the QSAR model’s features or the entire 

feature set must be utilized for the establishment of the AD, and proposes that a separate 

feature selection task should be performed specifically for AD development. Due to its 

particular characteristics, ReliefF has been proposed as a very effective algorithm for this. 

The results of this work showed that the feature set leading to the highest predictive 

performance is not necessarily the most adequate feature set for AD characterization. The 



A Novel Applicability Domain Method: Reliability-Density Neighbourhood (RDN)  

 
184 

proposed implementation of a feature selection routine using ReliefF showed to be 

successful in mapping accuracy across the structure-activity landscape.  

Overall the RDN technique was shown to effectively map prediction reliability across a 

QSAR model’s chemical space, and shown to be a useful tool to guide users on their 

decision regarding compound prioritization, thus promoting the user’s trust with the utility of 

the QSAR model itself. This work helps reinforce the central role of AD characterization in 

any modelling workflow, as it demonstrates the importance of a thorough implementation 

and characterization of the AD. 
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9. Conclusions and Future Perspectives 

This final chapter gives an overview of the research presented in this thesis, as well as its 

relevance and novelty to the field of chemoinformatics.  

As discussed in the Introduction (Chapter 1), the ability to properly screen compounds 

according to their ADME amenability has been, and still is, a key factor in reducing late 

stage drug attrition and making the drug development process more economically viable. 

Computational models have enabled the improvement of the capability for ADME screening, 

among which QSAR models show a very attractive balance between allowing very high 

throughput and still producing relatively good predictive performance. QSAR modelling 

additionally offers the possibility of deconvolution of desired or undesired chemical patterns/ 

scaffolds (with respect to PK) from the measured endpoint, whose information can be fed 

back into the drug development process to help guide current or future campaigns. 

Among the different ADME properties that determine drug failure and contribute to the 

attrition rate, this thesis has focused on Volume of Distribution (Vd), and the prediction of 

this variable has been extensively explored in the past decade. It is well established that 

this variable depends on an array of both physicochemical and physiological factors 

however, while physiological models (PBPK models) have been trying to harness both 

sources of information, the statistical (machine learning) modelling of this property has been 

mostly explored using chemical features as the only source of input. Besides the work by 

Freitas et al. (Freitas et al., 2015) that uses tissue partition data as input (alongside 

molecular descriptors) in a machine learning QSAR model, QSAR models in the literature 

have tipically used phospholipid binding and plasma protein binding as physiological input. 

Alterantively, Vss has been indirectly predicted from physiological information by Paixão et 

al (Paixão et al., 2014), where physiological descriptors are used to model tissue partition 

across the main tissue contributor of Vss. Tissue contributions are have, in turn, been 

summed to calculate Vss. As a result, as of writing this thesis there was still no data-driven 

(QSAR) approaches to modelling Vss that attemped to use more, and more complex 

information of physiological information as input. As a contribution to filling this gap, a more 

sophisticated approach to better capture the distribution process was designed.   

Borrowing from empirical knowledge and the physiological models published in the last 

decade, the overall hypothesis in this research is that Vd (measured as Vss) can be better 

modelled using a statistical approach accompanied by the incorporation of input 

physiological descriptors alongside physicochemical features. This hypothesis is derived 

from the knowledge that several different physiological mechanisms directly affect 
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distribution - in fact, formally Vss is the net effect of the conjugation of such driving 

mechanisms. This approach is further encouraged by the positive impact from directly 

accounting for such processes, reported  for instance by Freitas et al. (Freitas et al., 2015). 

To test this hypothesis, transport data from two main families of transporters – the ABCs 

and the SLCs - was selected to be used as input features. However, as there is small-to-no 

overlap between the publicly available data from these transporters and the benchmark 

dataset for Vss in humans (published by Obach et al (Obach et al., 2008), which exaplins 

the lack of studies using such kind of information as input to model Vss. This was overcome 

by imputing missing transport data using predictions produced by previously trained QSAR 

models on various key transporters. Using such imputation approach shares the same 

principle behind multi-label modelling, particularly the classifier chain approach, where, if 

two properties (or labels) share any form of correlation, it might be benefitial to model one 

property and use the resulting predictions as a features of the second property. Similarly, in 

the case of this work, predictions for transporter data were taken as a feature in the 

modelling of Vss. To do so, a previous step of ABC and SLC transport modelling was carried 

out.  

The ATP-Binding Cassette (ABC) transporters were modelled first and this effort was 

discussed in Chapter 4. To do so, substrates and non-substrates from four of the ABC 

transporters (BCRP, P-gp, MRP1 and MRP2) with the highest clinical significance were 

gathered. Given the overlap observed between transporters and the existence of instances 

where these transporters show cooperation or redundancy in similar partition processes in 

certain tissues, a multi-label approach called Classifier Chains was employed to ascertain 

whether there is any correlation between these four different efflux processes, and if so, to 

use it in order to aid the learning of their respective structure-activity relationships. In this 

approach, decision trees for predicting substrates of the transporters were trained 

iteratively, and the learned information was passed forward, and used as a predictor to train 

models for the following transporters, in a chained process. The CC model showed evidence 

of learned information from certain transporters being effectively picked into the decision 

trees, and some improvement of predictive performance was observed, when compared to 

a scenario where transporters where modelled independently. The work reported in that 

chapter demonstrated evidence of the hypothesized correlation between the four ABC 

transporters, as well the evidence for the feasibility of using multi-label classification to 

harness such correlations.   
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With this work, a novel multi-label classification approach to model ABC efflux data was 

porposed, being only employed in another two works (Ose et al., 2016, Montanari et al., 

2016) that were published during the same time-frame as this work. However, Ose et al is 

not an explicit multi-label work and the authors also do not explore label interaction (which 

is arguably the main gain from using multi-label classification); as for Montanari et al, they 

addressed inhibitory data instead, and only two transporters were modelled.  Exploring the 

multi-label classification fo the ABCs opened new avenues worth investigating. One of the 

most obvious aspects to explore further (which was also one of the main limitations of this 

study) would be addressing and optimizing label order in the classifier chain model, as this 

aspect has a high impact over the predictive power yilded from a CC model. Even though 

there are alternatives available which allow optimization of label order, in this case an 

exhaustive exploration would be feasible as 4 labels (or transporters) can be rearranged in 

a total of 24 permutations. It would be interesting to analyse how the optimal label ordering 

obtained from a purely data-driven approach compares to the physiological relationship 

between transporters. Conceivably, labels with higher ligand promiscuity or diversity may 

benefit from receiving information from more specific labels as, in the first case, structural 

information alone might be less able to differentiate substrates from non-substrates, owed 

to polyspecificity of binding.  Another aspect worth investigating would be the use of 

physiological informatin in the modelling of the different ABC transporters. As explored in 

Chapter 7, physiological descriptors show different profiles of tissue expression, and 

exploring ways of harnessing this information towards (1) adjusting transporters’ 

contributions and order during the optimization of a classifier chain model order, as well as 

(2) improving each label’s prediction performance. In addition to tissue expression, the 

relationship between phospholipidosis and ABC transporter could yield very useful 

information in toxicity prediction as, on one hand, phospholipidosis occurs mainly in certain 

tissues like the liver, lung, brain and kidney and, on the other hand, different populations of 

transporters differ between tissues. Additionally a future follow-up to the current work would 

also involve testing the ABC multi-label model in larger datasets, as a way to better establish 

their actual predictive value, as well as attempting to use more powerful machine learning 

algorithms such as random forest or support vector machine. 

Next in the workflow of this thesis the SLCs were modelled, in a similar approach of that 

used for the ABCs, with the findings being presented in Chapter 5. Substrates and non-

substrates for 6 SLC members – OATP1B1, OATP1B3, OATP2B1, OATP1A2, PEPT1 and 

OCT1 – were modelled using multi-label classification, specifically a classifier chain model. 

However here, inspired from the shortcoming of the ABC multi-label chapter where label 

order was established on an empirical basis, the order in which the transporters are 



Conclusions and Future Perspectives  

 
188 

modelled in the classifier chain was optimized in the SLC model, through exhaustive 

exploration of all combinations, permutations and chain lengths of the six transporters. Also, 

now the machine learning algorithms were also optimized for each transporter label, which 

was another shortcoming in the ABC model. In this work, all tested classifiers were tree-

based algorithms (random forest, boosted trees or decision trees) which were optimized for 

each transporter. This effort yielded much stronger evidence of transporter interaction than 

the ABC project, and the best CC model was found to be one containing all six transporters, 

showing several accounts of learned information from a previously trained transporter 

model being used as a predictor.   

One of the main aspects of novelty contributed through this work was the fact that it 

proposed several links between different pairs of transporters, some of which are not 

obvious and have not yet been reported. Additionally, this is the first attempt to apply multi-

label classification to SLC data, which contributes to disseminating this technique among 

the chemoinformatics comunity as a viable QSAR technique to explore and uncover new 

potentially related endpoints. Considering the new links proposed among the SLCs, one 

interesting follow-up to this work would be to challenge this with extended external data, 

especially considering that some of the datasets are rather small for one to be able to draw 

robust conclusions. Finaly, as suggested for ABCs, it would be relevant to explore the 

potential benefits from addressing tissue expression in optimizing label order in a multi-label 

model. In this work, label order was optimized using and internal validation set (i.e. label 

order is selected according to the highest prediction performance achieved in the internal 

validations et) however, as generally known and as systematically explored in a recent study 

by Martin et al across a wide range of bioactivity dataset, relying upon a random subsample 

of the dataset to measure performance might produce a skewed assessment of the models 

performance, when compared to a realistic external dataset. As a result, exhaustively 

testing all label arrangements might produce a best label ordering that is distorted by biases 

in the dataset; such biases might be controlled by using other sources of information such 

as tissue localization profiles of different proteins, as this data offers a different perspective 

of transporter relationships and might provide some implicit information on hierarchical links 

between transporters.  

For both the ABC and the SLC works, it would also be interesting to explore criteria for data 

quality and how this affects the multi-label performance, as data from transport assays result 

from an arbitrary threshold that separates substrates and non-substrates. In addition to this, 

incorporating an applicability domain filter into both multi-label models would be beneficial, 

and a novel concept to explore within the multi-label modelling field. This is especially 
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important in classifier chains as it might help control the main limitation in this method - the 

propagation of errors produced in each single label.  

The work in Chapter 6 drew from work carried out in both Chapter 4 and 5, as in this chapter 

the central hypothesis of this thesis was tested by exploring the feasibility of using 

physiological descriptors in the modelling of Vss, alongside chemical features. These 

physiological descriptors included ABC experimental data completed with predicted output 

by the CC model in Chapter 4, as well as SLC experimental data completed with prediction 

from the CC model in Chapter 5. In addition, drug-induced phospholipidosis data was 

modelled and experimental data was completed with predictions, as with the ABC and SLC 

predictors. Predictions were used in the form of output probabilities, to allow the machine 

learning algorithm to distinguish between predictions of higher and lower quality. After an 

optimization of parameters used in the modelling, where different candidate models were 

built using different feature selection methods, different machine learning algorithms and 

different feature types, the best model contained physiological descriptors that included 

examples of all three types of physiological sources of data: phospholipidosis, ABC and 

SLC features. After some benchmark comparison with other works that only used chemical 

predictors, the best model in this work showed to yield superior performance in fixed 

external datasets. Additionally, using the feature set of the best model re-applied on a more 

recent, larger Vss dataset also showed that using these physiological descriptors 

consistently improves predictive performance. Such observations represent an important 

improvement of the ability to screen and locate compounds in an early stage which are 

more prone to have extreme (hence problematic) expected Vss values. In addition, and as 

a bi-product of producing both Vss predictions and efflux/uptake predictions 

simulataneously for ever compound, this modelling scheme allows a more detailed profiling 

of compounds that are selected, as one might prefer a compound that is in the same range 

of Vss values as 10 other compounds, but does not show to undergo efflux and is only 

expected to undergo uptake. This type of profiling is made easy due to the integration of 

various sources of information in the model. 

This work’s main novel contribution consisted of exploring the value of 1) using a variety of 

physiological processes as input features of Vss and 2) using predicted data to enrich the 

physiological variables improve the modelling of Vss. The second point is of especial 

importance as it allows using physiological information to inform Vss in a high throughput 

setting, thus overcoming the limitation imposed by availability of experimental data such as 

efflux/uptake and drug-induced phospholipidosis. Conceivably, this approach can be 

extended to other physiological properties of interest, which may potentially aid greatly the 

ability to predict Vss. Additional future work that could stem from the work presented here 
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includes carrying out the full battery of tests applied during model optimization (which 

correspond to all tested variations of the modelling conditions mentioned earlier) but applied 

to the larger, recently published Vss dataset (Lombardo and Jing, 2016). Additionally, testing 

different probability cutoffs for the inclusion of the predicted data would be important to 

establish how this affects the model performance, and whether some data should be 

excluded (e.g., probabilities between 0.4 and 0.6, where 0 determines maximum confidence 

in being a non-substrate and 1 determines maximum confidence in being a substrates) to 

reduce noise and improve the classification task. In other words, and in the same line of 

what was suggested for the ABC and SLC models, it would be beneficial to explore the 

applicability domain of each predicted variable, and incorporate a reliability/confidence filter 

to every physiological features before it is used as a predictor in the training of a Vss model.  

Chapter 7 consisted of a further exploration of the premise in chapter 6, where Vss was 

also modelled with ABC, SLC and phospholipidosis data, but the transporter responses 

used in the modelling in the previous chapter underwent correction using tissue expression 

data in a large variety of tissues. As a result, a 0-1 scale attributed to each of the transporter 

variables was converted into the net sum of transport extent in a collection of tissues. This 

was prompted by the notion that being a substrate with 90% probability for a transporter 

that exists in 10% of tissue mass has a different impact in distribution from being a substrate 

with 90% probability for a transporter that is expressed in 80% of tissue mass. This 

expression correction revealed to yield a small but consistent improvement in predictive 

performance from the previous best model (in Chapter 6), which was already and 

improvement from benchmark conditions. As seen in the previous chapter, several 

physiological descriptors were spontaneously selected even when submitted to feature 

selection alongside all available molecular descriptors. In this instance, it might be 

interesting, as future work, to draw rules from physiologically-based models to create a 

more refined correction system. One key detail covered with both chapter 6 and 7 is the 

importance of the structure of the feature selection procedure. Usually reported research 

carries out one feature selection step typically performed on all descriptors in bulk however, 

this thesis shows that very different outcomes can result from running separate feature 

selection steps on different types of features. 

Attention should be paid to the fact that beyond the fact that predictive performance has 

improved from all other QSAR works carried to date on Vss modelling, the performance 

values reported are actually very conservative. This is due to the fact that, contrarily to any 

other work on volume of distribution reported in the past, the current work is able to sort 

predictions according to their confidence is a very reliable manner. So, in practice, upon 



Conclusions and Future Perspectives  

 
191 

employing a confidence threshold to predictions, a much lower error can be obtained for 

“confidence-passing” compounds. 

Up until this point all experimental chapters have a common denominator concerning future 

proposed work which is tied to the characterization of each model’s applicability domain, 

particularly for the purpose of controling the quality of input features containing predicted 

data. Additionally, there was a concern throughout this thesis to define the confidence 

associated with new predictions output from all the different QSAR models. Given the 

central role of applicability domain characterization in validation for produced model and 

considering it is now deemed by the community as being as important as demonstrating 

high actual predictive performance, Chapter 8 reports the finding on the development of a 

novel applicability domain method named reliability-density neighbourhood, or RDN. This 

method showed the ability to sort external data according to the accuracy with which they 

are predicted, doing so by taking into account the local predictive bias and precision, as well 

as local density, across different neighbourhoods of the training space. Testing this method 

in two benchmark datasets showed excellent correlation between accuracy and span of 

coverage. The main contribution provided through this work is that it is the first applicability 

domain method that attempts to address bias in the predictions for unseen data. Other very 

successful methods to define applicability domain exist such as prediction standard 

deviation or conformal prediction, however these only addess precision. 

Other novel contributions brought by Chapter 8 consist of the proposal of a new scoring 

function that quantifies the relative quality of the produced applicability domain profiles, and 

the systematic study of the impact of feature selection in applicability domain 

characterization. One of the possibilities for future work is testing different methods to 

establish local density, as currently this relies on Euclidean distances to nearest neighbours. 

One promising alternative to this could be computing distance using Tanimoto coefficient 

calculated from circular fingerprints. Additionally, as the Euclidean distance was calculated 

based on physicochemical features, other features such as fingerprints or fragments could 

also be explored alone and alongise.  

Based on the research carried out in this thesis, it can be concluded that QSAR modelling, 

particularly using the multi-label learning approach, can aid in understanding and better 

predicting drug distribution processes, and it can provide new insight by addressing 

different, related endpoints as a whole. Multi-lable also showed to be useful in discovering 

new possible interactions of therapeutic targets, which can be used to generate new 

therapeutic options as well as generating new hypotheses for physiological pathways. 

Integrating different sources of information of both physiological and physicochemical 

nature has shown to contribute towards capturing volume of distribution and using both 
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types of information produces a mean prediction error inferior to when either chemical or 

physiological features are used alone. This approach can potentially be used to mine new 

relationships that may be of potential clinical relevance to the pharmaceutical industry. This 

work, while developed on relatively small datasets compared to the data size used in real 

world PK profiling in drug discovery, is a proof of concept for the usefulness of QSAR models 

trained with information from underlying processes that drive distribution, as a tool to 

improve the prediction of volume of distribution.  
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11. Appendices 

11.1. Appendix I: Supporting Information for Chapter 4 

Table A1.1. Performances of all single label models for the 5 different feature selection methods 
used. Performance on the training set is presented to left and on the internal validation to the right 
(in grey). From within each transporter the best feature selection method was chosen based solely 
on the best performance on the validation.  

 GA 

 BCRP1 MDR1 MRP1 MRP2 

TP 163 45 305 97 51 11 77 17 

TN 67 17 124 28 50 15 54 13 

FP 41 18 123 56 4 3 11 11 

FN 17 16 28 13 6 8 3 10 

ACC 0.80 0.65 0.74 0.64 0.91 0.70 0.90 0.59 

Sen 0.91 0.74 0.92 0.88 0.89 0.58 0.96 0.63 

Spe 0.62 0.49 0.50 0.33 0.93 0.83 0.83 0.54 

MCC 0.56 0.23 0.47 0.26 0.82 0.42 0.81 0.17 

 

 GS 

 BCRP1 MDR1 MRP1 MRP2 

TP 170 47 217 66 51 9 74 17 

TN 98 22 197 56 52 15 54 14 

FP 10 13 50 28 2 3 11 10 

FN 10 14 116 44 6 10 6 10 

ACC 0.93 0.72 0.71 0.63 0.93 0.65 0.88 0.61 

Sen 0.94 0.77 0.65 0.60 0.89 0.47 0.93 0.63 

Spe 0.91 0.63 0.80 0.67 0.96 0.83 0.83 0.58 

MCC 0.85 0.40 0.45 0.26 0.86 0.33 0.76 0.21 
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 J48-GA 

 BCRP1 MDR1 MRP1 MRP2 

TP 166 45 297 79 52 17 80 23 

TN 73 15 231 55 52 11 43 7 

FP 35 20 16 29 2 7 22 17 

FN 14 16 36 31 5 2 0 4 

ACC 0.83 0.63 0.91 0.69 0.94 0.76 0.85 0.59 

Sen 0.92 0.74 0.89 0.72 0.91 0.89 1.00 0.85 

Spe 0.68 0.43 0.94 0.65 0.96 0.61 0.66 0.29 

MCC 0.63 0.17 0.82 0.37 0.88 0.53 0.72 0.17 

 

 RfF 

 BCRP1 MDR1 MRP1 MRP2 

TP 162 45 291 91 51 12 71 17 

TN 100 20 111 30 52 11 61 16 

FP 8 15 136 54 2 7 4 8 

FN 18 16 42 19 6 7 9 10 

ACC 0.91 0.68 0.69 0.62 0.93 0.62 0.91 0.65 

Sen 0.90 0.74 0.87 0.83 0.89 0.63 0.89 0.63 

Spe 0.93 0.57 0.45 0.36 0.96 0.61 0.94 0.67 

MCC 0.81 0.31 0.36 0.21 0.86 0.24 0.82 0.30 
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 Rf-GS 

 BCRP1 MDR1 MRP1 MRP2 

TP 141 48 321 86 56 15 76 18 

TN 76 20 198 37 51 12 57 15 

FP 32 15 49 47 3 6 8 9 

FN 39 13 12 24 1 4 4 9 

ACC 0.75 0.71 0.89 0.63 0.96 0.73 0.92 0.65 

Sen 0.78 0.79 0.96 0.78 0.98 0.79 0.95 0.67 

Spe 0.70 0.57 0.80 0.44 0.94 0.67 0.88 0.63 

MCC 0.48 0.36 0.79 0.24 0.93 0.46 0.83 0.29 

 

Table A1.2 Definitions of all molecular descriptors present in the BR and CC models. 

Feature 
Models where 
the feature is 

present 
Definition 

a_acc MDR1-CC/BR Number of hydrogen bond acceptor atoms (not counting 
acidic atoms but counting atoms that are both hydrogen 
bond donors and acceptors such as -OH). 

a_aro BCRP1-CC Number of aromatic atoms 

a_ICM BCRP1-CC/ BR The mean atom information content. The entropy of 
each atom’s distribution in the molecule (including 
implicit hydrogens; excluding lone pair pseudo-atoms).  
a_ICM= -sum(pi.log[pi]), where pi = atom i count/total 
atom count. 

a_nF BCRP1-CC/ BR Number of F atoms 

a_nH MDR1-CC/BR Number of H atoms 

ast_violation_ext MRP2-BR/CC Astex violations (extended), otherwise known as the 
rule of 3 

b_ar BCRP1-CC/ BR 
MRP1-CC/BR 

Number of aromatic bonds 
  

b_max1len MDR1-CC/BR 
MRP1-BR/CC 

Maximum length of a single bond path. 
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Table A1.2 (cont.)   

Feature 
Models where 
the feature is 

present 
Definition 

b_rotR MRP1-BR/ CC 
MRP2-BR/ CC 

Fraction of rotatable bonds: Number of rotatable bonds 
divided by number of bonds between heavy atoms. 

chi1v_C MRP1-BR Carbon valence connectivity index (order 1). This is 
calculated as the sum of 1/sqrt(vivj) over all bonds 
between carbon atoms i and j where i < j.  
vi = (pi - hi) / (Zi - pi - 1) where pi is the number of s and 
p valence electrons of atom i, Z is the atomic number, 
and hi is the number of H ideally bound to atom i. 

dens MDR1-CC/BR Mass density: molecular weight divided by van der 
Waals volume as calculated in the vol descriptor 

FCASA- MDR1-CC/BR Fractional CASA- calculated as CASA- / ASA. Here, 
CASA- is the negative charge weighted surface area 
calculated as ASA-*max {qi < 0}, where ASA-  is water 
accessible surface area of negatively charged atoms. 
ASA is the total water accessible surface area. 

FCASA+ MRP1-BR Fractional CASA+ calculated as CASA+ / ASA. The 
negative equivalent of FCASA- definition. 

FCharge MDR1-CC/BR Formal charge 

Fi(A) MRP2-BR Fraction of ionized acid at pH 7.4. 

Fi(B) MRP2-BR/ CC Fraction of ionized base at pH 7.4. 

glob BCRP1-CC/ BR Globularity. The ratio of surface to the surface of a 
same-volume sphere. 

Kier3 MRP1-BR Third kappa shape index: (n-1) (n-3)2 / p32 for odd n, 
and (n-3) (n-2)2 / p32 for even n. 

LogD(5.5) BCRP1-CC/ BR Log(octanol/water at pH 5.5) 

LogD(6.5) BCRP1-CC/ BR Log(octanol/water at pH 6.5) 

LogD(7.4) BCRP1-CC/ BR Log(octanol/water at pH 7.4) 

MNDO_LUMO BCRP1-CC/ BR The energy (eV) of the Lowest Unoccupied Molecular 
Orbital calculated using the MNDO Hamiltonian 

MW MDR1-CC/BR Molecular weight 

Num_Rings_4 BCRP1-CC/ BR Number of 4-member rings 

Num_Rings_5 MDR1-CC/BR Number of 6-member rings 

opr_leadlike MRP2-BR One if and only if opr_violation < 2 otherwise zero. 

opr_nring BCRP1-CC/ BR Oprea’s ring count. Rings are counted according to the 

PEOE_VSA_FPNEG MRP2-BR/ CC Fractional negative polar van der Waals surface area. 
The sum of VSA for atoms with atomic charge < -0.2, 
divided by the total surface area.  
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Table A1.2 (cont.)   

Feature 
Models where 
the feature is 

present 
Definition 

PEOE_VSA_NEG MDR1-CC/BR Total negative van der Waals surface area. The sum 
VDW contribution from atoms with negative atomic 
charge. 

PEOE_VSA+6 MDR1-CC/BR Sum of VDW volume of atoms where the atomic charge 
greater than 0.3 

PEOE_VSA-1 BCRP1-BR Sum of VDW volume of atoms where the atomic charge 
is in the range [-0.25,-0.20). 

PEOE_VSA-3 BCRP1-CC/ BR Sum of VDW volume of atoms where the atomic charge 
is in the range [-0.20,-0.15) 

PEOE_VSA-4 BCRP1-CC/BR Sum of VDW volume of atoms where the atomic charge 
is in the range [-0.10,-0.05). 

PEOE_VSA-6 MDR1-CC/BR Sum of VSA of atoms with atomic charge > -0.3  

PM3_E MDR1-CC/BR The total self-consistent field energy (kcal/mol) 
calculated using the PM3 Hamiltonian. 

PM3_LUMO MDR1-CC/BR The energy (eV) of the Lowest Unoccupied Molecular 
Orbital calculated using the PM3 Hamiltonian. 

pMDR1_J48-GA BCRP1-CC Predictions from the MRP1-CC single-label model 

pMRP2_RfF MRP1-CC Predictions from the MRP2-CC single-label model  

Polarizability MDR1-CC/BR Propensity for formation of momentary dipoles upon 
interaction with an electrically charge species. 

Q_VSA_FHYD MRP2-BR/ CC Fractional hydrophobic van der Waals surface area. 
This is the sum of VSA of  atoms with partial charge less 
than or equal to 0.2 divided by the total surface area. 

Q_VSA_FPPOS BCRP1-CC/ BR  
MRP1-CC/ BR 

Fraction of positive polar VSA (PM6-derived) defined as 
the van der Waals area of atoms with atomic charge > 
0.2, divided by the total surface are 

Q_VSA_POL MRP1-BR/ CC Total polar van der Waals surface area. The sum of 
VDW surface of atoms with absolute partial charge 
greater than 0.2. 

reactive MRP2-BR/ CC Reactive groups count. The table of reactive groups is 
based on the Oprea set and includes metals, phospho-
, N/O/S-N/O/S single bonds, thiols, acyl halides, Michael 
Acceptors, azides, esters, etc. 

rings MRP1-CC The number of rings. 

Rule_Of_5 MDR1-CC/BR Rule of Five 

SlogP MDR1-CC/BR Log of the octanol/water partition coefficient calculated 
from the sum of individual contributions to logP from 
each atom.* 

SlogP_VSA7 BCRP1-CC/BR VSA of atoms which contributing logP is (0.25,0.30].*  

SMR_VSA2 MDR1-CC/BR Total VDW surface area of atoms with molecular 
refractivity ranging (0.26,0.35]* 
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Table A1.2 (cont.)   

Feature 
Models where 
the feature is 
present 

Definition 

SMR_VSA4 BCRP1-CC/BR Total VDW surface area of atoms with molecular 
refractivity ranging (0.39,0.44]* 

VDistMa MDR1-CC/BR VDistMa is defined to be the sum of 
log2 m - Dij log2 Dij / m over all i and j. D is a distance 
matrix between every atom i and j; m is the sum of the 
distance matrix entries. 

vsurf_CW2 MRP2-CC/BR 
BCRP1-BR 

Capacity factor, calculated as the ratio of the hydrophilic 
surface to the total molecular surface, at -0.5kcal/mol.  

vsurf_CW8 MDR1-CC/BR Capacity factor, calculated as the ratio of the hydrophilic 
surface to the total molecular surface, at -6kcal/mol. 

vsurf_D7 MRP1-CC Volume of the hydrophobic interactions at -1.4 kcal/mol 

vsurf_HB2 MRP2-BR/ CC Hydrogen-bond donor capacity. Defined as the 
difference between the volume of the hydrophilic 
interactions vsurf_W2 and volume of the O probe 
interactions vsurf_Wp2. 

vsurf_R BCRP1-CC/ BR Surface rugosity, defined as the ratio of volume to 
surface 

vsurf_Wp1 MRP1-BR Polar volume. Volume of the interactions with an O 
probe at -0.2kcal/mol 

vsurf_Wp5 MDR1-CC/BR Polar volume. Volume of the interactions with an O 
probe at -3kcal/mol 

vsurf_Wp6 MDR1-CC/BR Polar volume. Volume of the interactions with an O 
probe at -4kcal/mol 

*Atom contribution values listed on Wildman and Crippen (Wildman and Crippen, 1999). 
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Figures A1.1-7. Misprediction analysis. Distribution of test set compounds with mis-predicted cases 
highlighted across the training span of each feature used in the various models.  
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11.2. Appendix II: Supporting Information for Chapter 5 

 
Figure A2.1-6. Applicability domain profiles for the CC model, where accuracy is the ratio of correct 
predictions over the total instances in the TE set. Each point in every graph is labelled with the 
amount of data being included within the current AD threshold. 
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Table A2.1. Activity cliff (AC) rate in the different transporter datasets used in this work. 

Model 
%ACs among 

mispredictions of the BR 
model 

%ACs among 
mispredictions of the CC 

model 

OCT1 22% (2 out of 9) 

OATP2B1 0 % 0 % 

OATP1A2 0 % 0 % 

PEPT1 43% (9 out of 21) 46% (7 out of 15) 

OATP1B1 14% (1 out of 7) 0 % 

OATP1B3 0 % 0 % 

 

 

 

Table A2.2. Chi-square test of pairwise correlation between observed transport data. 

 1A2 1B3 2B1 OCT1 PEPT1 

1B1 0.026 < 0.001 0.721 0.524 0.008 

1A2  0.014 1.00 0.203 0.333 

1B3   1.00 0.400 null 

2B1    1.00 1.00 

OCT1     null 
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Table A2.3. Chi-square test of correlation between observed and predicted transport data, where predicted data in used as output by the best multi-label 
model. O_S: observed substrate; O_NS: observed non-substrate; P_S: predicted substrate; P_NS: predicted non-substrate.  

 

Predicted 

 

Observed  pOCT1  pOATP2B1  pOATP1A2  pPEPT1  pOATP1B1 

  p = 0.876                 

  P_S P_NS                 

OATP2B1 
O_S 20 27                 

O_NS 27 37                 

                    

  p = 0.158   p = 0.948             

  P_S P_NS   P_S P_NS             

OATP1A2 
O_S 34 21  O_S 24 31             

O_NS 10 14  O_NS 11 13             

                    

  p < 0,001   p = 0.110   p = 0.580         

  P_S P_NS   P_S P_NS   P_S P_NS         

PEPT1 
O_S 218 28  O_S 112 134  O_S 206 40         

O_NS 55 26  O_NS 28 53  O_NS 65 16         

                    

  p = 0.649   p = 0.087   p = 0.667   p =0.678     

  P_S P_NS   P_S P_NS   P_S P_NS   P_S P_NS     

OATP1B1 
O_S 34 61  O_S 27 68  O_S 72 23  O_S 31 64     

O_NS 11 26  O_NS 17 20  O_NS 26 11  O_NS 10 27     

                    

  p = 0.942   p = 0.564   p = 0.154   p = 0.102   p < 0,0001* 

  P_S P_NS   P_S P_NS   P_S P_NS   P_S P_NS   P_S P_NS 

OATP1B3 
O_S 18 40  O_S 17 41  O_S 44 14  O_S 11 47  O_S 39 19 

O_NS 9 17  O_NS 10 16  O_NS 15 11  O_NS 10 16  O_NS 3 23 
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Table A2.4. Descriptor importance for the BR model, measured in percentages of predicted and 
correctly predicted instances covered by each of the descriptors. For the sake of simplicity this table 
only shows up to the 10th most important feature, however some models used more features, as 
shown in Supporting Table A2.7. Their definitions are available in Supporting Table A2.6. 

OCT1 OATP2B1 OATP1A2 

Descriptors % N 
% N 

correct 
Descriptors % N 

% N 
correct 

Descriptors % N 
% N 

correct 

CASA- 100.0 96.5 PSA 100.0 93.0 vsurf_EDmin2 29.8 28.6 

LogD7.4 88.4 84.8 vsurf_HB2 82.8 75.8 Nratio 25.5 25.0 

PM3_dipole 82.0 78.5 PEOE_VSA_FPNEG 72.0 65.0 NumRings6 25.1 23.9 

a_aro 39.8 38.4 PEOE_VSA_FHYD 56.7 51.2 Fu 23.4 22.2 

vsurf_HB6 32.3 30.3 a_don 39.7 34.3 LogD5.5 20.2 19.6 

lip_violation 22.8 21.4 AM1_E 33.6 28.1 SlogP_VSA1 20.1 19.4 

vsurf_ID2 16.5 15.8 

 

vsurf_DD13 18.9 18.0 

FCASA+ 4.5 3.8 a_don 16.0 15.3 

Q_VSA_PNEG 4.1 4.1 FASA_H 11.2 10.6 

   PEOE_VSA-1 10.8 10.3 

PEPT1 OATP1B1 OATP1B3 

Descriptors % N 
% N 

correct 
Descriptors % N 

% N 
correct 

Descriptors % N 
% N 

correct 

AM1_HF 93.3 83.1 FiA 34.4 34.4 vsurf_ID6 28.8 28.8 

ast_violation_ext 48.9 42.8 PEOE_VSA_NEG 33.7 33.7 vsurf_ID5 24.7 24.6 

SlogP_VSA6 44.5 39.9 vsurf_ID7 20.6 20.6 vsurf_ID1 21.1 21.1 

Ro5 35.0 30.5 vsurf_EDmin2 18.5 18.5 ast_violation 18.7 18.6 

Fu 19.2 17.2 Q_VSA_FPPOS 16.7 16.7 vsurf_ID2 18.6 18.5 

FiA 18.9 17.3 SMR 16.4 16.3 NumRings6 17.4 17.4 

a_nO 14.1 12.7 vdw_vol 16.2 16.2 vsurf_ID7 16.8 16.8 

PSA 13.0 11.6 Q_VSA_FPOS 15.1 15.1 b_1rotN 16.1 16.1 

a_acc 11.1 10.5 vsurf_CW2 14.9 14.9 AM1_Eele 14.3 14.3 

a_hyd 11.1 10.2 vsurf_Wp6 14.8 14.8 
Index of 

Refraction 
14.1 14.1 
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Table A2.5. Descriptor importance for the CC model, measured in percentages of predicted and 
correctly predicted instances covered by each of the descriptors. For the sake of simplicity this table 
only shows up to the 10th most important feature, however some models used more features, as 
shown in Supporting Table A2.7. Their definitions are available in Supporting Table A2.6. 

OCT1 OATP2B1 OATP1A2 

Descriptors % N 
% N 

correct 
Descriptors % N 

% N 
correct 

Descriptors % N 
% N 

correct 

CASA- 100.0 96.5 PSA 100.0 96.9 vsurf_EDmin2 26.8 26.2 

LogD7.4 88.4 84.8 vsurf_HB2 82.8 79.7 Fu 25.4 24.3 

PM3_dipole 82.0 78.5 PEOE_VSA_FPNEG 72.0 69.0 NumRings6 25.1 24.3 

a_aro 39.8 38.4 PEOE_VSA_FHYD 56.7 55.1 pOCT1 24.3 23.4 

vsurf_HB6 32.3 30.3 a_don 39.7 38.2 a_don 24.2 23.3 

lip_violation 22.8 21.4 pOCT1 33.6 32.0 SlogP_VSA1 16.1 16.0 

vsurf_ID2 16.5 15.8 PM3_dipole 21.3 21.3 FASA_H 13.2 12.9 

FCASA+ 4.5 3.8 

 

Nratio 12.0 11.5 

Q_VSA_PNEG 4.1 4.1 PEOE_VSA-1 10.9 10.7 

   LogP 9.2 9.1 

PEPT1 OATP1B1 OATP1B3 

Descriptors % N 
% N 

correct 
Descriptors % N 

% N 
correct 

Descriptors % N 
% N 

correct 

AM1_HF 67.0 62.2 FiA 39.0 39.0 pOATP1B1 26.5 26.5 

pOCT1 57.1 53.2 PEOE_VSA_NEG 28.1 28.1 vsurf_ID6 25.6 25.6 

FiA 42.9 39.9 vsurf_ID7 18.3 18.3 vsurf_ID1 18.6 18.6 

pOATP2B1 41.8 38.8 vdw_vol 17.8 17.8 vsurf_ID2 18.3 18.2 

Ro5 26.2 24.2 Q_VSA_FPOS 17.5 17.5 vsurf_ID5 17.6 17.6 

ast_violation_ext 19.2 17.8 Q_VSA_FPPOS 17.1 17.1 NumRings6 15.6 15.6 

pOATP1A2 14.9 13.8 SMR 16.4 16.4 vsurf_R 13.6 13.6 

LogD7.4 13.7 13.0 vsurf_EDmin2 16.2 16.2 FRB# 12.4 12.4 

SlogP_VSA6 12.3 11.5 glob 16.1 16.1 ast_violation 12.0 12.0 

FiAB 10.5 9.7 vdw_area 14.5 14.5 b_1rotN# 11.6 11.6 

# Both count single bonds, however using different parameters. The full definitions of the 
descriptors are available in Table A2.6. 

 

Table A2.6. Definitions of all molecular descriptors present in the BR and CC models. 

Feature 
Models where 
the feature is 
present 

Definition 

a_acc 
PEPT1-BR 
PEPT1-CC 

Number of hydrogen bond acceptor atoms (not counting acidic 
atoms but counting atoms that are both hydrogen bond donors 
and acceptors such as -OH). 

a_aro 
OCT1(-BR/CC) 
OATP1B1-BR 
OATP1B1-CC 

Aromatic atoms 

a_don 

OATP1A2-BR 
OATP2B1-BR 
OATP1A2-CC 
OATP2B1-CC 

Number of hydrogen bond donor atoms (not counting basic 
atoms but counting atoms that are both hydrogen bond donors 
and acceptors such as -OH) 

a_hyd 

OATP1B3-BR 
PEPT1-BR 
OATP1B3-CC 
PEPT1-CC 

Number of hydrophobic atoms. 

a_nCl 
OATP1A2-BR 
OATP1A2-CC 

Number of chlorine atoms 

a_nO 

OATP1B1-BR 
PEPT1-BR 
OATP1B1-CC 
PEPT1-CC 

Number of oxygen atoms 
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Table A2.6. (Cont.)   

Feature 
Models where 
the feature is 

present 
Definition 

AM1_E 
OATP1B3-BR 
OATP2B1-BR 
OATP1B3-CC 

The total Self-consistent field energy (kcal/mol) calculated 
using the AM1 Hamiltonian. 

AM1_Eele 
OATP1B3-BR 
OATP1B3-CC 

The electronic energy (kcal/mol) calculated using the AM1 
Hamiltonian. 

AM1_HF 
PEPT1-BR 
PEPT1-CC 

The heat of formation (kcal/mol) calculated using the AM1 
Hamiltonian. 

ASA_P 
OATP1A2-BR 
OATP1A2-CC 

Total polar surface area 

ast_violation 
OATP1B3-BR 
OATP1B3-CC 

Astex violations, otherwise known as the rule of 3 

ast_violation_ext 
PEPT1-BR 
PEPT1-CC 

Astex violations (extended), otherwise known as the rule of 3 

b_1rotN 
OATP1B3-BR 
OATP1B3-CC 

Number of rotatable single bonds. Conjugated single bonds are 
not included (e.g. ester and peptide bonds). 

b_heavy 
OATP1B3-BR 
OATP1B3-CC 

Number of heavy-heavy bonds 

CASA- OCT1(-BR/CC) 
Negative charge weighted surface area, ASA- multiplied by the 
maximum negative partial charge. 

FASA_H 
OATP1A2-BR 
OATP1A2-CC 

Fractional ASA_H calculated as ASA_H / ASA. 

FASA+ 
OATP1B1-BR 
OATP1B1-CC 

Fractional positive accessible surface area 

FCASA+ OCT1(-BR/CC) 
Fractional CASA+ calculated as CASA+ / ASA. The negative 
equivalent of FCASA- definition. 

FiA 

OATP1A2-BR 
OATP1B1-BR 
PEPT1-BR 
OATP1A2-CC 
OATP1B1-CC 
PEPT1-CC 

Fraction of ionised acidic species at pH 7.4 

FiAB 
PEPT1-BR 
PEPT1-CC 

Fraction of ionized zwitterionic species, where both acidic and 
basic moieties are ionized. 

FiB 
PEPT1-BR 
PEPT1-CC 

Fraction of ionised basic species at pH 7.4 

FRB 

OATP1B3-BR 
PEPT1-BR 
OATP1B3-CC 
PEPT1-CC 

Freely Rotatable Bonds 

Fu 

OATP1A2-BR 
PEPT1-BR 
OATP1A2-CC 
PEPT1-CC 

Unionized fraction at pH 7.4 

glob 
OATP1B1-BR 
OATP1B1-CC 

Globularity. The ratio of surface to the surface of a same-
volume sphere. 

HAcceptors 
OATP1B1-BR 
OATP1B1-CC 

Hydrogen acceptors (N, O, and F atoms with free lone pairs of 
electrons) 

IndexofRefraction 
OATP1B3-BR 
OATP1B3-CC 

Ratio of the speed of light in a vacuum to the speed of light in 
a medium under consideration. 

lip_violation OCT1(-BR/CC) The number of violations of Lipinski's Rule of Five. 

LogD10 

OATP1B3-BR 
PEPT1-BR 
OATP1B3-CC 
PEPT1-CC 

Log(octanol/water at pH 10) 

LogD2 
PEPT1-BR 
PEPT1-CC 

Log(octanol/water at pH 2) 

LogD5.5 

OATP1A2-BR 
PEPT1-BR 
OATP1A2-CC 
PEPT1-CC 

Log(octanol/water at pH 5.5) 
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Table A2.6. (Cont.)   

Feature 
Models where 
the feature is 
present 

Definition 

LogD6.5 PEPT1-CC Log(octanol/water at pH 6.5) 

LogD7.4 

OCT1(-BR/CC) 
OATP1B1-BR 
PEPT1-BR 
OATP1B1-CC 
PEPT1-CC 

Log(octanol/water at pH 7.4) 

LogP 

OATP1A2-BR 
PEPT1-BR 
OATP1A2-CC 
PEPT1-CC 

Log(octanol/water) 

NOratio 
PEPT1-BR 
PEPT1-CC 

Ratio of Nitrogen + Oxygen atoms (?) 

Nratio 
OATP1A2-BR 
OATP1A2-CC 

Ratio of Nitrogen atoms 

NumRings6 

OATP1B3-BR 
OATP1A2-BR 
OATP1B3-CC 
OATP1A2-CC 

Number of 6-membered rings 

PEOE_VSA-4 
OATP1B1-BR 
OATP1B1-CC 

Sum of VDW volume of atoms where the atomic charge is in 
the range [-0.25,-0.20). 

PEOE_VSA_FHYD 
OATP2B1-BR 
OATP2B1-CC 

Fractional hydrophobic van der Waals surface area. This is the 
sum of VSA of  atoms with partial charge less than or equal to 
0.2 divided by the total surface area. 

PEOE_VSA_FPNEG 
OATP2B1-BR 
OATP2B1-CC 

Fractional negative polar van der Waals surface area. The sum 
of VSA for atoms with atomic charge < -0.2, divided by the total 
surface area. 

PEOE_VSA_NEG 
OATP1B1-BR 
OATP1B1-CC 

Total negative van der Waals surface area. The sum VDW 
contribution from atoms with negative atomic charge. 

PEOE_VSA_PPOS 
OATP1B1-BR 
OATP1B1-CC 

Total polar positive vdw surface area 

PEOE_VSA+4 
OATP1A2-BR 
OATP1A2-CC 

Sum of VDW volume of atoms where the atomic charge is in 
the range [0.20,0.25) 

PEOE_VSA+5 
OATP1B1-BR 
OATP1B1-CC 

Sum of VDW volume of atoms where the atomic charge is in 
the range [0.25,0.30). 

PEOE_VSA+6 
OATP1B1-BR 
OATP1B1-CC 

Sum of VDW volume of atoms where the atomic charge is 
greater than 0.3. 

PEOE_VSA-1 
OATP1A2-BR 
OATP1A2-CC 

Sum of VDW volume of atoms where the atomic charge is in 
the range [-0.10,-0.05). 

PM3_dipole 
OCT1(-BR/CC) 
OATP2B1-CC 

The dipole moment calculated using the PM3 Hamiltonian. 

PM3_LUMO 
OATP1B1-BR 
OATP1B1-CC 

The energy (eV) of the Lowest Unoccupied Molecular Orbital 
calculated using the PM3 Hamiltonian. 

pOATP1A2 
OATP1B3-CC 
PEPT1-CC 

Predicted OATP1A2 binding, output by the OATP1A2 single-
label model trained within the best multi-label model. 

pOATP1B1 OATP1B3-CC 
Predicted OATP1B1 binding, output by the OATP1B1 single-
label model trained within the best multi-label model. 

pOATP2B1 
OATP1B3-CC 
OATP1A2-CC 
PEPT1-CC 

Predicted OATP2B1 binding, output by the OATP2B1 single-
label model trained within the best multi-label model. 

pOCT1 

OATP1B3-CC 
OATP1A2-CC 
OATP2B1-CC 
PEPT1-CC 

Predicted OCT1 binding, output by the OCT1 single-label 
model trained in isolation (as it is used as the first label of the 
CC models). 

pPEPT1 OATP1B3-CC 
Predicted PEPT1 binding, output by the PEPT1 single-label 
model trained within the best multi-label model. 

PSA 

OATP2B1-BR 
PEPT1-BR 
OATP2B1-CC 
PEPT1-CC 

Polar Surface area. Measure of how much exposed polar area 
a molecule has. 
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Table A2.6. (Cont.)   

Feature 
Models where 
the feature is 
present 

Definition 

Q_VSA_FHYD 
OATP1A2-BR 
OATP1A2-CC 

Fractional hydrophobic vdw surface area. This is the sum of 
VSA of  atoms with partial charge less than or equal to 0.2 
divided by the total surface area. 

Q_VSA_FPOS 
OATP1B1-BR 
OATP1B1-CC 

Fractional positive van der Waals surface area. This is the sum 
of the vi such that qi is non-negative divided by the total surface 
area. The vi are calculated using a connection table 
approximation. 

Q_VSA_FPPOS 
OATP1B1-BR 
OATP1B1-CC 

Fraction of positive polar VSA (PM6-derived) defined as the 
van der Waals area of atoms with atomic charge > 0.2, divided 
by the total surface area. 

Q_VSA_PNEG OCT1(-BR/CC) 
Total negative polar van der Waals surface area. This is the 
sum of the vi such that qi is less than -0.2. The vi are calculated 
using a connection table approximation. 

Ro5 
PEPT1-BR 
PEPT1-CC 

Rule of Five (H-bond donors <= 5; H-bond acceptors <= 10; 
MW < 500; logP < 5). 

SlogP_VSA1 
OATP1A2-BR 
OATP1A2-CC 

VSA of atoms which contributing logP is (-0.4,-0.2].* 

SlogP_VSA6 
PEPT1-BR 
PEPT1-CC 

VSA of atoms which contributing logP is (0.20,0.25].* 

SMR 
OATP1B1-BR 
OATP1B1-CC 

Molecular refractivity (including implicit hydrogens). Measures 
the volume occupied per mol of substance, and carries 
information about volume and polarizability. 

SMR_VSA4 
OATP1B1-BR 
OATP1B1-CC 

Total VDW surface area of atoms with molecular refractivity 
ranging (0.39,0.44]* 

vdw_area 
OATP1B1-BR 
OATP1B1-CC 

Area of van der Waals surface (A2) calculated using a 
connection table approximation. 

vdw_vol 
OATP1B1-BR 
OATP1B1-CC 

van der Waals volume (A3) calculated using a connection table 
approximation. 

vsa_hyd 
OATP1B3-BR 
OATP1B3-CC 

VDW hydrophobe surface area (A2) 

vsa_other 
OATP1B1-BR 
OATP1B1-CC 

VDW other surface area (A2) 

vsurf_CW2 
OATP1B1-BR 
OATP1B1-CC 

Capacity factor, calculated as the ratio of the hydrophilic 
surface to the total molecular surface, at -0.5 kcal/mol. 

vsurf_CW6 
OATP1A2-BR 
OATP1A2-CC 

Capacity factor, calculated as the ratio of the hydrophilic 
surface to the total molecular surface, at -4.0 kcal/mol. 

vsurf_DD13 
OATP1A2-BR 
OATP1A2-CC 

Contact distances of vsurf_DDmin. 

vsurf_EDmin2 

OATP1A2-BR 
OATP1B1-BR 
OATP1A2-CC 
OATP1B1-CC 

Hydrophobic Local Interaction Energy Minima 

vsurf_HB2 
OATP2B1-BR 
OATP2B1-CC 

Hydrogen-bond donor capacity. Defined as: 
Volume hydrophilic interactions − Volume O probe interactions (at -0.5 
kcal/mol). 

vsurf_HB6 OCT1(-BR/CC) 
Hydrogen-bond donor capacity. Defined as: 
Volume hydrophilic interactions − Volume O probe interactions (at -4.0 
kcal/mol). 

vsurf_HB8 
OATP1B1-BR 
OATP1B1-CC 

Hydrogen -bond donor capacity. Defined as: 
Volume hydrophilic interactions − Volume O probe interactions (at -6.0 
kcal/mol). 

vsurf_HL1 
OATP1B1-BR 
OATP1B1-CC 

First hydrophilic-lipophilic balance. Ratio of the volume of 
hydrophobic regions to the volume of hydrophobic regions. 

vsurf_ID1 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -0.2 kcal/mol. 

vsurf_ID2 
OCT1(-BR/CC) 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -0.4 kcal/mol. 

vsurf_ID3 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -0.6 kcal/mol. 
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Table A2.6. (Cont.)   

Feature 
Models where 
the feature is 
present 

Definition 

vsurf_ID4 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -0.8 kcal/mol. 

vsurf_ID5 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -1.0 kcal/mol. 

vsurf_ID6 
OATP1B3-BR 
OATP1B3-CC 

Hydrophobic integy moment at an energy level of -1.2 kcal/mol. 

vsurf_ID7 

OATP1B3-BR 
OATP1B1-BR 
OATP1B3-CC 
OATP1B1-CC 

Hydrophobic integy moment at an energy level of -1.4 kcal/mol. 

vsurf_R 
OATP1B3-BR 
OATP1B3-CC 

Surface rugosity, defined as the ratio of volume to surface 

vsurf_Wp3 
OATP1B1-BR 
OATP1B1-CC 

Polar volume. Volume of the interactions with an O probe at -1 
kcal/mol 

vsurf_Wp6 
OATP1B1-BR 
OATP1B1-CC 

Polar volume. Volume of the interactions with an O probe at -4 
kcal/mol 

Weight 
OATP1B1-BR 
OATP1B1-CC 

Molecular Weight (g/mol). 

weinerPol 
OATP1B3-BR 
OATP1B3-CC 

Weiner polarity number 

*Atom contribution values listed on Wildman and Crippen(Wildman and Crippen, 1999). 

 

 

  



 

223 
 

Table A2.7. Full set of molecular descriptors that compose each multi-label model. 

BR model 

OCT1 OATP1B3 OATP1A2 OATP2B1 OATP1B1 PEPT1 

CASA- 
LogD7.4 
PM3_dipole 
a_aro 
vsurf_HB6 
lip_violation 
vsurf_ID2 
Q_VSA_PNE
G 
FCASA+ 

vsurf_ID6 
vsurf_ID5 
vsurf_ID1 
ast_violation 
vsurf_ID2 
NumRings6 
vsurf_ID7 
b_1rotN 
AM1_Eele 
IndexofRefractio
n 
vsurf_R 
FRB 
weinerPol 
LogD10 
vsurf_ID3 
AM1_E 
a_hyd 
vsurf_ID4 
b_heavy 
vsa_hyd 

vsurf_EDmin
2 
Nratio 
NumRings6 
Fu 
LogD5.5 
SlogP_VSA1 
vsurf_DD13 
a_don 
FASA_H 
PEOE_VSA-1 
Q_VSA_FHY
D 
PEOE_VSA+
4 
FiA 
ASA_P 
LogP 
a_nCl 
vsurf_CW6 

PSA 
vsurf_HB2 
PEOE_VSA_FPNE
G 
PEOE_VSA_FHYD 
a_don 
AM1_E 

FiA 
PEOE_VSA_NEG 
vsurf_ID7 
vsurf_EDmin2 
Q_VSA_FPPOS 
SMR 
vdw_vol 
Q_VSA_FPOS 
vsurf_CW2 
vsurf_Wp6 
vdw_area 
Weight 
glob 
LogD7.4 
vsurf_Wp3 
FASA+ 
a_nO 
PEOE_VSA_PPO
S 
vsa_other 
vsurf_HL1 
PEOE_VSA+6 
vsurf_HB8 
PM3_LUMO 
SMR_VSA4 
HAcceptors 
PEOE_VSA.4 
PEOE_VSA+5 
a_aro 

AM1_HF 
ast_violation_e
xt 
SlogP_VSA6 
Ro5 
FiA 
Fu 
a_nO 
PSA 
a_acc 
a_hyd 
FRB 
LogD2 
LogP 
FiB 
LogD5.5 
FiAB 
NOratio 
LogD7.4 
LogD10 

CC model 

OCT1 OATP1B3 OATP1A2 OATP2B1 OATP1B1 PEPT1 

 
(same as 
above) 

pOATP1B1 
vsurf_ID6 
vsurf_ID1 
vsurf_ID2 
vsurf_ID5 
NumRings6 
vsurf_R 
FRB 
ast_violation 
b_1rotN 
vsurf_ID7 
vsurf_ID3 
IndexofRefractio
n 
AM1_Eele 
vsurf_ID4 
a_hyd 
weinerPol 
LogD10 
pOATP1A2 
AM1_E 
vsa_hyd 
b_heavy 
pOCT1 
pOATP2B1 
pPEPT1 

vsurf_EDmin
2 
Fu 
NumRings6 
pOCT1 
a_don 
SlogP_VSA1 
FASA_H 
Nratio 
PEOE_VSA-1 
LogP 
ASA_P 
FiA 
LogD5.5 
PEOE_VSA+
4 
vsurf_DD13 
a_nCl 
vsurf_CW6 
pOATP2B1 
Q_VSA_FHY
D 

PSA 
vsurf_HB2 
PEOE_VSA_FPNE
G 
PEOE_VSA_FHYD 
a_don 
pOCT1 
PM3_dipole 

FiA 
PEOE_VSA_NEG 
vsurf_ID7 
vdw_vol 
Q_VSA_FPOS 
Q_VSA_FPPOS 
SMR 
vsurf_EDmin2 
glob 
vdw_area 
Weight 
vsurf_Wp6 
LogD7.4 
vsurf_CW2 
PEOE_VSA+6 
FASA+ 
vsurf_Wp3 
vsurf_HL1 
SMR_VSA4 
vsa_other 
vsurf_HB8 
a_nO 
PEOE_VSA_PPO
S 
PM3_LUMO 
PEOE_VSA.4 
a_aro 
HAcceptors 
PEOE_VSA+5 
pOATP1A2 
pPEPT1 
pOATP2B1 
pOCT1 

AM1_HF 
pOCT1 
FiA 
pOATP2B1 
Ro5 
ast_violation_e
xt 
pOATP1A2 
LogD7.4 
SlogP_VSA6 
FiAB 
PSA 
a_acc 
a_hyd 
LogD5.5 
LogD10 
a_nO 
LogD2 
FRB 
NOratio 
LogD6.5 
FiB 
LogP 
Fu 
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Table A2.8. Expression levels of different SLC transporters across a wide range of tissues. These 
expression levels for all transporters except OATP1A2 are obtained from western blot quantification 

reported in the protein atlas platform(Uhlén et al., 2015) (http://www.proteinatlas.org/) and reported 
in low (L), medium (M) or high (H) quantified amount of protein. For these, empty cells mean that the 
presence of the transporter in the tissue was tested, and yielded non-detectable amount of protein. 
On the other hand, the protein expression for OATP1A2 is not available from protein atlas, and 
instead has been gathered from the western blot analysis reported in the literature(Franke et al., 
2009, Lee et al., 2005). In the case of OATP1A2, measurements are annotated with “Y” for observed 
transporter in the tissue, “n.m” for no reported information found, and empty cells for tested but non 
detectable expression. 

 OATP1B1 OATP2B1 OATP1B3 OCT1 PEPT1 OATP1A2 

brain  M  L  Y 

lateral ventricle      n.m. 

thyroid gland  L  L  n.m. 

parathyroid gland  L  L  n.m. 

adrenal gland  M  M  n.m. 

appendix      n.m. 

bone marrow  L  L  n.m. 

tonsil      n.m. 

heart muscle  M  M  n.m. 

skeletal muscle  L  M  n.m. 

nasopharynx    L  n.m. 

Lung  L  L  n.m. 

liver M L H M   

gallbladder    M M n.m. 

pancreas  M  L  n.m. 

esophagus    M  n.m. 

stomach  M  M  n.m. 

duodenum    M M Y 

small intestine    M M n.m. 

colon    M  n.m. 

rectum    M  n.m. 

kidney    M  Y 

urinary bladder    L  n.m. 

testis  H  L  n.m. 

seminal vesicle      n.m. 

breast  L    Y 

cervix, uterine    H  n.m. 

endometrium      n.m. 

fallopian tube    L  n.m. 

ovary  L  L  n.m. 

placenta    M  n.m. 

adipose tissue      n.m. 

soft tissue      n.m. 

skin    M  n.m. 

 

 

 

http://www.proteinatlas.org/
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11.3. Appendix III: Supporting Information for Chapter 6 

 

Feature selection from ALL FEATURES 

Table A3.1. Models built from all available descriptors submitted to a prior run of GS pre-processing 

feature selection. 

 Greedy Search FS 

 Random Forest Boosted Trees 

 ePL (1) pPL (1a) ePL (12) pPL (12a) 

MAE 0,3385 0,3385 0,441 0,441 

 FiA (86.4) 
vsurf_CW5 (79.1) 
vsurf_CP (73.2) 

FiB (71.7) 
Q_VSA_FPNEG (66.1) 

glob (64.9) 
AM1_dipole (61.1) 
vsurf_CW8 (58.8) 
vsurf_DD13 (45.1) 

PEOE_VSA-2 (33.6) 
vsurf_DW13 (32.6) 

FiA (86.4) 
vsurf_CW5 (79.1) 
vsurf_CP (73.2) 

FiB (71.7) 
Q_VSA_FPNEG (66.1) 

glob (64.9) 
AM1_dipole (61.1) 
vsurf_CW8 (58.8) 
vsurf_DD13 (45.1) 

PEOE_VSA-2 (33.6) 
vsurf_DW13 (32.6) 

FiA (96.5) 
FiB (78.2) 

vsurf_CW5 (76.6) 
glob (76.3) 

AM1_dipole (70) 
vsurf_CW8 (68.9) 

Q_VSA_FPNEG (61.9) 
vsurf_CP (61.5) 

vsurf_DD13 (47.5) 
vsurf_DW13 (28.9) 

PEOE_VSA-2 (21.6) 

FiA (96.5) 
FiB (78.2) 

vsurf_CW5 (76.6) 
glob (76.3) 

AM1_dipole (70) 
vsurf_CW8 (68.9) 

Q_VSA_FPNEG (61.9) 
vsurf_CP (61.5) 

vsurf_DD13 (47.5) 
vsurf_DW13 (28.9) 

PEOE_VSA-2 (21.6) 
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Table A3.2. Models built from all available descriptors submitted to a prior run of GA pre-processing 

feature selection. 

 Genetic Search FS 

 Random Forest Boosted Trees 

 ePL (5) pPL (5a) ePL (16) pPL (16a) 

MAE 0,317 0,308 0.322 0.304 

 FiA (47.8) 
LogD(10) (44.7) 

ASA_P (35) 
Hetero_ratio (33.9) 
AM1_HOMO (31.8) 

FASA_H (31.4) 
PEOE_VSA_FHYD (31) 

vsurf_HB2 (29.5) 
Q_VSA_FHYD (26.4) 

vsurf_CP (26.3) 
PEOE_VSA-0 (26.2) 

LogD(6_5) (26) 
pPEPT1 (25.8) 

SMR_VSA0 (25.4) 
LogP (25.4) 

vsurf_HB1 (24.7) 
vsurf_CW2 (23.9) 
SMR_VSA2 (23.8) 
vsurf_HB3 (23.8) 

SlogP_VSA5 (23.7) 
Surface_Tension (23.1) 

PEOE_RPC- (22.4) 
C_ratio (22.1) 

vsurf_EWmin3 (21.8) 
vsurf_IW3 (20.6) 

Q_VSA_FPOS (20) 
balabanJ (19.8) 

vsurf_EDmin3 (18.1) 
vsurf_DD13 (16.7) 

PEOE_VSA+5 (15.9) 
pMRP2 (15) 
a_acc (12.9) 

PEOE_VSA-2 (12.6) 
vsurf_DD23 (11.6) 
vsurf_DD12 (10.4) 
Num_Rings_5 (8.2) 

chiral_u (6.7) 
Halogen_ratio (6.5) 
PEOE_VSA+6 (6.3) 

pOATP2B1 (5.3) 
pOATP1B1 (4.9) 

ePL (0.3) 
density (0) 

LogD(10) (51.8) 
FiA (50.6) 

vsurf_HL2 (36.1) 
ASA_P (33.3) 

vsurf_HL1 (31.9) 
SMR_VSA0 (31.8) 
AM1_HOMO (30.4) 

vsurf_HB1 (29) 
pPEPT1 (26.9) 

PEOE_VSA-0 (26.5) 
C_ratio (26.2) 

vsurf_HB3 (25.2) 
vsurf_HB2 (25.1) 

LogP (25) 
vsurf_W6 (24.8) 
NO_ratio (24.2) 

PEOE_RPC+ (24.1) 
SMR_VSA2 (23.6) 

vsurf_CW3 (23) 
Surface_Tension (22.6) 

vsurf_ID3 (21.3) 
vsurf_IW5 (20.7) 

MNDO_dipole (20.6) 
pMRP2 (20.4) 

vsurf_EDmin2 (20.2) 
PM3_dipole (18.9) 

Density (17.8) 
vsurf_DD13 (17.3) 

pPL (15.9) 
pOCT1 (13.6) 

PEOE_VSA-2 (13.4) 
vsurf_DW13 (12.6) 

a_nN (12.2) 
vsurf_DW23 (12.2) 

pMRP1 (11.5) 
vsurf_DD12 (11.1) 

Halogen_ratio (11.1) 
vsurf_DW12 (10.9) 

a_nS (10.6) 
FiAB (7) 

ast_violation (6.9) 
PEOE_VSA+6 (5) 

Num_Rings_4 (3.3) 
pOATP1B1 (3.1) 

Num_Rings_3 (1.7) 

FiA (66.3) 
LogD(10) (56.4) 

Hetero_ratio (40.3) 
AM1_HOMO (40.2) 

FASA_H (39.2) 
PEOE_VSA_FHYD (37.8) 

ASA_P (35.7) 
vsurf_CP (31.3) 

SlogP_VSA5 (30.9) 
LogP (30.6) 

SMR_VSA0 (29.7) 
PEOE_VSA-0 (26.7) 

vsurf_HB2 (26.5) 
pPEPT1 (25.4) 

PEOE_RPC- (25.2) 
LogD(6_5) (25.1) 

Q_VSA_FHYD (23.8) 
Surface_Tension (23.5) 

SMR_VSA2 (22.1) 
vsurf_EDmin3 (22.1) 
Q_VSA_FPOS (21.8) 

density (21.2) 
vsurf_HB1 (21.1) 
vsurf_IW3 (21.1) 

balabanJ (21) 
vsurf_CW2 (20.5) 

vsurf_EWmin3 (19.9) 
PEOE_VSA+5 (18.9) 

C_ratio (18.7) 
vsurf_HB3 (18.3) 

vsurf_DD13 (17.3) 
pMRP2 (15.3) 
a_acc (12.8) 

PEOE_VSA-2 (12.3) 
vsurf_DD23 (10.6) 
vsurf_DD12 (8.8) 

Num_Rings_5 (7.8) 
chiral_u (5.9) 

Halogen_ratio (5.7) 
pOATP2B1 (5) 

PEOE_VSA+6 (4.9) 
pOATP1B1 (4.5) 

ePL (0.2) 

FiA (60) 
LogD(10) (58.9) 
ASA_P (42.9) 

AM1_HOMO (40.6) 
vsurf_HL2 (40) 

SMR_VSA0 (37.3) 
vsurf_HL1 (35.8) 

PEOE_VSA-0 (32.2) 
NO_ratio (31.6) 

LogP (30.9) 
vsurf_W6 (29) 

vsurf_HB1 (28.8) 
C_ratio (28.5) 

SMR_VSA2 (28.1) 
vsurf_HB2 (27.6) 

PEOE_RPC+ (27.3) 
vsurf_HB3 (25.9) 

pPEPT1 (23) 
vsurf_ID3 (22.7) 
pMRP2 (22.2) 

vsurf_EDmin2 (22) 
vsurf_IW5 (20.4) 

MNDO_dipole (20.2) 
Surface_Tension (20.1) 

vsurf_CW3 (19.2) 
PM3_dipole (18.6) 

pPL (16.5) 
pOCT1 (15.3) 

vsurf_DD13 (15.1) 
Density (14.1) 

PEOE_VSA-2 (13.5) 
a_nN (13.5) 

vsurf_DW23 (13.1) 
a_nS (12.2) 

vsurf_DW13 (12.2) 
pMRP1 (12.1) 

vsurf_DW12 (11.8) 
vsurf_DD12 (9.7) 

FiAB (9.4) 
Halogen_ratio (8.2) 
ast_violation (6.3) 

PEOE_VSA+6 (4.4) 
pOATP1B1 (4) 

Num_Rings_4 (3.5) 
Num_Rings_3 (2.2) 

 

Feature selection from Physiological Descriptors 

Table A3.3. Models built from physiological descriptors (exclusively), selected in a prior run of GS 

pre-processing feature selection. 

 Greedy Search FS 

 Random Forest Boosted Trees 

 ePL (3) pPL (3a) ePL (14) pPL (14a) 

MAE 0,469 0,424 0,599 0,588 

 pPEPT1 (97.2) 
pBCRP1 (93.7) 
pMRP2 (93.4) 
pMRP1 (89.6) 

pOATP1B1 (63.7) 
ePL (30.3) 

pPEPT1 (95.6) 
pPL (93.1) 

pMRP2 (89.7) 
pBCRP1 (86.6) 
pMRP1 (84.4) 

pOATP1B1 (42.8) 

pMRP2 (99.3) 
pPEPT1 (97.6) 
pBCRP1 (95.5) 
pMRP1 (82.7) 

pOATP1B1 (61.9) 
ePL (38.7) 

pMRP2 (99.7) 
pPL (95.8) 

pPEPT1 (94.1) 
pBCRP1 (81.9) 

pOATP1B1 (75.1) 
pMRP1 (71.7) 



 

227 
 

 

Table A3.4. Models built from physiological descriptors (exclusively), selected in a prior run of GA 

pre-processing feature selection. 

 Genetic Search FS 

 Random Forest Boosted Trees 

 ePL (7) pPL (7a) ePL (18) pPL (18a) 

MAE 0,469 0,424 0,599 0,588 

 pPEPT1 (97.2) 
pBCRP1 (93.7) 
pMRP2 (93.4) 
pMRP1 (89.6) 

pOATP1B1 (63.7) 
ePL (30.3) 

pPEPT1 (95.6) 
pPL (93.1) 

pMRP2 (89.7) 
pBCRP1 (86.6) 
pMRP1 (84.4) 

pOATP1B1 (42.8) 

pMRP2 (99.3) 
pPEPT1 (97.6) 
pBCRP1 (95.5) 
pMRP1 (82.7) 

pOATP1B1 (61.9) 
ePL (38.7) 

pMRP2 (99.7) 
pPL (95.8) 

pPEPT1 (94.1) 
pBCRP1 (81.9) 

pOATP1B1 (75.1) 
pMRP1 (71.7) 

 

 

Feature selection from Physiological Descriptors + Feature selection from Molecular 

Descriptors 

Table A3.5. Models based on two parallel runs of GS pre-processing feature selection done on 

physiological descriptors and molecular descriptors separately. Both sets of selected descriptors 
were merged and used for training of the QSAR models. 

 Greedy Search FS 

 Random Forest Boosted Trees 

 ePL (4) pPL (4a) ePL (15) pPL (15a) 

MAE 0,3357 0,3273 0,360 0,370 

 FiA (77.6) 
vsurf_CW5 (68.5) 

FiB (65.2) 
vsurf_CP (63.9) 
pPEPT1 (58.3) 

Q_VSA_FPNEG (54.3) 
glob (53) 

AM1_dipole (50.3) 
vsurf_CW8 (46.9) 
pBCRP1 (46.6) 
pMRP2 (37.1) 
pMRP1 (34.4) 

vsurf_DD13 (34.3) 
vsurf_DW13 (28.4) 

PEOE_VSA-2 (24.7) 
pOATP1B1 (10.9) 

ePL (0.9) 

FiA (78) 
vsurf_CW5 (67.2) 

FiB (63.9) 
vsurf_CP (63.1) 

pPEPT1 (53) 
glob (51.4) 

Q_VSA_FPNEG (51.3) 
vsurf_CW8 (47.6) 
AM1_dipole (45.5) 

pPL (43.5) 
pBCRP1 (41.6) 

pMRP2 (40) 
pMRP1 (32) 

vsurf_DD13 (31.1) 
vsurf_DW13 (27) 

PEOE_VSA-2 (23.2) 
pOATP1B1 (9.1) 

FiA (91.7) 
FiB (78.1) 

vsurf_CW5 (73.5) 
glob (65.3) 

vsurf_CP (59) 
Q_VSA_FPNEG (56.8) 

vsurf_CW8 (53.2) 
pPEPT1 (52.9) 
pBCRP1 (50.2) 

AM1_dipole (47.6) 
pMRP2 (38.2) 
pMRP1 (35.7) 

vsurf_DD13 (34) 
vsurf_DW13 (23.2) 

PEOE_VSA-2 (22.4) 
pOATP1B1 (5.6) 

ePL (0.8) 

FiA (92) 
FiB (75.7) 

vsurf_CW5 (71.9) 
glob (61) 

vsurf_CP (59.7) 
Q_VSA_FPNEG (59.6) 

vsurf_CW8 (54.3) 
pPEPT1 (45.7) 

AM1_dipole (45.1) 
pBCRP1 (44.1) 

pPL (42) 
pMRP2 (34.1) 
pMRP1 (33.7) 

vsurf_DD13 (31) 
vsurf_DW13 (22.4) 

PEOE_VSA-2 (21.1) 
pOATP1B1 (4.9) 
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Table A3.6. Models based on two parallel runs of pre-processing GA feature selection done on 

physiological descriptors and molecular descriptors separately. Both sets of selected descriptors 
were merged and used for training of the QSAR models. 

 Genetic Search FS 

 Random Forest Boosted Trees 

 ePL (8) pPL (8a) ePL (19) pPL (19a) 

MAE 0,307 0,306 0,321 0,316 

 FiA (45.2) 
LogD(10) (40.3) 
ASA_P (33.6) 

LogD(7_4) (31.8) 
FiB (31.8) 

Hetero_ratio (28.8) 
vsurf_HL1 (27.3) 

SMR_VSA0 (26.4) 
pPEPT1 (25.3) 
vsurf_HB2 (25) 

vsurf_CW6 (24.4) 
density (24.3) 

PEOE_VSA-0 (23.9) 
vsurf_HB1 (23.8) 

MNDO_HOMO (23.8) 
LogP (23.6) 

b_1rotR (22.7) 
vsurf_HB3 (21.7) 
PEOE_PC- (21.6) 

SlogP_VSA5 (21.4) 
VAdjEq (21) 

LogD(5_5) (20.5) 
Surface_Tension (19.3) 

vsurf_ID4 (19.1) 
vsa_acc (18.7) 

SlogP_VSA1 (18.2) 
dens (17.9) 

pBCRP1 (17.7) 
vsurf_EWmin3 (17.6) 
MNDO_LUMO (17.3) 

vsurf_ID5 (17) 
vsurf_W7 (16.9) 
vsurf_IW8 (16.1) 
vsurf_ID6 (16.1) 
pMRP2 (15.7) 

AM1_dipole (15.4) 
pMRP1 (12.6) 

vsurf_DW23 (11.1) 
PEOE_VSA-2 (10.5) 
vsurf_DD23 (10.4) 
Num_Rings_6 (8.8) 
Num_Rings_5 (5.5) 
pOATP1B1 (4.1) 

Num_Rings_4 (3.7) 
reactive (3.3) 

Num_Rings_3 (1.5) 
ePL (0.2) 

FiA (47.1) 
LogD(10) (38.5) 
LogD(7_4) (31.9) 

FiB (30.8) 
ASA_P (30.6) 

Hetero_ratio (29.6) 
vsurf_HL1 (29) 

vsurf_CW6 (25.3) 
vsurf_HB1 (24.9) 
pPEPT1 (24.5) 

vsurf_HB2 (24.2) 
density (24) 

SMR_VSA0 (23.4) 
MNDO_HOMO (23.4) 

vsurf_HB3 (22.6) 
PEOE_VSA-0 (22.6) 

LogP (22.5) 
b_1rotR (21.1) 

SlogP_VSA5 (20.6) 
VAdjEq (20.2) 

PEOE_PC- (19.9) 
vsa_acc (19.9) 

LogD(5_5) (19.3) 
vsurf_ID4 (18.9) 

Surface_Tension (18.4) 
SlogP_VSA1 (18.4) 

pBCRP1 (17.7) 
MNDO_LUMO (17.2) 

pPL (17.1) 
vsurf_EWmin3 (17) 

vsurf_ID5 (16.9) 
dens (16.5) 

vsurf_W7 (16.3) 
vsurf_IW8 (15.5) 
pMRP2 (15.3) 

AM1_dipole (15.3) 
vsurf_ID6 (14.9) 
pMRP1 (12.5) 

vsurf_DD23 (11.4) 
vsurf_DW23 (10.9) 
PEOE_VSA-2 (9.6) 
Num_Rings_6 (9.5) 
Num_Rings_5 (6.1) 
pOATP1B1 (3.8) 

reactive (3.6) 
Num_Rings_4 (3.3) 
Num_Rings_3 (1.3) 

FiA (54.9) 
LogD(10) (52.6) 
Hetero_ratio (43) 

FiB (40.6) 
ASA_P (35) 

vsurf_CW6 (31.9) 
LogD(7_4) (31.2) 
vsurf_HL1 (29.3) 
b_1rotR (27.3) 

vsurf_HB2 (27.2) 
MNDO_HOMO (27.1) 

SMR_VSA0 (27.1) 
SlogP_VSA5 (26.8) 

pPEPT1 (25.5) 
PEOE_VSA-0 (25.3) 

LogP (24.8) 
vsurf_HB1 (23.9) 

density (23.7) 
VAdjEq (22.6) 

MNDO_LUMO (22) 
vsurf_ID4 (20.7) 

PEOE_PC- (20.6) 
LogD(5_5) (20.6) 
vsurf_HB3 (20.1) 
pBCRP1 (20.1) 

SlogP_VSA1 (19.9) 
vsurf_EWmin3 (18.5) 

Surface_Tension (18.4) 
vsa_acc (17.7) 

vsurf_ID5 (17.5) 
dens (16.9) 

vsurf_IW8 (16.4) 
vsurf_W7 (16.2) 
pMRP2 (15.5) 

AM1_dipole (15.4) 
vsurf_ID6 (14.5) 

PEOE_VSA-2 (11) 
vsurf_DW23 (10.3) 

pMRP1 (9.9) 
vsurf_DD23 (9.1) 

Num_Rings_6 (7.8) 
Num_Rings_5 (6) 
pOATP1B1 (3.8) 

reactive (3.1) 
Num_Rings_4 (3.1) 
Num_Rings_3 (1.2) 

ePL (0.2) 

FiA (60.3) 
LogD(10) (51.4) 

FiB (43.9) 
ASA_P (36) 

LogD(7_4) (35.9) 
SMR_VSA0 (32.4) 

vsurf_HL1 (32) 
Hetero_ratio (31.8) 
SlogP_VSA5 (29.3) 

b_1rotR (28.6) 
MNDO_HOMO (27.6) 

vsurf_CW6 (26.6) 
LogP (25.8) 

PEOE_VSA-0 (24.8) 
PEOE_PC- (23.6) 
vsurf_HB2 (23.6) 

VAdjEq (22.1) 
vsurf_HB1 (21.9) 
pPEPT1 (21.9) 
vsa_acc (21.8) 

density (21) 
LogD(5_5) (19.6) 
vsurf_ID4 (19.1) 
pBCRP1 (19.1) 

Surface_Tension (19) 
vsurf_ID5 (18.9) 

pPL (18.5) 
vsurf_EWmin3 (18.2) 
MNDO_LUMO (17.7) 

vsurf_HB3 (17.6) 
SlogP_VSA1 (17.5) 

vsurf_ID6 (15.9) 
vsurf_W7 (15.7) 
vsurf_IW8 (15.4) 

dens (14.4) 
AM1_dipole (14) 
pMRP2 (13.2) 

vsurf_DW23 (11.6) 
pMRP1 (10.3) 

vsurf_DD23 (9.9) 
PEOE_VSA-2 (9.7) 
Num_Rings_6 (7.8) 
Num_Rings_5 (6.1) 

reactive (3.5) 
Num_Rings_4 (3.4) 

pOATP1B1 (2.9) 
Num_Rings_3 (0.9) 
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No Feature Selection 

Table A3.7. Models based on no feature selection and all features are directly available for training 
of the QSAR models. 

 Random Forest Boosted Trees 

 ePL (9) pPL (9a) ePL (20) pPL (20a) 

MAE 0.318 0.322 0.319 0.316 

 ePL (0.1) 
pMDR1 (3.5) 
pBCRP1 (3.2) 
pMRP2 (3.2) 
pMRP1 (3.2) 
pOCT1 (2.7) 

pOATP2B1 (1) 
pOATP1A2 (3.8) 

pPEPT1 (5.5) 
pOATP1B1 (1) 
pOATP1B3 (4) 

+ All remaining MDs 

pPL (3.5) 
pMDR1 (4.2) 
pBCRP1 (3.4) 

pMRP2 (3) 
pMRP1 (2.6) 
pOCT1 (2.3) 

pOATP2B1 (0.9) 
pOATP1A2 (3.6) 

pPEPT1 (5.4) 
pOATP1B1 (0.8) 
pOATP1B3 (4.6) 

+ All remaining MDs 

ePL (0.1) 
pMDR1 (3.2) 
pBCRP1 (3) 
pMRP2 (3.3) 
pMRP1 (3.6) 
pOCT1 (3) 

pOATP2B1 (0.9) 
pOATP1A2 (4.1) 

pPEPT1 (5.5) 
pOATP1B1 (0.8) 
pOATP1B3 (4.9) 

+ All remaining MDs 

pPL (3.1) 
pMDR1 (4) 

pBCRP1 (3.5) 
pMRP2 (4.7) 
pMRP1 (3) 
pOCT1 (2) 

pOATP2B1 (0.6) 
pOATP1A2 (4.4) 

pPEPT1 (4.8) 
pOATP1B1 (2.1) 
pOATP1B3 (4.2) 

+ All remaining MDs 

 

Table A3.8. Models based on no feature selection and just physiological features available for 

modelling. 

 Random Forest Boosted Trees 

 ePL (10) pPL (10a) ePL (20) pPL (21a) 

MAE 0.380 0.371 0.413 0.412 

 pPEPT1 (86.8) 
pOATP1B3 (77.2) 

pMDR1 (72.8) 
pMRP2 (72) 

pMRP1 (71.4) 
pBCRP1 (68.1) 
pOCT1 (65.2) 

pOATP1A2 (63.2) 
pOATP2B1 (50.3) 
pOATP1B1 (33.9) 

ePL (3.9) 

pPEPT1 (82.4) 
pPL (73.9) 

pMRP2 (71.4) 
pOATP1B3 (71.3) 

pMDR1 (67) 
pMRP1 (66.5) 

pBCRP1 (61.6) 
pOCT1 (57.9) 

pOATP1A2 (57.4) 
pOATP2B1 (43.1) 
pOATP1B1 (30.5) 

pPEPT1 (93.8) 
pMRP2 (88.8) 
pMDR1 (78.4) 

pOATP1B3 (77.3) 
pBCRP1 (69.5) 

pOATP1A2 (65.3) 
pOATP2B1 (62.5) 

pMRP1 (58.4) 
pOCT1 (54.1) 

pOATP1B1 (52.3) 
ePL (2.3) 

pPEPT1 (91.9) 
pMRP2 (85) 
pPL (77.5) 

pMDR1 (73.9) 
pOATP1B3 (72.7) 

pMRP1 (61.1) 
pBCRP1 (60.9) 

pOATP1A2 (59.6) 
pOATP2B1 (55.3) 

pOCT1 (49.5) 
pOATP1B1 (48.6) 

 

 

Figure A3.1. Coverage of logVss values from missing phospholipidosis data compared to 

measured data. 
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Figure A3.2. Physiological descriptors’ combinations sorted in ascending amount of rules associated with each combinations. 
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Table A3.9. Top node features across the 8a RF model (best overall model). 

top node Number of 
Trees 

FiA 145 

LogD(10) 102 

Hetero_ratio 84 

LogD(7.4) 83 

ASA_P 60 

vsurf_HL1 60 

vsurf_CW6 52 

vsurf_HB3 49 

SMR_VSA0 48 

density 43 

vsurf_HB1 42 

FiB 34 

vsurf_HB2 32 

pMRP2 26 

Surface_Tension 21 

pMRP1 20 

dens 16 

vsurf_W7 15 

pPEPT1 10 

LogD(5_5) 9 

PEOE_PC- 7 

Num_Rings_4 6 

PEOE_VSA-2 6 

SlogP_VSA1 6 

vsurf_EWmin3 4 

LogP 4 

PEOE_VSA-0 3 

AM1_dipole 2 

vsurf_ID4 2 

vsa_acc 2 

MNDO_HOMO 1 

vsurf_IW8 1 

MNDO_LUMO 1 

b_1rotR 1 

pPL 1 

SlogP_VSA5 1 

pOATP1B1 1 
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Figure A3.3. Vss distribution across the different combinations of physiological descriptors. Note that a given combination can be found in several different 
rules of the RF model. The legend of the combinations of physiological descriptors is provided in Table A3.10. This is ordered alphabetically for ease of 
consultation. Each if-then rule containing these combinations may or may not also contain molecular descriptors. 
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Table A3.10. Distribution of Vss within each combination, reported in mean, median, standard 
deviation (SD) and maximum range. This is ordered alphabetically for ease of consultation. Each if-
then rule containing these combinations may or may not also contain molecular descriptors. All 
descriptors listed here are of the type “pDescriptor”, but were represented with just the name of the 
physiological property they encode, for simplicity. 

combination 
code 

content N (rules) 
Mean 

logVss 
Median 
logVss 

SD 
logVss 

Range 
logVss 

A PEPT1, MRP1, MRP2, PL, BCRP1  23 -0.2513 -0.28 0.36199 1.4 

AA PEPT1, BCRP1, OATP1B1 180 -0.1733 -0.26 0.53447 2.82 

AB PEPT1, BCRP1  5184 -0.0048 0 0.59479 4.31 

AC PEPT1, OATP1B1 926 -0.1615 -0.21 0.58675 3.11 

AD PEPT1    25865 0.0755 0.08 0.62438 4.31 

AE MRP1, MRP2, PL, BCRP1, OATP1B1 5 -0.428 -0.29 0.32105 0.71 

AF MRP1, MRP2, PL, BCRP1 96 -0.2328 -0.245 0.46855 2.72 

AG MRP1, MRP2, PL, OATP1B1 37 -0.353 -0.42 0.38781 1.43 

AH MRP1, MRP2, PL 354 -0.162 -0.27 0.63693 3.11 

AI MRP1, MRP2, BCRP1, OATP1B1 22 -0.0527 -0.005 0.36388 1.21 

AJ MRP1, MRP2, BCRP1  496 -0.1317 -0.115 0.56779 3.11 

AK MRP1, MRP2, OATP1B1 139 -0.0432 -0.02 0.54272 2.46 

AL MRP1, MRP2    1885 -0.21 -0.26 0.58532 4.31 

AM MRP1, PL, BCRP1, OATP1B1 33 -0.3603 -0.62 0.66254 2.8 

AN MRP1,  PL, BCRP1 519 -0.1597 -0.21 0.54979 2.82 

AO MRP1,  PL  OATP1B1 69 -0.1523 -0.27 0.64937 3.11 

AP MRP1,  PL   2251 -0.1167 -0.16 0.61284 4.31 

AQ MRP1, BCRP1, OATP1B1 115 -0.309 -0.54 0.60116 2.74 

AR MRP1, BCRP1  2405 -0.0979 -0.11 0.59453 4.31 

AS MRP1, OATP1B1 526 -0.2159 -0.29 0.58431 3.05 

AT MRP1     11151 -0.0682 -0.1 0.65122 4.31 

AU MRP2, PL, BCRP1, OATP1B1 18 -0.4867 -0.665 0.62222 2.27 

AV MRP2, PL, BCRP1 653 -0.1288 -0.2 0.59367 3.11 

AW MRP2, PL, OATP1B1 112 -0.2079 -0.26 0.48515 2.12 

AX MRP2, PL   3111 -0.0927 -0.08 0.61257 4.31 

AY MRP2, BCRP1, OATP1B1 98 -0.1972 -0.2 0.47282 2.18 

AZ MRP2, BCRP1 2986 -0.1147 -0.12 0.60462 4.31 

B PEPT1, MRP1, MRP2, PL, OATP1B1 10 -0.017 -0.055 0.63239 1.9 

BA MRP2, OATP1B1 658 -0.1965 -0.215 0.56452 3.11 

BB MRP2    14415 -0.055 -0.07 0.65701 4.31 

BC PL, BCRP1, OATP1B1 104 -0.2414 -0.315 0.50817 2.54 

BD PL, BCRP1  3489 -0.0053 0 0.60572 4.31 

BE PL, OATP1B1 686 -0.2083 -0.27 0.58201 3.11 

BF PL   16897 0.0435 0.04 0.64482 4.31 

BG BCRP1, OATP1B1 580 -0.1749 -0.24 0.59902 3.11 

BH BCRP1  17439 0.0109 0.03 0.63967 4.31 

BI OATP1B1 3202 -0.1269 -0.17 0.64621 4.31 

C PEPT1, MRP1, MRP2, PL   97 -0.1876 -0.25 0.49824 2.03 

D PEPT1, MRP1, MRP2, BCRP1, OATP1B1 5 0.146 0.46 0.58654 1.21 

E PEPT1, MRP1, MRP2, BCRP1 105 -0.037 -0.03 0.51635 2.54 

F PEPT1, MRP1, MRP2, OATP1B1 69 -0.1549 -0.15 0.50079 2.29 

G PEPT1, MRP1, MRP2    474 -0.1349 -0.14 0.52347 3.05 

H PEPT1, MRP1, PL, BCRP1  140 -0.2095 -0.22 0.45953 2.07 

I PEPT1, MRP1, PL, OATP1B1 39 -0.3395 -0.37 0.39512 1.61 

J PEPT1, MRP1, PL   707 -0.1075 -0.1 0.56732 3.11 
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Table A3.10. (cont.) 

combination 
code 

content N (rules) 
Mean 

logVss 
Median 
logVss 

SD 
logVss 

Range 
logVss 

K PEPT1, MRP1, BCRP1, OATP1B1 18 -0.0783 0.01 0.3731 1.25 

L PEPT1, MRP1, BCRP1  908 -0.0527 -0.03 0.55647 4.25 

M PEPT1, MRP1, OATP1B1 205 -0.3257 -0.36 0.50459 2.3 

N PEPT1, MRP1     3937 -0.0151 -0.03 0.60731 4.31 

O PEPT1, MRP2, PL, BCRP1, OATP1B1 13 -0.0646 0.18 0.66988 1.68 

P PEPT1, MRP2, PL, BCRP1 176 -0.1866 -0.15 0.51236 2.76 

Q PEPT1, MRP2, PL, OATP1B1 38 -0.1939 -0.225 0.53364 2.04 

R PEPT1, MRP2, PL 759 -0.0468 -0.03 0.54531 3.05 

S PEPT1, MRP2, BCRP1, OATP1B1 47 -0.0515 0.08 0.57722 2.33 

T PEPT1, MRP2  BCRP1  1093 -0.0777 -0.07 0.52804 3.11 

U PEPT1, MRP2   OATP1B1 182 -0.0334 -0.025 0.5494 2.6 

V PEPT1, MRP2    4606 0.0058 0 0.60026 4.31 

W PEPT1, PL, BCRP1, OATP1B1 15 -0.2393 -0.44 0.68706 2.14 

X PEPT1, PL, BCRP1  844 -0.0663 -0.07 0.54892 3.05 

Y PEPT1, PL, OATP1B1 161 -0.1498 -0.21 0.60702 2.6 

Z PEPT1, PL   5020 -0.0045 0 0.60508 4.31 

 

 

Figure A3.4. Predictions of the Gombar external test set. 

 

  

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

P
re

d
ic

te
d

 L
o

g
(V

s
s

)

Observed Log(Vss)

m_8a

SVM

MLR



 

235 
 

Figure A3.5. Predictions of the Lombardo external test set. 
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11.4. Appendix IV: Supporting Information for Chapter 7 

 

Table A4.1. Full list of descriptors and their feature importance (% correctly learned compounds) in 
model 8a (the best model in our previous work). 

MAE (IV set) = 0,306 

FiA (47.1) 
LogD(10) (38.5) 

LogD(7_4) (31.9) 
FiB (30.8) 

ASA_P (30.6) 
Hetero_ratio (29.6) 

vsurf_HL1 (29) 
vsurf_CW6 (25.3) 
vsurf_HB1 (24.9) 
pPEPT1 (24.5) 

vsurf_HB2 (24.2) 
density (24) 

SMR_VSA0 (23.4) 
MNDO_HOMO (23.4) 

vsurf_HB3 (22.6) 
PEOE_VSA-0 (22.6) 

LogP (22.5) 
b_1rotR (21.1) 

SlogP_VSA5 (20.6) 
VAdjEq (20.2) 

PEOE_PC- (19.9) 
vsa_acc (19.9) 

LogD(5_5) (19.3) 
vsurf_ID4 (18.9) 

Surface_Tension (18.4) 
SlogP_VSA1 (18.4) 

pBCRP1 (17.7) 
MNDO_LUMO (17.2) 

pPL (17.1) 
vsurf_EWmin3 (17) 

vsurf_ID5 (16.9) 
dens (16.5) 

vsurf_W7 (16.3) 
vsurf_IW8 (15.5) 
pMRP2 (15.3) 

AM1_dipole (15.3) 
vsurf_ID6 (14.9) 
pMRP1 (12.5) 

vsurf_DD23 (11.4) 
vsurf_DW23 (10.9) 
PEOE_VSA-2 (9.6) 
Num_Rings_6 (9.5) 
Num_Rings_5 (6.1) 

pOATP1B1 (3.8) 
reactive (3.6) 

Num_Rings_4 (3.3) 
Num_Rings_3 (1.3) 

 

 

Table A4.2. Full list of combinations in the best model (M5) retrained in the presence of pPPB, and 
the full list of combinations in M5. 

M5 retrained with pPPB M5 

pPPB OATP1B1_c 

pBCRP1_c BCRP1_c 

pMRP2_c MRP2_c 

pBCRP1_c + pPPB BCRP1_c + pOATP1B1_c 

pMRP2_c + pPPB MRP2_c + pOATP1B1_c 

pOATP1B1_c BCRP1_c + pMRP2_c 

pMRP2_c + pBCRP1_c BCRP1_c + pMRP2_c + pOATP1B1_c 

pOATP1B1_c + pPPB  

pBCRP1_c + pOATP1B1_c  

pMRP2_c + pBCRP1_c + pPPB  

pMRP2_c + pOATP1B1_c  

pMRP2_c + pOATP1B1_c + pPPB  

pMRP2_c + pBCRP1_c + pOATP1B1_c  

pBCRP1_c + pOATP1B1_c + pPPB  
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11.5. Appendix V: Supporting Information for Chapter 8 

Supplement A5.1: Impact of the minimum required number of training neighbours 

The results presented regarding RDN consider an external compound within the AD if it falls 

within the threshold distance of at least 1 training compound at any given iteration of the 

algorithm (refer to scheme 1, where at the last step new instances will be considered as 

being covered if falling within “any MaxDisti”, meaning within at least 1 training 

neighbourhood). To explore the impact of this parameter, the effect of increasing the 

minimum number of required nearest neighbours was tested. Except for a required 

minimum of 2 nearest neighbours (2 NNmin), increasing the number of training neighbours 

revealed to be useless, yielding a low quality AD core often worse than the baseline 

accuracy achieved when all data are considered. Imposing a restriction of 2 NNmin showed 

higher quality at the inner most region of the model (Figure SI1) compared to when one 

single neighbour is required (1 NNmin) (Figure 8, Results and Discussion), but on the other 

hand the obtained profiles from the latter were smoother.  

As a result, it is not straightforward to choose one alternative over the other. However, this 

experiment showed that, counterintuitively, having 1 neighbour as minimum requirement 

does not only provide a useful AD but it is better than, say, 4 nearest neighbours. This is in 

line with our remaining observations that point towards the importance of addressing small 

regions in the chemical landscape. 

 

Figure A5.1. RDN AD with minimum 2 nearest neighbours required in order for a query to be 

considered included in the AD. 

 

Supplement A5.2: Complementary assessment of simpler curve similarity measures 
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To complement the analysis of the AD scoring function other simpler measures were 

analysed. A pairwise similarity was calculated based on comparing every sub-section 

between the curves for the two external subsets, and counting the percentage of matching 

segments (in terms of slope) between a pair of curves (Table A5.1). In all datasets this 

measure produces at least one occasion where higher pairwise similarity does not 

correspond to a visually better profile. This could be explained by the fact that purely looking 

at the similarity between curves does not distinguish between descending and increasing 

trends, which led us to conclude that absolute similarity in itself is insufficient in assessing 

the quality of an AD profile. Another evaluated measure, which is a part of the AD scoring 

function, is the SMP. This could be considered as a more sophisticated pairwise similarity, 

as it takes into account both slope mismatch and slope direction (results summarized in 

Table A5.2). In this case, the lower the value, the better is the overall trend between both 

external curves. The average SMP is consistently lower with STD across all datasets, 

however as already explained this could be misleading as matching slopes between a pair 

of curves can have a different value according to the amount of data associated with each 

section. 

Lastly, the Area Between Curves (ABC) (Table SI2) shows that all three datasets have the 

smallest ABC with dk-NN, which again shows this would be misleading to use as an 

assessment measure. Solely having a small absolute difference between both curves does 

not necessarily mean the AD profile has more quality, as shown by Ames dk-NN AD where 

the two curves are close to each other, yet they have a very poor characterization of the 

model’s AD. 

Table A5.1. Pairwise similarity across all three models studied. Pairwise Similarity indicates the 
percentage of segments in both external set curves which show a matching slope. The best value in 
each dataset is highlighted in bold. 

 PAIRWISE SIMILARITY (%) 

 RDN STD dk-NN KDE 

P-GP 50 50 68 55 

AMES 45 71 46 64 

CYP450 55 88 46 63 

 

Table A5.2. Summary of the average Slope Mismatch Penalty (SMP) and the Area Between Curves 
(ABC) across all three models studied. The SMP was calculated as explained in the methods section, 
and the ABC was calculated from the sum of the area of trapezoids formed between the two curves 
under analysis. The best value in each dataset is highlighted in bold. 

 AVERAGE SMP AREA BETWEEN CURVES (ABC) 
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 RDN STD dk-NN KDE RDN STD dk-NN KDE 

P-GP 6.8 3.6 4.6 7.2 1.9 1.9 0.05 1.7 

AMES 6.7 3.7 5.5 8.1 1.9 0.4 0.1 0.9 

CYP450 7.1 3.0 7.3 9.2 0.5 0.4 0.1 1.1 

 

 

 

 


