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The microstructure of coagulated colloidal particles, for which the interparticle potential is described by the
Derjaguin-Landau-Verweg-Overbeek theory, is strongly influenced by the particles’ surface potential. Depend-
ing on its value, the resulting microstructures are either more “homogeneous” or more “heterogeneous,” at
equal volume fractions. An adequate quantification of a structure’s degree of heterogeneity �DOH�, however,
does not yet exist. In this work, methods to quantify and thus classify the DOH of microstructures are
investigated and compared. Three methods are evaluated using particle packings generated by Brownian
dynamics simulations: �1� the pore size distribution, �2� the density-fluctuation method, and �3� the Voronoi
volume distribution. Each method provides a scalar measure, either via a parameter in a fit function or an
integral, which correlates with the heterogeneity of the microstructure and which thus allows to quantitatively
capture the DOH of a granular material. An analysis of the differences in the density fluctuations between two
structures additionally allows for a detailed determination of the length scale on which differences in hetero-
geneity are most pronounced.

DOI: 10.1103/PhysRevE.80.021302 PACS number�s�: 81.05.Rm, 61.43.�j, 82.70.Gg

I. INTRODUCTION

Colloidal particle packings are suitable model systems for
the study of the structural properties of granular materials
below the random loose packing limit. For such systems, the
gravitational force is negligible in comparison to the van der
Waals force, electrostatic repulsion, or Brownian motion
�1,2�. In the present study, we particularly focus on systems,
for which the local arrangement of the particles is the only
variable, as opposed to variations in the volume fraction or
the particle size distribution, for example. Commonly, these
microstructures are referred to as more homogeneous or
more heterogeneous, which either designates a structure pre-
senting a rather uniform distribution of the particle positions
or one having locally denser regions and therefore larger
voids. These qualitative terms may be intuitive; however,
they do not allow for a sound scientific quantification of the
structure’s degree of heterogeneity �DOH�, which does not
yet exist. In this paper, three methods providing the means
for such a quantification are presented, analyzed, and com-
pared. These methods permit to explicitly capture the DOH
of a particle packing in form of a quantitative scalar measure.

Experimentally, the reproducible generation of colloidal
particle packings possessing a specific DOH is achieved by
the use of an in situ enzyme-catalyzed destabilization
method �direct coagulation casting �DCC� �3,4��. For volume
fractions between 0.2 and 0.6, DCC allows for the coagula-
tion of electrostatically stabilized colloidal suspensions to

stiff particle structures by either shifting the pH of the sus-
pension to the particles’ isoelectric point or by increasing the
ionic strength of the suspension without disturbing the par-
ticle system. Shifting the pH leads to a more homogeneous
microstructure through diffusion-limited aggregation, while
increasing the ionic strength results in more heterogeneous
microstructures via the reaction-rate-limited aggregation.
The differences in heterogeneity have been observed using
various techniques such as diffusing wave spectroscopy �5�,
static light transmission �5�, or cryogenic scanning electron
microscopy �6�.

Computationally, microstructures with different DOH
were successfully reproduced using Brownian dynamics
�BD� simulations �6–8�. Slices of three particle layer thick-
ness through a homogeneous and a heterogeneous BD micro-
structure of an identical volume fraction nicely demonstrate
the differences between the microstructures �Fig. 1�. The mi-
crostructure on the left presents a rather uniform distribution
of the particle positions over the whole slice, while the mi-
crostructure on the right presents locally more densely
packed particles and, consequently, larger voids. Both struc-
tures have an identical overall volume fraction of 0.4.

In preceding works, various characterization methods,
such as the radial pair-correlation function �7�, the bond
angle distribution function �7�, the triangle distribution func-
tion �7�, and the Minkowski functionals in conjunction with
the parallel-body technique �9�, were applied to sets of mi-
crostructures generated by BD simulations �8�.

The pair-correlation function quantifies the amount of
structural rearrangement during the coagulation. Its useful-
ness regarding a distinction between structures with different
DOH, however, is rather limited as the differences between*iwan.schenker@mat.ethz.ch
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peaks corresponding to characteristic particle separation dis-
tances are relatively small �7�. The main advantage of the
pair-correlation function is its experimental accessibility
through scattering techniques such as spin-echo small-angle
neutron scattering �SESANS� �10�.

The bond angle distribution function and the triangle dis-
tribution function give further information on the local build-
ing blocks of the particle network �7�. Particular features, as,
for example, peaks in the respective distribution function,
allow distinguishing between more homogeneous and more
heterogeneous microstructures. However, as in the case of
the pair-correlation function, the differences between struc-
tures with different DOH are small for both the bond angle
and the triangle distribution function.

The analysis using the Minkowski functionals in conjunc-
tion with the parallel-body technique supplies additional in-
formation on the structure’s morphology resolving micro-
structural differences on a length scale limited by the largest
pore size �9�. This method is computationally intensive and
the extension to arbitrary particle shapes is difficult.

Gearing toward a possible correlation between micro-
structure and mechanical properties homogeneous and het-
erogeneous microstructures have recently been analyzed in
terms of load bearing substructures: first, regions of closely
packed particles and, second, quasilinear chains of contact-
ing particles �11�. The locally closed packed regions were
analyzed using the common neighbor distribution in con-
junction with the dihedral angle distribution. Both methods
only showed minor differences between a homogeneous and
a heterogeneous microstructure. In particular, practically the
same number of triangles and regular tetrahedrons was found
in both structures. Quasilinear arrangements of contacting
particles were quantified using the straight path method, re-
vealing significant microstructural differences between ho-
mogeneous and heterogeneous. Approximately, twice as
many paths of length longer or equal to four particles and
three times as many paths of length longer or equal to five
particles were found in the heterogeneous microstructure.

Despite the multitude of microstructural characterization
methods that has been applied to colloidal microstructures
possessing various DOH, a useful quantification of the mi-
crostructures’ heterogeneity in the form of a scalar measure
is lacking. In the present study, statistical measures allowing

for a quantification of a structure’s heterogeneity are pro-
vided. The following three methods aiming at this quantifi-
cation are discussed.

First, the exclusion probability �12� estimates the pore
size distribution by randomly probing the pore space. In �13�,
this method was applied to very dilute simulated colloidal
systems and allowed for a clear distinction between particle
gel networks with varying textures. The same method termed
as spherical contact distribution function �14� was used to
investigate the pore size distribution of dense sphere pack-
ings as a function of the particle size distribution and the
packing generation algorithm.

Second, the density-fluctuation method considers the
fixed particle centers as a point process, and it statistically
analyzes the fluctuations of the particle center density as a
function of length scale. Used comparatively, this method
further allows for a detailed analysis of the length scale, on
which two structures present the largest differences in terms
of heterogeneity.

Finally, the Voronoi volume distribution �15� is used to
quantify the distribution of the free volume of our particle
packings. In �16�, the packing of cohesive particles resulting
from simulations using the discrete element method �17�
with volume fractions between approximately 0.2 and 0.6
was analyzed. The distribution of Voronoi volumes was
shown to broaden with decreasing volume fraction. In �18�,
the Voronoi volume distribution was determined for a large
set of experimental and numerical data covering a wide
range of volume fractions. The various distributions were
shown to follow a so-called k-gamma function, which was
deduced by means of a statistical-mechanics approach. The
parameter k characterizing the shape of the curve was found
to depend very sensitively on the structural organization of
the particles.

To the authors’ knowledge, none of these methods have
yet been applied to particle structures, for which the DOH is
the only variable, in opposition to a varying volume fraction
or particle size distribution, for example.

II. MATERIALS AND METHODS

In the following, the structure characterization methods
employed in this work are presented: the pore size distribu-
tion, the density-fluctuation method, and the distribution of
Voronoi volumes. These methods are evaluated in terms of
their ability to quantify the DOH of microstructures gener-
ated by previous BD simulations �7,8�. In these simulations,
the Derjaguin-Landau-Verweg-Overbeek �DLVO� theory
�19� was used to describe the interparticle potential VDLVO

given by the sum of an attractive van der Waals term Vvdw

�Eq. �1�� and an electrostatic repulsion term Vel �Eq. �2��.
Thus, VDLVO=Vvdw+Vel with

Vvdw�r� =
− AH

12
� d0

2

r2 − d0
2 +

d0
2

r2 + 2 ln� r2 − d0
2

r2 �� , �1�

and

FIG. 1. Slices through a homogeneous �left� and a heteroge-
neous �right� particle structure with the same volume fraction of 0.4
resulting from Brownian dynamics simulations �7� �slice thickness:
three particle diameters; particle diameter: 0.5 �m�.
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Vel�r� = ��r�0�4kbT

ze
tanh� ze

4kbT
�0��2

d0 exp�− �	r − d0
� ,

�2�

respectively. The DLVO parameters are summarized in Table
I.

The heterogeneity of the final microstructure was shown
to be closely related to the presence and depth of the second-
ary minimum in the interparticle potential, which, for fixed
values of the Debye screening length, essentially depends on
the particles’ surface potential �0 �7,20�.

The microstructures analyzed in this work are labeled ac-
cording to the surface potential �0 used during their genera-
tion. In particular, the following �0 values are used: 0, 12,
13, 14, and 15 mV. Additionally, these final microstructures
are compared to the initial microstructure, representing a sta-
bilized suspension in which the interparticle potential is
purely repulsive. The volume fraction is fixed at 0.4, the
monosized particles have a radius r0=0.25 �m, all micro-
structures consist of 8000 particles and are contained in a
simulation box with periodic boundary conditions. In par-
ticular, the particle interpenetration is much smaller than the
length scale of the heterogeneities analyzed in this study.
Less than 0.1% of all contacts present an interpenetration
above 1.0% of the particle diameter d0 with a maximum
interpenetration of 1.3% d0. Please refer to �7,8� for a more
detailed description of the BD simulations.

A. Pore size distribution

The pore size distribution is estimated following the ap-
proach described by Torquato et al. �12� using the exclusion
probability EV�r�. EV�r� is defined as the probability of in-
serting a “test” particle of radius r at some arbitrary position
in the pore space of a system of N particles. This is sche-
matically represented in Fig. 2 using a set of particles of
radius r0 �gray� with a test particle of radius r inserted at
position P.

In order to estimate EV�r�, a statistically large number of
points is randomly placed in the pore space of a given mi-
crostructure and the distance to the closest particle surface is
determined.

In �9�, the relation between EV�r� and the Minkowski
functional W1�r� was described. The Minkowski functional
in conjunction with the parallel-body technique considers the
point process given by the fixed particle centers. Generally,

in three dimensions there are four functionals Wi, where i
=0, . . . ,d with d as the spatial dimension, corresponding to
the volume, surface, average mean curvatures, and connec-
tivity. In particular, W1�r��= 1

3��A�r��dS calculates the surface
of the union of spheres located at the particle centers in de-
pendence of their radius r�=r0+r. Schematically, W1�r�� is
shown in Fig. 2. W1�r��dr� is the volume between the dis-
tance r� and r�+dr�. The probability of placing an uniformly
drawn random test point at a distance r� �r� ,r�+dr�� is pro-
portional to the volume delimited by r� and r�+dr� and,
therefore, P�r��r0+r�r�+dr��=EV�r�dr�	W1�r��dr�,
which results in EV�r0+r�	W1�r��. Thus, given a statistically
large number of test points EV�r� provides a means to esti-
mate W1�r��, which has the advantage of being computation-
ally less intensive. A similar Monte Carlo integration is usu-
ally performed to calculate W0�r��.

B. Density fluctuations

The density-fluctuation method quantifies the local fluc-
tuation of particle centers by subdividing the structure into
smaller parts and measuring the average value and the stan-
dard deviation of the particle center density. Practically, this
is done by dividing the structure into nc

3 cells using a cubic
grid, where nc is the number of cells along one dimension
with nc=2, . . . ,nc

max, nc
max being the maximum number of

cells under consideration �along one dimension�. The
density-fluctuation method consists in determining the aver-
age number of particle centers per cell Eppc and its standard
deviation 
ppc as a function of nc and then calculating the
relative fluctuations


ppc

Eppc
.

Additionally, the density-fluctuation method is applied
comparatively allowing for a determination of the length
scale on which two structures show the largest differences.
Therefore, the difference ��nc� given in Eq. �3� is calculated
between two structures i and j,

��nc� = �
ppc
i

Eppc
i −


ppc
j

Eppc
j ��nc� . �3�

TABLE I. DLVO potential parameters.

Parameter Symbol Value

Hamaker constant of Al2O3 in H2O AH 4.76�10−20 J

Particle diameter d0 5�10−7 m

Relative dielectric constant of H2O �r 81

Surface potential �0 0–15 mV

Absolute temperature T 293 K

Valency of ions z 1

Inverse Debye screening length � 108 m−1

FIG. 2. Particle structure �gray particles� with a test particle
inserted at position P.

QUANTIFICATION OF THE HETEROGENEITY OF… PHYSICAL REVIEW E 80, 021302 �2009�

021302-3



If both structures have the same number of particles and
identical volume fractions, which is the case for the micro-
structures investigated in this work, then Eppc

i =Eppc
j =Eppc

and Eq. �3� yields

��nc� =

ppc

i − 
ppc
j

Eppc
�nc� . �4�

� is plotted against the cell’s edge length lc�nc�=Lbox /nc nor-
malized by the particle diameter d0, where Lbox is the side
length of the cubic simulation box.

C. Voronoi volume distribution

Formally, for a set of monodispersed spherical particles,
the Voronoi volume Vi associated with a particle i is a poly-
hedron whose interior consists of all points in space that are
closer to the center of particle i than to any other particle
center �15�. The Voronoi tessellation thus divides the volume
containing a set of particles into a set of space-filling, non-
overlapping, and convex polyhedrons. In this work, the
Quickhull algorithm �21� is used to compute the volumes of
the Voronoi polyhedrons. The distribution of the Voronoi vol-
umes describes the deviation of a structure from a perfect
crystalline packing, in which case all particles occupy the
same volume and the Voronoi volume distribution thus is a
delta function. The minimum volume of a Voronoi cell Vmin
is achieved for a regular close packing with Vmin
=1.325Vsphere, where Vsphere is the volume of a particle. The
difference between a particle’s Voronoi volume Vi and Vmin is
termed as the Voronoi free volume Vi

f =Vi−Vmin.
The distribution of the Voronoi free volume was found to

follow gamma distributions: Kumar and Kumaran, for ex-
ample, showed that the free volume distribution of hard-disk
and hard-sphere systems are well described using a two-
parameter and a three-parameter gamma distributions �22�.

Aste and Di Matteo deduced the two-parameter gamma
distribution using a statistical-mechanics approach �18�. The
so-called k-gamma distribution given by Eq. �5� was found
to agree very well with a large number of experiments and
computer simulations over a wide range of packing fractions,

f�Vf,k� =
kk


�k�
�Vf�k−1

�V̄f�k
exp�− k

Vf

V̄f� . �5�

The mean Voronoi free volume V̄f is a scaling parameter

given by V̄−Vmin= �1 /�−1.325�Vsphere, where � is the vol-
ume fraction. The free parameter k characterizing the shape
of the curve depends very sensitively on the structural orga-
nization of the particles and corresponds to the specific heat
in classical thermodynamics. Empirically, k can be computed

using k= �V̄f�2


V
2 , where 
V

2 is the variance of the free volume
distribution. In particular, Eq. �5� was shown to hold for
systems at statistical equilibrium as well as for systems out
of equilibrium �18�.

III. RESULTS AND DISCUSSION

A. Pore size distribution

The pore size distribution of the various microstructures is
depicted in Fig. 3 in terms of the exclusion probability
EV�rP� as a function of the pore radius rP normalized by the
particle radius r0. A set of 106 random test points �23� placed
in the structures’ pore space was used to estimate EV�rP�.

All curves for the final microstructures ��0=0–15 mV�
decrease monotonically toward increasing pore sizes, indi-
cating a decreasing probability of finding larger pores. A
particular behavior is found for the stable suspension, where
the exclusion probability increases with increasing pore size
up to a pore radius of 0.18r0. This is due to the repulsive
interparticle potential in the case of the stable suspension
where, consequently, the particles are not in contact. The
pore diameter, at which the maximum in the exclusion prob-
ability is found, corresponds to the average surface-to-
surface distance between neighboring particles.

Remarkably, the various curves for the final microstruc-
tures in Fig. 3 intersect at approximately the same point de-
fining a characteristic pore size rp

c found at 0.65r0. The prob-
ability of finding a pore with a radius below rp

c decreases for
increasing values of �0, while pores with a radius above rp

c

are found with a higher probability toward increasing �0.
Indeed, the probability of finding pore radii larger than ap-
proximately 1.1r0 is negligible in the case of the most homo-
geneous microstructure with �0=0 mV, while pore radii up
to 2.4r0 are found in the most heterogeneous microstructure
with �0=15 mV.

Using the results obtained for the exclusion probability
EV�rP�, the cumulative probability P�rP�r� of finding pore
radii larger than r was calculated using P�rP�r�
=�r��rP

EV�r��. The results are shown in Fig. 4.
P�rP�r� decreases monotonically for all microstructures.

The fastest decrease is found for the stable suspension. With
increasing �0, the decrease of P�rP�r� is slower. Compar-
ing the “most and the least heterogeneous” microstructure,
with �0=15 mV and �0=0 mV, respectively, there is a 1.7
times higher probability of finding pores larger than 0.5r0.

FIG. 3. Pore size distribution for the initial microstructure
�stable suspension� and final microstructures ��0=0–15 mV�.
B-spline curves serve as guide for the eyes.

SCHENKER et al. PHYSICAL REVIEW E 80, 021302 �2009�

021302-4



Toward larger pore radii, the probability ratio increases: find-
ing pores with a radius larger than 0.75r0 and 1.0r0 is 5.1 and
60 times, respectively, more probable in the heterogeneous
than in the homogeneous microstructure. Figure 4 further
shows the fit of P�rP�r� using a complementary error func-
tion given by

P�rP � r� = 1 − erf� r/r0 − b

a
2
� . �6�

The error function is defined as the cumulative Gaussian
distribution erf�x�=2 /
��0

xexp�−z2�dz. Parameter a is the
standard deviation, i.e., the width of the corresponding
Gaussian distribution and b is the location of its maximum,
i.e., the most probable pore to particle radius ratio.

Table II summarizes the fit parameter a and b obtained for
the various microstructures analyzed in this work and the
corresponding correlation coefficients R2, which for all fits
are very close to 1 and thus indicate a good fit. Parameter a
is smallest for the initial microstructure and increases toward
increasing values of �0. The increasing values of a reflect
the slower decrease of the curves in Fig. 4 and, hence, the
broadening of the distributions toward increasing DOH. The
values found for b decrease with increasing �0 representing
a shift of the maximum in the Gaussian distribution shown in
Fig. 3.

In �12�, the following expression for EV�r� was found for
a statistically homogeneous microstructure of impenetrable
spheres EV�r�= �1−��exp�P3�r ,���, where � is the volume
fraction and P3 is a third degree polynomial function in r.
This function can be interpreted as a corrected Gaussian dis-
tribution, which is nicely approximated by Eq. �6� as well
�R2=0.9962�, yielding a=0.347 and b=0.0204. The DOH of
this theoretical structure thus lies between the stable suspen-
sion and the most homogeneous final microstructure with
�=0 mV.

An alternative to the quantification of a structure’s hetero-
geneity by means of the fit parameter a is the calculation of
the integral over the cumulative pore size distribution. This
scalar measure has the advantage of being statistically more
robust. It is also more general in the sense that it is appli-
cable even when the fit with a complementary error function
does not yield good results. The integral over the cumulative
pore size distribution is labeled Ips and is given by

Ips = �
r�0

P�rP � r�
dr

r0
=

�r

r0
�
ri�0

P�rP � ri� . �7�

The second equality accounts for the discrete case, where
�r is the radial resolution of the empirical pore size distribu-
tion. The Ips values for the various microstructures are sum-
marized in Table II. In our case, in which the data can nicely
be fitted using Eq. �6�, the fit parameter a is proportional to
Ips :a / Ips=1.31�0.05. Thus, a quantification of the DOH by
means of a or Ips is equivalent.

B. Density fluctuations

The density fluctuations for the various microstructures
are shown in Fig. 5. Over the whole range of grid spacings,
the fluctuations are smallest for the stable suspension and
increase for increasing values �0. For nc�34, which corre-
sponds to a grid spacing of 0.64 particle diameter, the density
fluctuations of the various microstructures are equal. Idf
given in Eq. �8� provides an integral measure of the hetero-
geneity similar to Ips in the previous section, however, ac-
counting for the discrete variable nc,

Idf = �
nc�34


ppc

Eppc
�nc� . �8�

The Idf values for the various microstructures summarized
in Table II continuously increase toward increasing values of
�0 and, thus, measure the DOH of the microstructures.

FIG. 4. Probability of finding pores with a radius rP larger than
r vs r normalized by the particle radius r0 for the various micro-
structures �symbols� and corresponding fits using a complementary
error function �solid lines�.

TABLE II. Fit parameters a and b, R2 values, and integrals Ips and Idf for the various microstructures.

a b�10−2� R2 Ips Idf

Stable suspension 0.2651 2.042 0.9952 0.215 20.29

�0=0 mV 0.3752 0.9013 0.9987 0.291 22.01

�0=12 mV 0.4053 0.3136 0.9994 0.311 22.31

�0=13 mV 0.4127 0.1225 0.9996 0.315 22.44

�0=14 mV 0.4736 −1.415 0.9996 0.352 23.05

�0=15 mV 0.5377 −3.756 0.9972 0.388 23.71
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In the following, two sets of comparisons are performed.
First, the various final microstructures are compared to the
stable suspension. This comparison quantifies the length
scale on which structural rearrangements take place during
the coagulation. Second, the final microstructures with �0
�0 mV are compared to the most homogeneous microstruc-
ture with �0=0 mV. This set of comparisons reveals the
length scale on which variations in heterogeneity are most
pronounced.

The comparison of the various final microstructures to the
initial stabilized microstructure is shown in Fig. 6 in terms of
��nc� as given by Eq. �4�, where superscripts i and j corre-
spond to a final microstructure and to the initial microstruc-
ture, respectively. ��nc� is shown as a function of the grid
spacing l normalized by the particle diameter d0=2r0.

All curves present an identical behavior, which essentially
consists of three successive peaks with decreasing height to-
ward a larger grid spacing. The location of the first, second,
and third peak is slightly above one, at two, and at three
particle diameters, respectively. The height of the individual
peaks increases for increasing values �0.

More precisely speaking, the first peak is found at 1.09d0
for all final microstructures in comparison to the stable sus-
pension. This grid spacing corresponds to a cell number of
8000 and, therefore, to the case where the average number of
particles per cell is exactly one. This case is best reproduced
for the stable suspension as for the final microstructures the
standard deviation is roughly 20–27 % larger. Physically,
this peak is explained by the transition of the interparticle
potential from repulsive to attractive. Indeed, the repulsive
potential in the case of the stable suspension causes all par-
ticles to occupy approximately the same volume as will be
confirmed in Sec. III C by means of the Voronoi volume
distribution. The switching of the interparticle potential from
repulsive to attractive causes the particles to form contacts,
resulting in an average particle separation of one particle
diameter, which is smaller than the grid spacing of 1.09d0.
This increases the probability of finding cells that are either
empty or contain more than one particle and, thus, the stan-
dard deviation of the average number of particles per cell is
increased.

The peaks at a grid spacing of approximately two and
three particle diameters are considerably less pronounced
than the peak at 1.09d0. In particular, the differences between
the various final microstructures are larger than for the first
peak. These differences will be elaborated in more detail in
the following.

The comparison between the final microstructures with
�0�0 mV and the most homogeneous microstructure with
�0=0 mV is shown in Fig. 7. Here, superscripts i and j �Eq.
�4�� correspond to one of the microstructures with �0
�0 mV and to the microstructure with �0=0 mV, respec-
tively. Over the whole range of grid spacings, the differences
between the density fluctuations increase toward higher val-
ues of �0. This behavior correlates very well with the in-
crease in porosity for increasing �0 as already observed in
the previous section. Additionally, Fig. 7 reveals that the
largest differences in terms or particle density between the
most and least heterogeneous microstructures ��0=15 mV
and �0=0 mV, respectively� are found on a length scale
between 1.3 and 2.2 particle diameters.

FIG. 5. Relative density fluctuations for the various final micro-
structures and the stable suspension as a function of grid spacing.

FIG. 6. Relative difference between the density fluctuations of
the various final microstructures and the stable suspension as a
function of grid spacing. B-spline curves serve as guide for the
eyes.

FIG. 7. Relative difference between the density fluctuations of
the various microstructures with ��0�0 mV� and the most homo-
geneous microstructure ��0=0 mV� as a function of grid spacing.
B-spline curves serve as guide for the eyes.

SCHENKER et al. PHYSICAL REVIEW E 80, 021302 �2009�

021302-6



C. Voronoi volume distribution

As stated in Sec. II C, the distribution of Voronoi volumes
P��� describes the deviation of a given structure from a per-
fectly crystalline packing, for which P��� is a delta function
and all particles occupy the same volume. For random par-
ticle structures, P��� broadens and, as will be shown in the
following, the width of the distribution can be interpreted as
the heterogeneity of a structure.

We have calculated P��� for the stable suspension and the
various final microstructures as a function of �=

V−Vmin

V̄−Vmin
, the

free volume normalized by the mean free volume �Fig. 8
�symbols��. The distribution found for the stable suspension
is significantly narrower in comparison to the final micro-
structures. In the case of the final microstructures, P���
broadens with increasing value of �0 indicating that larger
fluctuations in Voronoi volumes are found with increasing
heterogeneity.

The various microstructures were fitted using the
k-gamma distribution given in Eq. �5�. The resulting curves
are shown in Fig. 8 �lines� and the corresponding k and R2

values are summarized in Table III. k decreases with increas-
ing heterogeneity and can therefore be used as a measure for
the DOH of the microstructures. The R2 values close to one
indicate good fits. In particular, a very good fit quality was
achieved for the stable and the final microstructures up to
�0=14 mV. The R2 value for the �0=15 mV microstruc-

ture is lower. Indeed, Fig. 8 shows that for the �0=15 mV
microstructure, the agreement between the measured distri-
bution and the fit curve for small Voronoi volumes is not as
good as for the other curves. This might be related to the fact
that during the generation of the �0=15 mV microstructure,
the energy barrier between primary and secondary minimum
in the interparticle potential was largest. This resulted in a
few particle contacts still trapped in the secondary minimum
�roughly 7% of the physical contacts�. Particles trapped in
the secondary minimum have an interparticle distance of
2.16r0 instead of 2r0 upon complete coagulation, which may
be a reason for the reduced fit quality toward smaller Voronoi
volumes.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed three distinct microstruc-
tural characterization methods. Using these methods, scalar
measures were introduced, which allow quantifying the
DOH of particle packings.

�i� The exclusion probability gives an estimate of the pore
size distribution by a random probing of the pore space. The
more heterogeneous microstructures present a considerably
broader pore size distribution with a significantly longer tail
than the distribution for the more homogeneous microstruc-
tures. In particular, a continuous broadening is found with
increasing heterogeneity. The cumulative exclusion prob-
abilities were shown to follow error functions with parameter
a reflecting their width and thus measuring the structures’
DOH. Fit parameter a increases with increasing heterogene-
ity.

�ii� The density-fluctuation method statistically analyzes
the particle center density in dependence of the sampling
length scale. The relative density fluctuation as function of
the grid spacing presents a clear dependence on the hetero-
geneity of the microstructure. Over the whole range of grid
spacings, the stable suspension exhibits the smallest density
fluctuations. These fluctuations increase toward increasing
values of �0 and thus increasing DOH, which is nicely re-
flected by increasing values of the integral measure Idf.

An examination of the differences between the density
fluctuations of two structures was found to be particularly
useful as it allows determining the length scale on which the
structures present the largest differences in heterogeneity. In
the case of the most heterogeneous microstructure, the larg-
est differences in comparison to the most homogeneous one
are found on a length scale between 1.3 and 2.2 particle
diameters.

�iii� The Voronoi volume distribution of the stable suspen-
sion is very narrow in comparison to the final microstruc-
tures, for which the distribution broadens with increasing
heterogeneity. The various Voronoi volume curves were
shown to follow k-gamma distributions. Parameter k, reflect-
ing the width of the distribution and thus the structure’s
DOH, decreases with increasing heterogeneity.

The behavior of the three parameters a, k, and Idf is sum-
marized in Fig. 9 showing Idf �left scale� and 1 /k �right
scale� as a function of a. The solid lines suggest a pairwise
affine dependence between Idf and 1 /k, a. Thus, as far as the

FIG. 8. Voronoi volume distribution P��� for the various micro-
structures �symbols� and corresponding fits using the k-gamma dis-
tribution �lines�.

TABLE III. k-gamma fit results.

k R2

Stable suspension 62.3 0.990

�0=0 mV 8.6 0.995

�0=12 mV 6.5 0.996

�0=13 mV 6.0 0.996

�0=14 mV 4.0 0.994

�0=15 mV 2.8 0.972
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quantitative characterization of the DOH of the microstruc-
tures considered in this work is concerned, all methods—the
pore size distribution, the density-fluctuation method, and the
Voronoi volume distribution—can be considered as equiva-
lent in the sense that the knowledge of one parameter permits
to determine the others. However, parameter k reflects
changes in the DOH more sensitively than a or Idf. Indeed,
the normalization of k, a, and Idf with respect to their maxi-
mum values reveals that parameter k covers the interval
�0.04, 1.0�. This interval is significantly larger than the nor-
malized ranges of a and Idf, which are �0.5, 1.0� and �0.86,
1.0�, respectively.

The interrelation between the three structural character-
ization methods can be understood as follows. The probabil-
ity of placing a random point used for the determination of
the pore size distribution into the free Voronoi volume of a
particle is proportional to the particle’s free Voronoi volume.
Thus, the broader the distribution of Voronoi volumes, the
higher the probability of finding larger pores, which leads to
a longer tail in the exclusion probability as shown in Fig. 3.
The relation between the Voronoi volume distribution and
the density fluctuation follows similar arguments. A broaden-
ing in the Voronoi volume distribution essentially means that
there is a broader distribution in the nearest-neighbor dis-
tances and therefore larger differences in the density fluctua-
tions.

We have applied the methods to a set of monodispersed
spherical particle packings representing stable and coagu-
lated colloidal particle structures, but the methods could of
course be generalized. The pore size distribution as deter-
mined by the Monte Carlo method employed in this work
can be applied as it is to any porous media. In this sense, it is

the most general method analyzed in this study. The fit using
an error function, however, may not necessarily yield good
results. In this case, the integral measure Ips proposed in Sec.
III A could be used or the width of the distribution could be
determined empirically. The Voronoi volume distribution
generally only requires that the elements constituting a struc-
ture are convex and, in this case, the empirical distribution
can be determined. To the authors’ knowledge, a fit using the
k-gamma distribution has, however, only been performed in
the case of packings of monodispersed spherical particles. As
for the density-fluctuation method, we have in this work con-
sidered the density of the particle centers. The method may
be extended to a determination of the exact portion of the
sphere volumes per cell, which, however, is computationally
expensive. An alternative could be a cellwise Monte Carlo
integration of the partial sphere volumes, which would allow
for a characterization of arbitrary porous structures using the
density-fluctuation method.

From an experimental point of view, the methods pre-
sented in this study rely on the possibility to determine the
particle positions, which in the case of colloidal particles can
be obtained using the confocal laser microscopy, for example
�24�. In particular, the pore size distributions measured using
mercury porosimetry �25� and estimated using the exclusion
probability are not equivalent since the latter overestimates
the number of small pores due to the random probing of the
pore space.

In this paper, we have presented three scalar measures,
which allow quantifying and comparing the heterogeneity of
packings of spherical particles in terms of a DOH. These
measures were calculated using distinct techniques and struc-
tural characterization methods. In view of these differences,
the very nice correlation between the three DOH measures is
remarkable. Indeed, it suggests that the DOH is a microstruc-
ture’s inherent property and that any of the methods pro-
posed in this work can be used to uniquely characterize and
classify it. In terms of sensitivity, however, considerable dif-
ferences between the methods were found. Parameter k re-
flects differences in the DOH most sensitively, followed by
parameter a, and finally by Idf. A further definition of an
absolute DOH would require a suitable reference structure,
which, for example, is either perfectly heterogeneous or per-
fectly homogeneous under the condition of being random.
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FIG. 9. Interdependence between the measures of the degree of
heterogeneity for the various microstructures: Idf and 1 /k as a func-
tion of a.
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