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Chapter 1

Introduction

Since the development of modern financial markets, various mathematical

models have played an important role in all financial activities, including

asset pricing, investment appraisal, portfolio selection and risk management.

However, models are only imperfect solutions to real world puzzles (Diamond,

1967). Although developments of computational techniques enable imple-

mentation of more sophisticated mathematical models, model risk remains

a key issue that should not be neglected and should be treated carefully.

Risk that stems from financial modelling can have a substantial impact on

financial quantities such as option prices, hedging ratios, expected returns of

assets, asset volatilities and default probabilities.

Model risk has been linked to a long series of significant events in the

financial markets, see Jacque (2015). In 1987, Merrill Lynch reported losses

of $300 million on stripped mortgage-backed securities caused by an incorrect

pricing model. In 1992, J.P. Morgan lost about $200 million in the mortgage-

backed securities market due to the inadequate modelling of prepayments.

Later in 1997, the New York subsidiary of the Bank of Tokyo/Mitsubishi lost

$83 million because their internal pricing model overvalued OTM Bermudan

swaptions by using a one-factor BDT model calibrated to ATM Bermudan

swaptions (Dowd, 2003). A Deutsche Bank subsidiary in Japan used some
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smart models to trade electronically. The model lost control in June 2010 and

went into an infinite loop, taking out a $183 billion stock position (Tunaru,

2015). Most recently in 2013, J.P. Morgan revealed a trading loss of more

than $6.2 billion, which was indirectly caused by the underestimation of risk

level by their value-at-risk (VaR) model. If the company had used the model

they implemented recently, the company’s risk estimation in 2012 would

have doubled the original reported figure. These are only some of the many

significant losses incurred by banks and financial institutions due to model

risk.

Model risk has also been acknowledged by regulators. The Basel Commit-

tee has paid particular attention to internal modelling methods of exposure

at default (EAD) and counterparty credit risk exposure models. Detailed

guidelines and model validation requirements are documented in a separate

section in the Basel II agreement, which has become more comprehensive in

the Basel III version. Financial institutions that are using internal modelling

methods need to backtest and validate their models on an ongoing basis, so

that “the models are, and continue to be, appropriate ... model assumptions

are not violated and known limitations are, and remain, appropriate” (Basel

Committee on Banking Supervision, 2010, p.1). Model risk has indeed be-

come one of the principle risks which financial institutions need to take into

account in their risk assessment. Regulators require banks to establish inter-

nal independent model validation processes to improve the integrity in using

all types of financial mathematical models. Model validation is an impor-

tant component of the Pillar 1 Minimum Capital Requirements and Pillar 2

Supervisory Review Process; see Basel Committee on Banking Supervision

(2006) and Basel Committee on Banking Supervision (2011). Development

and improvement in more comprehensive approaches in managing model risk

is clearly in demand from both a market and a regulatory perspective.

Therefore, being aware of the existence of model risk; knowing how to

identify, measure, and account for it, constitutes a central tenet of risk man-
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agement development. However, conventional stress testing and sensitivity

analysis remain the mainstream practice of model risk management in finan-

cial institutions. In particular, sensitivity analysis consists of tests against

sensitivity of model ouput to data, model parameter value and model design

are commonly in use. Design and subjects of these tests are dependent on

each model validator’s knowledge of the model and related financial area.

In other words, there is no industry consensus or standardised approach in

managing and assessing model risk. Although prudence and reliability of cur-

rent model validation practices are clearly in need of improvement, academic

research in the field is yet to provide a comprehensive and thorough answer

to the issue of model risk (Henaff and Martini, 2011; Boucher et al., 2014).

More in depth research and investigation is expected by the market sector,

regulators and academia. This gap in the research provides the motivation

to conduct the present study.

1.1 Definition of Model Risk

Model risk or model uncertainty has frequently been related back to the

Knightian uncertainty in literature. The Knightian uncertainty, named after

Frank Knight, refers to uncertainty that is not measurable. Knight (1921)

defined risk as a type of uncertainty with known probability distribution, and

defined uncertainty as a type of uncertainty with unknown probability and

outcome states. Financial activities involve human intervention and other

random events, and hence induce unpredictable outcomes and possibilities.

Such elements in a way determine the immeasurable nature of model uncer-

tainty in Finance as stringent statistic science can never fully capture the

unpredictable randomness. Therefore, financial literature frequently relates

model uncertainty to the Knightian uncertainty for it contains unknown and

immeasurable information (Cont, 2006; Kogan and Wang, 2002; Ellsberg,

1961). Nevertheless, researchers have begun to gauge the measurable part of
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model uncertainty in the finance subject field for it brings significant impacts

to financial activities. Ellsberg (1961) raises the idea of (Knightian) uncer-

tainty aversion, and proves that model risk does play an important role in

decision making. From late 1980s, model uncertainty started to attract more

attention in the financial field (See for example: Miller 1977, Draper et al.

1987, Draper, 1995). Draper et al. (1987) and Hodges (1987) explicitly de-

fine three main sources of model uncertainty: uncertainty in prediction (un-

explained stochastic fluctuation), uncertainty in parameter estimation and

uncertainty in model structure. Tunaru (2015) further expands the scope

of model risk to include five different categories: Parameter estimation risk;

Model selection risk; Model identification risk; Computational implementa-

tion risk; Model protocol risk. In this research, we will focus on investigating

the first two sources of model risk in Tunaru’s list. The phrases “model risk”

and “model uncertainty” will be used interchangeably.

1.1.1 Parameter Estimation Risk

Parameter estimation risk refers to the uncertainty of the true parameter

value given a model structure. In general practice, only estimation mean val-

ues of parameters are inserted into a model with standard estimation errors

being ignored completely. For example, in a very simple linear regression:

Y = βX + ε (1.1)

There are two sources of parameter estimation risk when using the estimated

result of β; firstly, risk of using inappropriate estimation methods (e.g. Ordi-

nary Least Square (OLS), Maximum Likelihood (MLE), Generalised Method

of Moments (GMM)); secondly, risk of using point estimation result of β with-

out consideration of estimation errors given the chosen estimation method.

We will focus on the second type of parameter estimation risk.
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1.1.2 Model Selection Risk

Model selection risk refers to the uncertainty of the correct model structure

given a set of candidate models. Model structure consists of three elements

(Chatfield, 1995; Draper et. al. 1987):

• Selection of explanatory variable: what explanatory variables should

be included in the model as predictors of the variable of interest;

• Assumptions on how these explanatory variables would behave in the

prediction period: marginal distribution, joint distribution, and any

stochastic specification of the variables;

• Assumptions on the algebraic relationship between explanatory vari-

ables and the variable of interest.

Given a data set, a set of candidate models may all seem reasonable,

even when different candidate models provide completely different arguments

toward the underlying subject (Raftery, 1995). Therefore, relying on one

particular model without considering the risk and difficulty in model selection

may result in misleading research conclusions.

An increasing amount of literature about model risk has been published

since the late 1990s in Finance and related disciplines.

1.2 Model Risk in Financial literature

Model risk is not trivial either in magnitude or in its impact to financial

activities. In the following literature review, we show how model risk was

found to be significant and important in various financial modelling areas.

In security pricing and forecasting, Draper (1995) first documents an ex-

ample of future oil price forecast. His result shows that forecasting without

taking into account model uncertainty delivers a result with narrow interval

($27, $51) that does not contain the real future outcome ($13). Conversely,

17



it was found that forecasting with consideration of model uncertainty yields

an even wider result interval that contains the real outcome. Draper argues

that if prediction was carried out with consideration of model uncertainty,

corresponding parties would have better awareness of potential outcome, and

would be able to carry out better hedging strategy. In the subsequent devel-

opment of related literature, Avramov (2002) and Schrimf (2010) investigate

model uncertainty in stock excess return prediction model, and identify vari-

ables which have their prediction power turned insignificant after considera-

tion of model uncertainty. Avramov (2002, p.424) concludes that ‘ignoring

model uncertainty could lead to erroneous inferences about the relevance of

predictive variables’. Kogan and Wang (2002) investigate model uncertainty

in asset pricing, and find that model uncertainty in financial markets can be

distinguished from market risk and bring significant impact to asset pricing.

Chung et al. (2013) account for parameter estimation risk in equity pricing

models by calculating the Bayesian posterior standard deviation of parame-

ters, concluding that parameter uncertainty is sufficient to explain the price

discrepancy between Chinese A- and H-share prices. Naser and Alaali (2017)

show that mitigating model selection risk by a dynamic model averaging ap-

proach has significantly improved model forecast performance of crude oil

price.

Particularly in option pricing, Avellaneda et al. (1995) investigates meth-

ods to deal with parameter uncertainty of stock volatility in option-pricing

models, and shows that using stock volatility in extreme boundary values

could help market makers to better hedge their position than using stock

volatility in a point estimation manner. Cont (2006) and Detering and

Packham (2016) propose mathematical frameworks to measure model risk in

money units and demonstrate their application in option pricing. Detering

and Packham (2013) further develop a loss function for option-pricing model

risk to be used in VaR models and applied in calculating capital require-

ment. Jacquier and Jarrow (2000) and Bunnin et al. (2002) further incor-
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porate both parameter and model structure uncertainty into option pricing

using a Bayesian approach. Jarrow (2012) evaluates the preference of hedging

instruments with consideration of model uncertainty in option trading.

Regarding investment decision making and portfolio construction, Bar-

beris (2000) and Xia (2001) show that taking consideration of parameter

uncertainty in stock return prediction model influences investment decision

significantly. Overall, investors who consider parameter uncertainty tend to

hold a smaller position in stock investment than investors who neglect pa-

rameter uncertainty. Uppal and Wang (2003) conclude that after accounting

for uncertainty in joint distribution and marginal distribution of risky stock

return, portfolio choices would be different from the standard mean-variance

portfolio. Johannes et al. (2014) present strong portfolio benefits when in-

vestors adopt return forecast models that accounts for time-varying volatility

and estimation risk. They suggest that a lack of economic value when ap-

plying return forecast models as documented in prior research is largely due

to neglecting time-varying volatility and estimation risk.

In risk management, Butler and Schachter (1997), Christoffersen and

Gonçalves (2005), and Embrechts et al. (2013) argue for reporting Value-

at-Risk (VaR) with upper and lower bounds to account for parameter un-

certainty. Tarashev (2010) accounts for parameter risk in credit risk man-

agement by applying Bayesian inference, and shows that ignoring parameter

uncertainty would lead to substantial underestimation of risk level. Tarashev

and Zhu (2008) and Wu (2010) provide quantitative frameworks to effec-

tively incorporate both parameter and model selection uncertainty in port-

folio credit risk modelling. Kerkhof et al. (2010) and Escanciano and Olmo

(2010) incorporate model risk in calculating capital requirements through

Value-at-Risk (VaR) models to meet regulatory requests in risk management.

Rodŕıguez et al. (2015) present the advantage of applying the Bayesian es-

timation method to structural credit risk models to capture parameter esti-

mation risk.
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There are various methods that have been developed in financial literature

to deal with model risk. We can classify them into two main types.

One type is to seek a quantitative solution that quantifies the model risk.

Cont (2006) develops a quantitative framework to measure model uncertainty

in option pricing and express it in monetary units. He provides two ways to

achieve this: 1)calculate the difference between model prices of a set of models

and treat the value as a representation of model risk; 2)penalise the model

price by its pricing error on the benchmark instruments. Bannör and Scherer

(2013) later adopts a similar method to capture parameter risk. Branger

et al. (2012), Elices and Giménez (2013) and Detering and Packham (2016)

quantify model risk by calculating hedging errors under various models. The

quantify model risk is generally used as a reference to impose overlay to

model output in order to mitigate the underlying model risk.

Another type of methods are data driven methods, which accounts for

most of the developed methods in literature. Regarding the parameter esti-

mation problem, the most fundamental methods include simple t-test, tests

for outliers, and structural break methods which involve estimating parame-

ter values separately for each subgroup data (Wooldridge, 2012). Regarding

the model structure and selection issue, F-test and coefficient of determina-

tion R2 or adjusted R2 are the most fundamental methods to use in selecting

explanatory variables and models. Further development of goodness of fit

measures also include the large family of “Information Criterion” methods

(also known as panalised model selection criteria), within which AIC (Akaike

information criterion) and BIC (Bayesian information criterion, also known

as SIC Schwarz information criterion) are the most widely used and dis-

cussed ones. These measures compare different models using statistics of

likelihood p(Dt | Mk) of a model Mk given a set of observed data Dt with

penalty on the increase in the number of parameters. These methods can

be used in comparing both nested or non-nested models (Kuha, 2004). BIC

involves use of Baysian econometrics in computing the likelihood value of
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models. Furthermore, out-of-sample tests are also a type of method which

compares models by assessing their prediction performance (see for example:

Bakshi, Cao and Chen, 1997; Dahlbokum, 2010). When data are limited,

the bootstrapping technique is frequently used to carry out such kinds of

validation test (Draper, 1995). Worst scenario tests and stress tests are also

frequently adopted in the risk management field and treated as a way to

mitigate model uncertainty (Cont, 2006).

Bayesian Econometrics, I contend, stands out from various methods and

provides a more comprehensive way to solve both parameter and model selec-

tion uncertainty. This technique has advantages in delivering the parameter

estimation result in a complete posterior distribution form instead of point

estimation values. Posterior probability mass of each candidate model can

also be computed in order to carry out model comparison or Bayesian model

averaging. Section 1.3 further explains the Bayesian estimation framework.

To conclude, model risk is an important subject area that requires more

comprehensive study particularly after the lesson learnt in the 2008 financial

crisis. Both historical events and literature studies demonstrate its impact to

various financial activities. My research will seek solutions to better account

for and tackle model risk when using financial models and, in particular,

to fill literature gaps in option pricing, risk management and hedge fund

investments.

1.3 Baysian Econometrics Framework

The idea of applying Bayesian econometrics in solving parameter estimation

risk was raised in the 1960s-1970s, but its implementation and investiga-

tion only started in the mid-1990s enabled by the development in relevant

computational techniques (Draper, 1995; Hoeting et al., 1999).

Bayes theorem implies that for parameter θ of model M given observed

data Dt−1:
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p(θ | Dt−1) =
p(Dt−1 | θ)p(θ)

p(Dt−1)
(1.2)

p(θ | Dt−1) - posterior distribution of θ given data Dt−1

p(Dt−1 | θ) - the likelihood of θ given the observed data

p(θ) - prior distribution of θ

p(Dt−1) - distribution of data Dt−1

Therefore, the model outcome under the Bayesian estimation framework

delivers not only point estimation values, but also the entire posterior distri-

butions of parameters by the inference of observed evidence and prior beliefs

about parameters. It shows a shift in philosophy of the traditional estimation

methods. Gupta and Reisinger (2014) assert that finding a best-fit solution

in model calibration is ill-posed as all estimation errors are simply neglected

in this manner. Any best-fit point value is not good enough to underpin the

correct model form. Focus should be shifted onto exploring a distribution of

solutions, which sufficiently captures all possible values that are suggested

by the observed data.

In the case when one estimation value is required for model usage purpose,

model users can deal with parameter estimation risk by integrating it out in

the model output. For instance, in option pricing, where option price V (St, t)

of an option with a payoff function f(ST , T ) at time t is:

V (St, t) = e−(r−δ)(T−t)E[f(ST , T )] (1.3)

Given θ is the parameter that drives stock price process, the option price

V (St, t) after integrating out parameter estimation risk is (Bunnin et al.,
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2002):

V (St, t) = e−(r−δ)(T−t)Ê[f(ST , T )]

= e−(r−δ)(T−t)
∫ ∞
−∞

f(ST , T )

∫ ∞
−∞

p(ST , T | St, t, θ)× p(θ | Dt−1)dθdST

(1.4)

When there is a set of candidate models to choose from, Baysian Econo-

metrics is able to calculate the posterior probability of each model (Lancaster,

2004; Bunnin et al., 2002). For model Mi ∈M given observed data Dt−1,

the Bayesian theorem implies that:

p(Mi | Dt−1) =
p(Dt−1 |Mi)p(Mi)

p(Dt−1)
(1.5)

p(Mi | Dt−1) - posterior probability of Mi being true

p(Dt−1 |Mi) - the likelihood of Mi given observed data Dt−1

p(Mi) - prior probability of Mi

For instance, a model with posterior probability of 30% indicates that,

given the observed data, the probability of the model being the correct model

is 30%. Model users may select to implement the model with the highest

posterior probability mass. Or, alternatively, the posterior probabilities can

be used naturally as weights of each model in a model averaging practice.

This technique is also known as Bayesian model averaging.

We continue on the example of option pricing to further elaborate Bayesian

model averaging. If we have a set of candidate models M = {Mi}i=1,2,...,n,

and are not sure which is the correct model to use, integrating out parameter

estimation and applying Bayesian model averaging is equivalent to (Bunnin

et al., 2002):
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V (St, t,M) = e−(r−δ)(T−t)Ê[f(ST , T ) |M]

= e−(r−δ)(T−t)
n∑
i=1

∫ ∞
−∞

{
f(ST , T )

∫ ∞
−∞

[
p(ST , T | St, t, θi)

× p(θi | Dt−1)

]
dθi

}
dSTp(Mi | Dt−1)

(1.6)

Further innovation has been developed to dynamically predict model proba-

bility in the subsequent period before new information arrives. This innova-

tion relaxes the assumption that each model will merit the same goodness-

of-fit in the future period compared to the past. Both conventional Bayesian

model averaging and the extended dynamic model averaging techniques are

applied in the topic of hedge funds returns forecasting and portfolio construc-

tion in Chapter 4.

In the Bayesian formula (equation (1.2) and (1.5)), a likelihood represents

your beliefs about the value of data conditioned on parameter θ or model

estimation Mi. A likelihood can be selected based on relevant economic

theories or evidenced by observed data. It should be able to represent the

economic model within it and enable you to discredit the model when it is

inconsistent with the observed evidence (Lancaster, 2004). In general, the

selection of likelihood is equivalent to a model selection problem. A falsely

imposed restriction on likelihood may distort the conclusion of the model.

For example, normality may distort the conclusion of tail event probabilities

when data exhibits fat tails. However, this does not imply that a likelihood

must be a more general with less/no restrictions, instead it highlights the

necessity of exploring variations in the selection of likelihood and assessing

the merit of a chosen likelihood given the observed data.

The prior is your beliefs about the nature of parameters in the form of a

probability distribution or discrete probability (e.g. in the case of model prior

probability). Since the prior together with selected likelihood determines the
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kernel probability density of the posterior distribution, the selection of a

prior could also distort the conclusion of model outcome. For example, if

the selected prior imposed zero probability at values with none-zero likeli-

hood, the posterior would show zero probability to those values regardless

of the likelihood as evidenced from the data. Overall, non-informative pri-

ors are deemed relative objective priors as they impose less restriction on

parameters and hence bring minimal impact to the posterior distributions.

In contrast, informative priors are deemed subjective: this is equivalent to

imposing expert opinion upon the posterior results.

Congdon (2014) summarised that non-informative priors (e.g. uniform

distribution between −∞ to +∞) can be applied in the situation when ex-

isting knowledge is insufficient or difficult to summarise in the form of an

informative prior. However, such a non-informative prior could be improper

(i.e. does not integrate to 1 over its range), for example, the uniform distri-

bution between −∞ to +∞. This may result in an identifiability problem

to the posterior (Congdon, 2014; Gelfand and Sahu, 1999)1. An alterna-

tive solution is to adopt vague priors with minimal restrictions but a proper

form, for example, a normal distribution with zero mean and large variance.

Spiegelhalter et al. (1996) suggest that a prior shall be expected to have

minimal impact on the posterior results if the prior standard deviations are

sufficiently greater than the corresponding posterior standard deviations. In

this thesis, a non-informative prior indicates the type of vague priors as de-

fined here. Although I tried to keep the influence of model hypothesis at

a minimum level via imposing non-informative priors to parameters, this is

not always a feasible strategy. In the case, where the likelihood is com-

plex (e.g. unbounded likelihood as in the Merton’s Jump-Diffusion model),

non-informative priors would result in failure of convergence in the Bayesian

inference. In these circumstances, informative priors that are consistent with

the existing literature are adopted. More details will be provided in Chapter

1details of exceptions where proper posterior can be derived from improper priors can
be found in Lancaster (2004) Chaper 1.
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2 and 3.

In practice, prior beliefs can adopt historical information on the underly-

ing parameters. Imperfect models often lead to time varying parameter val-

ues and require periodic re-estimations (Jacquier and Jarrow, 2000). When

the re-estimation frequency is high, the amount of new arrival data will be

small. In this case, parameter posterior distributions of the last period can

serve as the prior distributions to improve estimation accuracy with a smaller

amount of data, and to avoid the time-consuming recursive re-estimation ap-

proach.

Posterior probability distributions of parameters and posterior probability

of each candidate model can be updated with new information, and parame-

ter and model selection risk can be easily integrated out. Due to mathemati-

cal complexity, it could be difficult or impossible to find the closed form pos-

terior probability distribution function of parameters. Markov Chain Monte

Carlo (MCMC) simulation methods are commonly used to implement the

Bayesian algorithm by simulating observation sequence from the posterior

distributions, thereby enabling us to assess various statistical features of the

posterior distributions. On the other hand, the conventional Kalman Filter

can be applied to the estimation of latent dynamics under linear quadratic

Gaussian circumstances (Chen et al., 2003; Julier and Uhlmann, 1997) with

much less computational burden compared with the MCMC methods. The

MCMC methods are applied in Chapter 2 and 3, whereas the Kalman Filter

method is applied in Chapter 4.

1.4 Structure of Content

Chapter 2 assesses parameter estimation risk in asset pricing and risk man-

agement. Asset pricing, derivatives in particular, is highly dependent on

the chosen financial model. Even when the chosen model is realistic, any

unknown parameters can only be estimated with limited precision from em-
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pirical data. Therefore, parameter uncertainty constitutes a significant part

of model risk in asset pricing. However, this fact is commonly neglected

in practice, and point estimation value of unknown parameters are usually

adopted to underpin the selected model. Focused on option pricing, earlier

literature has described the Bayesian techniques but paid little attention to

empirical practices or has only employed unrealistically simple models. Some

other literature, such as Eraker et al. (2003); Yu et al. (2011); Kaeck and

Alexander (2013), has applied the Bayesian estimation framework to more

sophisticated models. However, this literature focuses more on comparing

performance of the estimated mean value of model output. Application of

the advocated methodology in dealing with parameter estimation risk has not

been discussed. In Chapter 2, we focus on parameter estimation risk, and

carry out extensive empirical study in pricing European options and deter-

mining the Greeks parameters in hedging. We have employed the Merton’s

jump-diffusion model in comparison to the Black-Scholes model. We also

advocate a VaR-type parameter estimation risk measure. Finally, we apply

the Bayesian method to the Merton’s credit risk model in the computation

of default probabilities to gauge the impact of parameter uncertainty. This

chapter has been published in the International Review of Financial Analysis

(please see Tunaru and Zheng (2017)).

In Chapter 3, we trace the volatility and skewness evolution of the S&P

500 index from 01/01/1980 to 30/12/2015. We compare and contrast the

market dynamic among three significant financial crises during the study pe-

riod by assessing the movement of estimated volatility and skewness together

with associated parameter estimation risk. In Chapter 2, we observed that

while estimation mean of parameters are time-varying, estimation uncer-

tainty also changes throughout time. Therefore, we review the evolution of

both quantities throughout time with focus on the different behaviour around

market stress periods. Volatility and skewness are estimated using Merton’s

jump-diffusion model. The analysis contributes to the crisis literature from

27



another angle, in which we show that different behaviour of parameter esti-

mation risk in volatility and skewness can help to identify the different nature

of market crisis. Another finding of the study is that significant model selec-

tion risk is identified in the pre-2008 Global Financial crisis period when the

equity market returns reverted back to a Gaussian distribution indicating a

very calm period without extreme events. We further investigate the inter-

relationship of such abnormal market return behaviour and the subsequent

market crash. We emphasise from these empirical findings the importance of

gauging model risk in financial modelling as they may give a further signal

to market vulnerability.

In Chapter 4, we focused on investigating the value of incorporating both

parameter estimation risk and model selection risk in hedge fund return fore-

casting and fund of funds construction. Similar to the general asset pricing

literature, existing literature does not provide a correct model form (i.e. a

fixed set of risk factors) in pricing or forecasting hedge funds returns. Instead,

the literature constantly reveals the problem of model selection uncertainty

since different ‘best’ models are identified in each study. In addition, each

hedge fund has its unique characteristics; specifically the fund components

may change from time to time subject to fund manager’s trading tactics. As

a result, risk factor loadings in determining hedge fund returns can change

significantly throughout time, which introduce extra model risk in modelling

hedge funds returns time-series. Nevertheless, studies on the topic of model

risk in hedge funds returns modelling are rather scarce. Among the lim-

ited amount of relevant literature, Vrontos et al. (2008) and Vrontos (2012)

apply Bayesian model averaging, but empirical analysis is either limited to

hedge fund indices or forecasting ability without further analysis on portfo-

lio construction. To fill the gap in literature, we investigate the statistical

value and economic value of incorporating heteroscedasticity, non-normality,

time-varying parameter value, model selection risk and parameter estimation

risk in hedge fund return forecasts and portfolio construction. We adopt a
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dynamic model averaging method introduced by Koop and Korobilis (2012)

in economic literature, which is an extended method of the conventional

Bayesian averaging technique. The dynamic model averaging techniques dy-

namically update model weights when new data arrives rather than assuming

constant model posterior probability as in conventional Bayesian model av-

eraging method.

Details of methodology and a literature review of each study are presented

in the corresponding chapter to facilitate the ease of reading. Chapter 5

summarises key findings and provides further future research directions.
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Chapter 2

Parameter Estimation Risk in

Option Pricing and Risk

Management1

2.1 Introduction

Focusing on parameter estimation risk, in this chapter, we adopt a Bayesian

approach with applications to option pricing, including hedging ratios, and

to default probabilities calculations. We advocate using distributions of any

quantity of interest to the investor. The distributions are generated by the

Markov Chain Monte Carlo (MCMC) inferential process. Existing literature

eloquently explains how to implement the Bayesian estimation framework to

option pricing models, yet empirical applications are very limited. We ad-

vocate an improved methodology for investigating the impact of parameter

estimation risk in option pricing, hedging and risk management activities.

Moreover, we propose a VaR-type of method to measure parameter estima-

tion risk in option pricing. Interestingly, our results indicate that model risk

1This chapter has been published in the International Review of Financial Analysis
(please see Tunaru and Zheng (2017))
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may not be symmetric for the buyer and the seller in a derivative contract.

Parameter estimation risk is an important source of model risk (Glasser-

man and Xu, 2014; Tunaru, 2015). It refers to the uncertainty of estimat-

ing the correct parameter values given a model structure. Any estimation

method would induce a certain level of parameter estimation risk. However,

in practice, it is very rare that standard estimation errors would feature in

the final projection of financial quantities (e.g. asset price, economic capital,

value-at-risk). There is no justification for neglecting any of these errors.

Furthermore, standard estimation error measure has not taken into account

the distribution of estimation risk.

While most market makers and researchers agree that liquidly traded

option prices of major stocks and indices are determined by market supply

and demand, less liquid options such as exotic options do not have avail-

able market prices and depend heavily on models to determine their values

(Cont, 2006; Jacquier and Jarrow, 2000; Dahlbokum, 2010). Therefore, pa-

rameter estimation risk in option pricing is of great interest to many mar-

ket participants. Jacquier and Jarrow (2000) carried out a study to incor-

porate parameter estimation risk of the Black-Scholes (BS) model and its

non-parametric extensions into option pricing using the Bayesian estimation

approach. They found that even upon consideration of parameter estimation

risk, these models cannot deliver promising results in forecasting due to rigid

model assumptions. They suggest that further study should be extended

to use models with parameters capturing missing time varying dynamics

(e.g. jump process). Later studies also confirm the capability of Bayesian

econometrics in capturing model uncertainty as well as the feasibility of im-

plementing it in financial practices, but most of this literature focuses on

describing the methodology; see for example Bunnin et al. (2002), Jacquier

and Polson (2010), Johannes and Polson (2010). Other contributions to the

literature emphasise the advantage of extracting latent parameters using the

Bayesian estimation approach, but paying little attention to its application
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in dealing with parameter estimation risk in practice; see for example Eraker

et al. (2003), Yu et al. (2011), Kaeck and Alexander (2013).

The Bayesian method advances in its ability of delivering the joint pos-

terior distribution of parameters, which contains all possible value of the

parameters given the model and the observed data, so that shapes of the dis-

tributions as well as credibility intervals can be obtained easily (Laurini and

Hotta, 2010). Therefore, under the Bayesian framework, all parameters are

stochastic, accounting for the uncertainty in their estimation. We highlight

our proposed methodology using two well-known models as vehicles of re-

search, the Black-Scholes (BS) model and the Merton Jump-Diffusion model

(MJD). The MJD model was developed by Merton (1976) as a key alterna-

tive model to the BS model, capable of generating kurtosis and skewness in

line with empirical literature on stock returns; see Bakshi et al. (1997) and

Dahlbokum (2010). Nevertheless, this model has been omitted from most of

the related literature which provides empirical tests (Jacquier and Jarrow,

2000; Eraker et al., 2003; Gupta and Reisinger, 2014; Kaeck and Alexander,

2013; Yu et al., 2011), except for Frey (2013) which adopts the model in

pricing CO2 options.

In this chapter, we apply the Bayesian methodology and demonstrate

how to construct the posterior distributions of various financial quantities in

interest. The key contribution of the study is that we show how to measure

parameter estimation risk, and how significant it is in empirical practices,

including European option pricing (BS vs. MJD model), Greek parameters,

and probability of default calculation. Furthermore, we are also the first to

show the application of Tunaru’s VaR-type parameter estimation risk mea-

sure in option pricing. Our results reveal that model risk is asymmetric to

buyers and sellers of options.

The rest of the chapter presents as follow: Section 2.2 provides a sum-

mary of literature review; Section 2.3 reviews briefly the MJD model; Section

2.4 introduces the Bayesian econometrics and MCMC simulation techniques;
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Section 2.6 shows the empirical application results of both the BS and MJD

models under the Bayesian estimation approach and a VaR-type measure

for parameter estimation risk in option pricing; Section 2.7 demonstrates the

application of Bayesian econometrics in the Merton’s Credit Risk model; and

Section 2.8 provides summary conclusions.

2.2 Literature Review

There has been an array of evidence that the BS model is not consistent with

empirical data (Das and Sundaram, 1999; Merton, 1976; Jorion, 1988; Drost,

Nijman and Werker, 1998; Backus, Foresi and Wu, 2004; Batten and Ellis,

2005). The model suggests a normal distribution of stock return, whereas

empirical evidence, as we know it, generally shows excessive kurtosis and

negative skewness.

The MJD model developed by Merton (1976) is a key extension of the BS

model. Several studies suggest that the anomalies of market return could be

a result of jump events, and large price jumps are observed in market return

data; see Das and Sundaram (1999), Drost et al. (1998), Jarrow and Rosen-

feld (1984), Kim et al. (1994) and Maekawa et al. (2008). Burger and Kliaris

(2013) argue that while the diffusion process captures the volatility generated

by trading activities, the jump component captures more significant changes

of stock prices generated by new information. The jump component also

generates skewness and kurtosis to the stock return distribution as revealed

by Das and Sundaram (1999), Gardon (2011) and Bates (1996).

Estimating the parameters of the MJD model is not a straightforward

exercise because under this model the stock return distribution is an infinite

mixture of normal distributions. Even under the simplified Bernoulli-Jump

Diffusion setting proposed by Ball and Torous (1985), in which a maximum

of one jump can occur during one unit time interval, the likelihood func-

tion is still unbounded and may have many local modes. This leads to the
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difficulty in estimating the parameter values using the maximum likelihood

method (Kostrzewski, 2014). Due to this issue, many empirical studies of

the MJD model show unreasonable large number of jumps: for example, 162

per annum (Hanson and Westman, 2002), 179 per annum (Ramezani and

Zeng, 1998), 142 per annum (Honore, 1998). Honore (1998) suggests that

this issue can be circumvented by treating the jump magnitude as a constant

input to the model. However, the option pricing results under such strict

constraints can hardly show any improvement compared to the BS model

pricing results. Frühwirth-Schnatter (2006) and Kostrzewski (2014) show

that MCMC Bayesian econometrics framework can provide a better solution

to this calibration problem.

Parameter estimation risk is never a trivial problem in financial mod-

elling. Focused on asset pricing and risk management, Chung et al. (2013)

account for parameter estimation risk in equity pricing models by calcu-

lating the Bayesian posterior standard deviation of parameters, and they

conclude that parameter uncertainty is sufficient to explain the price dis-

crepancy between Chinese A- and H-share prices. Jacquier et al. (1994),

Bunnin et al. (2002) and Gupta and Reisinger (2014) also emphasise the

importance of parameter estimation risk in option pricing and suggest the

Bayesian estimation approach through MCMC computational techniques as a

solution. Butler and Schachter (1997), Christoffersen and Gonçalves (2005),

and Kerkhof et al. (2010) report value-at-risk (VaR) with upper and lower

bounds to account for parameter uncertainty. Tarashev (2010) shows that

ignoring parameter uncertainty would lead to substantial underestimation of

risk level. Rodŕıguez et al. (2015) present the advantage of the Bayesian es-

timation method in capturing parameter estimation risk in structural credit

risk models.

The distinct advantage of MCMC methods is the ability of delivering

not only point estimation values, but also the entire posterior distributions

of parameters by the inference of the observed data and prior beliefs about
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the parameters (Stanescu et al., 2014). Therefore, the final option price

can be seen as the expectation of the model price over the distributions of

unknown parameters (Jacquier and Polson, 2010). This argument shows a

shift from the philosophy of the traditional estimation approach. Gupta and

Reisinger (2014) assert that finding a best-fit solution in model calibration

makes the problem ill-posed as all estimation errors are simply neglected in

this manner. Any best-fit parameter point value cannot be good enough

to underpin the correct model form and inference should be shifted onto

exploring a distribution of solutions, which sufficiently captures all possible

parameter values given the observed data. Bunnin et al. (2002) were among

the first to show how Bayesian posterior distributions of parameters can

capture and reflect parameter estimation risk in option pricing. However,

they only apply the method on a single European at-the-money call option.

For simplicity, they also ignore any dividend impact on the underlying asset

and fix the stock return rate at 10% without any justification. Therefore,

the paper provides little information about the empirical performance and

feasibility of the underlying method in capturing model risk.

Jacquier and Jarrow (2000) calibrate model parameters using the Bayesian

approach on call option data of TOYSR US between 4-Dec- and 15-Dec-1989.

They found that the standard BS model leads to a narrow model price dis-

tribution, whereas static non-parametric extension models tend to produce

more dispersed model prices. Extended models show improvements over the

BS model in in-sample performance but the BS model is superior in out-of-

sample tests. Therefore, the non-parametric extended models do not fully

overcome the shortcomings of the BS model. On the other hand, the authors

show that parameter uncertainty is well projected on the Bayesian posterior

distributions. They concluded that failure of considering such uncertainty

would result in underestimate of price variations. Furthermore, the authors

suggest that models with additional parameters capturing missing time vary-

ing dynamics (e.g. jump process) might improve the pricing performance. We
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based the research on this suggestion.

Eraker, Johannes and Polson (2003) apply the Bayesian technique in op-

tion pricing with a stochastic volatility model, a stochastic volatility with

jumps in stock return process model, and a master model with jumps in

both the stock return process and the stochastic volatility process. Models

are tested on both the S&P 500 and Nasdaq equity indices. Results sug-

gest that the master model with jumps in both the stock return process and

the stochastic volatility process provides the best fit to market return data.

However, regarding on the impacts on option pricing, they have only evalu-

ated how model prices are influenced under different models. Therefore, we

are still unclear about the practical effectiveness of using Bayesian method

in capturing model risk in option pricing. Yu et al. (2011) and Kaeck and

Alexander (2013) have also used the Bayesian estimation approach through

MCMC techniques to extract inference on parameters and latent volatil-

ity/jump variables of the Lévy jump models. However, all literature listed

above do not take into consideration the application of Bayesian method in

dealing with parameter estimation risk.

Gupta and Reisinger (2014) and Johannes and Polson (2010) provide a

step-by-step instruction of how to calibrate the BS and MJD models using

MCMC techniques. Prior distributions of parameters are carefully derived

to ensure appropriate posterior distributions of all parameters. Gupta and

Reisinger (2014) also suggest the application of the Bayesian approach in

option hedging activities as a potential future research direction. We follow

this methodology in our paper and carry out an extensive option pricing ex-

ercise to see whether the Bayesian approach can effectively generate posterior

distributions of option prices that contain the realised future market values

under the two models investigated.
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2.3 Merton’s Jump-Diffusion Model

The Merton’s Jump-Diffusion model (Merton, 1976) is a continuous-time

model developed utilising a Poisson arrival distributed stochastic jump com-

ponent capable to produce skewness and kurtosis similar to observed return

data. The model is described by the stochastic differential equation2:

dSt = (µ− δ − λϕ)Stdt+ σStdWt + (µJt − 1)StdIt (2.1)

where µ is the expected rate of return; δ is the dividend yield, σ is the

volatility of stock return; {Wt}t≥0 is a standard Wiener Process; λ is the

intensity of jump events per unit time interval; {It}t≥0 is a Poisson process

with intensity λ; µJt is the jump size of stock price; and ϕ = E[µJt − 1].

Under the assumption that ln(µJt ) is normally distributed ln(µJt ) ∼ N(a, ζ2),

the probability density of log stock return Rt+∆ = ln
(
St+∆

St

)
is the weighted

average of normal densities by the probability that i jumps would occur:

p(Rt+∆) =
∞∑
i=0

e−λ∆[λ∆]i

i!
N(Rt+∆; (µ−δ− σ

2

2
−λϕ)∆+ ia, σ2∆+ iζ2) (2.2)

Under a risk-neutral measure, Merton (1976) proved that the European

option pricing formula (for both call and put options) under the MJD model

is a weighted average of the BS option prices V BS
t by the probability that i

jumps would occur (Matsuda, 2004):

2Please refer to Matsuda (2004); McDonald et al. (2006); Merton (1976) for more details
of the MJD model.
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V Merton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
V BS
t (Si, σi, δ, T − t, r,K)

Si ≡ St exp

ia+
iζ2

2
− λ(e

a+
ζ2

2 − 1)(T − t)


σi ≡

√
σ2 +

iζ2

T − t

(2.3)

where r is the risk-free return, K is the strike price of the option, and T − t
is the time-to-maturity. To obtain values of the model parameters, one can

either estimate them using the historical return data with equation (2.2)

in an estimation exercise or imply them from market options data using

equation (2.3) in a calibration exercise. The distinction is important since

risk managers use the former while traders employ the later, both ignoring

the error caused by using a specific dataset.

2.4 Integrating Parameter Estimation Risk un-

der Bayesian Econometrics

Recall the Bayesian formula in Chapter 1 Section 1.3 equation (1.2). For

a model M with a parameter θ and given the observed data Dt−1, Bayes’

formula gives

p(θ | Dt−1) =
p(Dt−1 | θ)p(θ)

p(Dt−1)
(2.4)

where p(θ | Dt−1) is the posterior distribution of θ given Dt−1; p(Dt−1 | θ) is

the conditional likelihood under the model given θ; p(θ) is the prior marginal

distribution of θ and p(Dt−1) is the marginal distribution of Dt−1.
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We estimate parameters from the time series of returns under the risk

neutral measure using an MCMC approach pioneered in finance by Jacquier

et al. (1994); Eraker (2001); Eraker et al. (2003); Jacquier and Jarrow (2000);

Jacquier and Polson (2010); Johannes et al. (2009). The MCMC techniques

provide very accurate results in the presence of jumps as demonstrated by

Eraker et al. (2003), Yu et al. (2011) and Kaeck (2013).

In the MJD model, with the parameter vector Θ = {λ, σ, a, ζ, δ} 3, using

the joint posterior distribution of all parameters p(Θ | Dt−1) is the key way to

consider parameter estimation risk in all asset pricing and risk management

calculations. From a computational point of view, the option price V Merton
t

is just a function of St, t and Θ, hence the ergodic results underpinning

the MCMC inference provide a direct mechanism to extract the posterior

distribution of model price p(V Merton
t | St, t,Θ). MCMC simulation methods

can efficiently sample from the posterior distribution of p(V Merton
t | St, t,Θ)

without knowing its mathematical analytical form; hence the mean, standard

deviation, quantiles and shape of the distribution can be easily assessed. In

each MCMC iteration, a joint draw of parameter values is obtained from

p(Θ | Dt−1). Then for each joint draw of parameters, option price V Merton
t

can be calculated following formula (2.3). This yields a sample of draw from

p(V Merton
t | St, t,Θ).

2.5 MCMC Algorithm

Gibbs sampling is the simplest MCMC algorithm, which is a special case

of the Metropolis-Hastings algorithm. It is applicable when the conditional

distribution of each variable is known. For a model with parameter vector

Θ = θ1, θ2 and data Dt−1. The target distribution we seek to obtain is

p(Θ | Dt−1) ∝ p(Dt−1 | Θ)p(Θ). When the complete conditional distributions

3Parameter λ, σ, a, ζ are estimated from historical return data or calibrated from option
prices, whereas parameter δ is estimated separately from historical dividend yield data.
More details are presented in section 2.6.2.
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of all parameters are in proper form, and it is possible to directly sample from

them, the Gibbs sampler can be easily implemented following below steps:

1. Set up initial value θ
(0)
1 , θ

(0)
2 for all parameter

2. Draw θ
(1)
1 from p(θ1 | θ0

2, Dt−1)

3. Draw θ1
2 from p(θ2 | θ1

1, Dt−1)

4. Repeat step 2 and 3 for k iterations

Gelman et al. (2014) show that after a sufficient number of iterations, a

sample from the joint posterior distribution p(Θ | Dt−1) can be obtained.

When one or more conditional distributions are not in proper form, and

it is not possible to use Gibbs sampler, Metropolis-Hastings algorithm can

be adopted to perform the MCMC simulation. This algorithm requires an

additional specification of a proposal density q(Θk+1 | Θk) (i.e. the transition

kernel). Metropolis-Hastings algorithm follows the procedure below:

1. Set up initial value θ
(0)
1 , θ

(0)
2 for all parameter

2. Draw Θ∗ from the proposal density q(Θ1 | Θ0)

3. let

Θ(1) =

Θ∗ if Unif(0,1) 6 α(Θ0,Θ∗)

Θ0 otherwise

where

α(Θ0,Θ∗) = min{π(Θ∗)/q(Θ∗ | Θ0)

π(Θ0)/q(Θ0 | Θ∗)
, 1}

Gibbs sampler is often the first choice of MCMC algorithm due to its

simplicity and the Metropolis-Hastings method is used when it is difficult to

sample from some conditional distributions. This would create a hybrid simu-

lation chain in practice. Hybrid simulation induces more complex algorithm

and computing skill. The reader is referred to Lancaster (2004), Gelman
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et al. (2014), Johannes and Polson (2010) and Tunaru (2015) for more de-

tails of Bayesian inference and MCMC simulation methods. The open source

software OpenBUGS provides a readily written stable programme to run the

MCMC simulation even on complex models. Conveniently, the OpenBUGS

programme will automatically choose the most feasible updater according to

model setting (Lunn et al., 2012).

2.5.1 Convergence

Detecting convergence of Markov chains is crucial to the success of Bayesian

inference. It helps to ensure that chains reach the target (stationary) dis-

tribution, so that the samples we draw are reliable to use. The literature

has made it clear that it is impossible to fully diagnose convergence from the

simulated data of chains. However, simulated data still has some information

for us to assess convergence, and various convergence tests are proposed by

the literature (Johannes and Polson, 2010; Lunn et al., 2012). We introduce

two main ways to assess the convergence of Markov chains.

The first method is to detect convergence by eyeballing. Plotting histor-

ical traces of several simulation chains is the most straightforward way to

assess convergence. Converged Markov chain trace plots as shown in Fig-

ure 2.1 has three key features: 1) chains are moving around within a stable

value span; 2) chains that started from different initial values overlap with

each after a certain amount of iterations; 3) trace plots look like a “fat hairy

caterpillar”. The period when the two chains do not overlap with each other

is called a “burn-in” period. During this period, convergence (target distri-

bution) has not yet been achieved, and simulated output of these iterations

shall be discarded to avoid biases.

[Figure 2.1 about here.]

The Gelman-Rubin ratio GR = B/G (Brooks and Gelman, 1998) is an-

other way to detect convergence. The basic idea of this method is as follows:

41



G denotes within-chain variability and B denotes between-chain variability.

When good convergence is achieved, W and B should converge to stability,

and GR should converge to 1. Figure 2.2 Shows an example of the Gelman-

Rubin ratio diagram, GR is depicted in red, G in blue and B in Green. The

diagram shows that convergence is achieved after 2000 iterations.

[Figure 2.2 about here.]

2.5.2 Accuracy and Efficiency

The question remains as to how many iterations after achieving convergence

we should run to obtain a sample which fully represents the posterior distri-

butions of parameters. More iterations certainly give higher level of accuracy.

However, Monte Carlo (MC) standard errors can be used as a way to assess

the level of accuracy. The MC standard error is an estimation of the dif-

ference between the simulated sample mean and the true posterior mean.

Suppose we have n independent 4 posterior samples drawn from the pos-

terior distribution of parameter θ, each sample has their sample mean gi.

According to the Central Limit Theorem, the MC error can be estimated

by
√
V ar(gi)/n . The calculated MC error can then be compared with the

estimated posterior standard deviation of θ. In general, an acceptable accu-

racy level is achieved when the MC error is less than 5% of the estimated

posterior standard deviation (Lunn et al., 2012).

Existence of autocorrelation among iterations will decrease the efficiency

of simulation. However, autocorrelation in MCMC simulations are inevitable

due to the nature of the sampling algorithm of Gibbs sampler or Metropolis-

Hasting (Lunn et al., 2012). Johannes and Polson (2010) also pointed out

that chains with very low level of autocorrelation may never achieve con-

vergence (see the Wiches hat distribution in Geyer and Thompson, 1995).

However, higher level of autocorrelation will increase the number of itera-

4see Jones (2004) for the case of dependent samples
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tions required to achieve convergence as well as posterior sampling accuracy,

and hence reduce the efficiency of simulation. Higher level of autocorrelation

results in a “snake” shape trace plot (Figure 2.3(a)). It does not necessarily

indicate a failure of convergence. After increasing the number of iteration,

the trace plot may return to a “fat hairy caterpillar” shape. Alternatively,

a method known as “thinning” can also be used to reduce the level of auto-

correlation and increase efficiency. Thinning of 10 means that only one value

is retained as simulation output in every ten consecutive iterations, the rest

are discarded. Figure 2.3(b) shows the trace plot of the same simulation in

Figure 2.3(a) with more iterations and “thin 10”.

[Figure 2.3 about here.]

All MCMC simulation results in this thesis are checked against conver-

gence, accuracy and efficiency using the methodology described in Section

2.5.1 and 2.5.2.

2.6 Option Pricing with Parameter Estima-

tion Risk: BS vs MJD

2.6.1 Data

All empirical data used in this chapter is obtained from Bloomberg. Em-

pirical tests are carried out using daily S&P 500 index log-return data from

31/07/2012 to 29/08/2014, and S&P 500 index European call and put op-

tion data in August 2014. This is a randomly selected period when the

market was in general conditions. The option data set excludes5 options

with | K/St − 1 |> 0.2, options with time-to-maturities shorter than 7 days

or longer than 500 days, options with market prices less than $0.5, options

5We follow standard empirical option pricing filtering methodology described in Bakshi
et al. (1997); Dahlbokum (2010).
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with zero trading volume, and options which do not fulfil the non-arbitrage

profit conditions. Furthermore, on a trading day, if there are less than 5

options for a maturity date or the available option data set for a maturity

date does not cover all types of moneyness (i.e. ITM, ATM and OTM),

options of this maturity date will be dropped out from the data set of that

particular trading day. This is to ensure that there are enough data points

to calibrate the implied parameter values in the calibration exercise of Sec-

tion 2.6.4. Our final option sample contains 2871 pairs of option contracts.

The option data is classified as in-the-money (ITM) for call option and out-

of-the-money (OTM) for put option if K/St < 0.99; at-the-money (ATM)

if 0.99 6 K/St 6 1.01; OTM for call option and ITM for put option if

K/St > 1.01.

2.6.2 Parameter Inference

Under the MJD model, the log stock return distribution is an infinite mixture

of normal distributions. To circumvent this problem, we follow Ball and

Torous (1985) 6 which approximated the MJD model with the Bernoulli-

Jump Diffusion model, using the assumption that only one jump is allowed to

happen per unit time interval. When the time interval ∆ is short (e.g.daily),

the jump intensity λ∆ will be very small, and the Bernoulli-Jump Diffusion

model will be a good proxy for the Merton’s model. The parameters are

estimated using daily historical returns using the likelihood:

6Another widely used proxy is the M-Jump Diffusion model described in (Kostrzewski,
2014; Burger and Kliaris, 2013). This model refers to a specification of a cutting point M,
so that the model takes into account a maximum of M jumps. Researchers need to ensure
that the probability of observing more than M jumps is extremely small, hence neglecting
it would not bring any significant impact to the results.
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p(Rt+∆) =Pr(i = 0)N(Rt+∆; (µ− δ − σ2

2
− λk)∆, σ2∆)

+ Pr(i = 1)N(Rt+∆; (µ− δ − σ2

2
− λk)∆ + a, σ2∆ + ζ2)

Pr(i = 0) =e−λ, P r(i = 1) ≈ 1− Pr(i = 0)

(2.5)

The equity index return is impacted by dividend payments. Among all

studies on index option pricing, many of them ignore dividend impacts;

see Eraker et al. (2003), Johannes and Polson (2010), Jacquier and Jarrow

(2000), Maekawa et al. (2008) and Bauwens and Lubrano (2002). However,

this may bias the results. Ferreira and Gama (2005) and Bakshi et al. (1997)

stress the importance of considering dividend impact in calculating option

prices. In our study, a posterior predictive dividend yield value δ̂ is estimated

separately from historical dividend yield data and used in option pricing as

an estimate of δ in equation (2.3). If the historical dividend yield data follows

a gamma distribution:

δ ∼ Gamma(c, ϑ)

The posterior predictive distribution of dividend yield can be computed by:

p(δ̂ | δ) =

∫
p(δ̂, c, ϑ)dcdϑ

=

∫
p(δ̂ | δ, c, ϑ)p(c, ϑ | δ)dcdϑ

Statistical results of the posterior predictive dividend yield are tabulated in

Table 2.1:

[Table 2.1 about here.]

For the MJD model, prior distributions of parameters should be selected

carefully. Uninformative prior distributions are not suggested as they could
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make convergence difficult to achieve (Eraker et al., 2003; Johannes and

Polson, 2010). The selection of prior distributions is also critical to control for

the size of jump intensity (Kostrzewski, 2014). Similarly, Jacquier and Polson

(2010) emphasise that uninformative priors could result in an unbounded

likelihood for the jump-diffusion model and useful priors should be given

to “impose constraints on the parameter space”. Following Jacquier and

Polson (2010) and Eraker et al. (2003), informative priors Beta(2, 40) and

Gamma(10, 0.01) are assigned to the daily jump intensity λ and jump size

precision 1/ζ2. Uninformative normal distribution N (0,100) is assigned to

the stock return drift µ′ (µ′ = µ− δ) and the jump size drift a, whereas the

prior of stock precision 1/σ2 takes the form of Gamma(0.0001, 0.0001).

Parameters of both the BS and MJD models are estimated from the S&P

500 index daily log-return data. After checking for the convergence of the

MCMC chains, inferential results are presented in Table 2.2.

[Table 2.2 about here.]

The results indicate that, under the BS model, the annual return drift

µ′ = µ− δ can range from 1.79% to 32.91% at the 95% credibility level with

a mean value of 17.29%, and the annual stock return volatility reports at

a mean value of 11.13% with a 95% credibility interval of [10.47%, 11.85%].

With the impact of jumps, the annual return drift µ′ of the MJD model is

estimated at a mean value of 16.95%. The 95% credibility interval of µ′ is en-

larged to [−1.32%, 34.85%]. The jump magnitude a is estimated at an average

level of -0.84% with a 95% credibility interval of [−2.82%, 0.75%], meaning

that both positive and negative jumps are feasible. Results of jump intensity

λ show an average of 8.38 jumps per annum, but the amount may vary be-

tween 2.48 jumps to 16.55 jumps. With the introduction of jumps, a part of

the stock return volatility is captured by the jump process, thus the estimated

stock volatility σ of the MJD model is 10.05%, which is smaller than the σ

under the BS model 11.13%. The volatility of jump size ζ has an estimated

posterior mean of 2.72%, and a 95% credibility interval of [2.05%, 3.59%].
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QQ-plot

Goodness-of-fit tests are often ignored in options pricing literature. Here

we carried out a goodness-of-fit analysis for both the BS and MJD models,

as this is an important step before proceeding on drawing conclusions on

empirical exercises. Standardised Pearson residuals are computed for each

model using the posterior mean of parameters. The QQ-plots of both models

are displayed in Figure 2.4, and they indicate that the MJD model provides

better data fitting performance than the BS model. The MJD model exhibits

a smaller deviation from the standard normal quantiles compared with the BS

model. Results indicate that the MJD model better captures the leptokurtic

of the data.

[Figure 2.4 about here.]

DIC comparison of the two models

The Deviance Information Criterion (DIC), introduced by Spiegelhalter et al.

(2002), provides a robust yardstick for Bayesian model comparison:

DIC = Dev + pDev (2.6)

where Dev is the posterior mean deviance (a measure of fit), and Dev =

−2 log p(D | θ); and pDev is the the effective number of parameters (a mea-

sure of model complexity). The smaller the DIC value, the better the model.7

DIC results of the two models are tabulated in Table 2.3. Model comparison

and selection are based on the difference of DICs between the two models,

not the absolute values of DICs. There is no universal standard on what

should be treated as an important difference in DIC values (Spiegelhalter

et al., 2002). In this study, we follow Lunn et al. (2012): a DIC difference of

10 can definitely rule out the higher DIC model; a DIC difference of 5 is still

7In the case when the likelihood p(D | θ) is greater than 1, DIC could be legitimately
negative, and this does not affect its validity in model comparison (Spiegelhalter, 2006).
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substantial; a DIC difference of less than 5 is trivial, and neither model shall

be ruled out.

[Table 2.3 about here.]

The DIC results again suggest a better in-sample fitting of the MJD model

compared with the BS model. The DICMJD is less than the DICBS by 17,

indicating superiority of the MJD model over the BS model.

Bayesian p-value

The Bayesian p-value measures the discrepancy between the model replica-

tive simulation data and the observed data via selected test statistics (Gel-

man et al., 2014). The chosen test statistics can be some summary statistics

of the observed data. Denoting generically a test statistic by T (D), it is clear

that T (D) can be easily calculated given the observed data set. On the other

hand, when a series of replicated data Drep is simulated using the poste-

rior predictive distribution, the test statistics T (Drep) can also be calculated

consequently. If the model fits the observed data well, the distribution of

T (Drep) will be concentrated around T (D). This is assessed by the Bayesian

p-value: Pr(T (Drep) > T (D) | D). A p-value of 0.5 means the probability

of obtaining T (Drep) > T (D) is 50%, so that the model is likely to generate

the observed data series. In contrast, obtaining an extreme p-value of 6 0.01

or > 0.99 indicates a likely misfit between the model and the observed data

(Gelman et al., 2014).

Four test statistics, including sample mean, variance, skewness and kur-

tosis (excess kurtosis), are chosen to test the ability of the two models in

reproducing the observed sample data series. Parameter posterior distribu-

tions of each model are used to simulate the replicated data. Mean(Drep),

Variance(Drep), Skewness(Drep) and Kurtosis(Drep) are computed consequently.

The Bayesian p-values of test statistics are reported in Table 2.4.

[Table 2.4 about here.]

48



While the BS model tends to successfully replicate the distribution loca-

tion and dispersion of the observed log-return data, its p-values of Skewness

and Kurtosis reject the assumption of normal distributed stock return explic-

itly. Consistent with past empirical findings (Das and Sundaram, 1999; Mer-

ton, 1976; Jorion, 1988; Drost et al., 1998; Backus et al., 2004), the observed

S&P 500 log-return data shows a negative skewness of −0.3824 and a exces-

sive kurtosis of 1.4176. The p-values of Skewness(Drep
BS) and Kurtosis(Drep

BS)

are strictly equal to 1 and 0, indicating that the skewness of the replicated

data of the BS model is always higher than the sample skewness and the

kurtosis of the replicated data is always smaller than the observed kurtosis.

According to the p-value results, the MJD model replicates the location

of the observed log-return distribution successfully. It also seems to correctly

reproduce the negative skewness of the observed data. Nevertheless, its abil-

ity in reproducing the observed variance and kurtosis is not as competent

as expected. With p-values of 0.9267 and 0.9330 for variance and kurtosis

respectively, the MJD model seems to produce too much variance and kur-

tosis in general. Although these results do not exceed the critical boundary

of 0.99, they suggest that, over 90% of time, the model is generating higher

variance and kurtosis than the empirical data.

The Bayesian p-values show that, although the MJD model is superior

to the BS model, it also has some new problems. Even though the p-values

indicate a certain level of imperfect fitting for both models, any single p-

value shall not act as the evidence to reject a model (Gelman et al., 2014).

The main purpose of the Bayesian p-values is to check and understand the

limitation of a model’s ability in replicating the observed data. Practical

feasibility of a model shall also be evaluated based on its performance in

applications. An out-of-sample option pricing performance analysis of the

two models is presented next.
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2.6.3 Out-of-sample Option Pricing

Out-of-sample option pricing tests are carried out using a rolling window

approach. The estimation window contains 2 years of daily return data,

estimated parameter results are used to price options one trading day ahead,

and the estimation window rolls one day forward each time to price all option

contracts in August 2014. An example of posterior density plots of an OTM

S&P 500 European call option on 01/08/2014 with strike price $2000 and

time-to-maturity 141 days under both of the models are shown in Figure

2.5. As reflected in the plots, MCMC methods successfully draws samples

from the posterior distributions of model prices. In this way, all parameter

estimation errors are incorporated.

[Figure 2.5 about here.]

The posterior price distribution range is wider under the MJD model

than under the BS model, indicating that the MJD model, having more

parameters, leads to a higher level of uncertainty in computing the final

option price. However, this does not necessarily mean that the model with

less parameter estimation risk is the better one to use. A narrower price range

might in fact give a false security. For the data analysed here, the posterior

distribution of the MJD model option price captures the realised market

option value very close to the centre of the distribution. The BS model

price, on the other hand, has the realised future market price positioned at

the very end of its right tail area. It seems that the BS model is still far away

from predicting the underlying option price successfully even when taking

the parameter estimation risk into consideration. However, this is just one

instance of option pricing, a more informed view of the overall out-of-sample

option pricing performance of the two models is presented below.

In addition to paying attention to traditional performance evaluation

statistics, such as pricing errors or absolute pricing errors, we are partic-

ularly interested in whether the posterior distributions, which incorporate
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parameter estimation risk, can cover the realised observations; if not, how

far are the realised prices from the model price distributions. The overview

of coverage performance is tabulated in Table 2.5, and pricing error perfor-

mance results are shown in Table 2.6 and 2.7.

[Table 2.5 about here.]

[Table 2.6 about here.]

[Table 2.7 about here.]

Overall, posterior distribution coverage results of the MJD model are bet-

ter than the results of the BS model for both call and put options as it can

be seen in Table 3.2. In the tested sample period, the MJD model price dis-

tributions (i.e. 95% credibility intervals) cover an extra of 5.63% call option

mid-quotes and an extra of 13.72% put option mid-quotes compared with the

BS model results. The mid-quote coverage rates of the MJD model are also

higher than the BS model across different moneyness and time-to-maturities,

except for ITM call options and ATM put options. More importantly, the

MJD model shows great improvements in both call and put OTM option

pricing performance compared with the BS model (with improvements of

26% for OTM call options and 22.33% for OTM put options respectively).

The bid/ask-quote coverage statistics show the percentages of options with

both bid- and ask-quotes lying within the 95% credibility intervals of the

posterior model price distributions. The MJD model outperforms the BS

model on this measure across all moneyness and time-to-maturities in both

call and put options. These evidences reflect that the narrow model price

distributions produced by the BS model have more difficulty in capturing the

bid-ask spreads of market prices.

Pricing Error (PE), Absolute Pricing Error (APE), and Root-mean-square

Pricing Error (RMSPE) are calculated respectively to measure the differ-

ences between the posterior mean of model prices and the market prices
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(mid-quote). On the other hand, Outside Pricing Error (OPE), Absolute

Outside Pricing Error (AOPE) and Root-mean-square Outside Pricing Error

(RMSOPE) statistics aim to evaluate the distances between the closest 95%

credibility interval bound values and the market prices (mid-quote) when

the mid-quotes are not covered by the intervals. The BS model outperforms

the MJD model with respect to these six statistical performance measures

in general. The MJD model seems to produce results that can match the

BS model in OTM options and longer term options (i.e. time-to-maturity >

180 days). However, for either model, options with time-to-maturity greater

than 180 days remain the most challenging type of options to price.

The BS model price distributions capture market prices of OTM call op-

tions more effectively than ITM call options, and the advantage in pricing

OTM call options is also reflected in the PE, APE, RMSPE, OPE, AOPE

and RMSOPE results, which is consistent with the finding of Jacquier and

Jarrow (2000). This pattern is reversed in its put option pricing performance.

According to Backus et al. (2004), the anomalies in stock return distribution

decrease as time interval increases. Hence, one could expect the BS model

to perform better in longer-term options. However, our results of the S&P

500 option pricing do not support this statement. Both of the APE and

RMSPE statistics increase with time-to-maturities, and the coverage per-

formance measures also exhibit no advantage for the BS model in pricing

longer-term options.

Regarding the MJD model results, Das and Sundaram (1999) argue that

the MJD model can effectively reproduce skewness and kurtosis to stock

return distribution in short period, but the ability declines as time length

increases. They suggest that although the decline of anomalies is consistent

with empirical stock return evidence, these anomalies generated by the MJD

model disappear much quicker than they should be as suggested by empirical

data. As a result, the MJD model is expected to perform worse in longer

term option pricing but better in shorter term option pricing. The APE and
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RMSPE statistics of the MJD model for both call and put options confirm

this conclusion as they increase with time-to-maturities.

Over-pricing is defined as the case when the market price (mid-quote)

is not covered by the 95% credibility interval of model price and located to

the left of the distribution (positive OPE); Under-pricing is defined as the

case when the market price is not covered by the 95% credibility interval

of model price and located to the right of the distribution (negative OPE).

Focused on the BS model results, consistent with Batten and Ellis (2005),

under-pricing seems to have the dominant effect across all types of moneyness

and maturities in both call and put option pricing. The only two exceptions

are found in OTM call and ITM put options. It can be observed that the

mis-pricing tendency moves from under-pricing to over-pricing with increases

in the strike price. Moreover, the under-pricing magnitude tends to increase

with time-to-maturities (see AOPE and RMSOPE results).

The MJD model, on the other hand, tends to under-price call options, but

over-price put options. For both types of options, we find that the magnitude

of mis-pricing decreases when option moneyness moves from ITM to OTM.

Furthermore, the increase in time-to-maturities also tends to decrease the

magnitude of mis-pricing (see AOPE and RMSOPE results). These results

contradict with the trends we observed in the BS model, and indicate that

when the model price distributions failed to capture the realised market data,

the shortest distances between the market prices and the MJD model price

distributions are found in OTM and longer-term options.

Yun (2014) argues that when parameter values are implied from market

options prices (i.e. calibrated), the option pricing performance is better

than when parameter values are estimated from historical stock return data.

In the next section, we further investigate the out-of-sample option pricing

performance of the BS and MJD models using implied parameter values.
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2.6.4 Out-of-sample Option Pricing with Implied Pa-

rameter Values

Implied parameter values are calibrated under the Bayesian framework us-

ing option market prices (mid-quotes). Options with different strike prices

but the same maturity date are used to calibrate posterior parameter dis-

tributions p(λ, σ, a, ζ | Dt−1), which are then used to price the options with

the same maturity date in the next trading day. Posterior distributions of

parameters estimated using the historical daily log-return data in Section

2.6.3 are used as prior distributions of parameters in calibrating the implied

parameter values.

Jacquier and Jarrow (2000) provide a thorough discussion on the neces-

sity of allowing model error εt when calibrating implied parameter values

from option price data; see also Jacquier and Polson (2010) and Johannes

and Polson (2010). Ideally, observed market prices shall coincide with model

prices. Nevertheless, this requires perfect synchronisation when recording

the option price Ct and the underlying stock price St, which is empirically

difficult to achieve. Even small non-synchronisation errors could result in the

deviation between market and model option prices. Secondly, market prices

could sometimes depart from their equilibrium values due to trading noises

and market imperfection. The introduced error term could effectively cap-

ture the impact of such market errors. Finally, the deviation between market

and model option prices could also stem from model structure uncertainty.

Models are only approximations of the underlying asset pricing problem.

Ignorance of the model imperfection issue could result in over-fitting, and

consequently lead to the deterioration in model out-of-sample pricing per-

formance as indicated by Dumas et al. (1998). Therefore, the model error

term εt can also act as a vehicle to deal with model structure risk. Following

Jacquier and Jarrow (2000), a Gaussian model error term is introduced in a

multiplicative manner to ensure the non-negativity of option prices:
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log(Ct) = log(Vt) + εt (2.7)

where Ct is the market price of a European option, Vt is the model option

price, and εt is a normally distributed error term with distribution N(0, σ2
ε).

[Table 2.8 about here.]

[Table 2.9 about here.]

[Table 2.10 about here.]

The statistics of the out-of-sample option pricing performance are tabu-

lated in Table 2.8, 2.9 and 2.10. Comparing with the results in Section 2.6.3,

the results by calibration show improvements in both Mid-quote coverage

and Bid/Ask-quote coverage for both of the models overall. A remarkable

change is that, for call options, the advantage of the MJD model is now

more significant in pricing ITM options, whereas the advantage in ATM and

OTM options remains for put options. Among the three different time-to-

maturities, the MJD results improved most significantly over the BS results

in pricing longer term options. The highest coverage rate of the longer term

options is observed in the MJD put option pricing.

Moreover, the PE, APE, RMSPE, OPE, AOPE and RMSOPE statistics

indicate significant improvements for the MJD model, suggesting that the

MJD model works better with calibration. Unlike the results shown in Sec-

tion 2.6.3, the MJD model now has a similar or even better performance

indicated by these measures in all option categories. In addition, the mis-

pricing tendencies across different option categories of the BS model remain

the same as in Section 2.6.3. On the other hand, the mis-pricing tendencies

of the MJD model has changed to follow the similar trends as the BS model.

Both under- and over-pricing are observed in different option categories, and

the tendency moves from under-pricing to over-pricing with increases in strike
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prices. Furthermore, options with the longest time-to-maturities now have

the largest mis-pricing magnitude.

Overall, after incorporating parameter estimation risk, the MJD model

outperforms the BS model in all aspects of the out-of-sample option pricing

tests when implied parameters are used. In the next section, we will discuss

the measure of parameter estimation risk exposure.

2.6.5 Measuring Parameter Estimation Risk

With the ability to obtain the entire posterior distributions of option prices,

parameter estimation risk exposure to both long and short positions can be

easily investigated. A simple VaR-type of measure to quantify parameter

estimation risk is recently introduced by Tunaru (2015).

Regarding the MJD model, the posterior density of an option price V Merton
t

is obtained using MCMC techniques. The distributions of profit & loss for

both long and short positions, given the trading price Pt, can be computed

by simple linear loss functions shown below:

Losslong(V Merton
t ) = V Merton

t − Pt
Lossshort(V Merton

t ) = Pt − V Merton
t

(2.8)

[Figure 2.6 about here.]

Denoting by PER−V aRη, the measure of parameter estimation risk tells

that the probability of having a loss beyond PER−V aRη due to parameter

estimation risk is η%. An example of the PER − V aR1% for both long and

short positions of a European call option computed using the posterior MJD

model price distribution is given in Figure 2.6. It is important to notice that

buyers and sellers do not have symmetric exposure towards parameter esti-

mation risk. As illustrated in Figure 2.6, the magnitude of the PER−V aR1%

is smaller to the call option contract buyers than to the sellers. Furthermore,
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with the ability to visualise the entire distribution of potential loss caused

by parameter estimation risk, market participants can easily assess the en-

tire tail distribution beyond PER − V aRη. In our example, a fatter tail is

found in the parameter estimation risk exposure of short position holders,

indicating that the potential loss which may be encountered by the sellers

in extreme cases could be more tremendous. This is not a surprise as long

position holders of European call options do not face downside variation in

their final payoff.

Finally, it is worth highlighting that, in this one particular example, the

PER−V aR1% accounts for 48.86% and 26.85% of the trading price for option

writers and buyers respectively. Therefore, parameter estimation risk can be

substantial to all market participants. Neglecting parameter estimation risk

when using either model in option pricing may place a blind spot in risk

management analysis and result in great losses.

2.6.6 Greeks

Parameter estimation risk can also bring significant impact to option hedging

activities. Following a similar approach as formula (2.3), the Greeks under

the MJD model can be derived as the weighted average of the BS Greeks by

the probability that i jumps would occur before the maturity date (Merton,

1976).
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DeltaMerton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
DeltaBS(Si, σi, δ, T − t, r,K)

GammaMerton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
GammaBS(Si, σi, δ, T − t, r,K)

ThetaMerton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
ThetaBS(Si, σi, δ, T − t, r,K)

RhoMerton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
RhoBS(Si, σi, δ, T − t, r,K)

V egaMerton
t =

∞∑
i=0

e−λ(T−t)[λ(T − t)]i

i!
V egaBS(Si, σi, δ, T − t, r,K)

Si ≡ Stexp

ia+
iζ2

2
− λ(e

a+
ζ2

2 − 1)(T − t)

 , σi ≡

√
σ2 +

iζ2

T − t

(2.9)

Given the estimated p(Θ | Dt−1), the posterior distributions of Greeks can

be easily obtained following the simulation techniques described in Section

2.4. Examples of Greeks’ density plots of a S&P 500 European OTM call

option are presented in Figure 2.7. Density plots and the ability of assessing

the quantile values of Greeks provide very rich information to practition-

ers in hedging activities. While the posterior mean value of Delta could be

adopted, practitioners shall also be aware that they are subject to parameter

estimation risk when setting up their hedging strategy. The Bayesian poste-

rior distribution of Delta depicts such risk exposure in detail. In our example

a fatter right tail is observed showing a higher probability of realising higher

Delta value. In the case when extra caution is needed towards the trading of

this option, short position holders may hedge at the 75% or even the 97.5%
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upper quantile value of Delta to implement super hedging according to their

capital availability. Similar discussions also apply to other Greeks hedging

activities.

[Figure 2.7 about here.]

[Figure 2.8 about here.]

For risk management purposes, one can track the evolutions of the pos-

terior means of Greeks as well as the upper and lower quantiles as illustrated

in Figure 2.8. The potential risk or hedging errors generated by parameter

estimation risk can be easily gauged with our approach. The 95% credibility

interval widths are relatively stable for Delta and Rho throughout the test

period. However, the Gamma, Theta and Vega plots all exhibit an increased

uncertainty at the second estimation point. Moreover, the 95% credibility

interval of Gamma is widened towards the end of the test period, while the

distribution of Vega gradually become negative skewed. If only mean estima-

tion value is considered under traditional estimation practices, traders might

lose sight on such potential uncertainty and underestimate the movement of

the Greeks.

2.7 Credit Risk Management with Parame-

ter Estimation Risk

When using a model for risk management, adopting point estimation of pa-

rameters could result in under-estimation or over-estimation of risk. Lönnbark

(2013) remarks that biases caused by parameter estimation risk could affect

backtesting results of the model, and consequently affect regulation compli-

ance. The Bayesian approach provides a direct way to deal with this issue.

The probability of default (PD), the main concept in credit risk, can be
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reported with its full posterior distribution. We will demonstrate how to

achieve this for the Merton’s Credit Risk model.

In the Merton’s Credit Risk model, the firm value Ft follows a Geometric

Brownian Motion. If L is the notional of debt at maturity, the probability

of default is given by Φ(−d2)

d2 =
ln(Ft/L) + (r − σ2

f/2)(T − t)
σf
√
T − t

(2.10)

where r is the risk free rate and σf is the volatility of the firm value. While

equity value is a function of the asset value, the equity volatility σe can be

derived from the asset volatility σf using Itô’s lemma. Consequently, Ft and

σf can be calculated given the equity value and volatility; see Hull et al.

(2004) and Merton (1974) for more details.

σe =
σfΦ(d1)

Φ(d1)− AtΦ(d2)

At =
Le−r(T−t)

Ft

(2.11)

In the following example, the PD of Apple Inc. on 21/08/2014 is com-

puted following the Bayesian approach. The equity value of Apple Inc. on

the date is reported at $589.40 billions. The parameters of the Merton’s

Credit Risk model are estimated using daily log-return data of Apple Inc.

from 21/08/2012 to 21/08/2014. Figure 2.9 shows the PD of Apple Inc.

for a time horizon of 5 years with L = $100, $200, $300 or $400 billions

respectively. The density plots show that parameter estimation risk is well

captured and incorporated into the computation of the PDs. The impact

of parameter estimation risk becomes more critical when the company has

its debt principal repayment equals to $300 or $400 billions. The PD of the

company could vary from 0.25% to 1.5% when L = $300 billions, and from

0.5% to 2.3% when L = $400 billions. When practitioners only adopt point
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estimation values of the PDs (e.g. posterior means), they fail to gauge the un-

certainty of PD values. This can result in biases and errors in counterparty

credit risk calculations, regulatory capital computations, risk management

and investment decision making towards the company.

[Figure 2.9 about here.]

2.8 Conclusion

In this paper, we demonstrate how parameter estimation risk can be incor-

porated into option pricing and credit risk models via the application of

Bayesian econometrics using MCMC techniques. The option pricing per-

formance of the MJD and BS models are also investigated carefully when

parameters are estimated or calibrated.

Parameter estimation risk is non-trivial, and adopting point estimations

in both asset pricing and risk management can result in a narrow view about

the underlying issue with a huge amount of information being neglected.

It also prevents practitioners to receive early signal of market variation as

reflected in the parameter uncertainty. As a result, actions towards trading,

hedging, regulatory requirement and risk management can be delayed, which

may trigger the loss one may suffer in a later stage.

Regarding the European option pricing performance of the MJD and BS

models, it is found that the MJD model with posterior parameter values

implied from market option prices outperforms the BS model in all perfor-

mance measures, especially for longer term options. Nevertheless, the MJD

model does generate more parameter estimation risk due to the increase in

the number of parameters. This is reflected in the widened intervals of the

MJD model price distributions compared with the BS model.

On the other hand, even when accounting for parameter estimation risk,

neither of the models is able to provide full coverage of realised future market

values. Such deviation could stem from model misspecification, or in other
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words, model structure risk. Furthermore, our Bayesian MCMC approach

allows us to easily calculate Tunaru’s measure of parameter estimation risk

for European option pricing. Sellers of options have more exposure to this

type of risk than buyers. In addition, we highlight the potential biases when

ignoring parameter estimation risk in the calculation of default probabilities

under the Merton’s Credit Risk model.
text
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Figure 2.1: MCMC Historical Simulation Trace Plot - Example of Good
Convergence

Figure 2.2: Example of Gelman-Rubin ratio diagram
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Figure 2.3: MCMC Historical Simulation Trace Plot - Example of high level
of autocorrelation

(a) 10000 iterations

(b) 40000 iterations with “thin 10”
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Figure 2.4: QQ-plots of the Standardised Pearson Residuals of the Black-
Scholes and Merton’s Jump-Diffusion Models
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Note: the Standardised Pearson residuals are calculated based on the estimated
parameter posterior means of both the BS and MJD models. Parameter estimation data:
S&P 500 index daily log-return data 31/07/2012 - 31/07/2014.
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Figure 2.5: Posterior Density Plots of a European Call Option under the
Black-Scholes and Merton’s Jump-Diffusion Models
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Note: the figure shows posterior density plots of an OTM S&P 500 index European call
option contract on 01/08/2014 with strike price $2000 and time-to-maturity 141 days.
Parameter estimation data: S&P 500 index daily log-return data
31/07/2012-31/07/2014.
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Figure 2.6: An Example of PER-VaR of Parameter Estimation Risk Exposure
under the Merton’s Jump-Diffusion Option Pricing Model
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Note: the figure shows 1% PER-VaR values for the parameter estimation risk exposure
of both the short and long positions of a European Call option of the S&P 500 index
under the MJD option pricing model, assuming that the mean of the posterior option
price $27.67 is set as the trading price. The call option is an OTM option on 01/08/2014
with strike price 2000 and time-to-maturity 141 days. Parameter estimation data: S&P
500 index daily log-return data 31/07/2012 - 31/07/2014.
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Figure 2.7: Posterior Distributions of Greeks of a European Call Option
under the Merton’s Jump-Diffusion Model
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Note: the figure shows the posterior distributions of Delta, Gamma, Theta, Rho and
Vega of a European Call option of the S&P 500 index given the estimated posterior
distributions of parameters under the MJD model . The call option is an OTM option on
01/08/2014 with strike price 2000 and time-to-maturity 141 days. Parameter estimation
data: S&P 500 index daily log-return data 31/07/2012 - 31/07/2014.
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Figure 2.8: Movements of a European Call Option Greeks under the Merton’s
Jump-Diffusion Model during August 2014
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Note: the figure shows the movements of posterior means, 95% credibility intervals of
Delta, Gamma, Theta, Rho and Vega of a European Call option of the S&P 500 index
given the estimated posterior distributions of parameters under the MJD model. The
call option with strike price 2000 and maturity date 20/12/2014 is an OTM option on
01/08/2014, but becomes an ATM option on 19/08/2014 due to the increase in security
spot price and remains ATM till the end of the test period. Parameter estimation data:
S&P 500 index daily log-return data 31/07/2012 - 29/08/2014.
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Figure 2.9: Probability of Default Posterior Distributions of Apple Inc.

#10-4
-5 0 5 10 15

0

1000

2000

3000
L = $100 billions

#10-3
0 2 4 6 8

0

100

200

300

400

500
L = $200 billions

0 0.005 0.01 0.015 0.02
0

50

100

150

200

250
L = $300 billions

0 0.01 0.02 0.03
0

50

100

150
L = $400 billions

Note: the figure shows the posterior distributions of default probabilities for Apple Inc.
given different notional values of debt L on 21/08/2014. The equity value of Apple Inc.
on the date is $589.40 billions. Debt is assumed to have a time-to-maturity of 5 years.
Parameter estimation data: Apple Inc. daily log-return data 21/08/2012 - 21/08/2014.
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Table 2.1: Statistical Results of the Posterior Predictive Distribution of Div-
idend Yield

in %

δ̂

2.0490
(0.0954)

[1.8650 - 2.2410]

Note: statistics shown above are posterior predictive mean of dividend yield with the
standard deviation in ( ) and 95% credibility interval in [ ]. Parameter estimation data:
S&P 500 index daily annualised dividend yield data 31/07/2012 - 31/07/2014
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Table 2.2: Parameter Estimation Results of the Black-Scholes and Merton’s
Jump-Diffusion Models

Parameters Models
BS MJD

µ
′

(in %)

17.2872 16.9495
(7.9128) (9.2207)

[1.7892-32.9112] [-1.3159-34.8516]

σ
(in %)

11.1300 10.0500
(0.3533) (0.4406)

[10.4700-11.8500] [9.2510-10.9300]

λ
- 8.3790
- (3.6263)
- [2.4792-16.5514]

a
(in %)

- -0.8350
- (0.9035)
- [-2.8170-0.7450]

ζ
(in %)

- 2.7160
- (0.4009)
- [2.0450-3.5930]

Note: statistics shown above are posterior mean results of parameters with the standard
deviation in ( ) and 95% confidence interval in [ ]. Statistics of µ′, σ and λ are
annualised results. µ′ = µ− δ. Parameter estimation data: S&P 500 index daily
log-return data 31/07/2012 - 31/07/2014.

Table 2.3: DIC Results for the Black-Scholes and Merton’s Jump-Diffusion
Models

DIC
BS -3563

MJD -3580
Difference 17

Note: Difference is calculated as DICBS −DICMJD. DICs are computed based on the
models’ fitting results of the S&P 500 index daily log-return data 31/07/2012 -
31/07/2014.
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Table 2.4: Bayesian P-values of the Black-Scholes and Merton’s Jump-
Diffusion Models

Sample BS MJD
Test Statistics T (D) T (Drep

BS) p-value T (Drep
MJD) p-value

Mean
0.1663 0.1648 0.4585 0.1628 0.4618

- (0.1119) - (0.1320) -

Variance
0.0123 0.0124 0.6019 0.0170 0.9267

- (0.0011) - (0.0043) -

Skewness
-0.3824 0.0005 1.0000 -0.8165 0.3936

- (0.1077) - (1.4121) -

Kurtosis
1.4176 -0.02411 0.0000 11.7800 0.9330

- (0.2145) - (9.1570) -

Note: Bayesian p-values account for Pr(T (Drep) > T (D)). T (D): test statistics of the
observed S&P 500 index daily log-return data; T (Drep): test statistics of replicated data
simulated using the posterior results of parameters, standard deviation is reported in ().
Parameter estimation data: S&P 500 index daily log-return data 31/07/2012 -
31/07/2014.
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Table 2.5: Out-of-sample S&P 500 Index European Option Pricing Coverage
Performance of the Black-Scholes and Merton’s Jump-Diffusion Models

Call Option Put Option
Mid-quote
Coverage
Difference

Bid/Ask-quote
Coverage
Difference

Mid-quote
Coverage
Difference

Bid/Ask-quote
Coverage
Difference

All Options 5.63% 7.91% 13.72% 16.27%

ITM -1.33% 0.49% 13.72% 11.16%
ATM 5.28% 7.13% -2.07% 0.23%
OTM 26.00% 29.83% 22.33% 21.89%

<60 days 2.70% 5.77% 13.07% 14.79%
60 - 180 days 8.87% 10.32% 12.85% 16.92%
> 180 days 14.6% 13.87% 28.47% 28.47%

Note: out-of-sample option pricing period: 01/08/2014 - 31/08/2014; rolling window
estimation method with S&P 500 index daily log-return data 31/07/2012 - 29/08/2014;
estimation window rolls one day ahead after each estimation. Estimated posterior
parameter results are used to price options one day ahead. Mid-quote Coverage and
Bid/Ask-quote Coverage account for the % of realised market option prices covered by
the 95% credibility intervals of posterior model price distributions. The table reports the
differences of coverage rates between the MJD and the BS model (i.e. MJD coverage rate
- BS coverage rate).
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Table 2.6: Out-of-sample S&P 500 Index European Call Option Pricing Error
Performance of the Black-Scholes and Merton’s Jump-Diffusion Models

Panel A. BS - S&P 500 Index European Call Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -5.32 6.68 9.76 -4.45 5.25 8.29

ITM -7.82 7.95 11.21 -6.57 6.66 9.74
ATM -2.81 5.19 7.38 -2.04 3.31 5.59
OTM 0.13 4.04 5.98 0.02 2.52 4.42

<60 days -1.85 3.66 4.49 -1.61 2.76 3.66
60-180 days -7.92 8.77 10.61 -6.47 6.85 8.88
>180 days -25.60 25.72 29.14 -21.89 21.91 25.40

Panel B. MJD - S&P 500 Index European Call Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -26.82 27.82 37.60 -22.64 23.06 33.70

ITM -39.46 39.99 46.73 -34.27 34.68 42.20
ATM -11.08 11.65 14.15 -6.25 6.46 9.19
OTM -1.26 3.94 5.75 -0.47 1.02 2.33

<60 days -25.83 27.12 37.55 -23.26 23.92 34.91
60-180 days -27.80 28.46 37.46 -22.16 22.26 32.40
>180 days -30.62 30.99 39.17 -19.19 19.20 29.09

Note: out-of-sample option pricing period: 01/08/2014 - 31/08/2014; rolling window
estimation method with S&P 500 index daily log-return data 31/07/2012 - 29/08/2014;
estimation window rolls one day ahead after each estimation. Estimated posterior
parameter results are used to price options one day ahead. PE (Pricing Error): the
average of (posterior mean price - market mid-quote); APE: Absolute Pricing Error;
RMSPE: Root-mean-square Pricing Error; OPE (Outside Pricing Error): the average of
differences between the posterior 2.5% or 97.5% credibility interval bound values and
market prices (mid-quote) when the market prices are not covered by the 95% intervals
of model prices; AOPE: Absolute Outside Pricing Error; RMSOPE: Root-mean-square
Outside Pricing Error.
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Table 2.7: Out-of-sample S&P 500 Index European Put Option Pricing Error
Performance of the Black-Scholes and Merton’s Jump-Diffusion Models

Panel A. BS - S&P 500 Index European Put Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -4.21 6.16 8.89 -3.61 4.86 7.58

ITM 1.12 4.98 6.38 0.92 3.28 4.64
ATM -1.86 5.51 7.20 -1.56 3.62 5.40
OTM -6.63 6.72 9.95 -5.68 5.71 8.76

<60 days -1.43 3.69 4.65 -1.31 2.87 3.85
60-180 days -6.13 7.72 9.46 -5.13 6.01 7.97
>180 days -21.85 22.88 26.03 -18.80 19.20 22.70

Panel B. MJD - S&P 500 Index European Put Option
PE APE RMSPE OPE AOPE RMSOPE

All Options 14.39 18.82 23.13 13.62 15.30 21.19

ITM 29.46 32.07 42.90 28.35 28.92 40.92
ATM 27.48 30.75 38.31 26.05 26.70 35.53
OTM 6.02 11.36 16.88 5.53 7.84 13.67

<60 days 15.62 18.13 28.59 14.75 15.79 27.08
60-180 days 14.32 19.41 27.92 13.11 14.84 24.68
>180 days 0.31 22.25 28.85 4.33 13.14 22.52

Note: out-of-sample option pricing period: 01/08/2014 - 31/08/2014; rolling window
estimation method with S&P 500 index daily log-return data 31/07/2012 - 31/07/2014;
estimation window rolls one day ahead after each estimation. Estimated posterior
parameter results are used to price options one day ahead. PE (Pricing Error): the
average of (posterior mean price - market mid-quote); APE: Absolute Pricing Error;
RMSPE: Root-mean-square Pricing Error; OPE (Outside Pricing Error): the average of
differences between the posterior 2.5% or 97.5% credibility interval bound values and
market prices (mid-quote) when the market prices are not covered by the 95% intervals
of model prices; AOPE: Absolute Outside Pricing Error; RMSOPE: Root-mean-square
Outside Pricing Error.
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Table 2.8: Implied Parameters - Out-of-sample S&P 500 Index European
Option Pricing Coverage Performance Difference of the Black-Scholes and
Merton’s Jump-Diffusion Models

Call Option Put Option
Mid-quote
Coverage
Difference

Bid/Ask-quote
Coverage
Difference

Mid-quote
Coverage
Difference

Bid/Ask-quote
Coverage
Difference

All Options 14.98% 10.38% 10.38% 8.05%

ITM 27.42% 18.24% -8.29% -9.09%
ATM 0.46% 3.22% 21.61% 17.01%
OTM -10.85% -7.34% 14.15% 11.83%

<60 days 12.09% 6.45% 9.09% 7.06%
60 - 180 days 18.10% 15.38% 10.59% 8.05%
> 180 days 24.09% 16.79% 24.09% 19.71%

Note: out-of-sample test period: 01/08/2014 - 31/08/2014; Option market price
(mid-quote) data: S&P 500 index European call and put options 01/08/2014 -
31/08/2014. Parameters are calibrated using the option data with same maturity date;
calibrated posterior parameter results are used to price options with the same maturity
date one day ahead. Mid-quote Coverage and Bid/Ask-quote Coverage account for the %
of realised market option prices covered by the 95% credibility intervals of posterior
model price distributions. The table reports the differences of coverage rates between the
MJD and the BS model (i.e. MJD coverage rate - BS coverage rate).
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Table 2.9: Implied Parameters - Out-of-sample S&P 500 Index European
Call Option Pricing Error Performance of the Black-Scholes and Merton’s
Jump-Diffusion Models

Panel A. BS - S&P 500 Index European Call Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -4.80 6.21 9.05 -3.42 4.28 6.80

ITM -7.48 7.58 10.55 -5.38 5.41 8.02
ATM -2.12 3.93 6.03 -1.32 2.29 4.23
OTM 1.08 3.84 5.32 0.79 2.38 3.68

<60 days -1.76 3.46 4.16 -1.22 2.33 3.16
60-180 days -6.97 8.11 9.79 -4.94 5.54 7.32
>180 days -23.45 23.71 27.17 -17.28 17.34 20.44

Panel B. MJD - S&P 500 Index European Call Option
PE APE RMSPE OPE AOPE RMSOPE

All Options 0.38 4.68 5.91 0.56 2.28 3.46

ITM -2.70 4.07 5.38 -1.10 1.62 2.76
ATM 4.55 4.77 5.77 2.49 2.50 3.67
OTM 6.37 6.38 7.30 4.00 4.00 4.84

<60 days 1.23 3.43 4.34 1.07 1.91 2.94
60-180 days -0.61 5.89 6.87 -0.04 2.59 3.74
>180 days -1.88 9.80 11.30 -0.77 4.05 5.89

Note: out-of-sample test period: 01/08/2014 - 31/08/2014; Option market price
(mid-quote) data: S&P 500 index European call options 01/08/2014 - 31/08/2014.
Parameters are calibrated using the option data with same maturity date; calibrated
posterior parameter results are used to price options with the same maturity date one
day ahead. PE (Pricing Error): the average of (posterior mean price - market
mid-quote); APE: Absolute Pricing Error; RMSPE: Root-mean-square Pricing Error;
OPE (Outside Pricing Error): the average of differences between the posterior 2.5% or
97.5% credibility interval bound values and market prices (mid-quote) when the market
prices are not covered by the 95% intervals of model prices; AOPE: Absolute Outside
Pricing Error; RMSOPE: Root-mean-square Outside Pricing Error.
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Table 2.10: Implied Parameters - Out-of-sample S&P 500 Index European
Put Option Pricing Error Performance of the Black-Scholes and Merton’s
Jump-Diffusion Models

Panel A. BS - S&P 500 Index European Put Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -4.03 5.76 8.36 -3.44 4.43 6.93

ITM 1.62 4.51 5.76 1.14 2.43 3.55
ATM -1.74 4.29 6.08 -1.19 2.53 4.15
OTM -6.53 6.55 9.51 -5.57 5.58 8.23

<60 days -1.56 3.34 4.09 -1.45 2.63 3.41
60-180 days -5.62 7.35 8.96 -4.75 5.57 7.41
>180 days -20.52 21.76 24.85 -16.60 16.64 20.62

Panel B. MJD - S&P 500 Index European Put Option
PE APE RMSPE OPE AOPE RMSOPE

All Options -1.05 3.98 5.18 -0.88 2.24 3.29

ITM 4.82 5.22 6.34 2.58 2.64 3.53
ATM 1.56 2.68 3.23 0.50 0.85 1.44
OTM -3.72 3.87 5.11 -2.41 2.43 3.52

<60 days -0.60 2.50 3.03 -0.46 1.57 2.11
60-180 days -1.59 5.47 6.37 -1.37 3.00 4.10
>180 days -2.11 9.61 11.23 -1.95 4.00 6.17

Note: out-of-sample test period: 01/08/2014 - 31/08/2014; Option market price
(mid-quote) data: S&P 500 index European put options 01/08/2014 - 31/08/2014.
Parameters are calibrated using the option data with same maturity date; calibrated
posterior parameter results are used to price options with the same maturity date one
day ahead. PE (Pricing Error): the average of (posterior mean price - market
mid-quote); APE: Absolute Pricing Error; RMSPE: Root-mean-square Pricing Error;
OPE (Outside Pricing Error): the average of differences between the posterior 2.5% or
97.5% credibility interval bound values and market prices (mid-quote) when the market
prices are not covered by the 95% intervals of model prices; AOPE: Absolute Outside
Pricing Error; RMSOPE: Root-mean-square Outside Pricing Error.
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Chapter 3

The Volatility and Skewness

Crystal Ball: Estimation Risk

and Structural Change around

Crises

3.1 Introduction

Do equity markets signal forthcoming financial crises? If yes, what piece of

information does provide that signal? The moments of the distribution of

security returns contain rich information of market dynamics. Nevertheless,

does estimation risk of the moments also play a role in signalling market

turbulence? The normal or Gaussian distribution assumption is rejected by

many studies (Arditti, 1967; Merton, 1976; Jorion, 1988; Hsieh, 1989; Drost,

Nijman and Werker, 1998; Das and Sundaram, 1999; Backus, Foresi and

Wu, 2004, for example). But is this finding consistently true throughout

time, or does the evolution of return distribution involve structural changes

indicating a model selection issue? Furthermore, how does the evolution

of return distribution reflects different market dynamics and interact with
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investor sentiment, especially around a stress episode?

Many studies investigated the causation of crises through the analysis of

pre-crisis events and factors that trigger the event (Lybeck, 2011; Acharya

and Viswanathan, 2011; Baig and Goldfajn, 1999; Mun and Brooks, 2012;

Schwert, 2011). Others identify general variables which have predictive or

indicative power towards the events through quantitative models (Adrian

and Brunnermeier, 2011; Kim et al., 2004; Oh et al., 2006; Rose and Spiegel,

2012). Popular crisis theories, including the argument of endogenous risk

(Danielsson and Shin, 2003) and the Minsky theory (Minsky, 1982, 1992;

Minsky and Kaufman, 2008), point out that some crises may occur for reasons

external to financial markets while others may be constructed from within.

In this chapter we employ Merton’s jump-diffusion model to analyse the

evolution of the S&P 500 index returns volatility and skewness between 1980

and 2015, accounting for parameter estimation risk. Markov chain Monte

Carlo (MCMC) methods are used for inferential purposes. We compare and

contrast the market dynamics among the significant financial crises during

our study period: the Black Monday Crash in 1987, the “dot-com” crisis in

early 2000s and the global financial crisis in 2008.

Volatility is a major driver in gauging and explaining market performance

around a distress episode (Schwert, 1990, 2011; Mun and Brooks, 2012; In

et al., 2001, for example). Through volatility changes, Schwert (1990) con-

cludes that the 1987 market crash exhibits different features compared to

all previous crises, and Schwert (2011) shows that the 2008 crisis is different

from the 1929 Great Depression. Jones (2003), through the constant elastic-

ity of variance (CEV) model, shows that volatility of volatility (vol of vol)

becomes higher when stock volatility increases while Corsi et al. (2008) find

the vol of vol to evolve countercyclically. Danielsson et al. (2010), however,

indicate that vol of vol tends to lead stock volatility. In other words, the vol

of vol starts to increase before the surge of stock volatility, and it decreases

when the stock volatility reaches its maximum level. In the recent finance
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literature, volatility is considered to be stochastic in the sense of evolving

with a pre-specified stochastic process, for example Heston (1993). In this

study we prefer to consider a more flexible route and consider volatility to

be a random variable with a drawn from a probability distribution that is

changing with the ebbs and flows of equity returns. Similar research in this

direction is rather sparse. While in most literature vol of vol is estimated us-

ing a stochastic volatility model, under the Bayesian framework applied here

it is estimated as the standard deviation of the posterior distribution of stock

volatility. Evolution of skewness is also investigated carefully alongside with

volatility. Estimation risk of skewness is captured by the same technique

under the Bayesian estimation framework.

While the causes of the ‘dot-com’ crisis and the 2008 Global Financial

Crisis are widely accepted, the financial cause of the 1987 ‘Black Monday’

crash is not of the same type, at least, with possible explanations being pro-

posed such as the implementation of portfolio insurance and dynamic hedging

techniques; the US trade deficit and the announcement of the intention of

de-valuing the US dollar by the Treasury Secretary during the weekend (Bern-

hardt and Eckblad, 1987); and the “triple witching” event, which describes

a circumstance when the expiration dates of monthly options and futures

coincides. Through the analysis we reflect on two important financial crisis

theories: endogenous risk theory (Danielsson and Shin, 2003) and Minsky’s

theory (Minsky, 1992).

The concept of “endogenous risk” (Danielsson and Shin, 2003) states that

the movement of asset prices has two components:“a portion due to the incor-

poration of initial exogenous shock, the second part due to a feedback effect

from the market participants after the initial shock.” The endogenous risk is

the second component. Danielsson and Shin (2003) define endogenous risk

as the risk from shocks that are generated and amplified within the system.

They claim that the 1987 market crash is a classic example of endogenous

risk, but the source of the initial shock remains unclear.
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The economic theory of Minsky and his Financial Instability Hypoth-

esis1 has been ignored for decades, but returned to the stage and became

popular recently after the 2008 global financial crisis (Wray, 2015). While

not all crises episodes are associated with lending, the idea of “stability is

destabilising” advocated by Minsky should not be limited to the 2008 global

financial crisis. Low volatility and steady growth change market participants’

behaviour and encourage risk taking, which could later become the causa-

tion of crises (Wray, 2015; Wolfson, 2002; Minsky, 1977, 1992; Minsky and

Kaufman, 2008). Consistent with Minsky’s idea, many studies found that

lags of low volatility have predictive power towards both crises and asset

bubbles (Liechty, 2013; Adrian and Brunnermeier, 2011; Riedle, 2016), or

systemic risk is built during a “great moderation” before a crisis (Acharya

and Viswanathan, 2011; Porras, 2016; Keen, 2013; Lybeck, 2011).

We identify a period before the 2008 Global Financial Crisis when the

equity market in the U.S. exhibits normal returns, in contrast to general

knowledge about stylized features of equity returns in the U.S.. Market

conditions during this period of normal equity returns are investigated care-

fully and we found that this special period is associated with low volatility

and steady returns. Minsky (1992) states that “over periods of prolonged

prosperity, the economy transits from financial relations that make for a sta-

ble system to financial relations that make for an instable system”(p. 7-8).

From this end, we test whether the gaussian or calm market periods may be

indicative of imminent crises, and hence whether the Minsky’s theory is sup-

ported. Moreover, we conjecture that the normality could also interact with

1The Financial Instability Hypothesis focuses on lending behaviour, and summarises 3
different phases of lending (Wray, 2015; Bernstein and Fridson, 2016; Minsky, 1992): the
Hedge, the Speculative and the Ponzi phases. In the hedge stage, prudent loan is issued
with both interest and principle healthily repayable. In the speculative stage, borrowers
would be able to repay only the interest of their loan. This stage is associated with rising
asset prices. The final stage is the Ponzi stage, in which loans are given out even though
borrowers can neither pay the interest nor the principle, under the belief that asset prices
will continue to rise. It is not difficult to relate the Ponzi stage to the period of late 2006
and early 2007, when sub-prime mortgages increased rapidly in the US market.
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investor sentiment to affect subsequent market performance or to construct

an instable financial system.

Investor sentiment is generally found to have intermediate to long horizon

predictive power on future stock returns (Brown and Cliff, 2005; Lemmon and

Portniaguina, 2006; Baker and Wurgler, 2007; Schmeling, 2009; Hengelbrock

et al., 2013). While both positive and negative impacts are evidenced in dif-

ferent markets during different periods with different sentiment proxies, the

average effect found in the U.S. market is negative. Moreover, either the sen-

timent is related to a missing fundamental pricing factor or it is related to ir-

rational trading behaviour (Baker and Wurgler, 2007; Brown and Cliff, 2005).

Hengelbrock et al. (2013) rule out the rational explanation of sentiment ef-

fects in the U.S. and German markets, and concluded that the intermediate

and long horizon predictability is most likely stemming from under-reaction

and mis-pricing. We are interested first to see whether macroeconomic vari-

ables have any explanatory power with future returns and what is the role

played by market sentiment.2 Then, for the first time in the literature, we

show that the investor sentiment variables interact with the type of period

as defined by the normality of the distribution of returns. This novel find-

ing may also indicate a mechanism for bubble formation in equity markets.

When the distribution of returns switches from non-gaussian to gaussian,

rising levels of investor sentiment may lead to overvaluation and cumulative

unidirectional equity price pressure that generates bubbles.

The remainder of the chapter is structured as follows. In Section 3.2 we

revise the Merton’s jump-diffusion model and describe the Bayesian set-up

for our analysis. In addition, the estimation results of parameters of the MJD

model are also reported. Section 3.3 contains the analysis of market dynam-

ics revealed by volatility and its Bayesian measure of estimation risk while

2Baker and Wurgler (2007) advocate that the low return following a period of high
sentiment level could be a correction of the overvaluation in the earlier period. Scheinkman
and Xiong (2003); Meier (2015) suggest that overconfident investors play an important role
in cumulating speculative bubbles, which latter on could lead to market crashes.
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Section 3.4 presents the analysis of market dynamics revealed by skewness

and its associated estimation risk. In Section 3.5 we report the investigation

of the ‘market returns to normal’ impact. Section 3.6 concludes.

3.2 General Setup and Assumptions

Equity markets are characterised by significant time variation in volatility

coupled with sudden jumps (see Andersen et al., 2015). Jump-diffusion mod-

els have been introduced as a feasible solution to the fat tails feature of em-

pirical asset returns. Bakshi et al. (1997) analyse the importance of adding a

price-jump component for hedging S&P 500 options and their evidence sug-

gests that including jumps will not enhance hedging performance. However,

more recently Kaeck (2013) finds that even misspecified jump-diffusion mod-

els can be very useful in improving hedging performance and risk assessment

and provides ample support for the inclusion of jumps in the data generating

process of the underlying process. Broadie et al. (2007) recommends that

structural parameters of jump-diffusion models to be consistent with the dy-

namics of the underlying process in order to obtain robust empirical results

Furthermore, they find strong evidence for jumps in prices.

3.2.1 Merton’s Jump-Diffusion Model

Recall equation (2.1), the MJD model is described by the stochastic differ-

ential equation:

dSt = (µ− δ − λϕ)Stdt+ σStdWt + (µJt − 1)StdIt (3.1)

where µ is the expected rate of return; δ is the dividend yield, σ is the

volatility of stock return; {Wt}t≥0 is a standard Wiener Process; λ is the

intensity of jump events per unit time interval; {It}t≥0 is a Poisson process

with intensity λ; µJt is the jump size of stock price; and ϕ = E[µJt − 1].
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As described in Chapter 2 Section 2.3 equation (2.2), under the assump-

tion that ln(µJt ) is normally distributed ln(µJt ) ∼ N(a, ζ2), the probability

distribution of log stock return Rt+∆ = ln
(
St+∆

St

)
is the weighted average of

normal distributions by the probability that i jumps would occur. Similar to

Chapter 2, we follow Ball and Torous (1985)3 which approximated the MJD

model with the Bernoulli-Jump Diffusion model, using the assumption that

only one jump is allowed to happen per unit time interval. This assump-

tion is realistic when the time interval is short (i.e. daily as in this study).

The parameters are estimated following the likelihood function presented in

Section 2.6.2 equation (2.5)

Under our Bayesian setup, the total stock volatility and skewness are de-

terministic functions of the parameters and with MCMC it becomes straight-

forward to collect inference on these quantities. Navas (2003) derives the

correct formula of the MJD total volatility as 4:

σMerton =
√

(σ2 + λ(a2 + ζ2))∆t (3.2)

The MJD skewness formula is derived by Matsuda (2004) as

SkewnessMerton =
λ∆t(3ζ2a+ a3)

((σ2 + λζ2 + λa2)∆t)3/2
(3.3)

3.2.2 Estimation of Stock Volatility and Skewness with

Parameter Estimation Risk

We estimate parameters from the time series of daily S&P 500 index returns

under the risk neutral measure using an MCMC approach. Since computa-

tionally the total stock volatility and skewness can be seen as statistics over

the sample space of returns and parameters Θ = {µ′, σ, λ, a, ζ} (µ′ = µ− δ),
3Another widely used proxy is the M-Jump Diffusion model described in (Kostrzewski,

2014; Burger and Kliaris, 2013).This model refers to a specification of a cutting point M,
so that the model takes into account a maximum of M jumps.

4∆t is the time interval; in this study, ∆t = 1 for daily time intervals
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the ergodic results underpinning the MCMC inference provide a direct mech-

anism to extract the posterior distributions of these variables p(σMerton | Θ)

and p(SkewnessMerton | Θ). Initial settings of parameter prior distributions

of parameters are identical to Chapter 2 Section 2.6.2 following Jacquier and

Polson (2010) and Eraker et al. (2003). More details of MCMC algorithm

are introduced in Chapter 2 Section 2.5.

Parameters are estimated based on the historical daily log-return data

of the S&P 500 index between 01/01/1980 and 30/12/2015. The estimation

window contains two years of data, and the window moves each week (five

data points), resulting in 1,715 estimation points throughout the sample

period. After each estimation, prior distributions are updated according to

posterior results to ensure more informative for the next estimation window.

Figure 3.1 plots the posterior mean, median and 95% credibility interval of

the 5 paramters. Estimated trends of µ′ (µ′ = µ− δ), σ and ζ tend to follow

the historical events: stock return decreases during distress periods, while

volatilities of both the diffusion component and jump component increase.

Paramter estimation risk also increases during the crisis periods as indicated

by the 95% credibility interval of the three parameters. Jump intensity λ

was around or below 20 in most of the time prior to the 2008 global financial

crisis. It increased significantly during the 2008 crisis and restored slowly

after the crisis. Jump size a, on the other hand, is more stable during the

entire sample period except a very significant drop at the ‘Black Monday’

event. Noticeable noises of the estimated results of a are shown during the

estimation windows ending around 2005-2006. This is due to a structural

change in underlying sample data: the return data has returned to normal

distribution. We will discuss this issue and the correction in more detail

in the later sections (statistics in Table 3.1 excludes these periods to avoid

misleading bias).

[Figure 3.1 about here.]
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Table 3.1 reports the main statistics5 of the posterior means of the five

parameters. Our results indicate that throughout the periods, the average

of estimated mean returns of the S&P 500 index is 9.79% (daily value 0.04%

with s.d. 0.04%, min −0.12% and max 0.14%), with a minimum value of

−31.05% resulted from the estimation window of 02/03/2007 - 03/03/2009

covering the 2008 crisis, and a maximum value of 34.28% resulting from

the estimation window of 04/03/2009 - 03/03/2011 which is a period in the

aftermath of the 2008 crisis! The stock volatility σ yields an average value of

13.44% (daily value 0.85% with s.d. 0.25%, min 0.43% and max 1.52%), with

the maximum value resulting from the estimation window of 25/07/2007 -

24/07/2009, and the minimum value coming out the window of 20/10/1993 -

18/10/1995. Jump intensity λ averages at 22.67 jumps per year (daily value

0.09 with s.d. 0.06, min 0.006 and max 0.32)6. The highest jump intensity

is found again in the estimation window of 21/09/2006 - 23/09/2008 which

covers the beginning of the 2008 crisis. The jump size a is negative on

average, indicating that most of the time jumps are downward7, the largest

negative size posterior mean estimate of −22.28% is found from the first

estimation window that covers the 1987 crash event 24/10/1985 - 22/10/1987.

The estimation window which gives the largest jump size volatility ζ is also

associated with the 1987 crash event 11/11/1986 - 08/11/1988.

[Table 3.1 about here.]

5Other relevant statistics of pathwise fitted values are not reported due to limited space,
but available upon request.

6Johannes and Polson (2010) applies the Bayesian method, and found 20.13 jumps per
year in S&P 500 during 1986-2000; Honore (1998) estimates the Bernoulli-Jump Diffusion
model and found an average of 40 jumps in S&P 500 during 1973-1997; Eraker et al.
(2003) and Kou et al. (2016) apply the Bayesian method to the stochastic volatility with
MJD model and found 1-2 jumps per year in S&P 500; Kou et al. (2016) applies the
Bayesian method to stochastic volatility with double exponential jump models and found
6-26 jumps per year in S&P 500.

7This is in line with ample empirical evidence on the asymmetry in equity market
returns and negative skewness. See Hansen (1994), Bekaert and Wu (2000), Harvey and
Siddique (2000), Brandt and Kang (2004).
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3.3 Historical Evolution of Stock Volatility

3.3.1 Parameter Estimation Risk of Stock Volatility

An overview of the posterior statistical inference of the MJD total volatility

in different time periods is tabulated in Table 3.2 and plotted in Figure 3.2.

[Table 3.2 about here.]

[Figure 3.2 about here.]

The empirical results reveal that volatilities of equity returns in the U.S.

in different time periods vary not only in their estimated mean values, but

also in the associated posterior standard deviations. Therefore, relying on

point estimation values would induce biases and deteriorate the applicability

of the model. Under the MJD model, the estimated total volatilities tend to

have positive skewness and longer right tail as reflected by the longer upper

whiskers of the box-plots. It is important to notice that when the estimation

window covers any of the three main crisis periods (i.e. 1987 crisis, 2001 dot-

com bubble bust and 2008 sub-prime mortgage crisis), not only the estimated

posterior means of volatilities increase significantly to reflect the increased

risk during the periods, but also the widths between the upper and lower

bounds of estimated values. Therefore, parameter estimation risk tends to

coincide with market uncertainties as reflected in our results, supporting

the results in Jones (2003). This is also consistent with empirical practices

that, during crisis periods, forecasting with any model could be very difficult,

because too much parameter estimation risk is embedded in the estimated

value. Models find it hard to pin down the “correct” value of parameters.

In our case, the proposed Bayesian MCMC method successfully capture the

parameter estimation risk.

The highest volatility is observed during the global financial crisis in 2008.

The parameter estimation uncertainty during this period is also the highest
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among all estimation windows, reflected by the widest 95% credibility inter-

val8 of [31.71% - 39.92%]. Moreover, the financial markets behave differently

pre- and post-crisis in these three events as reflected by the parameter esti-

mation uncertainties. In 1987 and 2008, the posterior mean values of volatil-

ities jump suddenly by more than 10% and 20% respectively compared to

their previous periods, the estimation standard deviations of volatilities also

doubled their size. It seems that magnitude of both the volatility and its

estimation error tend to react more significantly when extreme events with

lager negative returns are observed. Furthermore, in the 1987 crisis, market

uncertainty seems to decline quickly as the post-crisis estimation standard

deviation decreases quickly to its pre-crisis level. On the other hand, in the

2008 crisis, market uncertainty does not seem to restore as quickly as in the

1987, post-crisis volatility is about 7% higher than its pre-crisis level, esti-

mation standard deviation is also at a higher level of 1.15%. The “dot-com”

crisis also has its own feature compared to the other two. Instead of having

a sudden jump, the volatility and the estimation standard deviation already

exhibit an increasing tendency before the crisis, possible because of the 1997

Asian financial crisis, the 1998 Russian financial crisis and the Long Term

Capital Management crisis in the U.S. and Europe. On the other hand, the

dot-come bubble started to accumulate in late 1990s, and the first mini-crash

was observed on October 27, 1997, in the wake of the Asian crisis. The “dot-

com” crash last for a much longer time than the other two, from March 2000

to October 2002 (Goldfarb et al., 2007), and there was also the September

11th event in 2001 (Danielsson and Shin, 2003).

Moreover, plots of posterior means of MJD volatilities and sample stan-

dard deviations in Figure 3.2 show that the Bayesian estimation method

accurately estimates the volatility of return in-sample. In the periods cov-

ering the 1987 crash and the 2008 crisis, the MJD model volatility estimate

8The credibility interval is the equivalent of the confidence interval under a Bayesian
paradigm. It is constructed as a coverage interval of the specific posterior estimate from
the posterior distribution of the quantity of interest Gelman et al. (2014).
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tends to be slightly higher than the realised volatility. This is due to the

contribution of large jumps and increased parameter estimation uncertainty.

3.3.2 Volatility Evolution and the Three Financial Crises

The full volatility evolution during the sample period is illustrated by plotting

the MJD volatilities of the 1715 estimation points on a time-series plot in

Figure 3.3 that displays also posterior means and 95% credibility intervals.

[Figure 3.3 about here.]

Before analysing the market behaviour during the three crises periods,

we spot an unusual uncertainty of the 95% credibility intervals between 2005

and late 2006. Since each estimation window contains two years of data,

this “uncertain” period covers data from 2003 to late 2006. The intervals

are abnormally widened while at the same time the sample volatility is very

low and there is no known market uncertainty associated with that period.

Furthermore, the realised volatility is very close to the low boundary of the

credibility interval for return volatility resulting from the fitted MJD model.

We carry out in-depth investigation about this newly detected abnor-

mality and we conjecture that the main reason behind it is due to the fact

that equity stock returns in the U.S. during these estimation windows are

gaussian. According to the test results of the Jarque-Bera (JB) and Shapiro-

Wilk (SW) tests, the null hypothesis that the underlying return distribution

is normal cannot be rejected during the consecutive 2-years periods from

March 2003 to December 2006, which covers 90 estimation points (detail test

results are presented in Section 3.5). Gauging into the detail results during

the period, we find that the mean of jump size (parameter a), in particu-

lar, contributes the most to the widened 95% credibility intervals observed.

Thus, when the data-generating process is gaussian, the MJD model finds it

very hard to identify jump events.
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We are the first to find such abnormal behaviour of the U.S. stock market

in this pre-2008 crisis period. The importance of this finding is three folded.

Firstly, it is in contradiction to common empirical findings that stock returns

deviate from normal distribution and exhibit negative skewness and excess

kurtosis. Our test results show that stock returns did return to gaussian,

for a long period. Secondly, it indicates the necessity of considering model

uncertainty in stock return parameter estimation. Throughout the changes of

market performance, return distributions can deviate significantly from one

model and switching onto another. Finally, the gaussian period happened in

parallel with the period of very low market volatility before the 2008 crisis.

We elaborate further on these ideas in Section 3.5.

In order to deal with the model volatility estimation uncertainty issue

prior to the subprime crisis, we set the jump intensity λ to zero, thus falling

back onto the Geometric Brownian Motion (GBM) setting, see equation (3.1).

After this correction, Figure 3.4 depicts the re-fitted time-series plot:

[Figure 3.4 about here.]

The three crisis periods can be easily spotted on Figure 3.4, we can see

that the market has actually reacted and behaved differently in the three

main crises periods. The first important difference among the three crises is

whether the market uncertainty continued to increase after the initial collapse

or not? Recall the definition of endogenous risk: it is the risk from shocks

that are generated and amplified within the system; it is a second part of the

price movement due to a feedback effect from the market participants after

the initial shock (Danielsson and Shin, 2003). It seems that the endogenous

risk can be further classified into two types: feedback effect which roots

on and reinforces a substantial valuation correction or feedback effect that

are pure psychological panic. In the “dot-com” and 2008 global crises, the

endogenous risk had revealed a problem rooted on the pricing fundamentals

which had led to significant valuation bias (i.e. bubbles), and hence we see
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the problem persisting after the initial shocks to correct the market prices.

During the “dot-com” crisis period, we do not observe a sudden dramatic

change in volatility as in 2008, nevertheless, it fluctuates with an upward

trend during the period. In 2008, the volatility started to surge pre-crisis

indicating an increase in market uncertainty followed by the revelation of

subprime mortgage crash in 2007, a huge rapid jump is observed right after

the fall of Lehman Brothers. The market volatility continue to surge in the

next 6-9 months.

The 1987 crash, on the other hand, shows a different pattern. This is an

example of a crash caused by feedback effects that are psychological panic

without a fundamental need on market prices correction. The financial mar-

kets in 1987 have no genuine problem, and the harm was mostly due to the

overreaction of market participants such that the crisis did not last long and

the market restored very quickly to the original level. The historical evo-

lution of volatility in Figure 3.4 reveals that, after the 19th Oct 1987 data

was included into the estimation window, the volatility increases immediately

from 15.33% to 30.10%. When the Black Monday data is removed from the

estimation window, the volatility graph exhibits a vertical drop.

By plotting the posterior mean estimate of equity index return in Figure

3.5, we further confirm the unique nature of the 1987 crash compared to

the other two. In the “dot-com” and 2008 global crises, when the feedback

effect are rooted on and reinforces the substantial valuation issue, the mar-

ket experiences a significant period of negative performance and it takes a

while for the market to restore to positive returns. After the initial crash,

the market returns continue to fall at least for a period of six months to one

year. Before those crises started, we observe a decreasing trend of the mar-

ket performance, whereas for the 1987 crisis, although the market dropped

sharply on the crash day, the returns fluctuate around zero and jump back

up as soon as the Black Monday data is excluded from the estimation win-

dow. After the market realised that this was an overreaction, it restored very

93



quickly9. The posterior mean of the Bayesian Sharpe ratio plotted in Figure

3.6 exhibits similar story as the posterior mean of stock return. The 95%

credibility interval reveals that it is very rare for the inference results to yield

a 2.5% percentile beyond 0 in all periods. On the other hand, the plotted

sample Sharpe ratio almost perfectly coincides with the estimated posterior

mean of inference results.

[Figure 3.5 about here.]

[Figure 3.6 about here.]

In order to verify that indeed there has been a change in model we also

employ a simple Markov-switching dynamic regression model:

R̄t =

h1 + εt, w.p. P1

h2 + εt, w.p. P2 = 1− P1

(3.4)

where R̄t denotes the posterior mean of 2-years moving averaging return

estimated from each estimation window under the MJD model; h1 and h2

are different means of R̄t in the two regimes and εt is the error term follows

a gaussian distribution N(0, b). P1 denotes the probability of regime 1 and

P2 denotes the probability of regime 2. The regime switching process is

characterised by the Markov chain probability transition matrix H:

H =

[
P11 P12

P21 P22

]

The estimation results of the regime switching model are reported in Table

3.3. The model successfully distinguishes the periods of market distress,

9Lybeck (2011) claims that the “dot-com” crisis and the 1987 crash shall not be treated
as financial crises as they did not affect other markets or the real economy, therefore shall
be treated as pure market crashes. However, from our results of the historical evolution
of both volatility and the market returns show that the “dot-com” crisis shares the same
market dynamics as the 2008 crisis, while different features of the 1987 market crash is
observed.
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which is captured by regime 1. The two regimes are quite persistent according

to P11 = 0.9884 and P22 = 1−P21 = 0.9980. Regime 1 identified by the model

is shaded grey in Figure 3.5. The crisis period of the “dot-com” bubble burst

and the 2008 Global Financial crisis are highlighted, whereas the 1987 market

crash is not recognised as a market distress period by the model.

[Table 3.3 about here.]

Therefore, the different patterns of the three crises periods reveal that

while endogenous risk can result in a tremendous crash through feedback

effect of market participants, when it does not revealed a substantial need

of continue adjustment to market prices, the crash will be rather short-lived.

On the other hand, when the need of severe valuation correction is revealed,

the volatility continue to surge and market returns continue to fall after

the initial shock. Our finding reveals an improvement that can be made to

the endogenous risk theory. While the shifts in market participants’ beliefs

and their subsequent reactions can result in market crashes, whether these

beliefs are rooted in a substantial over-valuation problem and reinforces that

problem or not would make a big difference to the final outcome. In the 1987

crash, when the beliefs are directly associated with psychological panic, the

market restored quickly to correct the error of the dramatic price drop. On

the other hand, in early 2000 and 2008, when the substantial over-valuation

problem was revealed by the initial shocks and subsequent feedback effect

of market participants reinforces this issue of financial markets, real crises

occurred to clear the asset bubbles.

Minsky theory is based on the hypothesis that “stability is destabilis-

ing”, meaning that when volatility in the market is at a low level, people in

the market have increased risk appetite and tend to take more risk, which

results in the increased likelihood of potential large shock. Danielsson and

Shin (2003) and Altunbas et al. (2010) also suggest that in good times the

perceived risk is low, complex financial networks are built up and the amount
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of imprudent leverage is likely to increase. As a result, the unseen hidden

endogenous risk is cumulated during these periods and this may lead to a

higher probability of triggering a crisis. During the two pre-crisis period in

late 1990s and mid 2000s, we do observe such quiet market periods, when

the market volatility was close to and even below 10%, and the parameter

estimation risk is also at a minimal level, indicating less uncertainty in the

financial markets. The gaussian distributed stock return fitted well during

the 2003-2006 period further supports these theories as tail events vanished.

The Minsky theory is further tested with the discovered calm period in Sec-

tion 3.5.3. Overall, the results do show an abnormal quiet period pre-crisis,

however, it was not the case for the 1987 crash.

3.4 Historical Evolution of Stock Return Skew-

ness

The plot of the evolution of S&P 500 index skewness is shown in Figure

3.7. The gap in mid-2000s is the period with normally distributed stock

returns. When using the GBM model instead of the MJD model, the esti-

mated skewness equals to zero without any estimation risk due to the setting

of the GBM model. The dash line plots the sample skewness, which almost

straightly equals to zero as well during the period.

[Figure 3.7 about here.]

Throughout the test periods, the estimated posterior mean of the MJD

skewness may slightly over-/under-estimate the sample skewness. Neverthe-

less, the sample skewness is well captured by the 95% credibility interval,

except for the 2-years periods during which the “Black Monday” data is in-

cluded in the estimation windows. Unlike the analysis for volatility, for the

“dot-com” crisis and the 2008 global financial crisis neither the point esti-

mate of skewness nor the parameter estimation risk has changed remarkably.
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However, the disturbance of the 1987 market crash is quite significant as dis-

played on the figure, confirming the different natures between the 1987 crash

and the other two. On the other hand, the crisis has impacted the skew-

ness of stock distribution heavily in 1987. The estimated posterior mean has

dropped to -3, while the sample skewness hitted a record of -8. The width

of the posterior 95% credibility interval is almost five times wider than the

previous period, but still failed to capture the realised skewness. This is

also the only period when the credibility intervals fail to cover the realised

skewness.

3.5 Normality of Stock Return Distribution

3.5.1 Normality Tests in Major Equity Markets

In the past four decades, scholars have highlighted their concerns about the

unrealistic assumption of normal stock return distribution as asset returns

were found skewed with excessive kurtosis from time to time (Aı̈t-Sahalia and

Brandt, 2001; Cont, 2001; Jondeau and Rockinger, 2003; Wen and Yang,

2009; Bakshi et al., 2003; Chung et al., 2006; Amaya et al., 2015; Chang

et al., 2013). In contrast to this widely accepted view, in Section 3.3.2 we

show an interesting finding that for a long period before the 2008 global

financial crisis, the data-generating process for the S&P 500 index is gaussian.

Figure 3.8 illustrates10 the evolution of realised skewness and kurtosis over

the entire study period, suggesting that, during the MJD model uncertain

and low volatility period (the grey shaded area), the realised skewness and

kurtosis are very close to zero jointly and this is the only period that exhibits

such pattern. The normality of return distribution is tested using both the

10In order to have a clearer look at the model uncertainty period, the y-axis range is
restricted, so part of plots during the 1987 crash is not shown due to the greatly inflated
skewness and kurtosis by the crash event.
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Jarque-Bera (JB) and Shapiro-Wilk (SW) tests11.

In our case the results of the two tests are identical. Among the 1715

estimation windows covering the period from 1980-2015, the data-generating

process in 106 estimation windows seems to be gaussian, 16 of them being

periods between 1980-1982 (a US recession period defined by NBER) and

the remainder covers the period prior to the 2008 crisis from March 2003 to

December 2006 consecutively.

In order to see whether the ‘return to normal’ feature is a global event

prior to the 2008 global crisis, we further test the normality of the NASDAQ

Composite index and Dow Jones Industrial Average index in the U.S., and

another six equity indices of the world’s major markets using daily data

between 03/2003 and 12/2006. The results at 5% critical level are reported

in Table 3.4.

[Figure 3.8 about here.]

[Table 3.4 about here.]

The results show that the gaussian returns hypothesis seem to occur only

in the US market, where the global financial crisis originated. The three

key equity indices of the US exhibit normal distribution during the similar

periods. The equity indices of EURO STOXX 50, FTSE 100, DAX 30,

NIKKEI 225, Hang Seng 50, Shanghai Shenzhen CSI300 do not exhibit a

similar normal feature, excepting a few occasional cases for the FTSE 100,

which is negligible. While the ‘return to normal’ finding is robust in the U.S.

market, it is essential to ask whether this matters, and whether it does have

any impact to the subsequent market distress.

11The JB test is the most cited normality test in financial literature. However, it was
criticised for its weaknesses when distributions have short tails (Thadewald and Büning,
2007). The SW test, on the other hand, has been shown as the one with better testing
power (Chunhachinda et al., 1997; Shapiro et al., 1968; Razali et al., 2011).
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3.5.2 Normal Distributed Return Period and Its Im-

pact to Subsequent Market Return

Table 3.5 provides descriptive statistics of the general equity market main

drivers and sentiment proxies during the normal distribution period prior to

the 2008 crisis. Compared to the full sample statistics, this period is char-

acterised by moderate market return, low volatility (below 30% percentile

of full sample volatilities), low expected future volatility (indicated by the

VIX). These conditions characterised a stable financial system as described

by Minsky’s theory. On the other hand, the period also associated with

slightly higher than average survey based confidence level (indicated by the

UOM index), and higher than average investor risk appetite (indicated by the

Credit Spread). The number of IPOs during the period of normal distributed

return is lower than average level, due to the overall reduction in IPO volume

after the IPO booms in mid 1980s and 1990s. Changes in sentiment proxies

are used in the regression analysis below.

The standard deviation of each variable during the normality periods are

remarkably smaller than the full sample period, indicating a steady and calm

period. With normal distributed return, investors shall expect symmetrical

distribution with little worries of extreme tail events. Together with the low

volatility (close or below 10%), much less estimation error as highlighted

in Figure 3.4 and a regime of steady expansion (positive excessive return),

observing normal distributed returns in the recent past may give more con-

fidence to investors that the future returns are more likely to lie within a

narrower range around the expected value situated on an increasing trend.

[Table 3.5 about here.]
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3.5.3 Regression Analysis of the Impact of Gaussian

Distributed Returns

To focus on the impact of gaussian distributed return and whether the Minsky

theory is supported, we adopt similar parsimonious regression models as

in most of the sentiment effect studies (Baker and Wurgler, 2007; Brown

and Cliff, 2005; Hengelbrock et al., 2013; Schmeling, 2009; Lemmon and

Portniaguina, 2006):

Rt+1 = β0+β1,i∆Sentimenti,t+β2Normalityt+β3,jControl V ariablej,t+εt+1

(3.5)

Rt+1 =β0 + β1,i∆Sentimenti,t + β2Normalityt + β3,jControl V ariablej,t

+ β4,i∆Sentimenti,t ∗Normalityt + εt+1

(3.6)

where Normalityt is a dummy variable taking the value 1 if the daily returns

of past two years are normally distributed, and 0 otherwise; Sentimenti,t are

investor sentiment proxies, including the University of Michigan index of con-

sumer sentiment (UOM index) also used by Figlewski (2016); Lemmon and

Portniaguina (2006); Baker and Wurgler (2007); Schmeling (2009), the sum

of IPO volume in the past 12 months (NIPO), and the credit spread series as

the average yield spread of Moody’s Baa and AAA rated bonds as used by

Figlewski (2016); Baker and Wurgler (2007). Sentiment measures are subject

to correlation with economic fundamentals. Therefore, it could be subject

to the critique that the impact of sentiment is in fact a result of omitting

relevant variables. Baker and Wurgler (2007) suggest that this critique is less

of a concern in regressions of future returns. Fundamentals should only affect

contemporaneous stock returns, predictability from fundamentals shall not
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exist if stocks are priced fairly. Nevertheless, macroeconomic variables are

included to control such impacts if any. The final model contains only two12

control variables: the annual percentage change in industrial production and

the first lag of return.

The regression analysis is carried out for five different length of hori-

zons of future returns: 1-, 2-, 4-, 6- and 8-quarters. While the regression

with 1-quarter ahead returns uses non-overlapping quarterly observations,

the quarterly observations of 2-, 4-, 6- and 8-quarters returns contain over-

lapping periods. The overlapping issue artificially creates strong autocorre-

lation in the response variables, which would result in severe downward bias

in the estimation errors.13 In this paper, we adopt the method developed

by Britten-Jones, Neuberger and Nolte (2011) to circumvent the overlap-

ping issue by transforming the regression, so that autocorrelation induced by

overlapping data is cleared out while the OLS coefficients are identical to the

original regression.

Consider r as a T × 1 vector of single period log returns, and A as the

(T − k + 1) × T transformation matrix with 1s on the main diagonal and

the first k − 1 right off-diagonals and 0s otherwise. Then Ar is the vector

of k-period log returns. Let X be the matrix of explanatory variables, the

original regression with overlapping data is set up as:

Ar = Xβ + ε (3.7)

12Various macroeconomic variables as suggested by literature are included in the prelim-
inary runs of the regression models, including: the annual percentage change in industrial
production, the annual CPI inflation rate, the term spread, the percentage change in GDP,
the NBER recession dummy variable and the first lag of return. Consistent with Baker
and Wurgler (2007)’s argument, little of them show significant impact to future returns.

13Britten-Jones, Neuberger and Nolte (2011) pointed out that the commonly used White
or Newey-West standard errors can result in misleading estimates of confidence interval
and the Hansen-Hodrick standard error is also complex and unreliable.
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and β can be efficiently estimated from the transformed regression:

r =X̃β + ε̃

X̃ =A′X(X ′AA′X)−1X ′X
(3.8)

Since the estimation period is based on windows of 2-years return data,

the dummy variable ‘Normality’ only starts in 1982. Therefore, our testing

is based on data from 1982-2015 rather than 1980-2015. The correlations

of the three market sentiment proxies and the one quarter ahead market

return are tabulated in Table 3.6. Our empirical evidence suggests that while

positive changes in the UOM Index and NIPO are negatively correlated with

future return, an increase in the risk appetite as indicated by credit spreads

seems to increase future return. The correlations among sentiment proxies

are within acceptable range. Multicollinearity is also tested properly via the

variance inflation factor and no multicollinearity problem was found in all of

our regression models.

[Table 3.6 about here.]

Table 3.7 presents the results regarding the relationship between Senti-

ment proxies and the dummy variables of normality. Consistent with the

argument of Baker and Wurgler (2007), macroeconomic control variables

have no explanatory power in general. Sentiment proxies tend to show the

same relationship with future returns as in the correlation matrix. A posi-

tive shift in UOM index is found to negatively affect future returns overall,

but the impact is statistically significant to future returns in 2-quarters hori-

zon. This result is consistent with past findings in the U.S. market returns

(Hengelbrock et al., 2013; Schmeling, 2009). The change in NIPO has a con-

sistently negative but very weak association with future returns. The impact

of the credit spread is statistically significant throughout different horizons

of future returns while the results of changes in Credit Spread indicate that

a positive shift of risk appetite in the current period associates with higher
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future return. These are similar to Hengelbrock et al. (2013)’s findings on

the German market and in the U.S. market during 2001-2008, but contrast

to the general findings of sentiment effects in the U.S. market. Two possible

reasons for such different findings are, firstly, most of the literature focuses on

cross-sectional stock return rather than market return; and the credit spread

is not used as a sentiment proxy in Hengelbrock et al. (2013) or Schmeling

(2009). Nevertheless, the significance of the credit spread does not support

the hypothesis of correction of overvaluation in later period returns. When

the normal distribution of past market return is observed, subsequent market

returns tend to move upward. But the relationship tend to reverse, when the

horizon of future returns increases to two years, indicating potential correc-

tion of overvaluation. However, the impact of Normality is not statistically

significant as shown in the results.

[Table 3.7 about here.]

Table 3.8 reports the results when we consider that normality interacts

with the investor sentiment. The interactive terms exhibit significant im-

pact of normality to future market returns. Although changes in NIPO do

not impact future return significantly originally, when interacted with gaus-

sian past return, a positive shift in NIPO would significantly decrease the

future returns by 0.17-0.45% (sum of coefficients of ∆NIPO and ∆NIPO ∗
Normality) depending on the length of future return horizons. When the

future return horizon increases to six quarters, the interactive terms of UOM

index and the credit spread also turns significant. The impact of credit

spread is dramatic: a negative shift of 1% in credit spread (low credit spread

indicate high sentiment) would result in about 25% to 30% (sum of coeffi-

cients of ∆ credit spread and ∆ credit spread*Normality) drop in market

returns. These statistical evidence supports the hypothesis that during the

period when market returns are normally distributed an increase in investor

sentiment is likely to cause overvaluation and cumulate bubbles, followed by
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a correction of mispricing in the later periods. The correction of cumula-

tive asset price bubbles is most significant for a long horizon of six to eight

quarters.

[Table 3.8 about here.]

Therefore, the regression results show support evidences towards the Min-

sky’s theory of “stability is destabilising”. However, our results suggest that

it is not the calm/stable market conditions on its own causes the destabilising

in the later periods. We highlight the matter of how the investors interact

with the calm conditions. When the calm gaussian period interacts with high

investor sentiment and risk appetite, the economy may transit from a stable

system into an instable system and result in market destruction in the later

periods. This aligns with the Minsky theory.

3.6 Conclusion

Analysing the volatility and skewness of the S&P 500 Index between 1980

and 2015 using the Merton’s Jump Diffusion Model, we disentangled the

different nature of the three main financial crises in the past three decades

in equity markets, echoing key discussions in the literature. In particular,

the 1987 market crash is found to have distinct market dynamics compared

to the “dot-com” crisis and the 2008 global financial crisis. The empirical

results show significant and consistent evidence towards the Minsky theory,

whereas the theory of endogenous risk is also largely confirmed.

We provide the first-ever investigation of the parameter estimation risk

associated throughout the test period, and find that parameter estimation

risk of volatility captures well market uncertainty, whereas the estimation

risk of skewness is more sensitive to outlier events rather than general mar-

ket uncertainty. Furthermore, to the best of our knowledge, we are the first

to discover a long consecutive period prior to the 2008 crisis when the mar-

ket return distribution returned to normal, which only happened in the US
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market, where the 2008 crisis originated. Our results point out that when a

calm period is observed, a high level of sentiment leads to an extra negative

impact to the subsequent market returns, which is aligned with the Minsky

theory of “stability is destabilising”. The explanation is that when normality

interacted with high levels of sentiment, it encourages extra risk taking and

over expectation of future growth, and results in overvaluation or bubbles of

assets prices which requires correction in a later period. When the magni-

tude of bubble is remarkable, the consequential correction would be a market

crash or crisis similar to what we observed in the 2008 crisis episode.
text
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Figure 3.1: Posterior Parameter Estimation Results of the Merton’s Jump-
Diffusion Models

(a) µ′

(b) σ

(c) λ

(continued)
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Figure 3.1: Posterior Parameter Estimation Results of the Merton’s Jump-
Diffusion Models, Continued

(d) a

(e) ζ

Note: The figure plots the 95% credibility interval, posterior mean and median of the
parameters of the MJD model. Values of µ′, σ and λ are annualised. µ′ = µ − δ.
Parameters are estimated using 2-years moving window approach; Parameter estimation
data: S&P 500 index daily log-return data 1980-2015.
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Table 3.1: Parameter Estimation Results under the Merton’s Jump-Diffusion
Models

Parameter Mean Std. Err. Maximum Minimum

µ
′

9.7884 11.1698 34.2800 -31.0500
σ 13.44067 3.9921 24.0600 6.9740
λ 22.6723 14.6493 81.7740 1.4079
a -0.2043 1.1681 1.9670 -22.2800
ζ 2.1807 1.3802 7.2120 0.8242

Note: Statistics shown above are mean, std. dev., maximum and minimum of posterior
means of estimated parameters of each estimation window. Statistics of µ′, σ and λ are
annualised results. µ′ = µ− δ. Parameters are estimated using 2-years moving window
approach; Parameter estimation data: S&P 500 index daily log-return data 1980-2015.

Table 3.2: S&P 500 Index Posterior Total Return Volatilities during 1980-
2015 under the MJD model

Year Special Events
Sample

Volatility
MJD Total Volatility

Mean Std. Err. 2.5% Median 97.5%
1980-1981 15.04% 15.69% 0.81% 14.57% 15.59% 17.33%
1982-1983 16.04% 16.26% 0.72% 14.96% 16.21% 17.79%
1984-1985 11.51% 11.83% 0.56% 10.84% 11.79% 13.03%

1986-1987
“Black Monday”

stock market break
26.02% 27.84% 3.79% 21.97% 27.27% 36.91%

1988-1989 15.30% 15.68% 1.04% 13.88% 15.61% 17.94%
1990-1991 15.08% 15.29% 0.62% 14.21% 15.24% 16.66%
1992-1993 9.16% 9.54% 0.41% 8.84% 9.50% 10.45%
1994-1995 8.93% 9.18% 0.42% 8.41% 9.17% 10.09%
1996-1997 15.28% 15.08% 0.70% 13.79% 15.05% 16.53%
1998-1999 19.23% 19.63% 0.90% 18.05% 19.56% 21.62%
2000-2001

“dot-com” crisis
21.79% 22.01% 0.91% 20.43% 21.94% 23.97%

2002-2003 21.99% 22.17% 0.89% 20.62% 22.12% 24.10%
2004-2005 10.68% 12.10% 2.89% 10.51% 11.17% 21.35%
2006-2007 13.33% 13.38% 0.61% 12.26% 13.36% 14.61%
2008-2009 Global financial crisis 34.87% 35.53% 2.09% 31.71% 35.41% 39.92%
2010-2011 20.85% 21.08% 1.15% 19.05% 21.02% 23.59%
2012-2013 11.98% 12.37% 0.49% 11.48% 12.34% 13.38%
2014-2015 13.57% 13.52% 0.59% 12.46% 13.48% 14.78%

Note: The table shows estimated posterior total return volatilities of S&P 500 index.
Reported statistics include: posterior mean, median, s.d. and 95% credibility interval.
Parameter estimation data: S&P 500 index daily log-return data 1980-2015
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Table 3.3: Markov-switching Dynamic Regression Model Results of S&P 500
Index Return

Parameters Coef. Std. Err. P-value [95% Conf. Interval]
c1 -13.2132 0.4713 0.0000 -14.1369 -12.2896
c2 12.0617 0.1923 0.0000 11.6847 12.4387
b 7.1779 0.1228 6.9411 7.4227
P11 0.9884 0.0064 0.9662 0.9961
P21 0.0020 0.0011 0.0006 0.0062

Note: the table reports parameter estimation results of a Markov-switching dynamic
regression model on estimated posterior 2-years moving average return with constant
variance. c1 and c2 are the mean of each regime, b is the standard deviation of both
regimes. P11 is the probability of observing state 1 when the previous state is state 1,
P21 is the probability of observing state 1 when the previous state is state 2.

Table 3.4: Normal Distributed Periods of Key Financial Market Indices Re-
turns 2003-2007

Equity Indices Jarque-Bera Test Shapiro-Wilk Test
S&P 500 03/2003 - 12/2006 03/2003 - 11/2006*

Dow Jones Industrial Average 03/2003 - 12/2006 03/2003 - 11/2006
NASDAQ Composite 03/2003 - 12/2006 03/2003 - 12/2006

EURO STOXX 50 non-normal non-normal
FTSE 100 3 periods** 5 periods***
DAX 30 non-normal non-normal

NIKKEI 225 non-normal non-normal
Hang Seng 50 non-normal non-normal

Shanghai Shenzhen CSI300 non-normal non-normal

Note: The table shows Normal distributed return periods of key market indices as
indicated by the JB and SW tests at 5% critical level. Any 2-years period within the
stated time interval above has normal distributed daily log returns. Tests are carried out
using 2-years moving window on indices daily log-return data Mar 2003 - Dec 2006,
windows move weekly.
*for SW tests at 5% critical level, daily log returns of 2-years periods ending 27/07/2005
- 03/08/2005, 06/10/2005 - 27/10/2005, 10/11/2005 - 01/02/2006, and 15/02/2006 -
09/03/2006 are non-normal. However, at 1% critical level, the null hypothesis of normal
distribution cannot be rejected during these periods.
**daily log returns of 2-years periods ending 24/04/2006, 01/05/2006 and 08/05/2006.
***daily log returns of 2-years periods ending 04/05/2005, 08/06/2005, 24/04/2006,
01/05/2006 and 08/05/2006.
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Table 3.5: Market Main Drivers During the Period of Normal Distributed
Returns

Full Sample Period of Normal Returns

Mean s.d. Mean s.d.
Maximum Minimum

Value
Percentile in
Full Sample

Value
Percentile in
Full Sample

Return 8.18 11.66 8.54 2.29 15.71 74.55 4.43 24.81
Volatility 16.83 6.45 10.81 0.56 12.29 30.58 10.12 10.29

VIX 19.88 5.57 14.21 1.11 16.75 40.29 12.81 2.02
UOM Index 86.02 12.70 90.04 5.95 103.80 91.55 74.20 21.18

NIPO 356.24 236.79 156.07 65.84 226.00 43.04 33.00 1.97
Credit Spread 8.22 2.93 5.95 0.28 6.45 33.22 5.41 14.24

Note: Return and Volatility are sample return and realised volatilities of each of the
1715 estimation windows; VIX is the implied volatility of S&P 500 index options; UOM
index is the University of Michigan index of consumer sentiment; NIPO is the sum of
IPO volume in the past 12 months; Credit Spread is the series of average yield spread of
Moody’s Baa and AAA rated bonds. Full sample is the period from 1980-2015; Period of
Normal Returns is the time interval of normal distributed returns defined by the JB test
results of S&P 500 index stated in Table 3.4.

Table 3.6: Correlation of Sentiment Proxies and Future Returns

Returnt+1 ∆ UOM Index ∆PERatio ∆CreditSpread
Returnt+1 1.0000

∆ UOM Index -0.0932 1.0000
∆ NIPO -0.0717 0.1176 1.0000

∆ Credit Spread -0.2217 0.0662 0.2134 1.0000

Note: Returnt+1 is the 1-quarter ahead future log return of S&P 500 index adjusted for
dividend; ∆UOM index is quarterly change of the University of Michigan index of
consumer sentiment; ∆NIPO is the quarterly change of the sum of IPO volume in the
past 12 months; ∆ Credit Spread is the quarterly change of the average yield spread of
Moody’s Baa and AAA rated bonds. Data period: 1982-2015
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Table 3.7: Regression Results of Future Returns and Normality

Forecast Horizon 1-Quarter 2-Quarters 4-Quarters 6-Quarters 8-Quarters

∆ UOM Indext
-0.1499

(0.2120)
-0.2395*
(0.0834)

-0.0588
(0.7420)

0.0359
(0.8652)

-0.0014
(0.9954)

∆ NIPOt
-0.0019

(0.8570)
-0.0021

(0.9141)
-0.0145

(0.6606)
-0.0234

(0.5608)
-0.0206

(0.6393)

∆ Credit Spreadt
-4.7748***

(0.0040)
-9.1361***

(0.0001)
-10.2179***

(0.0023)
-11.1620***

(0.0051)
-8.6627*
(0.0502)

Normalityt
0.2714

(0.9170)
4.9172

(0.3552)
8.7463

(0.3766)
8.1299

(0.5597)
-0.5216

(0.9766)

Industrial Productiont
0.1439

(0.3910)
0.1682

(0.5971)
0.4021

(0.4880)
0.7750

(0.3170)
0.9612

(0.3018)

Returnt
0.0913

(0.3490)
-0.3837

(0.1567)
-1.0149***

(0.0048)
-0.9948**
(0.0191)

-0.8264*
(0.0990)

Constant
1.7337**
(0.0420)

5.9469
(0.1727)

4.8165
(0.5596)

2.4259
(0.8338)

-2.1144
(0.8874)

Observation 134 134 132 130 128

Note: Dependent variables are the 1-,2-,4-,6- and 8-quarters ahead future returns of S&P
500 index adjusted for dividend; ∆UOM index is quarterly change of the University of
Michigan index of consumer sentiment; ∆NIPO is the quarterly change of the sum of
IPO volume in the past 12 months; ∆ Credit Spread is the quarterly change of the
average yield spread of Moody’s Baa and AAA rated bonds; Normality is a dummy
variable with value 1 if the daily returns of the past 2 years are normally distributed,
and 0 otherwise; Industrial production is the annual percentage change of industrial
production in quarterly frequency; Returnt is the the current quarter log returns of S&P
500 index. Data period: 1982-2015.
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Table 3.8: Regression Results of Future Returns and Normality Interacted
with Sentiment Proxies

Future Returns 1-Quarter 2-Quarters 4-Quarters 6-Quarters 8-Quarters

∆ UOM Indext
-0.2144

(0.1080)
-0.1777

(0.2673)
0.1668

(0.4483)
0.4377*
(0.0991)

0.5760*
(0.0604)

∆ NIPOt
0.0006

(0.9520)
0.0060

(0.7544)
-0.0034

(0.9197)
-0.0096

(0.8118)
-0.0064

(0.8819)

∆ Credit Spreadt
-4.7527***

(0.0050)
-8.9520***

(0.0002)
-10.2903***

(0.0061)
-12.3409***

(0.0079)
-10.9578**

(0.0385)

Normalityt
-0.6349

(0.8200)
1.6342

(0.7654)
1.6318

(0.8764)
-3.4324

(0.8177)
-17.3651
(0.3554)

∆ UOM Indext ∗Normalityt
0.3039

(0.3960)
0.0353

(0.9400)
-0.1987

(0.6648)
-0.3706

(0.4884)
-1.2162**
(0.0396)

∆ NIPOt ∗Normalityt
-0.0892

(0.2100)
-0.1775*
(0.0655)

-0.3114**
(0.0308)

-0.3334*
(0.0729)

-0.4446**
(0.0498)

∆ Credit Spreadt ∗Normalityt
4.9887

(0.6800)
11.0006

(0.5819)
19.9673

(0.3646)
43.3005**

(0.0329)
36.0574*
(0.0962)

Industrial Productiont
0.1603

(0.3460)
0.2720

(0.4001)
0.5850

(0.3315)
0.9312

(0.2485)
1.0476

(0.2747)

Returnt
0.1158

(0.2470)
0.0660

(0.6387)
-0.0848

(0.6586)
-0.1018

(0.6467)
-0.2178

(0.3893)

Constant
1.646806*

(0.0540)
3.7729**
(0.0226)

8.5624**
(0.0104)

13.2065***
(0.0074)

19.5377***
(0.0026)

Observation 134 134 132 130 128

Note: Dependent variables are the 1-,2-,4-,6- and 8-quarters ahead future returns of S&P
500 index adjusted for dividend; ∆UOM index is quarterly change of the University of
Michigan index of consumer sentiment; ∆NIPO is the quarterly change of the sum of
IPO volume in the past 12 months; ∆ Credit Spread is the quarterly change of the
average yield spread of Moody’s Baa and AAA rated bonds; Normality is a dummy
variable with value 1 if the daily returns of the past 2 years are normally distributed,
and 0 otherwise; Industrial production is the annual percentage change of industrial
production in quarterly frequency; Returnt is the the current quarter log returns of S&P
500 index. Data period: 1982-2015.
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Chapter 4

Hedge Fund Return Forecast

and Portfolio Selection in the

Presence of Model Risk

4.1 Introduction

Hedge funds have attracted a great deal of attention during the last 20

years. Traditionally, these instruments are private investment vehicles avail-

able to high net-worth individuals or institutional investors. Following the

recent launch of investable hedge fund indices or indices-linked instruments,

small- and medium-sized investors can also access this type of investments.

While hedge funds have traditionally outperformed other investment strate-

gies (partly due to their weak correlation with other financial securities),

they experienced a colossal hit during the 2008 global financial crisis, which

revealed the interdependencies of these funds and the rest of the financial

markets (Olmo and Sanso-Navarro, 2012; Panopoulou and Vrontos, 2015).

All these developments have contributed to the growing body of literature

which investigates the risk-return characteristics of hedge funds. A long

list of linear and non-linear risk factors have been proposed, including the
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Fung and Hsieh asset based factors, the Fama-French 3 factors and Carhart’s

momentum factor, other general macroeconomic and financial factors (key

references of this strand include Agarwal and Naik (2004), Fung and Hsieh

(2004) and Bali et al. (2011)).

Similar to the general asset pricing literature, the issue of identifying the

‘correct’ set of factors, usually referred to as ‘model specification risk’ or

‘model uncertainty’, remains open for hedge funds with no exception. The

key reason for model specification risk is that existing pricing theories do

not explicitly guide us on which factors should be included in the model to

explain asset returns (Vrontos and Giamouridis, 2008). Based on different

data sets, different econometric methods and the set of predictors, each study

defines its own best model. Furthermore, hedge funds have some unique

characteristics compared to the others: the investment is flexible regarding

the variety of securities and type of positions the investments take; hedge

funds investment activities are not closely monitored and are not subject to

public disclosure. As a result, fund managers are encouraged to construct

highly dynamic, complex trading strategies. Vrontos and Giamouridis (2008)

assert that the lack of transparency and the variety of trading markets and

strategies combinations of hedge fund investments further renders the true

set of pricing factors virtually unknown. In addition, loadings of each risk

factors are time-varying, which can be referred to as ‘parameter estimation

risk’, as fund managers rebalance portfolios dynamically. Stressed by Fung

and Hsieh (2004), Fung et al. (2008), Eling and Faust (2010) and Wegener

et al. (2010), both parameter estimates and the set of relevant risk factors

may change over time due to the time-varying exposure of hedge funds to

systematic risks.

Several recent articles have explicitly investigated model risk in hedge

fund return forecast and portfolio construction. Wegener et al. (2010) test

predictability of different risk factors, taking into account non-linearity, het-

eroscedasticity, and time-varying exposures of hedge funds to risk factors.
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Specifically, they consider time-varying exposures by 1) recalibrating model

using a rolling window approach; 2) using structural break models; 3) rese-

lecting risk factors at regular intervals. They found that applying structural

break models induce over-fitting and deteriorate out-of-sample hit ratio. On

the other hand, results support the necessity for reselection of the risk factors

in each period.

Avramov et al. (2013) consider model uncertainty by combining the fore-

casts of single factor models, and taking into account estimation risk by

selecting funds based on t-statistics of predictive return in portfolio con-

struction. They show that the simple strategy of combining forecasts de-

livers superior performance compared with individual single factor models.

Additionally, Panopoulou and Vrontos (2015) combine forecasts of univari-

ate models as well as combining the entire information set into prediction

models.They confirm that the dynamic portfolio based on simple combined

forecasts delivers the best performance compared with other complex com-

bined forecasts and combined information strategies.

Vrontos and Giamouridis (2008) apply multivariate GARCH models to

model time-varying covariance/correlation of hedge fund returns and con-

sider model uncertainty by selecting the most probable model using Bayesian

stochastic search algorithm. Their empirical analysis shows that introducing

dynamic covariance/correlation modelling improves hedge fund portfolio con-

struction performance out-of-sample. Nevertheless, the full factor GARCH

model with Bayesian model selection underperformed the simple full factor

GARCH model. Vrontos et al. (2008) further developed the method by con-

sidering model uncertainty using Bayesian model averaging (BMA). They

compare the economic value of Bayesian model averaging with Bayesian

model selection, stepwise regression procedure method, AIC selection and

BIC selection. Results of the study show that the BMA method improves

the predictive performance of model. Portfolio construction performance of

the BMA method clearly outperforms the stepwise and AIC selection meth-
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ods, but this does not appear to be the case for the BIC and Bayesian model

selection methods.

Vrontos (2012) build further upon the earlier methodology by using stu-

dent’s t GARCH model with Bayesian model averaging to take into account

fat-tail, non-normality, time-varying covariances and model uncertainty in

forecasting hedge fund returns. By assessing the predictability of each model

specification, model averaging with normal errors and GARCH demonstrates

better performance in terms of mean-squared prediction error and averag-

ing prediction error. However, model averaging with student’s t errors and

GARCH performs the best in terms of predictive log score. Nevertheless,

economic value (i.e. portfolio construction) of the proposed methodology is

not investigated in the study.

This study contributes to the literature by applying the dynamic model

averaging (DMA) methodology1 in hedge fund return forecast and portfo-

lio construction. This methodology is introduced by Koop and Korobilis

(2012) in inflation forecast. Compared with the existing literature reviewed

above, it advances the research on hedge fund return forecast and portfolio

construction in several ways. Firstly, in consideration of model specification

risk, the DMA technique dynamically updates model probabilities at each

estimation point rather than applying a constant model probability as in the

conventional BMA method. With regards to parameter estimation risk, the

method includes a time-varying parameter model setting, and the parame-

ter estimation error around the expected model return can be assessed by

calibrating the posterior distributions of the parameters. Heteroscedasticity

of return time series is modelled by the exponentially weighted moving av-

erage (EWMA) approach. Furthermore, by considering the non-linear risk

1The method has been applied recently in several financial research areas, including
gold or copper prices forecast (Aye et al., 2015; Baur et al., 2014; Buncic and Moretto,
2015); house prices forecast (Bork and Møller, 2015; Risse and Kern, 2016); bond portfolio
strategies selection (Caldeira et al., 2016); stock return forecast and portfolio construction
(Pettenuzzo and Ravazzolo, 2016). Overall, studies show a considerable statistical and
economic value in incorporating model risk using the underlying methodology.
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factors advocated by Fung and Hsieh (2004) and Agarwal and Naik (2004)

as predictors, we also capture the non-normality in hedge fund returns. To

the best of our knowledge, this is the first time that the above issues are

addressed jointly. Empirical analysis are based on both prediction statistics

(e.g. MSFE, log predictive likelihood) and out-of-sample portfolio perfor-

mances of models. We evaluate predictive ability on hedge fund indices as

well as individual funds, and investigate portfolio construction performance

based on individual funds.

Our results show that considering time-varying parameters and model

specification uncertainty substantially improves out-of-sample predictive abil-

ity of models. Economic value of the predictions are strongly supported by

the results of certainty equivalent return evaluation. In portfolio construc-

tion, competing models deliver outstanding results in terms of risk-return

trade-off when hedge funds are selected based on expected future returns.

However, higher absolute returns are generated by the proposed models when

selections are based on t-statistics of model predictions. In addition, we find

that the time-varying feature of both regression parameters and model prob-

abilities can be of considerable value to hedge fund portfolio construction

during crisis periods.

The rest of the chapter presents as follows: Section 4.2 details the method-

ology; Section 4.3 summarises the data and the set of predictors; Section 4.4

reports on the empirical analysis of predictive ability; Section 4.5 evaluates

out-of-sample portfolio construction performance of models; and Section 4.6

provides an overall summary and draws conclusions.

4.2 Prediction Models

4.2.1 Time-Varying Parameter Model

The Kalman Filter originally developed in Kalman et al. (1960) and Kalman

and Bucy (1961) is a simple optimal estimator for normal linear state-space
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models. It is a commonly employed method in diverse engineering areas,

such as signal processing in aerospace and underwater sonar (Meinhold and

Singpurwalla, 1983). The method is also employed by applied statisticians in

Bayesian forecasting (e.g. Harrison and Stevens, 1971, 1976). The Kalman

Filter provides a simple way to recursively forecast the unobservable states

(i.e. coefficients of prediction factors in linear regression models) given new

observations under the Bayesian framework. The normal linear state-space

model can be understood as a linear regression model with time-varying

parameters (Koop and Korobilis, 2012; Meinhold and Singpurwalla, 1983).

The normal linear state-space model is of the following form:

Rt = ztθt + εt

θt = θt−1 + ηt
(4.1)

Rt is the hedge fund return; zt = Xt−1 is the vector of predictors with the

first column being 1; θt is the vector of coefficients; εt being the regression

residual of hedge fund returns, εt ∼ N(0, Ht); ηt is the residual of predictive

coefficients, and ηt ∼ N(0, Qt). The two error terms are assumed to be

independent from each other.

Equivalently, the above state-space model can be interpreted as a linear

regression model with time-varying parameter settings, where Rt and zt are

the dependent and independent variables, and θt is the vector of coefficients

we seek to estimate. Different from traditional constant coefficient models,

time-varying parameter (TVP) models allow coefficents to vary among each

observation of data.

The ordinary Kalman filter begins with the posterior result of parameter

that

θt−1 | Rt−1 ∼ N(θ̂t−1,Σt−1|t−1) (4.2)
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where Rt−1, with upper subscript, stands for the information set of hedge

fund return from time 0 to time t − 1. The Kalman filter proceeds to the

following predicting step:

θt | Rt−1 ∼ N(θ̂t−1,Σt|t−1)

Σt|t−1 = Σt−1|t−1 +Qt

(4.3)

To simplify the estimation of Σt|t−1, Raftery et al. (2010) adopted the

following approximation:

Σt|t−1 =
1

υ
Σt−1|t−1 (4.4)

where υ(0 < υ 6 1) acts as a forgetting factor and is fixed to a number

slightly below one, so that coefficients change gradually. Following the model

specification, observations m periods in the past would be weighted by υm.

Therefore, the impact of observations far in the past would be gradually

forgotten in the estimation process. υ → 1 indicates that the coefficients

evolved slower throughout time, and vice versa. When υ = 1 the model

returns to a constant parameter model. The important advantage of this

simplification is that it eliminates the necessity to estimate or simulate Qt.

Raftery et al. (2010) and Koop and Korobilis (2012) set the forgetting

factor υ = 0.99, 0.95 for quarterly data, so that in the case of υ = 0.99

coefficients evolved slowly with data 5 years ago receiving a weight of 80% of

the weight assigned to observation in the previous period. However, for υ =

0.95, coefficients are more unstable, so observations 5 years ago only receive

a weight of approximately 35% of the weight for the last period observation.

For the monthly data of hedge fund return we used in this study, we set υ =

0.996, 0.985 which allows similar speed of parameter evolution to monthly

data.

When new data are observed, we proceed to the updating step of the

Kalman filter:
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θt | Rt ∼ N(θ̂t|t,Σt|t)

Where

θ̂t|t = θ̂t|t−1 + Σt|t−1z
′
t(Ht + ztΣt|t−1z

′
t)
−1(Rt − θ̂t|t−1zt)

Σt|t = Σt|t−1 − Σt|t−1z
′
t(Ht + ztΣt|t−1z

′
t)
−1ztΣt|t−1

(4.5)

The predictive distribution of recursive forecasting is:

Rt | Rt−1 ∼ N(θ̂t−1zt, Ht + ztΣt|t−1z
′
t) (4.6)

Therefore, results are analytical conditional on Ht, and no Markov Chain

Monte Carlo (MCMC) algorithm is required in deriving the posterior distri-

bution of parameters and the predictive distribution of hedge fund return.

Following Koop and Korobilis (2012), we adopt the EWMA estimator of

Ht:

Ĥt =

√√√√(1− κ)
t∑

j=1

κj−1(Rj − θ̂jzj−1) (4.7)

From the specification of EWMA formulae, forecast of Ht given informa-

tion up to time t− 1 has the analytical form:

Ĥt|t−1 = κĤt−1|t−2 + (1− κ)(Rt−1 − zt−1θ̂t−1) (4.8)

κ ∈ [0, 1] is the decay factor of the EWMA estimator, which plays a similar

role to the forgetting factor υ. We adopt three different values 0.97, 0.94 and

0.92 to allow different speeds of decay.

Given all the specifications, the system can be estimated given initial

conditions for θ0 and H0
2.

2In this study, θ0 ∼ N(0,
V ar(Rt−1)

V ar(zt−1)
); H0 = 1

4V ar(R
t−1). t is the first out of sample

period.
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One important drawback of the TVP model is that the set of predictors

remains unchanged throughout time; thus, all of them are assumed to be

relevant at all points in time. Conversely, a hedge fund manager would

dynamically adjust the fund composition according to selection technique

and knowledge; a constant set of relevant predictors is unlikely to hold true

in hedge fund return prediction. When the number of predictors chosen is

large, the problem of in-sample over-fitting is likely to be substantial which

deteriorates out-of-sample forecasting performance.

4.2.2 Dynamic Model Averaging

The dynamic model averaging (DMA) technique is an extension of the con-

ventional Bayesian model averaging. Different from the conventional Bayesian

model averaging, the DMA technique allows the weights of each model to

evolve dynamically and pay more attention to closer term information. Like

the Bayesian model averaging, DMA enables forecast result to be based on

the results of all candidate models (i.e. the full combination set of proposed

independent variables); results of each individual model are weighted accord-

ing to their predictive fit in the most recent periods.

For the consideration of m potential predictors, we would have a total

number of K = 2m models3 to evaluate. The DMA prediction of hedge fund

return is:

E(Rt | Rt−1) =
K∑
k=1

πt|t−1,kR
(k)
t|t−1 (4.9)

where R
(k)
t|t−1 stands for predictions by each candidate model k; πt|t−1,k is the

predictive probability of model k, and also the weight of the forecast of model

k in the DMA prediction result.

Unlike the ordinal estimation of πt|t−1,k which requires the estimation of

3Linear combination of predictors only.
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a transition matrix P with K ×K dimensionl. Raftery et al. (2010) replace

the model probability prediction equation with:

πt|t−1,k =
παt−1|t−1,k∑K
l=1 π

α
t−1|t−1,l

(4.10)

α ∈ [0, 1] is a forgetting factor similar to υ in Section 4.2.1. The approxi-

mation is used as it is proved to be suitable and not too restrictive in other

academic areas (Koop and Korobilis, 2012; Raftery, 1995; Smith and Miller,

1986) . If α = 1, we obtain the standard Bayesian model averaging (BMA).

Similarly, we assigned fixed values near one to α = 0.996, 0.985.

The updated equation of model probability is given as:

πt|t,k =
πt|t−1,kpk(Rt | Rt−1)∑K
l=1 πt|t−1,lpl(Rt | Rt−1)

(4.11)

where pk(Rt | Rt−1) is the predictive density of (4.6) evaluated given Rt.

Recall The Bayesian theorem:

p(Mi | Dt−1) ∝ p(Dt−1 |Mi)p(Mi) (4.12)

The numerator of equation (4.11) can be more easily reconciled to equa-

tion (4.12). The denominator of equation (4.11) is to ensure that the posterior

probabilities of all candidate models add up to 1. The DMA system can be

estimated given an initial condition for π0,k
4.

4.2.3 Dynamic Model Selection

The dynamic model selection method predicts hedge fund return by using

the forecast of the model with the highest predictive density πt|t−1,k in each

period.

4π0,k = 1/K.
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4.2.4 List of Prediction Models

In the empirical analysis of this study, we employ the OLS-AR(1) model as

the benchmark model:

Rt = β1 + β2Rt−1 (4.13)

Competing models are classified into six categories: DMA, DMS, BMA, BMS,

TVP-AR(1) and TVP-ALL models with different parametric values of α, υ

and κ:

DMA: 6 DMA models. Dynamic model averaging over the full combi-

nation set of 15 predictors5 with time-varying parameter settings (forgetting

factors α = υ = 0.996 or 0.985); Heteroscedasticity captured by the EWMA

model with decay factor κ = 0.92, 0.94 or 0.97.

DMS: 6 DMS models. Dynamic model selection models over the full com-

bination set of 15 predictors with time-varying parameter and heteroscedas-

ticity settings, assigned same parametric settings as the DMA models.

BMA: 3 BMA models. Bayesian model averaging over the full combina-

tion set of 15 predictors with constant paramter settings (i.e. with forgetting

factorsα = υ = 1); Heteroscedasticity captured by the EWMA model with

decay factor κ = 0.92, 0.94 or 0.97.

BMS: 3 BMS models. Bayesian model selection over the full combination

set of 15 predictors with constant paramter and heteroscedasticity settings,

assigned the same parametric settings as the BMA models.

TVP-AR(1): 6 TVP-AR(1) models. Linear regression models with the

constant and AR(1) terms as predictors and time-varying parameter settings

(forgetting factors υ = 0.996 or 0.985); Heteroscedasticity captured by the

EWMA model with decay factor κ = 0.92, 0.94 or 0.97.

TVP-ALL: 6 TVP-ALL models. Linear regression models with 15 pre-

dictors, AR(1) term and time-varying parameter settings (forgetting factors

5Number of candidate models K = 215 = 32768
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υ = 0.996 or 0.985); Heteroscedasticity captured by the EWMA model with

decay factor κ = 0.92, 0.94 or 0.97.

4.3 Data

Our hedge fund data set is from the database of BarclayHedge. The return

series are between 01/1994 to 12/2014. We adopt recursive estimation and

forecasting, the in-sample period ends at 12/2001, so we have 13 years (156

periods out-of-sample). Filters are applied to the database following aca-

demic and empirical practices (Avramov et al., 2011; ODoherty et al., 2015).

We include funds of which returns are reported in USD and net of all fees,

funds that are not closed to new investment, and funds that with asset under

management (AUM) greater than $10m. We exclude those with asset under

management (AUM) not uniquely listed, meaning returns of the exact same

assets could be reported under a different fund ID, leading to duplication.

We also exclude the first 12 months of return data of a fund to mitigate the

impact of backfill/selection bias. Selection bias arises from the typical prac-

tice that hedge fund managers choose to enter a hedge fund into a database

voluntarily. Naturally, only funds with good past track records would be

chosen to advertise for and attract outside investors (Avramov et al., 2011).

Moreover, there is a backfill period where the managers backfill its past per-

formance. Therefore, managers are unlikely to backfill if past return record

is bad (ODoherty et al., 2015).

To ensure that sufficient data are available for the estimation period,

forecasting starts only when a fund accumulates at least 8 years (96 data

points) of historical data. Therefore, after excluding the first 12 months

of return data, each fund would have at least seven years (84 periods) of

data in the sample. Each hedge fund time series are tested against unit-root

using the Augmented Dickey-Fuller test, while non-stationary time series

are excluded. Finally, we classify all individual funds into eleven strategies
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(CTA, Emerging Markets, Event Driven, Fund of Funds, Global Macro, Long

Only, Long/Short, Market Neutral, Multi-Strategy, Relative Value, Sector)

following the strategy mapping method provided by Joenväärä et al. (2016).

Funds that do not fall into these eleven strategies are excluded. Our final data

contain 926 live funds (consisting of 265 Fund of Funds) and 1043 graveyard

funds (consisting of 316 Fund of Funds). Excluding fund of funds, the total

amount of funds used for portfolio construction analysis is 1388 (661 live

funds and 727 graveyard funds).

[Table 4.1 about here.]

Table 4.1 Panel A reports summary statistics of the sample data. The

entire sample exhibits negative skewness and excess kurtosis with an average

monthly return of 0.72%. The most common trading strategies are fund

of funds (581 funds) and equity long/short (444 funds). Fund of funds also

accounts for the highest proportion of total asset under management ($162.50

billions), followed by Equity long/short ($97.89 billions) and CTA ($95.98

billions). Emerging market strategy shows the highest monthly return 0.91%

and the highest standard deviation 5.89%. Whereas, fund of funds presents

the lowest monthly return 0.47% and the lowest standard deviation 2.02%.

Similarly, market neutral strategy also has a low standard deviation 2.03%.

All strategies exhibit negative skewness over the sample period, except for

CTA and Global Macro. Market neutral and equity long/short have close-

to-zero skewness. Return distributions of all strategies are fat tailed. A

summary of live funds and graveyard funds show a similar picture, except

that for live funds, global macro shows the highest return and market neutral

gives the lowest return volatility.

We adopt an extensive list of hedge fund return predictors that has

achieved considerable prediction power according to the literature (Amenc

et al., 2003; Bali et al., 2012, 2013; Fung and Hsieh, 2004; Vrontos, 2012;

Agarwal and Naik, 2004; Wegener et al., 2010; Panopoulou and Vrontos,
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2015). The first set of predictors includes the Fung and Hsieh’s asset based

factors: bond, currency, commodity, short-term interest rate and stock in-

dex lookback straddle. The Fama-French factors: SMB and HML, and the

Carhart’s momentum factor are also included. Other macro variables, in-

cluding the S&P500 monthly log-return; change in VIX; change in 10Y T-bill

yield; change in 3M T-bill yield; annual growth rate of industrial production

in monthly frequency; monthly log-return of MSCI world index excluding the

US.

4.4 Predictive Ability

4.4.1 Statistical Evaluation of Forecasts

To assess the predictability of each model, we provide a snap shot of the sta-

tistical evaluation of self-constructed hedge fund indices on the eleven differ-

ent trading strategies CTA, emerging market (EM), event driven(ED), fund

of funds(FF), global macro (GM), equity long only (LO), equity long/short(LS),

market neutral(MN), multi-strategy(MS), relative value (RV) and Sector.

Indices are constructed based on either an equally weighted approach or an

AUM weighted approach.

To assess the forecast accuracy, we employ the measure of Theil’s U:

Theil′sU =
MSFEi

MSFEOLS−AR(1)

(4.14)

where MSFEi is the mean squared forecast error of competing model

i over the out-of-sample period, and MSFEOLS−AR(1) is the mean squared

forecast error the the benchmark OLS-AR(1) model. Theil’s U value of less

than 1 indicates superior forecasting accuracy of the competing model.

Table 4.2 reports the Theil’s U with the t-value (Clark and West, 2006)

of MSFEi compared with MSFEOLS−AR(1). Clark and West (2007) asserts

that when comparing the MSFE of a parsimonious null model with a more
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complex model which is nested within the null model, the more complex alter-

native model is expected to have a greater MSFE than the null model when

the extra parameter has no explanatory power to data generation. Assuming

the extra parameters have no explanatory power, the parsimonious model

assigns zero value to the parameters which are their population values. On

the other hand, the alternative model must induce more noises to the forecast

results as it assigns some values that are deviated from the population value

zero to the extra parameters. Therefore, MSFE differences between the two

models do not yield good test statistics to the hypothesis test of whether the

alternative provides addition explanatory power compared to the null. Clark

and West (2006, 2007) present a method of how to adjust MSFEs to account

for the noises and to perform tests of equal forecast accuracy. Let MSFE1 be

the squared forecasting error of the null model (i.e. the OLS-AR(1) model in

our context), and MSFE2 be the squared forecasting error of the alternative

model. ŷ1,t and ŷ2,t are the forecasts of null and alternative models over the

period of t = 1, 2, ..., N , and yt is the observed data. The test statistics of

forecast accuracy is:

T̄ = N−1

N∑
t=1

T̂t

= MSFE1 − (MSFE2 − adj.)

adj. = N−1

N∑
t=1

(ŷ1,t − ŷ2,t)
2

T̂t = (ŷ1,t − yt)2 − [(ŷ2,t − yt)2 − (ŷ1,t − ŷ2,t)
2]

(4.15)

T̄ defines the adjusted MSFE, and the t-value of whether the alternative

model excels the benchmark model in forecast accuracy is calculated by√
NT̄/[standard deviation of T̂ ]. Clark and West (2007) prove that the null
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hypothesis of the alternative model has equal predictive power as the null

model shall be rejected if the t-statistic is greater than +1.282 (for a one-

sided 0.05 - 0.10 test), and +1.645 (for a one-sided 0.01 - 0.05 test). When

the noises accounted are substantial, it is possible for an competing model

to have a Theil’s U > 1 and a significant positive MSFEadj. t-value at the

same time. A model shall deemed to have certain level of improvement in

forecasting accuracy when either of the MSFE measures gives positive indi-

cation.

Results of both equally weighted indices and AUM weighted indices are

tabulated in Table 4.2 and 4.3. Overall, the competing models exhibit

most advantage in forecast accuracy in the CTA, FF, MN and MS trad-

ing strategies for the equally weighted indices. The most notable improve-

ments in MSFEs are found in the CTA strategy, TVP-AR(1) (υ = 0.985,

κ = 0.92/0.94/0.97) shows a Theil’s U of 0.916, 0.915 and 0.912 respectively

with significant t-statistics. The competing models exhibit least advantage

in forecasting the EM strategy, in which none of the models generate more

accurate forecast than the OLS-AR(1) model.

For AUM weighted indices (Table 4.3), competing models exhibit most

advantage in forecast accuracy in the ED, FF, GM, MN and MS strategies.

The most significant improvements in MSFEs are found in the MN strategy,

TVP-AR(1) (υ = 0.985, κ = 0.92/0.94/0.97) shows a Theil’s U of 0.859,

0.868 and 0.883 respectively with very significant t-statistics. The competing

models exhibit least advantage in forecasting the CTA and EM strategy, in

which almost none of the models generate a more accurate forecast than the

OLS-AR(1) model. The result of CTA is quite controversial compared to the

equally weighted indices, indicating potential difficulty of forecasting a few

high AUM funds.

Moreover, the group of TVP-AR(1) models performs best among the oth-

ers, followed by BMA models, BMS model and DMA models. For the model

averaging and model selection type of models, those with greater value in
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forgetting factors α and υ, and smaller value in κ tend to generate better

forecast accuracy. This indicates that hedge fund return data favours little

time variation in parameters and model predictive probability, but quicker

decay in the EWMA estimation of regression residual variance Ht. On the

other hand, TVP-AR(1) models do not show a consistent performance pat-

tern in the parametric settings of υ and κ.

[Table 4.2 about here.]

[Table 4.3 about here.]

Table 4.4 and 4.5 present the sum of log predictive likelihood of each

model (the OLS-AR(1) model is not Bayesian, thus we do not report its

predictive likelihood results). The boldface value in Table 4.4 and 4.5 are

the top three performers among the models. Quite consistently, for both

equally weighted and AUM weighted indices, all strategies favour the DMS

models, more specifically, DMS model with α and υ equals to 0.985. This

indicates that models with highest predictive probability tend to successfully

generate high log predictive likelihood. Time-varying parameters play an

important role in generating higher predictive likelihood: the quicker the

evolution speed, the higher the predictive likelihood. The only exceptional

occasions are found in CTA for equally weighted indices and in CTA and GM

for AUM weighted indices, where a TVP-AR(1) model and a BMS model also

tend to show strong results.

[Table 4.4 about here.]

[Table 4.5 about here.]

4.4.2 Economic Evaluation of Forecasts

Leitch and Tanner (1991) claims that conventional forecast error measures

do not fully assess return forecasts in terms of profitability. Profit- or utility-

based metrics provide more direct measures of the economic value of the
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forecasts. Following Campbell and Thompson (2008) and Neely et al. (2014),

among others, we measure the economic value of hedge fund return forecasts

through an asset allocation exercise. We compute the certainty equivalent

return (CER) for a mean-variance investor with a portfolio consisting of the

risk-free asset and one risky asset (i.e. the hedge fund indices). The investor’s

problem is how to allocate wealth between the two assets at the beginning

of every period. The optimal solution for the weight of wealth to be invested

in the risky asset (wt) for period t+1 is given by:

wt =

(
1

γ

)(
R̂t+1

σ̂2
t+1

)
(4.16)

where γ is the relative risk aversion coefficient that indicates the investor’s

risk appetite, we set γ = 2; R̂t+1 as a forecast of the hedge fund return in

the next period; and σ̂2
t+1 is a forecast of its variance. Stambaugh (1999);

Barberis (2000); Kandel and Stambaugh (1996) emphasise the importance

of considering parameter uncertainty when determining optimal portfolio

weights. Prediction of future returns associated with parameter estimation

errors, and hence the historical variation of asset return can rarely capture

the high uncertainty of model forecast Barberis (2000). Following Kandel

and Stambaugh (1996), in particular, we adopt the variance of the model

forecast given in the predictive density in equation (4.6) at each point in

time to derive the optimal portfolio weights. The benchmark model OLS-

AR(1) adopts model forecast with historical variance as predictive density

of forecast is not available in non-Bayesian estimation. The optimal weight

is subject to constraints 0 6 wt 6 1.5 to eliminate short selling and over

leverage.

Portfolio returns over the out-of-sample period Rt+1 is equal to:

Rp,t+1 = wt ·Rt+1 + (1− wt) · rf,t (4.17)

rf,t denotes the risk-free return. The CER of the portfolio is:

137



CERp = µ̂p −
1

2
γσ̂2

p (4.18)

Where µ̂p and σ̂2
p are the mean and variance of portfolio return over the

out-of-sample period.

Table 4.6 and 4.7 summarise the results of CER. For the equally weighted

indices, MN and CTA deliver the highest CER of 151 - 210bps. and 144 -

176bps. per month respectively, whereas LO delivers the lowest maximum

CER (around 130bps. per month) among all categories. The majority of

competing models are found to strongly outperform the benchmark model.

The benchmark model only proves difficult to surpass in the GM strategy.

Although competing models do not show significant improvement of forecast

accuracy in the MSFEs of EM, LO and MN strategies, they have significantly

outperformed the benchmark model in the CER measure. Such results con-

firm the findings of Leitch and Tanner (1991) and Rapach et al. (2013) that

MSFE has a weak relationship with forecast profitability. Competing models

show the greatest improvement in CER magnitude in RV (-0.32bps. com-

pared with 63 - 204bps.), followed by FF (91.77bps. compared with 118 -

151bps.) and MN (141.87bps. compared with 151 - 210bps.). In general,

TVP-AR(1) models provide the best results, followed by DMA models.

For the AUM weighted indices, MN and MS deliver the highest CER

of 186 - 267bps. and 140 - 252bps. per month respectively, whereas LO

delivers the lowest maximum CER (around 131bps. per month) among all

categories. Different from the equally weighted indices, the competing model

shows strong advantage in GM strategy, while the weakest results are found

in ED strategy. The greatest improvement in CER magnitude is again found

in RV, followed by MS, FF and Sector. In general, DMA models provide the

best results, followed by BMS and TVP-AR(1) models.

[Table 4.6 about here.]

[Table 4.7 about here.]
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4.5 Dynamic Portfolio Construction

4.5.1 Portfolio Construction Framework

A portfolio construction exercise is carried out based on the forecasts of each

individual funds over the out-of-sample period Jan 2002 - Dec 2014. Fund

of funds are excluded from the exercise. To mitigate the problem of selec-

tion/survival bias, graveyard funds are also included in portfolio construction.

Graveyard data are sourced from the graveyard database of BarclayHedge.

We apply identical data filters as stated in section 4.3. After filtering, we

have 1043 graveyard funds. Selection of the fund of funds is based on two

different criteria: the value of the expected future return of funds, and the

t-statistics of the expected return of each model k.Avramov et al. (2013)

suggest that return forecast is estimated with uncertainty, and estimation

uncertainties differ across models and dataset. Selecting funds based on ex-

pected future returns or historical variance of funds overlook this type of

model risk. Moreover, forecast returns of different funds using the same

model cannot be compared like with like due to different estimation accu-

racy embedded. They developed a strategy which selects funds based on the

t-statistics of the forecasts of each model at each forecast point:

t− stat(R̂t+1) =
R̂t+1

σ̂t+1

(4.19)

where R̂t+1 is the expected hedge fund return in the next period; and σ̂t+1 is

the standard deviation of the model forecast. In all competing models, σ̂t+1

is obtained from the predictive density of each forecast point in the equation

(4.6). For the benchmark OLS-AR(1) model, σ̂t+1 is computed as follow:

σ̂
OLS−AR(1)
t+1 =

√
z′t+1 Σt+1|t zt+1 (4.20)

where zt+1 = Xt is the observation vector of predictors (i.e. return observa-

tion in the last period and the constant term in the OLS-AR(1) model) at
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time t, Σt+1|t is the variance-covariance matrix of estimated coefficients.

After selecting the top 30 funds either based on the expected future re-

turns or the forecast t-statistics, the optimal weights allocated to the 30

funds are determined by two methods: the 1/N allocation method and the

mean-variance optimisation method. Constructed portfolio is reseleted and

rebalanced annually.

We consider the following mean-variance optimisation problem:

min V ar(Rp)

s.t. wL 6 wi 6 wU , (i = 1, ..., n);
n∑
i

wi = 1;

E(Rp) > RG

(4.21)

where E(Rp) is the expected return of the n-assets portfolio of hedge funds,

V ar(Rp) is the variance of the portfolio return. V ar(Rp) = w′Vw, w is the

vector which contains optimal weights wi (i = 1, ..., n) of each fund of the

portfolio, and V is the n× n matrix of sample variance-covariance matrix of

fund returns. Upper and lower bounds of wi are set to be [0, 0.5] in order to

eliminate short selling and facilitate diversification (Panopoulou and Vrontos,

2015; Harris and Mazibas, 2013, see for example). RG is the target portfolio

return applied to the optimisation problem, we set RG = 12% following

Panopoulou and Vrontos (2015).

4.5.2 Portfolio Performance Evaluation Criteria

The performance of the portfolios are evaluated over the out-of-sample period

Jan 2002 - Dec 2014 using various performance measures.

First, we consider the average of realised portfolio return (AR) over the

out-of-sample period. Given the weights wt = w1,t, w2,t, ..., wn,t of the n-
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assets portfolio, and realised returns of each included funds at t+1 Rt+1 =

R1,t+1, R2,t+1, ..., Rn,t+1. Therefore, the realised portfolio return at time t+1

is calculated as:

Rp,t+1 = w′tRt+1 (4.22)

We also consider the end of period value (EPV) which is the terminal

wealth if we invest 1 unit of wealth at the beginning of the out-of-sample

period.

Second, we consider risk related performance measures, including the

Sharpe ratio (SR), the Sortino ratio and the Upside Potential ratio. Sharpe

ratio is defined by the realised portfolio average return E(Rp) and variance

V arp over the out-of-sample period.

SRp =
E(Rp)− E(rf )√

V ar(Rp)
(4.23)

where E(rf ) is the expected risk-free return over the period. To match

the monthly return data frequency, we adopt the 1-month T-bill rate as the

proxy of risk-free return.

The Sortino and Satchell (2001)’s reward to lower partial moment ratio

(Sortino ratio) is defined as the excessive portfolio return over a threshold

value divided by the standard deviation of negative excessive returns. We

use risk-free return as the threshold value:

Sortino(Rp) =
E(Rp)− E(rf )√
E[(rf −Rp)2

+]
(4.24)

Sortino et al. (1999) propose the Upside Potential ratio, which compares

the positive excessive return of the managed portfolio over a threshold return

value with the standard deviation of the negative excessive return of the

portfolio:

Upside(Rp) =
E[(Rp − rf )+]√
E[(rf −Rp)2

+]
(4.25)
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We also consider the Omega raito by Keating and Shadwick (2002). The

Omega ratio gauges the size between positive and negative excess return of

the portfolio with respect to a threshold return value. Similarly, we adopt

the risk-free return as the threshold value.

Omega(Rp) =
E[(Rp − rf )+]

E[(rf −Rp)+]
(4.26)

Finally, tail risk of portfolio returns are also assessed using value-at-risk

V aR1%, V aR5% and V aR10% based on the realised portfolio average return

E(Rp) and variance V ar(Rp).

4.5.3 Out-of-sample Portfolio Performance Results

Table 4.8 reports the results of portfolios constructed based on expected re-

turns with 1/N allocation method. Overall, the result suggest that competing

models outperform the benchmark model absolutely in risk-return trade-off

and risk related performance measures, whereas some models do not beat the

benchmark model in terms of absolute return measures (i.e. average port-

folio return and end of period value). These results indicate that portfolios

constructed based on forecasts of competing models generate less volatility

in return time series compared to the benchmark portfolio. Hence, these

portfolios deliver a higher return per unit risk ratio and smaller loss value at

tail area. The Omega ratio of all portfolios are greater than 1, indicating that

all portfolios generate higher positive gain than losses. Better performance

in the Omega ratio demonstrates that the portfolio generates higher value in

positive return compared with the magnitude of portfolio negative returns

over the test period. Better performance in Sortino and Upside Potential

ratio shows higher return generated per unit downside risk taken.

The TVP-AR(1) (υ = 0.996, κ = 0.92) model presents the highest ab-

solute return (1.131% monthly return and 4.922 EPV), followed by TVP-

AR(1) (υ = 0.996, κ = 0.94) model (AR 1.109%, EPV 4.725). Their Shapre,
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Omega, Sortino and Upside Potential ratios take the top rankings among the

others. In general, the group of TVP-AR(1) models with υ = 0.996 shows

the strongest performance, followed by TVP-AR(1) models with υ = 0.985,

DMA and DMS models with α = υ = 0.996, then BMA models.

[Table 4.8 about here.]

Moving to the mean-variance optimised expected return based portfolios,

competing models remain very strong positions compared to the benchmark

model. However, the TVP-AR(1) models have loss some of their superiority

compared to the benchmark. Instead, TVP-ALL models show the greatest

improvement compared to their results in the 1/N portfolios. BMA models

deliver the best performance, followed by TVP-ALL models, DMA models

and BMS models.

Mean-variance optimisation takes the variance of portfolio return into

account in order to minimise the risk while achieving the target portfolio

return. While the majority of competing models showed improved perfor-

mance compared to the 1/N allocation, results of both the benchmark model

and the TVP-AR(1) models deteriorated, showing that the mean-variance

optimisation approach adds more value to complex forecast models.

[Table 4.9 about here.]

Table 4.10 and 4.11 present the results of portfolios constructed based

on t-statistics of model forecasts. Focused on the 1/N allocated portfolio,

overall, the AR and EPV statistics of all models decreased by 10%-30% com-

pared to the expected return portfolios. However, the performance in the

Sharpe, Omega, Sortino and Upside Potential raios generally improved com-

pared with the expected return portfolios. Moreover, the performance in

tail risk presented by VaRs are 2.5-5 times less than the expected return

based portfolios. These results suggest that portfolio risk is reduced consid-

erably when constructed based on t-statistics of model forecast. As a result,
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absolute returns of portfolios show a decrease due to risk-return trade-off.

The improvement in the benchmark OLS-AR(1) model is most noteworthy

among the rest, the Sharpe, Omega, Sortino and Upside Potential ratios are

2 or more than 2 times better than before, whereas the VaR performances

are more than 5 times better than before. Consequently, we do not observe

any competing model which can outperform the benchmark models in all

risk-related measures. However, all competing models still retain a strong

advantage in absolute return measures. Among all competing models, the

TVP-AR(1) group of models is the one which achieved greatest improve-

ments in risk related measures. As a result, the TVP-AR(1) models with

certain parametric settings are still capable of outperforming the benchmark

model in all measures except portfolio VaR, models with υ = 0.996 which

perform better than models with υ = 0.985. The highest returns are found

in the DMA (α = υ = 0.985, κ = 0.97) model with monthly AR 0.760% and

EPV 3.133, followed by the TVP-ALL models with υ = 0.996.

Moving from 1/N allocation to mean-variance allocation, the overall pic-

ture is similar to the mean based portfolios when moving to mean-variance

portfolio allocation. Statistics show that for all models, both absolute port-

folio returns and risk are reduced, but the risk-return trade-off performance

of the mean-variance portfolio seems to be improved greatly in the com-

plex models compared with the statistics in the 1/N portfolio. Despite the

portfolio VaR, we find the majority of competing models outperform the

benchmark in all aspects. Furthermore, TVP-AR(1) models and BMA mod-

els with certain parametric settings are able to outstrip the benchmark in

all performance measures. TVP-AR(1) models with υ = 0.985 show the

strongest performance, followed by BMA models. Results show the same

evidence as in Table 4.9 that mean-variance allocation works more efficiently

for complex models.

[Table 4.10 about here.]

[Table 4.11 about here.]
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To gauge the model performances during volatile market conditions, we

evaluate the portfolio performance during the global financial crisis periods

from Jan 2007 - Dec 2009 in particular. Portfolios held during this period

are first constructed at the end of 2006 and rebalanced at the end of each

year. Results of the four types of portfolios construction approaches utilised

are reported in Table 4.12 - 4.15.

Results show that expected return based portfolios with 1/N allocation

still remain the one which has the most competing models outperforming the

benchmark model, and the advantages are shown in all types of performance

measures. In general, the group of TVP-AR(1) models with υ = 0.985 shows

the strongest performance, followed by TVP-AR(1) models with υ = 0.996,

BMA models and DMS models with α = υ = 0.996. These are a similar list

of top models as evidenced in the full out-of-sample periods. Switching to

mean-variance allocation, similarly BMA models ranked the top performance

group, followed by DMA models with α = υ = 0.985 and TVP-ALL models.

Moving to t-statistics based portfolios with 1/N allocation (Table 4.14),

while portfolio absolute returns and VaR are decreased which is consistent

with the full out-of-sample periods results, it is noteworthy that during the

crisis period the risk-return trade-off type of measures do not improve when

portfolios are selected based on t-statistics. The results indicate the increased

difficulty in achieving low hedge fund return volatility during the period

of financial crisis. It is hard to identify any group of competing models

which is particularly salient. Instead, models with κ = 0.94 or 0.97 tend to

show stronger performance indicating the clustering of volatility during the

tested periods. With mean-variance allocation, results show the same picture,

but with further deterioration in portfolio returns, many models generate

negative average returns or negative Sharpe ratio including the benchmark

OLS-AR(1) model. However, despite models with κ = 0.94 or 0.97 continue

to show better results in general, BMA models and TVP-AR(1) models with

υ = 0.985 exhibit very strong performance in all aspects.
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These results demonstrate that the time varying feature and faster decay

of parameters are essential in gauging valuable investments during volatile

market periods. On the other hand, slower decay factor of the EWMA esti-

mator is preferred indicating volatility clustering during periods of financial

stress in the markets.

[Table 4.12 about here.]

[Table 4.13 about here.]

[Table 4.14 about here.]

[Table 4.15 about here.]

4.5.4 Portfolio Composition

Figure 4.1 and 4.2 show the portfolio compositions of selected models6at four

rebalance points Jan 2002, Jan 2006, Jan 2009 and Jan 2013 respectively.

In expected value based portfolios, equity long/short and CTA strategies

account for the highest proportion in selected funds, followed by sector and

emerging market strategies. There is an increasing trend of selecting the

CTA funds, whereas a decreasing trend of selecting LS and Sector funds is

observed throughout the periods. For t-statistics based portfolios, funds with

MS,EM and RV strategies are selected the most. Portfolios selected based

on t-statistics are more diversified compared to the expected value portfolios.

Moreover, the ED strategy received zero weight in all four models, whereas

the Sector strategy received zero weight in the OLS-AR(1), but some weights

in the other 3 models. Portfolio composition of the BMA and DMA models

seems to show a high degree of similarity when selected based on t-statistics.

Equity long/short strategy attracted a tremendous amount of investment at

6Selected models: OLS-AR(1), BMA (α = υ = 1, κ = 0.97), DMA (α = υ = 0.996, κ =
0.97), TVP-AR(1) (α = υ = 0.996, κ = 0.97)
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the crisis period Jan 2009. Overall, taking into account model uncertainty in

hedge fund return forecast and portfolio construction tends to diversify the

selection among different trading strategies when benchmarking the OLS-

AR(1) model.

[Figure 4.1 about here.]

[Figure 4.2 about here.]

4.6 Conclusion

In this study, we jointly investigate the statistical and economic value of

incorporating heteroscedasticity, non-normality, time-varying parameter of

predictive regression models, model specification uncertainty and parameter

uncertainty in hedge fund return forecast and portfolio construction. We

employ the methods introduced by Koop and Korobilis (2012). Parameter

uncertainty is dealt with by the time-varing parameter structure, and model

specification uncertainty is mitigated by dynamic model averaging or model

selection. Empirical results show that addressing model risk by the proposed

method significantly improved forecast accuracy and portfolio performance

of hedge funds.

With respect to the benchmark OLS-AR(1) model, we find that the pro-

posed methods have good statistical value in terms of forecast accuracy as

measured by MSFE and log predictive likelihood. In the analysis of certainty

equivalent return (CER), competing models deliver superior CER results

compared to the benchmark when estimation risk is further mitigated by

adopting estimation variance of the model forecasts as the forecast variance

of hedge fund returns, indicating very strong economic value of the model

forecasts.

Regarding portfolio construction exercises, in the full out-of-sample pe-

riod (Jan 2002 - Dec 2014), we find the majority of competing models out-

perform the benchmark model, indicating that consideration of parameter or
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model selection risk adds significant economic value to portfolio construction.

Among the four different portfolio construction approaches, BMA and TVP-

AR(1) models with gradual evolution speed of parameters show the best and

most stable performance among others. On the other hand, the results sug-

gest that the DMA models with the time-varying parameter settings does

not contribute significant extra value compared to the conventional Bayesian

model averaging approach in terms of constructing fund of funds. Compari-

son between the portfolios selected based on expected returns or t-statistics

shows that t-statistics portfolios have a lower level of risk, which is evidenced

by reduced portfolio return, yet increased Sharpe Ratio and reduced VaR.

The outstanding performance of competing models persists during the crisis

period 2007 - 2009, but with lower absolute returns and much higher return

volatilities and tail risk. Models with decay factor closer to 1 in the EWMA

forecast of volatility generate better results overall, which supports volatility

clustering in market stress periods.
text
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Figure 4.1: Portfolio Composition of Top Expected Value Portfolios

Note: The figure shows composition of portfolios selected based on forecast expected
value of fund returns at time Jan 2002, Jan 2006, Jan 2009 and Jan 2013 respectively.
Selected models are OLS-AR(1), BMA (α = υ = 1, κ = 0.97), DMA
(α = υ = 0.996, κ = 0.97), TVP-AR(1) (α = υ = 0.996, κ = 0.97).
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Figure 4.2: Portfolio Composition of Top t-statistics Portfolios

Note: The figure shows composition of portfolios selected based on t-statistics of
expected return at time Jan 2002, Jan 2006, Jan 2009 and Jan 2013 respectively.
Selected models are OLS-AR(1), BMA (α = υ = 1, κ = 0.97), DMA
(α = υ = 0.996, κ = 0.97), TVP-AR(1) (α = υ = 0.996, κ = 0.97).
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Table 4.1: Summary Statistic of Monthly Hedge Fund Data

Category N
AUM
($bn.)

Mean Std. Dev. Skewness
Excess

Kurtosis
Panel A: All Funds
All 1969 731.02 0.72 3.50 -0.55 5.54
CTA 55 95.98 0.77 4.22 0.56 4.39
Emerging Market 164 54.04 0.91 5.89 -0.48 6.18
Event Driven 152 86.71 0.80 3.05 -0.59 5.25
Fund of Funds 581 162.50 0.47 2.02 -1.07 5.80
Global Macro 92 29.01 0.82 3.78 0.34 4.40
Equity Long Only 65 26.16 0.81 4.83 -0.14 2.43
Equity Long/Short 444 97.89 0.86 4.37 -0.03 3.11
Market Neutral 36 4.76 0.53 2.03 0.10 3.26
Multi-Strategy 93 95.29 0.75 2.76 -0.70 6.41
Relative Value 172 59.97 0.74 3.08 -1.45 13.90
Sector 115 18.71 0.86 5.09 -0.14 3.76
Panel B: Live Funds
All 926 429.54 0.73 3.55 -0.51 5.38
CTA 27 91.79 0.81 4.16 0.54 5.16
Emerging Market 89 27.71 0.86 5.82 -0.35 4.78
Event Driven 66 23.93 0.75 2.96 -0.47 5.48
Fund of Funds 265 93.70 0.48 2.02 -1.05 6.14
Global Macro 42 18.81 0.92 3.99 0.35 4.29
Equity Long Only 34 10.12 0.83 5.03 -0.23 2.61
Equity Long/Short 211 54.12 0.87 4.39 -0.10 2.89
Market Neutral 18 3.32 0.62 1.82 0.04 3.21
Multi-Strategy 41 54.79 0.82 2.97 -0.49 5.63
Relative Value 71 40.04 0.81 3.01 -1.36 14.87
Sector 62 11.22 0.77 4.77 -0.26 3.30
Panel C: Graveyard Funds
All 1043 301.48 0.71 3.45 -0.58 5.68
CTA 28 4.20 0.72 4.28 0.59 3.66
Emerging Market 75 26.33 0.98 5.98 -0.63 7.84
Event Driven 86 62.78 0.83 3.12 -0.68 5.07
Fund of Funds 316 68.80 0.47 2.02 -1.08 5.52
Global Macro 50 10.20 0.73 3.61 0.33 4.49
Equity Long Only 31 16.04 0.79 4.61 -0.04 2.22
Equity Long/Short 233 43.77 0.86 4.36 0.04 3.31
Market Neutral 18 1.44 0.45 2.25 0.17 3.32
Multi-Strategy 52 40.50 0.70 2.60 -0.87 7.02
Relative Value 101 19.93 0.70 3.14 -1.51 13.21
Sector 53 7.49 0.96 5.46 0.01 4.29

Note: The table reports the total number and the total asset under management of funds
under each category. The summary statistics are the average monthly return, standard
deviation, skewness and excess kurtosis. Sample period: Jan 1994 - Dec 2014.
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Table 4.2: Statistical evaluation - Theil’s U of equally weighted indices

CTA EM ED FF GM LO LS MN MS RV Sector
OLS-AR(1) 1.676 11.156 3.140 1.923 1.829 12.358 6.526 0.390 1.889 1.847 7.030

BMA (α = υ = 1, κ = 0.92) 0.960* 1.030 0.990 0.987* 1.003* 1.011 1.003 1.015* 0.976* 0.959* 1.021
BMA (α = υ = 1, κ = 0.94) 0.963* 1.036 0.994 0.988* 1.003* 1.018 1.009 1.024* 0.976* 0.985 1.030
BMA (α = υ = 1,κ = 0.97) 0.974* 1.056 1.011 0.990* 1.002* 1.036 1.021 1.052* 0.976* 1.045 1.044
BMS (α = υ = 1, κ = 0.92) 0.960* 1.021 1.001 0.989* 1.044 1.012 1.004 1.051 0.997* 0.972* 1.042
BMS (α = υ = 1, κ = 0.94) 0.967* 1.021 1.007 0.991* 1.026 1.007 1.004 1.058 1.007 0.971* 1.046
BMS (α = υ = 1, κ = 0.97) 0.975* 1.050 1.013 1.003* 1.003* 1.045 1.037 1.134 1.013 1.044 1.062
DMA (α = υ = 0.996, κ = 0.92) 0.942* 1.048 0.997 0.986* 1.008 1.030 1.013 1.011* 0.971* 0.990 1.027
DMA (α = υ = 0.996, κ = 0.94) 0.942* 1.057 1.002 0.989* 1.008 1.039 1.020 1.017* 0.972* 1.019 1.032
DMA (α = υ = 0.996, κ = 0.97) 0.948* 1.077 1.017 0.996* 1.007 1.056 1.032 1.033* 0.975* 1.062 1.043
DMA (α = υ = 0.985, κ = 0.92) 0.950* 1.136 1.036 1.016* 1.047 1.085 1.046* 1.017* 0.990* 1.132 1.059*
DMA (α = υ = 0.985, κ = 0.94) 0.945* 1.150 1.043 1.030* 1.043 1.094 1.051 1.017* 0.994* 1.173 1.062*
DMA (α = υ = 0.985, κ = 0.97) 0.933* 1.158 1.056 1.059* 1.036 1.107 1.057 1.011* 1.007* 1.240 1.057*
DMS (α = υ = 0.996, κ = 0.92) 0.947* 1.024 1.038 1.019 1.024 1.065 1.034 1.074 1.018 1.064 1.051
DMS (α = υ = 0.996, κ = 0.94) 0.945* 1.021 1.038 1.035 1.028 1.043 1.037 1.084 0.995 1.040 1.092
DMS (α = υ = 0.996, κ = 0.97) 0.948* 1.085 1.018 1.090 1.006* 1.041 1.051 1.138 1.013 1.086 1.117
DMS (α = υ = 0.985,κ = 0.92) 0.945* 1.157 1.094 1.041* 1.088 1.100 1.044 1.110* 1.084 1.130 1.158
DMS (α = υ = 0.985, κ = 0.94) 0.946* 1.245 1.104 1.128 1.065 1.129 1.073 1.119 1.084 1.190 1.150
DMS (α = υ = 0.985, κ = 0.97) 0.944* 1.241 1.085 1.172* 1.076 1.135 1.084 1.049* 1.061* 1.237 1.112*
TVP-ALL (υ = 0.996, κ = 0.92) 1.143* 1.349 1.206 1.158 1.133 1.166 1.153 1.293 1.061* 1.324 1.185
TVP-ALL (υ = 0.996, κ = 0.94) 1.138* 1.374 1.206 1.166 1.127 1.170 1.156 1.307 1.061* 1.365 1.195
TVP-ALL (υ = 0.996, κ = 0.97) 1.128* 1.381 1.190 1.178 1.110 1.168 1.149 1.347 1.059* 1.332 1.200
TVP-ALL (υ = 0.985, κ = 0.92) 1.119* 1.556 1.293 1.328* 1.225 1.278 1.270 1.376* 1.146* 1.532 1.285*
TVP-ALL (υ = 0.985, κ = 0.94) 1.107* 1.586 1.299 1.350* 1.219 1.283 1.274 1.390 1.151* 1.579 1.296*
TVP-ALL (υ = 0.985, κ = 0.97) 1.073* 1.581 1.285 1.387* 1.198 1.269 1.253 1.381 1.156* 1.575 1.297
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.942* 1.014 0.987* 0.994* 0.994 0.986* 0.988* 0.957* 0.990* 0.956* 0.977*
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.943* 1.012 0.988* 0.996 0.994 0.987* 0.990* 0.958* 0.990* 0.960* 0.979*
TVP-AR(1) (υ = 0.996, κ = 0.97) 0.948* 1.005 0.991* 0.996 0.993* 0.991* 0.995 0.966* 0.993* 0.970 0.986
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.916* 1.030 0.982 1.007 1.002 0.998 0.997 0.926* 0.997 0.961 0.984
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.915* 1.028 0.984 1.010 1.000 0.999 0.998 0.922* 0.997 0.969 0.986
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.912* 1.024 0.988 1.011 0.995 1.003 1.002 0.915* 0.999 1.000 0.991

Note: The table reports Theil’s U statistics of each model calculating based on the out-of-sample MSFEs of
equally weighted hedge fund strategy indices . Theil’s U less than 1 (in boldface) indicates better performance
of the underlying model compared to the benchmark model OLS-AR(1). * indicates the underlying Clark and
West (2007) MSFE-adj. t-statistics are greater than +1.282, which means the model shows statistical
improvement in forecast accuracy at a significant level between 5% to 10%. Out-of-sample forecasting period:
Jan 2002 - Dec 2014.
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Table 4.3: Statistical evaluation - Theil’s U of AUM weighted indices

CTA EM ED FF GM LO LS MN MS RV Sector
OLS-AR(1) 6.448 7.181 2.671 1.557 1.872 18.679 5.429 0.557 0.982 1.293 6.938

BMA (α = υ = 1, κ = 0.92) 1.071 1.028 0.970* 1.007 0.972* 1.036 0.996* 0.941* 0.966* 0.930* 1.017
BMA (α = υ = 1, κ = 0.94) 1.104 1.037 0.970* 1.005 0.968* 1.042 0.999 0.964* 0.970* 0.949 1.024
BMA (α = υ = 1,κ = 0.97) 1.139 1.074 0.971* 0.998* 0.971* 1.043 1.008 1.006* 0.991* 1.014 1.029
BMS (α = υ = 1, κ = 0.92) 1.114 1.010 0.961* 1.010 0.951* 1.063 1.012 0.981* 0.963* 0.927* 1.025*
BMS (α = υ = 1, κ = 0.94) 1.209 1.014 0.974* 0.993* 0.946* 1.050 1.011 1.012* 0.964* 0.952* 1.025*
BMS (α = υ = 1, κ = 0.97) 1.176 1.050 0.963* 0.988* 0.981* 1.025 1.018 1.052* 1.022 1.077 1.043
DMA (α = υ = 0.996, κ = 0.92) 1.116 1.045 0.978* 0.996* 0.983* 1.052 1.007 0.927* 0.964* 0.945 1.023
DMA (α = υ = 0.996, κ = 0.94) 1.135 1.057 0.978* 1.000 0.978* 1.058 1.011 0.947* 0.972* 0.977 1.026
DMA (α = υ = 0.996, κ = 0.97) 1.151 1.086 0.979* 1.005* 0.977* 1.062 1.020 0.975* 1.002* 1.012 1.027
DMA (α = υ = 0.985, κ = 0.92) 1.260 1.131 1.042* 1.017* 1.043* 1.112 1.046 0.932* 1.017* 1.072 1.052*
DMA (α = υ = 0.985, κ = 0.94) 1.271 1.150 1.042* 1.034* 1.033* 1.116 1.051 0.946* 1.035* 1.105 1.052*
DMA (α = υ = 0.985, κ = 0.97) 1.253 1.183 1.030* 1.066* 1.007* 1.117 1.059 0.946* 1.084* 1.114 1.036*
DMS (α = υ = 0.996, κ = 0.92) 1.168 1.009 1.002* 1.021 0.953* 1.099 1.014 0.976* 1.080 0.945* 1.086
DMS (α = υ = 0.996, κ = 0.94) 1.165 1.028 1.001* 1.039 0.947* 1.087 1.019 0.993* 1.068 0.995 1.062*
DMS (α = υ = 0.996, κ = 0.97) 1.208 1.191 1.008* 1.014 0.973* 1.091 1.061 1.024* 1.105 0.999 1.093
DMS (α = υ = 0.985,κ = 0.92) 1.403 1.153 1.080* 1.083* 1.120* 1.137 1.069 1.007* 1.129 1.106 1.134*
DMS (α = υ = 0.985, κ = 0.94) 1.396 1.175 1.072* 1.110 1.048* 1.151 1.087 0.991* 1.136 1.168 1.124*
DMS (α = υ = 0.985, κ = 0.97) 1.344 1.279 1.080* 1.143* 1.015* 1.215 1.101 0.990* 1.242 1.262 1.136
TVP-ALL (υ = 0.996, κ = 0.92) 1.219 1.360 1.218 1.273 1.494* 1.226 1.134 1.226* 1.130* 1.378 1.258
TVP-ALL (υ = 0.996, κ = 0.94) 1.220 1.405 1.200 1.286 1.508* 1.225 1.137 1.256* 1.142* 1.416 1.265
TVP-ALL (υ = 0.996, κ = 0.97) 1.209 1.477 1.151* 1.303 1.543 1.215 1.135 1.315* 1.156* 1.396 1.253
TVP-ALL (υ = 0.985, κ = 0.92) 1.354 1.571 1.393 1.420* 1.514* 1.324 1.260 1.312* 1.294* 1.499 1.376
TVP-ALL (υ = 0.985, κ = 0.94) 1.356 1.629 1.367* 1.443* 1.515* 1.320 1.262 1.337* 1.320* 1.545 1.383
TVP-ALL (υ = 0.985, κ = 0.97) 1.340 1.720 1.293* 1.483* 1.496* 1.294 1.250 1.324* 1.367* 1.521 1.364
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.998 1.015 0.996 0.998 0.953* 0.995 0.994 0.889* 0.962* 0.902* 0.988
TVP-AR(1) (υ = 0.996, κ = 0.94) 1.001 1.016 0.995 0.999 0.948* 0.996 0.994 0.901* 0.963* 0.916* 0.990
TVP-AR(1) (υ = 0.996, κ = 0.97) 1.005 1.012 0.995 0.996 0.937* 0.997 0.995 0.935* 0.970* 0.950* 0.996
TVP-AR(1) (υ = 0.985, κ = 0.92) 1.028 1.038 1.006 1.012 0.965* 1.003 1.006 0.859* 0.964* 0.902* 0.996
TVP-AR(1) (υ = 0.985, κ = 0.94) 1.039 1.038 1.005 1.015 0.958* 1.005 1.006 0.868* 0.965* 0.914* 0.999
TVP-AR(1) (υ = 0.985, κ = 0.97) 1.059 1.036 1.004 1.016 0.946* 1.008 1.006 0.883* 0.971* 0.951* 1.004

Note: The table reports Theil’s U statistics of each model calculating based on the out-of-sample MSFEs of
AUM weighted hedge fund strategy indices . Theil’s U less than 1 (in boldface) indicates better performance
of the underlying model compared to the benchmark model OLS-AR(1). * indicates the underlying Clark and
West (2007) MSFE-adj. t-statistics are greater than +1.282, which means the model shows statistical
improvement in forecast accuracy at a significant level between 5% to 10%. Out-of-sample forecasting period:
Jan 2002 - Dec 2014.
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Table 4.4: Statistical evaluation - Sum of logPL equally weighted indices

CTA EM ED FF GM LO LS MN MS RV Sector
BMA (α = υ = 1, κ = 0.92) -253.3 -408.1 -309.2 -262.5 -272.7 -410.5 -364.0 -149.1 -264.7 -253.1 -370.2
BMA (α = υ = 1, κ = 0.94) -253.5 -410.8 -309.8 -265.1 -271.6 -412.9 -365.5 -150.5 -265.5 -261.4 -373.4
BMA (α = υ = 1,κ = 0.97) -256.8 -418.2 -312.7 -271.7 -270.1 -418.3 -368.5 -156.0 -268.0 -274.8 -380.2
BMS (α = υ = 1, κ = 0.92) -252.9 -405.4 -305.4 -261.0 -266.7 -407.1 -360.0 -141.7 -262.7 -235.9 -364.5
BMS (α = υ = 1, κ = 0.94) -253.1 -407.6 -305.2 -263.5 -265.9 -407.5 -361.2 -145.2 -263.3 -249.8 -367.3
BMS (α = υ = 1, κ = 0.97) -256.0 -413.3 -305.7 -268.6 -267.8 -412.8 -365.2 -147.7 -262.8 -264.1 -373.2
DMA (α = υ = 0.996, κ = 0.92) -251.1 -409.0 -310.0 -263.4 -272.6 -411.8 -365.1 -148.6 -264.8 -253.8 -371.2
DMA (α = υ = 0.996, κ = 0.94) -251.2 -411.9 -310.5 -266.2 -271.7 -414.1 -366.4 -149.8 -265.5 -261.9 -374.2
DMA (α = υ = 0.996, κ = 0.97) -254.5 -419.4 -312.7 -272.7 -270.5 -419.1 -369.2 -154.8 -267.9 -274.0 -380.4
DMA (α = υ = 0.985, κ = 0.92) -253.1 -412.0 -312.2 -267.1 -274.7 -415.1 -367.4 -147.9 -266.5 -254.2 -374.5
DMA (α = υ = 0.985, κ = 0.94) -253.0 -415.3 -312.5 -270.1 -274.1 -417.1 -368.5 -149.5 -267.1 -262.5 -377.2
DMA (α = υ = 0.985, κ = 0.97) -256.5 -423.2 -313.8 -276.5 -273.4 -421.0 -370.7 -154.6 -269.1 -275.8 -382.4
DMS (α = υ = 0.996, κ = 0.92) -249.1 -404.6 -303.8 -259.6 -262.6 -406.3 -359.2 -139.3 -258.5 -232.9 -363.4
DMS (α = υ = 0.996, κ = 0.94) -248.8 -406.7 -303.3 -262.3 -264.3 -407.2 -360.5 -139.4 -259.4 -237.1 -365.4
DMS (α = υ = 0.996, κ = 0.97) -252.9 -412.6 -303.0 -266.3 -264.2 -410.0 -361.5 -144.1 -257.0 -255.1 -370.5
DMS (α = υ = 0.985,κ = 0.92) -243.3 -391.6 -292.7 -254.6 -256.9 -396.5 -352.8 -130.4 -250.5 -224.9 -353.5
DMS (α = υ = 0.985, κ = 0.94) -243.5 -398.3 -294.7 -257.0 -258.3 -399.1 -353.2 -132.1 -250.3 -229.1 -358.1
DMS (α = υ = 0.985, κ = 0.97) -247.7 -408.7 -294.0 -260.4 -259.0 -403.5 -355.2 -139.9 -252.3 -246.1 -365.7
TVP-ALL (υ = 0.996, κ = 0.92) -271.7 -427.3 -321.4 -279.3 -278.0 -420.7 -373.0 -164.6 -269.4 -262.3 -381.8
TVP-ALL (υ = 0.996, κ = 0.94) -273.6 -432.0 -322.0 -281.9 -278.0 -422.6 -374.3 -166.6 -270.2 -270.7 -385.1
TVP-ALL (υ = 0.996, κ = 0.97) -284.2 -441.1 -322.2 -287.4 -278.4 -425.8 -376.6 -173.1 -271.8 -280.0 -392.6
TVP-ALL (υ = 0.985, κ = 0.92) -275.8 -434.8 -323.8 -287.7 -285.0 -425.7 -378.3 -167.4 -274.8 -267.3 -389.1
TVP-ALL (υ = 0.985, κ = 0.94) -277.8 -440.0 -324.6 -290.8 -285.2 -427.5 -379.6 -170.2 -275.6 -275.3 -392.1
TVP-ALL (υ = 0.985, κ = 0.97) -288.1 -449.6 -325.1 -296.8 -285.9 -429.8 -381.6 -176.3 -276.6 -285.6 -399.3
TVP-AR(1) (υ = 0.996, κ = 0.92) -250.9 -405.5 -306.5 -261.2 -271.0 -407.8 -361.7 -142.9 -263.5 -243.9 -366.0
TVP-AR(1) (υ = 0.996, κ = 0.94) -250.9 -407.7 -307.0 -263.9 -270.0 -410.0 -363.0 -144.0 -264.5 -252.4 -368.9
TVP-AR(1) (υ = 0.996, κ = 0.97) -253.1 -413.5 -309.5 -270.2 -268.5 -414.6 -365.7 -148.3 -267.6 -268.3 -375.1
TVP-AR(1) (υ = 0.985, κ = 0.92) -246.9 -406.1 -306.4 -262.0 -271.1 -408.6 -361.8 -140.3 -263.7 -243.7 -366.2
TVP-AR(1) (υ = 0.985, κ = 0.94) -246.7 -408.4 -306.9 -264.8 -270.0 -410.8 -363.2 -141.1 -264.7 -251.9 -369.2
TVP-AR(1) (υ = 0.985, κ = 0.97) -249.0 -414.4 -309.1 -271.1 -268.5 -415.1 -365.9 -144.6 -267.8 -267.4 -375.2

Note: The table reports the sum of log predictive likelihood of each model. The top three results of each
hedge fund strategy index are in boldface. Out-of-sample forecasting period: Jan 2002 - Dec 2014.
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Table 4.5: Statistical evaluation - Sum of logPL AUM weighted indices

CTA EM ED FF GM LO LS MN MS RV Sector
BMA (α = υ = 1, κ = 0.92) -372.3 -367.1 -302.0 -249.2 -269.9 -447.4 -350.0 -168.9 -208.9 -217.3 -374.0
BMA (α = υ = 1, κ = 0.94) -374.7 -371.9 -301.1 -250.8 -273.0 -449.7 -350.7 -171.0 -211.0 -225.7 -378.0
BMA (α = υ = 1,κ = 0.97) -379.8 -385.3 -299.5 -256.3 -288.3 -452.9 -353.0 -179.2 -217.1 -243.3 -385.7
BMS (α = υ = 1, κ = 0.92) -360.3 -364.8 -297.8 -246.7 -266.9 -441.6 -347.6 -159.1 -207.2 -215.7 -368.0
BMS (α = υ = 1, κ = 0.94) -361.2 -367.9 -296.1 -248.4 -270.1 -442.1 -347.6 -161.2 -209.4 -222.7 -371.9
BMS (α = υ = 1, κ = 0.97) -367.2 -378.9 -295.6 -254.0 -285.7 -447.5 -348.7 -173.7 -211.9 -236.8 -379.1
DMA (α = υ = 0.996, κ = 0.92) -371.6 -367.7 -302.7 -248.8 -271.5 -447.8 -350.8 -166.6 -209.2 -217.1 -375.6
DMA (α = υ = 0.996, κ = 0.94) -373.4 -372.8 -301.9 -251.0 -274.9 -450.2 -351.5 -168.6 -211.4 -225.9 -379.4
DMA (α = υ = 0.996, κ = 0.97) -378.1 -385.8 -300.2 -257.4 -290.2 -453.7 -353.5 -177.0 -217.5 -241.5 -386.5
DMA (α = υ = 0.985, κ = 0.92) -374.6 -371.0 -304.9 -250.9 -277.2 -450.7 -353.1 -165.6 -211.6 -221.2 -379.0
DMA (α = υ = 0.985, κ = 0.94) -376.3 -376.4 -304.1 -253.7 -281.1 -452.9 -353.7 -168.0 -214.1 -229.6 -382.5
DMA (α = υ = 0.985, κ = 0.97) -380.1 -389.9 -302.0 -260.7 -296.9 -456.3 -355.1 -176.8 -220.2 -243.7 -389.6
DMS (α = υ = 0.996, κ = 0.92) -360.4 -363.5 -294.1 -243.6 -267.0 -439.6 -344.2 -153.9 -201.8 -212.2 -365.3
DMS (α = υ = 0.996, κ = 0.94) -360.7 -366.7 -290.7 -246.3 -270.2 -440.6 -344.7 -157.1 -203.2 -215.3 -369.9
DMS (α = υ = 0.996, κ = 0.97) -366.6 -375.9 -289.2 -251.4 -285.7 -446.5 -345.3 -168.2 -205.5 -230.1 -377.7
DMS (α = υ = 0.985,κ = 0.92) -355.3 -356.9 -282.5 -238.6 -256.4 -434.2 -338.6 -146.2 -190.4 -199.7 -358.8
DMS (α = υ = 0.985, κ = 0.94) -358.9 -359.9 -282.4 -238.3 -265.0 -437.8 -339.3 -147.7 -193.2 -203.6 -362.8
DMS (α = υ = 0.985, κ = 0.97) -363.9 -373.2 -283.0 -244.2 -286.5 -439.0 -339.3 -160.1 -197.5 -224.8 -371.9
TVP-ALL (υ = 0.996, κ = 0.92) -375.5 -387.1 -311.5 -271.0 -302.0 -456.3 -357.7 -182.2 -217.4 -244.7 -388.3
TVP-ALL (υ = 0.996, κ = 0.94) -377.2 -393.7 -310.5 -273.7 -308.8 -458.2 -358.3 -186.5 -220.4 -253.7 -392.4
TVP-ALL (υ = 0.996, κ = 0.97) -382.2 -408.6 -308.2 -280.3 -331.0 -461.4 -359.0 -199.6 -226.6 -266.6 -402.6
TVP-ALL (υ = 0.985, κ = 0.92) -382.2 -396.4 -315.8 -277.2 -310.2 -462.0 -363.0 -187.9 -224.7 -248.8 -397.6
TVP-ALL (υ = 0.985, κ = 0.94) -384.6 -403.6 -315.0 -280.3 -317.1 -463.7 -363.7 -192.5 -228.4 -258.0 -401.6
TVP-ALL (υ = 0.985, κ = 0.97) -390.2 -419.1 -313.1 -288.0 -339.1 -465.8 -363.7 -203.9 -235.8 -271.7 -411.9
TVP-AR(1) (υ = 0.996, κ = 0.92) -371.3 -364.2 -299.8 -245.3 -267.0 -442.5 -348.6 -161.2 -206.8 -213.3 -370.4
TVP-AR(1) (υ = 0.996, κ = 0.94) -372.2 -368.2 -299.1 -247.8 -270.2 -444.8 -349.4 -163.1 -209.1 -221.9 -374.3
TVP-AR(1) (υ = 0.996, κ = 0.97) -373.5 -378.8 -298.5 -254.5 -285.0 -448.5 -351.3 -171.7 -215.1 -238.7 -381.9
TVP-AR(1) (υ = 0.985, κ = 0.92) -371.6 -365.1 -300.4 -246.2 -267.6 -443.3 -349.0 -158.2 -206.1 -212.4 -371.0
TVP-AR(1) (υ = 0.985, κ = 0.94) -372.4 -369.3 -299.7 -248.8 -271.0 -445.5 -349.8 -160.0 -208.6 -220.7 -375.0
TVP-AR(1) (υ = 0.985, κ = 0.97) -373.8 -380.3 -299.1 -255.6 -286.0 -449.2 -351.8 -167.9 -215.0 -236.5 -382.7

Note: The table reports the sum of log predictive likelihood of each model. The top three results of each
hedge fund strategy index are in boldface. Out-of-sample forecasting period: Jan 2002 - Dec 2014.
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Table 4.6: Economic evaluation - equally weighted indices CER

CTA EM ED FF GM LO LS MN MS RV Sector
OLS-AR(1) 142.06 113.59 139.53 91.77 171.01 115.08 112.60 141.87 129.83 -0.32 88.76

BMA (α = υ = 1, κ = 0.92) 161.42 130.68 147.99 150.41 149.69 121.13 123.71 169.49 163.58 154.48 119.67
BMA (α = υ = 1, κ = 0.94) 166.98 131.37 150.10 149.31 157.01 122.24 127.48 184.22 164.10 140.41 122.07
BMA (α = υ = 1,κ = 0.97) 175.94 135.04 150.92 145.60 168.31 125.18 134.43 200.36 157.82 143.14 130.26
BMS (α = υ = 1, κ = 0.92) 159.97 129.42 146.16 148.41 147.60 124.48 125.52 156.36 158.80 142.69 118.18
BMS (α = υ = 1, κ = 0.94) 164.95 132.15 145.10 147.85 163.18 125.92 129.36 174.88 155.20 129.68 120.83
BMS (α = υ = 1, κ = 0.97) 175.66 132.30 144.92 145.73 162.45 127.87 132.65 185.19 136.96 115.39 131.18
DMA (α = υ = 0.996, κ = 0.92) 162.88 131.98 146.27 151.37 151.68 120.79 124.07 175.79 165.33 155.01 125.12
DMA (α = υ = 0.996, κ = 0.94) 168.30 131.70 148.19 149.70 157.26 122.24 127.77 187.62 165.44 138.85 127.14
DMA (α = υ = 0.996, κ = 0.97) 176.70 134.72 152.39 144.60 167.16 125.32 134.43 200.50 158.82 149.14 133.77
DMA (α = υ = 0.985, κ = 0.92) 163.76 138.05 151.43 150.09 155.43 124.91 132.27 191.23 162.84 163.34 133.97
DMA (α = υ = 0.985, κ = 0.94) 167.81 135.84 154.30 149.49 158.35 126.23 135.82 195.43 162.38 145.92 135.43
DMA (α = υ = 0.985, κ = 0.97) 173.17 134.89 157.87 145.85 163.50 129.93 140.41 198.07 156.16 156.69 139.60
DMS (α = υ = 0.996, κ = 0.92) 161.09 130.04 138.20 146.34 115.55 121.21 118.05 151.27 148.18 146.33 122.37
DMS (α = υ = 0.996, κ = 0.94) 165.63 129.96 141.59 146.41 133.70 122.27 121.58 175.77 152.38 135.04 118.10
DMS (α = υ = 0.996, κ = 0.97) 176.37 134.03 142.66 139.01 162.77 129.74 130.20 182.05 131.14 123.04 130.95
DMS (α = υ = 0.985,κ = 0.92) 162.84 125.83 121.68 137.98 100.24 121.39 123.50 159.38 122.92 63.78 94.77
DMS (α = υ = 0.985, κ = 0.94) 167.37 120.76 120.30 131.06 117.95 119.01 128.54 169.66 120.76 80.02 96.88
DMS (α = υ = 0.985, κ = 0.97) 173.39 119.55 144.97 127.05 134.88 126.93 131.20 192.93 126.81 89.42 123.17
TVP-ALL (υ = 0.996, κ = 0.92) 154.69 128.51 118.17 136.44 143.04 112.42 122.82 176.42 173.95 161.28 129.39
TVP-ALL (υ = 0.996, κ = 0.94) 155.48 125.51 120.55 133.83 146.31 114.30 127.02 174.10 174.73 156.45 130.06
TVP-ALL (υ = 0.996, κ = 0.97) 155.05 123.85 136.19 130.46 152.82 118.16 133.84 168.62 177.17 179.56 132.78
TVP-ALL (υ = 0.985, κ = 0.92) 144.00 136.73 155.30 144.98 150.11 122.85 133.55 187.10 167.29 164.40 136.33
TVP-ALL (υ = 0.985, κ = 0.94) 146.41 133.84 156.81 143.53 151.83 124.08 135.60 183.95 167.78 160.82 136.75
TVP-ALL (υ = 0.985, κ = 0.97) 148.53 132.76 161.85 142.03 154.43 127.38 139.30 177.33 169.89 175.28 137.99
TVP-AR(1) (υ = 0.996, κ = 0.92) 160.07 130.81 148.54 146.34 162.39 124.68 126.12 173.20 162.12 198.83 124.04
TVP-AR(1) (υ = 0.996, κ = 0.94) 166.16 133.50 153.22 146.84 168.16 126.15 129.04 189.98 161.80 184.55 125.33
TVP-AR(1) (υ = 0.996, κ = 0.97) 176.62 139.77 159.55 144.06 176.45 130.21 134.95 210.38 152.99 171.22 133.60
TVP-AR(1) (υ = 0.985, κ = 0.92) 164.15 127.96 147.68 143.20 164.44 124.56 129.18 180.95 162.84 204.10 127.49
TVP-AR(1) (υ = 0.985, κ = 0.94) 169.18 130.42 152.58 143.29 168.92 126.25 131.75 193.52 162.25 191.01 127.96
TVP-AR(1) (υ = 0.985, κ = 0.97) 177.47 137.37 159.69 139.45 175.22 130.76 137.15 208.34 153.82 179.57 133.91

Note: The table reports the CER of a portfolio consisting of a risk-free asset and one risky asset (i.e. the
underlying hedge fund strategy index). CERs of competing models are computed based on the model forecast
expected returns and variance. Results which outperform the benchmark OLS-AR(1) model are in boldface.
Out-of-sample forecasting period: Jan 2002 - Dec 2014.
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Table 4.7: Economic evaluation - AUM weighted indices CER

CTA EM ED FF GM LO LS MN MS RV Sector
OLS-AR(1) 35.63 92.90 175.59 94.15 161.44 121.74 144.55 204.98 77.47 -2.66 90.70

BMA (α = υ = 1, κ = 0.92) 130.08 164.01 169.47 169.24 171.22 114.95 156.06 224.44 193.74 209.68 149.30
BMA (α = υ = 1, κ = 0.94) 133.91 155.03 172.73 166.11 184.93 115.34 157.04 242.22 202.90 199.03 150.99
BMA (α = υ = 1,κ = 0.97) 135.14 148.76 178.26 163.02 193.42 116.68 156.88 254.00 235.75 200.93 159.84
BMS (α = υ = 1, κ = 0.92) 124.87 168.21 165.67 169.23 172.96 115.77 157.79 232.76 191.10 223.52 150.50
BMS (α = υ = 1, κ = 0.94) 127.58 152.73 168.97 167.04 186.64 115.42 159.88 253.87 200.87 207.64 155.09
BMS (α = υ = 1, κ = 0.97) 136.19 140.23 198.30 165.09 197.29 116.36 154.69 251.74 240.99 199.15 163.40
DMA (α = υ = 0.996, κ = 0.92) 139.38 166.94 165.33 172.19 176.20 118.78 153.15 230.31 212.59 216.25 155.97
DMA (α = υ = 0.996, κ = 0.94) 140.80 157.59 167.58 168.68 186.32 119.28 154.13 242.16 220.47 200.91 156.61
DMA (α = υ = 0.996, κ = 0.97) 141.94 149.26 171.40 164.30 191.23 119.85 154.85 251.60 244.27 204.88 162.25
DMA (α = υ = 0.985, κ = 0.92) 136.87 172.15 170.02 171.25 186.52 124.91 153.09 241.21 238.53 204.91 167.81
DMA (α = υ = 0.985, κ = 0.94) 137.67 162.74 173.25 170.09 190.04 126.27 154.35 243.64 238.16 184.80 167.50
DMA (α = υ = 0.985, κ = 0.97) 138.66 150.21 178.34 165.61 184.47 128.49 156.28 240.78 244.55 204.26 169.53
DMS (α = υ = 0.996, κ = 0.92) 132.18 166.19 158.07 161.91 172.78 113.56 155.27 225.95 162.45 224.74 130.78
DMS (α = υ = 0.996, κ = 0.94) 139.85 157.18 142.49 164.22 186.69 117.42 154.59 248.91 184.88 209.07 159.62
DMS (α = υ = 0.996, κ = 0.97) 144.75 137.05 165.03 161.51 197.10 113.16 150.98 267.78 209.99 191.75 165.04
DMS (α = υ = 0.985,κ = 0.92) 136.63 164.16 167.83 152.97 153.70 122.08 133.99 208.17 141.62 178.64 140.96
DMS (α = υ = 0.985, κ = 0.94) 136.55 151.50 174.15 151.94 166.49 122.62 142.18 216.15 140.47 42.65 142.14
DMS (α = υ = 0.985, κ = 0.97) 139.34 123.86 117.02 145.11 196.53 120.89 137.68 251.04 165.83 172.65 163.19
TVP-ALL (υ = 0.996, κ = 0.92) 137.17 152.34 149.86 138.85 164.74 121.98 147.60 225.35 234.63 196.83 156.54
TVP-ALL (υ = 0.996, κ = 0.94) 137.65 143.95 155.32 135.56 162.70 121.99 148.05 216.06 236.63 190.32 155.62
TVP-ALL (υ = 0.996, κ = 0.97) 139.48 133.00 169.49 130.89 154.55 120.93 150.87 196.46 246.79 209.31 155.73
TVP-ALL (υ = 0.985, κ = 0.92) 136.62 155.74 182.06 155.37 160.87 128.40 152.74 221.83 232.49 172.37 157.70
TVP-ALL (υ = 0.985, κ = 0.94) 136.55 148.59 185.60 153.23 158.42 129.33 153.20 213.64 228.42 167.79 156.99
TVP-ALL (υ = 0.985, κ = 0.97) 137.79 139.42 192.09 150.12 151.30 131.28 154.77 197.60 226.12 189.57 155.97
TVP-AR(1) (υ = 0.996, κ = 0.92) 101.57 163.61 177.91 165.21 172.78 125.17 158.58 229.15 197.35 226.64 151.24
TVP-AR(1) (υ = 0.996, κ = 0.94) 96.16 159.84 183.63 164.98 186.66 126.65 158.47 241.39 206.76 208.61 152.38
TVP-AR(1) (υ = 0.996, κ = 0.97) 86.67 158.50 193.27 162.63 196.66 129.78 157.22 255.34 233.66 203.11 163.17
TVP-AR(1) (υ = 0.985, κ = 0.92) 104.29 160.33 176.14 160.02 174.65 124.28 155.69 228.90 215.76 236.38 154.48
TVP-AR(1) (υ = 0.985, κ = 0.94) 103.18 157.30 182.33 159.96 187.36 126.12 155.21 237.71 223.87 218.13 154.38
TVP-AR(1) (υ = 0.985, κ = 0.97) 102.22 155.32 193.11 157.19 194.45 129.46 153.73 245.28 238.07 208.15 160.94

Note: The table reports the CER of a portfolio consisting of a risk-free asset and one risky asset (i.e. the
underlying hedge fund strategy index). CERs of competing models are computed based on the model forecast
expected returns and variance. Results which outperform the benchmark OLS-AR(1) model are in boldface.
Out-of-sample forecasting period: Jan 2002 - Dec 2014.
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Table 4.8: Out-of-sample performance of top expected return portfolios with 1/N allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.999 3.998 0.640 1.662 0.281 0.706 10.087 6.839 5.108
BMA (α = υ = 1, κ = 0.92) 0.999 4.126 0.744 1.802 0.335 0.753 8.543 5.748 4.257
BMA (α = υ = 1, κ = 0.94) 1.037 4.353 0.787 1.841 0.354 0.776 8.366 5.611 4.143
BMA (α = υ = 1, κ = 0.97) 1.058 4.455 0.783 1.838 0.360 0.789 8.610 5.778 4.268
BMS (α = υ = 1, κ = 0.92) 0.972 3.956 0.702 1.725 0.311 0.739 8.821 5.952 4.423
BMS (α = υ = 1, κ = 0.94) 0.992 4.105 0.728 1.752 0.331 0.771 8.681 5.847 4.337
BMS (α = υ = 1, κ = 0.97) 1.009 4.124 0.754 1.805 0.332 0.744 8.508 5.720 4.234
DMA (α = υ = 0.996, κ = 0.92) 1.023 4.279 0.770 1.815 0.347 0.772 8.440 5.668 4.190
DMA (α = υ = 0.996, κ = 0.94) 1.058 4.464 0.793 1.834 0.358 0.787 8.494 5.696 4.204
DMA (α = υ = 0.996, κ = 0.97) 1.071 4.557 0.817 1.871 0.376 0.807 8.328 5.574 4.107
DMA (α = υ = 0.985, κ = 0.92) 0.954 3.863 0.727 1.759 0.319 0.740 8.303 5.591 4.146
DMA (α = υ = 0.985, κ = 0.94) 0.977 4.014 0.761 1.793 0.338 0.763 8.110 5.448 4.029
DMA (α = υ = 0.985, κ = 0.97) 0.984 4.045 0.747 1.760 0.326 0.756 8.356 5.620 4.161
DMS (α = υ = 0.996, κ = 0.92) 1.020 4.242 0.743 1.794 0.340 0.768 8.762 5.897 4.369
DMS (α = υ = 0.996, κ = 0.94) 1.060 4.514 0.774 1.830 0.350 0.772 8.736 5.866 4.337
DMS (α = υ = 0.996, κ = 0.97) 1.015 4.183 0.766 1.810 0.334 0.746 8.414 5.652 4.179
DMS (α = υ = 0.985, κ = 0.92) 0.930 3.805 0.747 1.746 0.339 0.793 7.824 5.260 3.893
DMS (α = υ = 0.985, κ = 0.94) 0.971 3.992 0.729 1.734 0.326 0.770 8.452 5.691 4.220
DMS (α = υ = 0.985, κ = 0.97) 1.057 4.498 0.774 1.795 0.353 0.797 8.709 5.848 4.323
TVP-ALL (υ = 0.996, κ = 0.92) 0.963 3.993 0.766 1.823 0.352 0.779 7.927 5.323 3.934
TVP-ALL (υ = 0.996, κ = 0.94) 0.982 4.128 0.785 1.843 0.367 0.803 7.875 5.280 3.897
TVP-ALL (υ = 0.996, κ = 0.97) 0.987 4.188 0.828 1.897 0.383 0.810 7.467 4.991 3.670
TVP-ALL (υ = 0.985, κ = 0.92) 0.867 3.465 0.711 1.731 0.316 0.748 7.609 5.126 3.803
TVP-ALL (υ = 0.985, κ = 0.94) 0.925 3.772 0.763 1.799 0.347 0.781 7.596 5.100 3.769
TVP-ALL (υ = 0.985, κ = 0.97) 0.915 3.707 0.720 1.738 0.324 0.762 8.001 5.389 3.997
TVP-AR(1) (υ = 0.996, κ = 0.92) 1.131 4.922 0.813 1.911 0.381 0.798 8.904 5.964 4.397
TVP-AR(1) (υ = 0.996, κ = 0.94) 1.109 4.725 0.790 1.864 0.365 0.788 8.994 6.034 4.457
TVP-AR(1) (υ = 0.996, κ = 0.97) 1.073 4.472 0.766 1.828 0.359 0.792 8.968 6.027 4.459
TVP-AR(1) (υ = 0.985, κ = 0.92) 1.101 4.750 0.807 1.918 0.387 0.808 8.711 5.836 4.304
TVP-AR(1) (υ = 0.985, κ = 0.94) 1.085 4.626 0.779 1.860 0.373 0.806 8.910 5.982 4.421
TVP-AR(1) (υ = 0.985, κ = 0.97) 1.032 4.231 0.719 1.767 0.327 0.753 9.196 6.200 4.603

Note: The table reports out-of-sample performances of portfolio constructed based on forecast expected future
return, asset weights are allocated by 1/N method. Performance measures include: average monthly return
(AR), end of period value (EPV), annualised Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential ratio,
and VaR 1%, 5% and 10%. Results which outperforms the benchmark OLS-AR(1) model are in boldface.
Out-of-sample forecasting period: Jan 2009 - Dec 2014.
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Table 4.9: Out-of-sample performance of top expected return portfolios with mean-variance
optimisation allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.858 3.170 0.494 1.666 0.264 0.661 11.197 7.666 5.783
BMA (α = υ = 1, κ = 0.92) 1.073 4.616 0.807 2.450 0.537 0.907 8.462 5.669 4.180
BMA (α = υ = 1, κ = 0.94) 1.127 4.810 0.763 2.340 0.500 0.873 9.516 6.398 4.736
BMA (α = υ = 1, κ = 0.97) 1.121 4.584 0.705 2.180 0.424 0.784 10.333 6.977 5.189
BMS (α = υ = 1, κ = 0.92) 0.952 3.805 0.691 2.057 0.387 0.754 8.773 5.924 4.405
BMS (α = υ = 1, κ = 0.94) 0.905 3.651 0.742 2.272 0.445 0.796 7.639 5.136 3.802
BMS (α = υ = 1, κ = 0.97) 1.044 4.297 0.774 2.099 0.450 0.860 8.589 5.767 4.262
DMA (α = υ = 0.996, κ = 0.92) 0.673 2.652 0.770 1.878 0.375 0.801 5.128 3.429 2.523
DMA (α = υ = 0.996, κ = 0.94) 0.904 3.660 0.770 2.124 0.446 0.842 7.312 4.905 3.622
DMA (α = υ = 0.996, κ = 0.97) 1.005 3.916 0.637 1.950 0.387 0.794 10.214 6.927 5.175
DMA (α = υ = 0.985, κ = 0.92) 1.058 4.483 0.698 2.001 0.425 0.850 9.789 6.612 4.917
DMA (α = υ = 0.985, κ = 0.94) 1.103 4.610 0.693 2.033 0.442 0.869 10.331 6.982 5.196
DMA (α = υ = 0.985, κ = 0.97) 1.107 4.487 0.621 1.925 0.382 0.795 11.717 7.960 5.958
DMS (α = υ = 0.996, κ = 0.92) 1.038 4.214 0.685 1.965 0.388 0.789 9.780 6.611 4.922
DMS (α = υ = 0.996, κ = 0.94) 1.007 3.975 0.622 1.887 0.342 0.729 10.510 7.136 5.337
DMS (α = υ = 0.996, κ = 0.97) 0.759 2.842 0.633 1.727 0.315 0.748 7.399 5.009 3.735
DMS (α = υ = 0.985, κ = 0.92) 0.689 2.652 0.641 1.657 0.308 0.777 6.489 4.386 3.265
DMS (α = υ = 0.985, κ = 0.94) 0.573 2.174 0.445 1.436 0.197 0.648 7.662 5.250 3.963
DMS (α = υ = 0.985, κ = 0.97) 0.855 3.143 0.504 1.672 0.272 0.676 10.915 7.467 5.629
TVP-ALL (υ = 0.996, κ = 0.92) 1.279 5.834 0.776 2.706 0.559 0.887 10.777 7.245 5.363
TVP-ALL (υ = 0.996, κ = 0.94) 1.244 5.440 0.736 2.380 0.478 0.824 11.079 7.469 5.545
TVP-ALL (υ = 0.996, κ = 0.97) 1.025 4.266 0.761 2.533 0.464 0.766 8.568 5.758 4.260
TVP-ALL (υ = 0.985, κ = 0.92) 1.217 5.400 0.695 2.234 0.489 0.886 11.524 7.792 5.802
TVP-ALL (υ = 0.985, κ = 0.94) 1.008 4.121 0.745 2.110 0.459 0.872 8.616 5.797 4.294
TVP-ALL (υ = 0.985, κ = 0.97) 1.109 4.707 0.727 2.150 0.474 0.886 9.875 6.657 4.942
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.851 3.007 0.505 1.714 0.245 0.587 10.845 7.419 5.592
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.836 2.899 0.477 1.619 0.228 0.596 11.278 7.729 5.837
TVP-AR(1) (υ = 0.996, κ = 0.97) 1.019 3.958 0.638 1.901 0.336 0.708 10.349 7.019 5.243
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.815 3.142 0.680 1.868 0.320 0.688 7.439 5.021 3.732
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.995 3.862 0.633 1.937 0.374 0.774 10.154 6.888 5.147
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.844 3.243 0.677 1.749 0.306 0.715 7.795 5.264 3.915

Note: The table reports out-of-sample performances of portfolio constructed based on forecast expected future
return. Asset weights are allocated by the mean-variance optimisation method with target annual return 12%.
Performance measures include: average monthly return (AR), end of period value (EPV), annualised Sharpe
ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and VaR 1%, 5% and 10%. Results which outperform
the benchmark OLS-AR(1) model are in boldface. Out-of-sample forecasting period: Jan 2002 - Dec 2014.

159



Table 4.10: Out-of-sample performance of top t-statistics portfolios with 1/N allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.570 2.392 1.258 2.763 0.583 0.913 2.319 1.473 1.022
BMA (α = υ = 1, κ = 0.92) 0.575 2.392 1.164 2.652 0.507 0.813 2.584 1.659 1.165
BMA (α = υ = 1, κ = 0.94) 0.649 2.665 1.182 2.826 0.584 0.904 2.965 1.906 1.342
BMA (α = υ = 1, κ = 0.97) 0.650 2.661 1.106 2.659 0.547 0.876 3.222 2.087 1.483
BMS (α = υ = 1, κ = 0.92) 0.626 2.583 1.177 2.718 0.567 0.898 2.846 1.829 1.287
BMS (α = υ = 1, κ = 0.94) 0.628 2.591 1.260 2.871 0.589 0.904 2.634 1.678 1.169
BMS (α = υ = 1, κ = 0.97) 0.637 2.614 1.061 2.553 0.522 0.857 3.297 2.145 1.531
DMA (α = υ = 0.996, κ = 0.92) 0.589 2.447 1.252 2.795 0.586 0.913 2.437 1.550 1.078
DMA (α = υ = 0.996, κ = 0.94) 0.679 2.787 1.252 2.974 0.662 0.997 2.928 1.871 1.308
DMA (α = υ = 0.996, κ = 0.97) 0.662 2.706 1.156 2.757 0.561 0.880 3.127 2.017 1.426
DMA (α = υ = 0.985, κ = 0.92) 0.624 2.564 1.170 2.719 0.568 0.899 2.858 1.838 1.294
DMA (α = υ = 0.985, κ = 0.94) 0.670 2.747 1.178 2.873 0.622 0.953 3.102 1.997 1.408
DMA (α = υ = 0.985, κ = 0.97) 0.760 3.133 1.138 3.108 0.711 1.048 3.784 2.453 1.743
DMS (α = υ = 0.996, κ = 0.92) 0.607 2.509 1.138 2.593 0.532 0.866 2.849 1.836 1.297
DMS (α = υ = 0.996, κ = 0.94) 0.619 2.542 1.131 2.594 0.512 0.833 2.945 1.901 1.344
DMS (α = υ = 0.996, κ = 0.97) 0.625 2.559 1.045 2.503 0.498 0.830 3.282 2.137 1.527
DMS (α = υ = 0.985, κ = 0.92) 0.647 2.649 1.093 2.556 0.500 0.821 3.248 2.107 1.498
DMS (α = υ = 0.985, κ = 0.94) 0.692 2.830 1.130 2.648 0.562 0.903 3.394 2.197 1.559
DMS (α = υ = 0.985, κ = 0.97) 0.694 2.843 1.198 2.630 0.569 0.919 3.175 2.042 1.438
TVP-ALL (υ = 0.996, κ = 0.92) 0.743 3.065 1.221 2.920 0.704 1.071 3.375 2.169 1.526
TVP-ALL (υ = 0.996, κ = 0.94) 0.736 3.023 1.122 2.730 0.640 1.010 3.701 2.401 1.708
TVP-ALL (υ = 0.996, κ = 0.97) 0.744 3.079 1.302 2.916 0.714 1.087 3.126 1.992 1.388
TVP-ALL (υ = 0.985, κ = 0.92) 0.656 2.677 1.063 2.367 0.504 0.873 3.416 2.223 1.587
TVP-ALL (υ = 0.985, κ = 0.94) 0.670 2.723 1.022 2.336 0.504 0.882 3.681 2.407 1.727
TVP-ALL (υ = 0.985, κ = 0.97) 0.756 3.113 1.121 2.609 0.584 0.946 3.825 2.483 1.768
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.595 2.464 1.265 2.770 0.608 0.951 2.439 1.550 1.076
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.623 2.567 1.241 2.777 0.598 0.934 2.651 1.692 1.181
TVP-AR(1) (υ = 0.996, κ = 0.97) 0.692 2.846 1.289 3.010 0.712 1.067 2.896 1.845 1.284
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.616 2.546 1.255 2.721 0.579 0.915 2.580 1.644 1.145
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.647 2.659 1.258 2.777 0.606 0.946 2.735 1.745 1.216
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.715 2.942 1.320 3.032 0.694 1.035 2.925 1.859 1.290

Note: The table reports out-of-sample performances of portfolio constructed based on the t-statistics of
forecast expected future returns, asset weights are allocated by 1/N method. Performance measures include:
average monthly return (AR), end of period value (EPV), annualised Sharpe ratio, Omega ratio, Sortino ratio,
Upside Potential ratio, and VaR 1%, 5% and 10%. Results which outperform the benchmark OLS-AR(1)
model are in boldface. Out-of-sample forecasting period: Jan 2002 - Dec 2014.
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Table 4.11: Out-of-sample performance of top t-statistics portfolios with mean-variance opti-
misation allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.350 1.709 0.726 1.825 0.297 0.657 2.218 1.466 1.065
BMA (α = υ = 1, κ = 0.92) 0.426 1.913 1.353 3.681 0.810 1.111 1.405 0.868 0.582
BMA (α = υ = 1, κ = 0.94) 0.471 2.029 0.780 2.261 0.423 0.759 3.166 2.101 1.533
BMA (α = υ = 1, κ = 0.97) 0.632 2.605 1.414 4.445 1.055 1.362 2.295 1.437 0.980
BMS (α = υ = 1, κ = 0.92) 0.401 1.829 0.774 2.046 0.334 0.654 2.539 1.678 1.219
BMS (α = υ = 1, κ = 0.94) 0.368 1.737 0.601 1.868 0.233 0.501 2.976 1.997 1.474
BMS (α = υ = 1, κ = 0.97) 0.802 3.314 1.040 4.178 0.961 1.263 4.496 2.944 2.117
DMA (α = υ = 0.996, κ = 0.92) 0.213 1.366 0.228 1.302 0.078 0.335 3.139 2.157 1.633
DMA (α = υ = 0.996, κ = 0.94) 0.350 1.653 0.381 1.528 0.143 0.413 4.531 3.101 2.339
DMA (α = υ = 0.996, κ = 0.97) 0.507 2.096 0.620 1.890 0.329 0.698 4.540 3.061 2.273
DMA (α = υ = 0.985, κ = 0.92) 0.252 1.430 0.244 1.318 0.081 0.334 4.177 2.879 2.188
DMA (α = υ = 0.985, κ = 0.94) 0.349 1.671 0.460 1.593 0.162 0.436 3.687 2.505 1.874
DMA (α = υ = 0.985, κ = 0.97) 0.713 2.875 0.861 2.514 0.501 0.833 4.857 3.225 2.355
DMS (α = υ = 0.996, κ = 0.92) 0.283 1.522 0.387 1.472 0.142 0.443 3.148 2.143 1.607
DMS (α = υ = 0.996, κ = 0.94) 0.386 1.773 0.543 1.758 0.211 0.490 3.590 2.425 1.804
DMS (α = υ = 0.996, κ = 0.97) 0.761 3.131 1.152 4.026 1.004 1.336 3.731 2.415 1.714
DMS (α = υ = 0.985, κ = 0.92) 0.298 1.552 0.430 1.565 0.152 0.420 3.070 2.083 1.557
DMS (α = υ = 0.985, κ = 0.94) 0.455 1.975 0.644 1.871 0.277 0.595 3.756 2.522 1.864
DMS (α = υ = 0.985, κ = 0.97) 0.444 1.947 0.862 2.094 0.357 0.683 2.603 1.710 1.234
TVP-ALL (υ = 0.996, κ = 0.92) 0.627 2.543 0.953 2.680 0.643 1.026 3.671 2.412 1.741
TVP-ALL (υ = 0.996, κ = 0.94) 0.741 2.977 0.880 2.896 0.706 1.079 4.955 3.287 2.397
TVP-ALL (υ = 0.996, κ = 0.97) 0.499 2.120 1.084 2.458 0.531 0.895 2.329 1.501 1.059
TVP-ALL (υ = 0.985, κ = 0.92) 0.405 1.832 0.786 2.030 0.323 0.637 2.536 1.674 1.215
TVP-ALL (υ = 0.985, κ = 0.94) 0.504 2.127 0.975 2.311 0.439 0.773 2.683 1.749 1.252
TVP-ALL (υ = 0.985, κ = 0.97) 0.508 2.140 0.966 2.277 0.450 0.803 2.743 1.790 1.283
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.469 2.057 1.473 3.708 0.859 1.176 1.448 0.887 0.587
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.193 1.301 0.130 1.183 0.042 0.270 4.390 3.048 2.332
TVP-AR(1) (υ = 0.996, κ = 0.97) 0.613 2.526 1.204 2.745 0.655 1.030 2.698 1.728 1.211
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.584 2.450 1.596 4.752 1.130 1.431 1.766 1.078 0.711
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.560 2.370 1.532 4.350 1.061 1.378 1.762 1.082 0.719
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.616 2.526 1.133 2.680 0.569 0.908 2.923 1.887 1.334

Note: The table reports out-of-sample performances of portfolio constructed based on the t-statistics of
forecast expected future returns, asset weights are allocated by the mean-variance optimisation method with
target annual return 12%. Performance measures include: average monthly return (AR), end of period value
(EPV), annualised Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and VaR 1%, 5% and
10%. Results which outperform the benchmark OLS-AR(1) model are in boldface. Out-of-sample forecasting
period: Jan 2002 - Dec 2014.
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Table 4.12: Crisis periods - Out-of-sample performance of top expected return portfolios with
1/N allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.667 1.100 0.133 1.112 0.054 0.536 16.231 11.281 8.642
BMA (α = υ = 1, κ = 0.92) 0.908 1.221 0.285 1.249 0.122 0.614 13.727 9.440 7.154
BMA (α = υ = 1, κ = 0.94) 0.742 1.167 0.209 1.179 0.087 0.573 12.849 8.867 6.745
BMA (α = υ = 1, κ = 0.97) 0.814 1.190 0.242 1.213 0.104 0.593 13.298 9.164 6.960
BMS (α = υ = 1, κ = 0.92) 0.695 1.130 0.162 1.133 0.066 0.563 14.479 10.034 7.664
BMS (α = υ = 1, κ = 0.94) 0.848 1.198 0.254 1.220 0.109 0.602 13.676 9.421 7.153
BMS (α = υ = 1, κ = 0.97) 0.677 1.144 0.166 1.143 0.066 0.529 13.272 9.186 7.007
DMA (α = υ = 0.996, κ = 0.92) 0.912 1.237 0.307 1.266 0.129 0.613 12.825 8.800 6.655
DMA (α = υ = 0.996, κ = 0.94) 0.823 1.199 0.252 1.215 0.105 0.596 13.020 8.965 6.803
DMA (α = υ = 0.996, κ = 0.97) 0.809 1.193 0.251 1.220 0.107 0.596 12.690 8.736 6.628
DMA (α = υ = 0.985, κ = 0.92) 0.704 1.168 0.188 1.156 0.074 0.551 12.810 8.851 6.741
DMA (α = υ = 0.985, κ = 0.94) 0.766 1.199 0.234 1.194 0.094 0.576 12.225 8.419 6.390
DMA (α = υ = 0.985, κ = 0.97) 0.764 1.182 0.229 1.191 0.090 0.560 12.437 8.570 6.508
DMS (α = υ = 0.996, κ = 0.92) 0.849 1.193 0.246 1.209 0.104 0.601 14.224 9.808 7.455
DMS (α = υ = 0.996, κ = 0.94) 0.935 1.232 0.295 1.258 0.124 0.608 13.960 9.596 7.270
DMS (α = υ = 0.996, κ = 0.97) 0.703 1.163 0.191 1.163 0.074 0.529 12.583 8.691 6.616
DMS (α = υ = 0.985, κ = 0.92) 0.693 1.183 0.204 1.164 0.085 0.599 11.302 7.788 5.915
DMS (α = υ = 0.985, κ = 0.94) 0.738 1.181 0.211 1.174 0.085 0.577 12.576 8.675 6.596
DMS (α = υ = 0.985, κ = 0.97) 0.807 1.199 0.248 1.206 0.103 0.602 12.790 8.807 6.684
TVP-ALL (υ = 0.996, κ = 0.92) 0.879 1.244 0.318 1.278 0.142 0.653 11.511 7.882 5.947
TVP-ALL (υ = 0.996, κ = 0.94) 0.882 1.245 0.320 1.281 0.142 0.647 11.547 7.906 5.965
TVP-ALL (υ = 0.996, κ = 0.97) 0.792 1.211 0.280 1.237 0.118 0.618 10.791 7.398 5.589
TVP-ALL (υ = 0.985, κ = 0.92) 0.593 1.143 0.140 1.111 0.058 0.580 11.097 7.672 5.847
TVP-ALL (υ = 0.985, κ = 0.94) 0.641 1.164 0.174 1.138 0.073 0.602 11.019 7.603 5.782
TVP-ALL (υ = 0.985, κ = 0.97) 0.609 1.139 0.149 1.119 0.061 0.575 11.264 7.786 5.932
TVP-AR(1) (υ = 0.996, κ = 0.92) 1.020 1.255 0.324 1.289 0.143 0.636 14.690 10.087 7.634
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.916 1.217 0.274 1.239 0.119 0.618 14.551 10.020 7.604
TVP-AR(1) (υ = 0.996, κ = 0.97) 1.028 1.270 0.339 1.303 0.152 0.652 14.153 9.705 7.335
TVP-AR(1) (υ = 0.985, κ = 0.92) 1.181 1.339 0.412 1.378 0.189 0.688 14.311 9.772 7.353
TVP-AR(1) (υ = 0.985, κ = 0.94) 1.122 1.311 0.381 1.346 0.175 0.680 14.370 9.832 7.412
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.878 1.213 0.257 1.223 0.110 0.602 14.440 9.952 7.560

Note: The table reports out-of-sample performances of portfolio constructed based on forecast expected future
returns, asset weights are allocated by the 1/N method. Performance measures include: average monthly
return (AR), end of period value (EPV), annualised Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential
ratio, and VaR 1%, 5% and 10%. Results which outperform the benchmark OLS-AR(1) model are in boldface.
Out-of-sample forecasting period: Jan 2009 - Dec 2010.
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Table 4.13: Crisis periods - Out-of-sample performance of top expected return portfolios with
mean-variance optimisation allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 2.023 1.598 0.606 1.799 0.353 0.796 19.719 13.350 9.954
BMA (α = υ = 1, κ = 0.92) 2.574 2.072 1.005 2.655 0.744 1.193 14.952 9.818 7.081
BMA (α = υ = 1, κ = 0.94) 2.604 2.036 0.927 2.536 0.682 1.126 16.638 11.001 7.996
BMA (α = υ = 1, κ = 0.97) 2.599 1.968 0.836 2.135 0.532 1.000 18.704 12.464 9.137
BMS (α = υ = 1, κ = 0.92) 1.738 1.558 0.630 1.784 0.381 0.867 15.522 10.466 7.770
BMS (α = υ = 1, κ = 0.94) 1.825 1.661 0.776 2.158 0.515 0.960 13.093 8.723 6.393
BMS (α = υ = 1, κ = 0.97) 1.985 1.709 0.765 1.958 0.470 0.960 14.828 9.903 7.277
DMA (α = υ = 0.996, κ = 0.92) 1.007 1.394 0.767 1.815 0.390 0.868 5.486 3.583 2.569
DMA (α = υ = 0.996, κ = 0.94) 1.977 1.767 0.882 2.151 0.557 1.041 12.535 8.283 6.017
DMA (α = υ = 0.996, κ = 0.97) 2.492 1.923 0.830 2.171 0.554 1.027 17.930 11.947 8.758
DMA (α = υ = 0.985, κ = 0.92) 2.145 1.709 0.694 1.745 0.414 0.969 18.257 12.280 9.094
DMA (α = υ = 0.985, κ = 0.94) 2.468 1.884 0.793 2.174 0.551 1.021 18.648 12.462 9.165
DMA (α = υ = 0.985, κ = 0.97) 2.819 2.032 0.824 2.267 0.553 0.989 20.949 13.986 10.275
DMS (α = υ = 0.996, κ = 0.92) 1.683 1.468 0.526 1.633 0.306 0.789 18.128 12.324 9.230
DMS (α = υ = 0.996, κ = 0.94) 1.740 1.454 0.506 1.596 0.283 0.758 19.787 13.481 10.119
DMS (α = υ = 0.996, κ = 0.97) 0.107 0.966 -0.178 0.843 -0.085 0.458 12.664 8.923 6.928
DMS (α = υ = 0.985, κ = 0.92) 0.653 1.203 0.276 1.259 0.121 0.590 7.032 4.781 3.581
DMS (α = υ = 0.985, κ = 0.94) 0.518 1.076 0.086 1.076 0.036 0.516 11.503 7.982 6.104
DMS (α = υ = 0.985, κ = 0.97) 1.709 1.417 0.477 1.547 0.265 0.748 20.578 14.049 10.568
TVP-ALL (υ = 0.996, κ = 0.92) 3.314 2.463 1.050 3.435 0.892 1.258 19.129 12.555 9.050
TVP-ALL (υ = 0.996, κ = 0.94) 2.895 2.123 0.890 2.736 0.659 1.039 19.787 13.142 9.600
TVP-ALL (υ = 0.996, κ = 0.97) 2.068 1.736 0.784 2.337 0.520 0.908 15.187 10.132 7.438
TVP-ALL (υ = 0.985, κ = 0.92) 3.432 2.526 1.048 3.474 0.897 1.260 19.978 13.120 9.464
TVP-ALL (υ = 0.985, κ = 0.94) 2.366 1.960 0.972 2.910 0.792 1.206 14.025 9.223 6.664
TVP-ALL (υ = 0.985, κ = 0.97) 2.878 2.220 1.015 2.661 0.760 1.218 16.888 11.098 8.011
TVP-AR(1) (υ = 0.996, κ = 0.92) 1.139 1.164 0.273 1.288 0.128 0.574 21.022 14.530 11.069
TVP-AR(1) (υ = 0.996, κ = 0.94) 1.214 1.190 0.297 1.318 0.143 0.592 21.157 14.604 11.110
TVP-AR(1) (υ = 0.996, κ = 0.97) 1.549 1.388 0.461 1.544 0.247 0.702 18.743 12.799 9.630
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.805 1.195 0.247 1.248 0.105 0.527 12.740 8.772 6.657
TVP-AR(1) (υ = 0.985, κ = 0.94) 1.767 1.496 0.547 1.692 0.326 0.797 18.530 12.584 9.414
TVP-AR(1) (υ = 0.985, κ = 0.97) 1.051 1.327 0.433 1.426 0.188 0.630 11.255 7.650 5.728

Note: The table reports out-of-sample performances of portfolio constructed based on forecast expected future
returns, asset weights are allocated by the mean-variance optimisation method with target annual return 12%.
Performance measures include: average monthly return (AR), end of period value (EPV), annualised Sharpe
ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and VaR 1%, 5% and 10%. Results which outperform
the benchmark OLS-AR(1) model are in boldface. Out-of-sample forecasting period: Jan 2009 - Dec 2010.
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Table 4.14: Crisis periods - Out-of-sample performance of top t-statistics portfolios with 1/N
allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) 0.542 1.189 0.258 1.228 0.105 0.565 4.227 2.830 2.085
BMA (α = υ = 1, κ = 0.92) 0.378 1.113 -0.017 0.986 -0.006 0.430 4.840 3.311 2.496
BMA (α = υ = 1, κ = 0.94) 0.722 1.239 0.424 1.426 0.189 0.635 5.604 3.751 2.763
BMA (α = υ = 1, κ = 0.97) 0.758 1.248 0.438 1.450 0.201 0.647 6.016 4.032 2.974
BMS (α = υ = 1, κ = 0.92) 0.567 1.183 0.242 1.217 0.103 0.580 5.343 3.612 2.689
BMS (α = υ = 1, κ = 0.94) 0.486 1.156 0.148 1.134 0.059 0.498 4.787 3.242 2.419
BMS (α = υ = 1, κ = 0.97) 0.732 1.238 0.404 1.412 0.187 0.642 6.110 4.106 3.037
DMA (α = υ = 0.996, κ = 0.92) 0.424 1.133 0.059 1.050 0.023 0.485 4.375 2.969 2.220
DMA (α = υ = 0.996, κ = 0.94) 0.762 1.256 0.481 1.494 0.233 0.704 5.476 3.649 2.675
DMA (α = υ = 0.996, κ = 0.97) 0.763 1.254 0.463 1.496 0.206 0.622 5.755 3.845 2.828
DMA (α = υ = 0.985, κ = 0.92) 0.530 1.163 0.195 1.192 0.085 0.528 5.305 3.596 2.684
DMA (α = υ = 0.985, κ = 0.94) 0.780 1.260 0.482 1.545 0.242 0.685 5.746 3.834 2.815
DMA (α = υ = 0.985, κ = 0.97) 1.246 1.467 0.836 2.222 0.527 0.958 7.018 4.597 3.306
DMS (α = υ = 0.996, κ = 0.92) 0.474 1.149 0.120 1.104 0.049 0.521 5.229 3.559 2.668
DMS (α = υ = 0.996, κ = 0.94) 0.450 1.137 0.082 1.072 0.032 0.482 5.488 3.749 2.821
DMS (α = υ = 0.996, κ = 0.97) 0.691 1.218 0.358 1.362 0.159 0.600 6.098 4.110 3.049
DMS (α = υ = 0.985, κ = 0.92) 0.468 1.139 0.094 1.084 0.038 0.494 6.293 4.313 3.257
DMS (α = υ = 0.985, κ = 0.94) 0.736 1.242 0.396 1.393 0.182 0.645 6.317 4.251 3.149
DMS (α = υ = 0.985, κ = 0.97) 0.667 1.229 0.387 1.388 0.166 0.595 5.101 3.412 2.511
TVP-ALL (υ = 0.996, κ = 0.92) 0.974 1.341 0.669 1.786 0.368 0.837 6.070 4.006 2.906
TVP-ALL (υ = 0.996, κ = 0.94) 0.981 1.340 0.624 1.727 0.348 0.828 6.657 4.420 3.227
TVP-ALL (υ = 0.996, κ = 0.97) 1.021 1.381 0.901 2.137 0.530 0.996 4.626 2.972 2.090
TVP-ALL (υ = 0.985, κ = 0.92) 0.526 1.156 0.168 1.149 0.071 0.548 6.040 4.117 3.091
TVP-ALL (υ = 0.985, κ = 0.94) 0.678 1.215 0.335 1.319 0.155 0.641 6.282 4.243 3.156
TVP-ALL (υ = 0.985, κ = 0.97) 0.985 1.347 0.649 1.750 0.337 0.787 6.414 4.246 3.091
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.528 1.185 0.233 1.217 0.096 0.537 4.256 2.855 2.108
TVP-AR(1) (υ = 0.996, κ = 0.94) 0.558 1.194 0.267 1.256 0.111 0.544 4.533 3.042 2.247
TVP-AR(1) (υ = 0.996, κ = 0.97) 0.931 1.356 0.777 1.963 0.425 0.866 4.692 3.044 2.166
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.484 1.168 0.154 1.136 0.059 0.495 4.456 3.009 2.238
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.563 1.201 0.268 1.249 0.110 0.555 4.666 3.134 2.318
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.855 1.323 0.675 1.796 0.338 0.762 4.705 3.076 2.208

Note: The table reports out-of-sample performances of portfolio constructed based on the t-statistics of
forecast expected future returns, asset weights are allocated by the 1/N method. Performance measures
include: average monthly return (AR), end of period value (EPV), annualised Sharpe ratio, Omega ratio,
Sortino ratio, Upside Potential ratio, and VaR 1%, 5% and 10%. Results which outperform the benchmark
OLS-AR(1) model are in boldface. Out-of-sample forecasting period: Jan 2009 - Dec 2010.
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Table 4.15: Crisis periods - Out-of-sample performance of top t-statistics portfolios with mean-
variance optimisation allocation

AR EPV
Sharpe
Ratio

Omega Sortino Upside VaR 1% VaR 5% VaR 10%

OLS-AR(1) -0.081 0.967 -1.209 0.206 -0.340 0.088 3.212 2.295 1.806
BMA (α = υ = 1, κ = 0.92) 0.570 1.226 0.959 2.582 0.778 1.269 0.947 0.503 0.266
BMA (α = υ = 1, κ = 0.94) 0.700 1.226 0.386 1.423 0.197 0.662 5.776 3.879 2.868
BMA (α = υ = 1, κ = 0.97) 1.160 1.466 1.393 5.754 1.326 1.605 3.298 1.992 1.296
BMS (α = υ = 1, κ = 0.92) 0.287 1.088 -0.187 0.854 -0.067 0.392 4.116 2.826 2.139
BMS (α = υ = 1, κ = 0.94) 0.223 1.057 -0.226 0.803 -0.077 0.314 5.707 3.970 3.044
BMS (α = υ = 1, κ = 0.97) 1.984 1.844 1.303 5.629 1.317 1.601 7.881 4.991 3.451
DMA (α = υ = 0.996, κ = 0.92) -0.371 0.864 -1.039 0.291 -0.302 0.124 6.265 4.539 3.618
DMA (α = υ = 0.996, κ = 0.94) 0.066 0.964 -0.279 0.768 -0.097 0.320 9.284 6.545 5.085
DMA (α = υ = 0.996, κ = 0.97) 1.155 1.409 0.710 2.019 0.432 0.855 7.537 4.990 3.633
DMA (α = υ = 0.985, κ = 0.92) -0.505 0.808 -0.904 0.324 -0.262 0.125 8.471 6.137 4.893
DMA (α = υ = 0.985, κ = 0.94) -0.335 0.861 -0.877 0.360 -0.256 0.144 6.994 5.043 4.003
DMA (α = υ = 0.985, κ = 0.97) 1.287 1.433 0.690 1.885 0.386 0.822 9.208 6.134 4.495
DMS (α = υ = 0.996, κ = 0.92) -0.295 0.890 -1.007 0.350 -0.299 0.161 5.766 4.163 3.309
DMS (α = υ = 0.996, κ = 0.94) 0.252 1.058 -0.155 0.871 -0.054 0.366 6.878 4.790 3.676
DMS (α = υ = 0.996, κ = 0.97) 1.760 1.737 1.371 5.912 1.425 1.715 6.297 3.937 2.679
DMS (α = υ = 0.985, κ = 0.92) -0.208 0.910 -0.815 0.421 -0.243 0.177 6.109 4.380 3.459
DMS (α = υ = 0.985, κ = 0.94) 0.609 1.194 0.233 1.212 0.091 0.522 7.009 4.777 3.587
DMS (α = υ = 0.985, κ = 0.97) 0.197 1.038 -0.348 0.720 -0.113 0.293 4.242 2.941 2.248
TVP-ALL (υ = 0.996, κ = 0.92) 1.174 1.434 0.824 2.239 0.570 1.031 6.503 4.254 3.055
TVP-ALL (υ = 0.996, κ = 0.94) 1.676 1.650 0.967 2.926 0.814 1.237 9.049 5.907 4.232
TVP-ALL (υ = 0.996, κ = 0.97) 0.559 1.197 0.345 1.358 0.147 0.558 3.412 2.249 1.629
TVP-ALL (υ = 0.985, κ = 0.92) 0.175 1.053 -0.396 0.660 -0.128 0.249 4.198 2.917 2.234
TVP-ALL (υ = 0.985, κ = 0.94) 0.474 1.159 0.131 1.134 0.050 0.426 4.710 3.191 2.382
TVP-ALL (υ = 0.985, κ = 0.97) 0.600 1.208 0.324 1.354 0.133 0.507 4.640 3.105 2.287
TVP-AR(1) (υ = 0.996, κ = 0.92) 0.731 1.292 1.567 5.399 1.362 1.672 1.025 0.511 0.236
TVP-AR(1) (υ = 0.996, κ = 0.94) -0.684 0.759 -1.011 0.248 -0.290 0.095 9.236 6.730 5.395
TVP-AR(1) (υ = 0.996, κ = 0.97) 0.988 1.382 0.937 2.068 0.465 0.899 4.160 2.652 1.848
TVP-AR(1) (υ = 0.985, κ = 0.92) 0.672 1.269 1.328 3.976 1.209 1.616 1.042 0.540 0.272
TVP-AR(1) (υ = 0.985, κ = 0.94) 0.659 1.263 1.223 3.378 0.982 1.394 1.116 0.596 0.319
TVP-AR(1) (υ = 0.985, κ = 0.97) 0.823 1.304 0.634 1.686 0.273 0.671 4.693 3.077 2.215

Note: The table reports out-of-sample performances of portfolio constructed based on the t-statistics of
forecast expected future returns, asset weights are allocated by the mean-variance optimisation method with
target annual return 12%. Performance measures include: average monthly return (AR), end of period value
(EPV), annualised Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and VaR 1%, 5% and
10%. Results which outperform the benchmark OLS-AR(1) model are in boldface. Out-of-sample forecasting
period: Jan 2009 - Dec 2010.
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Chapter 5

Conclusion

Motivated by current post-crisis discussions and the corresponding shift in

regulatory requirements, this thesis is dedicated to the study of model risk in

financial modelling. It is well-known that the majority of finance quantities

that are involved in asset pricing, trading, and risk management activities are

dependent on the chosen financial models. This gives rise to model risk in all

financial activities. Even when the chosen model form is appropriate, model

outputs are still subject to parameter estimation uncertainty. Therefore,

among different sources of model risk, we mainly focused on investigating

the impact of parameter estimation risk and model selection risk in different

financial models. Models investigated in this thesis are key models in option

pricing, credit risk management, stochastic process of security returns and

hedge fund return forecasting.

We provoke a solution which naturally stems from the Bayesian frame-

work. Regarding parameter estimation risk, instead of focusing on point

estimation value, it is possible to gauge the rich information about param-

eter uncertainty from the posterior distribution of parameters. Subsequent

impact to model final outputs can be easily accessed by inserting the pos-

terior distribution of parameters into the model. Depending on the related

financial activities, model users may find it useful to adopt the estimated
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value at a certain percentile (e.g. 97.5%) of the posterior distribution as an

overlay to the estimated mean value. While more than one candidate model

is considered, posterior or predictive probability of a candidate model derived

from the likelihood of the model output in fitting the data is applied for a

model averaging exercise to account for model selection risk.

Summaries of the key findings in each area are presented in Section 5.1

to 5.3. Further research directions are discussed in Section 5.4.

5.1 Option Pricing and Credit Risk Manage-

ment

In Chapter 2, we carry out an investigation of the performance of the Black-

Scholes (BS) and Merton’s Jump-Diffusion (MJD) models in option-pricing

activities, incorporating parameter estimation risk. Bayesian posterior distri-

butions are simulated by the Markov Chain Monte Carlo (MCMC) simulation

techniques. The MJD model was developed by Merton (1976) as an alterna-

tive model to the BS model, capable of generating kurtosis and skewness in

line with empirical literature on stock returns; see Bakshi et al. (1997) and

Dahlbokum (2010). To this end, we show how to construct the entire distri-

butions of option prices underpinned by distributions of parameters for the

two models investigated. Our results show that, among the three in-sample

fitting tests we adopted, the MJD model significantly outperforms the BS

model, except when the Bayesian p-value test is utilised. On the other hand,

the MJD model outperforms the BS model in all out-of-sample pricing per-

formance measures when parameter values are calibrated from market option

prices rather than estimated from historical returns. Furthermore, while re-

sults of the BS model shows less parameter uncertainty as indicated by the

narrower 95% credibility intervals of posterior model price distributions, the

posterior MJD model price distribution with wider range better captures

the realised market option value. Therefore, simpler models may show less
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parameter uncertainty but this could in fact give a false security to model

users.

In addition, we also apply the Bayesian MCMC technology to look at

the Greeks parameters, and subsequently derive a VaR-type measure for

parameter estimation risk to option pricing. Taking parameter estimation

risk into account, movement of Greek parameters can show a different picture

(e.g. more volatile) compared to the movement when only point estimation

values are considered. Our VaR-type parameter estimation risk measure

reveals that the risk exposure is of a different magnitude to the two parties

of European option holders and accounts for a substantial amount of the

option trading price.

It is very important for model users to be aware of the existence and

magnitude of any model they adopt for option pricing or any type of asset

pricing. Traditional model performance metrics, such as mean pricing error,

mean absolute pricing error or mean square pricing error might not show

sufficient merit to fully assess a model’s performance in a risk management

aspect. It is possible that a complex model might not outperform the simpler

model due to the difficulty in parameter estimation, but after incorporating

parameter uncertainty the model could perform considerably better than the

simpler model in capturing the true asset value.

Furthermore, when assessing potential risk of the option trading portfolio,

financial institutions might want to consider parameter estimation risk in

parallel to their calibrated market risk metrics, such as portfolio VaR. Either

the parameter estimation risk measured by the VaR-type method proposed

can be incorporated in extra to the calibrated portfolio VaR, or the maximum

of the two values can be adopted to achieve a more prudent estimation of

the portfolio risk. Further research can be carried out on the topic of how to

incorporate parameter estimation risk VaR into the VaR estimation of traded

portfolio; this is not constraint to options but all types of securities. In fact,

the Bayesian estimation framework and the VaR-type parameter estimation
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risk measure advocated in Chapter 2 can be extended to all types of asset

pricing whenever a parametric asset pricing model is used.

Also in Chapter 2, we describe how to apply the Bayesian approach to the

Merton’s Credit Risk model with a focus on capturing parameter estimation

risk in computing the probability of default. Results show that the impact

of parameter uncertainty becomes more severe with increase in gearing level.

Taking into account parameter estimation risk can result in different credit

rating, regulatory capital requirement and internal investment decision of a

company. This result indicates that parameter estimation risk in computing

default probabilities skews towards more stress funding scenarios. In other

words, the impact of parameter estimation risk is more material when a firm’s

funding stress increases. This finding shows that neglecting estimation risk

may significantly deteriorate the prudence of credit risk management metrics

in a situation where the default risk is higher.

5.2 The Volatility and Skewness Crystal Ball

It is a common knowledge that during market stress periods, models tend to

perform poorly in both in-sample fitting and out-of-sample prediction. In-

creases in market uncertainty (indicated by increased volatility and noisiness

of market data) and structural change in key market statistics offer an im-

portant contribution to the poor model performance. While increased in the

noisiness of market data is very likely to result in higher level of parameter

estimation risk, structural change is a matter of model selection issue. In

Chapter 3, we employ Merton’s jump-diffusion model to analyse the evolu-

tion of the S&P 500 index returns volatility and skewness between 1980 and

2015, accounting for parameter estimation risk. We compare and contrast

the market dynamics among the significant financial crises during our study

period: the Black Monday Crash in 1987, the “dot-com” crisis in early 2000s

and the global financial crisis in 2008. The underlying evolution of key com-
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ponents of the market index and the associate model risk provide insights into

the different periods of market distress. Through in-depth analysis, we find

empirical results in line with the Minsky theory(Minsky, 1982; Minsky and

Kaufman, 2008; Minsky, 1992), and also confirms the theory of endogenous

risk (Danielsson and Shin, 2003).

In particular, the 1987 market crash is found to have distinct market

dynamics compared to the “dot-com” crisis and the 2008 global financial cri-

sis. Evidenced by the evolution of estimated market volatility and associated

estimation risk, endogenous risk can result in a tremendous crash through

feedback effect of market participants, when the feedback effect does not root

on or reinforces the need of market prices adjustment, the crash will be rather

short-lived, and may not even bring the market return into negative. In con-

trast, when the initial market collapse is reinforced, volatility continues to

surge and market return continues to fall after the initial shock. The former

explains the market behaviour as observed in the 1987 crash, and the latter

explains the other two stress periods in the sample data. Our findings reveal

the deficiency of the endogenous risk theory. While the shifts in market par-

ticipants’ beliefs and their subsequent reactions can result in market crashes,

whether these beliefs are rooted in a substantial over-valuation problem and

reinforces that problem or not would make a big difference to the final out-

come. In short, the “endogenous risk” defined by Danielsson and Shin (2003)

can result in dramatic market crash, yet alone is insufficient to generate a

real financial crisis.

Another notable contribution of this research is that, we are the first

to identify and publish the discovery of a long consecutive period prior to

the 2008 crisis when the market return distribution returned to normal in

the US market. During this period, estimation risk of the MJD model in

both volatility and skewness estimation deviated from their normal range.

We found estimation failure of the MJD model during these periods as the

underlying market distribution returned to Gaussian. Further analysis has
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been carried out regarding this structural change as identified by the exhib-

ited model selection uncertainty. The importance of this finding is threefold.

Firstly, it is in contradiction to common empirical findings that stock returns

deviate from normal distribution and exhibit negative skewness and excess

kurtosis. Our test results show that stock returns did return to gaussian, for

a long period. Secondly, it indicates the necessity of considering model un-

certainty in stock return parameter estimation. Throughout the changes of

market performance, return distributions can deviate significantly from one

model and switching onto another. Finally, the gaussian period happened in

parallel with the period of very low market volatility before the 2008 crisis.

We carried out further analysis and found that when a calm period is

observed, a high level of sentiment leads to an extra negative impact to the

subsequent market returns. This is aligned with the Minsky’s theory of ”sta-

bility is destabilsing”. The explanation is that when normality interacted

with high levels of sentiment, it encourages extra risk taking and an over-

estimation of future growth, resulting in overvaluation or bubbles of assets

prices which requires correction in a later period. When the magnitude of

bubble is remarkable, the consequential correction would be a market crash

or crisis similar to what we observed in the 2008 crisis episode.

These results shed light on the policy makers and regulators in two ways:

firstly, parameter estimation risk may effectively act as an indicator to po-

tential market distress and to distinguish different features of market crash in

the after maths analysis. Secondly, when market return distribution exhibits

a shift to Gaussian in parallel to a high level of market investor sentiment,

it is worth considering it as an alert of potential forthcoming crisis. Pol-

icy makers and regulators may consider taking actions accordingly to shape

market behaviour and maintain market stabilities.
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5.3 Hedge Fund Return Forecasting and Port-

folio Construction

In Chapter 4, we show both statistical and economic value of considering

both parameter estimation risk and model selection risk in portfolio con-

struction. We apply the Bayesian estimation paradigm particularly to hedge

fund return forecasting and portfolio construction. Different from Chapter

2 and 3, instead of using the MCMC simulation techniques, we calibrate

posterior and predictive distributions of parameters and model output by

adopting the Kalman filter algorithm. We employ the methods introduced

by Koop and Korobilis (2012). Parameter uncertainty is dealt with by the

time-varing parameter structure, and model selection uncertainty is miti-

gated by model averaging or model selection. Six categories of alternative

models are considered dealing with estimation risk or both types of model

risk: time-varying parameter AR(1) model (TVP-AR(1)); time-varying pa-

rameter model with all risk factors (TVP-ALL); Bayesian model averaging

(BMA); Bayesian model selection (BMS); dynamic model averaging (DMA);

and finally dynamic model selection (DMS). In total, 30 alternative models

are investigated comparing to the benchmark model OLS-AR(1).

We find that the proposed methods have good statistical value in terms

of forecast accuracy as measured by MSFE and log predictive likelihood. In

the analysis of certainty equivalent return (CER), competing models deliver

superior CER results, compared to the benchmark when estimation risk are

further mitigated by adopting estimation variance of the model forecasts

as the forecast variance of hedge fund returns, indicating the very strong

economic value of the model forecasts.

Regarding portfolio construction exercises, the majority of competing

models outperform the benchmark model. Among all, BMA and TVP-AR(1)

models with gradual evolution speed of parameters show the best and most

stable performance. On the other hand, the results suggest that, the DMA
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models with the time-varying parameter settings do not contribute signifi-

cant extra value compared to the conventional Bayesian model averaging ap-

proach in terms of constructing hedge fund portfolios. Comparison between

the portfolios selected based on expected returns or t-statistics of expected

returns shows that t-statistics portfolios have lower level of risk, this is evi-

denced by reduced portfolio return, yet increased Sharpe Ratio and reduced

VaR. The outstanding performance of competing models persisted during the

crisis period 2007 - 2009, but with lower absolute returns and much higher

return volatilities and tail risk. Models with a decay factor closer to 1 in

the EWMA forecast of regression residuals variance generate better results

overall, which supports volatility clustering in market stress periods.

5.4 Limitations and Further Research

In this thesis, we advocate the Bayesian estimation framework as a natural

way to incorporate and account for model risk in various financial models, as

it delivers the joint posterior distribution of parameters, which contains all

possible value of the parameters given the model and data. Therefore, under

the Bayesian framework, uncertainty in parameter estimation is accounted

for because all parameters are treated as stochastic. While the posterior

density of parameter is determined by the selected likelihood of data condi-

tioned on parameters and your prior beliefs of parameters. We acknowledge

that influence of prior distribution selection towards the conclusion of model

outcome remains, particularly in the case when non-informative priors can-

not be adopted. Prior distribution as another imposed model assumption

subject to researcher’s own judgement becomes another source of model risk.

In the Bayesian parameter inference exercises carried out in the research of

this thesis, the impact of prior selections to each of our model outcome has

not been evaluated. Instead, we adopt the priors suggested by existing lit-

erature. It would be interesting to look further into the potential impact of
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different prior selections. Brief discussion of how to select prior distribution

and potential impact is presented in Lancaster (2004) and Gelman et al.

(2014). Nevertheless, very few of the related financial literature has carried

out thorough investigation regarding this issue, thus exposing a gap in the

financial literature. Even in the case of the MJD model, where informative

priors are unavoidable due to the unbounded likelihood, it is still interesting

to see how different forms of informative priors may affect the final model

outcome. For example, instead of adopting gamma distribution, beta, uni-

form or log-normal distribution can also be possible choices for the precision

of diffuse returns and jump component.

In the topic of model risk in option pricing, we have constructed the poste-

rior distribution of the Greeks parameters, and show that even the movement

of Greeks with or without consideration of parameter estimation risk can be

quite different. Further empirical study can follow to investigate how model

users can obtain economic value through the rich information contained in

the posterior distributions and provide practical strategies. Bayesian model

averaging exercise to further incorporate model selection risk and related

empirical analysis is another interesting direction where gaps remain in the

Bayesian option-pricing literature. Other important option-pricing models

include stochastic volatility models (Hull and White, 1987; Scott, 1987; He-

ston, 1993), jump-diffusion models with exponential jumps (Kou, 2002) and

stochastic volatility with jump-diffusion models (Bates, 1996; Eraker et al.,

2003; Kaeck and Alexander, 2013) and etc. The proposed VaR-type mea-

sure of parameter estimation risk can be used as a supplementary element

to the conventional VaR metrics in assessing portfolio market risk. Further

research can be carried out on the topic of how to incorporate this param-

eter estimation risk VaR into the VaR estimation of trading portfolio. This

is not constrained to options but can be extended to all types of securities

whenever a parametric asset pricing model is used.

In Chapter 3, we have observed the model convergence failure due to
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the fact that market returns in a two-year rolling window from March 2003

- December 2006 are asymptotically normal. It would be very interest to

investigate how the parameters of stochastic volatility models (e.g. the He-

ston model) will be calibrated throughout the same periods. Whether the

calibrated parameters would suggest constant volatility instead of stochastic

volatility may shed more lights to the empirical process of market returns, or

may further support our conclusion of market returns returned to Gaussian.

In Chapter 4, we have been focused on constructing portfolios using better

forecast of hedge funds’ expected returns. We either select the hedge funds

directly based on forecast expected returns, or we work on the t-statistics of

the forecast value (i.e. the expected returns are penalised by the embedded

estimation error). In terms of portfolio variance, we assumed that variance

of hedge fund returns is constant, and hence adopted historical variance of

the series as a good proxy. However, this assumption can be relaxed, and

existing literature has tried to gauge a better forecast of portfolio variance.

For example, see Roumpis and Syriopoulos (2014); Giamouridis and Vrontos

(2007). The current research of Chapter 4 can be extended to incorporate

the forecast of variance and covariance metrics of hedge funds under the

Bayesian framework, and construct portfolio using the estimated quantities

with minimum variance or mean-variance optimisation method.
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