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Abstract
Variations in the dental crown form are widely studied to interpret evolutionary changes in

primates as well as to assess affinities among human archeological populations. Compared

to external metrics of dental crown size and shape, variables including the internal struc-

tures such as enamel thickness, tissue proportions, and the three-dimensional shape of

enamel-dentin junction (EDJ), have been described as powerful measurements to study

taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to

providing good estimate of phenotypic distances within/across archeological samples,

these internal tooth variables may help to understand phylogenetic, functional, and develop-

mental underlying causes of variation. In this study, a high resolution microtomographic-

based record of upper permanent second molars from 20 Neolithic individuals of the

necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in

crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study

aims to compare interindividual dental variations with burial practices and chronocultural

parameters, and suggest underlying causes of these dental variations. From the non-inva-

sive characterization of internal tooth structure, differences have been found between indi-

viduals buried in pits with alcove and those buried in pits with container and pits with

wattling. Additionally, individuals from early and recent phases of the necropolis have been

distinguished from those of the principal phase from their crown tissue proportions and EDJ

shape. The results suggest that the internal tooth structure may be a reliable proxy to track

groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape

analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn

tip (corresponding to the hypocone). Environmental, developmental and/or functional

underlying causes might be suggested for the origin of phenotypic differences shared by

these individuals buried in alcoves.
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Introduction
Traditionally, biological affinities and kinship between populations and individuals are
approached by the analysis of crown size and shape, using external diameters and non-metric
variations [1–15]. Crown size and shape are influenced by genetic, epigenetic and environmen-
tal factors (see [16,17] for an overview). Whereas the polygenetic control is relatively strong
[5,17–21] and seems to be dominant for crown size [18], the impact of environmental factors
on tooth variations has been demonstrated, notably by the studies of twins [19,22–25]. In addi-
tion, the buccolingual diameter is less influenced by environmental factors than the mesiodistal
diameter [26], suggesting a different genetic control between these two dimensions [27,28].
Non-metric variations are also determined by multiple factors, which are under moderate to
high-genetic and environmental controls [7,29–31]. They are considered as reliable markers
for measuring biological relatedness and thus widely used to estimate biological relationships
between populations and affinities between individuals [9,11,31–46].

Community-shared or family-centered practices might influence the organization of the
necropolises, this means that burial practices may reflect the social composition of the popula-
tion [31,33,47]. Morphological and genetic methods are generally applied in order to character-
ize biological relationships between individuals in burial grounds. It is possible to identify
closely related individuals but the precise genealogical degree of this kinship is rarely specified.

Because of the high heritability of non-metric variations [16,31], these phenotypic data are
studied in order to assess the social structure of necropolises [31,44,47–49]. In particular, teeth
are often singled out for their potential to identify biological relatives [50–52] and even siblings
[15]. More recently, advances in paleogenetics allow to compare cemetery organization and
kinship from ancient DNA analysis, also with some precise genetic affiliation [53–56]. Affini-
ties obtained from these two methods–non-metric and genetic–are correlated [57–59]. Paleo-
genetic analyses are destructive and dependent on the preservation of the remains–ancient
DNAmay not be conserved. So far, external morphometric analyses of the crown are used to
assess biological affinities, providing information that describes in essence the macrostructural
outcomes of dental development.

At meso- and microstructural level, teeth record a wealth of unique information within
their tissues that are crucial in bioarcheology and paleoanthropology [60–80]. Enamel thick-
ness, crown tissue proportions and enamel-dentin junction (EDJ) shape have been shown as
relevant parameters to finely characterize taxonomy, phylogenetic relationships, dietary and/or
developmental patterns [62–69,81–95]. The EDJ, which is the interface between the enamel
cap and crown dentin [96] and the developmental precursor and primary contributor to the
outer morphology of the crown [65,91,92,97,98], has been shown to successfully discriminate
hominoid species [62,65,91,92,99–102]. Moreover, the EDJ is morphologically more conserva-
tive than the outer enamel surface and provides essential information about the developmental
processes underlying tooth crown growth [65,100,102]. According to the inhibitory cascade
model of development [103], the morphology of the crown is an iterative process determined
by a morphodynamic interaction between developmental genes and cusps morphogenesis.
This model predicts the future cusp size and shape, the number of cusps [104–107] as well as
the pattern of tooth sizes for the lower postcanine teeth [108].

Advanced virtual imaging techniques, that are non-invasive methods, allow such quantita-
tive and qualitative characterizations of internal structures. However, at a microevolutionary
scale, these variables have been poorly assessed in modern humans to discuss inter- or intrapo-
pulational variability [109,110]. While the study of internal tooth structure may help to assess
subtle phenotypic differences across/within archeological assemblages, in our knowledge, the
use of internal tooth structure is original to characterize the variations at the intrasite scale.
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More importantly, in addition to provide precise phenotypic assessment, internal tooth struc-
ture analyses may allow to understand the developmental, functional and phylogenetic under-
lying causes of these variations.

The Neolithic necropolis of Gurgy
Discovered in 1997 in the southern Paris Basin (Yonne, France), excavations at Gurgy yielded
128 individuals (Fig 1), which make the site one of the most important necropolises currently
known for the Early/Middle Neolithic transition in Western Europe [111,112]. Among the 134
pits dug in Gurgy, 120 were identified as primary burials: individual structures were largely
dominant and few were double burials. Both individual and double burials present various
funerary architectures [112], including pits with evidence of a container in perishable material
(container), pits with a wattle-like construction on the walls (wattling) and pits with a lateral
overdigging where the body was deposited (alcove, see S1 Fig). The majority of the bodies were
positioned on the left side, with the head to the south or the south-west, upper limbs hyper-
flexed and lower limbs either bended or hyperbended [113]. Some grave goods were found
associated with the individuals buried at Gurgy: animal bones or teeth, shells, flint, ochre and
rare pottery [111]. Radiocarbon dates of human remains range between 5100–4000 cal. BC (see
[114]) and represent a continuous use of the necropolis for a thousand years. Three main chro-
nological phases of occupation of the site could be identified: the principal phase (B) with the
most intensive use is ranged from 4800 and 4500 cal. BC, is framed by an early phase (A) before
4800 cal. BC and a recent phase (C) dated after 4500 cal. BC (see S2 Fig).

The necropolis of Gurgy is situated at the confluence of the two migration routes of the
European Neolithization, in the culturally rich and complex archeological area of the Paris
Basin during the transition from the Ancient to the Middle Neolithic. Given these multiple cul-
tural influences are visible at Gurgy [111,112], it is not possible to propose a specific cultural
attribution ([113,114] see in particular the Supplementary Informations). Indeed, for the
period and the region, Gurgy revealed a more homogeneous and inconspicuous funerary pro-
file: a necropolis without monument and any structuring of funerary space [44,115]. Paleoge-
netic analyses show equivalent genetic contributions of the two European neolithization waves
in Gurgy population, revealing the most ancient mixture between farmers from both Danubian
and Mediterranean migration routes [114]. At the intrapopulation scale, even if ancient DNA
was not conserved in all sampled individuals and no Y chromosome DNA was found, and thus
no precise degrees of kinship were discussed, some individuals sharing mitochondrial DNA
haplotypes and archeological and spatial features might be closely maternally related [114,116].

According to the analyses conducted so far, the Gurgy population is homogeneous regard-
ing isotopic variation [117], enamel thickness topography and tooth wear patterns [93].
Although influenced by the rich cultural diversity of the Paris Basin [113,114], the funerary
practices at Gurgy are rather homogeneous [113]. All these data suggest that the necropolis
was used by a uniform population (even if genetically derived from both Neolithization waves)
sharing a common cultural framework.

Aims of the study
In this study, a high resolution microtomographic (microCT)-based record of upper perma-
nent second molars from Neolithic individuals of the necropolis of Gurgy was applied with the
aim to evaluate intrasite variation in crown tissue proportions, thickness and distribution of
enamel, and enamel-dentin junction shape. This study explore subtle phenotypic dental varia-
tion and its underlying causes among individuals buried at Gurgy. Using these internal tooth
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Fig 1. Map of the Neolithic necropolis of Gurgy (Yonne, France).

doi:10.1371/journal.pone.0159688.g001
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structure parameters and facing these data against burial practices and chronocultural parame-
ters, this investigation will address the following questions:

• Do phenotypic distances obtained from the study of morphological and metrical variation of
internal tooth structure are a reliable proxy to track groups sharing similar chronocultural
and burial practices?

• Is one of these internal parameters more relevant to discuss interindividual variability?

• Can causes of dental variations be suggested?

Materials and Methods

Samples
For this preliminary study, 20 upper permanent second molars (UM2) were examined for 13
adults (whom 6males, 5 females, and 2 indeterminate) and 7 immature individuals from Gurgy
(Table 1), all buried in primary structures (Fig 1). UM2 have been selected because they are
often less worn than M1, and their development is more correlated to somatic and sexual matu-
ration than those of M3 [118]. Crowns are complete (at least, maturational stage D and further
[119]) and well-preserved, exempt from caries, pathologies and damages. Dental wear patterns
were recorded according to the procedure of Molnar [120] and teeth range from unworn to
slightly worn (Table 1). Age-at-death estimation was based on dental development [121,122],
bone ossification and diaphyseal length [123] and chronological metamorphosis of the auricular
surface of the ilium [124]. Sex was assessed using the morphology and morphometry of the ossa
coxae [125–127]. Details on sample composition regarding biological and chronocultural param-
eters are given in Table 1, and summarized on the necropolis map (Fig 1). Direct radiocarbon
ages of human remains were available for a large sample of individuals in the necropolis (cali-
brated at 2 sigmas with OxCal 4.2.4 [128] and curve IntCal13 [129], see also S2 Fig)

Microtomographic record
The UM2 were scanned on Skyscan 1076 X-ray equipment set at the MRI platform (University
Montpellier 2, France). Acquisitions were realized according to the following parameters: 100
kV voltage, 100 μA current, a 1.0 mm aluminum filter and a rotation step each 0.20°. The soft-
ware Nrecon v1.6.6 (Skyscan) was used to reconstruct the final volumes with an isotropic voxel
size ranging from 17.93 μm for isolated teeth to 36.18 μm for jaw fragments. Following the
half-maximum height method [130,131], a semi-automatic threshold-based segmentation with
manual corrections was conducted using Avizo v.7 (VSG) [62,84–87,89,94,132–135]. Crowns
were digitally isolated from roots [85] and three-dimensional (3D) surface models were gener-
ated using a constrained smoothing algorithm. All 3D surface models were deposited in Mor-
phoMuseuM [136].

Dental tissue proportions and enamel thickness analysis
Using MPSAK v2.9 (developed by L. Bondioli, available in [137], seven 2D variables were mea-
sured or calculated on virtual buccolingual cross-sections realized through the dentin horn tips
of the mesial cusps (see S3 Fig): total crown area (a, mm2); enamel area (c, mm2); coronal den-
tin and pulp area (b, mm2); percentage of crown area that is dentin and pulp (%b, %); enamel-
dentin junction (EDJ) length (e, mm); 2D average enamel thickness (AET2D (= c/e), mm) and
2D relative enamel thickness (RET2D (= AET2Dx100/(b)1/2), scale-free) [81,86]. For lightly
worn crowns, 2D corrections of outer enamel surface were made prior to measurements of the
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AET2D and RET2D values: reconstructions of the removed enamel were performed based on
morphology observed for unworn teeth [69].

Height variables describing 3D dental tissue proportions were digitally measured or
extracted using Avizo v.7 (VSG) on the crown reconstructions (see S4 Fig): total crown volume
(Cvol, mm3); enamel volume (Evol, mm3); coronal dentin volume (Dvol, mm3); coronal dentin
and pulp volume (DPvol, mm3); percentage of crown volume that is dentin and pulp (%DPvol,
%); EDJ surface area (SEDJ, mm2); 3D average enamel thickness (AET3D (= Evol/SEDJ), mm)
and 3D relative enamel thickness (RET3D (= AET3Dx100/(DPvol)1/3), scale-free) [62,83–85].
While enamel thickness increases allometrically with body and/or tooth size, RET3D allows
comparisons between specimens with different body size [81].

The topographic variation of standardized enamel thickness (see S3 Fig) was measured
using MPSAK v2.9 [137] in buccal and lingual aspects of the virtual buccolingual cross-sections
[93,138]. In order to calibrate enamel thickness values and allow comparisons independent to
tooth size and occlusal wear, the bi-cervical diameter (BCD) was defined at 10 mm (S3 Fig)

Table 1. The 20 Neolithic individuals sampled in the necropolis of Gurgy. Details of biological (age and sex, maturational and wear stages, mtDNA hap-
logroups) and chronocultural parameters (radiocarbon age, phase, burial structure, orientation and location in the necropolis).

Individual 1 Teeth mtDNA Burial Ages

Number Age 2 Sex 2 UM2 Maturational stage 3 Wear stage 4 Haplogroug 5 Structure 6 Orientation Location 14C cal. BC Phase 7

201 16–18 M left H 2 K Alcove E_W SW 5206–4840 A

206 3.5–7 left D 1 Wattling N_S SW

213 15–29 F right H 2 Container NE_SW SW 4937–4728 B

215A 4–8 right D 1 Alcove NW_SE SW B

215B 8–14 right E 1 J1 Wattling N_S SW

223 4–7 right D 1 U5 Container N_S SW 4770–4536 B

229 12–19 right H 1 K Container SW_NE SE C

243B >20 F left H 3 X Container N_S SW 4828–4609 B

248 >40 I left H 3 U5 Alcove N_S SW 4313–3991 C

252 >30 M left H 1 Container N_S SE 4763–4536 B

253 20–59 M left H 2 Alcove NE_SW SE 4235–3991 C

257 >30 M right H 3 Container NE_SW NW 4841–4556 B

264 15–29 F left H 2 H1 Container NE_SW NW

277 15–29 I right H 2 J Container N_S NE

289B >30 F right H 1 K Container SW_NE NE 4770–4489 B

291 >30 M right H 3 Container NE_SW NE B

292 20–29 F right H 1 H1 Container SW_NE NE B

294 >20 M left H 2 U5 Container E_W NE B

301 6–12 left E 1 K Container NE_SW NE 4763–4536 B

308 9–14 right G 1 Container NE_SW NE

1 The original specimens are deposited in the Ostéothèque de Pessac (Université de Bordeaux). All material included is archeological; no permits were

required for the described study.
2 Revised from [113,114]; personal communications and observations; M = male; F = female; I = indeterminate.
3 According to Demirjian et al. [119], D = the crown formation is completed down to the enamel-dentin junction; E = the root length is still less than the crown

height; F = the root length is equal to or greater than the crown height; G = the walls of the root canal are parallel and its apical end is still partially open;

H = the apical end of the root canal is completely closed.
4 According to Molnar [120], 1 = unworn teeth; 2 = minimal wear facets; 3 = small dentin patches.
5 All individuals were selected for mitochondrial DNA (mtDNA) analysis, unfortunately, not all samples yielded results. See Rivollat et al. [114].
6 Burial pictures are provided in S1 Fig. See Rottier [112] for description.
7 A: early phase (before 4800 cal. BC); B: principal phase (4800–4500 cal. BC); C: recent phase (after 4500 cal. BC). See also S2 Fig.

doi:10.1371/journal.pone.0159688.t001
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prior to digitize thicknesses between enamel-dentin junction and outer enamel surface, from
the neck to the apex with an interval of 0.25 mm [93,138].

Three-dimensional maps of the topographic distribution of enamel thickness were created
by measuring the distance between the outer enamel surface and enamel-dentin junction [64].
Differences in enamel thickness were rendered by a thickness-related, pseudo-color scale rang-
ing from dark blue for thinner enamel to red for thicker enamel.

Estimated intra- and interobserver error rates were lower than 5% in all measured variables.
The non-parametric Mann–Whitney U-test was employed to evaluate differences between the
sexes and between individuals sharing cultural parameters. Plots of AET against b or DPvol,
respectively in 2D and in 3D, were used to illustrate the relationship between AET and tooth
size. Cluster analyses were performed on 2D and 3D tissue proportions using Ward’s hierarchi-
cal clustering method [139], with a bootstrap of 1000 repetitions.

Geometric morphometric analysis of EDJ shape
Using the software Viewbox 4 (dHAL software, Kifissia, Greece), a 3D template of 114 points
was created with an assemblage of three sets of 3D landmarks (S5 Fig). Compared to studies
aiming to assess variations at a macroevolutionary scale [91,95], a large number of landmarks
and semilandmarks was placed in order to finely quantify morphological EDJ variations in a
microevolutionary context. The first set includes five anatomical landmark points: four were
digitized on the tip of the dentin horn of corresponding four main cusps (i.e. protocone, para-
cone, metacone, hypocone) and one on the maximum lower part of the occlusal basin.
Although unworn to slightly worn UM2 were selected, four teeth exhibit small dentin patches.
Based on morphology observed for preserved dentin horns, reconstructions of the apex of den-
tin horn tips were made using Avizo v.7 (VSG), prior to digitally place landmarks. The second
set is composed of 52 curve semilandmarks: 17 were digitized along the top of the ridges which
connected the three dentin horns of the protocone, the paracone and the metacone, five were
digitized along the ridge between the metacone and the hypocone, and 30 were collected along
the cervix of the tooth crown. The third set includes 57 surface semilandmarks distributed uni-
formly over the occlusal basin and the wall of the EDJ surface [91,101,140–143].

Using Viewbox 4 (dHAL), the template was warped onto each specimen’s EDJ surface by a
thin-plate spline (TPS) interpolation function, and points were projected onto the targeted EDJ
surface. As part of the digitization process, semilandmarks were allowed to slide along the
curves and surfaces in order to minimize the bending energy of the TPS computed between
each EDJ specimen and the Procrustes average shape [140,144]. After sliding, landmarks and
semilandmarks were treated as homologous points [140] and converted to shape coordinates
by Generalized Procrustes Analysis [144–146]. This involves rescaling the landmark coordi-
nates so that each configuration has a unit Centroid Size (CS). Next, all configurations were
translated and rotated to minimize the overall sum of the squared distances between corre-
sponding (semi)landmarks.

Using R ([147], packages Morpho, shapes, scatterplot3d), a Principal Component Analysis
(PCA) was carried out on the matrix of shape coordinates augmented by a column of the natu-
ral logarithm of Centroid Size (LnCS)–corresponding to a PCA in form space [148]. PC1 usu-
ally captures overall size variation as well as size-related shape variation (allometry), whereas
the other PCs contain residual, non-allometric, shape variation and are weakly correlated with
size.

A 3D digital EDJ surface was warped towards the Procrustes mean form using a thin plate
spline (TPS) interpolation function using Avizo v.7 (VSG). Thereafter, the surface of the Pro-
crustes mean configuration (consensus) was used to visualize size and shape variation along
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the PCs. The shape deformation represented by the eigenvectors of a particular PC was visual-
ized as a TPS deformation from the consensus plus or minus the eigenvectors (right and left
sides of the PC, respectively). Once the eigenvectors (those related to the shape variables) are
added or subtracted from the consensus, all variables are also multiplied by the exponent of the
eigenvector for LnCS [149].

Results

Dental tissue proportions and enamel thickness
For each individual, 2D variables measured on virtual buccolingual sections–and corrected for
occlusal wear–are presented in Table 2. While males tend to have higher 2D tissue proportions, in
particular higher dentin surface (Table 3, see also S6 Fig), no significant differences were found
between sexes, burial structures and occupation phases of the necropolis. In majority, the same
information is found with 3D and 2D crown variables, but plots of 2D tissue proportions show
slightly more nuanced differences between burials and between phases (Fig 2). Indeed, only the
males buried in a pit with alcove (individuals 201 and 253) fall out of the variability shown by indi-
viduals buried in a pit with container (Fig 2 left), while individual 248 which is from the recent
phase appears to be included in the variability of individuals from the main phase (Fig 2 right).

All 3D variables measured for upper permanent second molars (UM2) of each specimen are
presented in Table 4 and descriptive statistics are detailed in Table 5. Reconstructions of 3D

Table 2. Measured 2D variables of crown tissue proportions for each individual.

Individual a c b %b e AET2D RET2D

201 72.19 25.21 46.98 65.08 20.66 1.22 17.80

206 61.58 25.53 36.05 58.54 18.53 1.38 22.95

213 57.90 23.61 34.29 59.22 18.40 1.28 21.91

215A 54.16 24.06 30.10 55.58 17.72 1.36 24.75

215B 62.53 26.37 36.16 57.83 19.75 1.34 22.20

223 59.41 25.68 33.73 56.77 18.09 1.42 24.45

229 68.17 25.34 42.83 62.83 20.51 1.24 18.88

243B 55.32 19.52 35.80 64.71 18.20 1.07 17.93

248 53.67 22.99 30.68 57.16 19.65 1.17 21.12

252 62.77 21.06 41.71 66.45 20.34 1.04 16.04

253 75.97 25.65 50.32 66.24 21.64 1.19 16.71

257 66.19 25.03 41.16 62.18 20.35 1.23 19.17

264 60.31 19.79 40.52 67.19 20.18 0.98 15.41

277 60.64 25.19 35.45 58.46 20.28 1.24 20.86

289B 51.30 22.44 28.86 56.26 16.45 1.36 25.39

291 48.52 18.66 29.86 61.54 17.04 1.09 20.04

292 60.15 24.92 35.23 58.57 18.94 1.32 22.17

294 53.11 16.33 36.79 69.26 18.11 0.90 14.87

301 52.58 26.01 26.57 50.53 17.01 1.53 29.66

308 56.44 23.29 33.15 58.73 17.78 1.31 22.75

a = total crown area (mm2)

c = enamel area (mm2)

b = coronal dentin and pulp area (mm2)

%b = percentage of crown area that is dentin and pulp (%)

e = enamel-dentin junction length (mm)

AET2D = 2D average enamel thickness (mm)

RET2D = 2D relative enamel thickness (scale free).

doi:10.1371/journal.pone.0159688.t002
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surface models for enamel and dentin components are shown S7 Fig, which allows to compare
the morphology between the UM2 crowns.

The results show an overall biological proximity in enamel thickness and dental tissue pro-
portions for individuals buried at Gurgy. Males show greater quantity of each tissue than
females (Table 5). FromMann-Whitney U-test, only the volume of dentin (Dvol) is signifi-
cantly higher for males than for females (p = 0.045). Proportion of these tissues into the crown
(%DPvol) is comparable between sexes. No significant differences were found between individ-
uals buried in different burials structure or individuals from different phases of the necropolis.
However, while relatively low range of variation is shown in dental tissue proportions and
enamel thickness for individuals of Gurgy (Fig 3), males tend to have higher crown tissue pro-
portions than females (see also S8 Fig). Also, even if occlusal wear slightly affects enamel vol-
ume (Evol), grouping of individuals based on tissue proportions and thickness show an overall
correlation with chronocultural parameters (Fig 3). Individuals buried in pit with wattling are
systematically included in the variability shown by those buried in pit with container, whereas
individuals buried in alcove are out of this variability, in particular individual 201 and 248.
Moreover, individuals buried in a pit with wattling (206-215B) are very close and share high
proximity in crown tissue proportions (Evol and DPvol, Fig 3 top left) and enamel thickness
(Fig 3 bottom left), while those buried in pit with alcove present the highest variability (indi-
viduals 248-215A and 201 are at extreme opposition, respectively, Fig 3 left). Also, individuals
from the early phase (A) and the recent phase (C) of the necropolis use are out of the biological
variability observed for individuals from the principal occupation of the necropolis (phase B,
Fig 3 right). Particularly, individual 201 from the oldest phase exhibits the most different con-
dition, as he presents the highest value for both Evol and DPvol (Fig 3 top right) and EDJ sur-
face (Fig 3 bottom right).

Measurements of topographic variation in enamel thickness allow comparisons which are
not affected by occlusal wear. For all individuals, enamel is thicker on the lingual aspect than
on the buccal aspect (Fig 4). Individuals buried in a pit with alcove show a more homogeneous
enamel thickness distribution between lingual and buccal aspects of the crown, and present
systematically thinner enamel on the lingual aspect than other individuals (Fig 4).

The dendrogram obtained from the application of Ward’s method to 3D variables is pre-
sented in Fig 5. The intercluster distance values are relatively small, suggesting a high homoge-
neity within the population. Whichever the dataset used (see S9 Fig and S10 Fig for cluster
analyses performed on 2D variables, on enamel and on dentin components, separately), the
results of cluster analysis could be divided into two main clusters. In a large majority, the same

Table 3. Descriptive statistics of 2Dmeasured variables for all individuals, female andmale individuals, separately.

a c b %b e AET2D RET2D

All individuals mean ± SD 59.64 ± 7.06 23.33 ± 2.84 36.31 ± 6.11 60.66 ± 4.74 18.98 ± 1.45 1.23 ± 0.16 20.75 ± 3.77

range 48.52–75.97 13.66–26.37 26.57–50.32 50.53–69.26 16.45–21.64 0.90–1.53 14.87–29.66

CV 0.12 0.12 0.17 0.08 0.08 0.13 0.18

Female mean ± SD 57.00 ± 3.77 22.06 ± 2.36 34.94 ± 4.16 61.19 ± 4.57 18.43 ± 1.35 1.20 ± 0.17 20.56 ± 3.91

range 51.30–60.31 19.52–24.92 28.86–40.52 56.26–67.19 16.45–20.18 0.98–1.36 15.41–25.39

CV 0.07 0.11 0.12 0.07 0.07 0.14 0.19

Male mean ± SD 63.16 ± 10.68 21.99 ± 3.92 41.14 ± 7.28 65.12 ± 2.88 19.69 ± 1.74 1.11 ± 0.13 17.44 ± 1.95

range 48.52–75.97 16.33–25.65 29.86–50.32 61.54–69.26 17.04–21.64 0.90–1.23 14.87–20.04

CV 0.17 0.18 0.18 0.04 0.09 0.12 0.11

For the definitions of the abbreviated variables, see Table 2.

doi:10.1371/journal.pone.0159688.t003
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groups of individuals are found, especially considering final clusters. At the scale of the necrop-
olis, the dendrogram clusters do not fit well into the spatial organization (see S11 Fig), suggest-
ing that biological and spatial distances among individuals may not be strongly associated.
However, at a smaller scale, the final clusters identified (Fig 5) are mostly supported by

Fig 2. Plot of c against b (top) and plot of b against AET2D (graphic representation of RET2D, bottom) according to burial (left) and phase (right).

doi:10.1371/journal.pone.0159688.g002
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bootstrap higher than 90 (e.g., 229–253; 289B-308; 277–292; 243B-294). These subclusters
include individuals who share multiple parameters, such as burial structure, orientation and

Table 4. Measured 3D variables of crown tissue proportions for each individual.

Individual Cvol Evol Dvol DPvol %DPvol SEDJ AET3D RET3D

201 565.30 268.09 281.42 297.21 52.58 201.57 1.33 19.93

206 410.86 209.73 168.26 201.13 48.95 159.34 1.32 22.47

213 383.43 199.18 182.83 184.25 48.05 150.36 1.32 23.28

215A 330.23 180.57 141.20 149.66 45.32 132.39 1.36 25.69

215B 401.50 208.45 179.16 193.05 48.08 158.93 1.31 22.69

223 442.63 234.91 141.24 207.72 46.93 161.83 1.45 24.51

229 478.58 240.55 237.69 238.03 49.74 184.39 1.30 21.05

243B 363.94 144.34 214.76 219.60 60.34 176.23 0.82 13.58

248 279.20 136.33 140.97 142.87 51.17 131.06 1.04 19.90

252 399.21 193.60 203.33 205.62 51.51 157.67 1.23 20.80

253 474.74 238.93 230.92 235.81 49.67 175.41 1.36 22.05

257 429.40 210.53 216.30 218.88 50.97 175.29 1.20 19.93

264 380.95 187.12 189.12 193.83 50.88 158.48 1.18 20.40

277 424.31 229.00 189.61 195.31 46.03 169.25 1.35 23.32

289B 370.49 214.24 150.01 156.25 42.17 138.42 1.55 28.74

291 314.69 127.33 186.40 187.35 59.54 145.39 0.88 15.31

292 428.73 230.34 196.17 198.39 46.27 162.34 1.42 24.33

294 383.65 149.97 228.08 233.68 60.91 176.03 0.85 13.83

301 424.02 250.02 171.59 174.00 41.04 153.83 1.63 29.11

308 375.34 212.61 161.17 162.73 43.36 140.57 1.51 27.70

Cvol = total crown volume (mm3)

Evol = enamel volume (mm3); DPvol = coronal dentin and pulp volume (mm3)

%DPvol = percentage of crown that is dentin and pulp (%)

SEDJ = enamel-dentin junction area (mm2)

AET3D = 3D average enamel thickness (mm)

RET3D = 3D relative enamel thickness (scale free).

doi:10.1371/journal.pone.0159688.t004

Table 5. Descriptive statistics of measured 3D variables for all individuals, female andmale individuals, separately.

Cvol Evol Dvol DPvol %DPvol SEDJ AET3D RET3D

All
individuals

mean ± SD 403.06 ± 62.46 203.29 ± 39.22 190.51 ± 36.86 199.77 ± 35.87 49.83 ± 5.50 160.44 ± 18.07 1.27 ± 0.22 21.93 ± 4.34

range 279.20–
565.30

127.33–
268.09

140.97–
281.42

142.87–
297.21

41.04–
60.91

131.06–
201.57

0.82–1.63 13.58–
29.11

CV 0.15 0.19 0.19 0.18 0.11 0.11 0.18 0.20

Female mean ± SD 385.51 ± 25.42 195.04 ± 32.65 186.58 ± 23.69 190.46 ± 23.09 49.54 ± 6.81 157.17 ± 14.05 1.26 ± 0.28 22.06 ± 5.61

range 363.94–
428.73

144.34–
230.34

150.01–
214.76

156.25–
219.60

42.17–
60.34

138.42–
176.23

0.82–1.55 13.58–
28.74

CV 0.07 0.17 0.13 0.12 0.14 0.09 0.22 0.25

Male mean ± SD 427.83 ± 85.64 198.07 ± 53.04 224.41 ± 32.44 229.76 ± 37.69 54.19 ± 4.78 171.89 ± 19.11 1.14 ± 0.22 18.64 ± 3.28

range 314.69–
565.30

127.33–
268.09

186.40–
281.42

187.35–
297.21

49.67–
60.91

145.39–
201.57

0.85–1.36 13.83–
22.05

CV 0.20 0.27 0.14 0.16 0.09 0.11 0.20 0.18

For the definitions of the abbreviated variables, see Table 4.

doi:10.1371/journal.pone.0159688.t005
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location in the necropolis, position of the head and the body in the burial (Table 1 and S11
Fig). Particularly, individuals 206-215B are spatially closed and both are buried in pit with wat-
tling with the same orientation, even if the body of 206 is on the back and that of 215B on the
left side, both have the head oriented to the south-east. Also, individuals 215A-248 share pits
with alcove and are both buried on the left side with their head to the south.

EDJ shape
From geometric morphometric analysis, the first three principal components (PC) account for
30.12%, 15.86% and 13.91% of the total form variation of EDJ, respectively (Fig 6). PC1 mostly
represents allometric size differences observed between males and females (correlation of PC1

Fig 3. Plot of Evol against DPvol (top) and plot of DPvol against AET3D (graphic representation of RET3D, bottom) according to burial (left) and phase
(right).

doi:10.1371/journal.pone.0159688.g003
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and lnCS: r = 0.975), while PC2 and PC3 allow visualization of only size-independent shape
variations (correlations of PC2/PC3 and lnCS: r = 0.046 / r = 0.211. respectively). Minor sex
differences in overall EDJ shape are observed, but males tend to have bigger EDJ, with higher
dentin horn tips and buccolingual lengthening (S12 Fig).

Furthermore, individuals buried in a pit with wattling show an EDJ shape that is systemati-
cally included in the variability of those buried in pit with container (Fig 6). On the contrary,
allometry particularly affects individuals buried in pit with alcove which are outside the vari-
ability observed for other individuals along PC1 (Fig 6). While males 201 and 253 possess the
biggest EDJ and individuals 215A and 248 the smallest, these four individuals share a similar
condition, illustrated by their position along PC3. Indeed, they present a reduction of the
height of the distolingual dentin horn tip (hypocone) compared to the height of other horn
tips.

Individuals from early (A) and recent (C) phases have EDJ shapes that fall at the extreme
variation shown by the individuals from the principal phase (Fig 7). In particular, individual
201 from the early phase possesses an EDJ shape that sets him apart. As a whole, individuals
from early and recent phases, and those buried in alcove seems to be distinguishable by their
crown tissue proportions and EDJ shape, distinguishes them from the other individuals buried
in the necropolis of Gurgy.

Discussion
In this study, crown tissue proportions, thickness and distribution of enamel, and EDJ shape
have been used to explore phenotypic variations between the Neolithic individuals buried in
the necropolis of Gurgy.

• Do phenotypic distances obtained from the study of morphological and metrical variation of
internal tooth structure are a reliable proxy to track groups sharing similar chronocultural
and burial practices?

While a relative homogeneity has been found in these variables, and particularly in enamel
thickness topography, differences from internal tooth structure analysis could be correlated
with burial and chronocultural parameters. Individuals buried in pits with alcove show subtle
differences in their internal tooth structure from individuals found in pits with container and
wattling. Moreover, individuals from early and recent phases of the necropolis could be distin-
guished from those of the principal phase from their crown tissue proportions and EDJ shape.

Fig 4. Topographic variation of standardized enamel thickness measured on the lingual (continuous
lines) and buccal (dotted lines) aspects according to burial structures.

doi:10.1371/journal.pone.0159688.g004
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Fig 5. Dendrogram from cluster analysis based on 3D tissue proportions. Bootstrap values are
indicated on nodes.

doi:10.1371/journal.pone.0159688.g005
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Moreover, it is noteworthy that pits with alcove are located at the south-west periphery of the
necropolis area (see Fig 1). They were continuously used during the occupation of the necropo-
lis, which started at the end of Early Neolithic period and ended during the Middle Neolithic
period [112]. However, the only structure consisting of an alcove that is similar to those
observed during the Rubané Récent du Bassin Parisien (RRBP) is the burial of individual 201
[150]. The RRBP is the latest expansion of the Linearbandkeramik-derived culture in Western
Europe [151,152]. Moreover, paleogenetic data showed that both haplogroups inherited from
hunter-gatherers and farmers are found in individuals buried in alcove [114]. The present data
suggest that these individuals may have shared a cultural and phenotypical heritage from Early
Neolithic. Also, despite the geographical location of the Neolithic necropolis of Gurgy at the
confluence of the two waves of neolithization [111] and paleogenetic evidence of individuals
derived from both waves [114], the funerary practices are relatively homogeneous at Gurgy
[112], especially compared to the diversity that has been observed in the Paris Basin during
Early/Middle Neolithic [115,153–156]. Moreover, data from isotopic analysis [117], enamel
thickness topography and occlusal wear patterns [93] show an important homogeneity in the
Neolithic population of Gurgy. In this context, the relative cultural and phenotypical distinc-
tions of individuals buried in an alcove may more likely be in relation to inherited patterns
from Ancient Neolithic groups.

Fig 6. Result of PCA on the EDJ shape coordinates on form space, according to burial structures.

doi:10.1371/journal.pone.0159688.g006
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• Is one of these internal parameters more relevant to discuss interindividual variability?

Considering the subtle differences found at the intrasite scale, none of the internal parame-
ters proved to be more relevant, it was the whole crown analysis that allowed to discuss differ-
ences linked to chronocultural variations and burial structures. However, the dentin
component should be interpreted cautiously. In the necropolis of Gurgy, males have a greater
quantity of crown tissues than females, but only the dentin volume differs significantly between
sexes. Overall dimensions of the crown and dentin volume must be considered in the interpre-
tation of the results. Also, the EDJs of males tend to be bigger than those of females, with higher
dentin horn tips and buccolingual lengthening. These results are consistent with sexual dimor-
phism that has already been shown for internal crown structure, with men having higher
enamel volume, dentin volume and EDJ area than women [109,110,157]. In this context, previ-
ous studies suggested that sexual dimorphism in external crown dimensions could be linked
with a higher production of dentin in males compared to females [157–160].

• Can causes of dental variations be suggested?

While individuals buried in alcove show a size‐related variation in internal crown propor-
tions and morphology which differentiate males and females, both tend to share an identical
size-independent EDJ shape trend. Indeed, it seems that the individuals buried in pits with
alcove share a reduction in the height of their distolingual dentin horn tip, corresponding to

Fig 7. Result of PCA on the EDJ shape coordinates on form space, according to occupation phases.

doi:10.1371/journal.pone.0159688.g007
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the hypocone. This functional cusp [161,162] which is the last to form during dental develop-
ment [96,103,104] shows higher variability. This could be consistent with previous studies
which showed that distal cusps are more plastic to environmental stress [163,164]. Besides,
according to the patterning cascade model of cusp development [107], the location, size, and
shape of the later-developing cusps are configured by the characteristics of the first-forming
cusps [103]. This model predicts that small initial differences in cusp spacing will have cumula-
tive effects on later-developing cusps during the morphogenetic process [107]. Also, while
asymmetry of enamel thickness topography is systematically shown between the functional
and the non-functional cusps of UM2 at Gurgy [93], the individuals in alcove share a slightly
more homogenous pattern of enamel thickness distribution than that of the other individuals.
While enamel thickness has been demonstrated to be an evolutionary plastic trait, selectively
responsive to functionally-related dietary changes and wear [20,61,78,93,165], thick enamel
has been shown to be a homoplastic trait [61]. Functionally-related adaptive changes of enamel
have been demonstrated, notably enamel thickness is an evolutionary plastic trait selectively
responsive to dietary changes, tooth fracture and occlusal wear [20,61,78,93,165]. Moreover,
the distolingual cusp was expected to be the most sensitive to functional changes [93]. Thus,
from the preliminary samples used in this study, differences at phenotypical and cultural levels
are found for these Neolithic individuals. The balance between environmental, phylogenetic,
developmental and functional aspects is hard to evaluate, and any of these aspects can be sug-
gested as possible underlying cause for the origin of phenotypical differences shared by these
individuals buried in alcove.

Conclusions
In this study of the Neolithic individuals from Gurgy, morphological and metric parameters such
as crown tissue proportions, thickness and distribution of enamel, and EDJ shape, were assessed
in a whole crown perspective, in order to finely quantify size and shape variations in a microevo-
lutionary context. The results suggest that the internal tooth structure may be a reliable proxy to
track groups sharing similar chronocultural and burial practices. Indeed, from the non-invasive
characterization of their internal tooth structure, individuals buried in alcove have been distin-
guished from those buried in other structures, and underlying factors and causes of these dental
variations have been discussed. The internal tooth structure could be used to discuss interindivid-
ual phenotypic variation within and between burial grounds, as well as to assess environmental,
phylogenetic, developmental and/or functional underlying causes of these phenotypic variations.
With adapted methods and templates designed to finely characterize variations at microevolu-
tionary scales, further studies of teeth from osteological reference collections will elucidate to
which extent these factors may be tracked in archeological samples.

Supporting Information
S1 Fig. Images of the three burial structures: pit with container (left), pit with wattling (mid-
dle), and pit with alcove (right).
(TIF)

S2 Fig. Multiple plot of radiocarbon ages available for the sampled individuals.
(TIF)

S3 Fig. Virtual buccolingual cross-section through the dentin horn tips of the mesial cusps of
upper second molar, surface and linear variables (left), and standardized enamel thickness
measured on the buccal aspect (right).
(TIF)
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S4 Fig. 3D surface models of upper second molar (a); dental tissues in transparence (b)
(enamel in white, dentin in yellow, pulp in orange) with position of the cervical plane for vir-
tual isolation of the crown; and resulting measured volumes: total crown volume (c), enamel
volume (d), coronal dentin volume (e).
(TIF)

S5 Fig. EDJ template. Landmarks are represented in black spheres, curve semilandmarks in
grey spheres, and surface semilandmarks in white spheres.
(TIF)

S6 Fig. Plot of c against b (left) and plot of b against AET2D (right) according to the sex of
individuals.
(TIF)

S7 Fig. Comparative morphology of each UM2 crown. Reconstructions of outer enamel sur-
face (OES), enamel-dentin junction (EDJ), dental tissue proportions (DTP) with superposition
of enamel and dentin in transparence, and cartography of enamel thickness (ET) in occlusal
(O), mesial (M), distal (D), buccal (B) and lingual (L) views.
(PDF)

S8 Fig. Plot of Evol against DPvol (left) and plot of DPvol against AET3D (right) according to
the sex of individuals.
(TIF)

S9 Fig. Dendrogram from cluster analysis based on 2D tissue proportions. Bootstrap values
are indicated on nodes.
(TIF)

S10 Fig. Cluster analysis performed on enamel component only (Evol and c, left) and dentin
component only (DPvol and b, right).
(TIF)

S11 Fig. Necropolis map of Gurgy with details of cultural parameters for individuals clus-
tered according to the dendrogram obtained from 3D tissue proportions.
(TIF)

S12 Fig. ACP on EDJ according to the sex of individuals.
(TIF)
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