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Objective: To characterise patterns of enamel thickness on deciduous (dm1, dm2) and

permanent first (M1) mandibular molars and evaluate these against functional and mor-

phological interpretative models.

Methods: Histological sections of mesial and distal cusps from 69 unworn molars were

produced and examined using transmitted light microscopy. Enamel cap area, dentine area,

as well as average and linear measurements of enamel thickness were recorded from digital

images of the sections using image analysis software. Comparisons were made along the

molar row, and between the mesial and distal sections of each tooth, using univariate and

multivariate inferential statistics.

Results: The enamel cap area, dentine area, and average enamel thickness increased from

the anterior to the posterior molars. The greatest proportional increase in linear enamel

thickness occurred between the outside surface of the lingual cusps when dm1 was

compared to dm2, and between the outside surface of the buccal cusps when dm2 was

compared to M1. The enamel cap area increased from the mesial to the distal sections in M1.

Dentine area decreased from the mesial to distal sections in dm1. Enamel cap and dentine

areas did not change across dm2.

Conclusion: Results for the deciduous molars are interpreted within a functional model of

mastication, in which the dm2 dissipates less laterally orientated loads compared to dm1.

Differences in enamel thickness between dm2 and M1 support previous functional inter-

pretations for this permanent molar. Some mesial–distal results are not easily explained

from either a functional or a morphological perspective and suggest an underlying devel-
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1. Introduction

The enamel coating on human teeth develops as secretory

ameloblast cells move away from the underlying dentine

towards the future outer surface and differentiate down along

the enamel–dentine interface in a cervical direction.1 Mea-

sures of the final thickness of that coating have provided

important insights into primate taxonomic status2–7 and
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dietary adaptations.8–13 Others have related variations in

enamel thickness upon a single tooth and along the molar row

to functional and morphological interpretative models.14–16

Most of these latter studies have focused upon the permanent

dentition. The objective in the present study is to characterise

deciduous and permanent first molar enamel thickness in a

sample of modern human juveniles, and to evaluate the

findings against the interpretative models.
d.
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Table 1 – Linear enamel thickness measurements.

Abbreviationa Surface Definition and measurement

BST Lateral Outer buccal enamel. Maximum thickness of the buccal surface of the

buccal cusp perpendicular to the dentine–enamel junction (EDJ).

BCT Cusp tip Buccal cusp tip. Thickness of the buccal cusp, measured from the tip of the

dentine horn to the tip of the occlusal enamel cusp.

BOT Inner Buccal occlusal slope. Maximum thickness of the occlusal surface of the

buccal cusp perpendicular to the EDJ.

OFT Occlusal fovea Central fossa. Thickness of the central fossa in the occlusal basin,

perpendicular to the EDJ.

LOT Inner Lingual occlusal slope. Maximum thickness of the occlusal surface of the

lingual cusp perpendicular to the EDJ.

LCT Cusp tip Lingual cusp tip. Thickness of the lingual cusp, measured from the tip of

the dentine horn to the tip of the occlusal enamel cusp.

LST Lateral Outer lingual enamel. Maximum thickness of the lingual surface of the

lingual cusp perpendicular to the EDJ.

a BST corresponds to measurement LT(B) from Beynon and Wood,64 and Grine and Martin3. LTB from Grine,22 and BCW from Schwartz.65

BCT corresponds to measurement CT(B) from Beynon and Wood,64 and Grine and Martin.3 BCT from Schwartz,65 CTB from Grine,22 and BCTTIP

from Suwa and Kono.51

BOT corresponds to measurement OT(B) from Beynon and Wood,64 and Grine and Martin.3 BOB from Schwartz,65 and ‘h’ from Grine.22

OFT corresponds to MOB from Schwartz.65

LOT corresponds to measurement OT(L) from Beynon and Wood,64 and Grine and Martin.3 LOB from Schwartz,65 and ‘i’ from Grine.22

LCT corresponds to measurements CT(L) from Beynon and Wood,64 and Grine and Martin.3 LCT from Schwartz,65 CTL from Grine.22 LCTTIP

from Suwa and Kono.51

LST corresponds to measurement LT(L) from Beynon and Wood,64 and Grine and Martin.3 LTL from Grine.8 LCW from Schwartz.65
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1.1. Background

1.1.1. Buccal–lingual comparisons of permanent molar enamel
thickness
The movement of the mandible during mastication (the

chewing cycle) has been subdivided into phases.17,18 Each of

these phases transmits different masticatory loads (more

vertical crushing and grinding movements, and more lateral

shearing) to the molar cusps as the mandible moves through

the chewing cycle.19,20 These functional differences across

the crown surface are reflected by variations in enamel

distribution.21 This is seen on M1, where the lingual cusps

(metaconid and entoconid) provide mainly shearing sur-

faces, and the buccal cusps (protoconid and hypoconid),

grinding and crushing surfaces. The occlusal slopes (see

Table 1 and Fig. 1 for definitions) on buccal cusps can have

thicker enamel compared to the lingual cusps.22,23 This,

combined with other morphological differences between

the cusps, such as the relatively wide supporting base and

thick outer ‘buttressing’ layer of enamel on the buccal

cusps, is thought to increase resistance to the greater

functional demands, providing more resistance to wear as

well the potential for cusp fracture.21,22,24
Fig. 1 – Enamel surfaces.
1.1.2. Mesial–distal comparisons of permanent molar enamel

thickness
Less is known about enamel thickness over modern human

M1 distal cusps (hypoconid and entoconid). Shillingburg and

Grace25 reported values from mesial–distal sections through

M1s. Differences in mean values between the cusps were

found (see their Table 12 and the level 6 measurements), but

no inferential statistical analyses were undertaken. Others

have presented data for small samples, but variation between

cusps was not a focus in their studies.2,26 Smith et al.7 reported

increased distal average enamel thickness (AET) compared to

mesial sections from permanent mandibular molars in Pan

(M1–2) and Pongo (M1–3).

The most extensive study of whole M1 crown enamel

distribution in modern humans is by Kono et al.16 and Kono.27

Using a methodology that produced a three-dimensional (3D)

model, Kono et al.16 reported average and maximum molar

enamel thickness measurements for a small sample, showing

that the pattern of mesial cusp enamel thickness did not

necessarily transfer to the distal cusps. Distal cusps were

found to have thicker enamel compared to mesial cusps, and

the hypoconid had the thickest lateral enamel overall. These

findings were replicated by Kono27 using a temporally mixed

sample (archaeological and present day) of modern humans,

though an inferential statistical analysis was not undertaken

between the cusps.

1.1.3. Enamel thickness along the permanent molar row
Studies of histological thin sections of mesial molar cusps

have identified patterns in enamel thickness along the

permanent tooth row. These patterns have been related to

functional and morphological interpretative models, though

one is not necessarily mutually exclusive of the other.

Average and relative enamel thickness (RET) increases

posteriorly in human mandibular molars, as well as Pan,22,28,29



Fig. 2 – Erupted but unworn dm1, dm2, and M1.
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and a similar increase in linear thickness is seen on the occlusal

slopes and cusp tipsalong the maxillary molar row.15 Some have

related this pattern in humans to a theoretical biomechanical

model ofmastication,30 inwhichthemandible acts like a class III

lever. Under this model, bite force is predicted to increase

posteriorly along the molar row. Therefore, the thicker enamel

on posterior human molars is thought to reflect an increase in

bite force magnitude.15,23 Findings from some experimental

studies support this biomechanical model.31–33

Others argue that increased RET on human third molars is

not necessarily a functional response to increased bite force.22

Instead, the thicker third molar enamel may be related to a

morphological change, whereby a reduction in crown size is

facilitated by a reduced dentine component.22 Therefore, in

this interpretation, relatively thicker enamel is not related to

bite force, which is similar to the situation posed for Papio.34

Some also question the idea that the human mandible acts as

a class III lever, and argue instead that the mandible acts more

like a constrained lever during mastication.35,36 Under this

model, bite force is predicted to decline in posterior molars, as

way of protecting the temporomandibular joint. Theoretical

computer simulations and some experimental data support

this proposal.37–40

Studies report patterns in enamel symmetry (thickness

disparity and equality) between buccal and lingual cusps along

the molar row. Third maxillary molars display increased

thickness equality between cusp tips compared to anterior

molars.15 These findings have been related to the way that

maxillary and mandibular molars interdigitate. Differences in

symmetry on maxillary molars may facilitate relatively more

crushing and grinding posteriorly, and more shearing anteri-

orly due to the greater lateral excursion of the mandible during

chewing.41 Therefore, this interpretation is based upon the

direction of the applied force (i.e., vertical vs. laterally loading).

Patterns of enamel symmetry have also been related to the

helicoidal wear plane along the maxillary row, but these do not

always transfer to the mandibular molars.

1.1.4. Enamel thickness in deciduous molars
Three previous studies have examined deciduous enamel

thickness from histological thin sections of mesial mandibular

molar cusps. No study has examined distal sections of the

deciduous molars. Gantt et al.42 recorded measures of linear

enamel thickness from a geographically mixed sample of dm1

and dm2. Aiello et al.43 reported RET values for a small sample

(n = 3) of dm1 and dm2. Grine22 included dm2 in his study.

Their results follow some trends seen in enamel distribution

on permanent molars. Enamel thickness increased along the

molar row. The dm2 also had thinner enamel compared to

permanent molars. The absence of data for distal cusps has

made it difficult to evaluate deciduous enamel thickness

against a functional or morphological interpretative model.

Experimental data for bite force in children is also limited,

though preliminary results from a recent large scale unpub-

lished study44 indicates bite force production may decrease

anteriorly along the molars.

1.1.5. Methods for measuring enamel thickness
Two (2D) and three-dimensional (3D) methods are available

for studying enamel thickness. Histological methods are
routinely used to produce a 2D plane of section through a

tooth. This is a destructive method. Often, these sections are

produced for studies of dental development to examine

growth rates and formation times, and are then measured

opportunistically for studies of enamel thickness.29,45

Non-destructive microtomographic imaging techniques

produce 2D planes of section46 and 3D reconstructions of

the whole tooth crown.16 Generally, these different techniques

have identified similar broad trends in enamel thickness when

several taxa are examined (e.g., gorillas have thin enamel

compared to thick enamel of humans).47 However, recent

findings indicate that these different techniques may not

always give the same answer. Three-dimensional values for

RET from Australopith taxa differed to previous published 2D

values.13 This was due in part to differences in enamel

distribution over the molars, which was much thicker at the

tips in the Australopiths compared to humans. Because of this,

measurements through the tips were erroneously exaggerated

in the 2D sections. However, similar differences between the

techniques have not been reported for modern humans.

Furthermore, recent 3D measures of AET reported for modern

human permanent mandibular first and third molars,46,48 as

well as 2D measures from sections,29 all lie well within the

range reported from 2D measures taken from microtomo-

graphic methods.46
2. Materials and methods

Sixty-nine mandibular molars were selected from archaeo-

logical samples of modern human juveniles (n = 26) from

England and Scotland. The juveniles were curated by the

Powell Cotton Museum, Hull and East Riding Museum, The

National Museums of Scotland, The Marischal Museum, and

the University of Kent. An effort was made in the present study

to only select unworn teeth. This was achieved by visiting

several institutions, some of which curate large collections of

human juvenile skeletons. This provided a large sample size,

from which the dental sample was chosen. Therefore values

for enamel thickness from both the deciduous and permanent

molars did not include measurements based upon recon-

struction due to wear (Fig. 2). The dental sample comprised of

erupted dm1 (n = 21), dm2 (n = 22), and M1 (n = 26). The sex of

the juveniles was not known. Molars showing external or



Fig. 3 – Enamel area measurements. c = area of enamel cap;

b = area of dentine; e = length of the enamel–dentine

junction.

Fig. 4 – Linear enamel measurements. (Definitons are in

Table 1).
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internal signs of hypoplastic defects (see Mahoney45 his Fig. 1)

were removed from the study.

Measures of enamel thickness were recorded from 2D

histological sections. Fifteen of the M1 sections already

existed, and dental development from microstructure was

previously reported in Mahoney.45 The enamel thickness

measures are reported here. Histological sections of the

deciduous molars were produced to study enamel develop-

ment (enamel secretion rates; variation in cusp initiation)

which is scarcely reported in the literature. The enamel

thickness measures for the deciduous molars are reported

here.

2.1. Sample preparation and obliquity

Each molar was moulded prior to removal for sectioning, and

an epoxy cast was prepared.49 Following this a standard

histological sectioning procedure was followed,50 and both

mesial (protoconid and metaconid) and distal (hypoconid and

entoconid) sections were produced. After embedding the

molars in a polyester resin, longitudinal sections between 180

and 200 mm were taken (Buehler1 Isomet low speed). The

sections past through the tips of the dentine horns and the tips

of the enamel cusps.

Both Smith et al.7 and Suwa and Kono51 have shown that an

oblique 2D section, a section that does not show a complete

dentine horn tip and occlusal enamel cusp tip, can affect the

measurements produced. Obliquity in this study was mini-

mized in two ways. First, following an approach taken by Reid

et al.52 and Dean and Schrenck53 two sections were produced

for the mesial cusps; one taken slightly distal to the protoconid

and metaconid cusp tips, the other slightly mesial. These

sections were then lapped down to l00–120 mm using a graded

series of grinding pads (Buehler1) to reveal the EDJ at the tips

of the dentine horns and the maximum extension of the

cervical enamel. The section with the ideal plane was then

selected for the study; any section that was clearly oblique to

the ideal plane (i.e., did not show a complete dentine horn tip)

were not included in the study. The process was repeated for

the distal cusps. These sections were then polished with a

0.3 mm aluminium-oxide powder, placed in an ultrasonic bath

to remove surface debris, dehydrated through a series of

alcohol baths, cleared (using Histoclear1), and mounted with a

cover slip using a xylene-based mounting medium (DPX1).

Sections were examined under a high powered light micro-

scope (Olympus BX51), and images were taken using a digital

microscope camera (Olympus DP25). Enamel thickness was

recorded using imaging software (Olympus CellD).

The obliquity of the slides produced was evaluated though

comparisons with Suwa and Kono.51 The linear measure-

ments BCT and LCT (discussed below) taken through the

mesial M1 cusps are comparable to the measurements BCTTIP

and LCTTIP from the mesial M1 cusps in their study. Suwa and

Kono51 show that sections offset from the ideal plane will

produce a coefficient of variation (CV) much greater than the

CV they report. They report a CV of 17.0 and 14.2 for BCTTIP

and LCTTIP respectively. In this study, the CV of 22.4 and 18.5

for BCT and LCT lies close to their reported values, and

suggests that the planes of section reported here were not

oblique.
2.2. Measurements

Average enamel thickness was calculated as, the area of the

enamel cap (c) divided by the length of the enamel–dentine

junction (e) (Fig. 3). This gave the average straight-line

thickness between the enamel–dentine junction (EDJ) and

the outer enamel surface. Fourteen linear measurements were

recorded from images of the mesial and distal sections (Table 1

and Fig. 4). Measurements were taken as perpendicular as

possible to the occlusal enamel surface and the enamel–

dentine junction.15 If undulations in local topography of the

EDJ resembled examples given by Suwa and Kono51 (see their

Fig. 2), these sections were excluded from the study.

2.3. Statistical procedures

Inferential statistical analyses were conducted on AET and the

linear measurements. A one-way analysis of variance analysis

(ANOVA) was used to identify differences in AET amongst the

molars. Equality of variance of each molar group was checked

with Levene’s homogeneity-of-variance test. Tukey’s-b post

hoc test was selected to localize significant differences

between the molar groups. The significance level was set at

p � 0.05. All statistical tests were conducted with SPSS 15.0.

Differences between the linear enamel measurements were

sought in three ways; within cusps; between the cusps of each

molar; between molars. Paired-samples t-tests were used to

identify significant differences in linear enamel measurements

within and between cusps. The test assumption, that the



Table 2 – Area and AET measurements for the mesial and distal sections.

Mesial Distal

a b c e AET a b c e AET

dm1

X 29.70 23.48 6.22 14.82 0.42 21.73 16.02 5.71 12.98 0.44

Min 22.88 18.18 4.70 13.40 0.35 16.81 12.80 4.01 10.90 0.37

Max 39.06 30.25 8.81 16.16 0.55 30.62 22.52 8.10 15.25 0.53

�1sd 3.65 3.01 0.97 0.81 0.05 3.54 3.07 0.90 1.06 0.05

dm2

X 38.79 28.29 10.50 16.88 0.62 39.27 28.48 10.79 17.01 0.63

Min 26.81 20.07 6.74 13.77 0.49 28.59 21.56 7.03 14.09 0.50

Max 51.16 35.11 16.05 19.01 0.84 53.34 36.40 16.94 20.27 0.84

�1sd 4.70 3.74 1.95 1.33 0.11 4.68 3.51 1.76 1.55 0.07

M1

X 57.28 38.07 19.21 19.79 0.97 55.94 35.09 20.85 18.98 1.10

Min 43.12 27.54 15.58 17.16 0.90 41.45 25.15 16.30 15.32 1.06

Max 73.67 47.69 25.98 22.13 1.17 72.28 45.82 26.46 21.35 1.24

�1sd 6.88 5.50 2.65 1.53 0.45 6.63 5.11 2.55 1.40 0.45

a, total area of the tooth crown section (‘b’ and ‘c’ summed) in mm2. b, area of dentine and pulp enclosed by the dentine–enamel junction and a

straight line between the buccal and lingual cervical margins in mm2 (see Fig. 3). c, Area of the sectioned enamel cap in mm2 (Fig. 3). e, Length

of the enamel–dentine junction in mm. AET, average enamel thickness in mm.
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differences calculated for each pair have a normal distribu-

tion,54 was checked with a Kolmogorov–Smirnov goodness-of-

fit-test.

Following this a discriminant function analysis (DFA) was

chosen to assess how the linear measurements interacted and

distinguished between the molars. Data screening for this

multivariate analysis followed Tabachnick and Fidell.55 A DFA

assumes that the variables (i.e., the linear enamel measure-

ments) will have a multivariate normal distribution and the

within-group variance–covariance matrix will be equal across

the groups. A DFA is also sensitive to multivariate outliers.

Multivariate normality and homogeneity of the variance–

covariance matrices was assessed through Box’s M test.

Multivariate outliers were identified in the data for the mesial

sections of dm1 and dm2 by examining the Mahalanobis

Measure of Distance given in the SPSS print out for a DFA. The

influence of these outliers was reduced by conducting a log

transformation on the data from the dm1 mesial sections, and

a square root transformation on the data from the dm2 mesial

sections.55 The DFA was then conducted on the transformed

data for these variables. The overall success of the DFA was

evaluated through eigen and canonical correlation values,

whilst the structure matrix and values for Wilks lambda were

used to gauge the contribution of each measurement to the

discrimination.

Table 3 – Comparing AET between the molars.

Mesiala,b Distalc,d

f df p f df p

AET 41.275 2 0.000* 57.765 2 0.000*

a Levene S = 0.776; p = 0.465.
b AET mesial sections. dm1 vs. dm2 = 0.039. dm2 vs. M1 =0.006.

dm1 vs. M1 = 0.000.
c Levene S = 0.100; p = 0.905.
d AET distal sections. dm1 vs. dm2 = 0.026. dm2 vs. M1 = 0.006.

dm1 vs. M1 = 0.000.
* Significant difference.
3. Results

3.1. Average enamel thickness between molars

Comparisons of AET between the mesial sections, and then

the distal sections, showed significant differences along the

molar row. Tukey’s-b test indicated that the AET of dm1 was

less than dm2, and that dm2 was less than M1. Area and AET

measurements are shown in Table 2. Inferential statistics and

Levenes homogeneity-of-variance test are given in Table 3.
Box plots illustrating the differences along the molar row are

shown in Fig. 5.

3.2. Comparing linear enamel thickness measurements
within cusps of each molar

Comparisons within each cusp indicated that for each molar

type, enamel was significantly thicker on the outer surface of

all cusps, compared to their tips and occlusal slopes. Enamel

was thicker on the occlusal slopes compared to their tips on all

dm1 cusps, as well as the dm2 buccal cusps. No differences

emerged between these surfaces on M1. Descriptive statistics

for all linear enamel measurement are given in Table 4. The

results for the Kolmogorov–Smirnov normality test is given in

Table 5. Inferential statistics are given in Table 6.

3.3. Comparing linear enamel thickness measurements
between cusps of each molar

Comparisons between buccal vs. lingual cusp analogues

showed that for each molar type, enamel was significantly

thicker on the outer surface of the protoconid and hypoconid

compared to the outer surface of the metaconid and entoconid



Fig. 5 – Box plots for AET.

Table 5 – Normality test: difference between means for
paired samples.

Cusp dm1 dm2 M1

z p z p z p

Prd

BST vs. BCT 0.694 0.720 0.789 0.562 0.591 0.876

BST vs. BOT 0.544 0.929 0.815 0.520 0.732 0.658

BCT vs. BOT 0.811 0.527 0.811 0.526 0.503 0.962

Med

LST vs. LCT 0.615 0.844 0.787 0.565 0.653 0.787

LST vs. LOT 0.457 0.985 0.795 0.553 0.454 0.986

LCT vs. LOT 0.516 0.953 0.429 0.993 0.940 0.339

Hyd

BST vs. BCT 0.707 0.699 0.530 0.942 0.657 0.781

BST vs. BOT 0.849 0.466 0.793 0.555 0.381 0.999

BCT vs. BOT 0.440 0.990 0.550 0.923 0.677 0.748

End

LST vs. LCT 0.609 0.851 0.550 0.922 0.627 0.827

LST vs. LOT 0.849 0.406 0.495 0.967 0.418 0.995

LCT vs. LOT 0.518 0.952 0.511 0.955 0.601 0.863
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respectively, except for the dm2 distal sections. For both

deciduous molars, enamel was thinner on the tips of the

hypoconid compared to the entoconid. The hypoconid occlu-

sal slopes on both dm1 and M1 were thicker compared to the

entoconid.
Table 4 – Descriptive statistics for linear enamel thickness me

Mesial

BST BCT BOT OFT LOT LCT LST

dm1

X 0.64 0.30 0.45 0.47 0.46 0.29 0.51

Min 0.48 0.11 0.33 0.31 0.27 0.16 0.32

Max 0.82 0.64 0.63 0.66 0.67 0.53 0.67

�1sd 0.09 0.11 0.07 0.09 0.09 0.10 0.08

dm2

X 0.98 0.45 0.66 0.57 0.63 0.60 0.92

Min 0.63 0.20 0.50 0.32 0.51 0.20 0.66

Max 1.27 0.80 0.83 0.83 0.71 1.01 1.12

�1sd 0.15 0.12 0.11 0.14 0.10 0.09 0.11

M1

X 1.56 1.16 1.19 0.87 1.13 1.13 1.43

Min 1.30 0.67 0.84 0.11 0.84 0.80 1.16

Max 2.19 1.69 2.05 1.37 1.60 1.57 1.88

�1sd 0.19 0.26 0.27 0.31 0.22 0.21 0.19
Comparisons between mesial vs. distal cusp analogues

revealed that the M1 hypoconid had thicker enamel at all

locations compared to the protoconid, whilst the entoconid

had thicker cusp tip and occlusal slope enamel compared to

the metaconid. The dm1 hypoconid had thicker occlusal

slopes compared to the protoconid, whilst the entoconid had

thicker cusp tips compared to the metaconid. No differences

emerged between the dm2 mesial and distal cusp analogues.

The results for the Kolmogorov–Smirnov normality test are

given in Table 7. Inferential statistics are given in Table 8.

3.4. Comparing dm1 and dm2 linear enamel thickness
measurements using a DFA

A discriminant function analysis of the deciduous molars

produced one function with an X2 (6) of 47.702, p = 0.000, for

the mesial sections, and another with an X2 (6) of 70.254,

p = 0.000, for the distal sections. The p value indicated that the
asurements (in mm).

Distal

BST BCT BOT OFT LOT LCT LST

0.62 0.30 0.55 0.44 0.45 0.39 0.52

0.49 0.12 0.41 0.25 0.19 0.14 0.32

0.88 0.48 0.68 0.58 0.64 0.64 0.72

0.09 0.10 0.08 0.09 0.12 0.14 0.09

0.94 0.47 0.68 0.50 0.63 0.62 0.90

0.75 0.17 0.38 0.31 0.46 0.28 0.62

1.13 0.81 0.87 0.72 0.82 0.99 1.02

0.10 0.11 0.14 0.08 0.16 0.12 0.11

1.67 1.30 1.36 0.80 1.23 1.26 1.46

1.31 0.52 0.99 0.28 0.78 0.56 0.96

2.07 1.78 1.80 1.28 1.78 1.74 1.99

0.18 0.18 0.23 0.25 0.24 0.25 0.26



Table 6 – Comparing enamel thickness measurements within the cusps.

Cusp dm1 dm2 M1

t df p t df p t df p

Prd

BST vs. BCT 8.330 15 0.000* 9.871 19 0.000* 6.919 24 0.000*

BST vs. BOT 12.007 20 0.000* 7.793 19 0.000* 11.299 24 0.000*

BCT vs. BOT �3.779 15 0.002* �5.312 19 0.000* �0.574 24 0.571

Med

LST vs. LCT �7.737 20 0.000* �6.340 19 0.000* 6.581 24 0.000*

LST vs. LOT 3.301 20 0.001* �10.620 19 0.000* 9.108 24 0.000*

LCT vs. LOT �5.848 20 0.000* 0.470 19 0.644 �0.604 24 0.551

Hyd

BST vs. BCT 11.355 17 0.000* 13.343 19 0.000* 6.827 24 0.000*

BST vs. BOT 3.685 20 0.001* 9.109 19 0.000* 13.252 24 0.000*

BCT vs. BOT �8.821 20 0.000* �7.113 19 0.000* �1.203 24 0.240

End

LST vs. LCT �3.423 20 0.003* 5.739 19 0.000* 3.691 24 0.000*

LST vs. LOT 2.426 20 0.025* 10.040 19 0.000* 7.035 24 0.000*

LCT vs. LOT �2.216 20 0.039* �0.086 19 0.932 0.711 24 0.483

* Significant difference.
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mean of each function was not equal across molars. The

structure matrix (Table 9) showed that in each analysis,

measurements from the outer surfaces of the lingual cusps

(measurement LST) contributed the most to each function,

followed by the outer surfaces of the buccal cusp (measurement
Table 7 – Normality test: difference between means for
paired samples tests.

Cusp dm1 dm2 M1

z p z p z p

Prd vs. Med

BST vs. LST 0.795 0.552 0.547 0.926 0.384 0.998

BCT vs. LCT 0.508 0.959 0.474 0.978 0.866 0.441

BOT vs. LOT 0.445 0.987 0.753 0.623 0.461 0.984

Prd vs. Hyd

BST vs. BST 0.667 0.765 0.807 0.533 0.678 0.747

BCT vs. BCT 0.560 0.912 0.568 0.904 0.561 0.911

BOT vs. BOT 0.720 0.677 0.504 0.961 0.566 0.906

Prd vs. End

BST vs. LST 0.464 0.983 0.524 0.947 0.644 0.801

BCT vs. LCT 0.943 0.336 0.581 0.888 0.585 0.884

BOT vs. LOT 0.655 0.784 0.506 0.960 0.426 0.993

Hyd vs. End

BST vs. LST 0.351 1.000 0.881 0.419 0.836 0.486

BCT vs. LCT 0.412 0.996 0.453 0.986 0.479 0.976

BOT vs. LOT 0.621 0.835 0.683 0.739 0.650 0.793

Hyd vs. Med

BST vs. LST 0.801 0.542 0.975 0.298 0.977 0.295

BCT vs. LCT 0.506 0.960 0.512 0.956 0.547 0.926

BOT vs. LOT 0.460 0.984 0.927 0.357 0.800 0.544

End vs. Med

LST vs. LST 0.487 0.972 1.021 0.248 0.472 0.979

LCT vs. LCT 0.479 0.976 0.496 0.966 0.577 0.894

LOT vs. LOT 0.792 0.558 0.368 0.999 0.672 0.758

Occlusal fovea

OFT vs. OFT 0.699 0.713 0.631 0.821 0.452 0.987
BST). The high measures of variance for the function created

from the mesial measurements (eigen value ‘E’ = 3.904; canoni-

cal correlation ‘U’ = 0.892) indicates good discrimination be-

tween the dm1 and dm2. This is confirmed by the significant

differencebetweenthemeanvaluesofeachmeasurementwhen

grouped by molar type (except for the protoconid cusp tips).

Discrimination between the distal sections of the two deciduous

molars was relatively more successful (E = 6.443;U = 0.930). This

is also suggested by the significance test, which showed that the

six measurements differed from each other. Box’s M test for

multivariate normality and homogeneity of the variance–

covariance matrices are shown in Table 9.

3.5. Comparing dm2 and M1 linear enamel thickness
measurements using a DFA

One discriminant function was calculated with an X2 (6) of

63.595, P = 0.000, for the mesial sections, and another with an

X2 (6) of 90.613, P = 0.000, for the distal sections. The outer

surfaces of the buccal cusps (BST) contributed most to the

discrimination between the teeth followed by the tips (Table

10). The measures of variance for each function indicated that

discrimination between these molars was much greater for

the distal sections (E = 7.649; U = 0.940), compared to the

discrimination between the mesial sections (E = 3.903;

U = 0.832). This latter interpretation is supported by the tables

of raw mean values (Table 4), which showed a greater increase

in enamel thickness across the distal sections (excluding OFT).

Box’s M test for multivariate normality and homogeneity of

the variance–covariance matrices are shown in Table 10.
4. Discussion

4.1. Enamel thickness comparisons along the molar row

The increase in AET between the mesial sections of the

deciduous molars lends support to results reported for relative



Table 8 – Comparing enamel thickness measurements between the cusps.

Cusp dm1 dm2 M1

t df p t df p t df p

Prd vs. Med

BST vs. LST 5.850 20 0.000* �2.400 19 0.033* �3.620 24 0.001*

BCT vs. LCT 0.675 15 0.511 �3.014 19 0.007* �0.556 24 0.583

BOT vs. LOT �0.367 20 0.718 �1.197 19 0.246 �1.117 24 0.274

Prd vs. Hyd

BST vs. BST �0.209 20 0.864 �0.955 19 0.352 �3.061 23 0.005*

BCT vs. BCT 0.370 15 0.716 �2.242 19 0.811 �3.177 23 0.004*

BOT vs. BOT �5.594 20 0.000* �0.662 19 0.516 �3.770 23 0.001*

Prd vs. End

BST vs. LST �2.898 20 0.009* �3.325 19 0.004* 1.088 23 0.301

BCT vs. LCT �2.488 15 0.025* �3.314 19 0.004* �2.023 23 0.053

BOT vs. LOT 0.397 20 0.695 �1.160 19 0.260 �0.931 23 0.360

Hyd vs. End

BST vs. LST 5.159 20 0.000* �2.009 19 0.053 �5.890 24 0.000*

BCT vs. LCT �2.926 20 0.008* �3.286 19 0.004* �1.244 24 0.225

BOT vs. LOT 3.788 20 0.001* �1.550 19 0.138 �3.905 24 0.001*

Hyd vs. Med

BST vs. LST �7.212 20 0.000* �1.403 19 0.191 �7.623 23 0.000*

BCT vs. LCT 0.886 20 0.386 �2.347 19 0.030* �3.277 23 0.003*

BOT vs. LOT 7.660 20 0.000* �1.945 19 0.067 �5.977 23 0.000*

End vs. Med

LST vs. LST 0.194 20 0.967 �0.383 19 0.706 �0.461 23 0.649

LCT vs. LCT 4.882 20 0.000* 0.345 19 0.743 �3.001 23 0.009*

LOT vs. LOT 0.202 20 0.901 �0.044 19 0.965 �2.529 23 0.018*

Occlusal fovea

OFT vs. OFT �2.703 20 0.014 1.983 19 0.062 �0.707 23 0.445

* Significant difference.

Table 9 – Structure matrix for the DFA of dm1 vs. dm2.

Mesiala Distale

Structureb Wc pd Structure W p

LST 0.843 0.265 0.000* LST 0.895 0.162 0.000*

BST 0.634 0.389 0.000* BST 0.646 0.271 0.000*

LCT 0.626 0.395 0.000* BCT 0.321 0.601 0.000**

BOT 0.522 0.484 0.000* LCT 0.284 0.658 0.000*

LOT 0.494 0.512 0.000* BOT 0.239 0.731 0.001*

BCT 0.207 0.860 0.070 LOT 0.229 0.747 0.001*

a Box M = 36.103; p = 0.110.
b Correlation between the enamel thickness measurements and the discriminant function. Higher values have a greater correlation.
c Wilks Lambda. The potential contribution of each measurement to the discriminating power of the function. Lower values have a greater

potential.
d T test of each measurement grouped by molar type.
e Box M = 20.692; p = 0.705.
* Significant difference.
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and linear enamel thickness.42,43 Data from the distal sections

replicates these findings. Increased AET in dm2 was facilitated

by a larger enamel cap area compared to dm1. This, together

with a larger dentine area resulted in comparatively larger

dm2 crown sections. A posterior increase in deciduous molar

size has previously been reported from measurements of

whole tooth crowns.42,56,57 Data presented in this study

indicate that this is due to an increase in both the enamel

and dentine component of the tooth.

Linear measurements of enamel thickness did not

discriminate between the molar types equally. The greatest
proportional increase in linear enamel thickness from dm1 to

dm2 occurred on the outer surfaces of the lingual cusps

(Table 9). This was accompanied by an increased similarity in

the enamel thickness measurements upon (not between) the

dm2 lingual cusps (Table 6). The dm2 lingual cusp tips became

thicker, and no longer differed when compared to their

occlusal slopes, unlike the dm2 buccal cusps.

In contrast to the change in enamel thickness between the

deciduous molars, the greatest proportional increase in linear

enamel thickness between dm2 and M1 occurred between the

outer surfaces of the buccal cusps. This is seen most clearly in



Table 10 – Structure matrix for the DFA of dm2 vs. M1.

Mesiala Distalb

Structure W p Structure W p

BST 0.864 0.255 0.000* BST 0.901 0.139 0.000*

BCT 0.789 0.297 0.000* BCT 0.638 0.243 0.000*

BOT 0.779 0.301 0.000* BOT 0.626 0.250 0.000*

LOT 0.679 0.357 0.000* LOT 0.558 0.295 0.000*

LST 0.606 0.411 0.000* LST 0.519 0.327 0.000*

LCT 0.568 0.443 0.000* LCT 0.486 0.356 0.000*

a Box M = 27.611; p = 0.566.
b Box M = 23.907; p = 0.671.
* Significant difference.
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the discrimination between the distal sections (Table 10),

which was also influenced by variations in enamel thickness

across the M1 mesial–distal surface (discussed below). This

pattern was mirrored again, by an increased similarity in the

enamel thickness measurements upon the molar cusps,

whereby the M1 buccal cusp tips became thicker, and did

not differ when compared to their occlusal slope (Table 6).

Therefore, whilst AET increased posteriorly between decid-

uous and permanent first molars, the increase in linear

thickness was not the same for all cusps. From dm1 to dm2 the

greatest proportional increase in enamel thickness was on the

outside of the lingual cusps, with a simultaneous increased

thickness at the lingual cusp tip. From dm2 to M1, the greatest

increase was on the outside of the buccal cusps, with a

simultaneous increased thickness at the buccal cusp tip.

4.2. Functional implications from enamel thickness along
molar row

Arguing that the posterior increase in deciduous enamel

thickness reflects increased bite force is difficult. Studies on

permanent dentition indicate that increased enamel thick-

ness along the molar row does not always correlate with

increased bite force. Experimental data for bite force in

children is limited. A morphological interpretation can be

evoked, but it is not the same as the model applied to

permanent teeth. Unlike the findings reported for permanent

molars, there was no posterior reduction in the dentine area,

or tooth size, when dm1 was compared to dm2. Instead, both

the dentine and enamel components increased in dm2 leading

to a larger tooth.

An alternative explanation is to extrapolate the interpreta-

tive model from studies of permanent molars and consider the

change in deciduous enamel thickness in terms of the

direction of the force, rather than the magnitude. In perma-

nent molars, increased enamel thickness together with

increased symmetry between the buccal and lingual cusp

tips of posterior maxillary molars might provide a stronger

and more evenly distributed surface for increased crushing

and grinding, due to a reduction in the lateral excursion of the

mandible (and less shearing) towards the temporomandibular

joint.15,41 The pattern of enamel thickness reported for the

deciduous molars can be related to a similar but not identical

functional model. Average enamel thickness increased poste-

riorly between the molars in this study. Similarities in the

enamel thickness measurements upon the lingual molar
cusps also increased posteriorly, when the cusps tips were

compared to their occlusal slopes in dm2. With this in mind,

the relatively strengthened lingual cusp (proportionally

thicker outer surface, increased similarity between the cusp

tip and slope), which was not seen in the dm1, may provide a

tooth surface that is more suited to crushing and grinding, like

the situation posed for maxillary molars. More crushing and

grinding on dm2 would also be facilitated by the more even

mesial–distal enamel distribution.

Increased similarities in enamel thickness measurements

upon the M1 cusps (not between), compared to dm2 may

indicate one anterior–posterior trend across the three molar

types. Though speculative, perhaps this in some way reflects

the short period in which the three molar types have erupted

and are present together in the jaw. Mainly though, differ-

ences between dm2 and M1 are dominated by the thick outer

buccal permanent enamel (discussed further below), which

Grine22 indicates may provide a buttressing effect to prolong

functional crown life.

4.3. Buccal–lingual, mesial–distal comparisons of enamel
thickness

The M1 showed marked trends in enamel distribution. Enamel

was thicker on the protoconid outer surface compared to the

metaconid,22 and the M1 distal cusps followed this buccal–

lingual trend. Linear measurements of M1 enamel thickness, as

well as AET (t = �4.917, df = 24, p = 0.000), increased when the

distal sections were compared to the mesial sections, and the

hypoconid had the thickest enamel overall. Increased AET in

distal M1 sections has been reported previously for Pan and

Pongo7, whilst othershave identifiedthickhypoconidenamel on

human permanent molars.16 In this study, the thicker distal AET

was due to a slight increase in the area of the enamel cap, which

was accompanied by a decrease in the dentine area, which led to

a slight reduction in overall size of the section (Table 2).

Some of the mesial–distal M1 patterns of enamel thickness

are not easily explained entirely from a functional perspective.

For instance, mesial enamel was thin at the cusp tips. Others

have reported thin enamel at the cusp tip of the M1

protoconid.16,22,27,51 It may be that developmental constraints

can affect enamel thickness patterns. For instance, Martin58

proposed that differences in enamel thickness between molars

might reflect development. For permanent first molars, there

are indications that aspects of enamel development and

thickness can be associated. Human cusp tip enamel thickness
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is positively correlated with appositional formation time.45,59

Mandibular M1 buccal cusp enamel inPan is, on average, thicker

and takes longer to form compared to the lingual cusp.60 Similar

indications of this association have been reported along the

tooth row. Increased enamel thickness in human distal

permanent molars seems to be facilitated by slightly increased

crown formation times (see Reid et al.52 specimen T49).

Therefore, it would seem likely that, to some extent, differences

in enamel thickness upon a molar may sometimes reflect an

underlying developmental constraint.

Buccal lingual directional trends in dm2 enamel distribu-

tion were not as clear as those seen on the M1. Differences

between the dm2 outer surfaces especially, were far less

pronounced, which was unlike the permanent tooth. This was

mainly responsible for the changing pattern in linear enamel

thickness between these tooth types. Neither were there any

significant mesial–distal differences in AET between the dm2

sections (t = �0.316, df = 18, p = 0.756), or even the measure-

ments of linear enamel thickness (Table 4).

The average total area of the dm1 mesial crown sections

was greater compared to the distal sections. This difference

was due to the prominent bulge called the molar tubercle of

Zuckerkandl, located on the mesiobuccal crown.61 Data from

this study shows that the tubercle leads to increased dentine,

rather than a significantly increased enamel component.

Others have shown that the shape of the EDJ can determine

the morphology of the outer enamel surface.62,63 Whilst

phylogenetic studies have discussed the relative contributions

of molar dentine and enamel proportions in the genus Homo.48

Future phylogenetic studies may profitable explore dentine

proportions when they consider dental traits at the outer

enamel surface.

5. Conclusions
1. E
namel cap and dentine area increased from dm1 to M1.
2. S
imilarities in cusp enamel thickness measurements

increased from dm1 to M1.
3. C
hanges in linear enamel thickness were not constant

along the molar row. Differences between the deciduous

molars were greatest on the outside surface of the lingual

cusps. Differences between dm2 and M1 were greatest on

the outside surface of the buccal cusps.
4. M
esial–distal changes in enamel cap and dentine area

occurred on M1 and dm1 respectively, but not on dm2.
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