Apl . all Apl H Pi pi ng

APL-ication, held at UKC gave ne the incentive to put pen to
paper - "fraid, wuntil | had to chase up the address of Quote
Quad, had not realised that you were the Editor.

On the way, used the new canpus on line |Ilibrary catalogue -
found that we do take Quote Quad - filed directly to the back
periodi cal stacks !

Hope the following text is sone use. There are not nmany Ap
characters, so | have been |azy. I hope to have the chance to
conplete a consistent set of 8-bit fonts and translators, soon.

Suggest the foll ow ng sequence
uudecode apl _pipe.uue; arc xh apl _pipe; font_sw apl 2. fed;
1st Wor dPI us
print apl _pipe.let
print apl _pipe.doc
open synt ax8b. doc :(this is p2 of apl _pipe)
: ScreenDunp the equati ons
As to what it is, the follow ng sunmari ses

(
t

it is actually so straightforward,
hat | thought it nust be wi dely used)

A Pi pe has two ends ..

kkhkkkhhkkhkkhkhkkhhkkhkkhkkihkkhkkhkkikkk*k

Using Apl in a multiprocess/multiprocessor environment.
A proposal for a flexible but easy to use syntax.

| offer for general consideration a device that allows

data to be piped out of Apl, through (a series of)

shel I commands, and back into Apl.

It works by connecting both ends of a pipeline of shel
commands to an Apl statenent.

The commands nay be executed in the sane processor, or
renotely, with no change in syntax.

J.B. Webber. Rm 15, Physics Lab.
Uni versity of Kent, Canterbury.
Kent . CT2 7NR j bww@kc. ac. uk.

30st Sept enber 1988 1 of 7 J. B. Webber . Physi cs, UKC

Apl . all Apl H Pi pi ng

Rm 15, Physics Lab,
Uni versity of Kent,
Cant er bury, Kent,
U K, CT2 7NR

A P.L. Quote Quad,

The Editor, 30st Sept enber, 1988

Prof. L.J. Dickey,

Dept. of Pure Mathenatics,

Uni versity of Waterl oo,

Waterl oo, Ontari o,

Canada. N2L 3Gl

Dear Sir,

I encl ose sonme notes on a proposed nmechani smfor an extension to Apl
for use in nultiprocess/nultiprocessor systens, in the hopes that you nmay see
fit to publish them

I have nmade use of Apl for a nunber of years, but have not had the
chance to follow all the developnents in the field. The Apl that | have mainly
used has been a version that runs under Unix, although |I now increasingly use
M croAPl ' s Apl . 68000.

Limtations that | found in the standard Unix Apl, and the need to
access pre-conmpiled and C-shell conmands led nme to wite into this Apl the
pi pe nechanismthat | describe on the foll ow ng pages.

I must say that | assuned that nobst other nobre current versions
woul d i nclude such a nechanism as it seened a particularly clean and strai ght
forward interface.

The recent APL-ication neeting was held at Kent University, and |
made use of the opportunity to exami ne sone of the current versions of Apl
being denponstrated. | had a word with some of the people on the stands
concerning piping (particularly John Scholes of Dyalog), and close interest
was expressed.

Thus | gather that such a nechanismis at the |east not w dely used.
| do find it hard to believe it is original (though nay have been when | first
implemrented it). If | am wong, and this is a well known nethod, please
forgive ne for wasting your tine.

However, with the increasing interest in making Apl comunicate with

other processes, and the wuse of Apl in nultitasking and possibly even
mul ti processor environnents, | feel that | should attenmpt to preach the
virtues of a nmethod that | have for a nunber of years found to be sinple,

powerful, and effective.
I look forward to hearing fromyou,

Yours sincerely,

J. B. Webber.

30st Sept enber 1988 2 of 7 J. B. Webber . Physi cs, UKC

30st

A Pipe has two ends

-al l Apl H Pi pi ng

J.B. Webber. Rm 15, Physics Lab.,
University of Kent, Canterbury.
Kent. CT2 7NR

Using Apl in a multiprocess/multiprocessor environnent.

A proposal for a flexible but easy to use syntax.

Many mechani sns have been proposed for accessing data,
and running processes external to Apl.

For sone of these, the syntax is bizarre, for others a
detail ed know edge of sone other |anguage (sonetines
even assenbler) is necessary to do the sinplest thing.

Sone, such as shared variables, offer a highly
efficient nmethod of passing data between two processes
in the sane processor, w thout having to copy the data.

A nunber of nethods either allow the passing of data
and/or commands to an external shell (such as the C
shel |l under Unix), or allow the results of commands to
the shell to be inported into Apl. These in effect
connect Apl to one end (but not both ends) of a pipe of
shel | commands.

| offer for general consideration a device that allows
data to be piped out of Apl, through (a series of)
shel | commands, and back into Apl.

It works by connecting both ends of a pipeline of shel
commands to an Apl statenent.

The output of the first part of the Apl expression
fills the pipe connected to the standard input of the
first command in the pipeline of shell commands; the
next part of the Apl expression receives the output of
the pipe connected to the standard output of the the
| ast conmand in the pipeline.

The commands nay be executed in the same processor, or
renotely, with no change in syntax.

Sept enber 1988 3 of 7 J. B. Webber . Physi cs,

UKC

Apl . all Apl H Pi pi ng

Apl : Piping

The synbol that | use is a Quad overstruck with a vertical bar:

[1] or : . pp or could use : [1pipe
The general syntax for pipe IS : L [1] R
Text Result <- "shell conmands’ [|] TextData

Pipes data R through shell commands L , and back into Apl.

Data returned will be a vector; and may be enpty.
Data returned will be character, as nust both L, R
L, R will be sent in ravel order.

(I currently require themto be vector)

If the shell conmand |ine requires no data,
_ then R is ignored (and may be enpty)
i.e.:
Shell Progs <- ’'Is *.sh ~/*.sh” [|] '’
If the shell command |ine returns no data,
_ then the data returned will be null (enpty vector).
i.e.:
"cat - | sort | pr -5 | lpr [|] []1BOX []NL

: Pipeline of :
Apl E;gressmn 5_\6 chell tunnands Apl Eigressmn

an exanple :

Shel | Cd <- "fortranfit -s’,(, FORMAT aplfit Data),’ -n',, FORMAT 1 TAKE RHO Dat a
Synth <- fngen Coeff <- REV 8 TAKE EXECUTE ShellCnd [|] ,(FORNVAT Data),[]L

This calls an existing powerful non-linear-paraneter fitting routine, giving
it as command |ine argunents both

-s . approximate starting values for the coefficients, and

-n : the nunber of data pairs.
The Fortran routine reads the data pairs fromit’'s standard input, and wites
the optimm coefficients (among other information) to its standard output
Apl then uses these coefficients to generate a curve for conparison

This has the advantages that specialised or highly efficient
system or pre-conpiled routines (or a pipeline of such commands)
can be used in the mddle of a sequence of Apl operations; that
the syntax of the commands is either pure traditional Apl, or
pure shell conmmands, both of which are likely to be already
known; and that it is sufficiently powerful to include within it
the functionality of other nore ad hoc constructs.

30st Sept enber 1988 4 of 7 J. B. Webber . Physi cs, UKC

Apl . all Apl H Pi pi ng

Hi story of Pipe

I first inplenented pipe a nunber of years ago (and then
docunented it in an internal UKC Apl manual dated 12th Jan. 83).

The anount of code needed to add pipe is quite nobdest
(just a few pages of C); one mght hope that it would be added
to all versions of Apl running on systens that supports shells
with pipes - even the Atari ST has Mark WIlianms’ Msh,
Beckneyer’s MI-Csh, and Pol etiek’s CRAFT/ GPshel |

Pipe was originally added as an extension to a version of
Apl under Unix that has been variously witten/wrked on by Ken
Thonpson, Ross Harvey, Douglas Lanam ets/jrl/rww dcw.

It has proved to be a powerful, flexible and useful tool
and is now enployed in many of ny routines. As well as giving
these routines access to shell and pre-conpiled prograns, pipe
allows them to make calls on | anguages |ike Maple (an al gebraic
mani pul ati on program, to determ ne such things as the analytic
differential of user supplied functions.

Sone Further Points on use and syntax :

a) One could permt pipe to accept nuneric data, and convert it
internally to character; although I was tenpted by this, |
felt it wise to leave it as accepting only character, as a
rem nder to naive users that what conmes out of pipe is
to be treated as character. Nuneric data usually has to be
in a particular format, anyway, even when in character form

b) Wth regard to the choice of passing character data only

down the pipelines, | wanted a nechanism that would be
i ndependent of what is at the end of the pipe : i.e. of both
the version of say Fortran/Pascal/...etc., and of the

hardware it was running on. Thus each end knows how to do
it’s own conversion to and from character, and so does it.
If one insists on preparing data inside Apl, to fit sone
arcane format, then one nust use []DR to fool Apl into
thinking that it has characters for output. It is then quite
clear in the code that one is doing sonething non-standard.

C) It is unfortunate that the ‘information flow in Apl is
right to left, but in standard shell script left to right.
However one is used to both of these, and so there is little
confusion. If this is felt to be of concern, shells in the
newer nultiprocessor operating systens do not have this
restriction on their syntax, as discussed next.

30st Sept enber 1988 5 of 7 J. B. Webber . Physi cs, UKC

Apl . all Apl H Pi pi ng

Apl + Miltiple Processors : Piping

It is with the advent of multiprocessor systens, and
the wish to use Apl to easily access the power of
these, that | feel it is now particularly relevant to
rai se this pipe nmechani smfor discussion.

There are currently many different nultiprocessor configurations
under active investigation around the world; Vector and Array
processors are clearly applicable, and have in the past been
I mpl emented; it s however the highly flexible Miltiple
Instruction Miultiple Data (M MD) configurations that currently
are of great interest, (particularly with the advent of systens
containing nultiple 1.5 MFlop T800 floating point Transputers).

If we consider the ways that we can nost easily utilise the power
of these systens, answers are clearly :

a) to attenpt to apply Apl.
b) to make whatever use we can of the nultitask/nultiprocessor

operating systens and shells that are under devel opnent for
use with them

If we exam ne one of these systens (Helios), we find that the
concept of a pipe between processes is extended, to allow
piping in either direction (i.e. to either left or right), or
even bidirectionally. A further vital extension is the addition
of naned pipes, termed fifos (first in first out buffers).

These allow both the easy definition of closed ring topol ogies,
and al so enabl e configurations where a pipe is witten to at one
point in a serial program and read at a |ater point when the
result is needed.

Thus one of the ways that we can use Apl is as conponents in a
(conpl ex) structure of processes, with each conponent farned out
by the OS to a different processor.

It is for the nore conplex configurations, particularly ones
where the “main’ programis in Apl, that adding this ability to
pipe data to and from a shell external to Apl gives us the
‘hooks’ that we need to effectively exploit the nultiprocessing
capability on such machines from day one. By the careful use of
fifos, we have the option of synchronous or nonsynchronous
conmuni cati on and processing.

O her techniques may be nore powerful in particular
instances (such as the ability to explicitly initiate
processes on renbte processors) but w Il undoubtedly take

| onger to inplement, and be less ‘clean’ than this straight
forward piping nmechani sm

30st Sept enber 1988 6 of 7 J. B. Webber . Physi cs, UKC

Apl . al il Apl H Pi pi ng

o Processes
jFife — < in parallel
/
-]
‘ T —— fifo !
— _h) .
[% éﬂpl Expr% %le Expr% . f{_aﬂpl Expr
- X - ¥ #i

An extreme example of
an Apl statement

e interacting with a
L range of parallel
1EH processing structures,

Systolic Loop

30st Sept enber 1988 7 of 7 J. B. Webber . Physi cs, uKC

