
Apl.all Apl : Piping

APL-ication, held at UKC gave me the incentive to put pen to
paper - ’fraid, until I had to chase up the address of Quote
Quad, had not realised that you were the Editor.

On the way, used the new campus on line library catalogue -
found that we do take Quote Quad - filed directly to the back
periodical stacks !

Hope the following text is some use. There are not many Apl
characters, so I have been lazy. I hope to have the chance to
complete a consistent set of 8-bit fonts and translators, soon.

Suggest the following sequence :

 uudecode apl_pipe.uue; arc xh apl_pipe; font_sw apl2.fed;

 1stWordPlus :
 : print apl_pipe.let
 : print apl_pipe.doc
 : open syntax8b.doc :(this is p2 of apl_pipe)
 :ScreenDump the equations

As to what it is, the following summarises :

(it is actually so straightforward,
that I thought it must be widely used)

 A Pipe has two ends ...

 Using Apl in a multiprocess/multiprocessor environment.

 A proposal for a flexible but easy to use syntax.

 I offer for general consideration a device that allows
 data to be piped out of Apl, through (a series of)
 shell commands, and back into Apl.

 It works by connecting both ends of a pipeline of shell
 commands to an Apl statement.

 The commands may be executed in the same processor, or
 remotely, with no change in syntax.

 J.B. Webber. Rm. 15, Physics Lab.,
 University of Kent, Canterbury.
 Kent. CT2 7NR jbww@ukc.ac.uk.

30st September 1988 1 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

 Rm. 15, Physics Lab,
 University of Kent,
 Canterbury, Kent,
 U.K., CT2 7NR
A.P.L. Quote Quad,
The Editor, 30st September, 1988
Prof. L.J. Dickey,
Dept. of Pure Mathematics,
University of Waterloo,
Waterloo, Ontario,
Canada. N2L 3G1

Dear Sir,
 I enclose some notes on a proposed mechanism for an extension to Apl
for use in multiprocess/multiprocessor systems, in the hopes that you may see
fit to publish them.

 I have made use of Apl for a number of years, but have not had the
chance to follow all the developments in the field. The Apl that I have mainly
used has been a version that runs under Unix, although I now increasingly use
MicroAPl’s Apl.68000.

 Limitations that I found in the standard Unix Apl, and the need to
access pre-compiled and C-shell commands led me to write into this Apl the
pipe mechanism that I describe on the following pages.

 I must say that I assumed that most other more current versions
would include such a mechanism, as it seemed a particularly clean and straight
forward interface.

 The recent APL-ication meeting was held at Kent University, and I
made use of the opportunity to examine some of the current versions of Apl
being demonstrated. I had a word with some of the people on the stands
concerning piping (particularly John Scholes of Dyalog), and close interest
was expressed.

 Thus I gather that such a mechanism is at the least not widely used.
I do find it hard to believe it is original (though may have been when I first
implemented it). If I am wrong, and this is a well known method, please
forgive me for wasting your time.

 However, with the increasing interest in making Apl communicate with
other processes, and the use of Apl in multitasking and possibly even
multiprocessor environments, I feel that I should attempt to preach the
virtues of a method that I have for a number of years found to be simple,
powerful, and effective.

 I look forward to hearing from you,

 Yours sincerely,

 J.B. Webber.

30st September 1988 2 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

 A Pipe has two ends ...

 J.B. Webber. Rm. 15, Physics Lab.,
 University of Kent, Canterbury.
 Kent. CT2 7NR

 Using Apl in a multiprocess/multiprocessor environment.

 A proposal for a flexible but easy to use syntax.

 Many mechanisms have been proposed for accessing data,
 and running processes external to Apl.

 For some of these, the syntax is bizarre, for others a
 detailed knowledge of some other language (sometimes
 even assembler) is necessary to do the simplest thing.

 Some, such as shared variables, offer a highly
 efficient method of passing data between two processes
 in the same processor, without having to copy the data.

 A number of methods either allow the passing of data
 and/or commands to an external shell (such as the C-
 shell under Unix), or allow the results of commands to
 the shell to be imported into Apl. These in effect
 connect Apl to one end (but not both ends) of a pipe of
 shell commands.

 I offer for general consideration a device that allows
 data to be piped out of Apl, through (a series of)
 shell commands, and back into Apl.

 It works by connecting both ends of a pipeline of shell
 commands to an Apl statement.

 The output of the first part of the Apl expression
 fills the pipe connected to the standard input of the
 first command in the pipeline of shell commands; the
 next part of the Apl expression receives the output of
 the pipe connected to the standard output of the the
 last command in the pipeline.

 The commands may be executed in the same processor, or
 remotely, with no change in syntax.

30st September 1988 3 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

Apl : Piping

The symbol that I use is a Quad overstruck with a vertical bar:

 [|] or : .pp or could use : []pipe

The general syntax for pipe is : L [|] R

 TextResult <- ’shell commands’ [|] TextData

Pipes data R through shell commands L , and back into Apl.

 Data returned will be a vector; and may be empty.
 Data returned will be character, as must both L, R
 L, R will be sent in ravel order.
 (I currently require them to be vector)

 If the shell command line requires no data,
 then R is ignored (and may be empty)
 i.e.:
 ShellProgs <- ’ls *.sh ~/*.sh’ [|] ’’

 If the shell command line returns no data,
 then the data returned will be null (empty vector).
 i.e.:
 ’cat - | sort | pr -5 | lpr’ [|] []BOX []NL

an example :

ShellCmd <- ’fortranfit -s’,(,FORMAT aplfit Data),’ -n’,,FORMAT 1 TAKE RHO Data
Synth <- fngen Coeff <- REV 8 TAKE EXECUTE ShellCmd [|] ,(FORMAT Data),[]L

This calls an existing powerful non-linear-parameter fitting routine, giving
it as command line arguments both
 -s : approximate starting values for the coefficients, and
 -n : the number of data pairs.
The Fortran routine reads the data pairs from it’s standard input, and writes
the optimum coefficients (among other information) to its standard output.
Apl then uses these coefficients to generate a curve for comparison.

This has the advantages that specialised or highly efficient
system or pre-compiled routines (or a pipeline of such commands)
can be used in the middle of a sequence of Apl operations; that
the syntax of the commands is either pure traditional Apl, or
pure shell commands, both of which are likely to be already
known; and that it is sufficiently powerful to include within it
the functionality of other more ad hoc constructs.

30st September 1988 4 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

History of Pipe

 I first implemented pipe a number of years ago (and then
documented it in an internal UKC Apl manual dated 12th Jan. 83).

 The amount of code needed to add pipe is quite modest
(just a few pages of C); one might hope that it would be added
to all versions of Apl running on systems that supports shells
with pipes - even the Atari ST has Mark Williams’ Msh,
Beckmeyer’s MT-Csh, and Poletiek’s CRAFT/GPshell.

 Pipe was originally added as an extension to a version of
Apl under Unix that has been variously written/worked on by Ken
Thompson, Ross Harvey, Douglas Lanam, ets/jrl/rww/dcw.

 It has proved to be a powerful, flexible and useful tool,
and is now employed in many of my routines. As well as giving
these routines access to shell and pre-compiled programs, pipe
allows them to make calls on languages like Maple (an algebraic
manipulation program), to determine such things as the analytic
differential of user supplied functions.

Some Further Points on use and syntax :

 One could permit pipe to accept numeric data, and convert ita)
 internally to character; although I was tempted by this, I
 felt it wise to leave it as accepting only character, as a
 reminder to naive users that what comes out of pipe is
 to be treated as character. Numeric data usually has to be
 in a particular format, anyway, even when in character form.

 With regard to the choice of passing character data onlyb)
 down the pipelines, I wanted a mechanism that would be
 independent of what is at the end of the pipe : i.e. of both
 the version of say Fortran/Pascal/...etc., and of the
 hardware it was running on. Thus each end knows how to do
 it’s own conversion to and from character, and so does it.
 If one insists on preparing data inside Apl, to fit some
 arcane format, then one must use []DR to fool Apl into
 thinking that it has characters for output. It is then quite
 clear in the code that one is doing something non-standard.

 It is unfortunate that the ‘information flow’ in Apl isc)
 right to left, but in standard shell script left to right.
 However one is used to both of these, and so there is little
 confusion. If this is felt to be of concern, shells in the
 newer multiprocessor operating systems do not have this
 restriction on their syntax, as discussed next.

30st September 1988 5 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

Apl + Multiple Processors : Piping

 It is with the advent of multiprocessor systems, and
 the wish to use Apl to easily access the power of
 these, that I feel it is now particularly relevant to
 raise this pipe mechanism for discussion.

There are currently many different multiprocessor configurations
under active investigation around the world; Vector and Array
processors are clearly applicable, and have in the past been
implemented; it is however the highly flexible Multiple
Instruction Multiple Data (MIMD) configurations that currently
are of great interest, (particularly with the advent of systems
containing multiple 1.5 MFlop T800 floating point Transputers).

If we consider the ways that we can most easily utilise the power
of these systems, answers are clearly :

a) to attempt to apply Apl.
 to make whatever use we can of the multitask/multiprocessorb)
 operating systems and shells that are under development for
 use with them.

If we examine one of these systems (Helios), we find that the
concept of a pipe between processes is extended, to allow
piping in either direction (i.e. to either left or right), or
even bidirectionally. A further vital extension is the addition
of named pipes, termed fifos (first in first out buffers).
These allow both the easy definition of closed ring topologies,
and also enable configurations where a pipe is written to at one
point in a serial program, and read at a later point when the
result is needed.

Thus one of the ways that we can use Apl is as components in a
(complex) structure of processes, with each component farmed out
by the OS to a different processor.

It is for the more complex configurations, particularly ones
where the ‘main’ program is in Apl, that adding this ability to
pipe data to and from a shell external to Apl gives us the
‘hooks’ that we need to effectively exploit the multiprocessing
capability on such machines from day one. By the careful use of
fifos, we have the option of synchronous or nonsynchronous
communication and processing.

 Other techniques may be more powerful in particular
 instances (such as the ability to explicitly initiate
 processes on remote processors) but will undoubtedly take
 longer to implement, and be less ‘clean’ than this straight
 forward piping mechanism.

30st September 1988 6 of 7 J.B. Webber. Physics, UKC

Apl.all Apl : Piping

30st September 1988 7 of 7 J.B. Webber. Physics, UKC

