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Abstract

In this Thesis we explore the problem of structural alignment of protein molecules

using statistical shape analysis techniques. The structural alignment problem

can be divided into three smaller ones: the representation of protein structures,

the sampling of possible alignments between the molecules and the evaluation

of a given alignment. Previous work done in this field, can be divided in two

approaches: an adhoc algorithmic approach from the Bioinformatics literature

and an approach using statistical methods either in a likelihood or Bayesian

framework. Both approaches address the problem from a different scope. For

example, the algorithmic approach is easy to implement but lacks an overall

modelling framework, and the Bayesian address this issue but sometimes the

implementation is not straightforward.

We develop a method which is easy to implement and is based on statistical

assumptions. In order to asses the quality of a given alignment we use a size

and shape likelihood density which is based in the structure information of the

molecules. This likelihood density is also extended to include sequence infor-

mation and gap penalty parameters so that biologically meaningful solution can

be produced. Furthermore, we develop a search algorithm to explore possible

alignments from a given starting point. The results suggest that our approach

produces better or equal alignments when it is compared to the most recent struc-

tural alignment methods. In most of the cases we managed to achieve a higher

number of matched atoms combined with a high TMscore.

Moreover, we extended our method using Bayesian techniques to perform

alignments based on posterior modes. In our approach, we estimate directly the
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mode of the posterior distribution which provides the final alignment between two

molecules. We also, choose a different approach for treating the mean parameter.

In previous methods the mean was either integrated out of the likelihood density

or considered as fixed. We choose to assign a prior over it and obtain its posterior

mode.

Finally, we consider an extension of the likelihood model assuming a Normal

density for both the matched and unmatched parts of a molecule and diagonal

covariance structure. We explore two different variants. In the first we consider

a fixed zero mean for the unmatched parts of the molecules and in the second we

consider a common mean for both the matched and unmatched parts. Based on

simulated and real results, both models seems to perform well in obtaining high

number of matched atoms and high TMscore.
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Chapter 1

Introduction

In this Thesis we explore the problem of protein structure alignment from a sta-

tistical point of view. Our research is focused on developing modelling techniques

to optimize the alignment for two or more protein molecules. We mainly focus on

two areas, one concerns measuring the quality of an alignment using statistical

models and the other concerns the development of search techniques in order to

explore different alignments between two or more proteins.

1.1 Protein structure

Proteins are large biomolecules consisting of one or more polypeptides and play

a vital role in all living organisms. To better describe the protein structure we

first explain the structure of an amino acid.

Amino acids are the main ingredients of a protein molecule and there are

about 20 different of them. Their structure representation can be seen in Figure

1.1. They consist of a main Carbon - alpha atom (Ca) in the centre, an amino

and carboxyl group on either side and a side chain R which is connected to the

Ca atom. The structure of the side chain determines the type and properties of

each amino acid. For example if the structure of the side chain is just a hydrogen

atom H then this amino acid will be Glycine (G), if it is a methyl group CH3 then

the amino acid will be Alanine (A). Each amino acid is classified based on their

1



Chapter 1 1.1 Protein structure

properties. There are two main big groups hydrophobic, which do not interact

with water and hydrophilic, which interact with water. Then each of these two

groups can be further divided into smaller groups such as aromatic, alkyl, basic,

acidic etc.
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OH

amino group
carboxyl group

Figure 1.1: Amino acid structure.

When many amino acids form peptide bonds with each other they create

polypeptides and when these polypeptides are folded under certain properties

they determine the 3-d structure and functions for each protein molecule. A pep-

tide bond is formed when the carboxyl of one amino acid is joined with the amino

group of another resulting to a loss of a water molecule. An example of this

chemical process, between two amino acids is shown in Figure 1.2. Each amino

acid which is connected with a peptide bond is also often referred to as a residue.

	

Figure 1.2: Polypeptide formation with peptide bond shown in red.

The protein structure is a collection of hundreds amino acids. It follows a

specific hierarchy and can be described with the following four levels:

• Primary structure

The primary structure of a protein is the 1-dimensional sequence of amino

acids as in Figure 1.2. The final shape of the protein will depend on its

primary structure since the type of each amino acid and their place in the

2



Chapter 1 1.1 Protein structure

sequence will determine the folding properties of the protein. We will also

call the primary structure as the backbone of the protein.

• Secondary structure

The secondary structure of a protein describes local formations of amino

acid sequence. Each specific formation is a result of the rotations that are

happening in the side chains R of each amino acid. The two most distinct

patterns of the secondary structure are the α-helix and the β-sheet (Pauling

et al., 1951). The α-helix formation occurs when the backbone chain folds

into a spiral form with about 3-5 residues per turn. In a β-sheet formation

the backbone of the protein chain extends in one way and returns back in

a parallel formation where hydrogen bonds are now connecting the amino

group from one amino acid with the carboxyl of another. An example of

both of these patterns is shown in Figure 1.3

(a) α-helix (b) β-sheet

Figure 1.3: α-helix and β-sheet patterns.

• Tertiary structure

The tertiary structure of a protein is the complete folding pattern of the

protein backbone which determines its overall 3-dimensional shape. Each

folding is specific to each protein and will happen in the same way every

time that protein is formed and is directly related to its functions.

3



Chapter 1 1.2 Protein structural data

• Quaternary structure

The quaternary structure is a selection of tertiary structures that fold to-

gether in order to form a larger protein. Figure 1.4 displays the tertiary

and quaternary structure of two protein molecules.

(a) tertiary structure (b) quaternary structure

Figure 1.4: Tertiary and Quaternary structures of a protein.

1.2 Protein structural data

The two main techniques used in order to obtain the atomic and molecular struc-

ture of a protein molecule are X-ray crystallography and the NMR spectroscopy.

In X-ray crystallography an x-ray source is aimed at the molecule and then the

diffraction pattern created is studied in order to determine the 3-dimensional

structure of a molecule. The Nuclear Magnetic Resonance (NMR) spectroscopy

is a more complex technique for obtaining information regarding the structure

and the dynamics of proteins. It consists of several phases and techniques which

are based on the magnetic properties of each atom.

The Protein Data Bank (Berman et al., 2002) is a database which contains 3-

dimensional structure data of proteins. It counts more than a hundred thousand

different structures where most of them have been obtain using the methods

described above. When the structure of a protein is determined using either of

4



Chapter 1 1.3 Structural alignment of proteins

these two methods each atom is orbitally labelled. Most of the data we use in

later Chapters have been obtained from this database.

Also for our purposes we use the tertiary structure of proteins and especially

we use the 3-dimensional coordinates of the Ca atoms, since they can sufficiently

describe the overall shape of the molecule. An example of how our data look can

be seen in Figure 1.5

(a) Tertiary structure (b) Trace of Ca atoms

(c) Location of Ca atoms

Figure 1.5: Tertiary structure and trace and locations of Ca atoms.

1.3 Structural alignment of proteins

In computational biology the alignment of protein structures has been one of

the most important problems since the work of Rossmann and Argos (1978).

Alignment of protein structures refers to finding a correspondence of amino acid

between them, whereas structure comparison is focused on analysing the similar-

ities between two or more structures. Structure alignment methods have started

developing in the last 25 years and a review of the most recent methods can be

found in Carugo (2007).
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Many important tasks in biology rely in the comparison of protein structures.

For example, the protein functionality is based both on the structure charac-

teristics and the amino acid sequence information (Godzik et al., 2007). Also,

another more recent problem, that of the prediction of a protein structure is

based on structure alignment techniques to evaluate its prediction accuracy. Fi-

nally, protein classification databases such as SCOP (Andreeva et al., 2004) and

CATH (Greene et al., 2006) rely on the results of structure comparison in order

to categorize proteins into different families.

The use of structure alignment is often preferred to sequence alignment since

the protein structure is much more conserved than the amino acid sequence

(Chothia and Lesk, 1986). As noted also in Rost (1997) and Rost (1999), proteins

with a sequence identity below 20% are very difficult to be aligned based only on

their sequence information the structure alignment should be preferred.

In the book of Gu and Bourne (2009) the structural alignment problem is

divided into three smaller ones:

1. Representation of the protein structures.

2. Sampling the possible alignments between two or more proteins.

3. Assessing the quality of a given alignment.

In Bioinformatics literature a plethora of fast and reliable structural alignment

algorithms have been made available. Some of the most popular methods which

we mention throughout the Thesis, include DALI (Holm and Sander, 1993), CE

(Shindyalov and Bourne, 1998), LGA (Zemla, 2003) and TMalign (Zhang and

Skolnick, 2005). Most of these methods are based on computational heuristic

algorithms and the optimal alignment between two given proteins is proposed

by either minimizing the overall distance between the molecules or maximizing a

certain similarity score. In particular:

• DALI divides the protein structure into hexapeptides creating a matrix with

the distances between all atoms and then uses a Monte Carlo simulation to

estimate a score function for producing a final alignment.
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Chapter 1 1.3 Structural alignment of proteins

• CE represents each structure as a set of distances between eight consecutive

atoms and then uses a combinatorial extension algorithm to align atom pairs

under a predefined threshold.

• TMalign uses the TMscore function and dynamic programming to assess

the similarity between two molecules and to decide about the optimal align-

ment.

• LGA applies the longest continuous segment (LCS) and global distance test

(GDT) algorithms in an iterative procedure to obtain the final matching

under a predefined distance cut-off.

Most of these algorithms provide a framework that determines some alignment

between two or sometimes more than two protein molecules in a fast and easy-

to-implement way. However, one important aspect is that each method chooses

to optimize a different score or distance metric in which the final alignment is

based, lacking an overall modelling framework. Also, most of them do not allow

for flexibility in choosing the parameters for each alignment which sometimes

can be an issue since such predefined parameter values do not always adequately

generate an optimal matching between two proteins. As mentioned in Koehl

(2001) although many alignment algorithms can provide good results an overall

score is needed for assessing the quality of each comparison.

Finally, we should note that each method has a primary target for its align-

ment. For example this can be that the final alignment should have a very low

distance between the atoms of each molecule. To achieve this, some methods

perform local alignments by matching only specific parts of each protein (sec-

ondary structures). On the other hand, the target can be to match as many

atoms as possible between two proteins. This approach will have an effect on the

final overall distance between the two proteins. Godzik (1996), showed that each

alignment algorithm could produce different solutions especially when proteins

with low sequence similarity are compared.

During the last years there have been developments in tracking the protein
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structure alignment problem from a statistical point of view. This approach

consists of unlabelled shape analysis methods usually combined in a Bayesian

framework. The problem of matching unlabelled 2-dimensional shapes has been

studied in image analysis by Rangarajan et al. (1997) and Chui and Rangarajan

(2003). Kent et al. (2004) use an EM approach to obtain a matching between

two protein molecules. Dryden et al. (2007) and Schmidler (2007) developed a

Bayesian model based on a procrustes likelihood to obtain an alignment between

two proteins. The former uses a Metropolis sampling approach to determine

possible matches, whereas the latter makes use of a geometric hashing algorithm.

In another approach by Green and Mardia (2006) they use a full Bayesian model,

assigning prior distributions in each transformation parameter. Finally, recent

extensions include the work of Rodriguez and Schmidler (2014) and Fallaize et al.

(2014) in which the sequence information is combined with the structure so that

more biologically meaningful alignments are produced.

1.4 Aims and thesis outline

As we discussed in the previous Section, the adhoc algorithmic approach is fast

and simple to use but lacks an overall modelling framework, whereas the Bayesian

methods address this need but often is not so simple for the user since a lot of

the parameters need to be pre determined. The aim of this Thesis is to bridge

this gap by developing a method which is easily implemented by the user and at

the same time is based in more robust modelling assumptions.

As we mentioned before the structure alignment problem can be divided into

three different parts: Representation, Optimization and Scoring. In this Thesis

we focus developing on last two of these. For the first part, in order to represent

the two structures of a pair of molecules we use the 3-dimensional coordinates of

the Ca atoms as shown in Section 1.2 and a match matrix M (for representing

the atom correspondence) which we describe in the following Chapter.

The motivation for exploring the Scoring part comes from the fact that most
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of the Bioinformatics methods do not take into account any error that has been

generated through the process of obtaining the structural data. Also, since most

of the scores are distance based this leads to different results based on which

parametrization of the distance score is used. The Bayesian approach solves

this problem but many times the sampling techniques required for obtaining

the posterior distributions make these methods difficult to implemented for the

structure comparisons in protein databases. In our study, we present a scoring

approach which is based on a size and shape likelihood function in order to asses

the quality of a given match between two or more proteins. Using this method we

select the best possible match for each atom while also considering any underling

error.

The protein alignment is NP-hard problem (Lathrop, 1994), hence is it not

computationally easy to explore all possible matching combinations. For the

Optimization part we develop different search strategies in order to explore as

much as possible of alignment space. In order to consider a new matched pair,

our algorithms explore all possible matching combinations of atoms from a given

starting point and make use of the Hungarian algorithm for obtaining an initial

alignment.

1.4.1 Thesis structure

In Chapter 2 we present the general likelihood framework of our model by pro-

viding a brief introduction to different methods and techniques we will be using

throughout the Thesis.

In Chapter 3 we establish the core likelihood framework in which our study

is based. We present the estimation process of the unknown parameters in our

model and also present the structural alignment algorithm that we will use to

obtain the final matching between two proteins. The last part of this Chapter

is about extending the likelihood (scoring) function with an adjustment in the

alignment algorithm so that the optimal solutions preserve the amino acid se-

quence order. Finally, we extend our method for aligning simultaneously more
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than two molecules.

In Chapter 4 we use real and simulated data in order to asses the performance

of the methods presented in Chapter 3. In particular, we compare our method

with alternative ones using two benchmark datasets. In the last Section we show

how our method can be adopted for estimating the evolutionary distance of two

proteins.

In Chapter 5 we present an alignment approach based on the posterior modes

estimation. Our method differs from the previous Bayesian approaches in the way

we choose to assign the prior over the mean parameter and that we also choose to

estimate directly the posterior mode of the matching distribution. Finally, we use

simulated and real data to asses and to compare our approaches with alternative

ones.

In Chapter 6 we present an extension of the likelihood method from Chapter

3. In this approach we use a Normal distribution to describe the whole molecule

with a diagonal covariance structure allowing different variances between the

matched and unmatched parts of a protein. We also compare all likelihood based

approaches using real and simulated data.

In Chapter 7 we present a summary of the Thesis and discuss the contributions

of our approach. Finally, we discuss possible improvements and areas of future

work.

10



Chapter 2

Background Theory

2.1 Introduction

In this Chapter we explain the basic theoretical background needed for the pro-

tein alignment problem that is used throughout this Thesis. In Section 2.2 we

explain some basic concepts of statistical shape analysis and how it can be con-

nected to protein matching. In Section 2.3 a general likelihood framework for the

estimation of the unknown parameters is described. In Section 2.4 we give a brief

representation regarding the EM algorithm which is used in the later Chapters of

the Thesis. Additionally, in Sections 2.5 and 2.6 we explain the parametrization

of the rotation matrix and the Holonomic gradient method which is used later

for integrating the rotation matrices form the likelihood function. Finally, in

Sections 2.7 and 2.8 we focus on the protein alignment describing an assignment

method called Hungarian algorithm and the similarity metrics we use to assess

the quality of a matching between two proteins.

2.2 Shape models for protein alignment

We represent the geometrical information of protein molecules using 3 - dimen-

sional configuration matrices. Let, X1 and X2 be two configuration matrices of

dimensions m× k and m× l respectively. For the rest of the Thesis we consider
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Chapter 2 2.2 Shape models for protein alignment

only m = 3 but most of the methodology can be applied to a general m. Each col-

umn of the matrices Xi consists of the 3-dimensional coordinates of the Ca atoms

from the protein chain. The k, l landmarks have been labelled arbitrary and there

is no prior knowledge for the correspondence between them. The objective is to

obtain an alignment between X1 and X2 under a common mean configuration

after both configurations have been optimally rotated and translated.

2.2.1 Match matrix

Since no information is available for the correspondence between the atoms of the

two protein molecules, in order to make inference about them we make use of a

matching matrix M with dimensions k × l and which entries can only take the

values of 1 and 0. There are many different definitions to matching matrices, but

in this case we allow only one to one matches where each row and column of M

can have at most one entry with 1 and the rest have to be 0. Then, for 1 ≤ i ≤ k

and for 1 ≤ j ≤ l, if Mij = 1, the i-th point of X1 is considered as a match

to the j-th point of X2, and if Mi· = 0 or M·j = 0, the i-th point of X1 and

the j-th point of X2 do not have a match, where Mi· and M·j represent the i-th

row and the j-th column of M respectively. Other models also use this type of

matching matrix, Green and Mardia (2006) and Fallaize et al. (2014) use a similar

matrix with no duplicate matches between the landmarks, whereas Taylor et al.

(2003) and Dryden et al. (2007) use a match matrix where multiple matches are

allowed. In Mardia et al. (2012) both types of matching matrices are considered

for inference.

2.2.2 Distributional assumptions and similarity

transformations

For a given M each configuration matrix is partitioned into matched and un-

matched parts. We refer to the matched parts XM
1 and XM

2 with dimensions

3 × p, where p is the number of matched landmarks between X1 and X2. For
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Chapter 2 2.2 Shape models for protein alignment

each XM
1 and XM

2 the correspondence for each landmark is known and these

matrices can be treated as the usual shape configurations. The unmatched parts

of X1 and X2 are defined as X−M1 with dimensions 3 × (k − p) and X−M2 with

dimensions 3×(l−p). For those matrices the correspondence between landmarks

is unknown given M .

Now, let us consider that the matched parts of X1 and X2 are noisy obser-

vations from a common mean matrix µ under a mapping of the size and shape

transformations as

R1∆
M
1 O

M
1 = µ+ ε1 R2∆

M
2 O

M
2 = µ+ ε2 (2.2.1)

with εi the errors, ∆M
i O

M
i the size and shape variables of XM

i and Ri represent

the unknown size and shape transformations (Dryden and Mardia, 1998) defined

as

Ri =
{
RiXi + τ1tp : Ri ∈ SO(3), τ ∈ R3

}
(2.2.2)

with Ri being a 3-dimensional rotation matrix and τ a m× 1 translation vector.

Later, in the model described in Chapter 3 we assume a Normal distribution

for the errors εi with zero mean and variance σ2. In that case, the matched parts

XM
1 and XM

2 can be treated as observations from a Normal distribution with

common mean and variance as

(R1∆
M
1 O

M
1 ,R2∆

M
2 O

M
2 ) ∼ N (µ, σ2) (2.2.3)

Also, we assume that the unmatched parts of X1 and X2 are regarded as

observations from a Uniform distribution

(∆−M1 O−M1 ,∆−M2 O−M2 ) ∼ Unif(V ) (2.2.4)

where V represents the volume in which the Uniform distribution is defined. The

value of V can be defined in different ways, here we consider it as the volume
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Chapter 2 2.3 General likelihood framework

of a cube that is big enough to contain both configuration matrices. Hence, our

model can be regarded as a type of mixture model with a Normal distribution

for the matched points and a Uniform for the unmatched, but we are not di-

rectly interested in estimating the proportion between the two mixtures rather

than obtaining an optimal alignment between the landmarks of the two matrices,

provided that we optimize over the unknown parameters.

This modelling approach is considered in Chapters 3, 4 and 5 whereas in

Chapter 6 a different modelling framework is adopted, using a Normal likelihood

for the whole configuration matrix Xi.

2.3 General likelihood framework

In this Section we describe the general framework needed for obtaining an align-

ment between two or more protein molecules. Using the distributional assump-

tions of (2.2.3) and (2.2.4), and assuming independece between the matched and

unmatched parts of a molecule X the likelihood function of the matrices X1 and

X2 will be the product between the matched and the unmatched densities as

L(M ,µ, σ2,Ri|X1,X2, V ) = fM(Ri∆
M
i O

M
i |µ, σ2,M )× f−M(∆−Mi O−Mi |M , V )

(2.3.1)

where,Ri are the unknown size and shape transformations of (2.2.2) and ∆M
i O

M
i ,

∆−Mi O−Mi the size and shape variables of XM
i and X−Mi respectively. Our aim

is to maximize the likelihood function of (2.3.1) under the unknown parameters

M ,µ, σ2 and Ri. The volume parameter V is initially considered as fixed and

a discussion of its effect is included in Chapter 4. For the unknown parameters,

the joint estimation is not straightforward since the likelihood space defined is

both continuous in the parameters µ and σ2 and discrete in matching matrix M .

Our interest is mainly to obtain the likelihood mode of M which will give us the

optimal alignment between X1 and X2. In order to achieve this, first we need to

14



Chapter 2 2.3 General likelihood framework

estimate µ and σ2, but this estimation is depending on M since it imposes the

current correspondence between the atoms of X1 and X2. Hence, the likelihood

of (2.3.1) can also be written as a function of M as:

L†(M) = L(µ(M), σ
2
(M),M |X1,X2) (2.3.2)

Then finding the mode of M will depend on the following two step optimiza-

tion:

M̂ = arg max
M

[
L̂†(M )

]
(2.3.3)

where

L̂†(M ) = arg max
µ(M),σ

2
(M)

L(µ(M), σ
2
(M),M |X1,X2) (2.3.4)

As we can see the problem of estimating the mode of M can be divided into

two smaller optimization problems. First optimizing over µ̂ and σ̂2 for a given

alignment M and we discuss this in Sections 3.2-3.3. Second optimizing M̂ for

which different techniques are presented in Sections 3.4, 3.5 and 3.6. These two

optimization steps need to be implemented simultaneously since for any updated

M a new pair of µ(M) and σ2
(M) needs to be calculated.

Another important aspect of this problem is the variations of the density for

the matched parts fM(·). In statistical protein alignment literature the common

practice is to use a Normal distribution where two different versions exist. The

first is an asymmetrical approach used by Dryden et al. (2007), Schmidler (2007)

and Rodriguez and Schmidler (2014), where Procrustes estimation for the optimal

rotation and translation of X1 to X2 is used. The second version considered by

Green and Mardia (2006), Mardia et al. (2013) and Fallaize et al. (2014) is a

symmetrical approach where now the rotation and translation are included as

unknown parameters in the model. A comparison between the two approaches is

made by Kenobi and Dryden (2012) where they found out that depending on the
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value of σ2 each approach performs better than the other.

In Chapter 3 we define our own version of fM(·), which can be considered as

a combination of both previous definitions, since we estimate the rotation and

translation parameters from our data but we also keep the symmetry using a

common mean between XM
1 and XM

2 . Finally, in Chapter 3 we explore three

different versions for fM(·), one including only the geometrical information of

XM
1 and XM

2 , another one using the geometrical and sequence information and

last one including a gap penalty function.

2.4 EM algorithm

The Expectation - Maximization (EM) algorithm developed by Dempster et al.

(1977) is an iterative optimization method for obtaining the maximum likelihood

estimation of parameters when part of the data are incomplete or unobserved.

Consider the set of the full data Y = (X,Z) whereX is the partially observed

data and Z the missing or unobserved data. Assuming that L(θ|X) is the partial

data likelihood where θ is an unknown parameter, then the maximum likelihood

estimate of θ using the EM will be obtained by maximizing iteratively a function

Q(θ|θt) with the following steps:

• Expectation step : Qθt(θ|θt) = E(Y |θt) [logL(θ|X,Z)]

• Maximization step : θt+1 = arg max
θ

Qθt(θ|θt)

where L(θ|X,Z) is the full data likelihood. The algorithm iterates among these

steps until a convergence criterion is reached. The EM algorithm guarantees

that in each step the likelihood L(θ|X) will increase monotonically and a local

maximum mode of θ will be reached at the convergence. In order to see this, note

that at the t− th iteration the likelihood L(θ|X) can be written as

L(θt|X) = Qθt(θ|θt)−H(θ|θt)
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where H(θ|θt) = E(Z|θt) [log f(Z|X, θt)]. Since log is a concave function, using

Jensen’s inequality

H(θt+1|θt) ≥ H(θ|θt)

and considering that θt+1 maximizes Qθt(θ|θt) one can see that

L(θt+1|X) ≥ L(θt|X)

As a result, it is guaranteed that through maximizing the functionQ(·) we also

maximize locally the likelihood function L(θ|X). However, the EM algorithm is

sometimes sensitive to starting point selection and is not always possible to reach

the global maximum especially if the algorithm reaches a saddle point.

Previous work on protein matching using the EM has been done by Tay-

lor et al. (2003), Kent et al. (2004) where they consider applications of protein

matching both in 2 and 3 dimensions and the missing data are the probabilities

of the matching between the landmarks. An extension of this method was later

developed by Mardia et al. (2012) where they consider an application of matching

protein gels in 2 dimensions.

2.5 Rotation matrix parametrization

One important issue regarding the protein alignment problem from a statistical

point of view is the estimation of the rotation matrix. In three dimensional space

Raffenetti and Ruedenberg (1969) and Khatri and Mardia (1977) showed that a

rotation matrix can be represented using the Euler angles θ as follows

R = R1(θ1)R2(θ2)R3(θ3)

where R1(θ1), R2(θ2), R3(θ3) are i.i.d rotations defined as
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R1(θ1) =


1 0 0

0 cos θ1 − sin θ1

0 sin θ1 cos θ1

 R2(θ2) =


cos θ2 0 sin θ2

0 1 0

− sin θ2 0 cos θ2



R3(θ3) =


cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1


One approach, as used in Dryden and Mardia (1998) and Rodriguez and

Schmidler (2014) is to estimate the rotation matrix using the Procrustes reg-

istration. The alternative way, as described in Green and Mardia (2006) is to

consider R as an unknown parameter. In this case, in order to derive the poste-

rior distribution a Gibbs sampler is implemented for updating the rotation angles

θ using a conjugate matrix Fisher distribution as a prior. For a definition of these

distributions see Downs (1972) and Mardia and Jupp (2009).

In our approach we parametrize the rotation matrix using unit quaternions

(Moran, 1975; Wood, 1993; Prentice, 1984). A unit quaternion x = {x1, x2, x3, x4}

is considered as a point in a 4-dimensional unit sphere S3 = {x : x ∈ R4, xxt = 1}

and a 3-dimensional rotation matrix can be derived as

R =


x21 + x24 − x22 − x23 2x1x2 − 2x3x4 2x1x3 + 2x2x4

2x1x2 + 2x3x4 x22 + x24 − x21 − x23 2x2x3 − 2x1x4

2x1x3 − 2x2x4 −2x2x3 + 2x1x4 x23 + x24 − x21 − x22

 (2.5.1)

The representation (2.5.1) for the uniformly distributed X in S3, leads to

an one-to-one relationship with the Bingham distribution on S4 and the matrix

Fisher distribution on SO(3)(Prentice, 1984) and as is later described in Chapter

3, our likelihood evaluation depends on the estimation of the normalizing constant

of the Bingham distribution in S4.
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2.6 Holonomic gradient method

In this Section we briefly describe the Holonomic gradient method which used in

Chapter 3 for the derivation of the normalizing constant of the Bingham distribu-

tion. For more details regarding the Holonomic gradient method and its relation

to the calculation of the normalizing constant of the Bingham distribution see

Sei et al. (2010) and Sei and Kume (2015). Also, Fallaize and Kypraios (2016)

has considered the same problem under a Bayesian framework.

Before we define the Holonomic gradient method we need to define what a

holonomic function is. A function f is called holonomic if there exist non-zero

polynomials as

p0(x)f(x) + p1(x)f
′
(x) + · · ·+ pr(x)f (r)(x) = 0 (2.6.1)

where f (r) are the derivatives of r-order. Now let a = (a1, . . . , ad) ∈ Θ and f(a)

be a holonomic function, with Θ being a subset of the d-dimensional Euclidean

space and g(a) a column vector of the partial derivatives of f(a). Then since

f(a) is a holonomic function g(a) will satisfy (Sei et al., 2010) the following

system of linear partial differential equations

∂ig(a) = Pi(a)g(a) (2.6.2)

where Pi(a) is a square matrix of rational functions. We call the equation (2.6.2)

the Pfaffian system of g.

The Holonomic Gradient Method (HGM) is an algorithm for evaluating a

particular value of a holonomic function for a local optima a. Assume that

g(a(0)) is given for some point a(0) ∈ Θ. Let ā(t), t ∈ [0, 1], be a smooth curve

in Θ, such that ā(0) = a(0) and ā(1) = a(1). Also, define ḡ(t) = g(ā(t)). Then

ḡ(t) is the solution of the ordinary differential equation below

d

dt
ḡ(t) =

d∑
i=1

dāi(t)

dt
Pi(ā(t))ḡ(t) (2.6.3)
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for a given starting point of ḡ(0) = g(a(0)).

Then the HGM algorithm can be described with the following steps

1. Solve numerically the ODE (2.6.3) over t ∈ [0, 1].

2. Return g(a(1))

Later in Section 3.3.2 our optimization of the µ and σ2 parameters is directly

connected to the evaluation of the normalizing constant from the Bingham dis-

tribution. Hence, we make use of the HGM and the relevant work shown in

the papers of Dryden et al. (2015) and Sei and Kume (2015) to calculate the

normalizing constant and obtain the maximum likelihood estimators of µ and

σ2.

2.7 Hungarian algorithm

The Hungarian algorithm was developed by Kuhn (1955) and is an optimization

method for providing a solution to the assignment problem. In matrix interpreta-

tion the assignment problem involves a cost matrix of n workers and n available

tasks, with a cost for each worker to be assigned in each task. The Hungarian

method tries to provide an optimal assignment by assigning each worker to one

task while minimizing the overall cost. It can be performed using the following

steps :

Hungarian algorithm

1. Subtract the smallest element in each row from all the elements of this row.

2. Subtract the smallest element in each column from all the elements of this

column.

3. Cover all zeros in the matrix using a minimum number of horizontal and

vertical lines.

4. If the minimum covered number of rows is n the assignment is possible,

otherwise go to step 5.
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5. Find the smallest element that is not covered by a line, subtract from all

the elements that are uncovered and add it to the elements that are covered

twice, then go to step 3.

The corresponding steps can be easily seen in the following simple example where

we have four workers a, b, c, d to perform 4 tasks with costs ai, bi, ci, di, i = 1, . . . , 4

for each worker to perform each task:

W
or

ke
rs

Tasks

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


Step 1−−−→

W
or

ke
rs

Tasks

á1 á2 0 á4

b́1 0 b́3 b́4

ć1 ć2 0 ć4

0 d́2 d́3 d́4


Step2−−−→

W
or

ke
rs

Tasks

á1 á2 0 á4

b́1 0 b́3 b́4

ć1 ć2 0 ć4

0 d́2 d́3 0



Step 3−−−→

W
or

ke
rs

Tasks

á1 á2 0 á4

b́1 0 b́3 b́4

ć1 ć2 0 ć4

0 d́2 d́3 0


Step 4−−−→

W
or

ke
rs

Tasks

á1 á2 0 á4

b́1 0 b́3 b́4

0 ć2 0 ć4

0 d́2 d́3 0


Step 5−−−→

W
or

ke
rs

Tasks

á1 á2 0 á4

b́1 0 b́3 b́4

0 ć2 0 ć4

0 d́2 d́3 0



Then the optimal assignment will be :a3, b2, c1, d4. When a matrix with dif-

ferent number of rows and columns is available, as usually is the case when we

have data from protein molecules extra zero rows and columns can be added so

the cost matrix can be square.
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Chapter 2 2.8 Protein similarity metrics

2.8 Protein similarity metrics

The purpose of aligning protein molecules is to find a solution that minimizes

the final distance between them and at the same time match as many atoms as

possible. However, it is not easy to compare different alignments especially the

ones with similar characteristics, since there has been no evidence so far suggest-

ing an analogy between the number of matched atoms and the final distance of

the proteins. Due to the nature of the problem, it can be deduced that the more

atoms are matched, the bigger the final distance between the molecules will be.

In the literature of structural bioinformatics, the distance between the molecules

is usually measured in Angstroms expressed by Å and many metrics exist which

attempt to quantify the aforementioned uncertainty and produce a total number

that is comparable between two or more alignment solutions. The most popular

metric used in Bioinformatics is the Root Mean Square Deviation (RMSD), which

is the average distance of the matched atoms between two aligned proteins and

is defined as

RMSD(XM
1 ,X

M
2 ) =

√√√√1

p

p∑
i=1

||XM
1 −XM

2 ||2 (2.8.1)

where p is the number of matched atoms between the aligned parts of the proteins

X1 and X2 and || · || is the Euclidean distance.

The RMSD metric has 0 as lower bound, with optimal solutions being closer

to 0. The major advantage of the RMSD is that it is very easy to use and

to explain, but still it does not take into account other parameters of the final

alignment, such as the total protein length or the proportion of atoms matched

from the whole protein chain. Hence, sometimes RMSD favours solutions with

fewer matched atoms as they will have a lower RMSD value and is very sensitive

to points that have been mismatched or matched with large distance.

Another popular metric used, is the Template Modelling Score (TMscore)

developed by Zhang and Skolnick (2004). This metric is more robust than RMSD
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Chapter 2 2.8 Protein similarity metrics

because it also takes into account the number of atoms that have been matched

and the total length of the protein. It takes values between 0 and 1, with 1

providing the optimal solution. As described in Xu and Zhang (2010), TMscore

values of ≥ 0.5 indicate proteins that have a high probability of belonging in the

same fold, whereas values of TMscore ≤ 0.2 indicate unrelated proteins. The

TMscore is defined as

TMscore(XM
1 ,X

M
2 ) = max

 1

Nmax

p∑
i=1

1

1 +
(

di
d0(Nmax)

)
 (2.8.2)

where p is the number of matched points between the aligned proteins X1 and

X2, di is the distance of the i-th pair, Nmax is the length of the largest protein

molecule and d0(Nmax) = 1.24 3
√
p− 15− 1.8.

The final measure that we are going to use for our comparisons is the Structure

Overlap (SO %) defined as the proportion of aligned atoms from the whole protein

chain that are within a distance d0 after the two molecules have been optimally

rotated, and given by the equation

SO = 100× 1

z

p∑
dij≤d0

1 (2.8.3)

where z is the smallest number of atoms between the two protein molecules, p

is the number of matched atoms, dij is the Euclidean distance between atoms i

and j and d0 is the cut-off distance usually taking the value 3.5Å. The Structure

Overlap can give a sense of how much from the whole protein chain has been

closely matched.
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Chapter 3

Likelihood alignment and

extensions

3.1 Introduction

In this Chapter we describe a likelihood based method for the structural align-

ment of protein molecules. Section 3.2 presents a size and shape likelihood density

based on the theoretical background from Chapter 2. The likelihood density is

introduced in Section 2.3 explained with more details in this Chapter defines our

core modelling approach in which the rest of the Chapter and this Thesis is based

on. Section 3.3 is about the first optimization step (2.3.4). We present an EM

algorithm in order to estimate the unknown parameters of mean and variance.

We also discuss the concept of how to evaluate the likelihood density when the

rotation parameter is integrated out and the connection with the normalizing

constant of the Bingham distribution. Section 3.4 is about the second optimiza-

tion step of (2.3.3), in order to obtain a likelihood mode for the matching matrix

M . We describe a structural alignment algorithm for protein molecules which is

using the Hungarian method from Section 2.6.

In Sections 3.5 and 3.6, we discuss extensions of our likelihood model with

the inclusion of sequence information and a penalty function for penalizing gaps

in the sequence order. In Section 3.7, we discuss the effect of starting points

24



Chapter 3 3.2 Size and shape density

and present an algorithm which automatically selects a set of starting points

when user input is not available. Finally, in Section 3.8 we extend the previous

method by simultaneously aligning more than two molecules. We also discuss the

limitations of this approach and present an alternative matching algorithm when

aligning many molecules at the same time is required.

3.2 Size and shape density

Consider two protein molecules represented by the configuration matrices X1

and X2, with dimensions 3 × k and 3 × l respectively. As seen from Chapter

2 the likelihood density of X1 and X2 will be the product of the matched and

unmatched parts as

L(M ,µ, σ2|X1,X2) = fM(XM
1 ,X

M
2 |M ,µ, σ2)f−M(X−M1 ,X−M2 |M ) (3.2.1)

In addition, we consider the Singular Value Decomposition of matrix Xi as

Xi = Ri∆iOi (3.2.2)

withRi ∈ SO(3) a matrix with dimensions 3×3, Oi a matrix with dimensions

3×p where OiO
t
i ∈ SO(3) and ∆i = diag(λ1, λ2, λ3) a diagonal matrix, in which

λj are the eigenvalues of XiX
t
i . Then under the Lebesgue measure, dXi can be

decomposed as shown in Muirhead (2009) and Diaz-Garcia et al. (1997) as

dXi ∝ dRid∆idOi (3.2.3)

where d∆i =
∏3

j=1

∏3
j=1 λ

(k−2)/2
j

∏
j>r(λj − λr)

∏3
j=1 dλj. As a result, each ma-

trix ∆iOi can be considered as the size and shape variables of the Xi in the

corresponding space (Kendall et al., 2009). Hence, the ∆iOi will represent the

observed Xi under some unknown and unobserved rotations Ri.

In the general case when the transformation parameters of rotation and trans-
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Chapter 3 3.2 Size and shape density

lation are known and by using the modelling framework described in Section 2.2

the density function of the matched parts can be described using a Normal dis-

tribution as:

fM(XM
i |M ,µ, σ2) =

(
1

2πσ2

)3p

exp

−
2∑
i=1

||XM
i − µ||2

2σ2

 (3.2.4)

with an alignment given by the match matrix M . Similarly, the density function

for the unmatched parts is described by a Uniform distribution as:

f−M(X−Mi |M ) =

(
1

V

)k+l−2p
(3.2.5)

where p is the number of matched residues between X1 and X2 and V is the

volume of a space that includes both molecules.

In order to be able to make statistical inference, the likelihood density of

(3.2.1) needs to be invariant under the similarity transformations of (2.2.2). Since,

the unknown parameters of µ and σ2 appear only in the density of the matched

part of each Xi we only need to remove the location information from the XM
1

and XM
2 , hence we multiply each of them with the Helmert sub-matrix with

dimensions (p−1)×p. This matrix is a special case of the full orthogonal Helmert

matrix with dimensions p × p when the first row is removed. The Helmert sub-

matrix H is defined as

H =



−1/
√

2 1/
√

2 0 . . . 0

−1/
√

6 1/
√

6 2/
√

6 . . . 0

...
...

...
. . .

...

−1/
√
p(p− 1) −1/

√
p(p− 1) −1/

√
p(p− 1) . . . (p− 1)/

√
p(p− 1)


(3.2.6)

The new landmarks Xh
i = HXi are called Helmertized landmarks (Dryden and

Mardia, 1998) and are invariant under the translation information. Different
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Chapter 3 3.3 Optimizing over the unknown parameters µ and σ2

choices are available for creating landmarks that are invariant under location, i.e.

set one landmark of Xi to zero and the rest as the differences to this landmark.

However, Helmertized landmarks are chosen because the covariance matrix of the

transformed coordinates remain the same as the original, since the matrix H is

orthogonal. For simplicity in notation, the configuration matrices X1 and X2 are

assumed to be in the Helmertized landmarks for the rest of this Chapter.

Finally, in order to derive the marginal size and shape density under the

Normal distribution of dXi we need to integrate the rotation parameter out of

(3.2.1). This leads to the size and shape density of X1 and X2 with rotation and

translation invariance as follows:

fS(X1,X2|M ,µ, σ2) =

∫
Ri∈SO(3)

L(M ,µ, σ2|X?
1 ,X

?
2 )dRi

=

∫
Ri∈SO(3)

(
1

2πσ2

)3p

exp

−
2∑
i=1

||RiX
M
i − µ||2

2σ2


(

1

V

)k+l−2p
dRi

=

(
1

V

)k+l−2p(
1

2πσ2

)3p

exp

−
2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2


×

2∏
i=1

∫
Ri∈SO(3)

exp

{
−tr

(
RiX

M
i µ

t
)

σ2

}
dRi (3.2.7)

where, X?
1 and X?

2 are full unobserved Normal data (which include the unknown

rotation and translation parameters) and dRi is the Haar measure in SO(3). This

size and shape density is similar to the one obtained from Goodall and Mardia

(1992) using the QR decomposition.

3.3 Optimizing over the unknown parameters

µ and σ2

Using the decomposition described in (3.2.3), each Xi can be regarded as the

partially observed size and shape data. The missing rotationsRi can be estimated

using the Expectation - Maximization (EM) algorithm (Dempster et al., 1977)
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Chapter 3 3.3 Optimizing over the unknown parameters µ and σ2

from Section 2.4. The log-likelihood function of the complete data Xi for a given

alignment M , with known similarity transformations Ri can be defined as

l(µ, σ2|M ,X?
1 ,X

?
2 ) = logL(M ,µ, σ2|X?

1 ,X
?
2 ) (3.3.1)

= −3p log(2πσ2)− (k + l − 2p) log(V )− 1

2σ2

2∑
i=1

||XM
i − µ||2

3.3.1 EM steps

Using the EM algorithm we can estimate the missing rotations Ri and be able to

make inference for the unknown parameters of µ and σ2 by iteratively applying

the following steps

• Expectation step : Evaluate the function Q(µ, σ2|µt−1, σ2
t−1) for given values

of µt−1, σ
2
t−1 finding the expectation over the missing rotations Ri:

Q(µ, σ2|µt−1, σ2
t−1) = ERi|Xi

[
l(µt−1, σ

2
t−1|M ,X?

1 ,X
?
2 )
]

where

ERi|Xi

[
l(µt−1, σ

2
t−1|M ,X?

1 ,X
?
2 )
]

= −3p log σ2
t−1 −

2∑
i=1

||XM
i ||2 + 2||µt−1||2

2σ2
t−1

+
2∑
i=1

log

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

t
t−1
)

σ2
t−1

}
dRi

+ logC

with C = 3pV −(k+l−2p) log(2π).

• Maximization step : Maximize the function Q(µ, σ2|µt−1, σ2
t−1) with respect

to µ and σ2 as

∂Q(µ, σ2|µt−1, σ2
t−1)

∂µ
= 0

∂Q(µ, σ2|µt−1, σ2
t−1)

∂σ2
= 0
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The new updated values of µt, σ
2
t as also mentioned in the paper of Dryden

et al. (2015) will be

µ̂ =
1

2

2∑
i=1



∫
Ri∈SO(3)

RiX
M
i e

AidRi

∫
Ri∈SO(3)

eAdRi


σ̂2 =

1

6p

[
2∑
i=1

||XM
i ||2 − ||µ̂||2

]

with A= −
tr(RiXM

i µ
t)

σ2 .

Alternating the algorithm between the Expectation and Maximization steps,

in the t-th iteration the updated parameters of µ and σ2 will be given as

µt = µ̂, σ2
t = σ̂2

The convergence of the algorithm is achieved when the following condition is

satisfied : Q(µ, σ2|µt, σ2
t ) − Q(µ, σ2|µt−1, σ2

t−1) ≤ ε, where ε is some predefined

tolerance level.

3.3.2 Rotation integration

An important part of the Expectation step concerns the computation of the inte-

gral over the missing rotations Ri. Using the decomposition of Xi from (3.2.3)

where Xi = ∆iOi are the observed size and shape data we can write the integral

part as

I1 =

∫
R∈SO(3)

R exp

{
tr
(
RXMµt

)
σ2

}
dR

Then, by takingU1ΦU
t
2 as the singular value decomposition of X

Mµt

σ2 withU1,U
t
2 ∈

SO(3) and Φ = diag(φ1, φ2, φ3), we can write I1 as
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I1 = U2

∫
R∈SO(3)

exp {tr (RΦ) dR}U t
1

Now, by setting I2 =

∫
R∈SO(3)

exp {tr (RΦ)} dR, Dryden et al. (2015) showed that

the evaluation of I1 can be reduced to a 3-dimensional gradient problem as

I1 = diag
(
∇Φjj

log I2
)

(3.3.2)

As we previously discussed in Section 2.5 I1 is related to the normalizing constant

of the Bingham distribution. The Bingham distribution in q dimensions with

respect to a uniform measure dSq is defined as

f(x;A, q) =
ex

tAx

Bq(A)
dSq (3.3.3)

with xtx = 1, A is a symmetric matrix and Bq(A) =
∫
x∈Sq e

xtAxdSq is the

normalizing constant.

Without loss of generality we may assume that the matrix A is diagonal and

parametrized as A = diag(ξ1, ξ2, ξ3, ξ4). Expressing the rotation matrix by using

quaternions (Wood, 1993), we can write I2 as

I2 =
B4(A)

2
(3.3.4)

where ξ4 = φ1 + φ2 + φ3 and ξi = 2φi − ξ4, for i = 1, 2, 3 and φi the diagonal

values of the matrix Φ. As a result, the gradient of I1 can be expressed as

I1 = diag

(
∇Φjj

log
B4(A)

2

)
(3.3.5)

Finally, as shown in Kume and Wood (2005) the partial derivatives of B4(M)

relate to those of higher order, hence the required gradient I1 can be expressed

as

30
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I1 = diag
(
∇Φjj

log I2
)

= I3 −


B6(A2)+B6(A3)

πB4(A)
0 0

0 B6(A1)+B6(A3)
πB4(A)

0

0 0 B6(A1)+B6(A2)
πB4(A)


(3.3.6)

with I3 a 3-dimensional identity matrix.

Finally, we can use the HGM described in Section 2.6 to solve the required

gradients of I1, where now f(a) = I2 is the function we are interested in and the

column vector g(a) is defined as

g(a) =

[
I2,

∂I2
∂φ1

,
∂I2
∂φ2

,
∂I2
∂φ3

]t

3.4 Alignment algorithm for optimizing M

In the previous Sections we have presented how we can estimate the nuisance

parameters µ and σ2 for an alignment given by the match matrix M . In this

section we present an algorithm that updates the alignment of the matching

matrix and explores all possible pairwise matches between the residues of two

protein molecules to find the likelihood mode that corresponds to the optimal

matching between them.

3.4.1 Algorithm for pairwise matching

We propose an algorithm for pairwise matching which is based on the size and

shape likelihood defined in (3.2.7), using the EM algorithm described in section

3.3 and the Hungarian method from in Section 2.7. An issue with alignment

methods is multi modality, as mentioned in Dryden et al. (2007), such algorithms

tend to get stuck in local modes. More recent papers, (Kenobi and Dryden,

2012; Schmidler, 2007) use different sampling schemes, but still the problem is

not completely solved. Here, we suggest a search algorithm which examines all
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Chapter 3 3.4 Alignment algorithm for optimizing M

possible pairs of atoms in order to find the best one among them. The criterion

for comparing these pairs is based on the optimal value of the size and shape

likelihood from (3.2.7). The algorithm by design will only add or remove pairs of

atoms which increase the total value of the likelihood. Hence, the final mode will

very likely be the best one from a given starting point. The procedure consists

of two main steps adding and removing and one optional step of jumping.

• Adding (Steps: 3-9)

Starting from a set of matched atoms by a given M we try to add as

many as possible new pairs in M . In order to do this, first we estimate

the likelihood value of (3.2.7) for all pairwise combinations between the

unmatched atoms, when each pair is considered as a new match. Hence,

each likelihood represents the cost for this pair of atoms to be added in M .

Next, using the new likelihood values we create a likelihood-cost matrix

for the unmatched atoms and apply the Hungarian method to obtain an

initial assignment between them. Finally, we order each pair of the initial

assignment by their likelihood value and we examine if by adding them one

at a time in M the value of (3.2.7) is increased. We repeat the last part

until we have added all the pairs or reach a likelihood mode.

• Removing (Steps: 10-13)

The next step of removing pairs from M is included to overcome the ef-

fect of the starting point selection and consists of removing as many al-

ready matched atoms as possible (provided that the likelihood is increas-

ing). Given the alignment of M from the previous step, we estimate the

likelihood of (3.2.7) when each pair of matched atoms from M is removed

keeping the rest fixed. Then if the maximum likelihood from those cal-

culated is higher than the likelihood of the given M we remove the pair

that corresponds to this likelihood value from M . We repeat this step of

removing until we have no more atoms to remove or we end in a likelihood

mode.
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Chapter 3 3.5 Sequence - structure alignment

We alternate between the adding and removing steps until we reach a like-

lihood mode of (3.2.7).

• Jumping (Steps: 15-17)

Finally, this is an optional step of jumps and is included as an attempt to

explore as much as possible the likelihood modes of (3.2.7). For a number

of jumps defined by the user, we uniformly select a pair from the remaining

unmatched pairwise combinations of atoms as a new match and restart the

algorithm from the adding step.

The steps of the alignment algorithm can be summarized as below

Algorithm 1 Structural Alignment algorithm

1: Input : X1,X2,M , J
2: Estimate the starting likelihood value fS0(X1,X2|M ,µ0, σ

2
0)

3: for (i, j) ∈Mij = 0 do
4: Consider pair (i, j) as a new match and estimate fSij(X1,X2|M ,µij, σ

2
ij)

5: end for
6: Create the likelihood-cost matrix C
7: Use the Hungarian method on matrix C to obtain an initial alignment.
8: Order the pairs of atoms from Step 6 based on their likelihood values.
9: Add sequentially each pair from Step 7 until a likelihood mode (3.2.7) is

reached.
10: for (i, j) ∈Mij = 1 do
11: Remove pair (i, j) and estimate fSij(X1,X2|M ,µij, σ

2
ij) keeping the rest

pairs fixed.
12: end for
13: If the value of max fSij(X1,X2|M ,µij, σ

2
ij) is higher than the current likeli-

hood value, remove pair (i, j) from M and go to Step 9.
14: Repeat Steps 3-12 until we reach a mode of (3.2.7)
15: for 1 : J do
16: From the remaining unmatched pairs, uniformly select a pair (i, j) as a

new match and go to Step 3.
17: end for
18: Return : M

3.5 Sequence - structure alignment

In this Section we extend the size and shape likelihood of (3.2.7) by including

the sequence information of the molecules. With this addition we are able to
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simultaneously make inference using both the geometrical information provided

by the structure of the molecule and the sequence information provided by the

amino acid chain. In the papers of Rodriguez and Schmidler (2014) and Fallaize

et al. (2014) similar likelihoods are used under a Bayesian framework.

Amino acid chains are represented by a one dimensional sequence of letters.

Consider two amino acid sequences JX1 and JX2 with lengths k and l respectively.

The elements for each sequence are letters from a set J which represents the 20

different amino acids. The objective of sequence alignment is to match each

amino acid with another that is usually either of the same type or from the same

family based on a score matrix.

Sometimes it is essential to create gaps in one or both sequences so that

the overall alignment score is maximized. The concept of gaps and how to pe-

nalize over them is discussed later in Section 3.6. Sequence alignment was the

first attempt of aligning protein molecules for establishing if they share common

properties (Bishop and Thompson, 1986; Gerstein and Levitt, 1998).

3.5.1 PAM matrices

Protein sequences are evolved into time where deletion, addition or mutations

of amino acid are happening. These evolutionary changes can be described us-

ing scores from substitution matrices. The two most commonly used matrices

are: PAM (Dayhoff and Schwartz, 1978) and BLOSSUM (Henikoff and Henikoff,

1992). Although both matrices are for the same purpose, they have differences

in their properties and in the way they have been created. As a result, they

might produce different alignments depending on the evolutionary distance of

the two proteins. In this Section we use only the PAM matrices although the

implementation is exactly the same when the BLOSSUM matrices are used.

PAM matrices are a selection of 20 by 20 symmetrical matrices in which each

entry is a score between a pair of amino acids which have been created after

examining all mutations that happened over time in a large dataset of closely

related protein sequences. A PAM matrix is characterised by the evolutionary
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distance d, usually with d = 1, . . . , 250, where large numbers indicating that

the corresponding sequences are distant evolutionary relatives. PAM matrices

are created using Markov chain theory, estimating the probability of a mutation

happening first at time 1 and then sequentially creating the probabilities up to

time d. For instance a PAM-1 matrix has the scores for each pair of amino acid

when 1 mutation over 100 amino acids had happened, PAM-50 the scores from

50 mutations over 100 amino acids and so on.

The entries of a PAM-d matrix can be written in the form of

Ψd(a, b) = 10 log10

(
qd(ab)

fafb

)
(3.5.1)

where, a and b represent the two amino acids, qd(ab) the probability of observing a

pair between amino acids a and b at evolutionary time d and fa, fb the marginal

probabilities of amino acids a and b appearing in a protein sequence over all

evolutionary times. A detailed explanation of how these probabilities are derived

can be see in Dayhoff and Schwartz (1978). The diagonal of a PAM matrix has

the highest positive values, meaning that the best possible pair for a given amino

acid is with another one of the same type. Small positive scores (+1, +2) usually

are between amino acids that belong to the same group (see Chapter 1) and

the negative scores are between incompatible amino acids. The total score of an

alignment is the sum of all the scores between the pairs of amino acids with high

positive scores indicate a good alignment. The PAM250 matrix we will use in

Chapter 4 can be seen in Table 3.1.
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A R N D C Q E G H I L K M F P S T W Y V
A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0
R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2
N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2
D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2
C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2
Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2
E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2
G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1
H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Table 3.1: PAM 250 matrix

As an example, Table 3.2 displays a part of the aligned sequences from the pair

101m-1mba, along with each individual score for each amino acid match by using

the PAM250 matrix. The, the final score for this alignment without penalising for

each gap will be the sum of all the individual scores as : 1+2+1+1−1+1+2−2 =

5.

+1 +2 +1 +1 -1 - - +1 - +2 -2
Jx1 I L K K K - - G - H H
Jx2 F V N N A A N A G K M

Table 3.2: Part of the aligned sequences for the pair 101m-1mba, with the corresponding
PAM250 score for each match.

3.5.2 Sequence -structure likelihood

The sequence likelihood which we are using here is the same as the one used

by Rodriguez and Schmidler (2014) and Fallaize et al. (2014). In particular,

given two amino acid sequences JX1 and JX2 the sequence likelihood for a given

alignment M and a given evolutionary distance d is defined by
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P (JX1 , JX2|M ,Ψd) =
∏

(i,j)∈M

qd(J
X1
i , JX2

j )
∏
i 6∈M

f
J
X1
i

∏
j 6∈M

f
J
X2
j

(3.5.2)

where qd(J
X1
i , JX2

j ) represents the probability that amino acid i from sequence

JX1 is matched with the amino acid j from the sequence JX2 and f
J
X1
i
, f
J
X2
j

rep-

resent the marginal probabilities for the unmatched amino acids in each sequence.

The equation (3.5.2) is a standard way of expressing a sequence likelihood (Bishop

and Thompson, 1986).

Next, by assuming that the sequence and the structure likelihood from (3.2.7)

are independent, a joint structure-sequencee likelihood for a given alignment M

and given parameters µ, σ2 and d will be given by

fSS(Xi|M ,µ, σ2, d) = fS(Xi|M ,µ, σ2)× P (JX1 , JX2|M ,Ψd)

=

(
1

V

)k+l−2p(
1

2πσ2

)3p

exp

−
2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2


×

2∏
i=1

∫
Ri∈SO(3)

e
tr(RiXMi µt)

σ2 dRi

∏
(i,j)∈M

qd(J
X1
i , JX2

j )
∏
i 6∈M

f
J
X1
i

∏
j 6∈M

f
J
X2
j

(3.5.3)

The value of the evolutionary distance d is kept fixed and we usually use either

d = 120 or d = 250 in our examples, however it can also be treated as an unknown

parameter and its estimation is possible as described in Section 4.5. The EM steps

for the estimation of µ and σ2 remain the same as we described in Section 3.3 since

the missing rotation parameters are independent of the sequence information and

the sequence likelihood (3.5.2) can be treated as a constant value throughout the

Expectation and Maximization steps. The Algorithm 1 also remains the same

with the only difference that the structure-sequence likelihood of (3.5.3) is used.
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3.6 Gap penalty

In this Section we extend the likelihood function of (3.5.3) by including a gap

penalty. So far, we have not considered conditioning on an order for the amino

acid sequence. So the alignments generated only rely on the geometrical infor-

mation of the molecules. By adding a gap penalty function to our method we

appropriately penalise over gaps so that more meaningful solutions are generated.

To explain the meaning of a gap we go back to the example of Table 3.2. A

gap is created when an amino acid from one sequence is not matched to an amino

acid of the other. For example, the sixth amino acid A of the sequence JX2 which

is assigned to a ‘-’ indicating a gap in the first sequence JX1 . This is considered

as a gap - opening. On the other hand, as a gap length is defined the number of

unmatched amino acids in the sequence until another one is matched.

The affine gap penalty function which we are also using here is the most

common penalty function in Bioinformatics literature and has also been used

byAalberse (2000) Rodriguez and Schmidler (2014) and Fallaize et al. (2014), as

a prior over the match matrix M . It is defined as

U(g, h) = −gS(M )− h
S(M)∑
i=1

li(M ) (3.6.1)

where, M is the match matrix, g and h the parameters of gap opening and gap

extension, S(M ) is the total number of gap openings for each sequence and li(M)

is the length of each gap from each sequence. Going back to the example of Table

3.2 the total number of gap openings S(M) will be 2 and the gap lengths li(M)

for each opening will be 2 and 1. We need to note that we want each gap opening

to carry a strong penalty in the total likelihood value, hence we choose to use

a rate of exp(U) (as similarly done in the Bayesian methods) as the final gap

penalty instead of simply using the affine function of (3.6.1).

Finally, we consider the gap opening and extension parameters g and h as

fixed and in particular as suggested by Gerstein and Levitt (1998) we choose g
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to be about 40 times larger than h. In other studies (Rodriguez and Schmidler,

2014; Fallaize et al., 2014) the gap parameters are treated both as fixed and as

unknown values, where Gamma priors are assigned over them.

3.6.1 Sequence - structure likelihood with gap penalty

We can easily include the gap penalty function in the structure-sequence likeli-

hood from (3.5.3). Now, for a given alignment M and a PAM matrix d with fixed

gap penalty parameters g and h the sequence likelihood function (3.5.2) becomes

P (JX1 , JX2 |M ,Ψd, g, h) = exp {U(g, h)}
∏

(i,j)∈M

qd(J
X1
i , JX2

j )
∏
i 6∈M

f
J
X1
i

∏
j 6∈M

f
J
X2
j

(3.6.2)

and the structure-sequence with gap penalty likelihood is

fSSG(Xi|M ,µ, σ2, d, g, h) = fS(Xi|M ,µ, σ2)× P (JX1 , JX2|M ,Ψd, g, h)

=

(
1

V

)k+l−2p(
1

2πσ2

)3p

exp

−
2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2


×

2∏
i=1

∫
Ri∈SO(3)

e
tr(RiXMi µt)

σ2 dRi

∏
(i,j)∈M

qd(J
X1
i , JX2

j )
∏
i 6∈M

f
J
X1
i

∏
j 6∈M

f
J
X2
j

× exp

−gS(M )− h
S(M)∑
i=1

li(M )

 (3.6.3)

Notice also that a version of (3.6.3) with structure and only a gap penalty

function can be easily obtained as

fSG(Xi|M ,µ, σ2, g, h) = fS(X1,X2|M ,µ, σ2)× exp {U(g, h)} (3.6.4)

Similar to before, the estimation of µ and σ2 is done using the EM algorithm

described in Section 3.3, where the EM steps remain the same since the gap infor-

mation is considered fixed during the optimization procedure. The Algorithm

1 also remains the same with substituting the relevant terms in the likelihood of
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(3.6.3) and (3.6.4).

3.6.2 Alignment algorithm for preserving sequence order

The Algorithm 1 is based only on the geometrical information of the protein

molecules. Using the likelihood densities of (3.6.3) or (3.6.4) we penalize for

gaps in each sequence. However, in order to preserve the sequence order of the

alignment a different approach for the optimization of the match matrix M is

required.

Hence, we modify Algorithm 1 by exploring only pairwise combinations

of atoms that follow the sequence order from a given starting point and not all

possible pairwise combinations available. The process of selecting the appropriate

pairs that follow the sequence order is described below:

Consider two protein molecules X1i with atoms i = 1, . . . , k and X2j with

atoms j = 1, . . . , l and a set of starting points p represented by the indices P 1
q , P

2
q

with q = 1, . . . , p for each X1,X2. Then, we order the matched atoms of X1 and

X2 as :

P 1
1 < P 1

2 < · · · < P 1
p and P 2

1 < P 2
2 < · · · < P 2

p

Now in order to find the next possible match for X1 and X2 we explore only

those pairs created by the combinations of atoms using the following rules:

List 3.1: Create pairs of atoms that preserve sequence order.

1. Find all possible combinations of pairs from X1i and X2j created by
the unmatched atoms of those two in which P 1

i < P 1
1 and P 2

j < P 2
1 .

2. Find all possible combinations of pairs created by the atoms of X1 and
X2 in which P 1

1 < P 1
i < P 1

2 and P 2
1 < P 2

j < P 2
2 .

3. Repeat Step 2 (p-1) times until P 1
p−1 < P 1

i < P 1
p

and P 2
p−1 < P 2

j < P 2
p .

4. Find all possible combinations of pairs created by the atoms of X1 and
X2 in which P 1

i > P 1
p and P 2

j > P 2
p .
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Using this approach sometimes requires a good set of starting points, prefer-

ably a pair of atoms that are spread throughout the protein chain and not con-

centrated around a small area.

Finally, a simple adjustment should be made to the Hungarian algorithm

described in Section 2.7, since not all combinations of atoms are now considered

as possible new matches. As a result, there will be some empty entries on the

likelihood-cost matrix that we should deal with. Hence, in order to modify the

likelihood-cost matrix so it can be suitable for the Hungarian method we use these

three following steps :

List 3.2: Adjustments for the likelihood-cost matrix.

1. Add extra zero rows or columns in order for the likelihood-cost matrix
to become square.

2. Fill the empty entries of the likelihood-cost matrix that correspond to
the atoms which are not selected by List 3.1 with a very small negative
value.

3. Subtract this value from all the other entries.

Using these three steps we will now have a square likelihood-cost matrix with

non-negative entries and by applying the Hungarian method we will have an

initial alignment between the atoms of X1 and X2.

Finally, the Alignment with Sequence Order algorithm will be the same as

Algorithm 1 where now the Steps 3-6 become:

Algorithm 2 Alignment with Sequence Order

1: Use the instructions of List 3.1 to create the available combination of pairs.
2: for pair (i, j) from Step 1 do
3: Consider the pair (i, j) as a new match and estimate (3.6.3).
4: end for
5: Use the instructions of List 3.2 to create the likelihood-cost matrix C.

The Algorithm 2 can be applied any of the likelihood densities described in

(3.6.3) or (3.6.4).
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3.7 Selection of starting points

So far for initializing the Algorithm 1 we have assumed that a given set of

starting points was available either by using a part or the whole alignment solution

from other methods or by selecting them visually. However, this is may not always

be possible and a different way of selecting the starting points is needed. In this

Section, we describe an algorithm to automatically select a set of starting points

using both the sequence and the geometrical information of our data.

3.7.1 Algorithm for automatic selection of starting

points

Since our alignment algorithm is based on an EM approach and as previously

discussed in Chapter 2 the starting point selection might have an impact on the

final solution. We describe a method for selecting a number of atoms so they can

be used as starting points for Algorithm 1 or Algorithm 2.

Using the same set up as before where X1 and X2 represent two protein

molecules, the first step of the algorithm would be to perform an initial se-

quence alignment. Many different sequence alignment algorithms exist such as

the Needleman-Wunsch (Needleman and Wunsch, 1970) for global alignment, the

Smith-Waterman (Smith and Waterman, 1981) for local alignment or the MUS-

CLE method (Edgar, 2004) for aligning multiple sequences. For our purpose, all

these algorithms have similar performance and we choose to use the Needleman-

Wunsch since it is very simple to use and easily accessible in R.

After obtaining an initial alignment, the second step will be to optimally

rotate and translate the aligned data from before. Next, for each aligned pair the

TMscore of (2.8.2) is calculated in order to assess the quality of each matched

pair. As a starting cut-off point we choose the value of 20%, since as shown in

Xu and Zhang (2010) a TMscore below that value indicates that the two protein

molecules are unrelated.
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We continue by removing the matched pairs which are below the selected cut-

off point and this process is repeated until there are no more available pairs to

remove. However, in the case that we compare two proteins with low sequence

similarity the initial sequence alignment might not provide a good start. As a

result, the remaining matched pairs might be less than 4. If that is the case, we

restart the algorithm but with setting a lower new cut-off point (e.g. half of its

previous value). The steps for the selection process of the starting points can be

summarized as follow :

Algorithm 3 Algorithm for selecting k - starting points

1: Inputs X1,X2, c0, k
2: Use Needleman-Wunsch algorithm to obtain an initial sequence alignment between
X1 and X2.

3: Set p the number of matched pairs from Step 2.
4: while p ≥ 4 do
5: Translate and rotate optimally the aligned data from Step 2.
6: Compute TMscore for each aligned pair.
7: Remove the pairs that are below the TMscore cut-off point c0.
8: if p < 4 then
9: Set c0 ← c0/2 and go to Step 3.

10: end if
11: end while
12: return k - pairs with the highest TMscore.

Algorithm 3 can be used for initializing any of the algorithms presented in

Sections 3.4.2 or 3.6.2.

Figure 3.1: Starting point comparison for the pairs of 1aru- 1apx (top row) and 1ryp -
1pma (bottom row). The starting points for each alignment are with blue.
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Figure 3.1 displays the effect of different starting points for two protein pairs.

The first one is a pair of peroxidases 1apx - 1aru with a low sequence similarity of

27% and the second, is a pair of the antibody 1rup with the protease enzyme 1pma

with a sequence similarity of 42%. We choose 3 different sets of starting points,

the first is a subset of the aligned atoms from the solution of the LGA method

and the other two are a set of 5 atoms and a set of 10 atoms as being selected

by Algorithm 3. We also used the likelihood with the structure information of

(3.2.7).

For the first case, we can see that all three different set of starting points give

almost the same solutions having all the same RMSD 1.5Å with the set of starting

points from LGA resulting to 231 matched atoms compared to 229 atoms using

the starting points from Algorithm 3. In the second case, each set of starting

points results to slightly different solutions. The set obtained from LGA gives an

alignment of 188 matched atoms with RMSD of 1.9Å, compared to 192 matched

atoms and RMSD of 2.1Å or 186 and RMSD 2.0Å when the Algorithm 3 is

used.

From this simple example we can see that Algorithm 3 can provide a reason-

able good start for Algorithm 1. In both cases, our final alignments were very

similar despite the different choice of starting points. However, this might not

always be the case, especially if we compare pairs of proteins with low sequence

or structure similarity.

3.8 Multiple alignment

In this Section we extend the likelihood model described in Sections 3.2 and 3.3

for the case of matching more than one protein molecules simultaneously. This

problem has also been studied in the Bayesian literature before by Dryden et al.

(2007) . In that paper, one of the molecules is treated as the target and all

the others are matched to it, then the Procrustes registration is used for the

estimation of rotation and translation parameters. On the other hand, Ruffieux
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and Green (2009) extended the pairwise matching model described in Green and

Mardia (2006) to the multiple case by allowing also partial matches between the

molecules. Finally, another approach in multiple matching is by Mardia et al.

(2011) where they use a Bayesian hierarchical template algorithm for aligning

parts of protein molecules.

3.8.1 Size and shape density for multiple matching

We consider a set of protein molecules represented by the configuration matrices

X̃ = [X1,X2, . . . ,Xn] where n is the number of molecules and each individual

Xi, i = 1, . . . , n is a 3-dimensional matrix with ki number of atoms. Similarly, we

consider a set of matching matrices M̃ = [M1,M2, . . . ,Mn] where each Mi, i =

1, . . . , n is a matrix of dimensions ki × min(k) with ones and zeros representing

the correspondence of the atoms between each Xi and the common mean µ.

In addition, assuming the parameters of rotations and translations are inde-

pendent among each molecule Xi then, the set of size and shape transformations

is defined as

Ri =
{
RiXi + τ1tp : Ri ∈ SO(3), τ ∈ R3

}
withRi a 3-dimensional rotation matrix and τi a 3-dimensional translation vector

corresponding to each molecule Xi.

Following the general likelihood framework described in Chapter 2 and by

using the Singular Value Decomposition of matrix X as in (3.2.3) and partition-

ing each Xi in matched and unmatched parts, which follow the distributional

assumptions of (2.2.3) and (2.2.4), it is straightforward to extend the likelihood

density described from (3.2.7) to the multiple molecule matching case as
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fM(Xi|M̃ ,µ, σ2) =

∫
Ri∈SO(3)

L(M̃ ,µ, σ2|Xi)dRi

=

∫
Ri∈SO(3)

fM(XM
i |M̃ ,µ, σ2)dRif−M(X−Mi |M̃ , V )

= V
−
(

n∑
i=1

ki+np

)
(2πσ2)−

3pn
2 exp

−
n∑
i=1

||XM
i ||2 + n||µ||2

2σ2


×

n∏
i=1

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

t
)

σ2

}
dRi (3.8.1)

where n is the number of molecules, p the number of common matched atoms

across all molecules and M̃ ,µ, σ2 are the parameters of interest that need to be

optimized.

Therefore, the likelihood density of (3.8.1) can be easily extended to incorpo-

rate the extension of the sequence information from (3.5.3) or the Gap penalty

function from (3.6.1). The optimization over the parameters of µ and σ2 remains

the same as using the EM algorithm described in Section 3.3 since the expected

rotations Ri are independent among each Xi.

3.8.2 Likelihood - cost matrix for multiple matching

The structural alignment algorithm for pairwise matching described in Algo-

rithm 1 can be easily extended to the multiple matching case by replacing the

likelihood density of (3.2.7) or (3.6.3) by the density described in (3.8.1).

The only adjustment that needs to be made is in the process of defining the

likelihood-cost matrix that is used by the Hungarian algorithm for obtaining an

initial assignment between the atoms. Since the Hungarian algorithm is designed

for two objects as in the pairwise matching of two molecules, we need to extend the

likelihood-cost matrix by including the likelihood information for all n available

molecules.
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Now H has dimensions min(ki)−p×
∏

j∈{irmin(ki)}
ki−p and each entry represents

the likelihood-cost for each tuple of unmatched atoms to be added as a new

match. The rows of H represent the actual unmatched atoms from the Xi with

the minimum number of dimensions and the columns of H serve as an index to

all the possible combinations over the unmatched atoms of the rest Xi.

In order to illustrate the process of defining H we use a simple example.

Consider three molecules X1,X2,X3 with number of atoms 5, 5, 7 respectively.

Also, without loss of generality we assume that the first 3 atoms from each Xi are

considered as already matched. Then, the remaining atoms form the following

possible combinations as candidates for new matches



X1 X2 X3

4 4 4

5 4 4

4 5 4

5 5 4

...
...

...

4 5 7

5 5 7



Hence, the matrix H will be formed as follows

H = X
1

X2,X3

1 2 3 4 5 6 7 8

4 h41 h42 h43 h44 h45 h46 h47 h48

5 h51 h52 h53 h54 h55 h56 h57 h58

where, each element of hij represents the likelihood-cost of this tuple to be added

as a new match. For example h41 will be the likelihood for the tuple (4, 4, 4), h51

the likelihood for the tuple (5, 4, 4) and so on.

Finally, the algorithm for multiple structural alignment will be the same as
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the one described in Algorithm 1 with the likelihood of (3.2.7) replaced by

(3.8.1) and with the cost matrix C being replaced by H.

3.8.3 Alternative structural alignment algorithm for

multiple matching

One important problem with the method described in the previous Section is that

when we want to align many molecules simultaneously then it becomes a very

big combinatoric problem since we need to explore all possible combinations of

atoms in order to find the best local likelihood mode of M . This approach is

generally feasible for small number of molecules 3 or sometimes 4 regardless of

their number of atoms.

However, when our sample size becomes bigger, the number of combinations

that we need to explore becomes significantly larger even for small molecules

of 30-40 atoms each. In this case although the computing time increases due

to the design of the search, using parallel computing makes the Adding step of

Algorithm 1 still manageable. Problems start to appear when the Hungarian

algorithm needs to be applied. The Hungarian algorithm solves the assignment

problem in polynomial time of order O(n3) (Munkres, 1957). This n represents

the number of pairs we need to explore each time before we consider a new match

in M . Hence, it is easy to see how big the problem becomes especially when we

have a number of molecules more than 5. Furthermore, a square matrix is needed

as an input and by using the approach described in Section 3.8.2 for adding extra

empty rows or columns to make it square will lead to a likelihood-cost matrix

with larger dimensions requiring a lot of memory.

For all the above reasons, when we want to align simultaneously more than

3 or 4 molecules we need to adjust Algorithm 1 by dropping the step for ob-

taining an initial alignment from the Hungarian algorithm and directly adding

the new matches in M based only on the likelihood values. This adjustment

reduces significantly the computing time and the memory usage and although it
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is an approximation to what the Hungarian algorithm does, is necessary to make

our approach feasible in large scale comparisons. The steps of the Alternative

Structural Alignment for multiple matching are summarized below:

Algorithm 4 Alternative structural alignment algorithm for multiple matching

1: Input : X̃ = [X1,X2, · · · ,Xn] ,M̃ , J
2: Estimate the starting likelihood value fM0(Xi|M̃ ,µ0, σ

2
0)

3: for tuple Sj ∈ M̃Sj = 0 do

4: Consider Sj as a new match and estimate fMj
(Xi|M̃ ,µj, σ

2
j )

5: end for
6: if max fMj

(Xi|M̃ ,µj, σ
2
j ) > fM0(Xi|M̃ ,µ0, σ

2
0) then

7: Add the tuple which corresponds to max fMj
(Xi|M̃ ,µj, σ

2
j ) as a new

match in M̃
8: Set fM0(Xi|M̃ ,µ0, σ

2
0)← max fMj

(Xi|M̃ ,µj, σ
2
j )

9: end if
10: Repeat Steps 3-8 until a mode of M̃ is reached.
11: for tuple Sj ∈ M̃ = 1 do
12: Remove tuple Sj from M̃ and estimate fMj

(Xi|M̃ ,µj, σ
2
j ) keeping the

rest tuples fixed.
13: end for
14: if max fMj

(Xi|M̃ ,µj, σ
2
j ) > fM0(Xi|M̃ ,µ0, σ

2
0) then

15: Remove the tuple which corresponds to max fMj
(Xi|M̃ ,µj, σ

2
j ) from M̃ ,

16: Set fM0(Xi|M̃ ,µ0, σ
2
0)← max fMj

(Xi|M̃ ,µj, σ
2
j )

17: Go to Step 11.
18: end if
19: Repeat Steps 3-18 until we reach a mode of M̃
20: for 1 : J do
21: From the remaining unmatched tuples, uniformly select a tuple Sj as a

new match in M̃ and go to Step 3.
22: end for
23: Return : M̃
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Comparisons and real data

applications

4.1 Introduction

In this Chapter we test and compare the various approaches for structural align-

ments proposed in Chapter 3. In Section 4.2, we simulate data using different

values for the parameter σ and measure the ability of our models to correctly iden-

tify the landmarks either as matched or unmatched. Furthermore, we explore the

effect the volume parameter V has in our model and also provide a brief discus-

sion regarding the computational time needed for different protein lengths. In

Section 4.3 we use two different benchmark datasets of protein pairs to compare

our approach with other known algorithms from Bioinformatics literature.

In Section 4.4 we compare our approach with that of Rodriguez and Schmi-

dler (2014), using all the different likelihood densities introduced in Chapter 3.

In Section 4.5 we explain how our approach can be also used to estimate the

evolutionary distance between two proteins and present a small example which is

also been analysed in previous studies. Finally, in Section 4.6 we test the method

of simultaneously aligning protein molecules using the two different methods de-

scribed in Section 3.8.
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4.2 Simulations

In this Section we evaluate the performance of our Likelihood Alignment method

from Chapter 3 using simulated data. We also explore the effect the volume

parameter has in the final alignment with simulations and an example using

protein data. Finally, we discuss the computational time needed for our method

and the limitations that arise.

4.2.1 Simulated data

For generating the simulated data we use a similar algorithm as the one described

in Kenobi and Dryden (2012) by choosing the following parameters :

• 1000 samples of X1 and X2 with 25 and 30 landmarks respectively.

• The first 20 landmarks from each matrix represent the correct matches and

are observations from a Normal distribution with a common mean µ and

variance σ2.

• The locations for each landmark of µ are drawn from a Uniform distribution

with the restriction that each location should have at least a minimum

distance (dmin) from the others.

• The unmatched landmarks of X1 and X2 are sampled from a Uniform

distribution inside a cube of volume V 3.

• We set as dmin = 2, V = 20 and σ = 0.1, 0.5, 1, 2, 2.5

Figure 4.1 displays the empirical matching probabilities of each landmark.

When σ = 0.1 or 0.5 we see that our method has a very high probability of

success. In particular, there is above 95% chance that each landmark is correctly

identified as matched (first 20 landmarks) or as unmatched (last 5 landmarks).

As σ increases (together with the ratio of σ/dmin) these percentages seem to

drop. When σ = 1 we can again very efficiently match the first 20 landmarks
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correctly, but there also seems to be a low number of false positives matches

especially from the 5 unmatched landmarks. However, this is more noticeable

when the ratio σ/dmin ≥ 1, which is when σ = 2 or σ = 2.5. In these two

cases the matched and unmatched landmarks are mixing and it becomes harder

to identify which ones are from the Normal distribution and which ones from the

Uniform. Now, the percentage for the 20 first landmarks is still good of about

77% for σ = 2 and 66% for σ = 2.5, but the proportion of falsely identifying an

unmatched landmark as being matched has also increased with 54.5% and 65%

respectively for the two σ’s.
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Figure 4.1: Mean proportions of each landmark to be identified successfully either as
a ‘correct’ match or as ‘unmatched’ landmark. The bottom right plot is the number of
correct and false positive matches for each of the first 20 landmarks for varying σ.

A similar simulation study has been conducted also in Kenobi and Dryden

(2012) where they compare the models of Dryden et al. (2007) and Green and

Mardia (2006). Their results were of similar performance with identifying also a

potential cut-off point for the ratio of σ/dmin where the performance of these two

methods is changing.

Finally, based on the bottom right plot of Figure 4.1 with the mean number

of correct and false positive matches for each σ and also from the distribution of

correct and false positive matches of Figure 4.2 we can conclude that even when
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the standard deviation is equal or higher than the minimum distance of 2, the

number of correct matches remains high with an average of 16.5/20 for σ = 2

and 14.9/20 for σ = 2.5. Similarly, the average of false positive values is as low

as 3.9 and 5.5 respectively, indicating that the algorithm performs relatively well

in situations of large variance.
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Figure 4.2: Distribution of correct matches and false positives for different values of σ.

4.2.2 Effect of the volume parameter V

So far, we have considered a fixed value for the volume parameter V , usually

the one calculated from the data by multiplying the range from the protein co-

ordinates. As mentioned in the papers of Rodriguez and Schmidler (2014) and

Fallaize et al. (2014), its value can have an effect in the final solution. In general,

larger values of volume will mean a bigger space with the two molecules inside,

hence the distance between each landmark will be larger relative to the variance

σ2. The opposite is happening with small values of V where now the landmarks

are more clustered and mixed, making harder to identify the correct matches.
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Therefore, the value of the volume can also be used as a tuning parameter in

order to obtain final solutions with more or less matches and bigger or smaller

RMSD.

In order to explore the effect of the volume parameter in our model we test

it using the simulated data from the previous Section. Figure 4.3 displays the

number of correct and false positives matches for the first 20 landmarks for vol-

umes of V ranging between 1000 and 10000. As we can see there is no variation

in the number of either the correct matches or false positives for σ = 0.1, 0.5 or

1. For the other two values of σ = 2 and σ = 2.5 there seems to be a small

amount of variation on both types of matches. However this is very small with

approximately 3 more matched landmarks for both correct and false positives.
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Figure 4.3: Mean number of correct matches (continuous lines) and false positive
(dashed lines) for different values of σ and V .

In order to illustrate the volume effect in real data we use the protein pair of

1gky-2ak3. Figure 4.4 shows that the value of the volume can have some effect on

the final solution, which can range from 148 matched atoms and a RMSD of 2.2Å

for V = 5000 to 167 and 2.8Å for V = 100000. However, after a certain value of

V ≈ 40000, the volume parameter does not seem to have an effect both in RMSD

and the number of matches, since the space that the two molecules are considered
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to be inside is large enough. Although there is some variation on the final results

this is of a magnitude of about 10%, which suggests, as previously shown in the

simulations, that the choice of V in our methods does not have a big impact on

the final alignment. Fallaize et al. (2014) also discuss the volume effect in their

model. For the same pair of proteins they report a number of matches ranging

from 117 to 152 with a RMSD from 2.0Å to 2.97Å. By comparing these results, it

seems that our model is less affected by the volume, although further exploration

is needed since the alignment of protein molecules can have significant variations

from pair to pair.
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Figure 4.4: Number of matched atoms and RMSD values of the pair 1gky-2ak3 for
values of volume ranging from 5000 to 100000.

4.2.3 Computational time

An important aspect of structural alignment algorithms is the computational

time. In general most of these algorithms from the field of Bioinformatics perform

the alignments in a matter of just a few seconds (see later Table 4.1). Green and

Mardia (2006) report a time around 1 minute for the alignment of configurations

with 40-50 landmarks. The time needed for the Likelihood Alignment approach

we described in Chapter 3 is connected to the total number of atoms from the

two proteins. Since we are exploring all the possible pairwise combinations of

atoms the total computational time needed will increase geometrically. Figure

4.5 shows the computational time needed for our algorithm depending on the

total number of atoms. Although, the growth is of geometric rate, we can see
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that even for 500 atoms the total computational time needed is approximately 20

seconds, a very good time compared to the other methods. In order to achieve

this, we made use of parallel computing, because there is no need to explore the

pairwise combinations sequentially and hence we can divide our problem into

smaller parts.

However, this type of approach has some limitations. Although, for any num-

ber of atoms in pairwise alignment this approach is feasible, when we want to

align multiple structures simultaneously, the total number of combinations be-

comes significantly large. We can still achieve good computational times when

we have 3 molecules but in the case of aligning more than 3 simultaneously, we

have a limit of about 30-40 atoms for each protein. This problem discussed also

in Section 3.8.3 arises mainly from the construction of the likelihood-cost matrix

that is needed for the Hungarian algorithm. By adding the extra rows or columns

so that it becomes square, its dimensions become very big and difficult to handle,

both computationally and in terms of memory management.
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Figure 4.5: Computational time needed for the Likelihood Alignment method using
Algorithm 1

4.2.4 Conclusions

• Based on the simulation results of Section 4.2.1, the Likelihood Alignment

approach seems to perform well in identifying which landmarks should be
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matched and which not, especially when σ is low. When σ/dmin ≥ 1 it

seems that the correct match percentage is still good but the false positive

percentage is increased.

• The volume parameter V after a certain value does not have a big effect in

the final alignment, although further exploration is needed when treated as

a non-fixed parameter in the model.

4.3 Protein data

4.3.1 1stmA-1bmvI

We present an example of using the likelihood of (3.2.7) and Algorithm 1 to

align a pair of proteins. The first molecule is the virus 1stmA consisting of

141 atoms and the second is the RNA virus 1bmvI with 185 atoms. This pair

has a sequence identity of 28% from the BLAST method. Using Algorithm 1

we obtain an alignment of 85 matched atoms with an RMSD (2.8.1) of 2.0Å, a

TMscore (2.8.2) of 0.51 and a Structure Overlap (2.8.3) of 57.45%.

Figure 4.6 displays the one-to-one correspondence of the final alignment. As

we can see although we do not use a gap penalty in the likelihood function the

amino acid sequence order is mostly preserved. The TMscore value is just above

the threshold 0.50 suggesting that the two proteins might belong to the same

fold. However, the Structure Overlap of 57.45% is not very high, meaning that

only about half of the aligned atoms have a distance of less than 3.5Å
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Figure 4.6: Residue correspondence of 1stmA - 1bmvI

Figure 4.7 displays the full atom structure of the two molecules before and

after the alignment. The secondary structure of the two molecules present some

similarities where the α-helix seems to be aligned well between them, as do most

of the β-sheets.

(a) 1stmA (b) 1bmvI

Figure 4.7: Full atom structure and structural alignment of proteins 1stmA and 1bmvI
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4.3.2 TMalign benchmark dataset

In this subsection we test our method using the benchmark dataset which have

also been used in the development of the TMalign method by Zhang and Skolnick

(2005). It consists of 200 non-homologous protein molecules with a sequence

identity of less than 30%. The lengths of each protein chain ranges from 46 to

1058 atoms. We explore all possible pairwise matches resulting in 19900 distinct

comparisons.

Table 4.1 displays the comparison between the methods of CE (Shindyalov and

Bourne, 1998), SAL (Kihara and Skolnick, 2003) and TMalign for the pairwise

comparisons of the 200 non-homologous protein pairs. To compare the results we

use the following metrics :

• Number of matched atoms (M)

• Root Mean Square Distance (RMSD) (2.8.1)

• Template Modelling score (TMscore) (2.8.2)

• The proportion of matched atoms from the whole chain (Coverage)

• Time in seconds needed of each alignment (Time)

As starting points for our method we choose a set of 5 atoms as selected by the

Algorithm 3.

Algorithm RMSD M TMscore Coverage (%) Time(seconds)
Likelihood Alignment 4.34 124.9 0.365 59.5 22.3
CE 6.52 64.3 0.169 34.7 2.25
SAL 7.33 95.3 0.229 47.3 10.00
TMalign 4.99 87.4 0.253 42.0 0.51

Table 4.1: Structural alignments by different algorithms for the 200 non-homologous
protein data. Results from CE, SAL, TMalign are taken from Table 1 of Zhang and
Skolnick (2005)

The Likelihood Alignment approach finds better scores in all categories of

comparison. We have the highest number of matched atoms with an average of

124.9, about 30 more compared to the second highest that of SAL with 95.3.
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Also, the RMSD value is the lowest among all methods with 4.34Å. These two

results suggest that our final alignments managed to combine more matched

atoms with smaller distance between them. For the Coverage proportion we

achieve an average value of 59.5%, about 12% more than any other algorithm.

Moreover, the TMscore obtained by the Likelihood Alignment is also higher than

any other method with an average of 0.365.

Finally, as seen in Table 4.1 our method is the slowest, needing approximately

22 seconds and the fastest is that of TMalign which needs only 0.51 seconds to

perform one pairwise alignment. The reasons behind this time difference are:

1. The complexity of our algorithm is of order O(n3) since we need to explore

all possible pairwise combinations of atoms and for large proteins this is

particularly time consuming.

2. Most of the other algorithms have been coded in programming languages

like C or C++, which are significantly faster when compared to R where

our method is implemented.

So far the criteria we used for evaluating and comparing the different methods

are based only on the geometric similarities of the final alignments, namely the

best solutions are those that combine a high number of matched points with the

minimum distance. A different way of assessing the structural similarity between

two proteins is if they belong to the same fold families based on classifications

using CATH (Orengo et al., 1997; Dawson et al., 2017) or SCOP (Murzin et al.,

1995) databases. The TMscore tries to quantify this classification approach and

as shown in Zhang and Skolnick (2004) it has a strong correlation with the folding

properties of an alignment.

In Figure 4.8 we use the Structure Overlap defined in (2.8.3) to compare

the Likelihood Alignment method against the TMalign. Figure 4.8a) displays

a comparison of the Structure Overlap scores between the two methods for the

19900 pairwise alignments. In 15066 cases the Likelihood Alignment obtained

higher SO% scores and for 327 the SO% were the same between the two methods.
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Figure 4.8b) shows the distribution of the difference between the SO % scores for

each algorithm. As we can see it is skewed to the left having a mean of 9.89%,

meaning that about 9.89% of the aligned atoms from the Likelihood Alignment

had smaller final distance than the ones from the TMalign.
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Figure 4.8: Structure Overlap scores for the dataset of the 200 non-homologous proteins
between TMalign and the Likelihood Alignment.

4.3.3 HOMSTRAD database

In this subsection, we explore a subset from the HOMSTRAD database using

64 protein pairs with low structure similarity. The Structure Overlap for these

ranges between 30% and 70% with an RMSD of at least 2.5Å. This dataset has

also been used as a benchmark for the CLICK method (Nguyen et al., 2011) and

also previously analysed by Brown et al. (2015).

Table 4.2 displays the average results for the 64 alignments between the Like-

lihood Alignment and the alternative algorithms: TMalign, SPalignNS (Brown

et al., 2015), SPalign (Yang et al., 2012), CLICK, FlexSnap (Salem et al., 2010),

MICAN (Minami et al., 2013), HOMSTRAD (Mizuguchi et al., 1998), SALIGN

(Braberg et al., 2012), DALI (Holm and Sander, 1997), GANGSTA (Guerler and

Knapp, 2008), Geometric Hashing (Bachar et al., 1993) and FATCAT (Ye and

Godzik, 2004). All these aforementioned methods are among the most popular

ones used for structural alignment and a comparison between them will give us

a good idea of the potential of our approach, especially using such a challenging

dataset as these 64 protein pairs.
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The Likelihood Alignment has the third highest number of matched atoms

with 81 tied with SPalign and HOMSTRAD, while also achieves the smallest

RMSD compared to these three methods and the 7th overall. As we can see there

in not a significant difference with the smallest RMSD reported by SPalignNS

and Geometric Hashing which is 1.91Å, however we have matched 9 more atoms

compared to them.

Focusing on the Structure Overlap we notice that our approach has the second

best (69.64%) only behind SPalignNS with 72.83%, meaning that about 70% of

the matched atoms which have been aligned have a distance of less than 3.5Å.

Finally, the Likelihood Alignment also achieves the highest TMscore among the

only three methods that we are able to calculate it.

Algorithm RMSD M SO (%) TMscore
Likelihood Alignment 2.22 81 69.64 0.531
TMalign 2.95 84 67.71 0.493
SPalignNS 1.91 72 72.83 0.527
SPalign 2.66 81 69.27 -
CLICK 1.96 67 68.90 -
FlexSnap 2.23 66 61.37 -
MICAN 2.91 82 61.30 -
HOMSTRAD 3.15 81 59.40 -
SALIGN 2.02 - 67.20 -
DALI 2.00 - 63.00 -
GANGSTA 1.99 - 61.90 -
Geometric Hashing 1.91 - 59.50 -
FATCAT 2.36 - 59.10 -

Table 4.2: Summaries of structural alignments by different algorithms for the “difficult
to align” 64 pairs from the HOMSTRAD database. The figures of all alternative the
methods except TMalign (which we used the available software online) are taken from
Table 2 of Brown et al. (2015).

In Figures 4.9 and 4.10 we compare the Likelihood Alignment against the

TMalign and SPalignNS methods using the Structure Overlap measure. The

left plots of Figures 4.9 and 4.10 display a comparison of the Structure Overlap

scores between the Likelihood Alignment and the TMalign and SPalignNS meth-

ods respectively, for the 64 protein pairs of Table 4.2. Out of the 64 possible

alignments we achieved a better Structure Overlap score in 36 cases more than

TMalign and in 10 cases more than SPalignNS. We had the same scores with
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TMalign in 9 alignments and with the SPalignNS in 13. The histograms display

the distributions for the differences between these three different algorithms. As

we can see both distributions are centred close to 0, meaning that there is not

much difference in the number of aligned atoms with a distance of less than 3.5Å.

More specifically, the Likelihood Alignment compared to TMalign has a mean

difference of 2.1% and compared to SPalignNS it has a difference of -3.1%.
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Figure 4.9: Structure Overlap % comparison for the 64 pairs from the HOMSTRAD
database between TMalign and Likelihood Alignment.
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Figure 4.10: Structure Overlap % comparison for the 64 pairs from the HOMSTRAD
database between SPalignNS and Likelihood Alignment.

4.3.4 Conclusions

• On the TMalign benchmark data we managed to perform better that all

the other algorithms in every metric comparison (see Table 4.1), especially

in the number of aligned atoms where we had at least 30 more combined

with a lower total RMSD.
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• On the HOMSTRAD dataset although no method is universally better in all

categories, our final alignments result to a good combination of the numbers

of matched atoms, RMSD, SO% and TMscore. Also we achieved a TMscore

of above 0.5 meaning that we were able to identify protein pairs that might

belong to the same fold.

4.4 Comparisons between different likelihood

densities

In this Section we test the Likelihood Alignment method against the method pro-

posed by Rodriguez and Schmidler (2014). We also explore the effect of including

the amino acid sequence information using the likelihood density of (3.5.2) and

the use of the gap penalty function from (3.6.3). We use a dataset of 16 pro-

tein pairs that have also been analysed by Ortiz et al. (2002) and Rodriguez and

Schmidler (2014). Their protein chain lengths vary from 56 to 188 atoms. As a

starting point for these comparisons a set of five atoms from the LGA method

has been used. Also, for the gap penalty parameters we follow the approach of

Gerstein and Levitt (1998) which suggests that the gap opening penalty should

be about 40 times larger than the gap extension penalty. Hence, we choose for

the gap opening parameter g = 4 and for the gap extension parameter h = 0.1.

Finally, the PAM250 matrix is used for all the comparisons.

Table 4.3 displays the results between the comparison of the structure-sequence-

gap likelihood densityfrom (3.6.3) and the method of Rodriguez and Schmidler

(2014) which from now on will be referred to as RS2014. Our results are closer

to those from RS2014 when λ = 7.6 is used. In most of the cases we achieved

alignments with solutions of equal or higher number of matched atoms combined

with lower RMSD values. For example, it is noticeable the difference in the pair

of 1aba-1dsbA where we have the same number of matched atoms but with lower

RMSD of about 0.8Å. Moreover, the pairs of 1tnfA-1bmvI and 3chy-1rcf have
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also significant differences, because in both cases we achieved an alignment with

30 more matched atoms than RS2014 combined with a lower RMSD of 0.3Å.

Nevertheless, in some cases our algorithm does not perform very well as in

the pair of 1mjc-5tssA, where we matched only 29 atoms compared to 52 from

RS2014. This is probably due to the starting point selection or the choice of the

gap parameters. As we discuss later in Table 4.5,these results can vary based on

which likelihood function we choose to use. Finally, although the other two λ

values of RS2014 generate solutions with similar number of matched atoms as

our method, we have almost in every case obtained a lower RMSD.

Protein1 Protein2
fSSG RS2014 (λ = 7.6) RS2014 (λ = 8.6) RS2014 (λ = 9.6)

RMSD M RMSD M RMSD M RMSD M
1aba 1dsbA 0.8 24 2.2 24 3.7 57 4.7 76
1aba 1trs 2.4 71 3.0 65 3.4 72 3.6 75
1acx 1cobB 2.5 98 2.1 66 3.8 86 4.1 93
1acx 1rbe 2.0 17 2.5 25 2.8 31 4.2 50
1mjc 5tssA 0.8 29 2.3 52 3.0 60 3.9 66
1pgb 5tssA 1.5 39 2.3 39 3.3 55 3.1 55
1plc 1acx 3.5 81 3.4 71 4.0 84 4.6 89
1ptsA 1mup 1.5 54 3.0 76 3.1 83 3.5 88
1tnfA 1bmvI 2.4 107 2.7 70 4.2 109 4.3 113
1ubq 1frd 2.2 64 3.0 62 2.9 62 3.1 65
1ubq 4fxc 2.3 68 2.3 46 2.9 61 3.4 66
2gb1 1ubq 1.7 42 2.1 44 3.4 51 3.3 51
2gb1 4fxc 1.8 41 3.5 35 3.9 53 4.1 55
2rslC 3chy 2.4 75 2.6 43 3.8 76 4.0 81
2tmvP 256bA 2.3 86 2.3 65 2.9 79 4.0 89
3chy 1rcf 2.7 122 3.0 80 4.5 122 4.7 126

Table 4.3: Comparison between the likelihood density with structure, sequence and gap
penalty with the method of RS2014.

In the Table 4.4, we compare the effect of the three size and shape likelihood

densities presented in Chapter 3: the one with only structure information (3.2.7),

the one with structure-sequence information (3.5.3) and the one with structure

and a gap penalty function (3.6.4). The likelihood density with only the structure

information seems to perform better. The addition of the amino acid sequence

information has little effect on our results, leading to almost identically alignment

solutions. On the other hand, the inclusion of a gap penalty has a much higher

impact on the final alignment, resulting to reduced RMSD values and number of

matched atoms. This behaviour is somehow expected since a matched pair that
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does not follow the sequence order will carry a big penalty and as a result will be

dropped out of the final alignment.

Protein1 Protein2
fS fSS fSG

RMSD M RMSD M RMSD M
1aba 1dsbA 2.8 79 2.8 79 0.9 26
1aba 1trs 2.4 71 2.4 71 2.4 71
1acx 1cobB 2.7 101 2.7 102 2.5 99
1acx 1rbe 3.3 67 3.3 67 2.0 17
1mjc 5tssA 1.7 59 1.7 59 0.7 27
1pgb 5tssA 2.2 54 2.2 54 1.5 39
1plc 1acx 3.6 90 3.7 91 3.0 26
1ptsA 1mup 3.0 100 3.0 100 1.5 54
1tnfA 1bmvI 3.4 131 3.4 131 2.9 122
1ubq 1frd 2.3 66 2.6 70 2.2 64
1ubq 4fxc 2.4 70 2.4 70 2.3 68
2gb1 1ubq 2.6 52 2.6 52 1.7 42
2gb1 4fxc 2.0 44 2.0 45 1.8 42
2rslC 3chy 4.0 110 4.0 110 3.1 94
2tmvP 256bA 2.5 90 2.5 90 2.3 86
3chy 1rcf 2.9 127 2.9 127 2.9 127

Table 4.4: Comparison of the structure, structure-sequence and structure-gap likelihood
densities.

Table 4.5 displays a summary of the results for the aforementioned methods

compared also to the algorithms of LGA, DALI and TMalign. No approach

seems to perform better than the others in all categories of comparison. The

fS(·) density has the most matched atoms with 82 but the RMSD value is higher

by 0.7Å compared to the likelihood with structure-sequence and gap penalty, but

this difference comes mostly because it has 18 more matched atoms on average.

Compared to the method of RS2014, it seems to perform also better, since it has

more matched atoms and only for λ = 7.6 it has slightly higher RMSD by 0.1Å.

Another important point to mention is that all versions of the likelihood den-

sities have a TMscore above 0.5, which is considered as a good indication that two

proteins belong to the same fold. Finally, very good is also the performance in

the score of Structure Overlap especially for the structure and sequence-structure

densities where about 70% of the aligned atoms are closer than 3.5Å.
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Method RMSD M TMscore SO (%)
fS 2.74 82 0.60 70.30
fSS 2.76 82 0.60 70.32
fSG 2.11 63 0.50 59.78
fSSG 2.05 64 0.51 61.29
LGA 2.41 57 0.50 61.67
DALI 3.02 69 0.50 58.85
TMalign 3.06 73 0.52 -
RS2014 (λ = 7.6) 2.64 54 - -
RS2014 (λ = 8.6) 3.48 71 - -
RS2014 (λ = 9.6) 3.91 77 - -

Table 4.5: Summary of structural alignment by different methods for the data of Ortiz
et al. (2002).

4.4.1 Conclusions

• The likelihood density of (3.2.7) with only the structure information seems

to give the best results based on the TMscore number of matched atoms

and Structure Overlap.

• Compared with the method of RS2014 our approach manages to generate

more matched atoms with a smaller overall RMSD in most of the cases.

(see Table 4.3).

4.5 Estimation of evolutionary distance

The structure-sequence density (3.5.3) or the structure-sequence with gaps den-

sity (3.6.3) provides the opportunity of estimating the evolutionary distance be-

tween two proteins. In our modelling approach, the evolutionary distance is

characterized through the choice of d in the PAM matrix.

The evolutionary distance is defined as the number of amino acid substitu-

tions that have happened between two protein sequences during a time d. A

common practice modelling protein sequences that share a big evolutionary dis-

tance is through the use of the PAM250 matrix. However, since structure is more

conserved than sequence across time, combing the structural and sequence infor-
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mation during the estimation of the evolutionary distance can give us a better

understanding of the relationship of two proteins.

However, there are times that evolutionary distance estimation is important.

Since structure is much more conserved than sequence across time incorporating

the structural information of a protein within the sequence information is more

important.

Previous attempts on estimating the evolutionary distance have been made

by Koehl and Levitt (2002), Wood and Pearson (1999) and Levitt and Gerstein

(1998). In Challis and Schmidler (2012) a diffusion process is used to model

the evolutionary distance and a Bayesian approach using sequence information

only is adopted by Zhou (1998). Whereas Rodriguez and Schmidler (2014) and

Fallaize et al. (2014) use a combined sequence-structure approach and estimate

the posterior distribution for the evolutionary distance d.

In our case, we follow a similar approach as in Rodriguez and Schmidler (2014)

and Fallaize et al. (2014) but in a likelihood framework. Using Algorithm 1 and

any of the likelihood densities of (3.5.3) or (3.6.3) we can estimate the likelihood

mode of the evolutionary distance d. Since the number of the PAM matrices is

finite we obtain a likelihood value for each PAM matrix by keeping all the other

parameters fixed. The process is similar as before described in Section 2.3 with

the addition of an extra optimization step for d. The steps now are the following:

• M̂ = arg max
M

[
arg max
µ(M),σ

2
(M)

L(µ(M), σ
2
(M),M |X1,X2, d)

]

• d̂ = arg max
d

L(d|X1,X2,M̂ , µ̂(M), σ̂
2
(M))

In Figure 4.11 we estimate the evolutionary distance for the pair of kinases

1gky-2ak3. We used the likelihood density of (3.6.3). A set of 5 atoms from the

LGA solution were selected as stating points and we also fixed the gap opening

parameter to be 40 times larger than the gap extension. Last, we consider a set

of PAM-d matrices with d = {40, 50, 60, . . . , 300} and three different values for

the volume, one calculated from the data, 20000 and 50000.
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Chapter 4 4.5 Estimation of evolutionary distance

As we can see in Figure 4.11 a PAM270 mode for d is obtained in all three

cases. The same pair of proteins has also been analysed by Rodriguez and Schmi-

dler (2014), Fallaize et al. (2014) and Zhou (1998). The first report a posterior

mode between PAM200 and PAM210 , the second report a posterior mode of

around PAM260 and the third a multimodal posterior with modes at PAM110,

PAM140 and PAM200. However as mentioned in the comments of the second

method the volume parameter is affecting both the number of matches and the

evolutionary distance estimation, but in our case volume seems not to have an

effect as we have obtained almost identical estimations for d in all three cases.
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(b) Volume = 20000
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(c) Volume = 50000

Figure 4.11: Evolutionary distance estimation for the pair 1gky-2ak3, using three dif-
ferent values for Volume
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4.6 Multiple matching example

For this example we use three different datasets to evaluate the performance

of the multiple alignment method from Section 3.8. The first dataset is three

steroid molecules from the CoMFA database (Cramer et al., 1988). The molecules

from this database have been extensively used as a benchmark for testing drug

design methods or for evaluating the 3-dimensional quantitative structure-activity

relationship QSAR (Coats, 1998). Here, we select three steroid molecules, the

aldosterone, the cortisone and the prednisolone. Each of these three molecules has

54 atoms in 3 dimensions. For this and the following examples we only consider

atoms which are matched in all molecules and not partial matches between some

of them.

Figure 4.12: Structural alignment of the three steroid molecules aldosterone, cortisone
and prednisolone from the CoMFA database.

To align the three molecules we use Algorithm 1 alongside with the likelihood
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density for multiple alignment of (3.8.1) and the process described in Section 3.8.

Thus, we obtain an alignment of 47 common matched atoms between them with

an average RMSD of 0.2Å, a TMscore of 0.86 and the Structure Overlap is 87.04%.

The structural alignment of the optimally rotated data can be seen in Figure

4.12. In the paper of Ruffieux and Green (2009) where the same dataset has been

analysed they report a total of 44 matched atoms for the three molecules. Both

methods have similar results and the 44 matched pairs of atoms from Ruffieux

and Green (2009) are also present in our alignment.

(a) 1ccvA (b) 1eaiC

(c) 1ate (d) 1couA

Figure 4.13: Full atom structure of 1ccvA, 1eaiC, 1ate and 1couA.

For the second example we use a group of serine protease inhibitors from

the HOMSTRAD database. This group is composed by four molecules, the chy-

motrypsin inhibitor 1ccvA with 56 atoms, the trypsin inhibitor 1ate with 62

atoms, the chymotrypsin/elastase isoinhibitor 1eaiC with 61 atoms and the anti-

coagulant protein 1couA with 85 atoms. They share a sequence identity of 36%.

The full atom structure of these molecules can be seen in Figure 4.13.

For the structural alignment the same procedure as in the previous example

used. The set of starting points in now from the solution of the MASS method

by Dror et al. (2003a) and Dror et al. (2003b). Figure 4.14 displays the full
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atom structure of the four proteins after they have been aligned. We obtained 34

matched atoms among them with an average RMSD of 4.2Å. As we can see from

Figure 4.13 the four proteins have some differences in their structure especially in

their secondary structure. Only the 1couA has both an α-helix and a β-sheet with

the other three having only β-sheets in their secondary structure. We managed

to align some parts between the β-sheets of 1couA,1eaiC and 1ate.

However, there also seems to be some misalignment in some parts between

them, hence the increased RMSD. This could either be from the choice of the

starting points or from the fact that since we only consider common matches

between all four molecules. For example, some parts of 1ccvA have been aligned

although they do not share a very similar structure with the parts of the other

three molecules.

Figure 4.14: Structural alignment of 1ccvA, 1eaiC, 1ate and 1couA.
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Posterior mode alignment

5.1 Introduction

In this Chapter we explore a different approach for obtaining the mode of the

matching matrix M . A posterior mode alignment method is considered in which

prior distributions over the unknown parameters of µ, σ2 and M are assigned.

In the Bayesian literature previous work has been done in this area. Green

and Mardia (2006) use a symmetric model with a Poisson process as a prior for

the matching matrix M , whereas Dryden et al. (2007) and Schmidler (2007) use

a Procrustes model with a uniform prior for M . In the papers of Rodriguez and

Schmidler (2014), Kenobi and Dryden (2012) and Fallaize et al. (2014) extensions

of the previous models are considered, introducing different priors over M .

Although, the full Bayesian approach is available for these methods and the

posterior distribution ofM is defined in every case, in structural alignment of pro-

tein molecules, a point estimate of the match matrix M is often required. Most

of the aforementioned approaches, due to the restriction of one-to-one matches,

use optimization algorithms to obtain a single alignment through the posterior

distribution of M .

In our approach, we follow the ideas presented in Section 2.3 where we condi-

tionally optimize over the unknown parameters in order to estimate the posterior

mode of M directly. Since we are not interested in the whole posterior distri-
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bution, this approach simplifies the overall alignment procedure, making it more

efficient computationally especially when comparisons within a protein database

are needed.

In Section 5.2 we discuss the prior selection for the unknown parameters of

µ, σ2 and M . Our approach differs from the previous Bayesian models on how

we treat the mean parameter µ. For example, Dryden et al. (2007) and Schmidler

(2007) fix one of the two molecules as the mean and try to align the other to it.

Green and Mardia (2006) choose to integrate the mean µ out of the likelihood

density. We choose to treat µ as a random parameter assigning a prior to it.

Since in every step of the optimization process of µ and σ2 a fixed alignment is

required, our prior mean µ0 is defined as a function of the match matrix M . In

the following Section we explain in more details how this prior is selected in every

step.

In Section 5.3 we describe the optimization steps to obtain the modes for

µ and σ2 and how we estimate the posterior mode of M . In Section 5.4, we

test the efficiency of our approach using simulated data and in Section 5.5 we

present some examples using real protein data and compare the results with the

Likelihood approach and other alignment algorithms.

5.2 Prior selection

In Section 2.3 we described the general likelihood density L(X1,X2|M ,µ, σ2) of

(3.2.1), which consists of two components a Normal density fN(XM
1 ,X

M
2 |M ,µ, σ2)

for the matched parts and a Uniform density fU(X−M1 ,X−M2 |M , V ) for the un-

matched. Since we treat the volume parameter V as fixed, we need to specify

prior distributions for M ,µ and σ2.

5.2.1 Priors for µ and σ2

Here, we consider a joint prior distribution for the parameters µ and σ2. Following

the Normality assumption for the matched parts of X1 and X2 a common choice
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in Bayesian literature (Gelman et al., 2014) is the conjugate Normal - Inverse

Gamma distribution with parameters µ0, λ, α0, β0. The mean µ corresponds only

to the matched parts of X1 and X2, hence it depends in the current alignment

specified by M . Thus, the prior parameter µ0 will also depend on M . By µ0(M)

we refer to the prior mean µ0 for a given alignment M . The prior density of µ

and σ2 can be defined as follows

π(µ, σ2) =

(
λ

2πσ2

)− 3p
2 βα0

0

Γ(α0)

(
1

σ2

)α0+1

exp

{
−

2β0 + λ||µ− µ0(M)
||2

2σ2

}
(5.2.1)

Note that the prior density (5.2.1) can be written as π(µ, σ2) = π(µ|σ2)π(σ2)

which will lead to

π(µ|σ2) =

(
λ

2πσ2

)− 3p
2

exp

{
−
λ||µ− µ0(M)

||2

2σ2

}
(5.2.2)

π(σ2) =
βα0
0

Γ(α0)

(
1

σ2

)α0+1

exp

{
−β0
σ2

}
(5.2.3)

Now, we describe the definition of prior mean µ0(M)
. As we mentioned before

the prior mean is considered as a function of the match matrix M , since for

the estimation of the common mean µ only the matched parts of X1 and X2

at a given time are involved. Therefore, as described in Algorithm 1 for the

optimization of M we explore new possible matches between the atoms of X1

and X2 in each step, hence M and as a result µ0(M)
will change.

Before we describe the process of selecting µ0(M)
, we should explain the in-

tuition behind this prior choice. In general the prior mean µ0 should represent

our beliefs for the mean locations which create the matched parts of X1 and X2.

The problem arises from the difference in the dimensionality between the two

proteins and the fact that we have no prior information regarding the correspon-

dence between each atom making the process of defining a common prior mean

µ0 difficult.

To overcome these problems, we choose to define two matrices µ01 and µ02 ,
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corresponding to each Xi. These two matrices will contain the prior beliefs for

the locations of each atom for each Xi and will act as a pool of prior information.

In order to create µ0(M)
we will only select the relevant atoms which are matched

at a given time (based on M).

We use a simple example to illustrate the selection process of µ0(M)
. Consider

two protein molecules X1i with atoms i = 1, . . . , 6 and X2j with atoms j =

1, . . . , 8. Our prior beliefs suggest that the following pairs should be considered

as matched:

(X11 ,X21), (X12 ,X23), (X15 ,X26), (X16 ,X28)

and the prior locations for the matched atoms of X1 and X2 can be written as[
µM01 , µ

M
02
, µM03 , µ

M
04

]
, where µM01 contains the prior location for the pair (X11 ,X21),

µM02 for the pair (X12 ,X23) and so on. Now, each µ0i will have the following form:

µ01 =



µM01

µM02

µ1
03

µ1
04

µM03

µM04


µ02 =



µM01

µ2
02

µM02

µ2
04

µ2
05

µM03

µ2
07

µM04



(5.2.4)

where µ1
03

contains prior information for the atom X13 , µ
2
02

contains prior infor-

mation for atom X22 and so on.

Now, let assume that at a given step of the optimization process for M the

following pairs of atoms are considered as matched :

(X11 ,X21), (X12 ,X24), (X13 ,X25), (X15 ,X28)

Then, one way of defining µ0(M)
for this step will be to take the average locations
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of the corresponding atoms from each µ01 and µ02 as

µ0(M)
=



µM01
+µM01
2

µM02
+µ204
2

µ103
+µ205
2

µM03
+µ204
2



5.2.2 Priors for the match matrix M

Here, we describe the prior choices for the matching matrix M . The first choice

is a uniform prior, a similar prior has also been used by Dryden et al. (2007). The

second choice is a gap penalty prior which also been used by Schmidler (2007),

Rodriguez and Schmidler (2014) and Fallaize et al. (2014).

As we have previously described in Section 2.2 the match matrix M has

dimensions of k× l, with only one non-zero entry in each row and column. Then

without loss of generality, if k ≤ l and by assuming that each row of M is

independently distributed the uniform prior for the ith-row of M will be

π1(Mij = 1) =
1− q
l

j = 1, . . . , l (5.2.5)

where q is the probability of atom i to be unmatched. We choose q = 1
l+1

hence, under this prior density the match matrix M is uniformly distributed in

the space of all possible k × l match matrices. The motivation for choosing a

uniform prior although it might not seem a natural choice was that we wanted

all prior information regarding the possible matches of M to be drawn from the

geometrical information provided by the prior of (5.2.1) for µ and σ2 as also done

in the likelihood approach described in Chapter 3.

Our second prior choice for M is a gap penalty prior. In Section 3.6 we

considered a gap penalty in the likelihood function in order to penalize for any

gap openings in the sequence order. Here, we use the same gap penalty function

but as a prior for the match matrix M . This prior has also been used in the
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Bayesian literature by Schmidler (2007), Rodriguez and Schmidler (2014) and

Fallaize et al. (2014). For given gap opening and extension parameters g and h

respectively the gap penalty prior for M will be

π2(M |g, h) = C(g, h) exp {U(g, h)} (5.2.6)

where C(g, h) is the normalizing constant, and U(g, h) the gap penalty function

described in (3.6.1). In comparison with the Uniform prior of (5.2.5) this choice

provides extra information on possible matches betweenX1 andX2 by penalizing

for gaps created in the sequence order.

5.3 Posterior alignment

5.3.1 Posterior distribution

Using the prior assumptions from the previous Section we can describe the two

possible posterior distributions as below:

• Using the Uniform prior on M :

p1(M ,µ, σ2|X1,X2, V ) ∝ L(X1,X2|M ,µ, σ2, V )π(µ|σ2)π(σ2)π1(M )

(5.3.1)

• Using the gap penalty prior on M :

p2(M ,µ, σ2|X1,X2, V, g, h) ∝ L(X1,X2|M ,µ, σ2, V )π(µ|σ2)π(σ2)π2(M |g, h)

(5.3.2)

where L(X1,X2|M ,µ, σ2, V ) is the likelihood function from (3.2.7).

Our main objective is to obtain the posterior mode of M from the posterior

distribution of either (5.3.1) or (5.3.2) defined above. In order to do this, we

follow the same procedure as in the likelihood case which is described in Section

2.3 which depend on the following optimization
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M̂ = arg max
M

[
arg max
µ(M),σ

2
(M)

p(µ(M), σ
2
(M),M |X1,X2, V )

]
(5.3.3)

Before we proceed to the optimization steps to derive the posterior modes of

M ,µ and σ2 the posterior densities of (5.3.1) and (5.3.2) should be invariant

under the transformation parameters of translation and rotation.

As described in Chapter 3 by using the decomposition of (3.2.3) the data X1

and X2 represent the observed size and shape data ∆O. Hence, both X1 and

X2 are observed under the similarity transformations of (2.2.2), with a rotation

and translation parameter.

To remove the location information we use the Helmertized landmarks de-

scribed in Section 2.2. For making our data invariant under the rotation effect

we choose to integrate the rotation parameter R out of the posterior densities.

Note that by X1 and X2 throughout the rest of this Chapter we refer to the

observed size and shape data after the Helmertized transformation. This is sim-

ilarly done in Chapter 3, which will lead to use the size and shape likelihood of

(3.2.7). Then the two size and shape posterior densities become:

• For the Uniform prior on M :

pS1(M ,µ, σ2|X1,X2, V ) ∝
∫

Ri∈SO(3)

p1(M ,µ, σ2|X?
1 ,X

?
2 , V )dRi

∝
(

1− q
l

)p
V −(k+l−2p)(σ2)−α exp

−
2β0 + λ||µ− µ0(M)

||2 +
2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2


×

2∏
i=1

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

t
)

σ2

}
dRi (5.3.4)

• For the gap penalty prior on M :
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pS2(M ,µ, σ2|X1,X2, V, g, h) ∝
∫

Ri∈SO(3)

p2(M ,µ, σ2|X?
1 ,X

?
2 , V, g, h)dRi

∝ exp {U(g, h)}V −(k+l−2p)(σ2)−α exp

−
2β0 + λ||µ− µ0(M)

||2 +
2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2


×

2∏
i=1

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

t
)

σ2

}
dRi (5.3.5)

where α = α0 + 9p
2

+ 1 and V,µ0, α0, β0, λ, g and h are considered as fixed param-

eters. Also, X?
1 and X?

2 represent the full unobserved Normal data.

5.3.2 Posterior modes of µ, σ2 and M

The first part for obtaining the posterior mode of M as seen in (5.3.3) is to

optimize (5.3.4) or (5.3.5) over µ and σ2 for a given alignment M . In order to do

this we use the EM algorithm of Section 2.4 which can also sufficiently estimate

the modes of a posterior distribution (Gelman et al., 2014). Since in this step M

is fixed the conditional log-posterior of (5.3.4) or (5.3.5) is the same and is given

by:

log pS1(µ, σ
2|M ,X1,X2) ∝ −α log σ2−

2β0 + λ||µ− µ0(M)
||2 +

2∑
i=1

||XM
i ||2 + 2||µ||2

2σ2

+
2∑
i=1

log

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

t
)

σ2

}
dRi (5.3.6)

Again, as in Chapter 3 the missing data in our case are the rotations Ri and

since the prior density of (5.2.3) for µ and σ2 does not depend on Ri the steps

of the EM at the t− th iteration will be the following:

• Expectation step: Evaluate the function Q(µ, σ2|µt−1, σ2
t−1) for given values
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of µt−1, σ
2
t−1 as follows:

Q(µ, σ2|µt−1, σ2
t−1) = ERi|Xi

[
log pS1(µ, σ

2|M ,X1,X2)
]

= ERi|Xi

[
log fS(X1,X2|M ,µt−1, σ

2
t−1)

]
+ log π(µt−1|σ2

t−1)

+ log π(σ2
t−1)

where fS(X1,X2|M ,µt−1, σ
2
t−1) is the size and shape density from (3.2.7).

As we can see the Expectation step is the same as in the case of Likelihood

Alignment.

• Maximization step : Maximize the function Q(µ, σ2|µt−1, σ2
t−1) with respect

to µ and σ2.

For µ:

∂Q(µ, σ2|µt−1, σ2
t−1)

∂µ
= 0

and expanding this we have

−
λ(µ− µ0(M)

)

σ2
t−1

+
1

σ2
t−1

2∑
i=1

∫
Ri∈SO(3)

(RiX
M
i − µ)eAidRi

eAidRi

= 0

solving for µ the updated value at the t-th iteration will be

µt = (2 + λ)−1


2∑
i=1

∫
Ri∈SO(3)

RiX
M
i e

AidRi

∫
Ri∈SO(3)

eAidRi

+ λµ0

 (5.3.7)

where Ai = − tr(RiXM
i µ

t
t−1)

σ2
t−1

For σ2:

∂Q(µ, σ2|µt, σ2
t−1)

∂σ2
= 0
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Which leads to

−α +
β0
σ2

+
λ||µt − µ0(M)

||2

2σ2
+

1

2σ2

2∑
i=1

∫
Ri∈SO(3)

||RiX
M
i − µt||2eAidRi

∫
Ri∈SO(3)

eAidRi

= 0

and solving for σ2

σ2
t =

1

α
×

β0 +

λ||µt − µ0(M)
||2 +

2∑
i=1

||XM
i ||2 + 2||µt||2

2
− tr


2∑
i=1

∫
Ri∈SO(3)

RiX
M
i e

AiµttdRi

∫
Ri∈SO(3)

eAidRi





Furthermore, substituting
2∑
i=1

∫
Ri∈SO(3)

RiX
M
i e

A
i dRi∫

Ri∈SO(3)

eAi dRi

= µt(2+λ)−λµ0 from

(5.3.7), the new update of σ2 at the t-th iteration as

σ2
t =

1

α

[
2β0 + λ||µt − µ0(M)

||2 +
2∑
i=1

||XM
i ||2 + 2||µt||2 − (2 + λ)tr (µt) + λtr

(
µ0(M)

)]
(5.3.8)

The prior µ0(M)
acts as an extra observation, with the parameter λ as a weight

quantifying our confidence about it. Using λ = 1 our model essentially becomes

the likelihood model with 3 observations. Large values for λ indicate a strong

believe about the prior, hence the posterior mean will be shifted towards µ0(M)
.

The optimization on M of either posterior distributions (5.3.4) or (5.3.5) can

be carried out along the same ideas we described in Section 3.4 for the likeli-

hood alignment case. We can use again Algorithm 1 replacing the likelihood

density with the corresponding posterior densities from (5.3.4) or (5.3.5). Also,

the same applies if we want to align more than two proteins simultaneously since

the posterior distributions remain the same if we have more than two molecules.

Therefore, using the likelihood function of (3.8.1) and the procedure described in

Section 3.8 we can obtain the posterior mode of M when more than two proteins

are involved.

82



Chapter 5 5.4 Simulations

5.4 Simulations

In this Section we test the performance of the Posterior Alignment method pre-

sented in the previous Sections using simulated data. This Section has two parts.

First we estimate the effectiveness of our approach to obtain the posterior modes

of µ and σ2. This corresponds to the first part of the optimization from (5.3.3).

Second, we test our method on obtaining the posterior mode of M , which is the

second part of the optimization from (5.3.3).

5.4.1 Simulation for the posterior mode of µ and σ2

For this simulation study we are interested in the mode estimation of µ and σ2

from the posterior density of (5.3.4) for a given M . Since, M is fixed we can

treat our data as regular shape observations not concerning about the alignment

part. Therefore, to test the performance of our approach we choose to simulate

different sample sizes for Xi.

The process of creating the simulated data is similar to the one described

in Section 4.2. Inside a cube with volume L3, we create a mean shape with 25

landmarks subject to the constraint that each landmark has at least a minimum

distance dmin with all the others. Our simulated data are n Normal observations

from that mean with a variance σ2. The parameter settings used are the following:

• dmin = 2, L = 20, n = {10, 50, 100, 500} , σ = {0.5, 1, 2, 2.5}

• The prior mean µ0 is the true mean with some random Normal error.

• α0 = 5, β0 = 15

• λ = {1, n/2, n}

Table 5.1 displays the simulation results for the data created above. The mode

estimations seem to be good for both the mean and variance . More specifically

for σ = 0.5 even for the sample sizes of 10 or 50 the distance between the posterior

and the true mean is really close and as the sample size increases this distance
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becomes smaller (d(µ̂, µ) = 0.151 for n = 500). The estimation of σ seems to

be also good and in every case it tends to the true value. The λ parameter

seems to have small effect on the actual estimates of both µ and σ. As we

mentioned earlier the prior mean µ0 acts as an extra observation with a weight

specified by λ. However, even for a small sample size of n = 10 and a weight of

λ = n the difference between the estimates is small, at the magnitude of 0.01.

λ Sample
σ = 0.5 σ = 1 σ = 2 σ = 2.5

d(µ̂,µ) σ̂ d(µ̂,µ) σ̂ d(µ̂,µ) σ̂ d(µ̂,µ) σ̂

λ = 1

n = 10 0.859 0.456 1.689 0.86 3.427 1.692 5.063 2.103
n = 50 0.445 0.479 0.905 0.948 1.978 1.889 2.656 2.36
n = 100 0.315 0.481 0.693 0.957 1.331 1.912 1.736 2.405
n = 500 0.151 0.484 0.313 0.966 0.689 1.932 0.933 2.423

λ = n/2

n = 10 0.858 0.459 1.682 0.866 3.306 1.705 4.301 2.125
n = 50 0.444 0.48 0.893 0.95 1.869 1.896 2.424 2.369
n = 100 0.314 0.482 0.629 0.959 1.251 1.915 1.625 2.417
n = 500 0.153 0.484 0.309 0.969 0.654 1.933 0.846 2.423

λ = n

n = 10 0.858 0.461 1.677 0.87 3.244 1.717 4.072 2.137
n = 50 0.443 0.481 0.887 0.951 1.815 1.898 2.312 2.373
n = 100 0.313 0.482 0.625 0.959 1.212 1.917 1.568 2.418
n = 500 0.153 0.484 0.308 0.967 0.638 1.933 0.815 2.423

Table 5.1: Simulation results for the posterior mode estimation of µ and σ2.

5.4.2 Simulation for the posterior mode of M

In this part we test the effectiveness of our method in estimating the posterior

mode of M and also compare the Posterior with the Likelihood approach. We

use the same simulated data from Section 4.2 which include 1000 samples of X1

and X2 of 25 and 30 landmarks respectively. The first 20 landmarks from each

Xi are considered as the matched and the remaining as the unmatched. We only

use the posterior density of (5.3.1) with the uniform prior on M . The prior mean

µ0 was selected as the true mean, for the prior of σ2 we use α = 5 and β = 10

and set λ = 1.

Figure 5.1 displays comparison between the Likelihood and the Posterior align-

ment methods for correctly identifying each landmark either as a matched (land-

marks 1-20) or unmatched (landmarks 21-25). For σ = 0.1 or, σ = 0.5 the

Posterior and the Likelihood Alignment perform similarly having above 95% suc-

cess rate for correctly identifying each landmark either as matched or unmatched.
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When σ = 1 the two methods start to differ, for the first 20 landmarks both have

similar success rates above 90%. However, the Posterior Alignment seems to

perform better in terms of correctly identifying which landmarks should be left

unmatched, (landmarks 21-25). This behaviour becomes even more clear when

the ratio of σ/dmin ≥ 1. In that case when σ = 2 the success rate of identifying

the unmatched landmarks is 72% for the Posterior Alignment versus 45% for the

Likelihood Alignment and 61% versus 35% when σ = 2.5.
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Figure 5.1: Comparison of between Posterior and Likelihood alignment of the mean
proportions for each landmark to be identified successfully either as a ‘correct’ match
or as ‘unmatched’ landmark. The last plot presents the number of correct and false
positive matches for each of the first 20 landmarks.

Figure 5.2 displays the histograms of correct and false positive matches for

each of the first 20 landmarks using the Posterior Alignment method. Comparing

this Figure with that of 4.2 we see that the distribution for the correct matches

does not differ a lot between the two methods, although the mean number of

correct matches seems to be slightly higher for the Likelihood Alignment. The

opposite happens in the case of false positives, especially when σ = 2 or σ = 2.5

there is a clear difference in the two distributions with the Posterior Alignment

having on average 1.8 false positive matches compared to 3.9 of the Likelihood

Alignment when σ = 2 and 2.7 compared to 5.5 when σ = 2.5.
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Figure 5.2: Distribution of correct matches and false positives for different values of σ.

5.4.3 Conclusions

• From the simulation results regarding the posterior mode estimation of

µ and σ2 our approach seems to perform well for estimating the correct

posterior mode for all λ values.

• From the simulation results regarding the posterior mode estimation of M ,

our Posterior Alignment algorithm seems to performs better in identify-

ing which landmarks should be left unmatched compared to that of the

Likelihood Alignment especially when the ratio of σ/dmin ≥ 1

• The proportion of identifying correct matches is similar between the Like-

lihood and the Posterior Alignment methods, but when σ = 2 or σ = 2.5

the Likelihood Alignment seems to have a slightly higher success rate.
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5.5 Protein data

In this Section we evaluate the performance of the Posterior Alignment using two

different datasets. The first dataset is that of 16 protein pairs from Ortiz et al.

(2002) and the second dataset consists of 64 protein pairs from the HOMSTRAD

database which are difficult to align due to low sequence similarity. These two

datasets have also been used in Chapter 4 for testing the Likelihood Alignment

method.

The solution from the likelihood alignment was used as the prior mean µ0(M)
,

α0 was set to 5 and β0 to 10, giving a prior mean of 2.5 for σ2. Finally three

different values for λ were used as 1, 10 and 50. In order to compare the results

the following similarity metrics were used:

• Number of matched atoms (M)

• Root Mean Square Distance (2.8.1)

• TMscore (2.8.2)

• Structure Overlap (2.8.3)

The same metrics have also been used in Chapter 4 for the testing of the Likeli-

hood Alignment method.

Table 5.2 displays the results of the Posterior Alignment method using a

uniform and a gap prior for the data of Ortiz et al. (2002). The choice of the

prior seems to have an effect of the final results. Almost in all of the pairs the use

of a uniform prior results in alignments with more matched atoms and a higher

RMSD, whereas the gap prior suggests alignments with fewer atoms and closer

matched together. This performance is somehow expected since the gap prior

penalises matches that do not follow the sequence order, making more difficult

for a new match to be accepted. In comparison with Table 4.3 we can see that

the in most of the cases, the Posterior Alignment had more matched atoms with

less RMSD compared to the method of RS2014. Also, we should note that both
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methods fail to produce a good alignment for the pair of 1plc-1acx. The uniform

prior has a solution of 87 matched atoms but with an RMSD of 7.2Å and the gap

prior a solution of only 15 matched atoms and an RMSD of 5.9Å. This might be

due to the choice of the prior mean and the starting points, having as a result

our algorithm to get stuck in a local mode and not allowing to remove the bad

matches. Another reason might be that this specific pair has regions with very

different structure and since we perform a global alignment, we will also align

regions with no structure similarity resulting to an increased RMSD value.

Protein1 Protein2
Post. Align (Unif) Post. Align (Gap)
RMSD M RMSD M

1aba 1dsbA 2.0 60 2.0 60
1aba 1trs 2.3 70 2.2 67
1acx 1cobB 2.4 95 1.3 52
1acx 1rbe 2.1 30 2.1 31
1mjc 5tssA 1.6 57 1.6 57
1pgb 5tssA 1.5 38 1.1 29
1plc 1acx 7.2 87 5.9 15
1ptsA 1mup 2.2 80 1.5 54
1tnfA 1bmvI 2.6 112 2.4 107
1ubq 1frd 2.2 65 1.7 52
1ubq 4fxc 2.4 69 2.3 68
2gb1 1ubq 1.7 42 1.7 42
2gb1 4fxc 1.8 42 1.8 42
2rslC 3chy 3.0 93 2.4 75
2tmvP 256bA 2.2 83 2.2 83
3chy 1rcf 2.8 125 2.5 116

Table 5.2: Posterior Alignment with a uniform and a gap prior for the data of Ortiz
et al. (2002).

Table 5.3 displays the summary of different metrics from various alignment

methods. The choice of λ seems to have little effect on the final alignment for

both prior choices. When λ = 10 or λ = 50 the corresponding alignments have

about 2 to 3 less matched atoms on average and an RMSD of about the same

rate. In general most of the alignment methods perform fairly similarly, with a

similar number of matched atoms, RMSD, TMscore and Structure Overlap. The

two methods that seem to differ are the Posterior Alignment with the Uniform

prior and the Likelihood approach. They have a higher number of matched atoms
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compared to the others and also a very good TMscore of 0.55 and 0.6 respectively.

Method RMSD M TMscore SO (%)
Posterior Alignment (Unif, λ = 1) 2.50 72 0.55 65.67
Posterior Alignment (Unif, λ = 10) 2.89 68 0.53 65.21
Posterior Alignment (Unif, λ = 50) 3.00 69 0.54 66.16
Posterior Alignment (Gap, λ = 1) 2.17 59 0.49 61.20
Posterior Alignment (Gap, λ = 10) 2.69 60 0.49 61.12
Posterior Alignment (Gap, λ = 50) 2.69 59 0.48 60.80
Likelihood Alignment 2.74 82 0.60 70.30
LGA 2.41 57 0.50 61.67
DALI 3.02 69 0.50 58.85
TMalign 3.06 73 0.52 -
RS2014 (λ = 7.6) 2.64 54 - -
RS2014 (λ = 8.6) 3.48 71 - -
RS2014 (λ = 9.6) 3.91 77 - -

Table 5.3: Summary of structural alignment by different methods for the data of Ortiz
et al. (2002)

However, in such a small sample size of 16 protein pairs the results of the

Posterior Alignment will be highly affected by the outlier of 1plc-1acx. Hence, in

Table 5.4 we display the same metric results but without taking into account the

pair of 1plc-1acx. Now, we can see more clearly the small effect of the λ choice.

Furthermore, the Posterior Alignment with a uniform prior although has about

10 less matched atoms than the Likelihood Alignment methods, it has better

results in terms of RMSD (2.18Å to 2.68Å) and Structure Overlap (70.42% to

69.51%), meaning that it tends to produce solutions with fewer matched atoms

but much closer aligned together.
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Method RMSD M TMscore SO (%)
Posterior Alignment (Unif, λ = 1) 2.18 71 0.57 70.42
Posterior Alignment (Unif, λ = 10) 2.18 71 0.57 70.49
Posterior Alignment (Unif, λ = 50) 2.27 73 0.57 70.57
Posterior Alignment (Gap, λ = 1) 1.92 62 0.51 64.85
Posterior Alignment (Gap, λ = 10) 1.93 62 0.51 64.76
Posterior Alignment (Gap, λ = 50) 1.93 61 0.51 63.39
Likelihood Alignment 2.68 81 0.59 69.51
LGA 2.39 56 0.50 61.71
DALI 3.03 69 0.50 57.55
TMalign 3.04 73 0.51 -
RS2014 (λ = 7.6) 2.61 52 - -
RS2014 (λ = 8.6) 3.35 70 - -
RS2014 (λ = 9.6) 3.51 75 - -

Table 5.4: Summary of structural alignment by different methods for the data of Ortiz
et al. (2002) without the pair of 1plc-1acx.

We now test the Posterior Alignment method on the second dataset of 64 pro-

tein pairs from the HOMSTRAD database. These pairs present a challenging case

for alignment since they have a low structure similarity ranging from 30% to 70%.

The Posterior Alignment method now suggests solutions with the lowest RMSD

among the other methods (1.70Å and 1.88Å), however the number of matched

atoms is smaller compared to the Likelihood approach. Furthermore, the Poste-

rior Alignment method with a uniform prior performs similar to the method of

SPalignNS (Brown et al., 2015) having similar RMSD, number of matched atoms

and TMscore. Finally, in comparison to the rest of the Bioinformatics algorithms,

although the Posterior Alignment approach has fewer matched atoms it has bet-

ter Structure Overlap, suggesting that a higher proportion of the matched atoms

are aligned with a distance smaller than 3.5Å.

90



Chapter 5 5.5 Protein data

Algorithm RMSD M SO (%) TMscore
Posterior Alignment (Unif) 1.88 71 68.38 0.527
Posterior Alignment (Gap) 1.70 62 59.68 0.453
Likelihood Alignment 2.22 81 69.64 0.531
TMalign 2.95 84 67.71 0.493
SPalignNS 1.91 72 72.83 0.527
SPalign 2.66 81 69.27 -
CLICK 1.96 67 68.90 -
FlexSnap 2.23 66 61.37 -
MICAN 2.91 82 61.30 -
HOMSTRAD 3.15 81 59.40 -
SALIGN 2.02 - 67.20 -
DALI 2.00 - 63.00 -
GANGSTA 1.99 - 61.90 -
Geometric Hashing 1.91 - 59.50 -
FATCAT 2.36 - 59.10 -

Table 5.5: Structural alignments by different algorithms for the difficult to align 64
pairs from the HOMSTRAD database.

In this last part, we explore a particular pair of transferases which consists

of the protein 1gky with 186 atoms and protein 2ak3 with 226 atoms. The same

pair has also been analysed by Rodriguez and Schmidler (2014) and Fallaize et al.

(2014) so we can compare our results with these two methods.

Figure 5.3 presents the atom correspondence of the alignment solutions from

the Likelihood and Posterior approaches. The Posterior approach finds an align-

ment with 150 matched atoms and RMSD of 2.3Å compared to the 167 and

RMSD of 2.8Å from the Likelihood method. Also, we can see that most of the

matched pairs are common between the two methods (blue colour). Furthermore,

we notice that since the likelihood solution was used as the prior mean for the

Posterior Alignment, the latter removed the matched pairs which have been prob-

ably mismatched. For example the pair of atoms (26 - 218), (68 - 101) or (186

- 108). Also, Fallaize et al. (2014) for the same pair reports a solution with 131

matched atoms and RMSD of 2.25Å, whereas Rodriguez and Schmidler (2014)

reports two solutions depending whether the amino acid information is used one

with RMSD of 3.5Å and one with 1.95Å. In comparison to our method we have

at least similar alignments. In particular, compared to the solution of Fallaize

et al. (2014) we managed to match 36 more atoms at an increase of only 0.05Å
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in the RMSD value.

Figure 5.3: Atom correspondence of the solution from the Posterior and Likelihood
alignments for the pair 1gky-2ak3. The blue colour indicates the pairs of atoms which
have been matched by both methods. The red colour indicates the pair of atoms which
have been matched only by the Posterior method and the yellow color the pairs which
matched only from the Likelihood method.

Finally, Figure 5.4 illustrates the full atom structure of the two molecules 1gky,

2ak3 and Figure 5.5 the full atom alignment using the Posterior and Likelihood

methods. Both structures have a high number of α - helices with 7 in 1gky and

17 in 2ak3, representing most of the structure body for both molecules. In Figure

5.5 we see that both methods aligned the 7 helices of 1gky. The six out of seven

helices seem to have been closely matched in both cases with only the bottom

left helix having a slightly bigger distance.

(a) 1gky (b) 2ak3

Figure 5.4: Protein pair 1gky - 2ak3
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(a) Posterior Alignment (b) Likelihood Alignment

Figure 5.5: Protein pair 1gky - 2ak3

5.5.1 Conclusions

• From the examples presented in Tables 5.2, 5.3 and 5.5 the value of λ has

very little effect on the final solutions.

• The Posterior Alignment method produces solutions with less matched

atoms compared to the likelihood approach, however it has better RMSD

and Structure Overlap scores, meaning that the matched atoms are closer

together.

• On average the Posterior Alignment provides better solutions (more matched

atoms, less RMSD) compared to the method of RS2014 (Table 5.4)

• The prior choice has an effect on the final solution. The uniform prior

produces alignments with more matched atoms, whereas the gap prior tends

to alignments with less matched atoms and smaller RMSD.

5.6 Discussion

The Posterior Alignment approach presented in this Chapter is an alternative

method to that used for aligning protein molecules. Due to the nature of the

problem, sampling the full posterior distribution of the match matrix is often

unnecessary, since at the end a one-to-one correspondence for each atom is needed

for evaluating the final solution. Methods in the Bayesian literature make use
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of linear optimization techniques to derive the final correspondence from the

posterior distribution of M . Our approach avoids this step and tries to directly

estimate the posterior mode of M .
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Generalized matching model

6.1 Introduction

In this Chapter we extend the likelihood methodology of matching protein molecules

presented in Chapter 3. We now consider a more general framework assuming

a Normal distribution for both the matched and unmatched parts of a protein

molecule. We propose two different approaches, one is shown in Section 6.2 in

which two independent Normal distributions are considered for the matched and

unmatched parts of a molecule. In particular, we consider different variances for

each part, while the mean of the unmatched part is fixed to 0. The other approach

is shown in Section 6.3, where now we consider as one entry and do not separate

it any more into matched and unmatched parts and a diagonal covariance matrix

is considered with only two different entries. Section 6.4 is about the alignment

algorithm for these two approaches, which we use to obtain the final matching.

It is based on Algorithm 1 with a small addition of the Generalized EM algo-

rithm. Finally, in Section 6.5, we test our two modelling approaches using both

simulated and real data.
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6.2 Normal density for the unmatched parts

In this Section we present a different parametrization for the matching model

described in Chapters 2 and 3. So far, most of the statistical approaches that

have been used for the protein alignment problem, including the ones presented

in the previous Chapters, involve a likelihood that has two terms. The Normal

density for the matched and a Uniform density for the unmatched parts. Here,

we present a new modelling approach where each part of the molecule is now

following a Normal distribution with a different mean and variance.

Consider two protein molecules represented by the configuration matrices X1

and X2 with dimensions 3 × k and 3 × l respectively. As we discussed in the

previous Chapters each Xi is observed under some similarity transformations

(3.8.1). Then by using the Singular Value Decomposition of (3.2.3) each Xi will

represent the observed size and shape variables ∆iOi (Kendall et al., 2009). This

process is similar to the one described in all the previous Chapters. To remove

the location effect from the observedXi we apply the Helmertized transformation

of (3.2.6) independently in the matched and unmatched parts of each molecule.

By using the Helmertized landmarks we bring the centre of both XM
i and

X−Mi to 0. Thus, we consider the following Normal distributions for each of the

parts

(XM
1 ,X

M
2 ) ∼N (µM , σ2)

(X−M1 ,X−M2 ) ∼N (0, σ2
0) (6.2.1)

Fixing the mean for the unmatched parts to 0, allow us to eliminate the rotation

effect for these parts of the molecules. We also expect the variance σ2
0 of the

unmatched part to be higher than the variance of the matched part σ2, since

each unmatched landmark would be further away than its mean compared to the

matched ones.
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Finally, in order to remove the rotation effect, we use the same approach as

before by integrating the rotation parameter out of the likelihood. We can derive

the size and shape densities of X1 and X2 as follows

fFM(X1,X2|M ,µM , σ2, σ2
0) =

2∏
i=1

∫
Ri∈SO(3)

fN(X∗
M

i |M ,µM , σ2)dRifN0(X
∗−M
i |M ,0, σ2

0)

=
2∏
i=1

∫
Ri∈SO(3)

(2πσ2)−3p exp

{
−||RiX

M
i − µM ||2

2σ2

}
(2πσ2

0)−3(k−p)(l−p)/2dRi exp

{
−||X

−M
i − 0||2

2σ2
0

}

= (2πσ2)3p(2πσ2
0)−3(k−p)(l−p)/2 exp

−
2∑
i=1

||XM
i ||2 + 2||µM ||2

2σ2
−

2∑
i=1

||X−Mi ||2

2σ2
0


×

2∏
i=1

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

Mt)
σ2

}
(6.2.2)

where X∗i represents the full unobserved data.

6.2.1 Parameter optimization & EM steps

Optimizing over the unknown parameters of µM ,σ2 and σ2
0 does not significantly

differ from the procedure used in Chapter 3. Again rotations Ri are treated as

an unobserved part of the data and the EM algorithm is used for inference. The

Expectation step will be the same as the one described in Section 3.3 since by

using a fixed 0-mean for the unmatched parts the rotation is only present in the

matched part of the likelihood (6.2.2). The Maximization step remains the same

as before for both µM and σ2, leading to the following estimates

µ̂M =
1

2

2∑
i=1

∫
RiXM

i ∈SO(3)

Ri exp

{
tr
(
RiX

M
i µ

Mt)
σ2

}
dRi

∫
Ri∈SO(3)

exp

{
tr
(
RiX

M
i µ

Mt)
σ2

} (6.2.3)

σ̂2 =
1

6p

(
2∑
i=1

||XM
i ||2 − ||µ̂M ||2

)
(6.2.4)

Similarly for the unmatched parts we need to estimate only the sample variance

σ2
0 since the unmatched mean is assumed to be fixed to 0.
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σ̂2
0 =

2∑
i=1

||X−Mi ||2

3(k − p)(l − p)
(6.2.5)

6.3 Diagonal covariance matrix

Here, in this Section we extend the modelling framework presented before. We

still keep the Normality assumption, but now we consider X1 and X2 to be

observations from a common Normal distribution as

vec(X1,X2) ∼ N(vec(µ),Σ) (6.3.1)

where vec(µ) has dimensions of 1× 3(k + l) and Σ is block diagonal so that X1

and X2 are independent and has dimensions of (k+ l)×(k+ l). Then, considering

also the partition into matched and unmatched parts we can write vec(µ) as

vec(µ) = [vec(µ1), vec(µ2)] (6.3.2)

where

vec(µ1) =


(p)−times︷ ︸︸ ︷

µM , . . . , µM ,

(k−p)−times︷ ︸︸ ︷
µ−M , . . . , µ−M

 vec(µ2) =


(p)−times︷ ︸︸ ︷

µM , . . . , µM ,

(l−p)−times︷ ︸︸ ︷
µ−M , . . . , µ−M


Furthermore, the joint covariance matrix Σ can be partitioned as

Σ =

 Σ1 0

0 Σ2

 (6.3.3)

where Σi is a diagonal covariance matrix for each Xi as

Σ1 = s1Ik, Σ2 = s2Il (6.3.4)
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with

s1 =

 (p)−times︷ ︸︸ ︷
σ2, . . . , σ2,

(k−p)−times︷ ︸︸ ︷
σ2
0, . . . , σ

2
0

 s2 =

 (p)−times︷ ︸︸ ︷
σ2, . . . , σ2,

(l−p)−times︷ ︸︸ ︷
σ2
0, . . . , σ

2
0


Hence, the distributional assumptions for X1 and X2 can be written as

vec(X1) ∼ N(vec(µ1),Σ1)

vec(X2) ∼ N(vec(µ2),Σ2) (6.3.5)

where X1 and X2 are independent and the matched and unmatched parts have

variance σ2 and σ2 respectively.

Finally, as we have mentioned in the previous Section and Chapters by using

the Singular Value Decomposition of (3.2.3) each Xi represent the observed size

and shape variables ∆iOi under the similarity transformations of (3.8.1). So far,

for removing the location parameter τi we used the Helmertized landmarks by

multiplying each configuration matrix Xi by the Helmert matrix H of (3.2.6).

Now, instead of using the resulting Helmertized landmarks we choose to multiply

each Xi with a matrix Li. Hence, each of the transformed covariance matrices Σi

will be in the form of L1Σ1L
t
1 and L2Σ2L

t
2 and since that each Σi is diagonal with

only two different elements σ2 and σ2
0 the final transformed covariance matrices

will be as follows

Σ∗1 = L1Σ1L
t
1 = Σ1k−1

+ σ2Ik−1

Σ∗2 = L2Σ2L
t
2 = Σ2l−1

+ σ2Il−1 (6.3.6)

where, L1 = (−1k−1, Ik−1) and L2 = (−1l−1, Il−1). For simplicity, in the rest of

this Chapter the use of Σi will mean the covariance matrices after they have been

multiplied by Li as in (6.3.6).
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Again to induce the size and shape densities of X1 and X2 the rotation

parameter Ri is considered as unobserved and integrated out of the likelihood.

Thus, we have

fD(X1,X2|M ,µ1,µ2,Σ1,Σ2) =
2∏
i=1

∫
Ri∈SO(3)

fN(X∗i |M ,µi,Σi)dRi

= (2π|Σ1|)−
3k
2 (2π|Σ2|)−

3l
2

2∏
i=1

∫
Ri∈SO(3)

exp

{
−(RiXi − µi)tΣ−1i (RiXi − µi)

2

}
dRi

= (2π)−
3(k+l)

2 (σ2)−
3(k+l)p

2 (σ2
0)−

3
2
(k2+l2+(k+l)p) exp

{
−1

2

2∑
i=1

tr
(
XiX

t
iΣ
−1
i + µiµ

t
iΣ
−1
i

)}

×
2∏
i=1

∫
Ri∈SO(3)

exp
{

tr
(
RiXiµ

t
iΣ
−1
i

)}
dRi (6.3.7)

The rationale of choosing this particular modelling approach was to treat each

protein molecule as one entry, instead of partitioning in two parts in distributional

sense as has been done in most of the approaches so far. For example, to estimate

now the mean we optimally rotate the whole molecule instead of only rotating the

part which corresponds to the matched atoms. This can provide a more natural

representation as the parts of the protein structure do not act independently.

6.3.1 Parameter optimization & GEM steps

Before we move onto the estimation of the match matrixM which will give us the

optimal alignment between X1 and X2, we need to optimize over the remaining

unknown parameters of µi and Σi. For this, we make use of the Generalized

EM algorithm (Dempster et al., 1977) which is a variation of the EM algorithm

described in Section 2.4. Now, during the Maximization step we do not seek

to maximize over the unknown parameters but obtain some other value which

increases the total likelihood function. We make use of the GEM because it is

not possible to jointly maximize both µ1,µ2 and Σ1,Σ2 due to the difference in

dimensionality for each parameter.
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Since each Xi is independent, the missing rotations Ri will also be indepen-

dent and the Expectation step of the GEM at the t-th iteration will be as follows

Q(µ1,µ2,Σ1,Σ2|µ1t−1 ,µ2t−1 ,Σ1t−1 ,Σ2t−1) = ERi|Xi

[
log fD(Xi|M ,µit−1 ,Σit−1)

]
= −

(
3(k + l)

2

)
log(2π)−

(
3(k + l)p

2

)
log(σ2

t−1)−
(

3

2
(k2 + l2 + p(k + l))

)
log(σ2

0t−1
)

−1

2

2∑
i=1

tr
(
XiX

t
iΣ
−1
it−1

+ µit−1µ
t
it−1

Σ−1it−1

)
+

2∑
i=1

log

∫
Ri∈SO(3)

exp
{

tr
(
RiXiµ

t
it−1

Σ−1it−1

)}
dRi

(6.3.8)

The Maximization step now differs from the standard EM approach. First, we

try to optimize for the mean parameter µi. As explained earlier, µ1 and µ2 are

a combination of the matched and unmatched means, such that they share the

same p elements that correspond to the matched atoms of X1 and X2. Hence,

by differentiating (6.3.8) over µ1 and µ2 and setting equal to 0 we obtain the

following estimates for each µ1 and µ2 as

∂Q(µ1,µ2,Σ1,Σ2|µ1t−1 ,µ2t−1 ,Σ1t−1 ,Σ2t−1)

∂µ1

= 0 ⇒ µ1 =

∫
R1∈SO(3)

R1X1e
A1dR1

∫
R1∈SO(3)

eA1dR1

(6.3.9)

∂Q(µ1,µ2,Σ1,Σ2|µ1t−1 ,µ2t−1 ,Σ1t−1 ,Σ2t−1)

∂µ2

= 0 ⇒ µ2 =

∫
R2∈SO(3)

R2X2e
A2dR2

∫
R2∈SO(3)

eA2dR2

(6.3.10)

with Ai = −tr
(
RiXiµ

t
iΣ
−1
i

)
. Thus, the estimate of the common matched mean

for X1 and X2 at time t can be obtained as
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µ̂Mt =
1

2

2∑
i=1

∫
Ri∈SO(3)

RiX
M
i e

AidRi

∫
Ri∈SO(3)

eAidRi

(6.3.11)

and the common unmatched mean of X1 and X2 can be obtained as

µ̂−Mt =
1

k + l − 2p


k∑

j=p+1

∫
R1∈SO(3)

R1X
−M
1j

eA1dR1

∫
R1∈SO(3)

eA1dR1

+
l∑

j=p+1

∫
R2∈SO(3)

R2X
−M
2j

eA2dR2

∫
R2∈SO(3)

eA2dR2


(6.3.12)

On the other hand, obtaining the estimates for σ2 and σ2
0 is not as straightfor-

ward, because a closed form expression from (6.3.8) is not easily derived. Instead,

we choose to optimize numerically (6.3.8) over σ2 and σ2
0 considering µ̂Mt and µ̂−Mt

as fixed.

Several optimization techniques are available in the literature. For our pur-

pose we make use of the optim function in R which among others include the

NelderMead method (Nelder and Mead, 1965) and the BFGS, a quasi Newton

optimization algorithm(Fletcher, 2013). Adopting the numerical optimization

approach for σ2 and σ2
0 increases the speed of the algorithm while the overall es-

timates remain accurate and allow us to apply constraints on the two parameters

ensuring that the variance of the matched parts is always smaller than that of

the unmatched(i.e σ2 < σ2
0 .

In summary, the steps for obtaining the estimates of µi and Σi for a given

matching matrix M using the GEM algorithm are as follows
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Algorithm 5 GEM for obtaining estimates of µ1,µ2, σ
2, σ2

0

1: Input X1,X2,M , ε,µ1,µ2, σ
2, σ2

0.
2: t← 1.
3: while log fD(Xi|M ,µit ,Σit)− log fD(Xi|M ,µit−1 ,Σit−1) > ε do
4: Expectation - step : Evaluate Q(µ1,µ2,Σ1,Σ2|µ1t−1 ,µ2t−1 ,Σ1t−1 ,Σ2t−1)
5: Maximization - step :

• Obtain µ̂Mt , µ̂
−M
t

• For the updated values of µ̂Mt , µ̂
−M
t , optimize numerically to obtain

σ̂2
t , σ̂

2
0t

6: end while

where ε represents the convergence criterion.

6.4 Alignment algorithm

In order to obtain an alignment betweenX1 andX2 we use the same optimization

approach for the matching matrix M as the one described in Algorithm 1 of

Section 3.4. A few adjustments should now be made as follows:

• Before we start exploring possible matches between X1 and X2 we should

remove the location information by creating L1,L2 and obtain L1X1,L2X2

and Σ∗1,Σ
∗
2 as in (6.3.6).

• The optimization for µ1,µ2 and σ2, σ2
0 should be done using the GEM

asdescribed in Algorithm 5.

• The likelihood density fD(·) of (6.3.7) should be used.

Finally, we note that if sequence or gap penalty information is included in the

model, then the likelihood of (6.3.7) can be easily extended to incorporate them

using the same ideas described in Sections 3.5 and 3.6.

6.5 Simulations

In this Section we compare the two different models presented using simulated

and real data. In order to generate the simulated data we used a similar process
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to that described in Section 4.2 and is based on Kenobi and Dryden (2012).

Inside a cube of volume L3 we create a mean shape of 21 landmarks subject

to the constrain that each landmark has at leas a minimum distance dmin with

all the others. The matched part of the data coming from the first 20 landmarks

of µ are n observations from a Normal distribution as

(XM
1[1:20]

,XM
2[1:20]

) ∼ N(µ[1:20], σ
2)

and for the unmatched parts coming from the 21st landmark of µ are n Normal

observations as follows

X−M1[21:25]
∼ N(µ[21], σ

2
0) X−M2[21:30]

∼ N(µ[21], σ
2
0)

The parameters used for this simulation are the following:

• L = 20, dmin = 2, n = 1000

• σ = {0.1, 0.5, 1, 2, 3}

• σ0 = 5

6.5.1 Simulation results

Figure 6.1 displays the simulation results for the simulated data created before

using the two different models described in Sections 6.2 and 6.3. For simplicity

we call the model of Section 6.2 with the unmatched mean fixed to zero using

the likelihood (6.2.2) as the Fixed Mean model and the model from Section 6.3

with the diagonal covariance structure as the Diagonal model which is based on

the likelihood of (6.3.7).

As we can see from Figure 6.1 for σ = 0.1 both models perform similarly

in terms of finding which landmarks should be matched (1 to 20) and which

should be left unmatched (21 to 25). When σ = 0.5 the probability of identifying

the matched landmarks remains high for both models (approximately of 97%)

but the probability of correctly finding the unmatched landmarks drops to 80%.
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This behaviour becomes more present for higher values of σ. In particular when

the ratio σ/dmin ≥ 1, both models seem to fail into identifying the unmatched

landmarks. For example, when σ = 2 the Fixed Mean model has a 23% chance of

identifying the unmatched landmarks compared to a 17% chance for the Diagonal

model.

In the case of σ = 3 we observe that for both approaches more false positives

matches are identified and the correct matching percentages are dropped, which

is something we expect since the minimum distance between each mean is less

than our σ value and it is not so clear which landmark belongs to which mean.

However, both models perform relatively well in finding the correct match for

each of the first 20 landmarks, where the Diagonal models has a 68% chance of

success and the Fixed mean a 62%.

Finally, we report an interesting pattern between the matched (1 to 20) and

unmatched (21 to 25) landmarks. The Diagonal model preforms always better in

finding the correct match for the first 20 landmarks but the Fixed mean model

performs better in identifying the unmatched landmarks (last 5).
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Figure 6.1: Comparison between the Fixed mean and Diagonal model using simulated
data. The first 5 plots present the mean proportions for each landmark to be identified
either as a ‘correct’ match or as ‘unmatched’ landmark. The last plot presents the
number of correct and false positive matches for each of the first 20 landmarks.

Figures 6.2 and 6.3 display the histograms of the number of correct and false
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positives matches for the two different models using various values of σ for the

1000 samples of simulated data in created before. For small σ’s (0.1, 0.5) the dis-

tribution of correct and false positives matches for both models is concentrated

around a few values indicating that we can successfully identify which landmarks

match with each other. On the other hand, when σ = 2 or σ = 3 these distri-

butions change and become more skewed. For the correct matches we observe a

negative skewness and for the false positives a positive skewness which is some-

thing good since it shows that the average correct and false positive matches tend

to the desired values of 20 and 0 respectively. By comparing the two methods

we also see that the false positive distribution for the Fixed Mean model seems

to have a larger skewness than the Diagonal model meaning that on average it

produces less false positives especially when σ = 2 or σ = 3. The opposite seems

to happen for the correct match distribution when these two are compared with

the diagonal model having more correct matches in this situation.
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Figure 6.2: Distribution of correct matches and false positives for different values of σ
for the Fixed Mean model.
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Figure 6.3: Distribution of correct matches and false positives for different values of σ
for the Diagonal model.

Moreover, in Table 6.1 we see the results for the mean estimates of correct

matches and false positives as the final estimations for the standard deviation of

the matched parts σ and the unmatched σ0. For σ ≤ 1 both methods perform

similarly well, matching on average more than 19 landmarks out of 20 and the

number of false positives remains low with a maximum of about 2 or 3. The

Diagonal model seems to perform a little better in finding slightly more correct

matches and the Fixed Mean model does a little better in finding less false pos-

itives. However, when σ ≥ 2 the number of correct matches drops and the false

positive increases, which is something we anticipate since the landmarks are mix-

ing. In the example of σ = 3 the Fixed Mean model has on average 14.36 correct

matches compared to the 15.56 of the Diagonal model and the opposite happens

in the false positive matches with the Diagonal model having about 1.3 more

matched landmarks.

Estimating the value σ and σ0 is not easy since we only have two observations,

however the Fixed Mean model performs relatively well. For example, for values

of σ = 0.1, 0.5, 1 the corresponding estimates are close to the real values and also

estimates of σ0 are close to the true value of 5. When σ becomes bigger, the Fixed

Mean model tends to underestimate σ and to overestimate σ0. This is probably

because of the mix up between the landmarks since the σ/dmin ratio is ≥ 1.

In comparison, the Diagonal model seems to not perform well in the variance
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estimations for both the matched and unmatched parts producing very small

values in both cases. One of the reasons that this might happen is because we

estimate σ and σ0 using the whole set of landmarks and not treat these estimations

separately. Nevertheless, this is a behaviour that needs further exploring in future

work.

Fixed mean Diagonal covariance
CM FP σ σ0 CM FP σ σ0

σ = 0.1 19.99 0.02 0.07 4.99 19.99 0.13 0.001 0.86
σ = 0.5 19.92 0.72 0.36 5.12 19.93 0.96 0.01 0.90
σ = 1 19.05 2.13 0.70 5.82 19.43 3.09 0.02 0.99
σ = 2 16.66 4.75 1.27 7.78 17.71 5.95 0.07 1.50
σ = 3 14.36 6.79 1.76 9.04 15.56 8.17 0.13 2.22

Table 6.1: Mean estimates for the number of correctly matched and false positive land-
marks as long as σ estimates for the fixed mean and diagonal covariance models.

6.5.2 Conclusions

• Both models perform similarly for small values of σ, having a good success

rate of finding which landmarks should be matched and which should be

left unmatched.

• For high values of σ’s there is a drop in the correct matches and an increase

in false positives.

• The Fixed Mean model had consistently a better chance of identifying the

unmatched landmarks, whereas the Diagonal model had a higher probabil-

ity of finding the correct match for each landmark.

• The Fixed Mean model performs outperforms the Diagonal model estimat-

ing σ and σ0.

• The Diagonal model tends to significantly underestimate σ and σ0.
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6.6 Protein data application

In this Section, we test the two models of Section 6.2 and 6.3 on two pairs

of protein data. The first consists of the cytochrome b5, a membrane bound

hemoprotein, usually found in animals and plants called 1aqa with 82 atoms and

the cytochrome b5 ascaris suum, a protein found in parasitic worm called 1x3x

with 84 atoms. The structures for both molecules are shown in Figure 6.4.

The second pair is that of the hemogoblin 4hhbD which is an iron-oxygen

binding protein found in the human red cells with 146 atoms and the myogoblin

1mbo an iron-oxygen binding protein found in the muscle tissue of animals with

153 atoms . Both of these structures are shown in Figure 6.5.

(a) 1aqa (b) 1x3x

Figure 6.4: Protein molecules 1aqa and 1x3x.

(a) 4hhbD (b) 1mbo

Figure 6.5: Protein molecules 4hhbD and 1mbo.

Figure 6.6 displays the atom correspondence between 1aqa and 1x3x using

the Fixed Mean model from (6.2.2) and the Diagonal model from (6.3.7). As we

can see, both methods find almost the same alignment solution with the Fixed
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Mean model having 10 more matched atoms which have not been identified by

the Diagonal model.

Figure 6.6: Alignment of the pair 1aqa - 1x3x using the fixed mean and diagonal co-
variance model.

Table 6.2 presents the similarity metrics for these two methods compared also

with the Likelihood Alignment approach from Chapter 3. The Fixed Mean model

and the Likelihood Alignment seem to perform very similarly. The TMscore is

higher for the Fixed Mean model 0.79 compared to 0.77 of the Likelihood method

as is the Structure Overlap, 90.24% compared to 89.02%. Although there seem to

be some differences in the alignments between the Fixed Mean and the Diagonal

models, both of them managed to have TMscores above 0.5 indicating that the

two proteins might belong to the same fold. The only category in which the

Diagonal model performs better is the RMSD value. This is expected since it

has 10 less matched atoms. Finally, the σ estimations for the two models of this

Chapter are quite different, following the same pattern as in the simulated results

where the Diagonal model underestimates the variance.
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Fixed Mean Diagonal Likelihood Align.
M 74 64 73
RMSD 1.3 1.0 1.4
σ 0.37 0.001 0.39
σ0 6.89 0.74 -
TMscore 0.79 0.71 0.77
SO (%) 90.24 78.05 89.02

Table 6.2: Similarity metrics for the pair of 1aqa - 1x3x using the Fixed Mean, Diagonal
and Likelihood alignment methods.

Figure 6.7 displays the full atom alignment for the two molecules after they

have been optimally rotated. Again we can see that the two solutions are very

similar with the only difference in the matching of the loop in the lower right

corner. Although the sequence similarity for these two molecules is quite low (of

about 17%), which does not indicate that the two proteins are related, we can see

that based on the structure alignment, they match quite well especially in their

secondary structures where all the α-helices have been closely aligned.

(a) Fixed Mean alignment (b) Diagonal alignment

Figure 6.7: Alignment solutions of 1aqa - 1x3x using the fixed mean and diagonal
covariance models.

Our second example is the pair 4hhbD - 1mbo. Figure 6.8 displays the atom

correspondence using the two different models. Again both methods find almost

the same solution with most of the matched atoms being the same between them.

The difference is in the atom pairs of (83 − 83), (136− 137), (145− 146), (139−

140), (142 − 143) which have been matched only by the Fixed Mean model and

the pair (120− 121) which is matched only by the Diagonal model.
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Figure 6.8: Alignment of the pair 4hhbD - 1mbo using the Fixed Mean and Diagonal
model.

Table 6.3 displays the similarity metrics of the 4hbD - 1mbo alignment using

the two models of this Chapter and the Likelihood Alignment method. Again

all these three models have performed similarly, with almost identical alignment

solutions.

The Fixed Mean model has 4 matched atoms more than the Diagonal but

the RMSD value of 1.4Å is the same for both of them. All three have very sim-

ilar TMscores and Structure Overlap . In particular the Structure Overlap is at

least 95% for all methods, meaning that 95% of the matched atoms are within

a distance of 3.5Å. The only significant difference we can observe between the

Fixed Mean and the Diagonal model is in the estimation σ, a behaviour we also

observed in the previous example and during our simulation tests. Overall the

two alignments are very similar and the different estimation of σ by the Diagonal

model does not seem to have a significant effect in the final solution.
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Fixed Mean Diagonal Likelihood Align
M 142 138 143
RMSD 1.4 1.4 1.5
σ 0.42 0.001 0.42
σ0 10.93 0.39 -
TMscore 0.87 0.85 0.89
SO (%) 97.26 94.52 97.95

Table 6.3: Similarity metrics for the pair of 4hhbD - 1mbo after the alignment with the
fixed mean and diagonal covariance models.

Finally, Figure 6.9 displays the full structure alignment of the two protein

molecules. As the previous results suggest both alignment solutions are very

similar and the two structures seem to align very well despite the not so high

sequence identity which is at about 25%. Most of the secondary structure of the

two proteins have been aligned really well, except the N terminus of 4hhbD which

is in the upper left corner.

(a) Fixed mean alignment (b) Diagonal covariance alignment

Figure 6.9: Alignment solutions of 4hhbD - 1x3x using the fixed mean and diagonal
covariance models.

6.7 Discussion

In this Chapter we presented a different approach in modelling the protein align-

ment problem. We introduced a more general approach considering a Normal

distribution for both the matched and unmatched parts of the molecules. Fur-
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thermore, we allowed different variances among these two parts in order to dis-

tinguish the matched and unmatched atoms. Finally, we considered two different

approaches one with a fixed zero mean for the unmatched part and one for a

mean estimated by the data.

The simulation results suggested that both methods work well in identifying

the correct matches. Some difference was observed in identifying which atoms

should be left unmatched, where the Fixed Mean model performed better than

the Diagonal model. The same situation is observed with the estimations σ and

σ0, where the Diagonal model tends to underestimate both of them.

However, when we tested our models in real data the difference in the estima-

tion of σ between the two models did not have a big effect in the final alignments,

providing almost the same results with both the Fixed Mean and the Likelihood

Alignment model.
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Chapter 7

Discussion & future work

7.1 Summary and conclusions

The aim of this study was to explore the problem of protein structure alignment

from a statistical point of view. So far, there have been two approaches in the

structural alignment literature. One includes an adhoc algorithmic approach,

which although is fast and easy to implement lacks an overall modelling framework

and the other one is a Bayesian approach which provides this modelling framework

but sometimes is not straightforward to implement. In this Thesis, we developed

techniques that bridge this gap, borrowing elements from both approaches.

In Chapter 3 we introduced a likelihood based approach for providing a score

between a given alignment of two or more molecules. It is based on a symmetric

size and shape likelihood and the EM algorithm for estimating the unknown pa-

rameters. This likelihood density is our core model and the different extensions

presented are based on this. Furthermore, we introduced a Structural Align-

ment algorithm for estimating a possible alignment between two or more protein

molecules and an extension of it which also considers the sequence order of the

amino acid chain.

As the results suggested our best performing method is the one that includes

only the structural information. It seems that most of the times provides solu-

tions which combine more matched atoms with less RMSD compared to other
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alternative algorithms either from Bioinformatics or current statistical models.

In addition, almost in all the examples explored our TMscore scores were higher

than all of the other approaches. The extra information in the likelihood (se-

quence or gap penalty) seems to make not much difference in the final results,

suggesting that our solutions are mostly based on the information provided by the

structure. However, it can be used when solutions with more biological meaning

are needed, for example preserving the amino acid sequence order.

In Chapter 5 we explore the same problem using Bayesian modelling approach.

Recent methods in the Bayesian literature estimate the posterior distribution of

the match matrix and then use optimization algorithms to derive its posterior

mode in order to produce a final one-to-one alignment. In our approach we try

to estimate directly the posterior mode of the match matrix. Another difference

with our approach is that we choose to assign a prior distribution over the mean

matrix instead of treating it as a fixed parameter or integrating it out of the

likelihood.

From the simulation and real data results the posterior alignment approach

seemed to be better in identifying which atoms do not have a corresponding

match. Also, the choice of the uniform prior on the match matrix seemed to

provide better results in terms of both more matched atoms and lower total

RMSD compared to the gap prior.

Finally, in Chapter 6 we presented a different approach for the protein match-

ing. We considered a Normal distribution for both matched and unmatched parts

while we allow different variances between the two parts of the molecule. This ap-

proach provides a more natural interpretation since the whole molecule is rotated

instead of only the matched part.

7.2 Future work

One of the main difficulties we encountered during this study was the selection

of starting points. Since our derivation for the optimal alignment between two
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molecules is based on a discrete optimization algorithm a good starting point is

required. In Chapter 3 we present an algorithm for automatic selection of a set of

starting points but further work should be done in this area. A possible direction

could be a ranking matching system among the atoms, selecting those with the

highest score for starting points or the exploration of different combinations of

number of starting points and selecting the one with the highest likelihood.

Another area for future work is the multiple matching of proteins. Due to the

design of exploring all possible combination of atoms our method has a limita-

tion on the number of proteins that can be simultaneously aligned. A different

approach with a possibility of selecting a subset of all the combinations should

be considered.

Finally in the last part of the Thesis we introduced a diagonal covariance

matrix for the size and shape likelihood of the two molecules. This approach

although is working well in terms of matching two proteins it fails to estimate the

correct variance of the mode.l This is an issue that also needs further exploring.

A final extension of this model would be to consider allowing general covariance

among the atoms of each protein.
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