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Abstract

This thesis describes the characterisation of a range of sol-gel silicas, mainly by the

physical techniques of NMR cryoporometry, density and imbibation measurements and

Small Angle Neutron Scattering.

The developments made to these techniques as part of this work include

� Construction of the �rst full cool/warm cycle automated NMR cryoporometer,

with continual pore size distribution graphing.

� Calibration of melting point constants with respect to gas-adsorption and neutron

scattering.

� Detailed characterisation of the thermal properties of the cryoporometer.

� Development and measurement of the �rst multi-dimensionally resolved pore size

maps by NMR cryoporometry.

� Demonstration that simple density and imbibation measurements can, when com-

bined with models, provide a wealth of information concerning the silicas.

� Development of novel continuous medium Monte-Carlo integration methods to

calculate the solid-solid density correlation function for porous media, showing

excellent agreement with experimental SANS results.

In particular, with the second point, there has been an attempt to use SANS to provide

an absolute calibration scale for pore size, nominally given by gas-adsorption.
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Chapter 1

Introduction.

1.1 Porous materials.

Porous materials occur widely and have many important applications. They can, for

example, o�er a convenient method of imposing �ne structure on adsorbed materials.

They can be used as substrates to support catalysts and can act as highly selective

sieves or cages that only allow access to molecules up to a certain size.

Food is often �nely structured. Many biologically active materials are porous, as are

many construction and engineering materials. Porous geological materials are of great

interest; high porosity rock may contain water, oil or gas; low porosity rock may act as

a cap to porous rock, and is of importance for active waste sealing.

1.2 Properties of porous materials.

There are a number of important properties of porous materials :

� Porosity.

� Speci�c surface area.

� Permeability.

� Breakthrough capillary pressure.

� Di�usion properties of liquids in pores.

� Pore size distribution.

� Radial density function.

In this work we shall mainly be concerned with porosity, pore size distribution and

radial density function.

1
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1.3 Porosity and pore size measurement techniques on

porous media.

� Crushing � measure the volume of the porous material, crush it to remove the

void space, and re-measure the volume.

� Optically � this may involve �lling the pores with a material such as black wax or

Wood's metal, sectioning and inspecting with a microscope or scanning electron

microscope.

� Imbibation � weighing before and after �lling the pores with a liquid.

� Gas Adsorption � measure the change in pressure as a gas is adsorbed by the

sample.

� Mercury Intrusion � Measure the volume of mercury forced into the sample as a

function of pressure.

� Thermoporosimetry � �ll the pores with a liquid, freeze it, then measure the heat

evolved as the sample is warmed, until all the liquid is melted.

� NMR Cryoporometry � �ll the pores with a liquid, freeze it, then measure the

amplitude of the NMR signal from the liquid component as the sample is warmed,

until all the liquid is melted.

� Small Angle Neutron Scattering (SANS) � scatter neutrons from the pores, then

the smaller the dimensions of the variations in density distribution, the larger the

angle through which the neutrons will be scattered.

The two most common methods of measuring pore size are gas (usually nitrogen) ad-

sorption, and mercury intrusion, which are discussed below.

Many of these methods give results that quite frequently di�er from one another. This

is often because they are in fact measuring di�erent things � some measurements are

directly on the pores themselves, others (such as mercury intrusion) are in e�ect mea-

suring the necks that give access to the pores.

A typical example is shewn in �gure 1, for a sandstone, of mercury intrusion (circles)

compared with micro-photography (triangles) [Dullien, 1979].
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Figure 1: Pore size in sandstone as measured by mercury intrusion (circles) and pho-
tomicrography (triangles). Dullien, 1975.

1.3.1 Gas adsorption.

The volume of gas adsorbed by a porous media is measured as the pressure of the gas

is increased and then decreased [Allen, 1975].

Gas adsorption isotherms are usually described by an equation of the form [Langmuir,

1918] :
P

V
=

1

b�Vm +
P

Vm

Where P is the pressure and V is the volume adsorbed per unit mass of adsorbent; Vm

is the volume adsorbed at the complete monolayer point, b is a constant.

An extension of this is the BET equation, which treats multilayer adsorption [Brunauer

et al., 1938] :
x

V �(1� x)
=

1

c�Vm +
(c�1)�x
c�Vm

where x = P
P0
, P0 being the vapour pressure of the bulk liquid, c is a constant.

One may go further and calculate the speci�c surface area S of the solid :

S =
N:���VM

Mv

�� is the area occupied by a single adsorbed molecule, N is Avagadro's number, Mv is

the gram molecular volume = 22.41 flg. In this work we use pore diameters determined

by gas adsorption to establish a relationship between the melting point depression (as

measured by NMR cryoporometry) and the pore diameter in the porous medium.
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Gas adsorption commonly uses the BJH method [Barret et al., 1951] based on the Kelvin

equation to calculate pore size distributions from the desorption P(v) curve, using a pore

model of right cylinders [Thomson, 1871, Gregg and Sing, 1967] :

R�T �LnPs
P0

= �2
�VM
Rk
�Cos(�)

where :

Rk = Kelvin radius,

R = gas constant = 8.314 J��K�1�mol�1 ,
T = boiling point of nitrogen = 77.3 K

Ps = pressure of sample,

P0 = ambient pressure,


 = adsorbate surface tension at T,

VM = molar volume of adsorbate.

� = angle of contact between liquid and walls = 0�

for Nitrogen :

VM = 34.6 ml�mol�1


 = 8.855�10�3 N�m�1

This is for cylindrical geometry, and may be written in the form [Gregg and Sing, 1967]

Rk

2
= � 
�VM

R�T �LnPs
P0

�Cos(�)

which may be re-cast into a more general form for other pore geometries :

vp
ap

= � 
�VM
R�T �LnPs

P0

�Cos(�)

where (per gram of solid) vp is the pore volume, ap is the pore surface area.

Thus for non-intersecting spherical pore geometry one obtains

vp
ap

=
Rk

3

and for the spherical pore geometry with multiple throats that we shall discuss in chapter

11.5.3, with 50% of the pore area intact, one obtains

vp
ap

=
2�Rk

3
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1.3.2 Mercury Intrusion.

In mercury intrusion the volume of mercury forced into the sample is measured as a

function of the applied pressure [Allen, 1975]. Since this capillary pressure is related to

the diameter of the neck leading to the pores, rather than the pore diameters themselves,

the results are not strictly comparable with gas adsorption.

If dV is the volume of pores having entry diameters between De and De + dDe, then

[Ritter and Drake, 1945] :

dV = �(De)�dDe

where �(De) is a distribution function for pore diameter. We may then write :

�(De) =
Pc
De
�d(VT�V )

dPc

where V T is the total pore volume of the sample and V is the volume of pores with

entry diameters smaller than De.

Mercury intrusion calibration has not been used in this work, with the exception of

providing nominal pore diameters for large pore diameter Trisopor
R silicas.

1.3.3 Thermoporosimetry (DTA/DSC).

Di�erential Thermal Analysis or Di�erential Scanning Calorimetry is a technique that

can be used to study the behaviour of liquids in pores, in a similar manner to NMR

cryoporometry. When applied to porous materials, the names Thermoporometry, Ther-

moporosimetry are frequently used [Brun et al., 1977, Jackson and McKenna, 1990,

Jallut et al., 1992, Ishikiriyama et al., 1995, Ishikiriyama and Todoki, 1995].

The sample and liquid (1!5mg) is placed in a small sealed capsule, and a thermo-

couple used to monitor the di�erence in temperature to an empty capsule, as both are

smoothly �rst reduced in temperature and then increased in temperature.

The signal obtained is not directly proportional to the volume of liquid melted, as in

the case of NMR cryoporometry, but is a measure of the heat absorbed/emitted by the

sample. It is divided by the thermal mass of the sample (i.e. di�erent porous substrates

will have di�erent scale factors) and is multiplied by the temperature scanning rate.

Further, in the case of very small pore sizes with deep supercoolings, the amplitude of

the transition becomes so small and spread-out that it is often not seen, where NMR
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cryoporometry obtains clear transitions of very good signal-to-noise, as one goes from:

`no melted liquid' to `all liquid in pores melted' over a wide temperature range.

1.4 Measurements on Porous Materials by NMR.

There are a number of techniques based on Nuclear Magnetic Resonance that can be

used to study porous materials, both directly and indirectly :

� Cryoporometry for measuring pore size distributions.

� Multidimensionally resolved cryoporometric pore size distributions.

� Bounded liquid fraction and diameter determination.

� Fluid transport and di�usion in �ne porous material.

� Direct 1D, 2D, 3D imaging of coarsely structured materials.

� NMR relaxation in pores.

All of these techniques (with the exception of the measurement of bulk 
uid transport)

have been used or developed during the course of this work; however detailed discussion

will be primarily limited to cryoporometry, with and without spatial discrimination.

1.4.1 Cryoporometry for measuring pore size distributions.

As the main part of this project a novel method of determining median pore size and

pore size distributions of porous materials has been developed, both on bulk samples

and as a function of spatial position inside a sample with structured porosity.

NMR cryoporometry is based on the technique of freezing a liquid in the pores and

measuring the melting temperature by Nuclear Magnetic Resonance. Since the melt-

ing point is depressed for crystals of small size, the melting point depression gives a

measurement of pore size.

The method is non-destructive, and is suitable for pore diameters in the range of a few

nanometers to around 1�m.

Commercially important porous materials that have been studied as part of this project

include the porous glasses, the alumina and alumino silicates such as clays and zeo-

lites, activated and other porous carbons, concrete, and water and oil bearing shales,

sandstones and limestones, and polymer materials such as rubber and arti�cial skin.
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NMR cryoporometry is often the method of choice and is always valuable to complement

existing porous measurement techniques such as gas adsorption and mercury porosime-

try. It is here shewn to have good linear agreement in porous silica glasses with gas

adsorption measurements. It is able to provide fully calibrated porosity measurements

as a function of incremental pore diameter. One major advantage of NMR cryoporom-

etry over other techniques is in its ability to perform non-destructive spatial imaging.

1.4.2 Multidimensionally resolved pore size distributions.

Part of this project has been the development of the novel technique of measuring pore

size distributions with 1, 2 and 3-dimensional spatial resolution, using NMR cryoporom-

etry in conjunction with standard magnetic resonance imaging techniques.

Nuclear Magnetic Resonance is here used both as a convenient technique for measuring

the fraction that is liquid, deep inside the porous material, and as a way of spatially

encoding the poresize density to produce a pore size distribution map.

In rocks, for example, the pore size in faulted regions is often less than in the bulk rock.

1.4.3 Bounded liquid fraction and diameter determination.

If a sample contains liquid where at least part is con�ned or bounded, say in closed pores

or vesicles, it is often possible to determine the bounded liquid fraction and bounded

diameter, using the technique of measuring the di�usion distance as a function of time.

This has been done both using pulsed magnetic gradients, and by using the static

gradients found in the fringe �eld of a superconducting magnet.

An ultra stable 30A gradient pulser unit was designed and constructed, and a variable

temperature gradient probe designed and constructed.

A software implementation of the full equation describing the signal expected from

bounded di�usion in a static gradient was written, for the fringe �eld measurements.

A 6 pulse constant relaxation time di�usion measuring pulse program was written; this

technique is subject to occasional co-incident echo errors � a routine was written to

identify these echos, so that they could be eliminated from the measured data.

These techniques work best for vesicle diameters in the range 0.1�m to 10�m.
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1.4.4 Fluid transport and di�usion in �ne porous material.

The above di�usion techniques can be used to study 
ow and static self di�usion in

porous materials or powder beds, providing information on how readily liquids may

pass through the material [Mitzithras et al., 1992, Valiullin et al., 1997].

1.4.5 Direct 1D, 2D, 3D imaging of coarsely structured materials.

In larger granular beds 3D imaging may be used to study liquid distribution and per-

colation paths. Flow-di�raction may also be studied. [DePan�lis and Packer, 1999].

Imaging has also been used to study phase separation of multicomponent systems, on

progressive freezing/melting, a phenomena applicable to many food stu�s, as well as

biological samples. Thus one uses a measurement as a function of temperature, as in

cryoporometry, but studies structured concentration dependent melting.

Current resolution is typically 0.1mm in 20mm for 3D structures.

1.4.6 NMR relaxation in pores.

A somewhat more indirect technique is to measure the decay times of the Nuclear

Magnetic Resonance signals. This can provide approximate information on the diameter

of the pores containing the liquid; more importantly it can provide information on the

local environment of the liquid, on the internal surface morphology and on the surface

wettability [Stapf et al., 1996, Allen et al., 1997, 1998, Booth and Strange, 1998], all

with optional spatial resolution.

1.5 Measurements on Porous Materials by SANS.

When neutrons are scattered elastically from density distributions in the porous ma-

terials, the prime characteristic is that the bigger the ratio of the wavelength of the

neutrons to the characteristic size of the density distributions, the wider the angle of

scattering of the neutrons. Thus in principle neutrons (and X-rays) could o�er an abso-

lute calibration of pore size, if we can determine the proportionality constant [Ramsay

and Booth, 1983, Gardner et al., 1994, Margaca et al., 1997, Ramsay, 1998].

Our pores are densely packed, and we will �nd that we can not use unchanged the

scaling constant for an isolated sphere. We will even �nd that for a given lattice of

pores, as the pores decrease in size in the lattice, the angle of scattering does not always
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increase, as stated above. However for a given ratio of pore diameter to lattice spacing,

and for a constant variance of pore and lattice spacing there is currently no known

reason why neutrons should not be able to provide a relative measure of pore sizes. It

is thus surprising that we �nd that while the calibration we obtain agrees remarkably

well with the well established gas adsorption scale for large pores, it di�ers strongly for

small pores. This is currently not understood.

1.6 The scope of this Thesis.

A large part of this work covers the development of the NMR cryoporometry method of

measuring pore size distributions, and the implementation, calibration and application

of a scanning NMR cryoporometer based on a solid state spectrometer, IEEE instrumen-

tation and LabVIEW software running on a PC. This o�ers fully programmed cooling

and warming of the NMR probe, and online graphical display of the amplitude of signal

from the melting liquid, and of the calculated pore size distribution.

The development of this apparatus followed on from earlier work at UKC [Strange et al.,

1993, Alnaimi et al., 1994] using apparatus based on a similar spectrometer and a BBC

computer [Strange, 1994, Alnaimi, 1994]. This used manual control of cooling, and

natural warming of the probe, followed by later o�-line analysis of the measured data.

Other groups have used standard NMR spectrometers to gather NMR cryoporometric

data for later analysis [Hansen et al., 1996].

A major extension of the NMR cryoporometric technique, �rst developed as part of this

work, has been to add spatial resolution. Structured pore size information is presented

with 1, 2 and 3 dimensional resolution [Strange and Webber, 1995, Strange et al., 1996,

Strange and Webber, 1997a,b].

Density and imbibation experiments were performed on sol-gel silicas, to establish av-

erage properties of the silicas.

Small Angle Neutron Scattering and Neutron di�raction experiments were performed

on sol-gel silicas, to determine the solid-solid radial distribution functions G(r).

A range of existing methods of analysing such data exist [Guinier, 1939, Porod, 1951,

Martin et al., 1986, Hurd et al., 1987, Teubner and Strey, 1987, Schmidt, 1991, Li

and Ross, 1994, Ramsay, 1998] These all give di�erent scalings of pore size for a given

scattering, with no clear method of di�erentiating between them.
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Thus geometric models of structures of pores were considered, the average properties

considered analytically, and a novel continuous media Monte-Carlo integration technique

developed to evaluate the solid-solid radial distribution functions for the porous models.

The models and their deduced properties were then used to evaluate, compare and

combine the NMR pore volumetric information, the density and imbibation results, and

the SANS data, giving far more information than any individual technique could in

isolation, and resulting in a neutron scattering calibration of pore-size.

1.7 Accuracies of quoted results.

Numerical results quoted on graphs are in the main generated directly by the programs

generating the graphs; the �nal digits are retained for subsequent computations and are

usually to be regarded as of dubious signi�cance.

In the text of this work, �nal subscripted numerals are similarly retained for any later

computations, and are to be regarded as of dubious signi�cance.

Weighings quoted to 1mg probably have an uncertainty of around �1mg; weighings
quoted to a higher precision were performed on a more stable balance and are probably

good to �0.1mg.
The accuracy of measured pore diameters is more problematic; the only reliable decider

is closeness of repeated measurements, and in the main for the cryoporometric cali-

brations porosity measurements were repeated at least twice on each sample, with two

di�erent samples being made using each silica and liquid. Frequently a repeatability of

median pore diameter of better than 1% is obtained in the middle of the calibration

range, though with the direct nitrogen injection Lindacot cooling random temperature


uctuations cause some measurements to vary more (see the scatter in the calibration

graphs in chapter 7).

With gas 
ow cooling the range of pore diameters for which one can expect a 1%

repeatability is considerably wider. Figures 54, 55, 56 in chapter 9.3 show graphically

the typical repeatability of pore size distribution measurements on large pore silicas

when using gas-
ow cooling.

The quotable accuracy of the pore diameters is discussed further in chapter 7, where

NMR cryoporometry is calibrated against nominal gas adsorption pore diameter, and

is in part a function of the de�nition of pore diameter for arbitrarily shaped pores.



Chapter 2

NMR Theory.

2.1 Interaction of radiation with matter.

When radiation interacts with matter it does so in a quantised manner [Planck, 1929] :

�E = h� = h!
2� = �h!

where �E is the energy di�erence, � is the frequency of the radiation, ! is the angular

frequency, h is Planck's constant and

�h =
h

2�

2.2 Zeeman energy level splitting in a magnetic �eld.

If a nucleus with a spin I and a magnetic moment � is placed in a magnetic �eld, there

will be an interaction energy [Abragam, 1961, Harris, 1987, Farrar and Becker, 1971];

this will be quantised, the energy states obeying Fermi-Dirac statistics, such that the

magnitude of the nuclear spin angular momentum =

P = �h (I (I + 1))1=2

where there are (2I + 1) non-degenerate energy levels mI = I; I � 1; I � 2; :::;�I.

11
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2.2.1 Protons in a magnetic �eld.

For protons, with spin I = 1/2, there will be 2

z

Pz 

P

θ 

Figure 3: Quantised spin preces-

sion cones for protons.

energy levels mI = �1
2 .

P = �h
�
1
2 �32
�1=2

=
p
3
2 ��h

Pz = �hmI = �1
2�h

Hence in �gure 3 we have for the angle � that the

quantised angular momentum vectors make with

the z direction :

� = cos�1 PzP = cos�1 �1p3 = �54�4408:2"

Thus the spins precess in two cones that make

angles � with the z direction, at a rate determined

by ! = 
pB, where for protons,


P = 2.675197 � 108 rad s�1 T�1,

hence 
P /2� = 42.5771 MHz T�1.

At typical experimental temperatures, thermal excitations cause both cones to have

nearly equal populations of spins.

2.3 Net magnetisation from the population imbalance due

to Boltzmann distribution.

Given a spin 1/2 system with two energy levels due to Zeeman energy level splitting in

a magnetic �eld, Maxwell-Boltzmann statistics tells us [Reif, 1965, p.345], that taking

into account the distinguishability of the particles, the population of state S will be a

function of energy level E s, and absolute temperature T :

NE =
e
�Es
kBTP
r e

�Er
kBT

where the total population =

N =
X
r

nr
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Suppose there are N " spins in the lower energy state and N # spins in the upper energy
state, such that :

N = N # +N "

If the energy di�erence between the two states is �E , then at equilibrium the population

of the lower energy level N " will be greater than that of the upper N # :

N " = N #�e
�E
kBT

Thus we may write :

N = N # +N #�e
�E
kBT

= N #�
�
1 + e

�E
kBT

�
���N # =

N

1 + e
�E
kBT

���N " =
N

1 + e
�E
kBT

�e
�E
kBT

Thus if each spin has a z component of magnetic moment �z = 
Pz = 
�h/2 (for spin

1/2), the net magnetisation M0 in a �eld B0 along the +z direction will also be along

the +z direction, with a magnitude given by [Harris, 1987, p.10] :

M0 = �z��N

= 
�hmI�N

=
1

2
�
�h�N

���M0 = (N "�N #)��z
=

 
N

1 + e
�E
kBT

�e
�E
kBT � N

1 + e
�E
kBT

!
��z

=
N �
�
e

�E
kBT �1

�
e

�E
kBT + 1

��z
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This Pad�e form is exact, however since for NMR splittings at conventional tempera-

tures �E�kBT (for protons at 600MHz �E=kB�0:03K), we make the approximation

exp(x) � 1 + x, for small x . We also have �E = �h!0 = �h
B0 and �z = 
�h=2.

Hence :

M0 �
N �(1 + �E

kBT
�1)

1 + 1 + �E
kBT

��z

� N

2
� �E
kBT

��z

=
N

2
�
�h1

2
� 1

kBT
��h!0

=
N

2
�
�h1

2
� 1

kBT
��h
B0

=
N

4
�
2�h2� B0

kBT

In table 1 we list the exact Pad�e form result, and the (small) fractional error in the

approximation, for a number of di�erent temperatures, and for some NMR frequencies

used in this study. We note that for the range of temperatures used (~100K ! 300K),

the approximation is of quite su�cient accuracy.

TfKg Magnetisation � 1030 Error � 106

20MHz 100MHz 300MHz 20MHz 100MHz 300MHz

1 6.77 33.85 101.56 0.5199 64.9889 1754.6676
3 2.26 11.28 33.85 0.0193 2.4070 64.9889
10 .68 3.39 10.16 0.0005 0.0650 1.7547
30 .23 1.13 3.39 0.0000 0.0024 0.0651
100 .07 .34 1.02 0.0000 0.0001 0.0018
300 .02 .11 .34 0.0000 0.0000 0.0001
1000 .01 .03 .10 0.0000 0.0000 0.0000

Table 1: Magnetisation per proton, as a function of frequency and temperature. The
fractional error of the approximate expression is also listed.

Thus the magnetisation measured for a particular NMR experiment will be due to this

population di�erence inverted, giving rise to a Free Induction Decay (or echo) whose

amplitude will thus be to a good approximation (all other factors being equal) inversely

proportional to temperature.
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2.4 The time evolution of nuclear spin systems in a mag-

netic �eld.

The total magnetic moment M of a macroscopic sample is the resultant of the many

nuclear moments � , such that

M =
X
i

� i = 
P

where P is the total spin angular momentum.

A classical magnetic momentM in a magnetic �eld B experiences a torque that changes

the angular momentum P :
dP(t)

dt
= �B�M

hence
dM(t)

dt
= �
B�M

Quantum mechanically one has for the Hamiltonian of the interaction energy of an

isolated spin I with a magnetic �eld B

H = �
�h(B�I)

where �hI is the angular momentum operator.

Then for the equation of motion one has the Liouville � von Neuman eqn. [Abragam,

1961, IIB, (11)] :
�h

i

dI

dt
= [H; I] = �
�h[B�I; I]

For the z component we obtain ( appendix A) [Abragam, 1961, IIB, (12)] :

�h

i

dIz
dt

= �
�h(Bx[Ix; Iz] +By[Iy; Iz])

=
�
�h
i

(BxIy�ByIx)

=
�
�h
i

(B�I)z

This has the same form as the above classical expression; thus we conclude that the

expectation value of <I z> for a free spin I behaves as does a classical magnetic moment.

Since it is linear, it also describes the average behaviour of many non-interacting spins.

Thus for a macroscopic sample composed of non-interacting spins we may use the above

classical expression.
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2.5 The Bloch equations.

We now wish to consider the evolution of many weakly interacting spins, in a magnetic

�eld B0 in the z direction, and a weak additional magnetic �eld B1 rotating in the

xy plane with angular frequency !. We wish to include the e�ect of weak interaction

between the nuclear spins, and between the nuclear spins and the bulk material ('lattice')

[Bloch, 1946] .

We have seen that we expect an equilibrium magnetization in the z direction, based on

the Boltzmann distribution; if Mz is perturbed away from the equilibrium value Mz(1)

= M0, we expect it to return to equilibrium at a rate dependent on the transitional

probabilities between the Zeeman energy levels. i.e. we expect a �rst order behaviour

of the form :
dM z(t)

dt
=

M z(1)�M z(t)

T 1

such that there is an exponential recovery to the equilibrium magnetization with a time

constant T 1, known as the spin-lattice or longitudinal relaxation time. T 1 is thus set

by the rate at which the spins can exchange energy with the 'lattice'.

The rotating B1 �eld is assumed to be much weaker than B0, such that the Boltzmann

equilibrium magnetization Mx(1), My(1) in the xy plane is e�ectively zero. As we

shall see, magnetization decay in the transverse plane is not necessarily a simple �rst

order relaxation process, but has additional phase interactions. However, in a liquid,

in a highly uniform B0 �eld, we may follow Bloch and approximate the behaviour as a

�rst order process of the form :

dMx;y(t)

dt
= �Mx;y(t)

T 2

such that there is an exponential decay of the transverse magnetization with a time

constant T 2, known as the spin-spin or transverse relaxation time. T 2 is then set by

the rate at which the spins can exchange energy with each other, to come to a common

spin temperature.
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We may then write :

dM(t)

dt
= �
B�M� Mx(t)i

0 +My(t)j
0

T 2
�(Mz(t)�Mz(1))k0

T 1

where the i0; j0;k0 axes rotate at angular frequency !.

If we expand the vector product into its components, we get

B�M =

Bx Mx i0

By My j0

Bz Mz k0

= (ByMz�BzMy)i
0

+ (BzMx�BxMz)j
0

+ (BxMy�ByMx)k
0

but

Bx = B1Cos(!t)

By = �B1Sin(!t)

Bz = B0

���B�M = (�B1MzSin(!t)�B0My)i
0

+ (B0Mx�B1MzCos(!t))j
0

+ (B1MyCos(!t) +B1MxSin(!t))k
0

���
dM(t)

dt
=

�

B0My + 
B1MzSin(!t)�Mx(t)

T 2

�
i0

+

�
�
B0Mx + 
B1MzCos(!t)�My(t)

T 2

�
j0

+

�
�
B1MxSin(!t)�
B1MyCos(!t)�Mz(t)�Mz(1)

T 1

�
k0
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2.6 The NMR Hamiltonian operator.

We have considered isolated spins with a magnetic moment in a magnetic �eld, and

then weakly interacting spins. We now wish to consider interactions in more detail,

particularly with reference to their e�ects on the spin-spin relaxation.

There are many possible ways for such spins to interact. It is convenient to describe the

energies of interaction in the form of an NMR Hamiltonian operator bH , separating it

into the following distinct terms, whose origin is given in table 2 :

bH = bHZ + bHRF + bHdd + bHQ + bHCS + bHSR + bHJ

bHZ : Zeeman bHCS : Chemical ShiftbHRF : Radio Frequency bHSR : Spin-RotationbHdd : dipole-dipole bHJ : J or spin couplingbHQ : Quadrupole

Table 2: NMR Hamiltonian terms and their origin.

We have considered the �rst two terms; Quadrupole coupling is not present in protons,

and quadrupolar nuclei are only present at a very small impurity level in the samples

used. The last three terms have only a small interaction energy and the magnets used

for this work were not highly homogeneous; thus the range of Larmor frequencies in the

sample made the last three terms negligible. Hence the main term still to be considered

is the dipole-dipole interaction, being the interaction between the magnetic moments of

neighbouring spins.

2.7 Dipolar interactions, spin-spin relaxation.

Magnetic interactions acting on the quantised nuclear spins may result in changes to the

amplitude and phase of the detected NMR signal, which comes from the component of

the magnetization vector in the xy plane, rotating at the Larmor frequency !0 = 
B0.

This magnetisation will in general decay with a characteristic time T 2, due to the

magnetic interactions, the resulting signal being known as a Free Induction Decay (FID).
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2.7.1 The Dipolar Hamiltonian.

The interaction energy between two quantised dipoles � 1 = 
1�hI1; � 2 = 
2�hI2,

with a vector r12 between � 1 and � 2 is related to the classical expression, and is

given by the dipolar Hamiltonian. Expressed in frequency units, this may be written as

[Abragam, 1961, Ch. VIII G], [Harris, 1987, Ch. 4.1] :

h�1 bHdd =
�0
4�


1
2
�h

2�
r�312

�
I1�I2�3r12�2(I1�r12)(I2�r12)

�
fHzg

It can be shown (see appendix B) that this may be expressed as the sum of a �nite

series of terms [Harris, 1987, Ch. 4.1], each the product of an operator and a second

order spherical harmonic :

h�1 bHdd =
�0
4�


1
2
�h

2�
r�312 (A+B + C +D +E + F ) fHzg

Term Operator Spherical Harmonic Interaction
A I1zI2z J0: -(3 Cos2� � 1) Classical Dipolar
B ( I1+I2� + I1�I2+) J0:

1

4
(3 Cos2� � 1) Flip Flop

C � ( I1+I2z + I1zI2+) J1:
3

2
Sin � Cos � e�i� �m = �1

D � ( I1�I2z + I1zI2�) J1:
3

2
Sin � Cos � e+i� �m = �1

E � ( I1+I2+) J2:
3

4
Sin2� e�2i� �m = �2

F � ( I1�I2�) J2:
3

4
Sin2� e+2i� �m = �2

Table 3: Dipolar Hamiltonian terms A to F, and their signi�cance.

The A term is the classical interaction of one magnetic dipole on another, such that the

precession rate of one spin will be altered by the local magnetic �eld due to the �eld

of the other's magnetic dipole. Since in general the local �elds will be random, then if

they are static (as in a rigid solid), the FID will decay in a Gaussian manner. However

if they are time-varying in a random manner, the decay will be exponential.

The B term is due to the 
ipping of two spins, such that if one goes up, the other goes

down, with a net �m = 0 (i.e. net energy is unchanged, but the phase of the interacting

pair is randomised); the decay will then be exponential.

For spins separated by a �xed characteristic distance, this may give rise to an FID that

is initially Gaussian, but then dips below the axis (i.e. changes phase); cyclohexane

behaves in this manner in the rigid and plastic phases (see �gures 28, 29).

The other terms all require a net change in state �m, which implies that they require

a 
uctuation with comparable energy (see chapter 2.7.2).
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The equilibration of the spin system proceeds at a rate T 2, which can be at a faster

rate than T 1, since T 1 is limited by the rate at which energy can be exchanged with

the lattice, whereas T 2 has terms that involve no net change of energy.

The processes involved in T 1 and T 2 relaxation lead to a loss of phase as a result of the

interaction, and this information is not recoverable. There is an additional mechanism

that leads to a loss of net coherent magnetisation in the xy plane, resulting in a relaxation

at a rate known as T 2
�. This occurs when di�erent magnetic �elds are present in the

sample, due to local or B0 magnetic gradients. The di�erent magnetic vectors then

precess at di�ering rates, causing a decay in the net observable magnetization vector.

Thus we have

T 2
� � T 2 � T 1

In some cases loss of net transverse magnetisation is permanent, in other cases it may

be at least partially restored (see chapter 2.8).

2.7.2 Spectral densities.

T 1 relaxation is caused by magnetic 
uctuations (usually caused by thermal 
uctua-

tions) at frequencies to which the spins are sensitive, inducing stimulated transitions

between energy levels.

The T 1 ,T 1� and T 2 relaxation rates are found from the spectral density functions J of

the 
uctuations; for like spins we get [Harris, 1987, Ch. 4.3] :

1=T 1 = 4�C�[J1(!0) + J2(2!0)]

1=T 1� = C�[J0(2!1) + 10�J1(!0) + J2(2!0)]

1=T 2 = C�[J0(0) + 10�J1(!0) + J2(2!0)]

where

C =
3

8

4�h2I(I + 1)

�
�0
4�

�
2

We see that all relaxation rates are a�ected by 
uctuations at the Larmor frequency

!0 (C,D terms in dipolar Hamiltonian) and at 2�!0 (E,F terms). T 2 relaxation is also

caused by low frequency 
uctuations (A,B terms); this results in the T 2 in rigid solids

often being very short, due to the slowly varying �elds of the local environment, thus

giving a broad spectrum line. The T 2 for ice and for cyclohexane in the brittle phase
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is typically around 10�s but is longer for cyclohexane in the plastic phase (see �gures

28 29).

2.7.3 Motional narrowing.

If the spins are moving so fast that within the period of an NMR precession the spins

see the orientational average of the local �eld, then the line-broadening e�ect of the

local �elds is lost, since the above spherical harmonics average to zero, and instead of a

short T 2 decay (typical of a solid), T 2 will in the high-temperature limit become equal

to T 1.

Such behaviour is common in mobile liquids, such as the bulk water and cyclohexane

used in this project. It is this di�erence between the behaviour of the T 2 in the solid

and the liquid upon which this project in part depends. (see chapter 3).

2.7.4 Spin-spin relaxation in pores.

When a mobile liquid is con�ned in a pore, the spins will di�use and interact with the

surface. Thus relaxation at the surface will reduce the average relaxation times of the

bulk liquid [Brownstein and Tarr, 1977, 1979, d'Orazio et al., 1990], acting in much the

same way as would paragmagnetic ions in the liquid.

In the fast exchange limit with a fully �lled sample we obtain a single T 2, that is a

weighted average of the surface liquid relaxation time T 2s and the bulk liquid relaxation

time T 2b.

Thus one has
1

T 2
=

Vs
V
� 1
T2s

+
Vb
V
� 1
T2b

V = Vs + Vb, being the volumes of the total, surface and bulk regions.

For well characterised materials such as sol gel silicas, this phenomena is su�ciently

well understood for it to be used as a method of determining average pore diameter and

pore �lling factors, based on the measured relaxation times [Gallegos et al., 1986, Stapf

et al., 1996, Allen et al., 1997, 1998]. It is often also applied to other materials such as

cement and clays; however for these materials it is not clear that the surface relaxation

inducing interactions are su�ciently characterised as yet for it to predict the average

pore diameter with any great con�dence.
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2.8 NMR spin echoes.

The T 2 of a mobile bulk liquid such as cyclohexane is typically about the same as the T 1,

usually in excess of a second. However in the permanent magnet used, the magnetic �eld

homogeneity was such that following a 90� R.F. pulse (tipping the magnetisation from

the z into the xy plane) spins in di�erent regions of the sample precess at di�erent rates,

resulting in a randomising of the spin vectors, and the loss of the net magnetisation in the

xy plane. Thus the signal following the 90� pulse decays, giving a Free Induction Decay

(FID) lasting a few milliseconds (T 2
�). It is possible to recover this magnetisation,

however, (subject to T 2) using a later 180
� R.F. pulse, (see �gure 4).
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Figure 4:
NMR spin echo, generated by a 90�y0 � � � 180�x0 � � � echo sequence, where 90�y0

occurs at t = 0 and 180�x0 at t = 6ms. The echo is centred at t = 12ms.

We will use a coordinate system x'y'z , rotating at the Larmor frequency ! = 
�B0

around the z axis.

In �gure 5a, the equilibrium magnetisation in a �eld Bz is along the z direction. Apply-

ing a B1 R.F. �eld rotating at the same rate as the precession of the magnetisation in

the B0 �eld, along the y' direction, the net magnetisation is tipped into the x' direction

using a 90� pulse, due to the precession around this B1 �eld in the rotating frame.

In �gure 5b, we see di�erent spins dephasing at di�erent rates, according to the local

magnetic �eld : !(x; y; z) = 
�B0(x; y; z), such that after a time � a particular spin

has accumulated a phase di�erence �� = � ��! = � �
��B0. For su�ciently long � ,
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x'

y'

z

(a:) Precession due to 90�y0 R.F. pulse.

x'

y'

z

(b:) Dephasing decay of FID due to �eld
variations.

x'

y'

z

(c:) Precession due to 180�x0 R.F. pulse.

x'

y'

z

(d:) Rephasing of spins to produce an echo.

Figure 5:
Generation of a spin echo in an inhomogeneous magnetic �eld using
a 90�y0 � � � 180�x0 � � � echo sequence, where the blue vectors are
in a higher �eld than the red ones, and thus precess faster.
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the spins will be randomised, there will be no net magnetisation and the FID will have

decayed.

In �gure 5c, we see that the action of a 180�x0 pulse is such as to convert a phase gain

to a phase lag, and visa versa. Thus those spins that are in a higher �eld, that had

accumulated a phase gain �� will now have a phase lag of ��.

In �gure 5d, we see that after a further time � , if the �elds experienced by the spins

are constant, these spins will have accumulated a further phase gain �� and will now

have a net phase of 0. i.e. the spins will have re-focussed to form an echo. They will of

course then dephase again as per �gure 5b. The amplitude of the echo will be reduced

from that of the FID by the action of the transverse or spin-spin relaxation, T 2.

An important proviso is that the �eld experienced by a spin should be constant. However

the spins in a liquid are mobile, and in the time � of an NMR experiment can move

to a di�erent �eld. Then the refocusing will be imperfect, and there will be a further

reduction in the amplitude of the echo. How signi�cant this e�ect is, is a function of the

di�usion rate of the liquid, the gradients from the B0 magnet, and any other gradients,

due to e�ects such as iron in a particular porous medium, or �eld gradients caused by

susceptibility changes in a porous medium.

One way of reducing the e�ects of signal loss due to di�usion, is to use a Carr-Purcell-

Meiboom-Gill (CPMG) sequence, where one follows the 90� pulse with a chain of 180�x0

pulses at 2� intervals, with a reduced � to reduce the time for di�usion between pulses.

This works since the di�usional reduction of the signal is proportional to �3.

For most of this work, particularly in porous silica, a simple 90�y0���180�x0���echo
sequence was used, with the echo amplitude being recorded. However for some work

on clays, with strong internal gradients, a CPMG sequence was used, with the nth echo

amplitude being recorded.



Chapter 3

NMR Cryoporometry method.

NMR Cryoporometry is a method suitable for measuring pore sizes and pore size

distributions in the range of less than 30�A to over 3000�A pore diameter. The tech-

nique involves freezing a liquid in the pores and measuring the melting temperature

by Nuclear Magnetic Resonance. Since the melting point is depressed for crystals of

small size, the melting point depression gives a measurement of pore size.

3.1 NMR Cryoporometry equations.

We may de�ne porosity as the fraction of the sample volume occupied by pore void; an

important characterising parameter is the porosity as a function of pore diameter and

spatial location, i.e. the pore size distribution within a material.

Recent work by Jackson and McKenna [Jackson and McKenna, 1990] demonstrated

that the melting point depression of a variety of liquids con�ned in silica glasses var-

ied inversely with the mean pore diameter as determined by gas adsorption isotherm

measurements.

This behaviour is closely related to the capillary e�ect; both re
ect the change in free

energy caused by the curvature of the interfacial surface. This behaviour was originally

described by equations developed by J.W. Gibbs, based on theoretical considerations of

the equilibrium states of heterogeneous substances [Gibbs, 1875, 1878, 1906 reprinted

1961, 1928].

Initial impetus to this �eld of research was given by J. Thomson who considered the

related theory of the depression of melting-point of ice caused by pressure or other

stress [Thomson, 1849, 1862]. Sir W. Thomson (his brother, later Lord Kelvin) derived

a related theory for the equilibrium pressure at curved liquid/vapour surfaces, that

26
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describes capillary condensation (the Kelvin equation, see chapter 1.3.1) [Thomson,

1871].

J.J. Thomson later considered the e�ect of curvature on the equilibrium temperature of

a liquid droplet [Thomson, 1888], [Defay et al., 1951, 1966, eqn. 15.83]. When extended

to small crystals [Defay et al., 1951, 1966, eqn. 15.92] this is consistent with the Gibbs

and Kelvin equations; the contact angle is assumed to be 180�. Expanding and taking

the �rst term gives us the standard form.

Thus the Gibbs-Thomson equation for the melting point depression �Tm for a small

crystal of diameter x is given by [Jackson and McKenna, 1990] :

�Tm = Tm�Tm(x) = 4�slTm
x�Hf�s

(1)

where :

Tm = normal melting point of bulk liquid

Tm(x) = melting point of crystals of diameter x

�sl = surface energy at the liquid-solid interface

�Hf = bulk enthalpy of fusion (per gram of material)

�s = density of the solid

We may rewrite equation 1 as :

�Tm =
k

x
(2)

To exploit this e�ect for pore size measurement [Strange et al., 1993] a porous sample

containing a liquid is cooled until all the liquid is frozen, and then gradually warmed

while monitoring the amplitude of the NMR proton spin echo from any liquid present.

The liquid is usually chosen to be water or cyclohexane, the latter o�ering the large

melting point depression factor k of 1825 K�A. i.e. a depression of nearly 20K in 100�A

pores.

NMR is a sensitive technique for distinguishing between solid and liquid, as the coherent

transverse nuclear spin magnetisation decays much more rapidly in a solid than in a

mobile liquid (chapter 2.7). Measurement of the volume of liquid present is usually most

conveniently made using a 90�x � � � 180�y � � � echo sequence (chapter 2.8), where

the time interval 2� is set to be longer than the solid decay time but less than the decay

time in the liquid (chapter 7.1). For water and cyclohexane 2� times of 4ms to 40ms

were typically used.
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The amplitudeV of the echo is related to the volume v of solid that has melted to a liquid

at a particular temperature T and thus the volume of the pores that have dimension

less than or equal to the corresponding dimension x in equation 2. A further small

increase in temperature T produces a small increase in liquid volume �v proportional

to the volume of pores with diameter x to x+�x. The pore size distribution function

dv/dx can therefore be obtained from the slope of the curve of v vs T using :

dv

dx
=

k

x2
� dv
dT

(3)

where x is related to the temperature by the equation 2. The value of k used was

determined using gas adsorption data, using the nominal pore sizes of a number of sol

gel silicas as calibration values (chapters 7.5.3, 7.4.3). Further calibration work was

performed using small angle neutron scattering (chapters 11 to 17), in an attempt to

establish an absolute calibration scale. Good agreement was established between the

two methods for large pores, but a signi�cant divergence was found for small pores.

Thus the calculated pore size distribution gives one in e�ect the incremental volume

of the pores at a particular pore diameter, for unit increment of pore diameter. If

one normalises the distribution to unit volume of the dry porous matrix, one obtains

the units f�A�1g. If one normalises the distribution to unit mass of the dry porous

matrix, one obtains the units fl��A�1�g�1g. Thus if one then integrates these pore size

distributions over the measured pore diameter range, one obtains respectively fv, the

volume fraction of the matrix occupied by void space, and pm, the mass normalised

total porosity of the pores fl�g�1g.
There has been considerable work by both NMR and neutron scattering to understand

the changes that occur in water/ice and cyclohexane when enclosed in small pores

[Steytler et al., 1983a,b, Steytler and Dore, 1985, Dunn et al., 1988, Dore et al., 1989,

1991, Farman et al., 1992, Teixeira et al., 1997, Baker et al., 1997, Allen et al., 1997,

Booth and Strange, 1998, Allen et al., 1998, Margaca et al., 1999].
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NMR Cryoporometry

experimental apparatus.

4.1 Bulk and 1D resolved cryoporometry apparatus.

For bulk cryoporometry measurements and

Figure 6: NMR spectrometer � Transmit-

ter in foreground, then matching box, then

receiver, with Lindacot cooler connected

to the probe.

1D resolved cryoporometry measurements,

I commissioned a wide frequency range solid

state NMR spectrometer, based on digital

R.F. switching technology, that I had de-

signed and constructed earlier for NMR re-

laxation measurements, see �gures 6, 7, 8.

This employed a solid-state NMR pulse pro-

grammer I had designed (�gure 9) to pro-

duce the NMR pulse sequences; a 90�-� -

180�-� -Echo sequence was used for the cry-

oporometric measurements, with the echo

amplitude being monitored to determine the

liquid fraction.

The magnet used was a 21.5 MHz (protons) MullardTM permanent magnet, with a 35mm

gap, into which was inserted a Dewar containing the NMR probe, with cooling primarily

by direct injection of liquid nitrogen (Lindacot) [Norris and Strange, 1969], see chapter

5.1.

The sample size was a standard 5mm high resolution NMR sample tube, with a sample

29
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Figure 7: NMR Receiver circuit diagram, for bulk and 1D cryoporometry.
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Figure 8: NMR Transmitter circuit diagram, for bulk and 1D cryoporometry.
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length of 20mm or less. The probes that were constructed for this project, and the

methods that were used to cool them, are described in chapter 5.

The experiment was controlled from, and the results calcu-

Figure 9: Cryoporometer

instrument rack for bulk

and 1D measurements.

lated using a 486 66MHz personal computer (PC) running a

LabVIEWTM 3.01 for WindowsTM program that I designed

for this project. For this project the PC was interfaced

by an IEEE488 bus to a GouldTM 1604 digital oscilloscope

and a Hewlett PackardTM 34401A multimeter, and by se-

rial interface to a Control TechniquesTM 452+ proportional-

integral-derivative temperature controller (see �gure 10).

Figure 9 shows the instrument rack that was assembled for

the bulk and 1D cryoporometry measurements. From the

top there is : temperature controller, NMR pulse program-

mer, NMR system power supply, LabVIEW control and

status display, control keyboard, digital oscilloscope, PC,

sample temperature meter.

The LabVIEW program enabled the creation of an interac-

tive 'front panel', giving the user control of the experiment

and displaying the results numerically and graphically (see

front panel diagram 11).

The block diagram of the top level LabVIEW control and

data gathering program is shown in �gure 12, the full dia-

gram with all sub-level and test routines �lling a lever-arch

�le.

For a description of the use of the instrument, see appendix

C, and for an outline of the temperature control see chapter 5.1 (temperature cycling).
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Figure 12: LabVIEW top level block diagram for cryoporometer.
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4.2 2D and 3D spatial resolution cryoporometry appara-

tus.

For the two-dimensional and three-dimensional cryoporometry measurements, the spec-

trometer used was a modi�ed BrukerTM CXP200 console with a Doty Scienti�cTM DSI1000A

1kW Class AB R.F. power ampli�er and three TechronTM 7700 series gradient ampli�ers.

Rather than employing the usual Bruker AspectTM computer, I interfaced the Bruker

to an industrial grade 486 DX33 personal computer running SMISTM software and with

SMIS plug in modules including an AT&TTM DSP32C digital signal processor (�gure

13).

I designed and constructed the interface between the Bruker and the PC (�gure 14)

using a single chip AlteraTM EPM5128 programable gate array, programmed to mimic

the action of the Bruker Aspect computer device bus interface (20 bit data + 8+3+2

controls). This was originally designed to be driven from the cartridge port of an Atari

STE, and was initially used in this way, but a simple re-wire to the PCB of a second

copy allowed it to be driven by 11 bits of a parallel port from the PC [Macnair, 1995].

It provided control of the Bruker frequency synthesizer (20+20 bits), frequency sweep

unit (16+20 bits), modulator control (20+4+4 bits), �lter control (12 bits) and output

device interface (20+20 bits), and these may thus now be directly controlled from the

SMIS software, calling Forth routines written by Dr. M.J.D. Mallett to duplicate the

actions of the SMIS hardware controlling routines.

Gating and phase selection of the Bruker R.F. was from the software controled pulse

sequencer in the SMIS system. For soft pulses for slice selection, I designed and con-

structed a four quadrant R.F. multiplier (�gure 15) based on an Analog DevicesTM

AD834 R.F. multiplier chip, AD5539 R.F. ampli�er, and NE630N switch. This was

introduced before the 20W broadband ampli�er, and controlled from an analogue chan-

nel of the SMIS sequencer, programmed to generate a sinc(t/T0) function of width T0.

Shown are the 500MHz bandwidth multiplier, an op-amp for di�erential to single ended

conversion, and output gate switch to ensure that the linear output ampli�er receives

negligible signal when the pulse is o�.

I constructed sixth order Butterworth low-pass equal capacitor Salen and Key �lters

[Aikens and Kerwin, 1972, Huelsman, 1976] (using surface mount resistors and capaci-

tors) with selectable cut-o� frequencies of 100kHz, 300kHz and 1MHz (plus un�ltered)



Figure 13: Diagram of the imaging spectrometer, based on a Bruker console and SMIS
control computer.
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Figure 14: Control interface between SMIS PC parallel interface and Bruker spectrom-
eter, mimicking the Bruker Aspect computer device bus interface, implemented using
an Altera programmable logic device EPM5128.

and introduced them in both receiver channels, for use at higher bandwidths than the

Bruker receiver �lters (�gure 16).

The R.F. and gradient coils [Hayes et al., 1985, Strange and Halse, 1996] were designed

by Andrew Macnair [Macnair, 1995] and Magnex Ltd. and constructed by Sarah Codd

[Codd, 1996] for imaging broadline materials. The R.F. coil was of birdcage construction;

the z gradient along the main magnetic �eld B0 was generated by a solenoidal Maxwell

pair, and the x and y gradients were generated by Golay saddle coils.

The magnet used was a 200mm horizontal bore MagnexTM superconducting magnet,

operating at 105MHz for protons. The sample access diameter (room temperature,

inside the gradient and R.F. coils) was 25mm. Into this was inserted the narrow neck

of a dewar, about 100mm long, with 12.5mm internal diameter clear bore, that then

swelled out (allowing hand access) and extended to the edge of the magnet. This then

allowed the temperature of the sample to be varied.



             50 Ohm Mixer
                                        J.B. Webber 93_05_24

Figure 15: Four quadrant R.F. multiplier diagram and PCB, for amplitude modulation
of NMR transmitter pulse, for bandwidth shaping and slice selection.



Figure 16: Dual channel low pass 100kHz, 300kHz, 1MHz (+ bypass) 6th order Butter-
worth �lters for NMR recieved signal U and V channels.



Chapter 5

NMR cryoporometry

temperature control.

The main prerequisites for the sample temperature control for cryoporometry were that

it be able to cool the probe below -120�C (150K) when using cyclohexane as the indicator

liquid, and down to liquid nitrogen (77K) when using liquids such as butane; that

it should be able to warm the sample at a controlled rate, with little in the way of

temperature excursions; that all the sample be as nearly at the same temperature as

possible. It was important for the recorded temperature be as close to the true sample

temperature as possible.

5.1 Liquid nitrogen droplet cooled probe.

The cooling technique used for most of these measurements was direct injection of

liquid nitrogen into a 'splash-pot' in the probe (Lindacot system) [Norris and Strange,

1969]. This was achieved by pulsing current in a heater coil in an inverted cup in liquid

nitrogen in a Dewar, forcing droplets of liquid nitrogen into the probe. The liquid

nitrogen droplets were ducted into a 'splashpot' chamber built into the body of the

probe, where the droplets evaporate. Thus the full latent heat of evaporation of the

nitrogen was available to cool the probe.

The thermal mass of the splashpot then served to smooth the temperature excursions

from the evaporating nitrogen droplets. A resistive heater was built into the body of

the probe, enabling it to be warmed above room temperature.

41
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The probe (�gure 17) consisted of the brass body containing the splashpot and heater,

a lower removable copper chamber containing the sample and R.F. coil, and a screened

upper plate, allowing mounting of the triaxial LemoTM R.F. connector, thermocouple

connectors for the splashpot and the sample (with ferrite R.F. noise �lters), and the

heater connector. This also acted as a support for the nitrogen droplet inlet tube. The

various sections of the probe are linked by thin walled stainless tubing.

To maintain the sample all at a uniform temperature, a

Figure 17: Liquid nitro-

gen cooled cryoporometry

NMR probe, used for bulk

and 1D measurements.

copper foil was wound around the sample tube, ensuring

that it was non-shorting. This then also served to ensure

that the R.F. �eld produced by the NMR probe coil was

axial and uniform within the foil, giving a uniform B1 �eld.

A heavy copper link provided a thermal path to the splash-

pot; a copper-constantan thermocouple was soldered to the

foil, to monitor the sample temperature. A dewar of melt-

ing ice was used as a reference temperature for the other

copper-constantan junction, and the E.M.F. monitored by

a Hewllet-PackardTM 34401A IEEE multifunction averag-

ing meter.

The temperature was controlled by a Control TechniquesTM

452+ Proportional-Integral-Derivative temperature controller,

monitoring the temperature in the splash-pot with a copper-

constantan thermocouple, and with a serial interface and

dual heat/cool output.

The heat output of the controller was connected to a mains

burst-�re thyristor unit; the cool output was connected to

a 12v 2A current pulser, with adjustable repeat rate, pulse

width, and current (�gure 9), that was connected to the Lindacot heater coil (�gure 6).

The main limitation of this temperature control system, is the pulsed nature the cooling;

when used with the Control Techniques temperature controller, the temperature ramp

is sometimes less uniform than one would like, particularly when studying large pores

giving only a few degrees of melting point depression.

A further limitation is that it requires cryogens, and the Lindacot Dewar at present

requires manual �lling before each temperature run, thus reducing the number of runs
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possible in a day to typically four. It would be possible to add automatic Dewar re-

�lling, with the addition of sensor inputs, digital control outputs and a cryogen rated

valve and pressure safety release, using gas pressure to perform the transfer.

5.2 Peltier cooled probe.

As part of this project an alternative probe was designed

Figure 18:

Peltier cooled NMR probe.

and constructed, using three thermoelectric cooling ele-

ments built into the body of the probe, with water cooling

to remove the waste heat. Due to space limitations in the

probe dewar, the size of the elements was limited, and the

maximum cooling achieved was only down to 0�C (�gure

18); thus this probe was not actually used for cryoporomet-

ric measurements.

The probe was constructed from two copper sections, joined

by thin walled stainless tubes. The lower section contained

the sample coil in a threaded chamber, and a copper �n-

ger provided a thermal path to the Peltier elements. The

upper chamber provided a thermal path from the Peltier el-

ements to a water cooled chamber, and a support plate for

the triaxial LemoTM R.F. connector; for the blue thermo-

couple connectors for the probe lower body and the sample;

for the grey power connector for the Peltier elements and

for the blue and black push �t connectors for the cooling

water tubes.

The Peltier elements used were R.S. part No. 197-0332;

these were rated at �T = 67C� @ 0W heat 
ux, and 9.2W

heat pumping power @ �T = 0C�. The elements were used both in the con�guration

of one in series with two in parallel (which gave a �T of about 22C�), and also as just

two in parallel (which gave a �T of about 20C�), both at about 5A current. Thus one

concludes that with the probe in the Dewar, the heat 
ux is about 13W = 54 Cal�s�1

at 0�C . That it is this high is partly due to the very narrow vacuum gap enforced by

the magnet pole spacing, and partly due to conduction through the elements themselves

and the probe R.F. and thermocouple stainless tubes. Thus the �T was insu�cient for
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Figure 19: Plotting the thermal performances of Peltier elements, and the performance
of the constructed Peltier cooled probe allows us to deduce the performance of alterna-
tive designs.

actual use.

A design that might be more successful would be to have an extended Dewar, that swells

out above the magnet pole-faces, allowing larger Peltier elements with substantially

greater heat pumping power. If elements of R.S. part No. 238-3010 were used, rated

at �T = 65C� @ 0W heat 
ux, and 68.8W heat pumping power @ �T = 0C�, then if

four were used in parallel, a �T = 56C� should be achievable, giving a lower operating

temperature of about -36�C, with a heat 
ux of about 37W = 153 Cal�s�1 (see �gure
19).

If six two stage elements each with �T= 83C� @ 0W heat 
ux, and 34.5W heat pumping

power @ �T = 0C� (R.S. part No. 197-0398) were used, the lower temperature only

drops by 10C�, for a factor four increase in cost.

The major advantage of a Peltier cooled probe is that it requires no cryogens; as a result

all 24 hours of the day are available for temperature runs, and just not the working day

to which the existing cryogen cooled probes are limited.
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5.3 Gas 
ow cooled probe.

A third design was evaluated, based on standard gas 
ow techniques.

A commercial gas 
ow Dewar insert (Bruker)

Figure 20: Gas 
ow cooling system,

shewn with 3D imaging system in the

stray �eld con�guration.

with 
exible Dewar piping was used to con-

struct a gas 
ow system. A neck extension

was designed for a standard 25 litre Nitro-

gen dewar to enable a gas tight connection.

Nitrogen gas was then boiled o� using a re-

sistive heater connected to a 60V 5A power

supply (Roband VAREX 60-5) (usually used

in the range 3A to 4 A), and passed through a

200W process air heater tube (R.S. part No.

200-2480). All non Dewar tubing was lagged

with 6.5cm dia. foam pipe lagging, and the

process heater was additionally �rst lagged with a few layers of ceramic paper for safety

reasons; an earth safety connection was soldered to the body of the heater.

The gas 
ow system was originally constructed for use with the 3D imaging NMR

system (see Apparatus, Chapter 4.2) (�gure 20), but was adapted for use with the

cryoporometer by ducting the cold gas into the probe's normal liquid N2 inlet tube to

the splashpot. The process heater was connected to the burst-�re mains controller of

the temperature controller.

Using 2A to the evaporative heater, it was not possible to maintain a temperature of

0�C at the sample; with 3A about -15�C was achievable, and with 4A about -70�C was

reachable. However, with maximum output from the temperature controller to the air


ow process heater, it was only then able to warm to about -15�C.

Thus for the samples being studied (i.e. water in large diameter pores) it was necessary

to cool the sample to -25�C (to ensure that all the water was frozen) and then measure

over the range -10�C to +5�C. A slightly modi�ed cryoporometric sequence was pro-

grammed, to enable this (Pore Measurement GFlow). However it was found necessary

to use 4A to the evaporator during the cooling, and 3A during the warming and mea-

suring. It was also particularly important to switch o� both heaters at the end of the

run, as damage would occur if all the liquid evaporated or the gas 
ow stopped for any
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reason.

Clearly for regular use it would be preferable to add further electronic sensing and

switching, to ensure automated operation and protection.

The liquid nitrogen consumption was found to be considerably higher than when using

direct injection of liquid nitrogen droplets using the Lindacot system. The Lindacot

system used a 25 litre dewar of liquid nitrogen in a week, corresponding to about 20

runs over a typical temperature range of -50�C to 10�C, at a rate of 0.5C��min�1; with
the gas 
ow system system it was necessary to re-�ll the dewar every day, corresponding

to 2 runs, with a minimum temperature of -25�C, and measuring over -10�C to +5�C

at a rate of 0.05C��min�1.
Nonetheless, for these initial trials, the gas 
ow system provided a valid method of

obtaining a smoother and slower warming than could be provided by the Lindacot ni-

trogen droplet system, and was thus particularly useful for studying large pore diameter

samples (see measurements on Trisopor
R porous glass, chapter 9.3).

The acquisition of a 50 litre N 2 Dewar allowed the construction of a second more e�cient

gas cooled unit, where dried air of regulated pressure was passed by a solenoid valve on

a time-switch to two ports on the Dewar, each with their own valves � the �rst enabled

rapid cool-down, the second was via an adjustable needle-valve, set for the amount of

cooling required. Vented cold gas was used as before, via the process heater. The fail-

safe action of the program was modi�ed. It would still be advantageous to construct a

low thermal loss take-o� point.

5.4 Temperature cycle control.

The cryoporometric temperature cycle for these probes was controlled by a LabVIEWTM

program Temperature Cycle case (�gure 21) with a number of states, the �rst one of

which is Idle. The upper and lower temperatures over which a measurement is to

be performed are set by the user on the main cryoporometric LabVIEW front panel

(�gure 11), which also displays the states. The main program then calculates the lowest

temperature to which the splash-pot must be taken, allowing for supercooling of the

sample, and (temperature dependent) o�sets between the splash-pot and the sample

temperature.

When the temperature cycle is enabled, the state changes to Cool, when a steadily
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Figure 21: Temperature cycling LabVIEW sub.vi showing temperature cycle states and
start and end measuring temperatures.

ramping down (5 C��min�1) target temperature is sent to the Control Techniques tem-
perature controller via the serial interface. When the target temperature reaches the

calculated lower temperature, the state changes to Dwell. It remains in this state for

at least 15 minutes, to ensure proper cooling of the probe, and until the sample tem-

perature reaches the start set temperature.

The state then changes toPre-warm, and the target temperature ramps up (2 C��min�1)
until it reaches the start set temperature. The state then changes to Warm up, and

the ramp rate changes to the rate set by the user (default 0.5 C��min�1). Measure-

ments are taken, and averaged so as to generate �nally about 300 data points spread

uniformly over the measurement temperature range. At each measurement the melting

point curve is displayed, and the pore size distribution is calculated and displayed.

Measurements are then performed until the upper set temperature is reached, when

the state switches to Done, and the temperature ramping is stopped. The data is

then saved (if AUTO is enabled), and it is plotted to a networked laser printer; the

monotonic function is then applied to the data. Previous 'Current Data' is copied to

'Previous Data', together with a record of it's name and comment line.

It should be noted that as the temperature controller o�ers no way of actually turning

the cooling o�, the Idle and Done states are dynamic ones, where the target temperature

is continually adjusted to be the same as the current measured temperature.

An alternative version of the temperature control software allows for measurements to

be made on a slowly ramped cooling part of the cycle, as well as on the warming part,

for investigating temperature hysteresis e�ects.



Chapter 6

Sample preparation for

cryoporometry.

When preparing a series of samples for cryoporometry, �rst empty 5mm diameter thin

walled high-resolution NMR sample tubes were cut to about 7cm length, and sealed at

one end. They were dried in an oven, and then were weighed together with a numbered

cap. About 12mm to 15mm of the porous sample was added, and the samples re-

weighed. The porous samples were then dried overnight, usually at 120�C, in a metallic

numbered holder, and re-weighed. Comparisons of weights before and after drying acted

as con�rmation that samples had not been interchanged.

Weighing tests on porous silicas showed that an hour was su�cient for most of the

adsorbed moisture to be lost at 120�C, and that after a few hours at 120�C there was

little further weight loss until the temperature was raised to 250�C. It was assumed

that this latter loss of weight was due to surface OH groups being driven o�, and was

probably associated with silica surface modi�cation. Thus for normal preparation the

drying was limited to overnight at 120�C.

Using a syringe, just su�cient indicator liquid (usually water or cyclohexane) was added

to the porous material to cause the grains to stick together from surface tension. The

aim was to achieve about 110% �lling � i.e. to have the pores fully �lled, and an extra

10% liquid in the inter-granular space. Gas expressed from the pores frequently caused

void space to form in the tubes, and the porous material had to be tapped down. It

was particularly important not to over�ll to excess those samples using water as an

indicator liquid, as otherwise they would shatter when cooled. Any samples that were

48
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later found on measurement to be not over 100% �lled were then rejected.

The water used was either distilled water, or de-ionised, �ltered, water, with a �nal

reverse osmosis treatment stage, which had a conductivity of about one tenth that of

the distilled water. The cyclohexane was anhydrous grade, in sure-seal bottles. The

cyclohexane was added to the porous material under a dry nitrogen atmosphere, in a

glove box. Early tests had shown that contamination with water could result in a small

proportion of pre-melting of the cyclohexane.

The samples were then re-weighed, and the mass of porous material and indicator liquid

calculated.

The samples were then 
ame sealed � they were attached via a silicone tube to a vacuum

line with a liquid nitrogen �lled cold trap (to prevent oil backstreaming) and a rotary

vacuum pump. The tubes were immersed in liquid nitrogen to the depth of the sample.

As soon as the nitrogen stopped boiling vigorously, the tap to the vacuum was opened.

(It was important not to let the sample reach liquid nitrogen temperature while air was

in it, as air could then be condensed, which would later expand and shatter the sample

tube.) Cooling the sample prevented the indicator liquid from evaporating. The neck of

the sample tube was then heated using a natural gas/ oxygen torch, until it collapsed,

and then further heated until it could be separated; the tip was then heated to white

heat, to ensure a good seal. The samples were labelled when cool.

It should be noted that no freeze-pump-thaw cycle was used to remove dissolved para-

magnetic oxygen, as a shorter T 1 was useful for faster signal averaging.



Chapter 7

NMR Cryoporometry calibration.

NMR Cryoporometry is a secondary method of measuring pore sizes, in that the

cryoporometric melting point depression constant for the liquid being used must be

�rst calibrated using known pore sizes. It does however have the major advantages

of a directly calibratable measurement of pore volume, of non-destructive pore size

measurement, and of spatial resolution of pore size. As we shall see, it shows good

pore size linearity with gas adsorption measurements.

7.1 Cryoporometer volumetric calibration.

There are a number of points that must be taken into consideration when wishing to

obtain an accurate measurement of the pore volume as a function of pore size, when

using an NMR cryoporometer, as one is measuring an NMR signal as a function of

temperature.

The NMR signal intensity due to a �xed volume of liquid may change for a number of

reasons:

� the Boltzmann factor will change with temperature; (chapter 2.3);

� the quality factor Q of the receiver coil will change with temperature and tuning;

� the density of the liquid will change with temperature;

� the T 1 and T 2 of the liquid will change with temperature;

� the T 2 of the liquid will be a function of the local pore surface area;

� the T 2
� of the liquid will be a function of any local magnetic �eld gradients due

to magnetic particles in pore walls, or due to susceptibility gradients in pores;

50
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� there may be a di�usion weighed loss of magnetization from such gradients in

pores, as well as the B0 magnet gradients;

� the receiver gain may be a function of time or signal amplitude.

Finally it should be noted that simple cryoporometry theory assumes that as well as

the signal amplitude from the liquid being (after calibration) proportional to the mass

of melted liquid, the signal from the solid is (at the time of measurement) negligible.

These e�ects must be taken into account in the instrument calibration.

7.2 Receiver gain calibration.

The receiver had been shewn to have good stability with time; however all receivers

have a maximum voltage output they can deliver before gain reduction sets in, and

amplitude detecting receivers have a minimum signal they can reliably detect.

The receiver design used had employed a dual multiplier phase locked loop design to

give a true amplitude output, and had been shewn to have good linearity at low signals

(1�V i/p, 10mv o/p) when it was constructed. It had also been shewn to have good

linearity in excess of 1V output, and the gain was set so that for normal porous samples

the maximum output was less than 1V.

Nonetheless it was felt desirable to calibrate this particular receiver.

A Farnell PSG1000 synthesizer was connected to the re-
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Figure 22: Measured gain

curve for receiver, show-

ing receiver gain compres-

sion and calibration attenu-

ator inaccuracy.

ceiver input, via a nine switch 100dB Hat�eld 687A at-

tenuator (1,2,2,5,10,20,20,20,20 dB). The receiver out-

put was taken to the HP digital volt meter and the Gould

oscilloscope otherwise used for cryoporometry. The pre-

cision of the attenuator was far less than that of the re-

ceiver/DVM, but as it was possible to generate the same

attenuation by more than one combination it was in prin-

ciple possible to obtain a self-consistent set of corrected

attenuations. This had indeed been successfully done

when the receiver was designed, a smooth gain curve be-

ing obtained. This time, however, it was found that the attenuator switches had aged,

and the gain curve obtained was far from smooth.
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However we may reasonably assign the average smooth departure from a straight line to

the gain compression that we are trying to measure, and random variations to instability

in the attenuator.

In �gure 22 we graph the raw results; we see that the
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receiver output follows a typical limiting curve � i.e.

one that can be expressed as in inverse relationship of

the form :

Y =
1

1
Limit +

1
X

We actually �nd that for this data the best �t (solid line

in �gure 22) is actually for a fourth power limiting curve,

of the form :

Measured =

0@ 1
1

Limit4
+ 1

(Gain�RFAmplitude)4

1A 1
4

Hence we may write :

RFAmplitude =
1

Gain
�
 

1
1

Measured4� 1
Limit4

! 1
4

��� Corrected =

 
1

1
Measured4� 1
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! 1
4

In �gure 23 we plot the large amplitude corrected out-
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put (with attempts at corrections for attenuator inaccu-

racy); Gain was 1188.25, and Limit was 2.790V. Since

the readings were logged on the digital oscilloscope as

well as the DVM, a gain calibration was calculated for

that, of 1.011, which must be applied �rst. A function

nmrrxcor was written to apply the 4th order inverse cor-

rection.

We note that since receiver noise is also compressed, then

expanded, we do not expect worse noise at large amplitude, until digitisation noise is

signi�cant. An arbitrary hard limit of 5.5V was imposed.

In �gure 24 we plot the small amplitude corrected output. Thus we now have an output

that is linearly proportional to the input from less than (0.5�V, 0.5mV) to (5mV, 5V),
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a linear dynamic range of 104.

This is far superior to conventional diode amplitude detection. Having amplitude de-

tection allows the use of a permanent magnet with no temperature stabilisation, since

there is no phase sensitivity.

7.3 Temperature dependence of volumetric sensitivity.

We have considered the e�ect of the variation in sample magnetisation due to the

Boltzmann e�ect, in chapter 2.3. We need to consider other e�ects which may cause

the signal to change in amplitude as a function of temperature, for a �xed volume of

liquid sample.

7.3.1 Resistivity of copper.

The resistivity of metals such as copper is known to vary with the 5th power of absolute

temperature at low temperatures, but to be approximately proportional to temperature

at higher temperatures.

If we plot the resistivity �(TK) of copper as a function of absolute temperature TK in

the range 100K ! 1000K [Kaye and Laby, 1966], we see ( �gure 25) that it is well �tted

by a quadratic �(TK) = �0:2823 + 0:006405�TK +7:817�10�7�TK2 over this range, but

that a straight line �(TK) = �0:3271 + 0:006866�TK is adequate over the range 100K

! 500K.

7.3.2 Volumetric sensitivity.

The amplitude A of the detected NMR signal for a given mass of sample is in part

determined by the quality factor Q of the probe tuned circuit.

For a series resistance R in an LCR tuned circuit we have for the Q at resonance :

Q =
!0�L
R

The frequency !0 is the NMR frequency, and is e�ectively �xed, and the inductance

L is determined by physical geometry of the coil. The size of the coil will change

through thermal expansion, and the most important e�ect of this will be to change the

condition of being at resonance; however this NMR system is designed to be used for
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Figure 25: An approximation for the resistivity �(TK) of copper from 100K to 1000K .

measuring relaxation in solids as well as liquids, and hence has a probe bandwidth of

in excess of 1MHz, with �nal receiver bandwidth being determined by a �lter. Thus as

the coe�cient of thermal expansion of copper [Kaye and Laby, 1966] is only 16.7�10� 6,

there is little de-tuning e�ect with frequency.

The e�ective series resistance of R will be composed of the resistance RCu(TK) =

RCu(0
�C)

�(0�C) �(� + ��TK) of the copper coil, and other resistances that will in e�ect have

zero thermal temperature coe�cient (not being dependent on probe temperature), due

to such e�ects as the electrical resistance of the parts of the resonant circuit outside the

probe, the radiation resistance of the R.F. coil, the resistive loading e�ect of the receiver

coupling, and the �xed resistor in parallel with the tuned circuit added to increase the

probe bandwidth.

Thus we may write for the total resistance :

RT (TK) = RZ +
RCu(0

�C)
�(0�C)

�(�+ ��TK)
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Thus we conclude that over the temperature range 100K ! 500K we may write for

variation in Q due to probe temperature changes :

Q(TK)

Q(0�C)
=

RZ +RCu(0
�C)

RZ +RCu(0�C)� �+��TK
�+��TK(O�C)

=

RZ
RCu(0�C)

+ 1

RZ
RCu(0�C)

+ �+��TK
�+��TK(O�C)

=

RZ
RCu(0�C)

+ 1

RZ
RCu(0�C)

+ �0:21127 + 0:0044348�TK

At this stage the ratio RZ
RCu(0�C)

is unknown, however we may initially assume RZ to be

zero, and thus obtain the maximum possible e�ect due to coil resistance changes.

Thus if we plot, relative to the values at 0�C, the change in signal intensity A due to

probe Q changes =
Q(TK)

Q(0�C)
=

�+ ��273:13
�+ ��T�K

and the change in signal intensity due to the change in the Boltzmann factor =

B(TK)

B(0�C)
=

273:13

TK

then we obtain �gure 26.

Hence we see that the change due to the probe coil resistance dominates at low temper-

atures, but the two e�ects are very similar near room temperature.

7.3.3 Density changes.

It is important to remember that the NMR signal is proportional to the number of

resonant nuclei in the sample, i.e. to the mass of the sample of constant composition,

while for porometric information we usually require the pore volume.

Clearly, as the measurements are taking place below the bulk melting point of the

liquids, no density information is available other than by extrapolating the values from

above the bulk melting point.

One possible way of obtaining measured density information for the liquid in the pores,

above and below the bulk melting point, is to use small angle neutron scattering, as

the initial slope (for r below the �rst structural peak) of d(r) depends directly on the

density �0(r) [Newport et al., 1988], where :

d(r) = 4�r� (�(r)��0(r))
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Figure 26: Amplitude changes, as a function of TK , due to the Boltzmann e�ect (green
line) and the resistivity of the copper sample coil (red line).

An alternative method (that has been shewn, as part of this work, to be of good sensi-

tivity) is to use neutron scattering to measure the �rst structural peak, due to nearest

neighbour separations. Fitting this gives su�cient accuracy to follow density variations

as a function of temperature.

However one problem with measuring the �rst structural peak only, is that this measures

inter-atomic changes; we wish to know the inter-molecular changes, which may not vary

in the same way with temperature. Thus ideally it is preferable to measure peaks at

larger radii.

7.3.4 Calibration of volumetric temperature coe�cient.

A bulk sample of low freezing point liquid, such as isopentane, has been used to assist

with the calibration of system sensitivity as a function of temperature [Strange et al.,

1993].

In this work a sample of n-pentane (M.P. -129.72 �C) doped with the free-radial 'TEMPO'

(2,2,6,6-Tetramethyl-1-piperidinyloxy, Sigma T7263) has been used with success to com-

pensate for Boltzmann and Q change e�ects when using the gas 
ow cooling system
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(chapter 5.3).

The free-radical was added to reduce the T 1 relaxation time of the pentane from some

seconds, to a value that remained at a fraction of a second over the full temperature

range, thus ensuring that, at the repetition time of about four seconds, there was neg-

ligible variation in the measured signal amplitude due to T 1 relaxation changes.

When using the gas 
ow cooling system the signal amplitude was then found to vary

with temperature in a manner that was consistent with that expected from chapter 7.3.2

and to be very stable with time.

The best-�t value for the ratio R = RZ
RCu(0�C)

over the temperature range �50�C to 25�C

was found to be 1.26; the residual plot for the corrected pentane signal showed a slight

fall o� by �100�C, the curve being well �tted by the cubic polynomial in temperature

Tf�Cg : 1:0008 + �2:0228�10�4�T + �2:641�10�6�T 2 + 7:09�10�8�T 3

Hence we have obtained a value for our one unknown in chapter 7.3.2, such that

Q(TK)
Q(0�C) = R+1

R+
�+��TK

�+��TK (O�C)
� 510

214+TK
� 273:13

115+0:536�TK

Thus we may apply corrections for Boltzmann and for Q changes due to sample coil

resistance changes with temperature, using these coe�cients, with the routine nmrbqcor .

When doing so for the results in chapter 9, we �nd that the plateau from the signal

above the bulk melting point (from all the melted liquid) is, after the above correction,

consistently 
at (within reasonable experimental error), see �gure 27.

This then allowed for reliable calibration of the system volumetric sensitivity, for each

run, by measuring the signal amplitude of this plateau (extrapolating to the measured

bulk melting point in case of any residual slope) and using the measured mass of total

liquid in the sample (see appendix D).

However when performing repeated runs with the Lindacot cooling system [Norris and

Strange, 1969] (chapter 5.1) the temperature dependence of the NMR probe sensitivity

was found to slowly increase over a number of runs. This was attributed to a build up

of water in the probe, due to �ne ice crystals being carried over with the liquid nitrogen

droplets. It was then necessary to remove the sample and heat the probe to 120�C, and

allow it to dry overnight. With the gas 
ow system, the ice remains in the 25l dewar,

and the evaporated nitrogen gas is very dry; this then serves to dry the NMR probe.

Thus with the Lindacot system the procedure adopted was �rst to apply the Boltzmann
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Figure 27: Signal intensity from a) cyclohexane in 60�A Unilever silica, b) water in 25�A
Sigma silica, before (red) and after (green) correction of Boltzmann and sample coil
resistance e�ects.

and Q corrections as above, and then if there was a residual negative slope for the bulk

plateau, to calibrate the temperature dependence of each run, �tting the temperature

dependence of the signal from bulk plateau (see appendix D), and extrapolating the

correction to lower temperatures.

Since this sensitivity calibration (for either system) was performed for each run, using

the known mass of total liquid in the sample as a reference, it gave a direct conversion

from measured signal E.M.F. fVoltsg to mass of cryoporometric liquid fgg, and hence

using standard values for the density of the liquid, to measured values for the pore

volumes flg.

7.3.5 NMR relaxation e�ects on volumetric calibration.

Sensitivity variations due to T 1 changes were in the main avoided by repeating su�-

ciently slowly, and, although there is then a trade-o� between signal to noise and relative

pore volume calibration within a pore size distribution, runs were performed with a suf-

�ciently slow repeat time (usually 4s to 10s) that this was not considered a problem.

(The data transfer from the oscilloscope to the computer limited the capture rate to

1 trace every four seconds.) When preparing samples a repetitive freeze/pump/thaw

cycle (commonly used when measuring relaxation times to remove dissolved paramag-

netic oxygen) was deliberately not used, to keep the T 1 lower, and increase the signal

averaging available.
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Figure 28: Measured T 2 of cyclohexane in the bulk, on warming and on cooling.

There is little problem in discriminating between bulk water and ice, as there is a large

change in T 2 as the ice melts. With cyclohexane the situation is not so simple, as

cyclohexane has both a rigid lattice structure at low temperature (with a very short

T 2) and a plastic crystal phase (with a T 2 that is of the order of one millisecond just

below the melting temperature) (see �gures 28, 29).

As the T 1 and T 2 of bulk liquid cyclohexane is typically about one second , the am-

plitude of the echo as a function of time is only limited by di�usion; thus there is in

principle little problem in distinguishing between solid (plastic) cyclohexane and bulk

liquid cyclohexane, using a 2� time of between say 4ms and 40ms, when the signal from

the plastic phase will have decayed, but that from the liquid will be little a�ected. As

we shall see, we will wish to use the shorter times in the smaller pores, but the longer

one when measuring in large pores at temperatures that are very near the bulk melting

point (where the plastic phase has the longest decay time).

The main remaining problem, that has a substantial e�ect on the correct calibration of

measured pore volume, is due to the change of T 2 of the liquid and the solid from its

value in the bulk, to that found in pores.
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Figure 29: Solid echoes from bulk cyclohexane in the brittle and plastic phases.

Exhaustive work has been performed, measuring the T 2 of water and cyclohexane in

sol-gel silica pores (both fully and partly �lled) [Booth and Strange, 1998, Allen et al.,

1997, 1998]. There is much further work to do in the case of other porous structures.

For fully �lled pores (which pertains to the current workg one may summarise the main
e�ects in larger sol-gel silica pores as being : A) a surface relaxation at the pore wall,

that, by rapid exchange within the pore, results in a reduced T 2 for the liquid in the

pore (this e�ect is increased if there are paramagnetic materials in the pore walls);

and B) di�usion e�ects in �eld gradients due to susceptibility variation in the porous

structure (this e�ect is increased if there is say iron in the pore wall).

These e�ects modify the relaxation of the liquid in the pore; however the longer perco-

lation time required to reach the bulk liquid around the grains results at short � in little

reduction for the T 2 of this bulk liquid. (We may indeed then make further deductions

regarding this percolation path distance).

In small partially �lled pores the process is complicated by the tendency for the liq-

uid/solid to actually form a disordered state, where the T 2s of the liquid and solid tend

towards one another, but the work in this thesis is restricted to fully �lled pores.
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In principle it might be possible to go from the measured T 2 values to the deduced

cryoporometric behaviour, as a function of 2� time; in practice the route that was

followed (as the above T 2 results were not available at the time this work was performed)

was to directly perform cryoporometric measurements on reference sol-gel silicas �lled

with water or cyclohexane, at a number of di�erent 2� times (chapters 7.5, 7.4).

NMR relaxation e�ects.

For sol-gel silica measured using cyclohexane, if we examine a typical melting point

curve (�gure 27a), we see that after the above Boltzmann and Q corrections, the bulk

plateau has nearly zero slope, but the plateau from the liquid in the pores has a de�nite

positive slope. This could be attributed to melting in very large pores, but it is far more

probable that the slope is due to an increase in the T 2 of the liquid in the pores as the

sample warms. (If it were due to a contribution from the signal from solid, we would

expect a far more rapid change in slope near the bulk melting point � see �gure 28).

We have a question then as to what the correct volumetric normalisation is, as a function

of pore size, for such a material. This is particularly acute with regard to measuring the

median pore size, as for this we need to have a value for the total pore volume (which

we wish to divide by two).

If we believe that the slope of the plateau re
ects the change in T 2, and that this may

be extrapolated to lower temperatures, then we conclude that if we project a line of

half the amplitude (and half the slope) until it intersects (a smoothed line through) the

melting point curve, this will then be a melting point that can be transformed using the

Gibbs-Thomson equation ( 2) to give the true median pore diameter.

NMR di�usion e�ects : pore gradients.

If on the other hand we examine the Boltzmann and Q corrected plateau between the

liquid melting step in the pores and the bulk melting step for cement, we see that rather

than having a positive slope as in the silica case, it is now negative. We may explain this

if we remember that these materials have large internal gradients, due to iron in the pore

walls and susceptibility e�ects. This produces di�usional gradient attenuation of the

NMR signal. Thus, as the pore liquid becomes warmer, the di�usional rate increases,

and as a result the NMR echo becomes more attenuated.
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The solution in both the above cases is to use a Carr-Purcell-Meiboom-Gill sequence �
in the di�usional case it will mitigate the e�ect of di�usion, and in both cases it will

allow the establishment of a T 2 corrected amplitude. We note, however, that in general

we will have bulk liquid as well as liquid in the pore, and thus we must use the technique

given in the next section.

7.3.6 Corrections for T2 relaxation.

Provided 2� is su�ciently short that exchange between the pore and bulk liquid is

negligible on the timescale of the experiment, but su�ciently long that spin-locking

e�ects are negligible (these conditions are satis�ed for the 2� = 4ms to 40ms times used

in this work), we may perform cryoporometric measurements at a number of di�erent

2� times, and correct for the loss of magnetisation in the pore liquid. We may thus

obtain accurate values for the volume of the pores, both in total and as a function of

pore diameter.

In appendix E we show that even if the pore liquid and bulk liquid have di�erent

relaxation times, we may measure the ratio of the pore to total signal VPL
VTL

(t) and plot

1
1

VPL
VTL

(t)
�1 to obtain a function with a single decay time and a y intercept of �, and may

then write for the pore volume :

vP =
1

�L
�MTL

1 + 1
�

flg

where we have measured the total mass of the liquid in the sample MTL and know the

liquid density �L.

Using the data obtained for the cryoporometric calibrations (chapters 7.4, 7.5) we may

plot �gures 37, 38, and thus deduce the true normalised total pore volume of the various

silicas (table 7).

This allowed calibration of the cryoporometric constants, and provided direct informa-

tion on regions of operation where self consistent results could be obtained. It was

noticed in particular with water that considerable loss of signal intensity (as a result of

T 2 attenuation) could be tolerated, without signi�cantly changing the measured melt-

ing point, and hence measured pore size (see chapter 7.5.4).
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7.4 Calibration of melting point depression of cyclohex-

ane in porous silica.

7.4.1 Sample preparation.

16 samples were made using 8 di�erent porous silicas from a number of sources, of

nominal pore diameter 40�A, 60�A, 100�A, 140�A, 200�A and 500�A, making two samples of

each silica.

The Unilever (A) 60�A, 200�A and 500�A had been characterised by Dr. D.Ward of

Unilever by gas adsorption as having the following pore diameters, the mean values

being used for calibration purposes :

Silica Adsorption Desorption Average

C60 52.0 �A 46.5 �A 49.3 �A
C200 222.1 �A 180.7 �A 191.4 �A
C500 491.8 �A 419.1 �A 455.5 �A

Table 4:
Pore diameters for Unilever (A) silica samples as characterised by gas-adsorption.

The pores were �lled with anhydrous cyclohexane in a dry glove box; for all these

samples the �lling factor of the cyclohexane exceeded 100% � i.e. there was excess

cyclohexane outside the pores in the intergranular space; this was con�rmed later by

checking that there was a step in the cryoporometric melting curve due to bulk liquid.

Weighings were made of empty tubes + caps, then with the dried silica, then with the

added liquid; then the samples were 
ame sealed (see chapter 6).

7.4.2 Cryoporometric measurements.

89 cryoporometric runs were made using these samples. i.e. the amplitude of the NMR

echo at 2� was measured as a function of the sample temperature, using a thermocouple

soldered to a copper foil wrapped around the sample, while the sample was slowly

warmed from a state of all liquid frozen to all liquid melted.

Measurements were made with 2� values of 4ms, 10ms, 20ms and 40ms, to determine

the e�ect that the liquid T 2 had on the results � shorter times were di�cult to measure,

due to the tendency of the residual FID following the 180� pulse to extend into the echo

time; for longer � times the echo su�ered undue attenuation due to T 2 decay.
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Some measurements were also made at di�erent values of warming rate; most of the

measurements were made with a warming rate of 0.5C��min�1, being as slow a rate at

could be reliably used with the Lindacot liquid nitrogen injection cooling (see chapter

5.1), without temperature reversals becoming common; some measurements were made

at 1.0C��min�1and 0.2C��min�1 for comparative purposes.

7.4.3 Melting point depression calculation.

The melting point curves were corrected for receiver gain compression (chapter 7.2),

for the Boltzmann variation of magnetization with temperature (chapter 2.3), and re-

ceiver coil resistance with temperature (chapter 7.3.1); the bulk melting point found

interactively, and the median melting point determined :

A interactive routine, mpdsteps, was written in Apl68000 to read in turn from �le all

those data sets that matched the sample directory and name templates, convert the

raw thermocouple readings to temperature (using a 17 part 7th order polynomial �t to

the latest ITS90 thermocouple tables from the National Bureau of standards), apply

receiver gain compression corrections (not really necessary) using the routine nmrrxcor ,

perform Boltzmann and receiver coil Q corrections using the routine nmrbqcor , save the

data and graph it to the screen (see appendix D).

For a given (over�lled) sample of porous silica, as the temperature rises, the melting

point curve rises to a plateau when all the liquid in the pores has melted; there is then

a further rise to a new plateau when the bulk liquid in the inter-granular void space

melts.

Six cursor positions were then read, allowing the user to mark the start and end tem-

peratures of the two plateau and of the step. Each section was then linearly least square

�tted, and used to derive a measured value of bulk melting point for a particular sample

and warming rate. The plateau were then extrapolated to this bulk melting point, to

give the amplitudes of the signal from the liquid in the pores and of all the liquid in the

sample (due to a measured mass of liquid).

The ratio of the total liquid in the sample to the (maximum possible) liquid in the

pores is then the liquid �lling factor; for these measurements where fully �lled pores

were used, this �lling factor was then always in excess of 100%. (The few samples where

it was less than 100% were rejected from the measurement process, as these would not

then re
ect the true pore diameter.)
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This procedure gave melting point curves whose bulk plateau were very close to hori-

zontal; however the plateau due to melted liquid in the pores in many cases had positive

slopes, presumably due to T 2 changes in the liquid cyclohexane as a function of tem-

perature. To get the true median pore size for a given silica, we need to correct for this;

thus a line with half the amplitude and half the slope of the �t to the pore plateau was

generated. A band of the melting point distribution around where this half amplitude

line intersected the melting point distribution was �tted with a line, and the solution

of the precise intersection of the half amplitude line and this �tted line found.

If the variable Coefs is a two row two column array, each row containing the coe�cient

of a line, then we may use the Apl expression X  � �/ -/[1] Coefs to obtain the X

value of the intersection of the lines, giving the median melting point depression of the

distribution.

This was repeated for all the pore size distributions containing good data.

For 2� = 4ms, and at a warming rate of 0.5C��min�1 for the larger pore diameter silicas,
and 1C�.min�1 for the smaller ones (due to the time involved in warming over the wider

temperature range), we obtain for the median melting point depressions as a function

of nominal pore diameter the 34 results plotted in �gure 30.

From this it can be be seen that the results for each type of silica are for the most

part tightly clustered. We see that the Unilever (B) results are clearly distinct from

the Unilever (A) results (for at least the 60�A and 200�A silicas); thus it is inappropriate

to use the Unilever (A) nominal pore diameters for the Unilever (B) silicas; hence we

exclude the Unilever (B) data from the �t. Even if we also exclude the 40A Merck silica,

as their results fall far o� the best �t line, we still �nd that this best �t line has a Y

intercept that is 2.3 degrees above zero.

Since the bulk melting point for each measurement had been adjusted to better than

0.1C�, this is at �rst surprising. A way of correcting this behaviour is to introduce

curvature to the �t; early in this project, when examining such melting point depression

curves, it was noticed that the large pore diameter silicas were well �tted by a straight

line, but that the departure seemed to increase for small pore diameter silicas. Thus

rather than use a simple quadratic �t of constant curvature, it was proposed that the

melting point depression might be represented by a modi�ed Gibbs-Thomson equation

of the form :

�T =
k

x�2�Sl
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Figure 30:
Measured median melting point depression for cyclohexane in 8 di�erent porous silicas,
for 2� = 4ms, plotted against inverse nominal pore diameter � linear �t.

i.e. that the melting crystal behaved thermodynamically as though it had a radius that

was less than that measured by gas adsorption by an amount Sl = SurfaceLayer.

On discussion, such a modi�ed equation appears to have found some favour, and has

been employed in work published elsewhere [Hansen et al., 1996, Jehng et al., 1996].

If we employ such an equation, and adjust the surface layer such that a straight line �t

passes through the origin we obtain, for 2� = 4ms, 10ms, 20ms, 40ms �gures 31, 32.

Thus we see such an equation does indeed model the data well. However reservations

must be expressed regarding the physical interpretation, since we see from the constants

required for these �ts (table 5) that the so called surface layer thickness is � dependent.

There is no apparent way that the e�ective radius and hence thermodynamic melting

properties could depend on the NMR measurement time scale; probably what we are

seeing is a result of T 2 changing more in small pores [Booth and Strange, 1998], in a

way that is just consistent with the modi�ed Gibbs-Thomson equation. None the less

this equation is a convenient method of modeling the non-uniform curvature with just

one extra parameter.
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Figure 31:
Measured median melting point depression for cyclohexane in porous silica, @ 2� = 4ms,
10ms, plotted against inverse (nominal pore diameter � 2�surface layer); i.e. �tted to
a modi�ed Gibbs-Thomson equation.
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   Z   Unilever A
   +   Unilever B
   c   Merck (Aldrich)
   t   Aldrich

Best fit :
   k  =  1789 {KÅ}
   Sl =  0.0 {Å}

Figure 32:
Measured median melting point depression for cyclohexane in porous silica, @ 2� =
20ms, 40ms, plotted against inverse (nominal pore diameter � 2�surface layer); i.e.
�tted to a modi�ed Gibbs-Thomson equation.
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2� k Sl
fmsg fK�Ag f�Ag
4 2419 4.476
10 2032 3.407
20 1901 1.214
40 1789 0.000

Table 5: Slope k of melting point depression, and surface layer Sl , for cyclohexane in
sol-gel silica, measured at time 2� .

We see that the slope k of the melting point depression is dependent on � . Graphing this

dependency, we �nd that it varies inversely with a fraction power of � ; thus we generate

a log-log graph of k vs. � (�gure 33). Fitting this we deduce that for cyclohexane in

porous sol-gel silica

k � 1627 + 1256:6���0:680

We conclude that we have obtained a calibration for the melting point depression of

cyclohexane in sol-gel silica, valid when measuring at 2� from 4ms to 40ms, and that

we may measure down to at least 40�A in pore diameter with good calibration.

Slope k variation with τ for C6H12 
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Plotting the slope k
of the melting point
depression for C6H12 
vs τ, we deduce that

k ≈ 1627 + 1257Zτ[.680 

Figure 33: Slope k of melting point depression for cyclohexane in porous silicas, as a
function of � .
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7.5 Calibration of melting point depression of water in

porous silica.

7.5.1 Sample preparation.

20 samples were made using 10 di�erent porous silicas from the same sources as for the

cyclohexane calibration, of nominal pore diameter 25�A, 40�A, 60�A, 100�A, 140�A, 200�A

and 500�A, making two samples of each silica. The Unilever (A) 60�A, 200�A and 500�A had

been characterised by Dr. D.Ward of Unilever by gas adsorption; from the cyclohexane

calibration we may deduce approximate values for the Unilever (B) silica :

Silica Unilever (A) Unilever (B)

C60 49.3 �A 46.3 � 1.5 �A
C200 191.4 �A 171.5 � 2.5 �A
C500 455.5 �A 453 � 5 �A

Table 6: Pore diameters for Unilever (A) silica samples as characterised by gas-
adsorption, and for Unilever (B) silica as deduced from cyclohexane cryoporometry.
The uncertainty quoted for Unilever (B) silica is just the RMS scatter in the measured
results using the cyclohexane calibration.

The pores were �lled with �ltered, reverse osmosis exchanged deionised water, which

was shewn to have a conductivity of about 10% of the available singly distilled water;

for all these samples the �lling factor of the water exceeded 100% � i.e. there was excess

water outside the pores in the intergranular space; this was con�rmed later by checking

that there was a step in the cryoporometric melting curve due to bulk water. Care was

taken not to greatly over�ll these samples, as otherwise the expansion of the water on

freezing shatters the tubes.

Weighings were made of empty tubes + caps, then with the dried silica, then with the

added water; then the samples were 
ame sealed (see chapter 6).

7.5.2 Cryoporometric measurements.

108 cryoporometric runs were made using these samples. i.e. the amplitude of the NMR

echo at 2� was measured as a function of the sample temperature, using a thermocouple

soldered to a copper foil wrapped around the sample.

Measurements were made with 2� values of 4ms, 10ms, 20ms and 40ms, to determine

the e�ect that the water T 2 had on the results � shorter times were di�cult to measure,
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due to the tendency of the residual FID following the 180� pulse to extend into the echo

time; for longer � times the echo su�ered undue attenuation due to T 2 decay.

Some measurements were also made at di�erent values of warming rate; most of the

measurements were made with a warming rate of 0.5C��min�1, being as slow a rate

at could be reliably used with the Lindacot liquid nitrogen squirt cooling (see chapter

5.1), without temperature reversals becoming common; some measurements were made

at 1.0C��min�1and 0.2C��min�1 for comparative purposes.

7.5.3 Melting point depression calculation.

The interactive routine mpdsteps was used to analyse these results, as in the case for

the cyclohexane calibration.

For 2� = 4ms, and for 0.5C��min�1 (for all but the 25�A pore diameter silica, due to

the time involved in warming over necessary wide temperature range), we obtain the 61

results plotted in �gure 34.

From this it can be be seen that the results for each type of silica are for the most part

tightly clustered.

If we do a linear least squares �t we obtain a best �t line with a slope of 573 fK��Ag.
The results are clustered fairly close to the best �t line; there is no noticeable deviation

even for the 25�A nominal pore diameter silica. Thus we conclude that any surface layer

e�ect must be less than 0.5�A. Other workers report a surface layer of 1.75�A for water

[Hansen et al., 1996].

7.5.4 The e�ect of pore size dependent T2.

The cryoporometric melting curves for values of � greater than 2ms show that for the

smaller values of pore diameter there is a progressive loss of signal intensity due to the

shorter values of the liquid T 2 in the pores, to the point where measurements of the

melting point depression are of reduced accuracy in say 40�A pore diameter silica with

2� � 20ms ( �gure 35).

None the less, if we plot the values that we can obtain ( �gure 36), we obtain values for

60�A and greater pore diameter that are in good agreement with the values measured

with 2� = 4ms.

We conclude that the results we obtain using water in pore diameters of 50�A and greater

are not highly sensitive to the value of � chosen. Unless there is some other reason that
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Melting point curves for
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decrease in liquid T2 in
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Figure 35: Melting point curves for water in 40�A silica, for various � values, showing
e�ect of short T 2 in small pores.

precludes its choice (such as an anomalously short T 2), 2ms is thus a good value to

choose for � , as the pore diameters obtained are in not in disagreement with those from

longer values of � , and in silica glasses at least, a wide range of pore diameters (down

to at least 25�A) can be measured without the reduction of the liquid T 2 in the small

pores noticeably a�ecting the results.

7.5.5 Calibrated porosity measurement.

We have seen that for water at least, down to 50�A pore diameter, the measured median

pore size is relatively independent of the measuring � , over the range 2� = 4ms to

40ms. What is clearly more dependent on � is the apparent porosity, as measured

at one particular value of � . The following procedure was used to generate porosities

corrected for signal loss resulting from T 2 decay.

For a given (over�lled) sample of porous silica, as the temperature rises, the melting

point curve rises to a plateau when all the liquid in the pores has melted; there is then

a further rise to a new plateau when the bulk liquid in the inter-granular void space

melts.
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Figure 36: Median melting point depression for water in porous silica, for 2� = 4ms,
10ms, 20ms, 40ms. Straight line is the best �t line for 2� = 4ms.

Thus the interactive routine mpcstep (see appendix D) was used to measure the ampli-

tude of the plateaus and then extrapolate them to the measured bulk melting point, to

give the amplitudes of the signal from the liquid in the pores and of all the liquid in the

sample (due to a measured mass of liquid).

The ratio of the total liquid in the sample to the (maximum possible) water in the pores

is then the liquid �lling factor; for these measurements where fully �lled pores were

used, this �lling factor was then always in excess of 100%.

Since the routine mpcstep is passed the measured mass of the dry porous matrix and

the mass of added liquid, it then calculates volumetric melting curves, normalised to the

dry matrix mass, from which the routine mpc2psd calculates pore volume as a function

of pore diameter using the Gibbs-Thomson relation 2 (chapter 3.1).

This routine employs a routine monotonic that applies a constraint that the signal from

the melting liquid should only increase monotonically as the temperature increases �
this provides a remarkable increase in signal to noise, and ensures that the di�erentiated

signal (and hence pore volume) can not go negative due to noise.

As we have seen in �gure 35, the �lling factor and pore volumes as measured above will



CHAPTER 7. NMR CRYOPOROMETRY CALIBRATION. 75

be incorrect if there is relaxation due to T 2, as the relaxation will be greater in the

water in the pores than in the bulk liquid.

If however we perform cryoporometric measurements at more than one � value, and

plot the log of the inverse of 1 � �lling factor, i.e. of VPl
VBl

(2�), against 2� , for these

measurements of water in silica we obtain �gures 37, 38.

Thus although the measured signal depends on the signal from bulk liquid and from

pore liquid, which have di�erent T 2s, if we adopt the protocol in chapter 7.3.6 and

appendix E, we obtain relationships with a single exponential decay (see �gures 37, 38).

If we denote the y intercept on these graphs � = VPL
VBL

(0), we may then write for the

normalised pore volume (i.e. per gram of dry silica) :

vPore =
1

�L
� 1

1 + 1
�

�MTL

MS
fl�g�1g

where (appendix E) MTL = Mass of Total Liquid, MS = Mass of Silica.

Thus we see that there is little change for the larger pore values, such that for 500�A

silica � = VPL
VBL

(0) falls within the scatter of VPL
VBL

(2�). However the for small pores

the correction obtained by extrapolating the exponential decay back to zero time is

substantial (see graph for 40�A silica in �gure 37). Such corrections are important when

calculating the calibrated volume for pore size distributions.

Silica � 1/(1+1/�) MTL/MS vPore
fml�g�1g

25�A Sigma 0.5892 0.3708 0.919 0.341
40�A Merck 2.254 0.6927 0.853 0.591
60�A Merck 3.168 0.7601 0.930 0.707
60�A UnileverB 3.153 0.7592 1.121 0.677
100�A Merck 2.12 0.6795 1.397 0.950

140�A Aldrich 1.74 0.6350 1.854 1.177
200�A UnileverB 4.09 0.8035 2.093 1.681
500�A UnileverB 4.03 0.8012 1.955 1.567

Table 7: Calculation of the normalised pore volume vPore for eight porous silicas, from
y intercept of ratio � of signal from pore liquid to signal from bulk liquid VPL/VBL ,
as measured by cryoporometry as a function of 2� time, and from the ratio of mass of
total liquid to mass of silica MTL/MS .

Thus in table 7 we list � = VPL
VBL

(0) as measured from �gures 37, 38, the deduced factors

1
1+ 1

�

, the measured MTL
MS

, and hence the calculated normalised pore volumes vPore (i.e.
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Figure 37:
� dependence of measured pore to bulk signal for water in 40�A, 60�A, 100�A diameter
porous silica.
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Figure 38:
� dependence of measured pore to bulk signal for water in 140�A, 200�A, 500�A diameter
porous silica.
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per gram of dry silica) from the above equation, for eight porous silicas.

For water, the above data is used in chapter 11.5 for the calculations of pore volume,

silica �lling factor and (voidless) silica matrix density for the various silicas.

It should be emphasised that these graphs only serve to obtain the corrected �lling

factors for these particular samples; a full study of the e�ect of both �lling factor and

relaxation times was not part of this study, though clearly of great importance [Allen

et al., 1997, 1998, Booth and Strange, 1998].

It would be be possible to obtain the information for this correction in a single cryoporo-

metric run, by measuring the heights of a chain of echoes from a Carr-Purcell-Meiboom-

Gill sequence, at each temperature; the current design of the measurement software is

not con�gured for such a measurement as the limited number of points (1008) transfered

from the digital scope is a major constraint with the existing apparatus, particularly

where signal to noise is of importance.



Chapter 8

Multidimensionally Resolved

Pore Size Distributions.

As part of this project a novel method was developed of determining median pore size

and pore size distributions as a function of spatial position inside a porous sample.

Pore sizes were measured with 1, 2 and 3-dimensional spatial resolution, using

NMR cryoporometry in conjunction with magnetic resonance imaging techniques

[Strange and Webber, 1995, Strange, Webber, and Schmidt, 1996, Strange and Web-

ber, 1997a,b].

Nuclear Magnetic Resonance was used both as a convenient technique for measuring

the fraction that was liquid, deep inside the porous material, and as a way of spatially

encoding the pore size density to produce pore size distribution maps and median pore

size maps.

8.1 Spatially resolved cryoporometry.

The frequency of the NMR signal is proportional to the magnetic �eld in which the

nuclei are precessing (chapter 2.2).

Thus the addition of space encoding magnetic �eld gradients to the sample volume allows

spatial localisation of the region of sample from which the signal is being produced.

Both frequency and phase encoding may be used, with a (multi-dimensional) Fourier

transform providing 1, 2 and 3 dimensional localisation of the signal producing regions

[Callaghan, 1993].

78
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8.2 1D NMR Cryoporometry.

For the measurements with 1 dimensional spatial resolution the spectrometer developed

for bulk Cryoporometric measurements was used.

Structured samples were prepared (Fig. 39a), in 5mm diameter tubes, each consisting

of three layers of porous silica of 60�A, 140�A and 500�A nominal pore diameter, separated

by PTFE spacers (giving no proton signal). Water or cyclohexane was added to the

silica, to give approximately 110% �lling of the pores. i.e. 10% more liquid was added

to the porous media than necessary to just fully �ll the pore volume, the excess going

to �ll the inter-granular space.

To obtain 1D spatial resolution of the pore size distribution frequency encoding of the

NMR signal was used. The main B0 �eld was along the Z axis, and a constant magnetic

�eld gradient Gy = �Bz/�y was applied in the perpendicular Y direction along the axis

of the NMR sample tube, to obtain frequency encoding of the axial position. The

gradient was generated by four current carrying wires plus return wires, suitably spaced

[Kroon, 1968, Rahman, 1991] to minimise all but the linear gradient term Gy.

Since the NMR precession frequency is proportional to the magnetic �eld B0, the fre-

quency of the NMR signal varied linearly with axial position. The space between the

magnet pole faces (34mm pole gap) and the Dewar of the variable temperature probe

was limited, thus the gradient set was constructed from four one-turn rectangular coils

cut from copper sheet, and mounted on drafting �lm. A DC current of 7A produced a

gradient of 0.05 T�m�1, su�cient to render the magnet's B0 inhomogeneity negligible.

Rather than recording just the peak amplitude of the echo at each temperature as in

normal NMR cryoporometry, the complete echo envelope from a 90�x-� -180�y-� -echo

sequence was captured. Figure 40 shows the particularly simple sequence, with the

static gradient Gy = �Bz/�y . Since the linear �eld-gradient allows a linear mapping

from frequency space to y-dimension, the Fourier transform of the echo in the gradient

then gives a 1D pro�le of the liquid component at this temperature.

The sample temperature was measured with a copper/constantan thermocouple soldered

to a grounded copper foil wrapped round the sample, providing temperature uniformity,

inside the R.F. coil. (Provided the foil does not form a closed turn it also aids R.F.

homogeneity, and hence the ability to obtain precise 90� and 180� precession throughout

the sample volume).
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(a:) 1D porous silica phantom with axial structure in the y direction.
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(b:) 1D resolved porosity.

Figure 39: 1D Cryoporometry.
(a) Test sample constructed from layers of 60�A, 140�A and 500�A nominal pore size
silica. (b) Measured porosity resolved as a function of axial position (0 ! 10 mm) and
logarithmic pore diameter (40 ! 1000�A). The data is plotted both as a surface plot
and as an intensity map.
The lower right graph is a plot of the median pore size as a function of axial position.
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1D spin echo sequence with static read gradient Gy = �Bz/�y.

Figure 40: 1D imaging sequence.

To make a measurement the test sample was cooled until all the liquid was frozen, and

there was no signal. It was then slowly allowed to warm naturally at approximately

one degree per minute or less. With a sample size of 5 � 10mm one can estimate the

temperature variation over the sample as less than 1C� at -50�C and 0.3C� at 0�C,

where the temperature rises much more slowly. The corresponding error in pore size

determination is within 5% due to temperature gradients across the sample.

A succession of 1D pro�les was captured, averaging 16 times, as the sample warmed.

Initially all the sample was frozen, and there was no signal. The liquid in the 60�A silica

melted �rst, then that in the 140�A silica, followed by that in the 500�A silica, and �nally

any bulk liquid outside the pores.

When the temperature run was complete, the data was analysed using LabVIEW

(1dporous) and Apl (porous1d). First the oscilloscope traces were Fourier transformed,

and then the standard cryoporometric di�erentiation and re-mapping according to the

Gibbs-Thomson equation was performed along the temperature axis, for each array

point in the sample.

This re-mapped data is presented as a surface map, and as an intensity map, in �gure

39b, giving the porosity within the sample as a function of pore diameter and axial po-

sition. This shows that the porosity is successfully resolved with good spatial resolution

and pore size resolution comparable with that from a standard cryoporometry run. The

median pore size was also calculated, for each point in the 1D sample (�gure 39b, lower

right).

A second measurement was made on a three part sample, as shown in �gure 41. As
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(a:) 1D porous silica phantom with axial structure in the y direction.
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(c:) Colour map of Pore Size.

(d:) Median pore size as a function of axial
position, for the phantom constructed from
nominal 500�A, 140�A and 60�A silicas.

Figure 41: 1D Cryoporometry.
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before, as surface map of Log10 Pore Diameter vs. Axial Position is shown (�gure 41b),

as is a colour coded map (�gure 41c) and a graph of median pore size (�gure 41d),

which shows very good agreement with the nominal pore diameters of the silicas used.

8.3 2D Resolved Pore Size Distributions

A test phantom (�gure. 42) was constructed with 2D structure, consisting of four 5mm

high-resolution thin walled glass tubes, containing 40�A, 60�A, 140�A, and 200�A pore

diameter porous silica, arranged in a square array.

40Å Silica

60Å Silica

140Å Silica
200Å Silica

2D silica phantom with axial uniformity in the z direction.

Figure 42: 2D Cryoporometry sample with xy porous structure

Anhydrous cyclohexane was added to the dried silica in a glove box under a nitrogen

atmosphere, and the tubes evacuated and 
ame sealed.

The samples were inserted into the neck of the dewar. Silicon grease was used to keep

them in thermal contact with a cylinder of Pyrophyllite, used as an insulating thermal

mass. A copper/constantan thermocouple was embedded in a hole in the Pyrophyllite

cylinder, to allow the temperature to be monitored. The neck of the dewar was �lled

with foam, to provide additional thermal insulation.

The sample was cooled with liquid nitrogen, and 32 images were recorded as a function

of temperature, as the phantom warmed up naturally. At each temperature, a 2 dimen-

sional cross-sectional image of the liquid was obtained using Fourier reconstruction. A

single slice of 20mm was selected along the Z direction of the magnetic �eld using soft

pulses. This slice was positioned so as to exclude the silicon grease from the image.

The imaging sequence used (secho.ppr,ppl) was modi�ed from being a gradient echo

sequence (�gure 43a), to one using a 90�x-� -180�y-� -echo sequence (Fig. 43b), with a
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2� of 14ms, as this time was greater than the T2* of the wide-bore magnet used and was

suitably between the decay time in the solid (up to 2ms) and the decay time in the liquid

(100ms). The X Y phasing ensures that the echo maintains the same relative phase as

the FID. Here X and Y are understood to cycle round through all combinations of �X ,

�Y as required by the CYCLOPS [Hoult and Richards, 1975] sequence, preserving their

relative orientation.

CYCLOPS phase cycling was used to eliminate D.C. o�sets and ghosting due to receiver

channel gain di�erences. The CYCLOPS sequence rotates the basic sequence used

through 0�, 90�, 180�, 270� phase o�sets: a change of 180� inverts the phase of the

signal, thus by subtracting the �X and �Y signals IX � I�X , IY � I�Y , one removes

any D.C. o�set (and hence zero frequency spikes in the image); similarly a rotation of 90�

swaps the real and imaginary signals <(I), =(I) between the receiver U and V channels,

thus by adding the resultant X,Y signals one eliminates ghosting due to receiver U and

V channel gain (A) di�erences; �nally one has <(I)�2�(AU+AV ), =(I)�2�(AU+AV ).

Averaging, with a repeat time of 1 second limited by T1, was kept to the minimum of

4 required by the CYCLOPS sequence, giving a slice imaging time of 4.3 minutes .

Data was captured as one read frequency encode (4 times oversampled), and one phase

encode, for a resolution of 128�32, but reconstructed into 32 maps of 64�64 images.

Fourier reconstruction of the 2D data sets for each temperature was performed on the

Digital Signal Processor of the SMIS console PC.

32 images were recorded as a function of temperature, as the phantom warmed up. The

resulting NX � NY � NT data set was stored as 32 maps of 64�64 integer images,

which occupies 0.5 MByte for the temperature run. This data set was then transferred

to an 4 MByte Atari running Mint multitasking and Apl68000, but no 
oating point

accelerator.

Selected images are shown in �gure 44 where the sequential melting of the liquid in the

40�A, 60�A, 140�A and 200�A pore diameter silicas can be seen as the image signal of the

liquid.

Applying the constraint along the temperature axis that a noiseless signal should only

increase in amplitude as the temperature increases and the sample melts (monotonic),

gave a marked improvement in signal to noise (�gures 44, 45). This is particularly

important as the next step in the analysis is di�erentiation along the temperature axis.

The 32 images (averaged in pairs for display purposes) are shown in �gure 46. The
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RF

Slice

Phase

Read

Signal

90°x

a) 2D gradient echo sequence.

RF

Slice

Phase

Read

Signal

90°x 180°y

b) 2D spin echo sequence with slice select gradient Gz= �Bz/�z, phase encode gradient
Gy= �Bz/�y, and read gradient Gx= �Bz/�x.

Figure 43: 2D imaging sequences.
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Map 2: -135�C Map 9: -38�C Map 12: -22�C Map 16: -6�C Map 20: 5�C
Raw intensity maps showing the sequential melting of the liquid in the 40�A, 60�A, 140�A

and 200�A pore diameter silicas.

Figure 44: Selected intensity maps from the temperature run.

Map 2: -135�C Map 9: -38�C Map 12: -22�C Map 16: -6�C Map 20: 5�C
Improved signal to noise after application of the constraint of monotonicity in melting.

Figure 45: Monotonic intensity maps from the temperature run.

–100°C –50°C
0°C 10°C Temperature

Liquid proton density images showing the melting of the liquid in larger pore sizes at

higher temperatures.

Figure 46: Liquid Proton Density images vs. Temperature.
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cryoporometric di�erentiation with respect to temperature and re-map according to the

Gibbs-Thomson equation was then applied to each xy pixel of the data set in �gure 46

(porous2d). The resulting porosity maps as a function of pore diameter and xy position

are shown in �gure 47.

30Å
50Å

100Å

Porosity resolved as a function of pore diameter and xy location, obtained from �gure.
46 by cryoporometric di�erentiation w.r.t. temperature and re-mapping.

Figure 47: Porosity maps vs. Pore Diameter.

The routine that plots the poresize distribution as a set of angled planes was written in

a way that saves �lespace and printing time, by deliberately restricting the number of

printed shades to 21.

For each plane, the commonest shade is found, by a random sampling, and this is

written as the background shade. Then, each row is examined for adjacent patches of

the same shade using fast integer vector functions, and if the shade in a row is constant,

adjacent rows are examined. The resulting rectangle is saved, unless the shade is the

background shade, in which case it is thrown away. For all the planes in the 3D volume,

the XY coordinates are converted to Homogeneous coordinates, with the Z coordinate

for each plane stepped along from the next. First scaling, then 3D rotations around the

Y axis and X axis are applied, before projecting back onto the Z=0 plane. The resulting

parallelograms are then �lled with the appropriate shading.

Axes are generated by the polynomial �tting of graphs of the x-ordinates vs. the corre-

sponding integers, and the resulting polynomial then evaluated at the required ordinates
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to generate the axis markings. 3D scaling, rotation and projection generated the appro-

priate coordinates. Routines that paint on the screen (plotgm, showsur, showsax ) and

that generate postscript (psplotgm, pshowsur, pshowsax ) were written. A naive imple-

mentation of the above 18 slice picture would have generated a postscript �le 4.4MByte

in size; the �nal one produced is 420kByte, saving creation and printing time in pro-

portion.

It is possible to pick individual pixels from the data structure of �gure 47, and plot

the full pore size distributions for these pixels. This has been done for the four pixels

(22,22) (22,42) (42,22) (42,42) (�gure 48). Pore size resolution is comparable with that

obtained with standard cryoporometry runs, except at large pore sizes where it can be

improved by warming more slowly, thus reducing the thermal gradients that can act to

blur the pore size information.

600500400300200100

500

400

300

200

100

4 Pore Size Distributions from 2D Map
Pore Diameter {Å}

Full pore size distributions
are plotted for the four pixels
(22,22) (22,42) (42,22) (42,42)
of the 2D pore distribution map.

These fall within the locations
of the silica of nominal pore
diameters :

       –+– :  40Å
       –t– :  60Å
       –Z– : 140Å
       –c– : 200Å

Liquid C6H12 @ 0°C in silica
in four tubes.
Pixels (22,22) (22,42)
      (42,22) (42,42) marked.

Localised pore size distributions are extracted from the data in �gure 47, for four
pixels. The peaks of the distributions agree well with the nominal pore sizes.

Figure 48: Localised Pore Size Distributions.

A plot of median pore size for each pixel in �gure 47 has also been generated (�gure 49).

This provides a concise summary of the average pore sizes present, though containing

less information. The measured median poresizes correspond closely to the nominal

silica pore diameters.

An alternative way of viewing the same information, that may be of use when the sample

is less structured, is given in �gure 50, where Log10 median pore diameter is displayed as

colour Hue, with colour Saturation set to 1 and Luminosity set to 0.5 (where Luminosity
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= 1 gives all white). (Here colours are viewed in the HLS representation of a double

cone, white at the apex, L=1, black at the basal peak, L=0, and saturated colours S

= 1 around the waist where the two cones meet.) HLS colours were mapped to RGB

(hlstorgb) as part of (i2rgb), and then a postscript colour map generated using a colour

version of the sparse mapper described previously (psplotcm).
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A map of the Median Pore Size for the four tube phantom, rotated for ease of viewing.

Figure 49: 2D map of Median Pore Size.

8.4 3D Resolved Pore Size Structure

A test phantom with 3D structure was prepared in a 10mm diameter tube, that visually

appears to be just 15mm of silica powder in the bottom of the tube.

The sample was actually prepared, using dry 60�A and 500�A nominal pore diameter

silica, as follows : about 5mm of 60�A silica was placed in the bottom of the 10mm

tube, then 20mm of 60�A silica was placed in a 5mm tube, which was then up-ended and

pushed to the base of the 10 mm tube. 500�A silica was added as a collar, to a further

depth of about 5mm.

The 5mm tube was then carefully withdrawn, while tapping, hopefully leaving a central

column of 60�A silica, the excess then spilling over the 500�A silica, to a further depth

of about 5mm. The ideal shape of the 500�A and 60�A silica, ignoring mixing of the dry

powders, hand shake, etc. is given in �gure 52a. The phantom was then fully dried, and
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RF

Phase

Phase

Read

Signal

90°x 180°y

3D spin echo sequence with phase encode gradients Gx= �Bz/�xand Gy= �Bz/�y, and
read gradient Gz= �Bz/�z.

Figure 51: 3D imaging sequence.

measurement should have been made just below the bulk melting point of the cyclohex-

ane, to exclude bulk liquid, but the temperature control was at that time not su�ciently

precise. (It has since been upgraded, �rst using a Control and Readout temperature

controller, and later a Bruker Variable Temperature Unit.)

A thermal time-constant of some hours, when liquid N2 was injected into the dewar,

facilitated the lower temperature measurement. There is clearly a possible problem with

thermal gradients when using such large samples.

The frequency axis was oriented longitudinally, to aid axial positioning of the sample

in the magnet bore.

Fourier reconstruction of the 3D data sets for each temperature was performed on the

digital signal processor of the SMIS console. The resulting NX � NY � NZ data set at

each temperature was set at 64�32�64, stored as 32 slices of 64�64 integer images,

which occupies 0.5 MByte for each temperature.

The data was then transferred to a 4 MByte Atari running Mint multitasking and

Apl68000TM , but no 
oating point accelerator.

A 3-dimensional data set was then obtained for the 500�A silica on its own, using Apl :

The data sets were �rst brought into register (there was noticeable displacement along
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the frequency axis). The data set intensities were compared with suitable amplitudes,

and a 3D bit array generated for each temperature, and then the following tri-state

logical operation performed :

Silica500  1 = (Warm � Cold)

This bit data set, when constructed as a shaded 3D image, gives a very cleanly selected

image, but shows the abrupt steps in the logical bits very clearly. Thus the bit data set

was used in a multiplicative operation to select the relevant intensities from the original

Warm integer data set. Finally a 3D three point smoothing was applied, that performs

a Gaussian-like three point smoothing along each of the principle axes, and all of the 3D

diagonals. This then generated a 3D data set that the surface rendering could operate

on with a minimum of artifacts.

3D rendering was performed using routines written at our laboratory by Tristan Green

[Green, 1994], for an M.Sc.

These routines can be compiled for any UnixTMhost, and were run on a PC running

Linux, with XV as a viewing window. The images were generated into a 512 � 512

window, and cropped. Three point 2D smoothing was applied, with a 24bit colour table.

Colour postscript images were generated (�gure 52b). The left hand image is of all the

silica powder, with no discrimination. The middle image shows just the 500�A silica, the

right hand image is of just the 60�A silica. The linear features mark where silica powder

has been displaced by the hypodermic needle.

It is possible to view the 3D data sets from any direction; a view from below the sample

shows the collar of 500�A silica more clearly (Fig. 52c).

A second sample was constructed in a similar manner, except that the cyclohexane

was allowed to di�use in over a few days, rather than being injected. A similar set of

measurements was performed, as shown in �gure 53.

This ability to take a porous solid and to generate images of just those regions whose

pore sizes fall within a particular range is a novel capability that must have wide ap-

plications in physical, chemical and biological studies. We have since gone on to apply

the technique to imaging the pore structure of faulted rock cores.

To perform a full 3D pore size distribution run would require the ability to maintain the

temperature stable to a fraction of a degree for the time to acquire each full 3D data

set (currently 1 hour, though other imaging sequences could reduce this).
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All Silica 500Å Silica 60Å Silica

(a:) Idealised 3D Structure of 500�A plus 60�A silica phantom.

Undi�erentiated Silica 500�A Silica 60�A Silica
(b:) 3D resolved Pore Size Structure.

(c:) Underneath view of 500�A Silica.

Figure 52: 3D porous sample resolved into 500�A and 60�A components
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All Silica 500Å Silica 60Å Silica

(a:) Idealised 3D Structure of 500�A plus 60�A silica phantom.

Undi�erentiated Silica 500�A Silica 60�A Silica
(b:) 3D resolved Pore Size Structure.

(c:) Top view of 500�A Silica.

Figure 53: 3D porous sample resolved into 500�A and 60�A components
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The full data set is NX � NY � NZ � NT in size. For the dimensionless poresize dis-

tribution measurement, we usually set NT to be 300 for bulk cryoporometry, but even

if we use 32 , a data set 64�64�32�32 in size occupies 16MByte. The Monotonic and

PoreVolume data sets will be similar sizes. If one is not to perform the operation by

repeatedly reading the arrays in from disk, and operating on only a tiny subsection, one

needs at least 32MByte of RAM memory, assuming that one writes out and deletes from

memory data sets as soon as they are �nished with � say 48 to 64MByte with operat-

ing system, program and additional temporary storage; more will make programming

quicker and simpler.

It is not at all clear what is the best way of displaying the full pore size distribution

data for a 3D object, as this then is a 4D data set. The median pore size data could be

displayed as colour coded slices, as for the single slice in the previous 2D data (chapter

8.3). Alternatively, when discrete regions have di�erent median pore sizes, one could

represent them as shaded surfaces, as in this work.

8.5 Conclusion

A method for determining the full pore size distribution and median pore size for any

point in a 1 or 2-dimensional sample has been presented. Measurement and shaded

surface representation of 3-dimensionally resolved pore size structures has also been

demonstrated.

This method o�ers a uniquely non-destructive method of obtaining the full pore size

distribution or median pore size at any point inside a bulk sample.



Chapter 9

Cryoporometric measurements on

large pore porous materials at

various warming rates, and the

deduction of probe and liquid

characteristics.

Cryoporometric runs were performed on large pore size sol gel silicas and on Trisopor

porous glass, the pore sizes respectively being near the upper end of that resolvable

with water and cyclohexane. Measurements were performed at a number of di�erent

warming rates, using the gas 
ow cooler. These measurements provided the �rst reli-

able cryoporometric measurements of the pore size distribution in the larger Trisopor

glasses, to be compared with the nominal pore diameters obtained from mercury in-

trusion. They also served as a commissioning test of the gas 
ow cooler for use with

cryoporometry; they allowed evaluation of the cryoporometric method at large pore

sizes; they provided data to test a method of deducing the correct value of the bulk

melting point to be used for a particular liquid at a particular warming rate, for a

particular probe; they provided data that could be used to deduce the cryoporomet-

ric resolution of the existing probe as a function of pore diameter, liquid, and probe

warming rate.

96
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9.1 Sample preparation.

Samples were prepared of dried Trisopor
R porous glass of nominal pore diameter 158�A,

250�A, 480�A, 1000�A and 1930�A slightly over�lled with cyclohexane. Weighings were

made of the empty tube plus cap, then with added porous glass after drying, then after

adding the anhydrous cyclohexane in a nitrogen �lled glovebox. The samples were 
ame

sealed on a vacuum line.

The sample of 200�A sol gel silica had previously been made for the calibration of the

water melting point depression.

9.2 Measurement runs.

Cryoporometric runs were performed on the samples using the newly implemented gas


ow cooler (chapter 5.3) at various warming rates (see table 8). The �rst runs on

1930�A and 1000�A silica provided information as a function of warming rate, and allowed

deduction of warming rates suitable for resolving the other Trisopor samples.

Pore Warming rate
Diameter
f�Ag fC��min�1g
158 0.5, 0.2
250 0.1
480 0.05
1000 0.1, 0.05
1930 0.05, 0.02, 0.01

200 0.2, 0.1, 0.05

Table 8: Warming rate of measurements performed on cyclohexane in Trisopor porous
glass and on water in 200�A sol gel silica.

Runs took about 2 to 4 hours, with the exception of the one at 0.2C��min�1 on 158�A

Trisopor, which took about 7 hours, due to the depth of cooling required.

9.3 Cryoporometric results.

Examination of the melting point data shows that the gas 
ow cooling system gives

a high uniformity of warming, even at 0.01C��min�1, with no noticeable tendency

to the temperature reversals that occur frequently with the Lindacot system below
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0.5C��min�1. This was the main impetus to implement gas 
ow cooling, and as such

seems to have succeeded well.

Pore size distributions (�gures 54, 55, 56) were calculated using the method described

below. We notice that all the pore distributions appear reproducible and well resolved,

with the exception of that at 0.05C��min�1 using 1930�A Trisopor, where the warming

rate was too fast for adequate resolution. For the larger pore sizes the distributions

appear somewhat sharper than is common with sol gel silicas. The 250�A sample is

decidedly bi-modal; some of the other distributions suggest that they are composed of

a slight overlap of intrinsically very sharp distributions.

The measured peaks in Trisopor are all larger than the nominal pore sizes; this may

be due to sensitivity to pore geometry, but is most likely due to the fact that the

cryoporometric calibration of the melting point depression factor k for cyclohexane has

been performed in terms of sol gel silicas calibrated by gas adsorption, which measures

surface area to volume of the pores, whereas the Trisopor samples have been calibrated

by mercury intrusion, which measures pore throat sizes, and can thus be expected to

give lower results.

9.4 Calibrations as a function of warming rate.

We wish to consider the thermal behaviour of a scanning cryoporometer, where the body

of the probe (by default) is programmed to linearly ramp in temperature. We note that

while the bulk liquid around the grains of porous silica is melting, the liquid will be at a

constant temperature. The temperature that we actually measure at the thermocouple

will however change, due to the thermal resistances in the probe (see appendices D, G).

As a result, if pore size distributions are calculated for melting point curve data mea-

sured at di�ering probe warming rates and using the same value of bulk melting point

for all the calculations, the displacement in temperature due to the time required to

melt a mass of solid (at constant warming rate of the probe) results in a relative dis-

placement of the calculated pore distribution peaks.

If Tu; Tl are the upper and lower limits of the step in the melting point curve caused

by the melting of the bulk liquid around the porous grains of silica, one would expect

that if one chose the mid-point of Tu; Tl, one would correct for this displacement; in

fact this over-compensates. It had been noticed when doing cryoporometric runs at
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Figure 54:
Cryoporometric pore size distributionsmeasured using cyclohexane in 158�A, 250�A Triso-
por, for various warming rates.
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480Å Trisopor pore size distribution.
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Figure 55:
Cryoporometric pore size distributions measured using cyclohexane in 480�A, 1000�A
Trisopor, for various warming rates.
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Figure 56:
Cryoporometric pore size distributions measured using cyclohexane in 1930�A Trisopor,
and water in 200�A sol gel silica, for various warming rates.
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relatively large warming rates that the best value of bulk melting point to choose to

match nominal to measured pore diameters corresponded to about 1/3 way up the bulk

melting step.

In appendix D we consider �tm, the time required for a sample of liquid undergoing an

isothermal phase transition to melt, and its dependence on the mass of liquid melting

�Mb and the size of the heat 
ux into the sample Ws =Ws0�
�
dT
dt

�p
(where p�0:5), and

(given a uniform probe warming rate) deduce the total temperature range �Tb = Tu�Tl
that is actually measured for the transition by the sample thermocouple

�Tb = �Ts +
Lf ��Mb

Ws0
�
�
dT

dt

�1�p
where Lf = Latent Heat of Fusion of the solid to liquid transition.

In this appendix we describe routine mpcstep , which uses user interaction and linear

least squares �tting to obtain Tu; Tl from the melting point curve data, and with these

calculates a measured value for the bulk melting point at this particular warming rate

Tbulk = Tl +
1

3
�(Tu�Tl);

The routine then proceeds to calculate the volume normalised pore size distribution for

the corresponding data, using this value, then plots and saves the distribution.

Using this approach, the graphs in �gures 54, 55, 56 were calculated, which show rea-

sonable independence of heating rate for all but the case of 0.05C��min�1 in cyclohexane
in 1939�A pore size, where there is degraded resolution due to the warming rate.

9.5 Cryoporometric resolution.

Using the measured value for the residual temperature di�erence �Ts along the sample

(appendix D �gure 124), we may calculate the resultant best resolution as a function

of pore diameter and cryoporometric liquid slope constant k . We may go further, if we

use the measured proportionality (with slope �) of the total bulk melting point step

�Tb to
�
dT
dt

�1�p
(where p�0:5) (appendix D), we may deduce from the Gibbs-Thomson

equation the corresponding full width resolution broadening function =

�(k;Diameter;
dT

dt
) =

k

�1
2 ��Tb + k

Diameter

=
k

�1
2 �
�
�Ts + ��

�
dT
dt

�1�p�
+ k

Diameter

which we may express in Apl as :
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-/[1] k � (�1 1 � 0.5 � CoefCT1k93 genlinWarmingRate * 1-p ) � .+ k � Diameter

Plotting this for warming rates of 1, 0.1, 0.01 C��min�1, for pore sizes from 50�A to

2000�A, we obtain using k cyclohexane = 1825, �gure 57a for cyclohexane, and using kwater

= 495, �gure 57b for water.

The majority of cryoporometry measurements in this work have been made using

the Lindacot temperature controller (see chapter 5.1), at a warming rate of 0.5 or 1

C��min�1; it can be seen from �gure 57a that with with the existing probe, cyclohexane

measurements at 0.5 C��min�1 are then limited to be below about 1000�A, as at this

pore size the full width broadening is comparable with the pore diameter.

Measurements using gas 
ow cooling (see chapter 5.3) were made mainly with warming

rates in the region of 0.1 to 0.01 C��min�1. With cyclohexane at 0.01 C��min�1 the

full width broadening with the existing probe is comparable with the pore diameter at

about 10000�A = 1�m, assuming that no other factors intrude.

One such factor may be a residual broadening of the liquid melting curve due to im-

purities. However for both the anhydrous Sureseal
R cyclohexane from Aldrich and the

�ltered/reverse osmosis/ion exchanged water that were used, this should be consider-

ably less than the measured value of �Ts�0:06 C�.

If we wish to improve on this resolution, we see from the above equation for �Tb that

it is important to reduce the residual temperature di�erence along the sample �Ts.

However we also see that we can improve the resolution at larger warming rates either

by reducing Lfor �Mb, or by increasing Ws.

Thus we can see that we need to warm much slower when using water as the cryoporo-

metric liquid, not only by the ratio of the melting point depression factors kwater
kcyclohexane

,

but also take into account the higher latent heat of fusion Lf of water compared with

cyclohexane.

The approach of reducing the mass of the sample is commonly used in Di�erential

Thermal Analysis (DTA), and may be possible with NMR as at slow warming rates

there is as much as a day available for averaging the NMR echo amplitudes.

Attempts to increase the heat 
uxWs into the sample may con
ict with the requirement

to keep the total temperature range along the sample �Ts as small as possible.

Even without further changes we see from �gure 57a that the introduction of the gas


ow cooler, by allowing warming rates to be reduced by a factor of 50, has improved

the resolution at a given pore diameter by a factor of 10, (more at large pore sizes);
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Calculated cryoporometric probe resolution using cyclohexane.
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Using cyclohexane as the pore
filling liquid, we plot the
calculated resolution (using
parameters measured from bulk
melting step) as a function of
probe warming rate :
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(a:) Calculated pore size resolution for cyclohexane.

Calculated cryoporometric probe resolution using water.
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Using H2O  as the pore
filling liquid, we plot the
calculated resolution (using
parameters measured from bulk
melting step) as a function of
probe warming rate :
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(b:) Calculated pore size resolution for water.

Figure 57: Calculated probe pore size resolution for cyclohexane and water, as limited by
residual temperature gradients in the sample, and by probe warming rates (parameters
measured from bulk step as a function of warming rate).
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alternatively, for the same resolution we can now study pores that are
p
10 larger.

Studying comparative pore size distributions, we see that the practical di�erence is

even greater, perhaps a factor of 10, as the temperature 
uctuations with the Lindacot

cooling system badly distort the resultant pore size distributions at large pore sizes.

9.6 Conclusion.

Thus we have deduced an expression describing the cryoporometric resolution for a

scanning cryoporometer. We have shewn that provided we warm no faster than spec-

i�ed in the cryoporometric resolution graphs in �gure 57, using gas 
ow cooling with

cyclohexane as the indicator liquid, we obtain highly repeatable pore size distribution

graphs up to 2000�A pore diameter (�gures 54, 55, 56).



Chapter 10

Naturally porous materials

exhibiting a fractal pore size

distribution.

NMR cryoporometric measurements of pore size distributions have been made for

under�red clay, and for chalk, We show that in a sample of under�red clay, for a

ratio of pore sizes of 25, the pore size distribution has a self-similarity that follows a

fractal characteristic. In a chalk sample the porosity for a decade ratio of pore sizes at

small pore diameters exhibits a self-similar distribution, but at larger pore diameters

for a decade shows a self-similar distribution with a higher than extrapolated porosity.

10.1 Self similarity and Fractal dimension.

If one considers space-dividing fractured curves that form self-similar shapes [Mandel-

brot, 1983, Ch:II,6], we see that a whole interval O�x<X on a straight line of Eu-

clidean dimension 1 may be 'paved' by N = b 'parts'. If these 'parts' are the intervals

(k � 1)X=b�x<kX=b where k goes from 1 to b, then each part can be deduced from

the whole by applying a scaling ratio ScalingRatio(N) = 1=b = 1=N .

Similarly for a rectangle on a plane one obtains ScalingRatio(N) = 1=N1=2 and for a

rectangular parallelepiped one obtains ScalingRatio(N) = 1=N1=3

Thus in general, for D-dimensional parallelepipeds we obtain

ScalingRatio(N) =
1

N1=D

106
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or

N �ScalingRatioD = 1

Mandelbrot considered the possibility of fractal dimension D becoming non-integer.

We have here two variables, the ratio of scales 'ScalingRatio' over which we are measur-

ing self-similarity, and N , which is in e�ect a scaling parameter telling us what fraction

of the whole (maximum) we �nd.

Suppose we consider the measurement of a parameter P at two length scales x1; x2,

such that we measure P (x1); P (x2).

It is then clear that we may map

ScalingRatio , x2
x1

N , P (x2)

P (x1)

where we consider x2>x1; and P (x2)>P (x1) in agreement with the above discussion.

We may then describe the self-similarity in parameter P(x) in terms of a fractal rela-

tionship :

N �ScalingRatioD = 1

���
P (x2)

P (x1)
�
�
x2
x1

�D
= 1

��� D�Ln
�
x2
x1

�
= Ln

�
P (x1)

P (x2)

�

10.2 Self similarity in measured pore size distributions.

We have measured the the pore size distribution (by which we mean the incremental

pore volume per �Angstrom increase in pore diameter, per gram of dry porous material)

for a number of naturally porous materials, by NMR cryoporometry.

We plot in �gure 58 the pore size distribution for Obergrafenhain clay �red at 850�C

and in �gure 59 we plot the pore size distribution for Flamborough chalk.

We see that for a length scale change from 80�A to 2000�A (a factor of 25) the log-log plot

for the clay exhibits deviations from a straight line that only have the characteristics of

measurement noise.
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Fractal porosity in underfired clay.
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Figure 58: Cryoporometry pore size distribution for Obergrafenhain (2) clay �red at
850�C.

Fractal porosity in chalk.
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Figure 59: Cryoporometry pore size distributions for Flamborough chalk.
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Suppose we write for our parameter P(x) the measured incremental porosity as a func-

tion of pore diameter x , then we have (with -ve slope �) :

Ln(P (x)) = �+ ��Ln(x)

��� Ln(P (x2))�Ln(P (x1)) = ��(Ln(x2)�Ln(x1))

��� Ln

�
P (x2)

P (x1)

�
= ��Ln

�
x2
x1

�
��� � Ln

�
P (x1)

P (x2)

�
= ��Ln

�
x2
x1

�

���
P (x1)

P (x2)
=

�
x2
x1

���
���

P (x2)

P (x1)
�
�
x2
x1

���
= 1

Hence we conclude that the pore size distribution for the clay from 80�A to 2000�A has

a self-similarity that is fractally related, such that the negative of the slope � of the

log-log plot gives us the fractal dimension D of the self-similarity of the porosity. Thus

for the clay we obtain D � 0.90.

For the chalk we see one region of linear behaviour on the log-log plot, from 150�A to

1500�A, implying a self-similar behaviour with a fractal dimension of D � 1.6. However

from 3000�A to 3�m we �nd a displaced line with a higher porosity than expected from

an extrapolation of the �rst line, with D � 1.4. One possible explanation of this is that

the nano-porosity is in the form of porous cemented grains, with additional porosity in

the inter-granular voids on a micron scale.

It should be emphasised that this behaviour is a property of the materials studied, and

that the NMR cryoporometer used for these measurements has been shown to have good

resolution over the range 25�A to 1�m both by direct measurement and by deduction

from the width of the step in the melting curve when any bulk liquid melts.



Chapter 11

Densities and solid-solid density

correlations in dry porous silica

systems: measured by weighing,

imbibation, neutron scattering

and nuclear magnetic resonance;

interpreted using analytic and

Monte-Carlo models of porous

systems.

Neutron Scattering measurements of S(Q) for 0.0008 � Q � 17 providing infor-

mation on the radial density correlations in the porous media and Nuclear Magnetic

Resonance cryoporometric measurements of pore size distributions for mean pore

diameters 25�A � Dvoid � 2000�A are presented for sol-gel porous glasses. To inter-

pret this information, density distributions in model silicas are evaluated by analytic

and Monte-Carlo methods for r � 21�LatticeSpacing, and G(r), d(r), L(l) and

I(Q) calculated. S.E.M. micrographs and bulk density and imbibation measurements

provide additional constraints on the models.

110
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11.1 Introduction.

Sol-gel silicas and some micelle templated silicas were studied by density and imbibation

measurements, NMR cryoporometry and neutron scattering. We wish to provide a

consistent explanation of the observed measurements; thus models of porous structures

were generated.

Initial consideration is given to simple systems of porous structures that model the

average behaviour of sol-gel and micelle templated silicas � realistic models are shown

to be constrained by simple bulk density measurements on the silicas.

Then the detailed behaviour of the solid-solid radial density correlation G(r) for uniform

pores on a regular lattice is considered, before examining the behaviour of ensembles of

pores with statistical variation in pore diameter and lattice spacing. For these Monte-

Carlo modelling of the porous structure is used [Hammersley and Handscomb, 1964],

using the above geometric models. The mean densities given by the analytic calculations

provide stringent tests that we have correctly implemented the geometry in the Monte-

Carlo models.

Constraints are placed on the models and their parameters, using information derived

from the neutron scattering and NMR cryoporometric measurements, to generate more

realistic models. This helps to greatly improve the calculation e�ciency.

We also �nd that we need to model the scattering from a planar slab; thus G(r) is

calculated for a plane slab by analytic, numerical and Monte-Carlo integration.

The G(r) radial distribution information is calculated for a number of porous struc-

ture models as a function of two parameters, Dvoid=LatticeSpacing and LatticeSpacing

Variance = �2, and transformed to scattering intensity I(Q). It is then compared with

the measured scattering intensity, using linear scaling of the amplitude and the Q scale.

i.e. we transform from a scale in which the LatticeSpacing is normalised to unity, to

one in which it is measured in �A. We �nd these parameters are su�cient to obtain a

quite detailed representation of the measured scattering over some decades of scattering

intensity and length scale.



CHAPTER 11. DENSITIES AND SOLID-SOLID DENSITY CORRELATIONS. 112

11.2 Model porous systems: constraints and simpli�ca-

tions.

We wish to consider porous systems, such as are formed in silica using the sol-gel process

and those such as MCM-41 and MCM-48 formed by a micelle templating process.

By porous we mean that they have the ability to absorb liquids, and thus will in the main

exclude systems containing primarily blind pore void space. At the other extreme we

can exclude geometries where the pore void is so large that the structure loses cohesion.

We will apply constraints on the geometries, using information gained from Scanning

Electron Microscope (SEM) micrographs, bulk density and imbibation measurements,

and NMR Cryoporometry and Neutron Scattering experiments.

11.2.1 Structural length scales observed in porous silica systems.

First we wish to consider the length scales on which the porous silica shows structure.

Many models have been proposed for porous silica structure, some fractal in nature

[Stanley and Ostrowsky, 1986]. In this work the density and spatial structure of a

number of porous silicas has been studied using Neutron Scattering di�raction and small

angle scattering (SANS) over length scales 0.34�A to 0.75�m; using NMR Cryoporometry

over length scales 10�A (using water as the cryoporometric liquid) to perhaps 10�m

(using cyclohexane); using Pulsed Magnetic Field (PFG) di�usion measurements and

NMR fringe �eld di�usion measurements (using water in the silica pores) over length

scales 0.3�m to 30�m; with SEM micrographs over length scales 0.5�m to 1mm; and

average bulk properties of the silica powder, grain and silica matrix studied using bulk

density and liquid imbibation measurements.

With the exception of sintered porous silica and aerogel, which are available as solid

blocks, most porous silicas are made in the form of �ne porous grains.

If we examine Scanning Electron Microscope (SEM) micrographs of silica grains for

100�A pore diameter sol-gel silica (�gures 60, 61), we see that the grains are typically of

size 100�m!200�m. Further examination of the micrographs shows that on a micron

scale we have approximately spherical structures on the surface of the silica, with a

diameter of about 2.2�m. However if we examine the exposed silica edges in �gure

61, we do not see any actual porosity between the domains. For a structure composed

of random packed spheres it is possible to see into the lattice to the third layer, and
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even with Hexagonal Close Packing second or third layers may be visible, depending on

orientation (see �gure 70); this is not apparent in the micrographs.

If we examine the intensity of neutron scattering from sol-gel silicas as a function of Q

(see �gure 85), we see structure that for a simple analysis seems to suggest structure on

two length scales (see �gures 99, 100, 101). However a more thorough analysis based

on the calculation of the scattering from the radial density distribution for model pore

structures shows that we can obtain similar scattering from models that contain a single

Gaussian shaped distribution of spherical pores (see chapters 15, 16).

NMR cryoporometry using cyclohexane as the cryoporometric liquid with the gas-
ow

cooling system, with variable warming rate to give a uniform resolution on a log scale (see

appendix F), can now resolve porosity on a micron scale, and with reduced resolution

up to possibly 10�m. Such measurements on porous silicas show little porosity other

than the expected porosity distributed around the nominal pore diameter.

Di�usion measurements made on liquids in sol-gel silica powders using both NMR Pulsed

Field Gradient (PFG) techniques and superconducting magnet Fringe Field Gradient

techniques, as a function of temperature, are both consistent with the presence of struc-

ture on a 100 �m (grain) scale, but not at 2�m. However these measurements require

additional con�rmatory studies and are not presented further here.

Thus we tentatively conclude that the unconstrained silica prefers to grow into spherical

shapes with diameters of about 2.2�m (themselves porous on a scale of 100�A), but that

the body of the silica is probably �lled with touching polyhedral domains of porous

silica, with little or no additional porosity on a 1�m scale.

We have seen that the Neutron Scattering measurements of the scattering from porous

silica (performed as part of this work) show structure that depends on pore diameter;

we will discuss this further in chapters 16, 17.

NMR cryoporometric measurements performed as part of this work have shown that

for the sol-gel silicas that are being considered, the normalised pore size distribution is

20% to 50% wide, with an approximately Gaussian distribution, (�gure 62), and that

of the micelle templated silicas is considerably less. This pore size distribution is thus

much di�erent from the fractal distribution that is sometimes posited.

Thus for our models we will limit our consideration to pores characterised by a mean

pore diameter and a Gaussian statistical variation. This greatly constrains both the

shape of the pores and the geometry of the 3D spatial repetition of the pores, for a self
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Figure 60:
SEM micrograph of typical sol-gel silica grain of about 150�m dimensions, porous on a
scale of 100 �A. The notch of the 'crevasse' near the 'peak' is shown in �gure 61.

Figure 61:
SEM micrograph of the silica grain in �gure 60, porous on a scale of 100�A, showing
spherical structures with a diameter of about 2.2�m, but no inter-domain void space.
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Figure 62:
Normalised pore volume distributions for sol-gel silicas, with �tted Gaussians, showing
Full Width at Half Maximum values of 20% to 50%.

consistent lattice.

Neutron scattering measurements made as part of this work show that whereas the

pores in the micelle templated silicas are arranged in a highly regular manner, giving

moderately sharp Bragg peaks, (�gure 63), the scattering from the sol-gel silicas shows

just broad small-angle scattering, with little sign of Bragg scattering from a regular

lattice of pores (�gure 85). Thus one concludes the pores in the sol-gel silicas, although

of a fairly regular size, are arranged in an essentially random manner with little long

range order. One is then limited to suitable packing geometries for the above pores that

can satisfy the measured bulk densities and radial distributions.

Next we consider if there is possible nano-scale structure in the silica � i.e. is the silica

from which the pores are excised also structured ?

NMR cryoporometric measurements on sol-gel silicas in the range 25�A ! 2000�A mean
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pore diameter show negligible porosity below that of a Gaussian like distribution around

the mean pore diameter, down to the lower limit of about 10�A (using water).

With Neutron Scattering we note that we do not see any additional structure between

the scattering that changes with pore diameter, and the scattering from the atomic

structure, such as might be due to nano-porosity, (�gures 63, 85).
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The incoherent scattering from
hydrogen has been fitted and
measured on diffractometer D4,
and subtracted from this data.

The supression of scattering at
low Q, and its transference
into Bragg peaks can be seen.

Figure 63:
Neutron scattering from dry porous silica MCM-41, showing peak at low Q and Bragg
peak at 0.2 fradians��A�1g, with pore structural intensity falling two orders of magnitude
before atomic structural peak at Q ~ 1.5 fradians��A�1g.

11.2.2 Continuum simpli�cation.

Thus an important simpli�cation for our models comes from the fact that we see from

the neutron scattering from even those silicas with small pore structure, such as MCM-

41 or 40�A sol-gel silica, that the scattering intensity from the pore structure falls some

orders of magnitude before the �rst atomic structural peak at about 1.5 fradian��A�1g
(see �gures 63, 85).
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Thus we may may model our pores as holes cut from a continuum, rather than having to

model discrete silicon and oxygen atoms; this reduces by many orders of magnitude the

amount of information we have to store and manipulate for a large three-dimensional

representation of a porous solid.

11.2.3 Bulk density constraints on simple pore and lattice geometries.

Simple measurement of the porous silica density allows one to deduce information that

constrains the range of possible pore geometries within the silica. They also enable

us to normalise the radial density correlation graphs obtained from measured neutron

scattering from the silicas.

We have seen that the porous silicas being considered are made in the form of �ne

porous grains. Thus when considering the densities of the porous silica structure, one

must take into account the packing densities of the grains. This is clearly variable, as

can be seen by �rst pouring silica powder into a measuring cylinder, and then repeatedly

tapping it, when a compression of a few percent is observed. However the grains soon

reach a state of consistent maximum compression.

For hard spheres of a uniform size, close random packing density for has been shown

by experiment [Finney, 1970] to be 0.6366�0.0004, i.e. about 64%, compared with a

maximum possible density of �
3�p2 (hexagonal close packed or face centered cubic) i.e.

about 74%. Clearly grains with a wide range of sizes will pack more densely, but the

mesh sizes claimed for the sol-gel silicas studied cover only a moderate range of sizes.

Thus a packing density of 64% will initially be assumed for the grains of the standard sol-

gel silicas. Imbibation experiments combined with NMR Cryoporometry experiments

(section 11.5) allow us to measure this ratio. On the other hand there is evidence that

the very �ne grained templated silicas studied are much less than optimally packed, in

that there is a volume reduction to about 80% when liquid is added to the dry powder,

suggesting that the dry packing density may be about 50%, perhaps due to a `
u�y'

grain shape.

Density and imbibation experiments give us an additional check on the possibility of

microporosity, as discussed in the preceding section: If the grains were microporous, in

the form of random packed spheres, there would in e�ect be two nested sets of random
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void packing outside the (25�A to 2000�A diameter) pores, such that we would have

Vpore + Vsilica
Vpore + Vsilica + Vmicropacking + Vgrainpacking

� 0:642

� 0:41

In section 11.5 we measure values of between about 0.6 and 0.67 for the inter-grain pack-

ing fraction that are consistent with approximately random packing, with insu�cient

void space outside the pores to account for a large degree of microporosity.

Density and imbibation experiments also give us an additional check on the possibility

of nanoporosity, as discussed in the preceding section: We have seen that we do not

in the neutron scattering results see evidence of nano-structure on a scale between the

atomic and pore dimensions (~10�A).

We will see in section 11.5 that we �nd a value of about 2.0 for the speci�c density of

the (voidless) silica lattice. If this had a nano-structure of random packed spheres, this

would imply a speci�c density of over 3.1 for the silica; fused silica has typical speci�c

density of between 2.1 and 2.2, and even quartz crystal is only 2.6 [Kaye and Laby,

1966].

11.3 Models of simple porous systems.

Thus in constructing models of porous structures, we have to consider the shape of the

pores themselves, the structure on which the pores are arranged, and the packing of the

grains of the porous material.

These models will allow us to establish relationships, for each model, between pore diam-

eter Dvoid (as measured say by NMR Cryoporometry), and lattice spacing a (to which

one would a priori expect Neutron Scattering experiments to be primarily sensitive).

A number of pore geometries will be considered, and possible maximum and minimum

density and silica �lling factors evaluated and compared with experimental values as

measured by density and imbibation measurements. Some of the geometries are chosen

for their initial simplicity (rather than any expectation that they model reality), or

because they form an extreme limit to the likely variation of real silica geometries,

between which we may then interpolate.

We thus use as initial simple models of the pores, uniform pores distributed on a regular

lattice. We then proceed to considering pores on ensembles of regular lattices with
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statistical variations in diameter and spacing. Ideally one would like to treat pores on

truly random lattices, but this step has not yet been made; there would be a substantial

step in the computation required.

For initial bulk density considerations, we may clearly consider a porous structure com-

posed of pores all with the average size, shape and spacing.

Further, for bulk density considerations we may simplify the geometry � i.e. when

considering a simple geometric model of a regular lattice of cylindrical pores, we will also

be treating with reasonable precision (for bulk density considerations) those templated

silicas that are formed of intertwined cylinders, as well as the MCM-41 that is accurately

modeled by cylinders on a hexagonal lattice.

In comparing the calculated densities with the measured ones, we need to know the

density of the (voidless) silica lattice � examining bulk densities for silica [Kaye and

Laby, 1966] initially led to the fairly arbitrary choice of 2.2 for the speci�c density;

however measurements of the density of silica dry and �lled with water, and of the total

pore volume by NMR enable us to calculate the speci�c density of the silica lattice to be

close to 2.0 (section 11.5) so will pre-empt those measurements and use that value here.

11.3.1 Single cylindrical tube.

The simplest such porous system we can consider is an isolated tube

rvoid 

rTube 

Figure 64: Iso-

lated tube geom-

etry.

(�gure 64) (thus deferring the problem of how the pores are packed).

If the inner void and outer tube radii are Rvoid, RTube, the length

is L, and the density is �silica, then we have :

Total Mass of Tube = MT = �L(RTube
2�Rvoid

2)��silica
Total Volume of Tube = V T = �LRTube

2

��� Density = �T = RTube
2�Rvoid2

RTube2
��silica

��� Volume Fraction for Tube = fT = �Tube
�silica

= 1� Rvoid
2

RTube2

��� Tube radius = RT = (1�fTube)�1=2�Rvoid

Thus if we were to pack such tubes into say a square array (�gure 65), the lattice spacing

a would be (1�fTube)�1=2�Dvoid (the pore diameter). i.e. Just by measuring the

density we are able to form a relationship between the pore diameter (as say measured

by gas adsorption or cryoporometry) and the pore repetition spacing (as say measured
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by X-ray scattering or neutron scattering). This seemingly simple step is 
awed though,

in that we are neglecting the void space outside the tubes; however we do now have a

simple formula that now gives us the form of the relationship between the lattice spacing

a and the silica �lling factor f , for cylindrical voids.

rv 

rT 

Dvoid 

alattice 

Figure 65: Lattice of tubes � a 
awed model.

11.3.2 Cylindrical voids.

A more realistic model is to consider a solid matrix of silica, out of which is excised pore

void volume on a regular array. We will initially consider two variants on the above :

a regular square array of cylindrical voids; and a regular hexagonal close packed array

of cylindrical voids. The latter is that with the greatest possible void space, and the

former is probably lower than any likely randomised structure.

Square array of cylinders.

If now we take N lattice units of length L and lattice spacing a, with a cylindrical pore

of radius Rvoid in each lattice unit (�gure 66), then :
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rv 

Dvoid 

alattice 

Figure 66: Square lattice of cylindrical voids.

Total Mass = M cs = ((N�L�a2)�(N�L���Rvoid
2))��silica

Total Volume = V cs = N�L�a2

��� Density = �cs =
�
1��Rvoid

2

a2

�
��silica

��� Volume Fraction = f cs = 1��
4

�
Dvoid
a

�
2

��� Lattice Spacing = acs =
�
�
4 �(1�f cs)�1

�
1=2�Dvoid

We may note that for Dvoid � a the structure loses cohesion; i.e. there is a minimum

grain density of

�csmin =
�
1��

4

� ��silica = 0:215�2:0 = 0:43fg � cm�3g

As we can see, this is su�cient to eliminate this structure from consideration for some

templated porous silicas (whose structure we know anyway). Ordinary sol-gel materials

have speci�c grain densities which may (in large pore silicas) be below 0.4; even allowing

for the uncertainty of the measurements we would expect them to be on the limit of

structural cohesion, and very friable, which is not what we observe.
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Figure 67: Hexagonal lattice of cylindrical voids.

2D hexagonal close packed array of cylinders.

This should closely model the MCM-41 hexagonal micelle templated silica. The hexag-

onal unit cell contains one cylindrical pore, but is skewed; thus we shall �nd it more

convenient to consider a rectangular cell of dimensions a,
p
3a, containing two cylinders

of radius Rvoid (�gure 67).

For N of these of length L:

Total Mass = M ch = ((N�L�a�p3�a)�(2�N�L���Rvoid
2))��silica

Total Volume = V ch = N�L�a�p3�a
��� Density = �ch =

�
1� 2�p

3 �Rvoid
2

a2

�
��silica

��� Volume Fraction = f ch = 1� �
2
p
3

�
Dvoid
a

�
2

��� Lattice Spacing = ach =
�

�
2
p
3 �(1�f ch)�1

�
1=2�Dvoid

For Dvoid � a the structure loses cohesion; i.e. there is a minimum grain density of

�chmin =
�
1� �

2
p
3

�
��silica = 0:0931�2:0 = 0:186fg � cm�3g

This is well matched by the measured minimum grain density of the templated silicas.

We also conclude that it is possible to construct hexagonal structures of cylinders that
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match measured sol-gel silica grain densities.

Random packed array of parallel cylinders.

Random arrays of cylinders have not yet been treated, but we would expect the grain

densities to be between the previous two cases (which was the reason for treating the

unlikely model of a cubical array). This is thus a possible model that satis�es the

observed grain densities.

11.3.3 Spherical Geometries.

There are two possible ways of constructing porous structures with spherical geometry.

The �rst is to have touching spheres of silica, with the pores being the inter-sphere

voids. The second is to have intersecting spherical voids in a solid silica matrix. This

is e�ectively the inverse of the �rst case, but there is the additional degree of freedom

in that the intersecting pores may have radii greater than that of the corresponding

touching silica spheres. Thus the intersection of the cavities in the second structure

with pore diameter Dvoid > as (lattice spacing, spherical) will give rise to porosity. It is

also worth noting that since the walls can not be of in�nite thinness, porosity can also

be expected for Dvoid slightly less than as. As in the cylindrical case, there is an upper

limit beyond which the lattice looses cohesion.

For convenience of display we will represent both the case of silica spheres on a lattice

and silica (touching) voids on a lattice as solid spheres.

We will again start with a lattice with a lattice packing density lower than is likely in

a real system :

Cubic array of silica spheres.

For a cubic lattice of silica spheres, Dsilica must equal lattice spacing a (�gure 68).

Total Mass = M ssc =
�
4
3 �N���

�a
2

�
3
�
��silica

Total Volume = V ssc = N�a3

��� Density = �ssc =
�
4�
3 � (a=2)

3

a3

�
��silica

= �
6 ��silica

��� Volume Fraction = f ssc = �
6
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i.e. the grain density is �xed at a constant �
6 ��silica�0:524��silica�1:05fg � cm�3g

This may be relevant to certain sintered porous glasses, but is too high for sol-gel glasses.

Other more likely packing geometries than cubical, such as Hexagonal Close Packed or

random, will have even higher grain densities.

Figure 68: Solid silica spheres on a cubic lattice; this also represents touching spherical
voids on a cubic lattice.

Cubic array of spherical voids.

If now we take N lattice units of cubical lattice spacing a, with a spherical void of radius

Rvoid centered on each lattice unit (�gure 68), and allow Rvoid to exceed a=2, we note

that we must take care to not include in the calculation of the void volume that part of

the sphere that falls outside the lattice cube.

First, for Rvoid � a=2 :

Total Mass = M sc =
�
(N�a3)�

�
4
3 �N���Rvoid

3
��
��silica

Total Volume = V sc = N�a3

��� Density = �sc =
�
1�4�

3 �Rvoid
3

a3

�
��silica

��� Volume Fraction = f sc = 1��
6

�
Dvoid
a

�
3

��� Lattice Spacing = asc =
��
6 �(1�f sc)�1

�
1=3�Dvoid

Now, for a=2 � R = Rvoid �
p
2a=2, the excluded volume that projects beyond the +x
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face of the lattice cube is given by (see appendix I) :

V E =
R R
a=2 �(R

2�x2)dx
= �

h
R2x�1

3x
3
iR
a=2

= �
�
2
3R

3�a
2R

2 + 1
24a

3
�

Thus

V void = 4
3�R

3�6�V E

= �
�
�8

3R
3 + 3aR2�1

4a
3
�

Hence

Total Mass = M sc = ((N �a3)�(N�(�8
3Rvoid

3 + 3a�Rvoid
2�1

4a
3))��silica

Total Volume = V sc = N �a3

��� Density = �sc =
�
1�
�
�
�
�8

3

�
Rvoid
a

�
3 + 3

�
Rvoid
a

�
2�1

4

���
��silica

��� Volume Fraction = f sc = 1�
�
�
�
�1

3

�
Dvoid
a

�
3 + 3

4

�
Dvoid
a

�
2�1

4

��
��� Lattice Spacing = asc � �

0:689 + 0:76f sc�0:251f sc2
� �Dvoid

where the expression for asc has been obtained by numerical reversion and inversion of

the preceding line.

Figure 69 shows f sc as a function of Dvoid=a. This represents the likely upper bound of

the density for spherical voids.

For Dvoid �
p
2�a the silica structure loses cohesion;

��� for R =
p
2a=2 = a=

p
2 the excluded volume is given by :

V Emin = �
6 �
�p

2�5
4

�
�a3

���V voidmin = 4
3�R

3�6�V E

= ��
�
5
4�2

3 �
p
2
�
�a3

= 0:965a3

����scmin =
�
1���

�
5
4�2

3 �
p
2
��
��silica

This minimum density of 0.0349��silica � 0.070 fg�ml�1g is far lower than is seen in

sol-gel silicas (even for such a loose packing geometry of the pores as cubic) and is more

typical of aerogel silicas.
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Silica filling factor fsc for
spherical voids of diameter Dvoid/a 
on a cubic lattice of lattice
spacing a, up to Dvoid/a = √2,
the maximum for lattice cohesion.

The lower line includes volume
in adjacent lattice spaces :
 fsc = 1 – (1/6)zπz(Dvoid/a)³  

The upper line correctly
excludes this excess volume,
for 1 s Dvoid/a s √2 :
 fsc = 1 – πz( (–1/3)z(Dvoid/a)³ 
      + (3/4)z(Dvoid/a)² – 1/4)   

Figure 69: Silica �lling factor for spherical voids on a cubic lattice, as a function of
Dvoid/ LatticeSpacing .

Thus we may immediately conclude that if the pores are spherical then the process of

formation of sol-gel silicas prevents the generation of mean pore sizes up to the lattice

cohesion limit.

Hexagonal Close Packed array of spherical voids.

For spherical voids on a hexagonal close packed array (�gure 70), we must again take

care to not include in the calculation of the void volume that part of the sphere that

falls outside the unit cell.

First, for Rvoid � a=2 :



CHAPTER 11. DENSITIES AND SOLID-SOLID DENSITY CORRELATIONS. 127

Total Mass = M sHcp =
��

N�a3p
2

�
�
�
4
3 �N���Rvoid

3
��
��silica

Total Volume = V sHcp = N�a3p
2

��� Density = �sHcp =
�
1� 8��

3�p2 �Rvoid
3

a3

�
��silica

��� Volume Fraction = f sHcp = 1� �
3�p2 �

�
Dvoid
a

�
3

��� Lattice Spacing = asHcp =
�

�
3�p2 �(1�f sHcp)

�1
�
1=3�Dvoid

Figure 70: Touching spherical voids on an Hexagonal Close Packed lattice.

For Rvoid > a=2 an exact analytic evaluation of the excluded volume is not easy. Since

a Monte Carlo calculation of G(r) for spherical voids on an HCP lattice had already

been performed for 0:45 � Rvoid
a
� 0:6, the most straight forward method of obtaining

the mean silica �lling factor f sHcp over this range was by averaging G(r) for large r .

However we may also note that since each unity diameter sphere on an HCP lattice

touches 12 other spheres, then up to the lattice cohesive limit we may describe the void

volume as
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Dvoid/a f analytic f mean
0.90 0.46019 0.46017
0.94 0.38497 0.38500
1.00 0.25952 0.25953
1.04 0.17801 0.17795
1.10 0.08551 0.08551
1.14 0.04576 0.04575
1.20 (0.02257) 0.01743

Table 9: Monte Carlo values for mean silica �lling factor fmean, compared with known
analytic values f analytic, for spherical voids on an HCP lattice. Dvoid/a = 1 corresponds
to touching spheres, Dvoid/a = 2/

p
3 � 1.1547 corresponds to the cohesive limit, above

which this analytic description fails.

V void = 4
3�R

3�12�V E

= �
�
�20

3 R
3 + 6aR2�1

2a
3
�

Hence

Total Mass = M sc =
��

N �a3p
2

�
�N��

�
�20

3 Rvoid
3 + 6a�Rvoid

2�1
2a

3
��
��silica

Total Volume = V sc = N �a3p
2

��� Density = �sc =
�
1�
�

�p
2 �
�
�20

3 �
�
Rvoid
a

�
3 + 6�

�
Rvoid
a

�
2�1

2

���
��silica

��� Volume Fraction = f sc = 1�
�

�p
2

�
�5

3 �
�
Dvoid
a

�
3 + 3�

�
Dvoid
a

�
2�1

��
Thus we obtain the values in Table 9, where we see the failure of this analytic description

above the lattice cohesive limit. Figure 71 shows f sHcp as a function of Dvoid=a.

Good approximation over the range 0:9 � Dvoid
a
� 1:2 are given by quintic polynomials:

��� Volume Fraction = f sHcp � 84:111�475:173�D=a+ 1055:798�(D=a)2

�1144:893�(D=a)3 + 605:921�(D=a)4�125:506�(D=a)5

��� Lattice Spacing = asHcp � (0:808 + 1:752f sHcp�8:245f sHcp
2

+23:891f sHcp
3�32:063f sHcp

4 + 17:129f sHcp
5)�Dvoid

��� Minimum Density = f sHcp(min)��silica � 0:03511��silica � 0:07022fg � cm�3g

This is surprisingly close to the value for a cubic lattice.
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Silica filling factor fsHcp for
spherical voids of diameter Dvoid/a 
on an Hexagonal Close Packed
lattice, of lattice spacing a.

For lattice cohesion the
maximum Dvoid/a = 2/√3.

The lower line includes volume
in adjacent lattice spaces:
 FsHcp = 1 – π/(3z√2)z(Dvoid/a)³ 

The upper line correctly
excludes this excess volume,
and is approximated over the
range 0.9 s Dvoid/a s 1.2 by the
polymomial FsHcp = 84.111 – 475.173zD/a  
 + 1055.798z(D/a)² – 1144.893z(D/a)³ 
 + 605.921z(D/a)A – 125.506z(D/a)5 
derived from a Monte Carlo
calculation of G(r) for spherical
pores on an HCP lattice.

Figure 71: Silica �lling factor for spherical voids on an Hexagonal Close Packed lattice,
as a function of Dvoid/LatticeSpacing .

Random arrays of spherical voids.

First, for Rvoid � a=2 :

If we consider spheres of diameter a packing as random packed spheres, each containing

an (initially non-intersecting) pore of diameter Dvoid

Volume Fraction = f sr = 1�0:64�
�
Dvoid
a

�
3

��� Lattice Spacing = asr =
�
0:64�(1�f sr)�1

�
1=3�Dvoid

For Rvoid � a=2 :

Considering the �lling factors for cubic, random and Hexagonal Close Packed arrays of

spherical voids f sc, f sr, f sHcp, for 0� Dvoid
a
� 1

(1 � f sc), (1 � f sr), (1 � f sHcp) maintain constant proportions :

f sc = 1��
6 �
�
D
a

�
3; 1� f sc = �

6 �
�
D
a

�
3 � 0:52�

�
D
a

�
3

f sr = 1�0:64�
�
D
a

�
3; 1� f sr � 0:64�

�
D
a

�
3 = 0:64�

�
D
a

�
3

f sHcp = 1�
p
2��
6 �

�
D
a

�
3; 1� f sHcp =

p
2��
6 �

�
D
a

�
3 � 0:74�

�
D
a

�
3
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fsc   : Spheres on Cubic Lattice

fsr   : Spheres on Random lattice

fsHcp : Spheres on HCP lattice

 Middle Line :
Silica filling factor fsr for spherical
voids of diameter Dvoid/a on a
random lattice, of lattice spacing a.

fsr is plotted as :
fsc + (fsHcp–fsc)z(0.64z6/π – 1)/(√2 – 1) 
= fsc + (fsHcp–fsc)z0.5367 

and may be approximated over the
range 0.9 s Dvoid/a s 1.2 by the
polymomial fsr ≈ –6.68 + 25.31z(D/a) 
–27.72z(D/a)² + 9.45z(D/a)³  

Figure 72:
Filling factors for spherical voids on cubic, random and Hexagonal Close Packed lattices
as a function of Dvoid/LatticeSpacing .

If we assume that this behaviour is continued for Dvoid
a > 1, such that the spheres now

intersect, up to the lattice cohesion limit, we may write :

(1� f sr) =

�
0:64��

6p
2��
6

��
6

�
�((1 � f sHcp)�(1� f sc)) + (1� f sc)

f sr =
�
0:64��

6
�1p

2�1
�
�(f sHcp � f sc) + f sc

= 0:537�(f sHcp � f sc) + f sc

� �131:53 + 600:974�D=a+ 1085:214�(D=a)2

+976:854�(D=a)3�440:696�(D=a)4 + 79:972�(D=a)5

Although this is an approximation of unknown accuracy, it o�ers us our best estimate

of the silica �lling factor f as a function of Dvoid=a for a random lattice, without having

to construct an ensemble of self-consistent random lattices, a non-trivial task.

Figure 72 shows f sc, f sr and f sHcp as a function of Dvoid=a.
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Lattice Spacing = asr � (0:694 + 1:81f sr�5:367f sr2 + 10:558f sr
3

�10:162f sr4 + 4:605f sr
5)�Dvoid

Since spherical voids on both a cubic lattice and an HCP lattice have nearly the same

minimum f (0.035) we surmise that the value for a random lattice is the same.

Random arrays of spherical voids in nanoporous silica.

In section 11.2.1 we demonstrated that the neutron scattering data showed no signs of

structure indicating that the body of the silica out of which the voids are excised is

nanoporous. However if for completeness we will consider such a model, in which the

nanoporosity is due to the silica being in the form of small spheres with a diameter in

the 10�A region. If we take this model, and assume the spheres are of approximately

uniform diameter, and randomly packed, the average density out of which the larger

voids is excised will be � 0.64��silica.
Thus the fractional void volume required to match a measured density will be lower in

the nanoporous case than in the bulk silica case, by a factor 0.64, and hence the pore

lattice spacing could be expected to be increased (with a simple model), for a given

Dvoid, by 0.64�1=3 = 1.16.

Such a factor would also apply if, rather than being nanoporous, the silica was microp-

orous on the scale of around 2�m diameter, for which we have also found little evidence.

11.4 Density measurements: sol-gel and templated silicas.

Simple measurement of the porous silica density provides information that constrains

the range of possible pore geometries within the silica. Given such geometries, we

may then use pore diameters as measured by gas adsorption and NMR cryoporometry

to deduce likely pore lattice spacings, and pore number densities. This information

may then be used to derive calculated neutron scattering data, which we may then

compare with measured scattering.

11.4.1 Porous silica density measurements.

Dried silica powder was added to a weighed measuring cylinder, and tapped repeatedly

to obtain maximum density, a compression of a few percent being typically observed.
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The volume was measured, and the cylinder plus silica re-weighed after further drying.

Three measurements were made for each silica. The measured density of the porous

silica powder �m was then calculated.

11.4.2 Grain densities and silica �lling factors.

Random packing of equal sized spheres is known to give a packing fraction of 0.6366

[Finney, 1970]; particles with a range of sizes will pack more densely, but since the mesh

range given by the makers of the sol-gel silicas was fairly tight, an approximate value of

64% was initially assumed for the grains. Thus the calculated density inside the silica

grains = �g � �m/0.64. fg.ml�1g
It was noticed that the templated Behrens silicas compressed by an additional fraction

(~0.8) when liquid was added to them, so lower packing fractions were assumed (~50%)

Thus for these calculated density inside the silica grains �g � �m/0.5. fg.ml�1g

Silica Compression Packing
Factor. Fraction.

Cub14 0.92 0.59
Cub18 0.80 0.51
LMU14 0.67 0.43
LMU16 0.87 0.56
LMU18 0.83 0.53

Table 10: Compression of Behrens silicas on addition of liquid, and deduced grain
packing fraction.

These measured densities and packing fractions were then used to calculate the mean

density �g in the porous silica grains.

To obtain the �lling factor of the silica in the grain fg, �g was divided by the density

of the (voidless) silica lattice, for which a value of 2.2 fg�cm�3g was initially assumed.
However when we imbibe liquids into porous silicas and measure the density of the

(voidless) silica lattice (section 11.5) we �nd values close to 2.0, thus we use that value

here.

The densities of 13 silicas were measured, and their grain silica �lling fractions fg calcu-

lated, as shown in table 11. The uncertainties were derived from the likely errors and

the root mean square deviations in repeated measurements.
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Silica Dp �m �g fg
25�A Sigma 25 0.767 1.198 0.599
40�A Merck 40 0.570 0.891 0.445

C60 Unilever B 46.3 0.477 0.745 0.373
60�A Merck 60 0.507 0.792 0.396
100�A Merck 100 0.419 0.655 0.327
140�A Merck 140 0.352 0.550 0.275

C200 Unilever B 171.5 0.272 0.425 0.213
C500 Unilever B 453 0.284 0.444 0.222

Cub 14 24 0.117 0.234 0.091
Cub 18 28 0.168 0.336 0.131
LMU 14 26 0.129 0.258 0.101
LMU 16 28 0.116 0.232 0.091
LMU 18 30 0.106 0.212 0.083

uncertainty �0.03 �0.06 �0.04

Where, for porous material Silica, we have :
Dp: nominal pore diameter. f�Ag
�m : measured density of silica powder. fg.ml�1g
�g : calculated density inside the silica grains � �m/0.64. fg.ml�1g

for templated silicas � �m/0.5. fg.ml�1g
fg : �lling fraction of silica inside the grain � �g/2.0.

Table 11: Densities and silica fractions for porous silicas.

It is immediately noticeable that the smaller pore diameter sol-gel silicas are about

three times as dense as the ones with the largest pore diameters, and that the micelle

templated silicas are about half as dense as even the largest pore diameter sol-gel silicas.

It is not clear whether the latter ratio is due to the grain packing density for the

templated silicas still being over-estimated.

Any realistic model of the silica porous structure must be consistent with the deduced

grain silica �lling factors. These measured silica �lling factors may be compared with

the calculated minimum silica �lling factors for the various geometries that have been

considered (table 12).

We see that the templated silicas are well matched by cylinders on a hexagonal lattice

as expected; that solid silica spheres on a cubic lattice are denser than any but the 25�A

silica (and any likely lattice will be even denser) and that the limiting values for the

other geometries are far lower than the values measured for the sol-gel silicas and are

more typical of aero-gels. We conclude that in sol-gel silicas there is some process that
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Pores Cylinders Cylinders S.Spheres V.Spheres V.Spheres V.Spheres
Lattice Square Hexagonal Cubic Cubic HCP Random

fmin 0.215 0.0913 0.514 0.0349 0.0351 0.035 ?

Table 12: Minimum silica fraction f for given pore geometries. (S.Spheres : Solid silica
spheres, V.Spheres : Spherical voids.)

limits the minimum density achievable. We consider the structure of sol-gels further in

section 11.5.3.

11.4.3 Lattice spacings.

Thus we are now able, given the densities of the various sol-gel silicas, and their nominal

pore diameters Dvoid, to deduce the corresponding lattice spacing a, for cubic, HCP

and (most importantly for the sol-gel silicas) random lattices, in both uniform and

nanoporous silica.

Reverting and inverting the expressions for

f
�
Dvoid
a

�
to obtain a

Dvoid
(f)

we obtain the coe�cients of the quintic polynomials in f :

asc
Dvoid

: 0:672 1:173 �2:996 7:557 �9:796 5:59

asr
Dvoid

: 0:694 1:81 �5:367 10:558 �10:162 4:605

asHcp
Dvoid

: 0:808 1:752 �8:245 23:891 �32:063 17:129

asrn
Dvoid

: 0:682 1:329 �3:074 4:848 �4:01 1:457

where the �rst term is the constant.

These are valid over the ranges

0:8� asc
Dvoid

�1:1 0:8� asr
Dvoid

�1:1 0:7� asHcp
Dvoid

�1:1 0:8� asrn
Dvoid

�1:1

In chapter 11.5 we will use these polynomials to obtain the lattice spacing a for the
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various silicas and lattice geometries, (tables 16 and 17), from the nominal pore diameter

Dvoid, as measured by gas adsorption, and the measured silica grain �lling factor f g, as

measured by density and imbibation measurements on silica powders.

11.5 Imbibing liquids into porous silicas to determine

mean porous parameters by measuring densities and

by NMR cryoporometry.

By imbibing liquids into porous silica and measuring the density we may measure

the density of the (voidless) silica lattice. By combining information from NMR

cryoporometry we may separate the total liquid content into a fraction that is in the

pore and a fraction that is in the void space around the silica grains, and thus obtain

measured values for the silica and void �lling factors inside the grain, and for the

packing fraction of the grains.

11.5.1 Silica (voidless) lattice density.

Bulk silica has a range of speci�c densities of up to 2.6 (quartz crystal), but fused silica

is usually in the range 2.1 to 2.2 [Kaye and Laby, 1966].

We may determine the mean density �silica of the (voidless) silica lattice in porous sol-

gel silicas by the following protocol.

The volume V dry and mass M dry of a quantity of dry porous silica was measured in a

5ml measuring cylinder after repeated tapping to achieve a state of maximum density;

then :

Vsilica + Vpore + Vpackdry = Vdry

�silica�Vsilica = Mdry

Where Vsilica; Vpore; Vpackdry are respectively the volumes of the (voidless) silica lattice,

the pores and the packing void around the dry porous silica grains.

Excess liquid of known density �liquid was added, such that all open pore and grain

packing void space was �lled. The measuring cylinder was inverted repeatedly to remove

trapped air bubbles, and then left overnight to allow the silica grains to settle. Excess

liquid was then removed with a pipette and cotton wool buds, to just leave the liquid

in pore and packing void space. The volume V wet and mass Mwet were then measured.
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The volumes dry and wet were slightly di�erent � this does contain useful information,

in that it tells us that the packing dry and wet are slightly di�erent; we may obtain

both.

Then :

Vsilica + Vpore + Vpackwet = Vwet

�silica�Vsilica + �liquid�(Vpore + Vpackwet) = Mwet

Hence we have :

�liquid�(Vpore + Vpackwet) = Mwet�Mdry

��� Vpore + Vpackwet =
Mwet�Mdry

�liquid

��� Vsilica = Vwet�Mwet�Mdry

�liquid

��� �silica =
Mdry

Vsilica

=
Mdry

Vwet�Mwet�Mdry

�liquid

These measurements were performed on seven porous silicas; the results and the calcu-

lated density of the (voidless) silica lattice is shown in table 13. We see that we �nd a

density of 2.02 � 0.09 fg�ml�1g for all the silicas with the exception of the two largest

pore Unilever B silicas, which have densities of 1.82, 1.81. It is probable that these re-

sults are reliable to at least two signi�cant �gures, but this can only be established by

repeating the measurements.

Silica Mdry Vdry Mwet Vwet Vsilica �silica
fgg fmlg fgg fmlg fmlg fg�ml�1g

25�A Sigma 1.0 1.41 1.9743 1.47 0.497 2.01
40�A Merck 1.0 1.78 2.5179 2.02 0.504 1.98
60�A Unilever B 1.0 2.00 2.6858 2.20 0.517 1.93
60�A Merck 1.0 2.32 2.2314 2.75 0.516 1.94
100�A Merck 1.0 2.34 3.2075 2.68 0.474 2.11
200�A Unilever B 1.0 3.32 5.3540 4.90 0.550 1.82
500�A Unilever B 1.0 3.28 4.0050 3.56 0.553 1.81

Table 13: Wet and dry porous silica masses and volumes, normalised to unity dry silica
mass, and deduced volumes and densities for the (voidless) silica lattices.
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11.5.2 Measuring pore and packing void volume.

The above protocol can not on its own separate pore and packing void volume. However

if we also use NMR cryoporometry, where we freeze the liquid and make use of the fact

that liquid in the small pores melts at a di�erent temperature from the liquid in the

larger packing void space around the grains, we may with care obtain accurate values

for the total pore volume V pore of the silica ftable 7). It is necessary to correct for the

di�erent relaxation times for the liquid in the pores compared with that in the inter-

grain void space by measuring at more than one � time (see chapter 7.1 and appendix

E). Thus we obtain the dry and wet packing volumes for seven porous silicas (table 14).

Silica Vdry Vwet Vsilica Vpore Vpkd Vpkw

fmlg fmlg fmlg fmlg fmlg fmlg
25�A Sigma 1.41 1.47 0.497 0.34 0.57 0.63
40�A Merck 1.78 2.02 0.504 0.59 0.69 0.93
60�A Unilever B 2.00 2.20 0.517 0.71 0.78 0.98
60�A Merck 2.32 2.75 0.516 0.68 1.13 1.56
100�A Merck 2.34 2.68 0.474 0.95 0.92 1.26
200�A Unilever B 3.32 4.90 0.550 1.68 1.09 2.67
500�A Unilever B 3.28 3.56 0.553 1.57 1.16 1.44

Table 14: For a unity mass of dry silica we may measure from imbibation measurements
the dry and wet total volumes, and the volumes of the silica matrix, and from NMR
Cryoporometry the total pore volume (table 7); hence we may deduce the dry and wet
packing volumes for seven porous silicas.

Thus we now know Vsilica; Vpore; Vpackwet; Vpackdry and hence may obtain measured

values for the silica fraction inside the porous grain f g and for the grain packing fraction

f pack (both wet and dry) :

fg =
Vsilica

Vsilica + Vpore

fpack =
Vsilica + Vpore

Vsilica + Vpore + Vpack

We notice a decrease in silica fraction in the grain with larger pore diameter (with the

exception of 500�A pore diameter, which is consistently out of sequence); if we compare

these values with those in table 11, where we assumed a grain packing density of 0.64,

and a silica density of 2.0, we see that we have a fractional di�erence in f g that ranges

from 1% in the case of the 25�A silica to around 17% in the case of the 200�A and 500�A
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Silica fg fpkd fpkw
25�A Sigma 0.593 0.594 0.570
40�A Merck 0.460 0.615 0.542
60�A Unilever B 0.423 0.612 0.556
60�A Merck 0.432 0.514 0.434
100�A Merck 0.333 0.608 0.531
200�A Unilever B 0.246 0.672 0.455
500�A Unilever B 0.261 0.646 0.595

Table 15: From imbibation measurements and from NMR Cryoporometry we may de-
duce the silica fraction in the grain fg and the dry and wet grain packing fractions fpkd,
fpkw, for seven porous silicas.

silicas. We note that we measure a substantially lower density for the silica in the last

two cases than was assumed.

We see that 500�A silica dry packs very close to the theoretical random packing of

spheres, 200�A silica packs more densely, but the remainder pack less densely at around

95% of random packing density, with 60�A Merck only packing at 80% of random packing

density. Again, probably 2 �gures are signi�cant.

The less dense wet packing implies a linear increase in grain spacing of a few percent;

for 100�A Merck SiO2 it is 5% and, as the S.E.M. micrographs showed that the average

grain diameter was about 150�m, this implies an interfacial layer of water between the

grains of about 7�m, if uniform.

In section 11.3 we derive relationships between the pore diameter Dvoid and the lattice

spacing a for various pore packing geometries. Inserting measured grain silica �lling

factors f g into these we obtain table 16.

Silica Dvoid Dv/ach Dv/asc Dv/asr Dv/asHcp

25�A Sigma 25 0.67 0.92 0.86 0.82
40�A Merck 40 0.77 1.01 0.94 0.90

60�A Unilever B 46.3 0.80 1.04 0.97 0.92
60�A Merck 60 0.79 1.03 0.96 0.91
100�A Merck 100 0.86 1.10 1.01 0.97
200�A Unilever B 171.5 0.91 1.16 1.07 1.01
500�A Unilever B 453 0.90 1.15 1.06 1.00

Table 16: From measured grain silica �lling factors f g we obtain ratios of pore void
diameter Dvoid to lattice spacing a for various pore packing geometries, for seven porous
silicas.
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We see that for the case of cylinders on a hexagonal lattice Dv/ach is consistently less

than unity, implying a cohesive lattice; permeability is ensured by the cylindrical pores,

so this is a viable structure.

For the extreme case of spherical voids on a cubical lattice Dv/asc is mostly above unity,

ensuring permeability.

At �rst sight the fact that for the cases of spherical pores on a random lattice and the

extreme case of spherical pores on an HCP lattice Dv/asr and Dv/asHcp are in many

cases below unity would seem to imply impermeability; however if we note that in

practice a silica wall can not be in�nitely thin, we may obtain permeability in practice.

The minimum thinnesses required are 3.5�A in the random packing case, and 5�A in the

HCP case.

In table 17 we show the corresponding pore lattice spacings � one might expect scat-

tering experiments to be more sensitive to lattice spacing rather than pore diameter.

Silica Dvoid ach asc asr asHcp

f�Ag f�Ag f�Ag f�Ag f�Ag
25�A Sigma 25 37.3 27.2 29.1 30.5
40�A Merck 40 51.9 39.6 42.3 44.5
60�A Unilever B 46.3 57.9 44.7 47.9 50.4
60�A Merck 60 75.8 58.3 62.5 65.6
100�A Merck 100 116.6 91.2 98.5 103.5
200�A Unilever B 171.5 188.5 147.6 161 170.4
500�A Unilever B 453 503 394 429 453

Table 17: Lattice spacing a deduced from silica grain �lling factor f g, for various pore
geometries, for seven porous silicas.

11.5.3 Deducing pore throat diameters.

If we plot the data in table 17, such that we plot lattice spacing a against pore diameter

Dpore for the various pore packing models, we obtain reasonable straight line relation-

ships; �tting, we �nd the lines intercept the y axis at small �nite positive values :

ach : 8:2 f�Ag; asc : 5:2 f�Ag; asr : 4:9 f�Ag; asHcp : 4:8 f�Ag

In the case of ach (cylinders on a hexagonal lattice) the 8.2�A may represent a genuine

minimum wall thickness between the cylinders. However if this were the case for the
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spheres we would have little permeability; since we know that they are permeable we

thus make the assumption that these �gures are telling us about the minimum silica

wall thickness that can stand between two pores.

In �gure 73 we model two average pores for 40�A Merck silica, assuming spherical pores

on a random packed lattice, with a 5�A minimum wall thickness; we see we obtain

permeability where we would not otherwise expect it. We may deduce by Pythagoras

the diameter of the throats between the pores for the various models and silicas :

Dthroat = (Dvoid
2�(a�Wallmin)

2)
1
2

as shewn for the case of spheres on a random packing in table 18.

 Wallmin 

asr 

 asr/2 – Wallmin/2

 Dvoid/2

Figure 73: Idealised model of throat between two pores in 40�A Merck SiO2, assum-
ing spherical pores on a random packed lattice, and assuming a minimum silica wall
thickness of 5�A.

We see that the throat diameters are, with some variation, a fairly constant one third

of the pore diameters. i.e. with this constraint and the assumption of a minimum silica

wall thickness of about 5�A we may 'construct' porous media whose density changes by

a factor of 3 over the range of pore diameters 25�A ! 500�A, as does the real sol-gel

silica, and yet maintain permeability.

We may thus substitute

Dthroat =
1

3
�Dvoid
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Silica Dpore asr Dthroat Dth/Dp

f�Ag f�Ag f�Ag f%g
25�A Sigma 25 29.1 6.78 27
40�A Merck 40 42.3 14.3 36
60�A Unilever B 46.3 47.9 17.3 37
60�A Merck 60 62.5 17.3 29
100�A Merck 100 98.5 35.4 35
200�A Unilever B 171.5 161 71.3 42
500�A Unilever B 453 429 160 35

Table 18: For seven silicas covering a 1!20 range in pore diameter Dpore we tabulate the
lattice spacings for spheres on a random lattice asr, the deduced pore throat diameters
Dthroat, and the ratio of these to the pore diameters Dth/Dp.

into the above expression, and hence may deduce for lattice spacing

a = Wallmin +
2
p
2

3
�Dvoid

We note that for a pore on an HCP lattice there will be twelve 'throats' to neighbouring

pores � we might assume that this would be slightly reduced in the case of a random

packed lattice � this would reduce the surface area of the pore to about 50% of that

of an intact sphere of the same diameter, if the pore throats are about 1/3 of the pore

diameter as deduced above.

An experiment was performed in which large pore diameter Trisopor silica was �lled with

a precursor, which was then decomposed to MgO. This was then heated to 500�C, to

form nanocrystals, with an expected volume reduction to 1/5th. NMR cryoporometry

runs were performed on the initial and �nal material, see �gure 74. (We note that

the nominal diameter of the Trisopor is measured using mercury intrusion, not gas

adsorption.) The pore volume was shewn to reduce by about 19%, while the pore

diameters reduced by about 24% (peaks) to 25% (medians). This is consistent with the

MgO being deposited on the pore wall uniformly in a layer of thickness about 1/8th of

the pore diameter, over an area about 44% of the area of the sphere � this in turn is

consistent with there being an average of ten throats, of diameter 1/3rd pore diameter

according to the above model, excised out of the pore wall.
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Figure 74: Large pore silica pore size distributions as measured by NMR Cryoporometry,
before and after depositing MgO nanocrystals.

11.6 Summary.

Thus we now have evaluated the mean properties of a range of possible model pore

structures; we have evaluated the likely range of silica �lling factors f silica, for compar-

ison with measured bulk values and as a check by comparison with the mean values we

shall generate by Monte-Carlo methods for models with variance around the mean.

Using pore diameters as measured by gas adsorption and NMR Cryoporometry we

have calculated likely values for the pore lattice spacings for the various models, for

comparison with neutron scattering results.

We have measured the density of the (voidless) silica matrix, and shown that it is

unlikely to be either nano or micro porous, other than the known measured (25�A !
2000�A) pores. We have measured the grain packing fractions for dry and wet grains.

We have shown that we may construct model silicas that mimic measured sol-gel silica

densities with the constraints that the minimum pore wall thickness is 5�A, and the pore

throat diameters are about 1/3rd of the pore diameters.



Chapter 12

Neutron scattering theory.

12.1 Wave � Particle duality.

Particles and waves have properties such that it is possible to treat either as particles or

as waves [De Broglie, 1929]. Thus a particle with momentum p also has a wave vector

k, such that [Planck, 1929] :

k = p
2�

h
=

p

�h

and

jkj = k =
2�

�
=

p

�h

Thus neutrons scatter from nuclei in matter; interference between the wave vectors

gives us spatial information such that short range (atomic) spacings give rise to neutron

di�raction, and longer range variations in the distribution of matter give rise to small

angle scattering neutron scattering (SANS).

12.2 Scattering and density distribution relationships.

We wish to study the density distributions in porous silica; thus we consider the elastic

scattering of neutrons from an instantaneous distribution of scattering centres.

The observed scattering has incoherent and coherent components. For hydrogen the

scattering intensity shows little variation in the small-angle region; thus water makes

a good small-angle calibration standard (see section 14.1). For dry silica the coherent

scattering dominates and we may use the intensity variation in the scattering to deter-

mine the spatial structure on an atomic and mesoscopic scale.

143
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If one has an incident plane monochromatic wave Aiexp(iki r) of neutrons with wave

vector ki, that is scattered through angle �s so that one has a �nal wave vector kf , then

one has a scattering vector (see �gure 75)

θs ki 

kf 

–kf ks = Q 

Figure 75: Vector diagram

for elastic scattering.

Q = ki�kf

and a resulting wave [Cowley, 1975]

Aiexp(ikir) +
Aib

r
exp(ikf r)

where b has dimensions length, and is called the "scat-

tering length".

Thus for elastic scattering through angle �s, j ki j = j kf j , and we have [Newport

et al., 1988]

jQj = Q = 2�jkij�Sin�s
2

=
4��
�
�Sin�s

2

where � is the wavelength.

When the scattering is from a lattice, we have the Bragg

θB 

θB 

θB 

θB 

dB 

A

B

Figure 76: Bragg scattering.

relationship. For scattering by two features separated by

a distance dB , where the neutron is scattered through

twice an angle �B (see �gure 76), we have for order m of

the scattering :

dB =
m��

2�Sin�B =
m��

2�Sin �s
2

=
m��

2�Q� �4�
=

2��m
Q

Thus the relationship between the Bragg scattering length dB and Q (the modulus of

the scattering vector) is given by :

dB
m
f�Ag =

2�fradiansg
Qfradians��A�1g

It is vital to remember the presence of the 2�, if we are to obtain correctly scaled

reciprocal relationships; it is conventional to give Q the dimensions f�A�1g, but this
implies one might just take the reciprocal to obtain a length scale. Thus here we will

use the units fradians��A�1g to remind us of the presence of the 2�.

Thus in the weakly scattering (Born) approximation, for a scattering �eld �(r) we seek
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as a solution of the wave equation [Feigin and Svergun, 1987]

�
52 + ki

2 + ��(r)
�
	(r) = 0

the scattered wave 	(r), where 52 is the Laplace operator, and � gives the strength of

the interaction.

We note that the dimensions of the nuclei that are scattering are far smaller than the

wavelengths of the neutrons we are using, and the scattered waves are spherical and

isotropic.

We can not measure the amplitude and phase of the scattered wave directly, just the 
ow

of energy or number of scattered particles, proportional to the square of the scattering

amplitude at large distances :

d�

d

=

Ai
2

r2
jf(q)j2 =

Ai
2

r2
I(q)

where 
 is a solid angle, and I (q) is the scattering intensity or di�erential cross section,

and has the dimensions length squared, and

f(q) =
�

4�
�
Z
V
�(r)exp(iqr) dr

is the amplitude of the elastic scattering due to �eld �(r) (i.e. in our case, �(r)).

We de�ne a number of representations of the number density distribution in the scat-

tering body, where r is always measured from an existing atom [Newport et al., 1988]

�n(r) = number of atoms per unit volume at radius r .

�1n = <�n(r)> = mean number of atoms per unit volume.

J(r) = 4�r2�n(r) = radial distribution function.

J1(r) = 4�r2�1n(r) = the smooth curve about which J(r) oscillates.

g(r) = J(r)
J1(r) = pair distribution function.

Similarly we may de�ne a number of representations of the continuous density distribu-

tion in the scattering body, where r is always measured from a point in the solid [Feigin
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and Svergun, 1987]:

�(r) = mass per unit volume at radius r .

�1 = <�(r)> = mean density.

P (r) = �(r) � �(�r) = Patterson function.


(r) = <�(r) � �(�r)> = density correlation function.

G(r) = 1 +<�(r)
�1
� �(�r)

�1
> = normalised density correlation function.

where * represents convolution.

Thus 
(r) represents the averaged self-convolution of the density distribution.

Then we have

I(q) =

Z
V
P (r)exp(iqr) dr

Since the Patterson function is even (symmetric) we note that

Z 1

�1
fs(�)�exp(i�) d� =

Z 1

�1
fs�cos(�) d� +

Z 1

�1
fs�i�sin(�) d�

=

Z 1

�1
fs�cos(�) d� + 0

��� I(q) =

Z
V
P (r)cos(qr) dr

The porous silica we are scattering from is in the form of �ne grains of random orien-

tation, and thus we must perform a spherical average :

I(q) =
1

4�
�
Z


I(q) d


=
1

4�
�
Z 1

0

Z 4�

0
r2 dr d!

Z 4�

0
d
 P (r)cos(qr)

=

Z 1

0
r2 dr

Z 4�

0
P (r) d!

1

4�

Z 4�

0
cos(qr) d


= 4�

Z 1

0
r2
(r)

sin(q�r)
q�r dr

where we note that averaging cos(qr) over all orientations gives us :

<cos(qr)> =

Z �

0
cos (qr�cos(�)) �sin(�)

2
d� =

sin(qr)

qr
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and that


(r) =
1

4�
�
Z 4�

0
P (r) d! = <�(r) � �(�r)> = <

Z
V
�(r0)�(r0 + r) dr0>

where * denotes convolution.

We thus obtain the transform pair [Newport et al., 1988] [Feigin and Svergun, 1987] :

I(q) = S(q)�1 = 4���1�
Z 1

0
r2�(G(r)�1)�sin(q�r)

q�r dr


(r)

�1
= G(r)�1 =

1

2�2��1 �
Z 1

0
q2�(S(q)�1)�sin(q�r)

q�r dq

where the constants have been adjusted so that a complete cycle of transformation

returns the initial function.

Thus we have :

I(q) = S(q)�1 =
2���1
q
�
Z 1

�1
r�(G(r)�1)�sin(q�r) dr

Since G(r) is even (symmetric), r�G(r) is odd (anti-symmetric), thus we note that

Z 1

�1
fa(�)�exp(i�) d� =

Z 1

�1
fa(�)�cos(�) d� +

Z 1

�1
fa(�)�i�sin(�) d�

= 0 +

Z 1

�1
fa(�)�i�sin(�) d�

���
Z 1

�1
fa(�)�sin(�) d� = �i�

Z 1

�1
fa(�)�exp(i�) d�

��� I(q) = S(q)�1 = �i�2���1
q
�
Z 1

�1
r�(G(r)�1)�ei�q�r dr

���

(r)

�1
= G(r)�1 = �i� 1

4�2��1�r �
Z 1

�1
q�(S(q)�1)�ei�q�r dq

and we now have our relationships expressed in terms of standard Fourier transforms,

the imaginary results of which give us S(q) � 1, G(r) � 1.

We may note that we can also express the above two transforms in the form :

I(q) =
2�

q
� @
@q

Z 1

�1

(r)�ei�q�r dr


(r) =
1

4�2�r �
@

@r

Z 1

�1
I(q)�ei�q�r dq



CHAPTER 12. NEUTRON SCATTERING THEORY. 148

12.3 Scattering from porous media.

The above relationships are e�ectively expressed in a form where the mean density of

the solid is normalised to unity. However we wish to consider porous media, where we

have in e�ect three densities to consider, as discussed in sections 11.2.1, 11.2.3, 11.4,

11.5 : the bulk (as macroscopically measured) powder density �m, the average density

within the grains �g, and the density of the (voidless) silica matrix �s. It is the last two

that are relevant on the scale of neutron scattering.

We thus see that the bulk density for porous media is not a convenient constant to

normalise to, as it will vary with the porous structure that we are trying to measure.

We identify �1 in the above equations with the grain density �g, and obtain as a useful

characteristic of a porous silica :

fg = fraction of grain �lled with silica =
�g
�s

=
�1
�s

For porous media it is reasonable to assume �s is reasonably constant; thus we obtain :

I(q) = S(q)�1 = 4���s�
Z 1

0
r2�(fg�G(r)�fg)�sin(q�r)

q�r dr

We note [Feigin and Svergun, 1987]


(0) = �12�V

where V is the volume. Thus we write :


0(r) =

(r)


(0)
=

1

4�
�
Z 4�

0
d!

1

V
�
Z 1

0

�(r0)
�1

�(r0 + r)

�1
dr0


0(r) is thus the characteristic function [Porod, 1951] for a structure excised out of a

constant density material, and depends only on the spatial distribution of the material.

For our models of porous silica we have in e�ect normalised �s to unity.


0(r) thus represents the probability of �nding a solid region within the porous structure

at distance r from a given point within the solid. Thus at r = 0 we must be in the

solid, and 
0(r) = 1; for a �nite body of maximum dimensions D , 
0(r>D) = 0. In

appendix K we calculate F(r,R) = 
0(r) for a sphere, and in appendix L 
0(r) for an

in�nite plane slab.
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In a porous medium 
0(r) will decrease (possibly with oscillations) from 1 at r = 0 to an

average value of �1
�s

= fg at r = 1. Thus we use 
0(r) as a convenient expression to

evaluate in chapter 15, where we calculate the normalised solid-solid density correlation

function for a number of idealised porous structures, with density �s and lattice spacing a

normalised to unity. We see good agreement between the calculated 
0(r) at large r and

f g calculated analytically. We note that 
0(r)s calculated by Monte-Carlo integration

go to f g at large r , while measured 
(r)s, 
0(r)s go to zero, and must have �1 = 
g

restored using measured densities.

In section 16.2 we transform measured I(q) scattering data for dry porous silicas to


(r), and restore the densities as measured in chapter 11.5; thus we plot G�(r) =

(�s��g)�
0(r) + �g, where the density varies from �s at r = 0 (fairly constant for most

silicas) to �g = fg��s at large r . The latter values vary widely with the construction

of the silica. We will often for convenience just use the symbol G(r) to represent both

the function G�(r) and the Monte-Carlo case with �s normalised to unity.

In practice we know our porous structures are actually constructed from atoms; thus

the scattering we actually measure will consist of di�raction from the structure of the

discrete atomic distributions at large q , with small angle scattering from the larger scale

porous structure at lower q . As we see in sections 11.2.2, 16.1, even for the smallest

pore diameter studied, the scattering from the pores falls by many orders of magnitude

before the onset of scattering from the molecular structure, and thus we may treat our

model porous structures as though excised from a uniform continuous medium.

12.4 The Guinier approximation.

For randomly oriented density variations we have for the intensity of scattering

I(q) = 4��
Z 1

0
r2�
(r)�sin(q�r)

q�r dr

At very low angles � = q�r , we may expand the sinc term in the above as a Maclaurin

series :
sin(q�r)
q�r � 1� 1

3!
�(r�q)2 + 1

5!
�(r�q)4� 1

7!
�(r�q)6 + � � �
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then for small � we may write a quadratic approximation :

Iq(q) = I(0)�(1�1
3
�Rg

2�q2)

where for a particle of maximum dimensions D , volume V , with second moment M 2 :

I(0) = 4��
Z D

0
r2�
(r) dr = 4��D2+1�M2

with Rg being the radius of gyration of the scatterer;

Rg
2 =

1

2
�
RD
0 r4�
(r) drRD
0 r2�
(r) dr =

R
V r

2��(r) drR
V �(r) dr

Thus we may write our approximation in terms of a moment expansion :

Iq(q)

I(0)
= 1�1

3
�1
2
�
RD
0 r4�
(r) drRD
0 r2�
(r) dr

= 1�D
2

6
�M4

M2
�q2

which for a sphere of uniform density, radius R, diameter D, becomes :

Iq(q)

I(0)
= 1�D

2

20
�q2; since for a sphere Rg

2 =
3

5
�R2 =

3

20
�D2

A better approximation for I(s) in this low � = q�r region is a Gaussian approximation

given by the Guinier equation [Guinier, 1939] :

Ig(q) = I(0)�exp
�
�1
3
�(Rg�q)2

�
= I(0)�exp

�
� 1

20
�(D�q)2

�

where we have

exp

�
�1
3
�(Rg�q)2

�
� 1�1

3
�(Rg�q)2 + 1

18
�(Rg�q)4� 1

162
�(Rg�q)6 + � � �

In terms of a moment expansion we obtain :

Ig(q)

I(0)
� 1�D

2

6
�M4

M2
�q2 + D4

72
�M4

2

M2
2
�q4� D6

1296
�M4

3

M2
3
�q6 + � � �
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which for a sphere of uniform density becomes :

Ig(q)

I(0)
� 1�D

2

20
�q2 + D4

800
�q4� D6

48000
�q6 + � � �

This gives us a closer approximation to the full expansion of the correct sinc expression :

I(q)

I(0)
� 1�D

2

6
�M4

M2
�q2 + D4

120
�M6

M2
�q4� D6

5040
�M8

M2
�q6 + � � �

which for a sphere of uniform density becomes :

I(q)

I(0)
� 1�D

2

20
�q2 + 3�D4

2800
�q4� D6

155040
�q6 + � � �

In chapter 16.1 we note that scattering from porous sol-gel silicas is well �tted by sech

curves, up to the point where there is a q�4 departure. Thus we may write

Is(q) = I(0)�sech (Rs�q) = I(0)�sech
�p

2p
3
�Rg�q

�

where we identify a radius Rs such that

Rs
2 =

2

3
�Rg

2; and for a sphere Rs
2 =

2

5
�R2 =

1

10
�D2:

��� Is(q) = I(0)� 2

eq�Rs + e�q�Rs

� I(0)�(1�1
2
�2
3
�(Rg�q)2 + 5

24
�4
9
�(Rg�q)4� 61

720
� 8
27
�(Rg�q)6 + � � �

In terms of a moment expansion we obtain :

Is(q)

I(0)
� 1�D

2

6
�M4

M2
�q2 + 5�D4

276
�M4

2

M2
2
�q4�61�D

6

2430
�M4

3

M2
3
�q6 + � � �

which for a sphere of uniform density becomes :

Is(q)

I(0)
� 1�D

2

20
�q2 + D4

480
�q4� 61�D6

720000
�q6 + � � �

We see that all these expansions are the same to the quadratic term; that the sech

expansion �ts a sphere less well than the Guinier expansion � however it �ts the data

better. This tells us that we are probably seeing scattering from a G(r) that is not that
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of a sphere.

The sech expansion encodes the measured I(s) data well; by equating moments it is

possible to obtain them to high order; however the convergence of a moment expansion

is very slow, and a standard Fourier transformation of I(s) to G(r) is preferred.

12.5 The Porod law.

For a particle of constant density and with a smooth closed boundary of surface area S

we may show that [Porod, 1951, Feigin and Svergun, 1987]

d
(r)

dr

����
r=0

=
1

4�
�(��)�

Z
S
�2 dS = ��

2�S
4

If we consider the behaviour of I(q) as q ! 1, for a particle of maximum dimensions

D we have 
(D) = 0. Expanding I(q) in terms of derivatives of 
(r) we �nd that

IP (q) = �8�
q4
� d
(r)

dr

����
r=0

+O

where other terms O are oscillating, and divided by q3, q4. (We see this behaviour

in I(q) for a sphere, see �gure 102, where we plot the average I(q) for an ensemble of

spheres with a Gaussian distribution.)

Thus in this high q limit we obtain the Porod law :

IP (q) � 2�

q4
��2�S

such that on a log-log plot of I(q) for dry porous silicas we obtain a straight line with

a gradient around -4 (see chapter 16.1).

12.6 Combining the Guinier and Porod descriptions.

We wish for a description of I(q) that is valid in both the low and high q limits. Consider

inhomogeneities in liquids with random 
uctuations. These may be described with

correlations that as a �rst approximation decay exponentially, with a correlation length

�. The Fourier transform of an exponential is a Lorentzian (Ornstein-Zernike equation),

such that

IOZ(q) = I0� 1

1 + �2q2
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In the limit �2q2 � 1 we may take a Maclaurin expansion.

(1 + x)� = 1 + �x+
�(� � 1)

2!
x2 +

�(� � 1)(�� 2)

3!
x3 + � � �

Thus this Ornstein-Zernike equation may be written

IOZ(q) � I0�(1��2q2 + �4q4��6q6 + � � �)

For a random mixture of two phases with a sharp boundary we �nd [Mountjoy, 1999,

Li and Ross, 1994, Teubner and Strey, 1987, Martin et al., 1986, Hurd et al., 1987]

IGP (q) = I0� 1

(1 + �2q2)
d
2

In the limit 1 � �2q2 for agreement with the Porod law we want a behaviour / q�4

thus we conclude d = 4.

In the limit �2q2 � 1

IGP (q) � I0�
�
1�d

2
�2q2 + � � �

�
Thus for agreement with the Guinier equation we want

d

2
�2 =

1

3
Rg

2; ��� �2 =
1

6
Rg

2

Thus we obtain one possible equation that agrees with the Guinier and Porod equations

in their respective regions of validity, if we write :

IGP (q) = I0� 1�
1 +

Rg2

6 �q2
�2

which is a Lorentzian2.

For a sphere of uniform density and diameter D this becomes :

IGP (q) = I0� 1�
1 + D2

40 �q2
�2

Other expressions have been derived in the literature that behave di�erently in the

transition between these limits [Li and Ross, 1994, Teubner and Strey, 1987, Schmidt,

1991], with varying applicability to sol-gel porous media. None of these functions �t the
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observed scattering from sol-gel silicas as well as the empirical sech function discussed

above, with a small admixture of a random mixture of two phases as just discussed.

12.7 Obtaining G(r) for these scattering forms.

In appendix M we use the algebraic language Maple to obtain analytic expressions for


(r) for these standard neutron scattering I(q) functions : Guinier (Gaussian), Porod

(q�4), Orstein-Zernike (Lorentzian), Guinier-Porod (Lorentzian2), and for the porous

media form of sech.

12.8 Babinet's Theorem.

We saw in section 12.2 that we are not directly sensitive to the amplitude f(q) and

phase of the scattered wave, but only to the intensity I(q) / jf(q)j2.
Babinet [Francon, 1966] showed that this implies that two phase complementary screens

scatter in a way that can not be distinguished :

If one has an unobstructed aperture that gives rise to a scattering pattern of ampli-

tude f 0(u,v), and alternately place in front of it two 2D complementary screens whose

scattering amplitudes are f 1(u,v), f 2(u,v), then we have :

f2(u; v) = f0(u; v)�f1(u; v)

However the scattering amplitude from the unobstructed aperture at �nite scattering

angles will be very small (in practical neutron scattering terms, all the amplitude will

be lost in the beam-stop), thus

f2(u; v) = �f1(u; v)

��� I2(u; v) = jf2(u; v)j2 = j � f1(u; v)j2 = jf1(u; v)j2 = I1(u; v)

12.9 Chordal analysis.

Babinet's theorem shows the importance of the interfacial area when considering the

scattering from a two phase medium, such that a uniform void and a uniform voidless

solid will both give no detectable scattering.
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Suppose we consider the distribution of chords L(l) between random points on the

surface of a simple convex body (or void) of uniform density and maximum dimensions

D , embedded in a medium of uniform density.

There then exists relationships between 
0(r) and L(l) [Feigin and Svergun, 1987, p46]

(quoted without derivation or proof).


0(r) =

RD
r (l � r)�L(l) dl
l0 =

RD
0 l�L(l) dl

L(r)

l0
=

@2
0(r)

@r2

We may understand these relationships if we write the integrals in the form of a convo-

lution like that for 
(r) , where we consider the density � as being uniform between r

and D and zero elsewhere : Z D

r
�(l � r)��(l) dl

Hence we deduce that the relationships are not applicable to the general cases of concave

bodies, multiple bodies, and porous media in general. There is the comment in the text

of reference [Feigin and Svergun, 1987] that the relationships are not very useful to

examine experimental data due to the noise making the second derivative meaningless.

This is none the less useful as a way of deducing 
0(r) for simple structures that satisfy

the above conditions. Numerical integration of L(l) is in e�ect only 2D, and is some

orders of magnitude faster than that required for 3D evaluation of 
0(r). The forms of

L(l) are in general much simpler than that for the averaged, convoluted 
0(r) � that

for a sphere is a simple straight line / l between 0,D and zero elsewhere - this often

allows analytic forms to be obtained by inspection of numerically calculated L(l) data.

We may with care also use these relationships as an informative guide in porous media,

for radii less than that of a pore radius, such that the dominant terms will be inter-pore

and not traverse both pore void and solid (see �gure 111).

Further we �nd that the experimental scattering data from ILL SANS apparatus D22

is, with careful processing, quite able to give meaningful chordal information, by both

numerical Fourier transformation and analytic transformation, o�ering much greater

structure discrimination than the averaged, convolved G(r) data (see chapter 12.9).



Chapter 13

Neutron scattering from silica.

13.1 Neutron scattering apparatus.

Measurements of the intensity of neutron scattering from porous silica were performed

at the Institut Max von Laue � Paul Langevin (ILL) in Grenoble. For a schematic of

the reactor core, moderators and instrument lay-out at ILL see �gure 77.

Figure 77: Schematic of the reactor core, moderators and instrument lay-out at ILL.

156
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13.1.1 Neutron production, thermalisation and monochromatisation.

Neutrons for scattering experiments are commonly produced either in nuclear reactors

specially designed for producing high 
uxes of neutrons (as at ILL), or by impinging

accelerated pulses of protons onto heavy metal targets (as at ISIS at the Rutherford

Lab.).

In both cases the neutrons are conventially moderated or thermalised, using hot graphite

(for short wavelength neutrons) as on ILL D4, which then uses a copper monochromator

(0.35�A � � � 0.7�A), or cooled baths of hydrogen containing liquid� typically methane

(for long wavelength neutrons) as on ILL D22, which then uses a Dornier velocity selector

(a rotating cylinder with helical slots) (3�A � � � 20�A).

For a Maxwellian (thermalised) distribution of the speeds of N particles travelling in

all directions (i.e. a solid angle of 4�) we have [Reif, 1965, Landau and Lifshitz, 1965]:

F (v)dv = 4�N �
�

m

2�kbT

� 3
2 �v2�e�

mv2

2kbT dv

Hence the distribution for N neutrons emerging from a moderator through solid angle

�
 must be the same; i.e. :

F (�)d� = 4�N �
�

E

�kbT

� 3
2 �e�

E
kbT

d�

�

Where symbol '�' can be any of v ,k ,� since :

p = mv = �hk = h
� ;

dv
v = dk

k = �d�
�

E = 1
2mv2 = p2

2m = �h2k2

2m = h2

2m�2

Thus for � we get :

F (�)d� = 4�N �
�

1

2�mkbT

� 3
2 �h3���4�e�

h2

2m�2kbT d�

We graph this in �gure 78.
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Maxwell Distribution F(λ) for neutrons.

λ {Å}

 0.1  1  10

F
(λ

)

1  1000°K

 300°K

 100°K

 30°K

 10°K

Maxwell distributions
for neutrons from
moderators at five
temperatures.

Figure 78: Maxwell distributions F(�) for neutrons from moderators at 1000K, 300K,
100K, 30K, 10K.

13.1.2 Apparatus for Neutron Scattering Di�raction � D4B.

D4B is located in the reactor hall, near the reactor core shielding. The neutrons from

the moderator and monochromator are collimated and then scattered o� the sample,

which is placed in a 5mm dia. thin walled vanadium tube mounted in vacuum. The

scattered neutrons are detected by two 64 cell linear multidetectors that move in arcs

on air pads. The neutron path is nearly all maintained in a vacuum. See �gures 79, 80.

The instrument is controlled from a DEC Alpha computer (D4) running Unix, via

VME racks, with data analysis being performed on an SGI computer (D4sgi) running

Unix. Normalisation, background and sample tube subtraction, conversion to Q and

sin-cos Placzek correction was performed using standard D4 Unix routines written in

C . Additional routines to perform windowing and sech Placzek correction were written

in Apl [Iverson, 1962], translated to C [Budd, 1988, Sirlin, 1988..1999], and compiled

to executable code, while at ILL. The programs were added to the other general user

programs on D4sgi.
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Figure 79: View of D4B neutron di�ractometer, showing sample vacuum chamber and
the two multidetector housings.

Figure 80: Schematic for D4B neutron di�ractometer.
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13.1.3 Apparatus for Small Angle Neutron Scattering � D22.

D22 occupies the length of guide hall 2, outside the reactor containment hall (see �gures

77, 81).

Figure 81: Schematic of D22 small angle di�ractometer, showing Dornier monochroma-
tor, 18m long collimator, and multidetector in 20m long vacuum chamber.

The collimator has 8 evacuated guide sections, with source to sample distances variable

from 1.4m to 17.6m. There is a choice of 4 attenuations. See �gure 82.

The porous silica samples were placed in a 
at quartz Helma cell � sample thickness

was 1mm. These were placed in a multi-sample sample changer, with multiple degrees

of freedom, allowing the samples to be changed rapidly under computer control.

The detector is a 128�128 element multidetector, 96cm�96cm, and moves inside a

20m long evaluated chamber, under computer control, with sample to detector distance

adjustable from 1.43m to 18m. The detector can also be displaced sideways by 500mm,

giving an o�set beam centre on the detector, allowing higher Q ranges to be reached.

See �gure 83.

The instrument is controlled from a DEC Alpha computer (D22) running Unix, via

VME racks, with data analysis being performed at ILL on an SGI computer (D22sgi)

running Unix, and at a later date on a 200MHz Pentium running Linux, using a program

written in Apl , translated to C , and compiled to executable. The program (DoD22 )

was ported to the SGI, and placed on D22sgi for others to use.
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Figure 82: View of D22 neutron collimator and attenuators.

Figure 83: View of D22 multidetector in 20m long vacuum chamber.
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13.2 Sample Preparation.

Seven porous silica samples with nominal pore diameters of 25�A (Sigma), 40�A (Merck),

60�A (Merck), 46.3�A (C60 Unilever B), 100�A (Merck), 171.5�A (C200 Unilever B), 453�A

(C500 Unilever B) were pre-dried over-night at 120�C, before going to ILL. Before

measurement they were transferred into 5mm dia. thin walled vanadium tubes for

measurement on D4, and into 1mm sample thickness Helma cells for measurement on

D22. The samples were then re-dried for a few hours at 120�C, stoppered, and then

gently tapped to consolicate the silica grains.

13.3 Measurement of Scattering Intensity.

For D4, measurements were made of the scattering from an empty vanadium tube, a

solid 5mm vanadium rod, and a tube containing distilled water and tubes containing

the silicas.

They were placed one at a time in the sample changer, which was then evacuated,

and both detectors scanned over their full � range, giving a Q coverage of 0.2 to 17

fradians��A�1g.
For D22 the silica samples were then placed in the sample changer, together with a

position containing B4C neutron absorber for measuring the background, an empty

sample holder for measuring the beam intensity, an empty Helma cell, for measuring

the transmission and scattering of the container, and a Helma cell containing distilled

water, for intensity normalisation.

Measurements were made of all these samples with the detector at positions of 1.43m

sample-detector distance (350mm o�set), 1.43m (centred), 5m (centred), 18m (centred),

measuring both transmission and scattering. This gave a Q range of 0.0008 to 0.3

fradians��A�1g.
For the transmissionmeasurements, attenuator 3 was inserted, and the beam stop moved

o�-centre. For the scattering measurements attenuator 1 was used at 1.43m and some

5m measurements, and no attenuator used for 18m and other 5m measurements, and

the beam stop position adjusted to give good blocking of the direct beam.

Two long duration measurements were made of the water scattering, at 1.43m (o�set

and centred) to measure the detector e�ciency.
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Neutron Scattering Analysis.

14.1 Neutron Scattering from water.

The neutron scattering from hydrogen is dominated by incoherent scattering and is very


at in the small-angle region, showing mainly Placzek fall-o� above 1 fradian��A�1g due
to the recoil of the light hydrogen nuclei. A measurement of the scattering from water

made on D4 shows this clearly (see �gure 84). We show an empirical �t to the incoherent

scattering such that the two parameter sech + cubic approximation :

Norm(q) � 2

e
q
Q0 + e

� q
Q0

+ ��q3

acts to correct for Placzek fall-o�. i.e. it models the incoherent scattering. Also shown is

the residual (rescaled) coherent scattering, after subtraction of the incoherent scattering.

The use of sech has the advantage that we have a description of the Placzek fall-o� in

terms of a single main parameter, the fall-o� width Q0, with the cubic parameter � just

acting as a �ne adjustment at high Q.

We see that it is reasonable to assume the scattering intensity in the small angle region

is nearly constant, and we may thus use water as a normalisation standard.

14.2 Calibration and normalisation for small angle scat-

tering.

Measurements of the scattering from water on D22 with the detector centred and o�set

at 1.43m allowed the measured scattering from the two 2D water scattering intensity

163
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Figure 84: Placzek fall-o� of the neutron scattering from water, showing a Sech approx-
imation to the incoherent scattering, and the residual coherent scattering.

maps to be separated into three components: a detector e�ciency map, a geometric

fall o� Geom(�s) due to the scattering I(�s) being detected by a 
at detector, and an

attenuation Atten(�s) due to the angled scattering passing through a longer (attenuat-

ing) path length in the sample (see appendices N, O and �gure 88). It must be noted

that a di�erent Geom(�s) is required for each detector position and Atten(�s) is di�er-

ent (but calculable) for the calibrating water sample, and each measured sample, being

dependent on the direct path attenuation.

The detector e�ciency map calculated at the closest detector distance of 1.43m was

used at all distances, as this has the best signal to noise. The water maps at all detector

distances and o�sets were then used to provide intensity normalisation and to calculate

the geometric fall-o� for the relevant measurements � although the latter was close to

the theoretical geometric behaviour (see appendix N) there was measurable deviation,

and thus even fourth order polynomials }4(�) = � + ���2 + 
��4 were used to model

Geom(�s), after multiplication of the water scattering map by the appropriate Atten(�s)

map.

All measurements were initially normalised to 105 monitor counts; then for normalised
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measurement intensity maps :

B : Background

ECT;S : Empty Cell (Transmission, Scattering)

WT;S : Water (Transmission, Scattering)

ST;S : Sample (Transmission, Scattering)

we may now calculate a corrected water scattering map :

W 0
S = (WS�B)� WT

ECT
�(ECS�B)

We separate this (using the measured transmission) into calculated correction maps :

DEM : Detector E�ciency Map

Geom(�s) : Geometric fall-o� Map

AttenW(�s) : Water sample thickness attenuation Map

A Detector Mask Map and a Beam Stop Mask Map are also calculated.

We may now obtain corrected sample scattering maps :

S0S = (SS�B)� ST
ECT

�(ECS�B)

It should be noted that we wish to correct all maps in the latter equation by the detector

e�ciency map � thus we may defer this operation (take it outside the brackets) and

obtain �nal corrected sample scattering maps, using the Geom(�s) for the detector

position and the sample AttenS(�s) :

S00S =
S0S

DEM �Geom(�s)�AttenS(�s)

These maps were then converted to I(R) and the number of points reduced using a

binless smoothing routine with settable resolution (default 300 radial points). This

data was then remapped to I(Q).

Finally the I(Q) data measured for each sample at di�erent detector positions was

combined by polynomial �tting in the overlap regions and re-normalising to the D22

1.43m (o�set) water map.

The scattering intensity measured for the seven silicas on D22 and six on D4 is shown

in �gure 85.
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14.2.1 DoD22 show and analysis program.

To perform the above analysis a multiprocessing program dod22 was written in Apl ,

and compiled to C . This program spawns Tcl/Tk windows for control buttons and edit

boxes, and spawns xterm windows in slave mode for control and status.

It has three modes, show , analyse and fully controllable from the command window

and control �les, see �gure 86.

In show mode it plots a 2D detector map, a parameter box, and an I(Q) radial distri-

bution, using the beam stop position as centre (see �gure 87 for 500�A silica at 1.43m).

All required parameters are read from the run parameter �le. A list of ranges of Nu-

mors (Number of Run) may be speci�ed; Follow mode may be speci�ed � this plots

new data as it is measured, with no further user intervention required.

For calculating the water e�ciency and other maps required for calibration a command

�le must be executed. All required parameters are again read from the run parameter

�le, with the exception of the sample aperture; this together with a table of Numors

(assigning the Water and Empty Cell transmission and scattering numors, etc.) is read

from a pre-prepared table. One parameter that is adjustable is Beamstop Extend � this

determines how much larger (all round) the Beam Stop Mask Map is than the beam

stop � the default of 2 pixels is usually optimum.

Figure 88 shows the Detector E�ciency Map (overlaid with the Detector Mask Map),

Geom(�s) geometric fall-o� at 1.43m, and Atten(�s) for a 1mm thick 
at slab of water.

(It should be noted that the 1/eth attenuation distance for 12�A neutrons in water is

about 1.13mm.)

Finally, once the calibration has been performed for a particular detector position, anal-

yse may be run on the appropriate ranges of sample Numors (Transmission, Scattering);

this performs the analysis discussed above, reading parameters from the parameter �le,

and requiring no further user interaction. To calculate I(Q), the beam centre position

of the relevant transmission measurement is �rst found by integration and normalisa-

tion of the row and column sums, followed by curve �tting and solving of the resultant

polynomial. A typical analysis result, for 60�A silica at 5m, is shown in �gure 90. Thus

analyse has corrected this for background, detector e�ciency, transmission, empty cell,

Geom(�s) and Atten(�s).

If we use analyse on an o�set water (Transmission, Scattering) pair of measurements, we

obtain �gure 89; we see that the normalisation is reasonable but not complete; a further
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Figure 86: DoD22: Help, Command and Status windows.
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Figure 87: DoD22 show : Typical detector raw 2D I(X,Y) map, parameter table, I(Q)
radial distribution.
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Figure 88: DoD22: Detector E�ciency Map and Mask Map, parameter table, Geom(�s)
geometric fall o� at 1.43m (cyan), and Atten(�s) for a 1mm water slab (blue).
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iteration of normalisation may be added at a later stage. We may note the reduction in

scatter brought about by the detector e�ciency map correction.
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Figure 89: DoD22: Water normalisation as performed by analyse.

Analyse was used to prepare the individual I(Q) sections for the combined porous silica

scattering graph, �gure 85.

The dod22 program was originally written on a Linux PC; it has been placed on D22sgi

for other users to use; postscript help panels are provided. (Note: currently analyse is

switched o� on SGIs).
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Figure 90: DoD22 analyse: Typical analysed 2D I(X,Y) map, parameter table, I(Q)
radial distribution, corrected for background, detector e�ciency, transmission, empty
cell, Geom(�s) and Atten(�s).



Chapter 15

The calculation of the solid-solid

density correlation function G(r)

for model porous structures.

Monte Carlo methods were used to calculate G(r) for simple cylindrical pores on

square and hexagonal lattices, and for spherical pores on cubic and hexagonal close

packed lattices.

A uniform homogeneous medium was assumed, out of which the pores were excised.

Uniform pore and lattice spacing was considered �rst, as appropriate to MCM tem-

plated silicas, then a statistical variation was added as found in sol-gel porous media.

G(r) was found to be separable into two regions : A short range structure in the

calculated G(r) that depends on the pore wall geometry, and a longer range oscilla-

tory density variation around the average porous density, that depends on the lattice

structure.

With higher variance, the short range structure decays smoothly with little or no

oscillation into a longer range structure of very low amplitude, that then decays to

the average porous density. With suitable values of variance the calculated G(r) for

arrays of spherical voids will be shown to match the measured G(r) for sol-gel silicas.

15.1 Project aims.

Measurements had been made using a number of di�erent techniques on porous silica

sol-gel materials and liquid crystal templated silica glasses.

173
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Measurements had been made of the density of the porous silicas; information on their

nominal pore sizes was available from gas adsorption isotherms; measurements had been

made of pore size distributions using Nuclear Magnetic Resonance (NMR) Cryoporome-

try; and �nally Neutron Scattering (NS) Di�raction and Small Angle Neutron Scattering

(SANS) measurements had been made to probe the spatial distributions of matter.

The intention of this project was to calculate the radial spatial distribution of matter

G(r) in model porous structures, and use this information to try and draw together

the above information, to deduce information concerning the structure of real porous

glasses.

15.2 Evaluation of scattering for porous structures.

There are two main approaches one might follow when calculating the expected scat-

tering from porous structures :

15.2.1 Separation of scattering I(q) into P(R�q), S(q).

We note that where we have scattering from an array of identical particles of dimension

R we may separate the scattering into a particle form factor P(R�q) and a structure

factor S(q) de�ning the spatial distribution of the particles, such that we may write :

I(q) = P (R�q)�S(q);

corresponding to a convolution in the real domain.

Thus for identical spheres on a lattice we may use the expression for P(R,q) given in

appendix K.

However we wish to model porous sol-gel silicas; we wish to model not only uniform

voids on a uniform lattice, but Gaussian distributions of pore sizes on lattices with

Gaussian variance; thus we require for our expression for I(q) not just a single product

of separable terms as for the uniform particle case but a summation or integral of terms.

We note however that the problem is even more complicated, in that if we wish to model

the voids as spheres we would expect them to need to intersect to give us the porosity

� hence we would need to obtain an expression for P(R,q) for facetted spheres (in order

to avoid double counting of some of the void volume), as a function of the ratio Dvoid
a
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(where a is the lattice spacing) and of the lattice geometry (determining where the

facets are on the sphere).

15.2.2 Monte-Carlo integration of density correlation functions G(r).

While the above is a route that might be followed in the future, the route chosen for this

project was the direct (Monte-Carlo) integration of an explicit density distribution to

obtain the normalised solid-solid density correlation function 
0(r), which may then be

transformed to I(q). This has the major advantage that we �nd that we may describe

our intersecting porous structure on an in�nite square or cubic lattice in only two lines

(and that for hexagonal and hexagonal close packed structures in only a few more).

15.3 Project simpli�cations.

Clearly to fully model a real porous material would be a major task � many models

have been proposed, some fractal in nature [Stanley and Ostrowsky, 1986].

The �rst problem is that the smallest pores studied were only about 30�A in diameter,

which would at �rst imply that one would have to explicitly model the locations of sil-

ica atoms. However examining neutron di�raction and SANS data shows (see chapter

16.1, �gures 99, 100, 101) that, even for the smallest pore structure studied, the scat-

tering from the pore structure falls by many orders of magnitude before the start of the

scattering peak from the silica lattice mean separation.

Using this information, the silica was then modelled as a uniform homogeneous medium,

out of which pores were excised. As will be seen, this allows a change in modelling

approach which gives rise to a major improvement in computational e�ciency, providing

improved statistics at �ne resolution.

The other major simpli�cation was in the construction of the porous structure mod-

eled. Templated silicas such as hexagonal MCM-41 and cubical MCM-48 have pores on

uniform lattices, which should make a simple model of the MCM-41 reasonably faithful

(MCM-48 is a far more complex structure than the label `cubic' would imply).

Thus initially pores were placed on a regular lattice, �rstly spherical pores on a cubical

lattice and cylindrical pores on a square lattice. Then hexagonal lattices of cylinders

were constructed, allowing a good approximation to the structure of MCM-41. Finally

spherical pores were placed on hexagonal close packed (HCP) lattices.
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Sol gel glasses, though, have a statistical spread in pore sizes, and many di�erent struc-

tures have been proposed to describe them, some fractal. Clearly to fully construct

such a self-consistent model pore structure, and to measure its G(r) would be a major

undertaking.

Rather than construct a single porous structure containing a range of randomised pore

sizes, the approach that was followed was : a) to construct an ensemble of regular porous

structures, each with a statistical variation in its pore diameter and lattice spacing, and

b) to interpolate between the higher and lower density Cubic and HCP lattices. NMR

cryoporometry shows us that for a typical sol-gel glass the distribution in pore sizes is

fairly narrow (typically 20 to 50%, see �gures 62, 96), so this should be a valid approach.

The G(r) measured from the ensemble approach may have subtle di�erences from that

measured for a single uni�ed structure, but that should be to second order only.

15.4 First tests.

For an initial evaluation of algorithms, 500 points were generated at random inside a

box of side 24�a, where a was the intended lattice spacing. Those points outside a

sphere of radius R = 12�a were thrown away, e�ectively leaving a spherical grain of

uniform density, sampled at 254 locations.

All pair-wise distances ri � rj , i 6= j , were evaluated, and binned in 1024 bins. This

e�ectively gives the radial distribution function J(r) = 4�r2�(r) for the spherical grain

(�gure 91). As expected the initial rise is r2, re
ecting the surface area of each shell

�r of area 4�r2. As the surface of the grain is approached with a higher probability by

larger r , the curve reaches a maximum and falls to zero, re
ecting the fact that r can

not be greater than 24�a. We may also plot this as the pair correlation function g(r)

by dividing by the 4�r2 (�gure 92). g(r) may be given the following meaning; take an

arbitrary occupied point in the test volume; g(r) then represents the probability that

another point at distance r is occupied. [Stanley and Ostrowsky, 1986].

The expected fall o� due to the limited radius R of the sphere is calculable analytically

[Steytler et al., 1983a], as shown in appendix K and is given by :


0(r)Sph = F (r;R) = 1�3
4
� r
R
+

1

16
�
�
r

R

�
3
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Figure 91: An initial test calculation of J(r) for a sphere.

21

2

1
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Placing 500 points in a cube of
side 2, and excising a sphere of
radius R=1, a Monte Carlo summation
(of 31125 terms) gives J(r). We plot :

g(r) = (1/2)z(V/(N²–N))zJ(r)/(4πr²)
where V is the volume of the sphere.

Also plotted is the theoretical
g(r) for a sphere = F(r,R) =
 1 – (3/4)z(r/R) + (1/16)z(r/R)³

Figure 92: An initial test calculation of 
0(r) for a sphere.
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Dividing the calculated g(r) by the expected fall o� F(r,R) (and truncating at 20�a) we
get �gure 93, which is a noisy but otherwise reasonable approximation to the expected

uniform density.
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Corrected MC g(r) in a spherical region.

r

g(
r)

When calculating g(r) by Monte
Carlo means, the finite volume
of the integration region means
that S(q) becomes convoluted
with the S(q) for a sphere.

We show the decorrelation
given by dividing g(r) by
g(r) for a sphere = F(r,R) =
1 – (3/4)z(r/R) + (1/16)z(r/R)³

Placing 500 points in a cube of
side 2, and excising a sphere of
radius R=1, a Monte Carlo summation
(of 31125 terms) gave J(r).
We plot corrected  g(r) =
(1/2)z(V/(N²–N))z(J(r)/(4πr²))/F(r,R)
which gave an average value of 0.97

V is the volume of the sphere

Figure 93: Corrected G(r) when measuring in a �nite spherical volume.

Examining this, though, we can see a number of problems. The noise in g(r) gets far

worse at low r , re
ecting the fact that J(r) was increasing with r2, and there is also a

minimum r below which we have no information (re
ecting the closest distance between

any of our test points).

The corrected g(r) also shows high noise at large r due to the fact that we have a �nite

spherical test volume � this can be overcome by using periodic boundaries, but this

constrains the volume we may consider.

These problems will clearly reduce with more points and larger volumes, but to obtain

�ne resolution at low r this standard approach will clearly require the evaluation of a

great number of radial separations, if we are to maintain information at large r . With

porous structures we have the problem that we are trying to obtain information over a

range of length scales.

We thus adopt a non-standard strategy.
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15.5 Obtaining G(r) in a continuous medium.

For our modi�ed approach to calculating the spatial correlation function, we use the

fact that neutron scattering shows us that we may with adequate resolution treat the

density as continuous and homogeneous, except where pore void space has been excised.

Thus strictly we are now calculating the solid-solid density correlation function G(r),

where :

G(r) =
�(r)

�1

���G(r) =
1

V ��1
Z
v
dr0h�(r0)�(r + r0)i

where �1 = h�(r)i is the average density,
V is the volume.

(see chapter 12).

Working with a continuous medium allows us to now place test point where we wish;

this, used with the following algorithm, gives a great increase in calculation e�ciency,

resulting in better signal to noise, and reduced computation times :

We initially place N i test points pi at random within our test volume (which may be

any shape). A test point either lands in solid occupied space, in which case it will

scatter, and we will calculate the radial distribution of matter around it, or it lands in

void space, in which case it is thrown away (it plays no further part, any more than

would a point not within the list of scattering particles in a standard discrete Monte

Carlo calculation).

We then generate a list of N j radii, using any distribution that we choose � linear

is an obvious one, but to probe small r in �ne detail a partial log weighting or a

Gaussian weighting can be useful; infact, since we will be interested in r�G(r), weightings
proportional to r, r2 are also useful (see appendices Q.2, Q.3, Q.3.1, Q.3.2).

We also generate N j random unit vectors v j (using von Neuman's method [Powles,

1994], see appendix Q.1), and multiply these by the radii to generate the N j secondary

test points pj .

We now calculate the true XYZ locations of the secondary test points pj, by adding

their coordinates to those of each of the primary test points :

rij = ri + rj



CHAPTER 15. THE CALCULATIONOF G(R) FORMODEL POROUS STRUCTURES. 180

i.e. each point pi is surrounded by a cloud of points pj , at our selected but randomised

radii r j .

We next determine whether the secondary test points pj fall within pore void space or

solid material. For those that fall within solid, their radii are binned as SolidSum(r);

for normalisation all the test radii r ij are binned separately as RadiiSum(r). Then the

ratio gives us :

G(r) =
SolidSum(r)

RadiiSum(r)

This normalisation has a second most important e�ect on the �nal signal to noise � we

know our sampling is statistical, and the noise in our answer will re
ect this; however by

binning all the test radii, RadiiSum(r) then contains the information on this variation

� e�ectively this is the answer we would get if all space was solid, which we know has

a density of unity. Thus by dividing by RadiiSum(r) we reduce the peak statistical

noise, as we may see if we compare �gure 94 with �gure 92, o�ering a great reduction in

computational e�ort required for a given signal to noise. The reduction is more marked

at large density, as then the two sampled sets become more similar. We also see that

we may now obtain G(r) information to arbitrarily low r .
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MC G(r) for a sphere, with calculated G(r)

r

G
(r

)

Calculating G(r) for a sphere of
radius R=1, of a continuous medium,
allows us to choose radii Rj 
with a uniform distribution.
A Monte Carlo summation of 31269 terms
gives G(r).
Also plotted is the theoretical
G(r) for a sphere = F(r,R) =
 1 – (3/4)z(r/R) + (1/16)z(r/R)³

Figure 94: Calculated 
0(r) for a sphere constructed from a continuous medium.

Further advantages of this normalisation are correction of any non-uniformity in the
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random number generator (none were found under the conditions it was used), and

enabling the deliberate skewing of the random number density as described above, to

facilitate measurements such as r.G(r) and d(r) = r2.G(r).

In practice the above steps are repeated for many iterations, choosing �rst a new set of

random points pi, and then radii r j , unit vectors v j, to give us pj , at each iteration.

Thus there is no need to hold information on all the points in the simulation at one

time.

Generating speci�c random radii and unit vectors and calculating the resultant x,y,z

coordinates has the additional computational advantage of not requiring a square root

calculation for each of many million radial distances, as required by the standard pro-

cedure.

15.6 Monte-Carlo G(r) integration of simple bodies.

We may use this technique to obtain the G(r) for simple and compound bodies, of �nite

or in�nite dimension.

To handle a dimension in which the body is in�nite, we just make the test as to whether

we are in void or solid insensitive to that dimension; we must still bin over a �nite range

of course, and ensure that we populate that range with a reasonably dense set of test

vectors.

This method was used to obtain 
0(r) for uniform density spheres and in�nite slabs

(both showing excellent agreement with theory), for �nite circular slabs, for in�nite

and �nite cylinders, and for thick shells and in�nite tubes (as a model of multilayer

Buckyballs and Buckytubes), see appendix L and �gures 95, 110, 137.

15.7 Construction of lattices of pores.

The MCM-41 and MCM-48 templated silicas are constructed on regular lattices, thus

there was a strong interest in studying pores on such lattices. Sol-gel glasses have a less

ordered structure, and pose many problems in modelling their structure. Nonetheless

NMR Cryoporometry shows that the pore size distribution width is typically 20% to

50% of pore diameter; we will initially model such structures by interpolation between

ordered structures of di�erent packing densities, with the introduction of disorder as a

second step.
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γ0(r) for finite circular slab and for cylinder.

 radius r/ξ
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) 
γ0(r) as calculated by
Monte–Carlo integration :

  Finite circular slab,
  thickness  = 2zξ,
  diameter = 10zξ.

  Finite cylinder,
  diameter = 2zξ
  length = 10zξ.
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γ0(r) for thick walled shell and infinite tube.
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γ 0
(r

) 

γ0(r) as calculated by
Monte–Carlo integration :

  Thick infinite tube,
  inner diameter = 1.6zξ,
  outer diameter = 2zξ.

  Thick shell,
  inner diameter = 1.6zξ,
  outer diameter = 2zξ.

Figure 95: 
0(r) for some simple bodies, as calculated by Monte-Carlo integration.
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15.7.1 Simulating Cubical lattices of Spherical pores.

Although spherical pores on cubical lattices represent an improbable model for the

silicas on which measurements were made, they provided a valuable �rst step in aiding

the evaluation of the algorithms, and in deciding whether to proceed to more elaborate

schemes. In addition they provide a likely upper density bound to the range of densities

covered by random lattices, and we will use the values we obtain to obtain those for

random lattices by interpolating between the cubical case and the HCP case.

Suppose that around each of N i test points P i we have a cloud of N j secondary test

points P j; we wish to know whether the points are located in silica or void space. For

an in�nite cubical lattice we may just take each of our x,y,z spatial coordinates modulo

the lattice spacing a; if we normalise to the lattice spacing, this is just 1jXYZ , where
XYZ is our array of coordinates. We actually perform this twice, �rst to determine

the number of i test points in the solid, N is, when XYZ i has dimensions (N i, 3), and

secondly to determine the number of j test points in the solid, N js, when XYZ j has

dimensions ((N is�N j), 3).

This gives coordinates that cycle repeatedly from 0 to just under 1; subtracting a half

from them gives coordinates that are zero in the centre of the pore and �1/2 at the pore
walls. Thus all that one has to do to determine if one is in pore void or solid silica is to

compare the sum of the squares of the coordinates with the square of the pore radius :

PoreRadius2�(x2 + y2 + z2).

We may combine all the above into a single Apl expression that tells us if we are in a

pore void space :

SelV oid  (PoreRadius2)� + =(�0:5 + 1jXY Z)2

This single expression encodes all the structure of our spherical pores on an in�nite

cubical lattice!

Then all we need to do is to use this to select those points in the solid :

PointsSolid  (~SelV oid)=[1]XY Z

and to calculate their radial density (say by using a binning algorithm), and normalise

by the radial density of the test points.



CHAPTER 15. THE CALCULATIONOF G(R) FORMODEL POROUS STRUCTURES. 184

Checks were made setting the radius to 0.5�a, when about half the test points fell in

the solid, and then to
p
3�a, when none did; this is in agreement with the analytic

model.

If the radii of the pores are allowed to increase above 0.5�a, the pores will intersect,
and the lattice will be porous. The lattice will remain intact until the radius reaches

(1�p2)�a.
One should note the important di�erence between this periodic structure and the con-

ventional periodic boundary conditions, is that with the latter the maximum distance

over which G(r) can be measured is of the order of the lattice periodicity; with this

algorithm we may choose to bin over any sub-range within 0...in�nity (placing our test

points so as to populate this range), as it is the pores that are periodic, not the volume

we are measuring within. (Later we shall relax the strict periodicity of the pores.)

15.7.2 Simulating Square lattices of Cylindrical pores.

Another simple case to test is cylindrical pores on a square lattice. Here we have just :

SelV oid  (PoreRadius2)� + =(�0:5 + 1jXY Z[; 1 2])2

PointsSolid  (~SelV oid)=[1]XY Z

15.7.3 Simulating Hexagonal lattices of Cylindrical pores.

A practical case of particular interest is templated silica MCM-41, which is constructed

to have cylindrical pores on a hexagonal lattice.

The unit cell for a hexagonal lattice is skewed; this is inconvenient, thus we chose to

consider a rectangular lattice containing two pores, of dimensions (a; b) = (1;
p
3)�a.

Thus we take 1jx and (p3)jy , and centralise our range on (0,0) by subtracting (1,p3)�2.
Thus if a test of PoreRadius2�(x2 + y2) evaluates true, we are de�nitely in pore void,

as before. However we have a second pore to test for as well in the hexagonal case. For

this we keep an overlapping second lattice, displaced by (1,
p
3)�a. i.e. we add (1,

p
3)�2 to the x,y coordinates, before again performing the modulus, subtraction and

test. If this test evaluates true we are de�nitely in pore void; all that remains is to OR

the two logical vectors, and use its logical inverse to select the x,y,z locations of the

points in the solid.
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We may express this as :

AB  1; 31=2

SelV oid1  (PoreRadius2)� + =((�AB�2) + [2]ABj[2]XY Z[; 1 2])2

SelV oid2  (PoreRadius2)� + =((�AB�2) + [2]ABj[2](AB�2) + [2]XY Z[; 1 2])2

PointsSolid  (~(SelV oid1_SelV oid2))=[1]XY Z

15.7.4 Simulating Hexagonal Close Packed lattices of Spherical pores.

Although HCP lattices of pores are more closely packed than the average packing found

in sol-gel silicas, HCP lattices of pores form a useful lower bound on the range of densities

likely to be found in real sol-gel silicas.

The unit cell for an HCP lattice is skewed along two axes; this is inconvenient, thus we

chose to consider a right box containing four pores of dimensions (a; b; c) = (1;
p
3; 2�p(2=3))�a.

We may express this as :

ABC  1; 31=2; 2�(2�3)1=2

SelV oid1  (PoreRadius2)� + =((�ABC�2) + [2]ABCj[2]XY Z)2

SelV oid2  (PoreRadius2)�

+=((�ABC�2) + [2]ABCj[2](ABC�110�2) + [2]XY Z)2

LD  1�31=2

SelV oid3  (PoreRadius2)�

+=((�ABC�2) + [2]ABCj[2](0; LD; 0:5�ABC[3]) + [2]XY Z)2

SelV oid4  (PoreRadius2)�

+=((�ABC�2) + [2]ABCj[2]((0; LD; 0) +ABC�2) + [2]XY Z)2

SelSolidJ  ~SelV oid1_SelV oid2_SelV oid3_SelV oid4

PointsSolidJ  SelSolidJ=[1]XY Z

LD : Layer Displacement : Y displacement between Z layers.
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15.8 Ensembles of lattices with a statistical spread.

Porous structures with a wide or even fractal range of pore sizes (such that small pores

and particles �t between the interstices of larger ones) are very dissimilar to regular

structures, and we can not expect to model one with the other. However given that

the NMR Cryoporometry indicates a typical 20% to 50% spread in pore size for the

measured sol gel silicas, a reasonable �rst approximation is to treat them as an ensemble

of regular lattices, with a statistical spread in pore and lattice sizes.

Rather than have to construct many di�erent lattices, it was realised that they were all

similar, just related by a scaling. Thus a simple scaling of our radius e�ectively indexes

into a structure with di�erent pore size and lattice spacing.

Thus we just generate for each of our j secondary test points pj a value centered on unity,

but with a Gaussian spread, of variance EnsembleVariance. Then when we calculate

our relative x,y,z location for the secondary test points from the j radii r j and j random

unit vectors v j, we scale it by EnsembleScaleJ , to e�ectively index into a structure of

di�erent size. The binning is still done at the original radius. This e�ectively gives us

an ensemble with j di�erent lattices.

This may be expressed as :

EnsembleScaleJ  NJ gauss 1; EnsembleV ariance

RelativeXY Z  (EnsembleScaleJ�RadiusJ)� [1]RUnitV ecJ

Here the function gauss uses the Central Limit Theorem to generate a Gaussian spread,

by convolving together 12 uniform distributions [Powles, 1994] (appendix Q.2).

It should be noted that the above pores are still all spherical; generating separate scalings

for x,y,z would result in oblate and prolate pores as well.

To justify this approach further, although even one ball of a di�erent size in a regular

structure of otherwise identical balls can cause long range defects in the structure, in

the case of a lattice of pores growing in a sol gel, if one pore starts to grow say 10%

undersize, it may well be that the pores either side will grow oversize in compensation.

Given the fact that we are looking for ways of arranging pores that have a 20% to

50% size spread, one likely model is one in which there is an average pore size over a

reasonable volume, such that the pores can pack fairly regularly, but then this average

pore size may vary by some percent in di�erent regions. Then, within each region, there
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may be a pore size variation of a few percent that is partially locally compensated by

adjacent pores to preserve the packing structure.

The radial solid-solid density distribution function G(r) for such a model should be

well represented by that for the ensemble of regular lattices with a Gaussian distribu-

tion in lattice and pore sizes that we are calculating. Further detailed investigation

may reveal that distributions other than Gaussian are more appropriate, though Gaus-

sian is a reasonable approximation to the pore size distributions as measured by NMR

Cryoporometry (�gure 96).

15.9 Implementation of Monte-Carlo integration of mod-

els

The above algorithms and necessary random generation of the radii and unit vectors,

and hence test points pi and pj were expressed in Apl (see appendix Q).

As can be seen from the code examples above, with the extreme conciseness of the

algorithms one has the great advantage of being able to demonstrate 'proof of correctness

by inspection', with regard to the algorithms being a faithful implementation of our

geometric models.

The code was written and initially tested on an Atari TT30 30MHz computer with 14

MBytes of memory, using Apl68000 , giving evaluations to about 3�108 lattice sums

per integration in a week.

It was then compiled from Apl to C , using Prof. T. Budd's Apl to C compiler [Budd,

1988], as maintained by myself and Dr. S. Sirlin of Nasa [Sirlin, 1988..1999],, and

transferred to a DEC Alpha (with thanks to Prof. R.J. Newport and Dr. G. Mountjoy),

o�ering calculations to 3�109 lattice sums in a week.

The compiler was then ported to Linux, and the Monte-Carlo integrations performed on

a 200MHz Intel Pentium II MMX processor. With further code speed-up improvements,

the following integrations were performed in the main out to a radius of 7.5 lattice

spacings a, requiring about 3 days for 3�109 lattice sums. Some calculations were

only done to 2�a (to investigate variations in the behaviour near the pore wall), some

(to investigate the large r behaviour) out to 21�a, requiring 10 or more days and

1!4�1010 lattice sums to achieve comparable signal to noise.
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Fitting a Gaussian to the pore
size distribution measured for
100Å nominal pore size porous
silica, we find an average
diameter D of 113.5Å, and a
Gaussian constant G of 34.9Å²,
corresponding to a full width
at half height W of
 2zGz(Ln 2)1/2 ≈ 58.1Å.

Thus G/D ≈ 0.308
 and W/D ≈ 0.512
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Normalised Gaussian with half height width of 0.5.

Generating a normalised Gaussian
with unity amplitude and
displacement, and full width at
half height of 0.5, closely matching
the pore distribution shape measured
for 100Å nominal pore size porous
silica, we also generate a random
Gaussian distribution of 5Z10A
points, with a variance of 0.045
 ≈ 0.5² v (8ZLn 2)
and bin them into 100 bins, showing
the expected close match.

This gives information on the probable
variance of the pore size distribution
in the sol–gel silica.

Figure 96:
Gaussian �tted to pore distribution as measured by NMR cryoporometry for 100�A Merck
sol-gel silica, and Gaussian distribution generated to match �tted Gaussian, showing
expected agreement.
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These calculations were performed as a background Unix task with an unnoticeable

impact on the foreground tasks. They only required attention a few times a week to

start a new simulation with a new value of Dvoid
a or variance.

The calculations were performed in double precision; further proof of correctness of im-

plementation was demonstrated by showing that the generated average densities agreed

with the analytic ones to four or more signi�cant �gures (e.g. see table 9), that the

density went to zero at the expected ratio of Dvoid
a and that the lattice lost cohesion at

the expected ratio.

15.10 Monte-Carlo integration of porous models.

To give reasonable peak noise �gures in both G(r) and r�G(r) representations, all the
following calculations were performed with random r-vectors whose density was weighted

as equal parts of uniform, proportional to r and proportional to r2 (see appendix Q.3).

The �nal ratioing stage described above ensures this does not a�ect the calculated G(r).

Monte-Carlo integrations were performed for hexagonal lattices of cylindrical voids of

diameter = 0.9 � lattice spacing, for variances of 0, 0.12, 0.14.

Monte-Carlo integrations were performed for cubic lattices of spherical voids of diameter

= 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 � lattice spacing, for 0 variance.

Monte-Carlo integrations were performed for HCP lattices of spherical voids of diameter

= 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.94, 1.0, 1.04, 1.1, 1.14, 1.2 � lattice spacing,

for 0 variance (see �gure 97), and for HCP lattices of spherical voids of diameter = 0.9,

0.94, 1.0, 1.04, 1.1, 1.14, 1.2 � lattice spacing, for 0.005 variance.

They were also performed for HCP lattices of spherical voids of diameter = lattice

spacing for variance 0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.50. It was shown that a good

�t was obtained with the experimental data from sol-gel silicas for the range of variance

0.10 ! 0.20 (chapter 16.2.4); thus a further set was calculated, with variance 0.12, 0.14,

0.16, 0.18, 0.2. See �gure 98.

A set of calculations were also performed for HCP lattices of spherical voids of diam-

eter = 0.9 � lattice spacing, for variance 0, 0.005, 0.12, 0.14, 0.16. Ideally the full

experimental parameter range of
�
Dvoid
a ; variance

�
, should be covered, for HCP and

cubic lattices. There was insu�cient time for this, so one �nal calculation was made,
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chosen to correspond to the furthest extent of the experimentally measured parame-

ters, at diameter = 0.86 � lattice spacing, variance = 0.2. This allowed an analytic �t

approximation in 2D to be generated (see chapter 17).

15.11 Preliminary consideration of Monte-Carlo G(r)s.

In the G(r) calculated for spheres on hexagonal close packed lattices we see that near

zero radius we have a measured density of nearly unity, that then falls o� rapidly and

nearly linearly. We understand this as follows :

We choose a test point to measure the di�erential scattering with respect to; this must

exist and thus must be in solid (i.e. pore wall). Therefore at very short radius we will

probably also be in pore wall, and so the density is nearly unity. As the radius increases

there is a higher probability that we will be in void space, and thus the density falls.

At very large r we obtain the average bulk density of the model; at intermediate dis-

tances we have a periodicity that is scaled by the lattice spacing, for small variance.

For larger variance the pore wall feature changes smoothly �rst to nearly the average

density, and then slowly drops to the average density. We see in �gure �gure 97 that

the oscillatory G(r) data is asymmetric � it is thus not necessarily the case that the

averaging e�ect of high variance will produce the same value as G(r=1). We see this

in practice, where we �nd a large r G(r) structure in the simulated pores, that is also

found in the real sol-gel silicas (see chapter 16). For this, the Monte-Carlo simulations

were extended to 21 lattice spacings.

In chapter 16.2.1 and appendix L we show that we may approximate the behaviour near

a pore wall as the expected G(r) of a �nite plane slab embedded in a medium of the

average density.

Initial results for sol-gel silicas showed a better �t with experimental data for spheres

than for cylinders, however as time permits it would be invaluable to extend the above

limited calculations for cylinders, particularly with the MCM silicas in mind.

In chapter 16.2.4 we see that for appropriate values of Dvoid
a and variance we may obtain

good �ts to G(r) curves calculated from the measured scattering from sol-gel silicas. The

variance changes from a value where there is a slight dip below the average density at

about half the lattice spacing, to a value where there is just a smooth change to nearly

the average density.
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Monte Carlo calculations
of  G(r)  for spherical voids,
as a function of  Dvoid/a ,
on an Hexagonal Close
Packed lattice, with no
statistical variation, of
pore diameter  Dvoid  
and lattice spacing  a .

At large  r  the average filling
factor  fmean  is :

  Dvoid/a   fmean  
  0.90   0.46017
  0.94   0.38500
  1.00   0.25953
  1.04   0.17795
  1.10   0.08551
  1.14   0.04575
  1.20   0.01743

For comparison the filling
factor for unity diameter
spherical voids on an HCP
lattice should be :
 1 – π/(3Z√2) = 0.2595195

The lattice looses cohesion
for  Dvoid/a  r 2/√3 = 1.155

Figure 97:
G(r) for spherical voids on an hexagonal close packed lattice, with zero variance, varying
the ratio Dvoid

a .
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Mont–Carlo calculations of G(r),
for spherical voids on an
Hexagonal Close Packed
lattice, as a function of
variance of pore diameter Dvoid 
and lattice spacing a.
 For variances :
0, 0.01, 0.02, 0.05,
0.12, 0.14, 0.16, 0.18, 0.20,
0.50

Figure 98:
G(r) for spherical voids on an hexagonal close packed lattice, with Dvoid

a = 1, varying
the variance.



Chapter 16

Analysis of sol-gel silica neutron

scattering in q, r domains.

16.1 Analysis in q domain, comparison with Monte-Carlo

data.

If we examine the measured scattering from the seven sol-gel silicas (�gure 85) we have,

�rstly at high q , for the di�raction data measured on ILL di�ractometer D4, the atomic

di�raction peaks superimposed on an incoherent scattering (primarily from residual

hydrogen on the silica surfaces). We see that there appears to be a larger amount of

hydrogen in the small pore silicas, presumably re
ecting the fact that although the pores

have a area proportional to the radius2, their number goes inversely with radius3.

If we �t this incoherent background with a sech function (see section 14.1) and subtract

it, we obtain �gures 99, 100, 101).

We see that at high q the hydrogen subtracted data for the scattering from the pores

drops monotonically with an approximately q�4 fallo�, until the onset of atomic scatter-

ing. If we neglect the atomic scattering we obtain a form that is e�ectively P(q) for the

pores. We see, however, that we appear to have structure on two length scales, where

we might assume to just have the scattering appropriate to, say, spheres the diameter

of the mean pore diameter in the sol-gel silica. We do see a variation of the turn-over q

for the di�erent silicas.

We know we do not have only one pore size in our sol-gel silicas, but we have a measured

pore diameter distribution from our NMR cryoporometry measurements. If we plot the

192
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 water subtracted.
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 with Placzek falloff.

Figure 99:
I(q) for C500, C200 Unilever B SiO2, with Placzek �t to incoherent scattering and plot
of coherent scattering residual.
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Figure 100:
I(q) for 100�A Merck, C60 Unilever B SiO2, with Placzek �t to incoherent scattering and
plot of coherent scattering residual.
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Figure 101:
I(q) for 60�A Merck, 40�A Merck SiO2, with Placzek �t to incoherent scattering and plot
of coherent scattering residual.
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scattering expected from an ensemble of isolated spheres with the NMR measured mean

and variance for Unilever C200 B silica, and compare it with the measured scattering,

we obtain �gure 102. We see that we appear to have scattering from structures that are

both smaller and larger than expected.

P(Q) for a Gaussian distribution of isolated spheres.
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Generating a Gaussian
distribution of spheres of
mean diameter D = 191.4Å
and variance σ² = 350.6Å²
to model the pore distribution
in C200 Unilever B silica, as
measured by gas adsorption and
NMR cryoporometry, we calculate
P(Q) = <|F(Q)|²> for the
ensemble of isolated spheres,
and compare it with the
scattering I(Q) from the
C200 Unilever B silica.

Figure 102:
Scattering from C200 Unilever B SiO2, with calculated scattering from a Gaussian
distribution of spheres � mean and variance as measured by NMR cryoporometry.

If we initially restrict our attention to the large q feature, we may in accordance with

chapter 12 �t to Guinier and Guinier-Porod equations relating to a random mixture of

two phases (see �gure 103). We see that we have two possible Guinier-Porod �ts, one

corresponding to the low q Guinier condition, the other to the high q Porod condition.

These are all in broad agreement with the nominal pore diameter as measured by gas

adsorption (171.5�A), but show a spread of 30% in deduced pore diameter.

Examining the scattering in detail we see that rather than changing smoothly to a

q�4 behaviour (as does the Guinier-Porod equation), the data for all our measured

scattering curves actually have points of in
ection where it changes from a steeper

than q�4 behaviour to q�4. In fact if the data for the various silicas is examined in

magni�cation, it can be seen that beyond the point of in
ection the initial behaviour is

not precisely q�4, but actually has a negative curvature.
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I(Q) for C200 Unilever B SiO2 + Guinier, Guinier–Porod fits.
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as measured ai ILL on D22:
12Å neutrons, detector @
1.43m (offset), 5m & 18m.

Low q Guinier fit,
 Dsph = 149.0 Å.

Low q Guinier–Porod fit,
 Dsph = 149.0 Å.

High q Guinier–Porod fit,
 Dsph = 193.6 Å.

Figure 103:
Scattering from C200 Unilever B SiO2, with a Guinier �t and Guinier-Porod �ts to the
low q and high q limits.

Thus in �gure 105 we plot an empirical sech �t (discussed in chapter 12) and a Guinier-

Porod curve of 1/30th the amplitude corresponding to a 3% addition of a randommixture

of two phases. Also plotted are �ts to the low-q feature, of a Guinier (Gaussian) plus a

Guinier-Porod curve with approximately the same reduction in amplitude. The sum of

these four components �t the observed scattering to excellent accuracy.

In �gure 104 we show a similar �t for C500 Unilever B silica. We show just the high-q

component, to show it to better resolution. For this silica the random mixture compo-

nent is less than 1% of the total.

We will study the exact form of an isolated scatterer that gives the best �t to the

measured scattering in more detail in the spatial domain, in the next section, and we

note there that the excellent �t to the sum of a sech and Guinier-Porod is also present

even in the highly sensitive chordal representation.

However we have Monte-Carlo calculated f g�G(r) data for a range of models with in�nite
arrays of cylidrical pores on square and hexagonal lattices and of spherical pores on

cubic and hexagonal close packed lattices, both with uniform pores and lattices, and
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I(Q) for C500 Unilever B SiO2, Sech + Guinier–Porod.
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Scattering I(Q) from C500 Unilever B sol–gel silica
as measured ai ILL on D22: 12Å neutrons, detector
 @ 1.43m (offset), 5m & 18m. (High q only.)

Combined fitted scattering.

Scattering fit components :
 Function      Amplitude   Q0         Dsph 
            {w.r.t. H2O} {radianszÅ¯¹}    {Å}
  Sech        2200       6.7m        472
  Guinier–Porod  18       40m         158

 C500 Unilever B gas adsorption D = 453Å.

Figure 104:
Scattering from C500 Unilever B SiO2, with Sech + Guinier-Porod �ts to the high q
data.

I(Q) for C200 Unilever B SiO2 + fitted scattering.
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Scattering I(Q) from C200 Unilever B sol–gel silica
as measured ai ILL on D22: 12Å neutrons, 
detector @ 1.43m (offset), 5m & 18m.

Combined fitted scattering.

Scattering fit components :
 Function      Amplitude   Q0           Dsph 
            {w.r.t. H2O } {radianszÅ¯¹}    {Å}
  Guinier       130k      0.8m         5600
  Guinier–Porod  4.5k      1.4m         3200
  Sech          94      17.3m         183
  Guinier–Porod   2.8     81m           55

 C200 Unilever B gas adsorption D = 171.5 Å

Figure 105:
Scattering from C200 Unilever B SiO2, with Guinier + Guinier-Porod �ts to the low q
data and Sech + Guinier-Porod �ts to the high q data.
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with variance of pore diameter and lattice spacing (see chapter 15).

We see in chapter 12.2 that we may use a Fourier transform to convert r�
(r) data

to q�I(q) data, Thus if we transform the data for touching spheres on hexagonal close

packed lattices for various variances to I(q), (see appendix P.2), and just linearly scale

the vertical axis to match the measured intensity, and transform from a lattice spacing

normalised to unity to one measured in angstroms we obtain �gures 106, 107, 108, 109,

where the Monte-Carlo calculated scattering is compared with the measured scattering

for the seven sol-gel silicas.

Our only parameters for these �ts are (arbitrary) amplitude, pore diameter Dvoid=

lattice spacing a, and variance �.

We see that we can match to a reasonable precision over many decades of intensity

and q the observed scattering, reproducing the position of the higher q 'knee' and its

abruptness and the sudden transition to a q�4 region (though not its exact position);

most signi�cantly we see a second structure at low q , in spite of the fact that we are

constructing our lattices with structure on only one length scale.

The limitation of these �ts are that our model uses an HCP lattice with variance,

not a truly random one, and the plotted data are all for the case of touching spheres,

whereas we know from density measurements that for the smaller pore diameter silicas

in particular Dvoid < a . We do have Monte-Carlo data for such cases, but it has not

yet been calculated at all the required values of variance � to do so would clearly be a

useful advance.

The low q structure is clearly poorly resolved, even though the Monte-Carlo simulations

were extended from a range of 0 to 7.5 lattice spacings out to 21 lattice spacings in an

attempt to improve the resolution in this region. (Further extensions gave too degraded

a signal-to-noise ratio, without extending each simulation time signi�cantly beyond 10

days, on a 200MHz Pentium.) This long range structure could be clearly seen in r�G(r)
plots, and is shown in the spatial domain in �gure 115.
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I(Q) for C500 Unilever B SiO2 
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 590Å, Variance = 0.18,
for 0 q 7.5 lattice spacings.
Diameter = 590Å, Variance = 0.18,
for 0 q 21 lattice spacings.
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I(Q) for C200 Unilever B SiO2 
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.
1.85% water removed.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 225Å, Variance = 0.16,
for 0 q 7.5 lattice spacings.
Diameter = 225Å, Variance = 0.16,
for 0 q 21 lattice spacings.

Figure 106:
I(q) for C500, C200 Unilever B SiO2 compared with calculated scattering from spherical
voids on an HCP lattice with Gaussian variance of pore diameter Dpore and lattice
spacing a.
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I(Q) for 100Å SiO2 (Merck)
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.
2.9% water removed.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 200Å, Variance = 0.14,
for 0 q 21 lattice spacings.
Diameter = 200Å, Variance = 0.12,
for 0 q 21 lattice spacings.
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I(Q) for C60 Unilever B SiO2 
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.
3.4% water removed.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 100Å, Variance = 0.14,
for 0 q 21 lattice spacings.

Figure 107:
I(q) for 100�A Merck, C60 Unilever B SiO2 compared with calculated scattering from
spherical voids on an HCP lattice with Gaussian variance of pore diameter Dpore and
lattice spacing a.
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I(Q) for 60Å SiO2 (Merck)
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.
2.8% water removed.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 123Å, Variance = 0.12,
for 0 q 7.5 lattice spacings.
Diameter = 123Å, Variance = 0.12,
for 0 q 21 lattice spacings.
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I(Q) for 40Å SiO2 (Merck)
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.
3.9% water removed.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 103Å, Variance = 0.14,
for 0 q 21 lattice spacings.
Diameter = 103Å, Variance = 0.12,
for 0 q 21 lattice spacings.

Figure 108:
I(q) for 60�A, 40�A Merck SiO2 compared with calculated scattering from spherical voids
on an HCP lattice with Gaussian variance of pore diameter Dpore and lattice spacing
a.
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I(Q) for 25Å SiO2 (Sigma)
as measured at ILL on D22;
12Å neutrons, detector @
1.43m (offset), 5m & 18m.

I(Q) for touching spherical voids
from Monte–Carlo G(r) integration
on randomised HCP lattice, with :
Diameter = 90Å, Variance = 0.14,
for 0 q 7.5 lattice spacings.
Diameter = 90Å, Variance = 0.14,
for 0 q 21 lattice spacings.

Figure 109:
I(q) for 25�A Sigma SiO2 compared with calculated scattering from spherical voids on
an HCP lattice with Gaussian variance of pore diameter Dpore and lattice spacing a.

16.2 Analysis of silica scattering in the spatial domain.

We see in chapter 12.2 that we may use a Fourier transform to convert q�I(q) data to

r�
(r) data, and in appendix P.1 we summarise the steps necessary to successfully use

a Fast Fourier Transform to obtain 
(r) data.

If we perform such transformations on our measured I(q) data for the seven sol-gel silicas,

and examine, for example, the resulting 
0(r) for C200 Unilever SiO2 at small radius,

�gure 110, and plot the calculated 
0(r) for a solid sphere of the same diameter (171.5�A)

as the C200 B pore diameter as measured by gas adsorption and NMR cryoporometry,

we see a very poor �t in both scaling and shape. Babinet's theorem tells us that for

an isolated pore in a uniform medium we would expect the same scattering as from an

isolated solid sphere of the same diameter, as we are not sensitive to phase.

However we do not have an isolated spherical void, we have an array of them, with

phase relations between them.
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γ0(r) for C200 Unilever B SiO2 
NMR + gas adsorption D = 171.5 Å

γ0(r) for a 171.5Å diameter sphere.

γ0(r) for an infinite slab,
 thickness t = 25Å.

γ0(r) for an finite circular slab,
 thickness t = 32Å.
 diameter Dslab = 5Zt .

Figure 110:

0(r) for C200 Unilever B SiO2 compared with 
0(r) for a matching sphere, an in�nite
plane slab and a �nite circular slab.

16.2.1 Comparison of G(r) for sol-gel silicas with that for slabs.

Further consideration of �gure 110 suggests the following interpretation : G(r) is mea-

sured with respect to points that exists, i.e. that are in the solid. Therefore at zero

radius we are de�nitely in a pore wall, and the density is �s; as we go to larger r there

is a higher chance we will be in pore void, and the density will fall (perhaps with oscil-

lations); eventually at large enough r the G(r) will be the average grain density �g.

We note that at locations very close to the pore wall on a short enough scale the geometry

will appear 
at, curvature only becoming apparent at radii a signi�cant fraction of

the pore diameter. Thus we initially plot the scattering from an in�nite 
at plate of

thickness t , as deduced in appendix L. The 
0(r) for an in�nite plane is linear for r�
t and tends to zero for r > t with an inverse r characteristic; we now see that we have

gone from a structure that decays too abruptly (in the case of a sphere), to one that

decays too slowly.

Thus we calculate using Monte-Carlo integration 
0(r) for a �nite circular slab of thick-

ness t , diameter Dslab = 5� t. We see that for t = 32�A, Dslab = 160�A, we obtain a
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reasonable �t for such a simple model (see chapter 15.6), where we also note that the


0(r) for a �nite cylinder is less appropriate to that measured for the sol-gel silicas.

We wish to model a function that goes from the (voidless) silica density �s at r = 0 to

�g at large r . Thus we may embed our �nite slab in a uniform medium of density �g.

We thus have a four parameter model describing (�s��g)�
0(r) + �g, dependent on the

voidless silica density �s, the grain density �g, (both measurable macroscopically, see

chapter 11.5.2), the thickness t of the slab, and its diameter to thickness ratio ".

We note that for " = 5 we may deduce this characteristic wall thickness t from the

initial slope of 
0(r) , such that from the Monte-Carlo results we have t = �0:6553
Slope . If we

perform this process on all silicas, we �nd pore wall thicknesses t as given in table 19.

This model should not be taken literally to suggest that we have 
at slabs of these

dimensions in our silica, merely that the silica walls and nodes left between the spherical

voids may on a small enough scale be regarded as approximately 
at surfaced slabs,

and on a larger scale have an extended structure rather than a compact globular one.

Thus we see that the initial linear region for 
0(r) for a 
at slab transforms to the q�4

scattering behaviour at high q characteristic of smooth surfaces (see chapter 12 and

appendix M).

The pore walls are not represented very well by a slab of constant thickness; we have

presumably tapering walls between adjacent spheres. Further we know that we have a

distribution of pore diameters, and thus presumably have a distribution of wall thick-

nesses and node sizes. Some initial work has been done to model these, but is not

included here.

16.2.2 Conversion to density units.

We have seen that Fourier transformation of measured scattering I(q) may be used to

give us 
(r) (going to zero at large r), and we may normalise this to give us 
0(r); in

chapter 11.5 we have measured values for �s (density of the voidless silica lattice) and

�g (density of the silica grain = �s�f g). We may thus re-scale the 
0(r) data to density

units using G�(r) = (�s��g)�
0(r) + �g, such that at r = 0 the density is the (voidless)

silica density �s, and at r = 1 the density is the grain density �1 = �g = fg��s.
We plot the resulting density scaled solid-solid density correlation function G�(r) for

the seven sol-gel silicas in �gures 113, 114. We will often just use the symbol G(r) to

represent both this function and the Monte-Carlo case with �s normalised to unity.
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16.2.3 Chordal representation.

In chapter 12.9 we consider chordal analysis in the radial domain; this o�ers much

greater resolution than the averaged convoluted G(r) representation, and is probably

the right approach for any further work regarding modelling the observed scattering

from arrays of pores in terms of the scattering from isolated structures.

In �gure 111 we plot chordal representations of the Fast Fourier Transformed and nu-

merically di�erentiated I(q) data for C500 Unilever B silica (residual truncation ripple

can be seen, inspite of the extended Fourier transform used), and analytically trans-

formed and di�erentiated data for the Sech + Guinier-Porod approximation (see �gure

104 and appendices R, M).
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Figure 111:
Chordal L(r) for C500 Unilever B SiO2 by Fast Fourier Transformation and by analytic
transformation of the Sech + Guinier-Porod approximations.

We note that we do indeed appear to have a dual function as suggested by the latter

approximation, and that the short range one indeed appears to be exponential, as we

would expect for the second di�erential of the exponential 
0(r) of the Guinier-Porod

function (see appendix M). However we now have the resolution to see the deviation

between the measured data and the transform of the empirical sech function.



CHAPTER 16. ANALYSIS OF SOL-GEL SILICA SCATTERING IN Q, R DOMAINS. 207

16.2.4 Comparison with G(r) data from Monte-Carlo calculations.

In chapter 15 we generate models of porous structure, and use Monte-Carlo integration

to calculate their G(r) curves (with �s and lattice spacing a normalised to 1).

Plotting G(r) for C200 Unilever B against the Monte-Carlo calculated G(r) for touching

spherical voids on an HCP lattice, with a 0.18 Gaussian variance in pore diameter Dvoid

and lattice spacing asHcp, and setting G(0) = �s, (�gure 112), we see an excellent �t

at small radius for a scaling of 220�A pore diameter. At larger radius we see that the

average density is 8.5% too high in the simulated G(r) � we take this to imply that

the real pores are intersecting (giving us permeability), and in table 16 we deduce that

for C200 Unilever B silica for HCP and random lattices that Dvoid = 1.01�asHcp =

1.07�asr .
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G(r) for C200 Unilever B SiO2 
at short radius, transformed
from pore I(q), as measured by
neutron scattering on ILL D22,D4.
Normalised to silica density and grain
filling factor, as determined by density
and imbibation measurements.

Pore diameter 171.5Å as measured by
gas adsorption and NMR cryoporometry.

G(r) for 171.5Å diameter sphere.

G(r) by Monte–Carlo for 220Å touching
spherical voids on an HCP lattice,
with Gaussian variance of 0.18.

G(r) as above with density ρg adjusted.

Figure 112:
Comparison of G(r) for C200 Unilever B SiO2 compared with Monte-Carlo calculation
of G(r) for 220�A diameter touching spherical voids on an HCP lattice, with Gaussian
variance of 0.18.

In �gure 112 we also make the appropriate correction to the large r density, to obtain

an improved �t, which looks excellent. However such a density reduction also implies a

thinner wall between the pores (in terms of the above description); this is only of the
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order of a percent or two for C200 silica, however strictly the MC calculation should be

repeated with the macroscopically measured Dvoid/a ratio (chapter 11.5.2), unless we

can perhaps do a linearised interpolation.

Thus we interpret this �t as implying that for our model of touching spherical voids on

an HCP lattice, for a 220�A scaling of Dvoid = a, we obtain a similar G(r) function for

the inter-pore walls as for the real C200 silica, whose pore diameter as measured by gas

adsorption and NMR cryoporometry is 171.5�A and for which Dvoid 6= a.

There is clearly an urgent need to be able to calculate G(r) for a truly random lattice.

We also note that we have made no allowance for the throats between pores, in our MC

calculation; this will tend to bias the MC best �t to larger pore sizes, as the sub 5�A

thick silica will be missing from the real porous structure (see chapter 11.5.3).

In �gure 113, we plot the grain density corrected Monte-Carlo calculated G(r)s for

spherical voids on HCP lattices against the measured G(r)s for seven sol-gel silicas, for

appropriate variances of void size and lattice spacing. We see quite remarkably good

�ts.

In chapter 17 we use Monte-Carlo calculations to derive pore-size corrections for Dvoid

6= a and interpolate between cubic and HCP lattices to obtain values appropriate to

random lattices.

16.2.5 G(r) data, Monte-Carlo G(r) at large radius.

If we examine the measured I(q) scattering data for the sol-gel silicas, and compare it

with �tted curves (�gure 105), we see that we appear to need structure on at least two

scales to explain the measured scattering.

However if we compare the measured scattering with the calculated I(q) curves for the

Monte-Carlo simulations of spherical voids on an HCP lattice with Gaussian variation

of pore diameter and lattice spacing (�gures 106, 107, 108, 109), we see that we also

seem to �nd structure on two scales, even though we are constructing our simulated

porous media with regular arrays of pores with similar pore diameters. We see in the

previous sections that we may identify the large q small r region with the structure of

the pore walls.

In �gure 114 we plot the large r behaviour of G(r) for seven sol-gel silicas, and �nd

that it is well described by a spherical region of density a few percent above the average

grain density f g, of diameter about 0.4�m.
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Measured G(r)s for sol–gel silicas,
at short radius, transformed
from pore I(q), as measured by
neutron scattering on ILL D22,D4,
compared with :

G(r) by Monte–Carlo for touching
spherical voids on an HCP lattice,
with Gaussian variance of DpMC, a,
with adjusted grain densities ρg.

 Silica   Dpore     DpMC   Variance
  25Å   25Å      87Å    0.14
  40Å   40Å     102Å    0.14
  60Å   60Å     120Å    0.16
  C60   46.3Å    98Å    0.14
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Measured G(r)s for sol–gel silicas,
at short radius, transformed
from pore I(q), as measured by
neutron scattering on ILL D22,D4,
compared with :

G(r) by Monte–Carlo for touching
spherical voids on an HCP lattice,
with Gaussian variance of DpMC, a,
with adjusted grain densities ρg.

  Silica   Dpore     DpMC   Variance
  100Å   100Å     201Å    0.12
  C200   171.5Å   220Å    0.18
  C500   453Å     620Å    0.18

Figure 113:
G(r) for C500 Unilever B, C200 Unilever B, 100�A Merck, C60 Unilever B, 60�A Merck,
40�AMerck, 25�A Sigma, SiO2 of nominal pore diametersDpore, at small radius, compared
with Monte-Carlo calculation of G(r) for touching spherical voids of diameter DpMC =
lattice spacing a, on an HCP lattice, with Gaussian variance of DpMC, a, with average
density adjusted to match measured grain densities �g.
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G(r) for C500, C200, 100Å  SiO2 
as Fourier transformed from S(q)
measured on D22, water subtracted
as measured on D4, normalised to
silica density and grain filling
factor, as determined by density
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G(r) for spheres of diameter DL 
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  Silica      DL       ρL      ρg 
  C500    4100Å    0.498   0.472
  C200    4600Å    0.466   0.448
  100Å    4300Å    0.717   0.703
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as Fourier transformed from S(q)
measured on D22, water subtracted
as measured on D4, normalised to
silica density and grain filling
factor, as determined by density
and imbibation measurements.

G(r) for spheres of diameter DL 
and density ρL embedded in a
medium of average (grain) density ρg.

  Silica      DL       ρL      ρg 
   C60    4100Å    0.844   0.816
   60Å    4300Å    0.850   0.838
   40Å    4100Å    0.925   0.911
   25Å    3900Å    1.215   1.192

Figure 114:
G(r) for C500 Unilever B, C200 Unilever B, 100�A Merck, C60 Unilever B, 60�A Merck,
40�A Merck, 25�A Sigma, SiO2, at large radius, compared with G(r) for spheres of density
�L embedded in measured grain densities �g.
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We have two possibilities. One is that we are observing an increased density that relates

to the 2.2�m spherical structures observed in �gure 61 (and have a scaling error). The

other is that we are seeing a perturbation in the average grain density f g caused by the

porous structure itself, and its packing geometry. Evidence for the latter hypothesis

is provided by �gure 115 where we see the large r structure of the simulated porous

media, and �gures 106, 107, 108, 109, where we may compare the small q Monte-Carlo

calculated scattering with the measured scattering for the seven sol-gel silicas. Although

the �t is very poor, that is not surprising, given that we are simulating a random packing

of pores with an ensemble of Hexagonal Close Packed lattices. The essential point is

that we �nd that structure on two length scales is inherent in such a porous medium,

and do not need to introduce an independent large scale structure or porosity.

There was clearly an interest in checking the scaling of the scanning electron microscope,

and imaging other silicas, but it was then out of action for some months, and still is at

the time of writing.
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G(r) for C200 Unilever B SiO2, Monte–Carlo, large radius.
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G(r) for C200 Unilever B SiO2 
as Fourier transformed from S(q)
measured on D22, water subtracted
as measured on D4, normalised to
silica density and grain filling
factor, as determined by density
and imbibation measurements.

G(r) by Monte–Carlo for 215Å touching
spherical voids on an HCP lattice,
with Gaussian deviation of 0.16,
with average density matched to C200.

Figure 115:
G(r) for C200 Unilever B SiO2 at large radius, compared with Monte-Carlo G(r) for
spherical voids on an HCP lattice, with Gaussian variation of pore diameter Dpore and
lattice spacing a.
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Chapter 17

Calibration of sol-gel silica pore

diameter using neutron scattering

data and Monte-Carlo G(r)

integration of model porous

structures.

We have seen that we may with reasonable precision model the shape of the density

correlation function G(r) measured by neutron scattering. We wish to deduce the

correct calibration functions required to obtain the pore diameter of the scattering

pores from the measured scattering, as a function of the ratio of pore diameter to

lattice spacing, and of the pore and lattice variance.

We will see that, in spite of the fact that we are modelling our pores as spheres, we

may not use the expected scaling for an isolated sphere, due to the e�ect of having

many spheres on a lattice. Thus we use calculated scalings derived from Monte-Carlo

solid-solid density correlation integrations of in�nite arrays of porous structures.

We use the measured neutron scattering data, the results of density and imbibation

measurements, and volumetric information derived from NMR cryoporometry to

obtain the correct parameters for our real sol-gel silicas with which to access the

Monte-Carlo calculated results and deduce pore diameters.

213
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17.1 Scattering void form factors and lattice structure fac-

tors.

To deduce the pore diameter corresponding to an I(q) measured by neutron scattering

we note that, since we can not measure the phase of the scattered wave, we would expect

Babinet's theorem to apply [Francon, 1966] (see chapter 12.8).

Babinet's theorem implies that the scattering from an isolated solid sphere would be

the same as that from an isolated spherical void in an in�nite solid. We �nd however

that we have to be careful in extending this interchangeability to porous media, and

not assume that a collection of spherical voids will scatter in a similar manner to an

isolated sphere, as we have phase relationships between the di�erent pores.

When one has many identical scattering objects spatially distributed, one has for the

scattering

I(q) = P (q�R)�S(q)

where P(q�R) is the form factor or normalised scattering for a single isolated particle of

radius R , and S(q) is the structure factor for their spatial distribution.

We may note two problems with applying this relationship to porous media, both stem-

ming from the fact that if one has more than one pore size or shape, the above equation

gains more terms. The �rst is that we have not one size, but a Gaussian distribution of

radii R; the other is that when the voids intersect (by varying amounts) we must treat

them not as spheres but as facetted spheres, to avoid multiply counting void volume.

However we start by noting that the scattering from an isolated sphere of radius Rs is

given by I(q) = P (q�Rs) = j�(q�Rs)j2 where [Feigin and Svergun, 1987, p14] :

�(q�Rs) = 3�sin(q�Rs)�q�Rs�cos(q�Rs)
q3�Rs

3

and the corresponding normalised 
0(r) is given by [Feigin and Svergun, 1987, p42],

[Steytler et al., 1983a], see appendix K :


0(r) = 1�3
4
� r
Rs

+
1

16
�
�
r

Rs

�
3
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17.2 Characterisation by radius of d(r) maximum.

Thus we �nd that for such a sphere, that if we di�erentiate d(r) = r2�
0(r) and solve

equal to 0, d(r) has a maximum at just over 1�Rs, at (
p
3
p
7p

5 �1)�Rs � 1:043939Rs .

Comparing the measured 
0(r) for Unilever C200 porous sol-gel silica, with the calcu-

lated 
0(r) for the nominal pore diameter (�gure 110) we see there is a great di�erence

in both the shape and radius scale.

In an attempt to understand this we calculate 
0(r) using Monte-Carlo integration

(see chapter 15) for a number of model porous silicas (see chapter 11.3), both with

uniform pore diameter and lattice spacing, and with variance of pore diameter and

lattice spacing.

We �nd that the calculated 
0(r) for spherical voids on regular Hexagonal-Close-Packed

lattices with a variance of the pore diameter and lattice spacing �t the measured data

well (see �gures 112, 113, 116).

However we see in �gure 116 that for touching spherical voids of radiusRs, the maximum

in d(r) is at a radius of less than half that for an isolated sphere of the same radius.

300200100
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0.5

γ0(r), d(r) for C200 Unilever B, MC Spheres on HCP lattice, Sphere.

Radius {Å}

γ 0
(r

),
 n

or
m

al
is

ed
 d

(r
) 

γ0(r) for C200 Unilever B SiO2 
at short radius, transformed
from pore I(q), as measured by
neutron scattering on ILL D22,D4.

Pore diameter 171.5Å as measured by
gas adsorption and NMR cryoporometry.

γ0(r) for touching 220Å diameter spheres
on HCP lattice with variance 0.18;
Monte–Carlo γ(r) with gg removed.

γ0(r) for 220Å diameter isolated sphere.

d(r) for C200 Unilever B SiO2,
   d(r)max @ 53.3Å.

d(r) for 220Å diameter isolated sphere,
   d(r)max @ 115.5Å.

Figure 116:
Showing the good agreement for measured and Monte-Carlo 
0(r), but the di�erence
between these and 
0(r) for a matching isolated sphere. d(r) = r2�
0(r) is also plotted.
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Thus we are led to consider those structures in the models that are smaller than the

spherical voids that they are constructed from, such as the silica walls between the pores

and the silica 'nodes' that reside at the geometric centres of the lattice structure formed

by the centres of the spheres.

17.3 Radius of d(r) maximum: variation with D/a for var-

ious lattices.

If we consider a structure composed of touching spheres (solid or void) on a regular

lattice (i.e. Hexagonal-Close-Packed, or Cubic), and then allow the spheres to vary in

size (while keeping the sphere centres �xed on the original lattice) we see that for very

small spheres separated by a large amount of space we would expect the scattering I(q)

(and hence 
0(r)) to be well characterised by the I(q), 
0(r) of an isolated sphere of

the same size at small r , and by the I(q), 
0(r) of the lattice at large r , and that as

the diameter increased from 0, so the position of the maximum in the d(r) due to the

sphere would increase linearly with Rs.

If however we allow the sphere size to increase until there is only a small amount of

silica 'node' left, we would expect the scattering to be characterised by the scattering

of an individual node (and the lattice). Thus the maximum in d(r) would would occur

at decreasing r as the sphere diameter was increased and the node size reduced.

If we characterise the lattice by the parameter � = distance from the geometric centre

of the lattice to the centre of the spheres on the lattice, we see that for the nodes the

e�ective 'radius' Rse is ��a2 for Ds
a = 0 , ��a2�Rs for Ds

a = 1 , and 0 for Ds
a = � .

Thus in this region we might expect the e�ective spherical radius Rse to vary as

Rse = ��a
2
� Rs

and hence

dMax(r) = (

p
3
p
7p

5
�1)�Rse = (

p
3
p
7p

5
�1)�(��2�Rs

a
)�a
2

In appendix H we calculate the size of the sphere that is just enclosed by a tetragon of

equal sized touching spheres, thus we conclude that for an HCP lattice �HPC =
p
3p
2

and a simple 3D application of Pythagoras' theorem shows that for a cubic lattice

�cubic =
p
3.
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In section 11.3.3 we have relationships for the silica �lling fraction f , such that we may

deduce that

1�f =
��k
6
�Ds

3

a3

where :

lattice : HCP Random Cubic

k :
p
2 6�0:6366

� 1

such that for Ds
a = 1, we may write :

� =

p
3

k
=

�

6
� 1

1�f

Hence we may deduce � for a random lattice, where we do not have a �xed geometry,

but we do have a known average �lling factor of 0.6366 for touching equal sized solid

spheres in random packing [Finney, 1970] : where :

lattice : HCP Random Cubic

� :
p
3p
2

��p3
6�0:6366

p
3

Thus we plot the expected variation for small Ds
a and for the three cases for large Ds

a

in �gure 117.

In practice the 'nodes' are not spherical, thus we would expect there to be a scaling

applied to the position of the maximum, and we note that the walls directly between

adjacent pores will in e�ect have a di�erent scaling from that calculated for the 'nodes'.

Calculating 
0(r) by Monte-Carlo integration for model porous structures of spherical

voids with a range of diameters Ds to lattice spacing a, we obtain �gure 118.

We see that we do observe an direct increase with Ds
a at small Ds

a but that at large Ds
a

we see a decrease as predicted.

The behaviour is not precisely as expected from the above simple model, in that the

slope at large Ds
a is not as negative as predicted. We may obtain a similar slope by

averaging a proportion of the inverse function with a proportion of the direct function.
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From lattice geometry :
    βHCP = √3/√2
    βrandom = √3π/(6Z0.6366)
    βcubic = √3

For spherical voids on three lattices,
we alter the ratio of the void diameter D 
to the lattice spacing a and plot the
radius of the maximum in d(r) = r²zG(r).

If the G(r) was characterised by the G(r) 
of an isolated spherical void we would
expect to see the position of the maximum
in d(r) increase proportional to D/a:

 dMax(D/a) = (√3√7/√5 – 1)z(D/a)z(a/2).

If the G(r) was characterised by that of a
solid sphere that just fitted between the
spherical voids, then the position of the
maximum in d(r) would vary proportional to
 dMax(D/a) = (√3√7/√5 – 1)z(β – D/a)z(a/2) 
(i.e. with a negative slope).

We plot this for three lattice structures.

Figure 117:

Theoretical variation of dMax

�
Ds
a

�
at small Ds

a , and at large Ds
a for three lattice struc-

tures.

Thus empirically we write for the behaviour at large Ds
a for HCP and cubic lattices :

rse =
1

2
�
�
��(��2�Rs

a
) + (1��

2
)�2�Rs

a

�
�a
2

where the � is indeed that calculated geometrically

Since � has di�erent values for the two lattices, we wish to express � for the lattices

in terms of our lattice dependent �; we have only two points to de�ne the relationship

� however we reject a simple linear relationship as unphysical, as it crosses the axes.

Plotting the best �t values of � against �, we see that the HCP point lies on the inverse

quadratic
p
2/�2, and the cubic point close to it. We note that �HCP

�cubic
� 1 +

p
2 within

the Monte-Carlo scatter. Thus we �nd as one possible relationship :

� =

p
2

�2
� 2

1 +
p
2p
3 ��

This allows us to deduce a value for � for the random lattice case. (This does not di�er

greatly from that for a simple linear relationship.) Thus we obtain the coe�cients :
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HCP Random Cubic

� :
p
3p
2

p
3�

6�0:6366

p
3

= 1.2247 = 1.4246 = 1.73205

� : 2
3 �
p
2 29:179�p2

�2�
�
1+

�
p
2

3:8196

� 2
3 �

p
2

1+
p
2

= 0.94281 = 0.64427 = 0.39052

Table 20: Coe�cients to obtain dMax

�
D
a

�
for HCP, random and cubic lattices.

We have something of a paradox, in that Babinet's theorem would lead us to believe

both the above descriptions of the variation of G(r) with Ds
a are equally valid, yet the

above argument and Monte-Carlo integration lead us to believe that each is more valid

in a particular region. We wish to merge the description for small Ds
a with that for large

Ds
a .

We now meet a further paradox, which is not fully resolved. The above descriptions are

in terms of the normalised 
0(r) curves; to obtain their scaled sums, we would expect

to use


(r) = 
1(r) + 
2(2) = 
01(r)��2�V1 + 
02(r)��2�V2

We see that this has precisely the opposite of the e�ect that we want according to the

above argument, selecting the inverse variation with Ds
a at small Ds

a and selecting the

direct variation with Ds
a at large Ds

a .

Thus we actually choose to weight according to


(r) / 
01(r)

V1
+

02(r)

V2

and calculate the position of the maximum in the combined d(r). The resultant curves

are plotted in �gure 118; we see that the limiting values are well �tted, but that the

above algorithm for combining the descriptions overestimates the radius for Ds
a � 0:5.

It thus only models the actual process very poorly, and should be used with caution

until a model is found that encodes the physics more correctly.

The important feature of the above analysis is that we now have an estimate for the

expected value of the radius for the maximum in d(r), for spherical voids on a random

lattice in terms of an interpolation between the limiting cases of HCP and cubic lattices,

based on an equation with a single parameter � that we derive from the geometry of the
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Random: dMax(D/a) = 0.2866 – 0.01893zD/a

From lattice geometry :
 Cubic lattice : β = √3
 Random lattice: β = √3π/(6Z0.64)
 HCP lattice:   β = √3/√2

For Monte–Carlo calculations of G(r) 
for spherical voids on various lattices,
we alter the ratio of the void diameter D 
to the lattice spacing a and plot the
radius of the maximum in d(r) = r²zG(r).

If the G(r) was characterised by the G(r) 
of an isolated spherical void we would
expect to see the position of the maximum
in d(r) increase proportional to Rs :
 dMax(Rs) = (√105/5 – 1)zRs.

If the G(r) was characterised by that of a
solid sphere radius Rse that just fitted
between spherical voids on a lattice of
lattice spacing a, then the position of the
maximum in d(r) would vary proportional to
 dMax(Ds/a) = 1/2z(√105/5 – 1)z(β – Ds/a) 
(i.e. with a negative slope).

We note empirically that we obtain a
reasonable fit at large D/a with :
Rse = 1/2z[αz(β–2Rs/a)+(1–α/2)z2Rs/a]za/2 
where for agreement with the Monte–Carlo
models, we write: α = 2√2/(β²z(1+β√2/√3)).

We combine these models by weighting each
G(r) by 1/V, averaging the two, and
finding the position of the peak in d(r).

This gives us our first approximation for
obtaining pore sizes from measured NS data.

Figure 118:
Monte-Carlo variation of dMax

Ds
a at small Ds

a , and at large Ds
a for three lattice struc-

tures.

lattice. We also have an estimate of how it varies with Ds
a - i.e. with the silica �lling

factor of the porous grain, which we measure in section 11.5.2.

Thus we now have a �rst approximation for deducing pore diameters from measured

neutron scattering intensity curves.

17.4 Applying measured silica parameters to Monte-Carlo

calculations.

We have just seen how we may use Monte-Carlo calculations to determine dMax

�
Ds
a

�
,

the expected value of the radius for the maximum in d(r), for spherical voids on a

random lattice as a function of Ds
a (�gure 118). We see that for practical values of Ds

a

(0.8 ! 1.1), we may approximate the variation as a linear one, giving us the �rst order

polynomial

dMax

a

�
Ds

a

�
= }dMaxRan

�
Ds

a

�
= 0:2866 + 0:01893�Ds

a
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In chapter 11.3.3 we consider models of spherical voids, and deduce a polynomial rela-

tionship (valid for both non-intersecting and intersecting pores) between the silica �lling

fraction f sr for random lattices and Ds
asr

, such that we obtain

asr
Ds

= }asr=Ds(fsr) = 0:694 + 1:81f sr�5:367f sr2 + 10:558f sr
3

�10:162f sr4 + 4:605f sr
5

In chapter 11.5.2 we imbibe liquids into the porous silica, and measure the dry and

wet densities. We use NMR cryoporometry volumetric measurements to di�erentiate

between liquid inside the pore and liquid around the grain, and hence measure the grain

silica �lling fraction f g. If we believe that our model of spheres on a random lattice is

representative of our sol-gel silica, we may equate

fg = fsr; a = asr; Dv = Ds;

Thus we may now write expressions for our sol-gel silica, giving us �rst approximations

for lattice spacing a f�Ag and pore void diameter Dv f�Ag, in terms of dMaxNS f�Ag
as measured by neutron scattering, lattice spacing normalised dMaxRan as calculated

by Monte-Carlo integration for random lattices and f g as measured by imbibation and

NMR cryoporometry volumetric measurements :

a

Dv
� }asr=Ds(fg)

dMaxRan

�
Dv

a

�
� }dMaxRan

�
Dv

a

�
a � dMaxNS

dMaxRan

�
Dv
a

�
Dv =

Dv

a
�a =

dMaxNS

}dMaxRan

 
1

}asr=Ds(fg)

!
�}asr=Ds(fg)

17.5 Neutron scattering pore diameter variance.

Examining the Monte-Carlo results we also �nd that dMax varies slightly with the

variance of the pore diameter and lattice spacing used in the calculation; this may

partly be an artifact of the peak measurement, but it may be a real e�ect caused by the

width of the Gaussians being a signi�cant fraction of their mean; either way we should
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correct for it.

Thus strictly we should replace dMaxRan in the above by dMaxRan

�
Dv
a ; V ar

�
This two dimensional function has not as yet been fully characterised using modelling,

however for HCP lattices the dependence with variance is shown for the case of Dv = a

in �gure 119, and is encoded into the cubic polynomial

dMaxHcp(V ar) = }drsHcpMax = 0:2034 + 0:3489�V ar�1:688�V ar2 + 8:031�V ar3

Thus we need to determine the variance in the real sol-gel silicas. It was noticed that

as the variance was increased in the Monte-Carlo calculations, so the maximum in d(r)

became increasingly asymmetric, such that the slope on the large r side could be related

to the variance. This relationship is shown in �gure 120, and is encoded into the cubic

polynomial :

Slope(V ar) = }drsHcp = �2:05305 + 2:57192�V ar + 53:9955�V ar2�113:385�V ar3

such that we may numerically revert this to obtain a quadratic polynomial that allows

us to determine the variance :

V ar(Slope) = }drsHcpR = 0:212919 + 0:0517297�Slope�0:0236704�Slope2

Using this procedure we may thus obtain from the measured neutron scattering the

variances for the real sol-gel silicas as listed in table 21. We note that the assumption

here is that the lattice spacing and pore diameter variances are the same. Thus we may

contrast these �gures with the value of 0.045 for the pore diameter variance of 100�A

Merck silica, as measured by NMR cryoporometry (see �gure 96).

We see that the three Unilever silicas have similar variances of 0.195, 0.195, 0.198;

that the three Merck silicas have the lowest variance, with a slightly wider spread of

0.166, 0.171, 0.178; and that the Sigma silica has the highest variance of 0.201. Thus

we conclude that this suggests that the lattice spacing variance is larger than the pore

diameter variance.
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in d(r) as a function of Gaussian
variance in pore diameter D 
and lattice spacing a, with
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Figure 119:
Position of maximum in d(r), as a function of Gaussian variance, for spherical pores on
an HCP lattice, as determined by Monte-Carlo integration.
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Figure 120:
Relationship between high r slope of d(r) peak and Gaussian variance of pore diameter
Ds, for spherical pores on an HCP lattice, as determined by Monte-Carlo integration.
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17.6 Neutron scattering pore diameter results.

From Monte-Carlo integration of our model porous structures we now know

dMaxHcp

�
0:2�Dv

a
�1:2; V ar = 0

�
; dMaxHcp

�
Dv

a
= 1; 0�V ar�0:2

�
:

We particularly wish to know this function for random lattices for the range of Dv
a and

variance revealed by applying the above procedures to the real sol-gel silicas, i.e. for :

dMaxRan

�
0:86�Dv

a
�1:07; 0:16�V ar�0:2

�
To do this one should evaluate dMaxMC for HCP and Cubic lattices for this 2D set of

parameters, and interpolate as a function of � as before, to obtain the function for a

random lattice.

This has not yet been fully evaluated. However evaluating dMaxHcp

�
Dv
a = 0:86; V ar = 0:2

�
gives us su�cient additional information to generate an algebraic and linear polynomial

approximation of the form

dMaxHcp

�
Dv

a
; V ar

�
= }dMaxRan

�
Dv

a

�
�
�
1 +

�
}V arDva

�
Dv

a

��
�V ar

�
= RHcp��

�
Dv

a
; V ar

�
If we now make the assumption that the � term will perform the same relative scaling

correction in the random lattice case, we may write

dMaxRan

�
Dv

a
; V ar

�
= RRan��

�
Dv

a
; V ar

�
= Rcor

We thus slightly modify our previous calculation to obtain table 21. If we plot the

calculated pore diameters for the seven sol-gel silicas, against the nominal gas adsorption

diameters we obtain �gure 121.

We see there is a surprisingly close agreement at large pore diameters, with the scaling

factors being within about 10%. However at small pore diameters we see that the neu-

tron scattering scale e�ectively limits at about 60�A. Detailed examination shows that,

while the exact scaling may well not have been established (see the above discussion),

this limiting behaviour may be related to the raw neutron scattering data � if one ex-

amines �gure 85 one sees that the scattering for the 25�A Sigma, 40�A Merck and C60

Unilever B sol-gel silicas are indeed far more similar than one would expect from their

nominal pore diameters.
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Silica Nom. dMaxNS Var. fg Dv/a RRan �(Dv/a,Var) Rcor a Dv

f�Ag f�Ag fag fag �A �A

C500 453 147.7 0.195 0.261 1.056 0.267 1.372 0.366 403.7 426.4
C200 171.5 58.0 0.195 0.246 1.065 0.266 1.380 0.368 157.6 167.9
100�A 100 46.8 0.166 0.333 1.015 0.267 1.284 0.343 136.4 138.5
60�A 60 29.8 0.171 0.432 0.961 0.268 1.247 0.335 88.9 85.4
C60 46.3 25.8 0.198 0.432 0.961 0.268 1.286 0.345 74.7 71.7
40�A 40 25.4 0.178 0.460 0.945 0.269 1.244 0.334 76.0 71.8
25�A 25 24.7 0.201 0.593 0.860 0.270 1.192 0.322 76.7 66.0

Table 21: For 7 porous silicas we list the nominal (gas adsorption) pore diameter Nom,
the radius dMaxNS for the maximum in d(r) as measured by neutron scattering, the
variance Var as calculated from the right hand slope of the d(r) curve, and, from
bulk density, imbibation and NMR cryoporometry volumetric measurements, the grain
�lling factor fg. From the latter, using simple analytic analysis of geometric models,
we calculate for a random lattice Dv/a, the ratio of the pore void diameter to the
lattice spacing. Using a polynomial �t to Monte-Carlo analysis of the geometric models,
we use the value of Dv/a to calculate dMaxRan(Dv/a) = RRan, the expected radius
(as a fraction of the lattice spacing a) of the peak in d(r) for a random lattice. We
then calculate a correction to the position of this d(r) peak, �(Dv/a,Var), using 2D
polynomial �ts to Monte-Carlo analysis of the geometric models. We thus obtain the
variance corrected value for dMaxRan(Dv/a) = Rcor = RRan��(Dv/a,Var). Dividing this
into dMaxNS gives us the measured lattice spacing a. Thus we may now use the ratio
Dv/a to �nally calculate the pore diameter Dv.

Thus either one is led to conclude that there is some process that preferentially modi�es

the scattering in the case of small pore silicas, that is not elucidated in the above

analysis, or that it is the gas adsorption and NMR cryoporometric scales (which we

have shewn to be co-linear when using water as the indicator liquid) that are in fact

non-linear at small pore dimensions.

Although it seems improbable that the well established gas adsorption calibration should

have such a gross error at small pores, this is indeed a possibility that must now be

investigated. We note that gas adsorption however commonly uses the BJH method

[Barret et al., 1951] based on the Kelvin equation to calculate pore size distributions

from the desorption P(v) curve, using a pore model of right cylinders, see chapter 1.3.1

[Gregg and Sing, 1967].

Other e�ects that may in
uence calibration at small pore diameters are molecular size

e�ects and possible deviations from the bulk values for the thermodynamic constants.

Larger pore zeolites and templated MCP silicas of known structure may play a useful

calibration roll in further work at small pore dimensions.
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In �gure 122 we plot the NMR cryoporometricly measured pore diameters for the seven

sol-gel silicas against pore diameters as measured by neutron scattering, The overall

scaling is given by the gas adsorption calibration of the cryoporometric constant for the

indicator liquid (water), and is, within the scatter, in good agreement with the neutron

scattering results at large pore diameters.

However we now see (with the exception of the 100�A Merck silica) much tighter scatter

from the NMR results than the gas adsorption ones. In particular we see that both NMR

and neutron scattering show the pore diameters of the 40�A Merck and C60 Unilever B

silicas to be very similar.

17.7 Summary.

In chapter 11 we consider geometric models of idealised porous structures, and analyti-

cally deduce relationships between their density, silica �lling factor and the ratio of pore

diameter to lattice spacing. In chapter 17 we use these relationships to obtain SANS

calibration of pore size.

In chapters 11.5.2, 11.5.3 we show that just by measuring densities (chapter 11.4),

by imbibing liquids into sol-gel media (chapter 11.5), and by determining NMR cry-

oporometric volumetric information (chapter 7.5.5) we may deduce the density of the

(voidless) silica matrix as about 2.0 fg�ml�1g (c.f. 2.1/2.2 for translucent/transparent

silica), and show that we may construct model silicas that mimic the measured ones

with the rules that the minimum wall thickness is 5�A, and that the diameter of the

throats between the pores is about 1
3
�Pore Diameter. Thus there are about 10 throats

into each pore, resulting in a surface areas of about 45% of the intact pore. We may

also determine the grain packing fraction (wet and dry).

In chapter 16.2.1 we show that the measured G(r)s for sol-gel silicas may be approxi-

mated by the calculated G(r) for an isolated slab embedded in a uniform medium (�gure

110), and that this �t is preferred to that for an isolated cylinder (�gure 95).

However in chapter 16.1 we note that the I(q) for sol-gel silicas is well �tted by the

sum of a sech
�

q
Q0

�
and a small proportion of a Guinier-Porod random mixture of two

phases. In chapter 16.2.3 we show that this agreement is carried over into the highly

sensitive chordal analysis domain. In chapter 12.9 we show that sech
�

q
Q0

�
is consistent
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Comparison of Gas Adsorption, Neutron Scattering calibrations.
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Figure 121:
Nominal gas adsorption pore diameter vs. that measured by neutron scattering.

Comparison of NMR Cryoporometry, Neutron Scattering calibrations.
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Figure 122:
NMR cryoporometric pore diameter vs. that measured by neutron scattering.
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to the quadratic term with the Guinier representation; however we fail to �nd an isolated

structure that gives us such a chordal representation.

In chapter 16 we show that using continuous media Monte-Carlo integration of G(r) for

models of porous media (chapter 15) the measured G(r) for sol-gel silicas (chapters 13,

14) is well modelled by the G(r) of structures of (intersecting) spherical voids.

In the I(q) domain, the models reproduce the Guinier/Sech turn-over, with dimensions

characteristic of the silica node between the pore voids and reproduce the q�4/Guinier-

Porod linear region characteristic of smooth surfaces. They also, most signi�cantly, at

least partly reproduce the feature seen in the measured scattering at low q . This is in

spite of the models being constructed with pores of only a small range of characteristic

size.

We �nd in chapter 16 that we require closely de�ned variance of pore size and lattice

spacing for accurate modeling of the measured scattering from the sol-gel silicas. This

is larger than that determined by NMR cryoporometry for the pore size alone (�gures

62, 96) thus we conclude that lattice spacing variance is probably greater than pore

diameter variance, in contradiction to our modelling assumption.

There is further modelling work needed, to more fully evaluate the behaviour of the

maximum in d = r2�G(r); dMaxRan

�
Dv
a ; V ar

�
: With particular reference to mod-

elling MCM-41, further evaluation is needed of models of cylindrical voids on hexagonal

lattices.

However there has been su�cient characterisation of the porous models to deduce the

probable characteristics of random lattices of spherical voids, such that we may map

the SANS measured dNaxNS for sol-gel silicas to deduced pore-size with good precision.

We �nd surprisingly good agreement with pore-diameters as calibrated by gas adsorption

for large (~500�A) pore diameters, but a puzzling discrepancy for small (~50�A) pores

(�gures 121, 122).

We note that SANS gives in e�ect a direct linear scale measurement of structural di-

mension. Gas adsorption however uses the Kelvin equation to calculate pore size dis-

tributions from the desorption P(v) curve, using a pore model of right cylinders. It is

possible that the divergence between the two calibrations is related to this di�erence in

model. However it is not clear how such a sharp (quadratic limiting) divergence could

result.



Chapter 18

Conclusions.

This thesis has concerned itself with the study of porous materials, and the development

of techniques for characterising them. Sol-gel silicas have been studied in the main, as

o�ering commonly available samples with clearly de�ned porous properties.

This thesis has particularly concentrated on the parameter of median pore diameter, and

the variance in this pore size. To this end, numerous advancements have been made

to the technique of NMR cryoporometry, particularly with regard to adding spatial

resolution, and this has been demonstrated as a most useful technique.

Density and imbibation experiments have been performed, and shown to give a surpris-

ing amount of information about the porous structure, when combined with analytic

and Monte-Carlo studies of model porous systems.

Small Angle Neutron Scattering and neutron di�raction experiments have been per-

formed, which, when combined with density and imbibation studies using the analytic

and Monte-Carlo models, are shown to give a pore size calibration that is in unexpect-

edly good agreement with the gas adsorption calibrated pore sizes for the sol-gel silicas,

at large pore diameters, but show a puzzling divergence at small pore diameters.

18.1 Developments of NMR Cryoporometry.

� Constructed the �rst full cool/warm cycle automated NMR cryoporometer, with

continual pore size distribution graphing, based on a small solid-state spectrometer

and permanent magnet, and a PC with IEEE based instruments (chapters 4, 5,

appendix C).

229
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� Introduced Boltzmann and NMR coil resistance corrections for pore volume, as a

function of temperature (chapters 5, 7.3, 7.3.4).

� Shown how to obtain true volumetric pore size distributions, even in the presence

of two di�erent liquid relaxation times (chapters 7.3.5, 7.3.6, appendix E).

� Analysed the probe thermal characteristics analytically + with a 1st order nu-

merical simulation � hence derived the cryoporometric resolution for the probe

(chapter 5, appendices D, G).

� Shown that, using gas cooling, repeatable measurements are obtainable up to

2000�A pore diameter, within the above probe thermal characteristics (chapter 9).

� Shown that for a uniform resolution on a log scale, one needs to reduce the warming

rate linearly with temperature as one approaches the bulk melting point (chapters

9.4, 9.5, appendix F).

� Obtained fractally related pore size distributions in naturally porous materials,

up to 10�m, using the above technique. (chapter 10).

� Performed the �rst 1D, 2D and 3D resolved pore size distributions. Shown that

one may obtain a full pore size distribution for any pixel in a 2D map of porosity

(chapter 8).

� Calibrated the melting point depression constant for water and cyclohexane, with

respect to a) gas adsorption b) neutron scattering (chapters 7, 17).

� Introduced NMR cryoporometry as a standard technique for regular industrial

contract research.

18.2 Conclusions from density and imbibation experiments.

It is demonstrated that, with added NMR cryoporometry volumetric information, den-

sity and imbibation experiments provide information that can be analysed using simple

geometric models representing the average properties of the sol-gel silicas (chapter 11).

It is shown that for the sol-gel silicas studied, over a pore diameter range 25�A ! 500�A,

and a density ratio of 3:1, we may create models of porous structures that re
ect the

characteristics of measured ones for sol-gel silicas, with the triplet of rules : a) the
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(voidless) silica density is close to 2.0 fg.ml�1g, b) the minimum pore wall thickness is

5�A, c) the pore throat diameter is 1/3 the pore diameter (chapter 11.5.3).

Measurements were made that are consistent with there being about the expected ten

throats to each pore, resulting in the pore wall surface only being 50% of that of an

intact pore (chapter 11.6).

18.3 Developments of SANS analysis of pore scattering.

� Measurement of scattering I(q) from q = 8�10�4 to 17.0 fradians��A�1g, for seven
porous silicas (chapters 13, 16).

� Demonstration that water normalised di�raction data can provide information on

incoherent scattering, allowing subtraction of this from water normalised coherent

pore P(q) scattering, to obtain pore scattering information over three decades in

q and eight in scattering intensity (chapter 16.1).

� Demonstration that the data signal-to-noise is good enough to allow chordal anal-

ysis of the scattering forms (�gure 111).

� Development of novel Monte-Carlo integration techniques for in�nite arrays of

pores excised from a continuous medium, o�ering a great improvement in compu-

tation e�ciency (chapter 15).

� Calculation by analytic and above Monte-Carlo techniques of solid-solid density

correlation function G(r) for a number of simple bodies (chapter 15.6, appendices

K, L).

� Creation of geometric intersecting and non-intersecting pore models, with variance

of pore diameter and lattice spacing. Analysis by analytic and above Monte-Carlo

integration techniques, giving excellent agreement with experimental scattering

results (chapters 15, 16.2.4).

� Detailed calibration of sol-gel pore dimensions and variance, from measured scat-

tering from sol-gel silicas, based on a geometric interpolation of the Monte-Carlo

calculated scattering from pores on HCP and Cubic lattices, with variance of pore

diameter and lattice spacing (chapter 17).



Appendix A

Equation of motion for a

quantum spin in a magnetic �eld.

We wish to expand the derivation of the equation of motion for a quantum spin in

a magnetic �eld. [Abragam, 1961, IIB], thus showing that this has the same form

as the classical expression.

One has for the Hamiltonian of the interaction energy of an isolated spin I with a

magnetic �eld B

H = �
�h(B�I)

where J= �hI is the angular momentum operator.

Then for the equation of motion one has [Abragam, 1961, IIB, (11)] :

�h

i

dI

dt
= [H; I] = �
�h[B�I; I]

where we denote the commutator of two operators u,v by the Poisson brackets

[u; v] = uv�vu

hence we have for operators u,v,w

[(u+ v); w] = [u;w] + [v; w]

[uv;w] = [u;w]v + u[v; w]

232
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for operator u, constant c

[c; u] = 0

for angular momentum �hI (note �h is external to I)

[Ii; Ij ] = i� ijkIk

where the three dimensional Levi-Cevita symbol � ijk = 1

Writing B�I in component form we get

B�I = BxIx +ByIy +BzIz

and for I we get

I = Ixi+ Iyj+ Izk

Thus for the z component of [B�I, I] we get

[B�I; I]z = [(BxIx +ByIy +BzIz); Iz ]

= [BxIx; Iz] + [ByIy; Iz] + [BzIz; Iz]

= [Bx; Iz]Ix +Bx[Ix; Iz]

+ [By; Iz]Iy +By[Iy; Iz]

+ [Bz; Iz]Iz +Bz[Iz; Iz]

The components of B in the Poisson brackets are simple constants, so these terms go

to zero; the last Poisson bracket commutes, so it also goes to zero. Thus we obtain :

�h

i

dIz
dt

= �
�h (Bx[Ix; Iz] +By[Iy; Iz])

= �
�h (Bx(�i� ijkIy) +By(i� ijkIx))

=
�
�h
i

(BxIy�ByIx)
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Finally we may note that

B�I =

Bx Ix i

By Iy j

Bz Iz k

= (ByIz�BzIy)i

+ (BzIx�BxIz)j

+ (BxIy�ByIx)k

��� for the z component

(BxIy�ByIx) = (B�I)z

Hence we obtain as expected [Abragam, 1961, IIB, (12)] :

�h

i

dIz
dt

=
�
�h
i

(B�I)z

We have thus shewn that the equation of motion has the same form as the classical

expression.
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The Dipolar Hamiltonian.

The dipolar Hamiltonian, in frequency units, is given by [Abragam, 1961, Ch. VIII G],

[Harris, 1987, Ch. 4.1] :

h�1 bHdd =
�0
4�


1
2
�h

2�
r�312

�
I1�I2�3r12�2(I1�r12)(I2�r12)

�
fHzg

An inner (scalar, dot) product between vectors V i; V j may be written :

<V ijV j> = (V i1V i2V i3) + :�

0BBBB@
V j1

V j2

V j3

1CCCCA
= jV ijjV jj Cos �ij

i.e. The result is a scalar whose magnitude depends on the magnitude of the vectors

and on the included angle between the vectors �ij . Hence for unit vectors {̂{{{, |̂|||, �̂���

{̂{{{�̂{{{{ = |̂|||�̂|||| = �̂�����̂��� = 1

{̂{{{�̂|||| = |̂|||��̂��� = �̂����̂{{{{ = 0

Thus for Cartesian components, we have :

I = {̂{{{Ii + |̂|||Ij + �̂���Ik

R = {̂{{{Ri + |̂|||Rj + �̂���Rk

I�R = IiRi + IjRj + IkRk

Thus for the term I1�I2 we get :

I1�I2 = I1xI2x + I1yI2y + I1zI2z
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If we now de�ne a Raising Operator I+ such that when it acts on a state j�,m> we get

j�,m+1>
and a Lowering Operator I� such that when it acts on a state j�,m> we get j�,m-1>
we �nd that I+ = Ix + i Iy, I� = Ix � i Iy

Thus

I1x = 1
2(I1+ + I1�), I1y = �i

2 (I1+ � I1�)

I2x = 1
2(I2+ + I2�), I2y = �i

2 (I2+ � I2�)

Hence

I1�I2 = 1
2(I1+ + I1�)12(I2+ + I2�)

+ �i
2 (I1+ � I1�)�i2 (I2+ � I2�) + I1zI2z

= 1
4(I1+I2+ + I1+I2� + I1�I2+ + I1�I2�)

� 1
4(I1+I2+ � I1+I2� � I1�I2+ + I1�I2�)

+ I1zI2z

= 1
2(I1+I2� + I1�I2+) + I1zI2z

For the other term we have :

(I1�r12)(I2�r12) = (I1xrx + I1yry + I1zrz)(I2xrx + I2yry + I2zrz)

= 1
2(I1+ + I1�)12 (I2+ + I2�)rx2

+ �i
2 (I1+ � I1�)�i2 (I2+ � I2�)ry2

+ I1zI2zrz
2

+ 1
2(I1+ + I1�)�i2 (I2+ � I2�)rxry

+ �i
2 (I1+ � I1�)12(I2+ + I2�)rxry

+ (12 (I1+ + I1�)I2z + I1z
1
2(I2+ + I2�))rxrz

+ (�i2 (I1+ + I1�)I2z + I1z
�i
2 (I2+ � I2�))ryrz

Grouping in terms of Raising and Lowering operators :

A: I1zI2zrz
2

B: (I1+I2� + I1�I2+)14 (rx
2 + ry

2)

C: (I1+I2z + I1zI2+)
1
2(rxrz � i ryrz)

D: (I1�I2z + I1zI2�)12(rxrz + i ryrz)

E: (I1+I2+)
1
4(rx

2 � 2irxry � ry
2)

F: (I1�I2�)14(rx
2 + 2irxry � ry

2)
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Geometrically, converting the Cartesian components of r to polar coordinates, we have

rx = {̂{{{rx = {̂{{{r Sin � Cos �

ry = |̂|||ry = |̂|||r Sin � Sin �

rz = �̂���rz = �̂���r Cos �

Substituting, we get for (I1�r12)(I2�r12)

A: I1zI2zr
2 Cos2�

B: (I1+I2� + I1�I2+)14r
2 Sin2� (Cos2� + Sin2�)

C: (I1+I2z + I1zI2+)
1
2 r

2 Sin � Cos � (Cos � � iSin �)

D: (I1�I2z + I1zI2�)12 r
2 Sin � Cos � (Cos � + iSin �)

E: (I1+I2+)
1
4 r

2 Sin2� (Cos � � iSin �)2

F: (I1�I2�)14 r
2 Sin2� (Cos � + iSin �)2

but ei� = Cos � + i Sin �,

hence by symmetry e�i� = Cos � � i Sin �

and 1 = (Cos2� + Sin2�)

Thus for (I1�r12)(I2�r12)

A: I1zI2zr
2Cos2�

B: (I1+I2� + I1�I2+)14r
2 Sin2�

C: (I1+I2z + I1zI2+)
1
2 r

2 Sin � Cos � e�i�

D: (I1�I2z + I1zI2�)12 r
2 Sin � Cos � e+i�

E: (I1+I2+)
1
4 r

2 Sin2� e�2i�

F: (I1�I2�)14 r
2 Sin2� e+2i�
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Writing for the dipolar Hamiltonian, in frequency units :

h�1 bHdd =
�0
4�


1
2
�h

2�
r�312 (A+B + C +D +E + F ) fHzg

Where :

for A we have :

I1zI2z(1 � 3 r�2r2 Cos2�)

= I1zI2z(1 � 3 Cos2�)

= � I1zI2z(3 Cos2� � 1)

for B we have :

(I1+I2� + I1�I2+)(12� 3 r�2 14r
2 Sin2�)

= (I1+I2� + I1�I2+)14 (3 Cos
2� � 3 + 2)

= (I1+I2� + I1�I2+)14 (3 Cos
2� � 1)

We �nally obtain, in terms of operators and second order spherical harmonics :

A: � I1zI2z(3 Cos
2� � 1)

B: ( I1+I2� + I1�I2+) 1
4(3 Cos

2� � 1)

C: � ( I1+I2z + I1zI2+)
3
2Sin � Cos � e�i�

D: � ( I1�I2z + I1zI2�) 3
2Sin � Cos � e+i�

E: � ( I1+I2+)
3
4Sin

2� e�2i�

F: � ( I1�I2�) 3
4Sin

2� e+2i�

Thus we have derived the quoted expressions.



Appendix C

NMR CRYOPOROMETER.

Designer: J.B.W.Webber@ukc.ac.uk

This instrument is designed to measure pore sizes and pore size distributions by the

technique of freezing a liquid in the pores, and measuring the melting temperature by

Nuclear Magnetic Resonance. Since melting point is depressed for crystals of small

size, the melting point gives a measurement of pore size.

With Cyclohexane as the liquid, pore sizes from less than 30�A to over 3000�A may

be readily measured.

C.1 Over view.

This Cryoporometer is implemented on a standard PC compatible computer, using

the graphical programming language LabVIEWTM for WindowsTM . This provides the

software and interactive front panel to interface to an IEEE oscilloscope and digital volt

meter, and a serially controlled temperature controller. The default NMR spectrometer

is the standard UKC design, but others may be used with no modi�cation, other than

perhaps in the details of the temperature control. The spectrometer should normally

be con�gured so that it is giving a 90�x � � � 180�y � � � Echo sequence, with the

echo centralised on the oscilloscope screen.

This con�guration provides the control to cool the sample down to a speci�ed temper-

ature, and then slowly warm up while taking measurements. Results may be displayed

as measurements are taken. Finally the measured data may be plotted and saved.
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C.2 Running the Cryoporometer.

After loading (see local installation and running instructions), one must set the instru-

ment running� this is software, one does have to run it as normal (auto-run is possible).

For this one clicks on the hollow arrow in the top left corner.

However it should be noted that one should not just stop the instrument using the

software-stop, as this may leave the instruments with their front panels locked out.

Instead, an O� switch is provided � top left on the front panel. Click on it using the

mouse left button.

When the instrument is run, it throws up a window to allow the current Experimenter

to be chosen, or a new one entered. This also creates the necessary directory for data

storage.

C.3 Instrument Front Panel.

This is divided by function into three main areas.

On the left are controls and displays associated with doing a temperature run, and

gathering new data.

In the centre are graphical displays of the melting point curve and the calculated pore

size distribution, and at the bottom, the labelling of the data.

On the right are controls and displays associated with loading saving, and plotting the

data, as well as a numeric listing of the data.

It is possible to alter the display (using the control at the top right), from the current

data, to display the previous run, or data from �le. This may be done even while

measuring.

Controls and displays are colour coded, in that controls that may be directly altered

are yellow, displays that may only be indirectly altered are blue.

C.3.1 Left of Display.

Next to the O� switch is an Idle switch, that terminates a temperature run and forces

the temperature control to the Idle state; and a Free switch, that frees the IEEE

instruments, and allows them to be controlled from their front panels. The later switch

may be operated at any time data is not being captured. To start a new temperature

run, switch to Idle and back again.
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To the right of these three switches, are three LED tell-tales.

The top green one � Activity � just 
ashes to indicate that the instrument is still

running � it changes state at every run cycle.

The middle blue one � Cooling � indicates that the machine is in the cool down state.

Note, the instrument is designed to initially cool down below the lowest measurement

temperature. (See below for more details on Temperature Control.)

The lower red one �Measure � indicates that Cryoporometric data is being captured.

The large digital display below these � Temperature � gives the measured sample

temperature. Temperature displays may be given either in Kelvin or Celcius, under

control of a slide switch.

The next two digital controls � Lower Temp � Upper Temp � set the range of

temperature over which Cryoporometric measurements are made. It should be noted

the initial cool down will go below Lower Temp by a value currently set at 20�C � this is

adjustable on the program diagram. This ensures that the NMR probe is all well cooled

down. It should also be noted the actual measurement range may be up to about 1C�

less than the values set, at each end of the range. [Note on digital controls : these may

be incremented or decremented using the arrows; alternatively the mouse may be used

to position the cursor on the numbers, and new numbers typed in. When �nished, click

on the front panel blue background, to enter the number.]

Below the temperature range controls one sets the pore �lling liquid � Liquid � by

default Cyclohexane. As well as incrementing and decrementing, or re-typing, one can

also pop-up on the text with the left mouse button, and select from a list. [Technically

this control is known as a Ring.] This control looks up the appropriate values for the

Bulk Melting Point Temperature, the Slope or k-value, and the curvature compensating

diameter D0, if any. If you wish to change any of these values, at the moment you have

to select the look-up-table sub-program (labelled CRC) and edit the appropriate entries

in the table. The Melt Point, Slope and D0 are displayed here.

Next comes the Temperature Control.

On the left is displayed the measured Splashpot Temperature � i.e. the temperature

as measured by the temperature controller thermocouple at the point where heating and

cooling take place.
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Below this is the Target Temperature � the temperature that the temperature con-

troller is currently aiming at, and an approximation of which is written to the temper-

ature control instrument via a serial link.

On the right of these is a LED display of the state of the temperature cycle. Initially

in the Idle state, the temperature control will, if the switch at the top is not set to

Idle, progress to Cool. The temperature will then be progressively ramped down (5

C��min�1), until a temperature 20C� below the Lower Temp is reached.

The state will then switch to Dwell, and this will be maintained for 15 min. After this

the state switches to Pre-warm, when the controller aims to warm at 2 C��min�1until
the Lower Temp is reached.

At this point the state switches to Warm-up, and the controller sets a temperature

ramp at a rate set by the digital control Rate (in C��min�1). Suitable values range from
1 C��min�1 for Cyclohexane in 40�A silica, to 0.02 C��min�1 for 1000�A or larger silica.

It maintains this rate of rise until the Upper Temp is reached, when the state switches

to Done. At any point, the temperature rise or fall may be frozen, by switching the

RAMP control to HOLD. When the temperature control instrument is being written

to, the Set LED is lit (blue).

Below the temperature control are four controls de�ning which portions of the oscil-

loscope trace are used to measure the amplitude of the NMR echo � Data Capture

Windows %.

The �rst two controls set the start and stop percentages within which the echo peak

should occur (40%, 60% by default) � a cubic polynomial is driven though the data,

this is then di�erentiated to get the slope, and the quadratic solved = 0, with the time

value with the largest amplitude chosen as the peak. (A slightly di�erent algorithm is

used when there is insu�cient amplitude to identify a peak at all.)

The second two controls set the window within which the baseline is measured (by

simple averaging), and are usually 80%, 100% by default. The oscilloscope timebase

should be adjusted so that T2* results in the echo being e�ectively zero in this window.

Individual oscilloscope measurements are averaged together. How long the averaging

takes place for is calculated from the set rate of temperature rise, and the set temper-

ature range over which measurements are to be made. The calculation aims at about

three hundred data points in the �nal melting point curve � the �nal number measured

is dependent on how closely the actual temperature pro�le follows the target one.
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C.3.2 Right of Display.

At the top right of the front panel is a Ring control � Display : popping up on this

allows one to select what data is displayed : � the Current data set being or just been

measured � the Previous data set, or � File, to display saved data. (The format is

compatible with the origin BBC data format, as transferred by program.)

Below this is a numeric listing of the displayed data � Temperature-Amplitude. By

default this shows the end of/just measured data, but this is alterable using the Start,

Index, End buttons.

Here also is N, the number of displayed data points.

Below the numeric display is a row of buttons. The three left ones, Load, Save, Plot,

do what they say, and are momentary action. Auto is auto save, and saves the data

at the end of a measurement run (there must be at least 50 points, fewer are ignored).

AUTO save is the default, and remains set until cancelled.

Load also forces �le display, and throws up a �le selector, so that any stored data can

be viewed.

Save and Auto save use the �le path as constructed below.

Plot throws up a window containing the two graphs. The axies can then be edited as

desired (see below), after which plot is selected to send the graph to the printer. Which

printer should be �rst chosen from the menu or the desktop default printer con�guration.

A blue LED lights during save or plot.

Below this is an editing window, where one can specify the Save File Path (by default

d:\lab\porous), to where the individual experimenter's directories are located.

Then there is a window where one can select the Experimenter. Note, since the list

is not de�ned at compile time (but is read from the list of Experimenter directories

on disk) it can not be a pop-up Ring. One can increment or decrement to choose the

Experimenter. To the right is a button New, which pops up a window, allowing the

addition of new Experimenters (and directory creation).

The next window allows the selection of Project directory. To the right is again a

button New, which pops up a window, allowing the addition of new Projects (and

directories).

Below this are three windows that de�ne the �le name, a File Name window, a Num-

ber that is concatenated, and an Increment that is added to number at each auto save.

Note if increment is Zero, then Number is not concatenated. The combined �le name
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must be 8 characters or less. Then, below two windows which give the date and time in

ISO standard form, is a display containing the full path to which the data will be saved.

The data is saved in raw format (i.e. Amplitude vs. EMF) into subdirectory `raw'. This

allows other format data, such as poresize, to be stored in other sub-directories, for the

same project.

C.3.3 Centre of Display.

Below the instrument heading is the Melting Point Curve or Echo Amplitude,

where the amplitude of the NMR signal from the echo is traced, as the liquid melts.

One can pop-up on the graphs with the mouse button, to select auto scale (or not) for

the X and Y axes. By default the Y-axis is autoscale, the X-axis is not. When not

autoscale, each of the two end-of-axis scale readings are editable, when the intervening

legend re-scales. (Click on background when the edit is complete.) Underneath this

graph, to the right is Current N, the current number of points measured.

The lower graph is the calculated Pore Diameter, which can also be popped-up on.

The parameters of the currently selected liquid are used in the calculation.

Underneath, to the right, is Peak � a cubic polynomial is �tted to the pore diameter

peak, and as with the echo, di�erentiated and analytically solved to obtain a value for

the peak pore diameter and amplitude.

Below this is the �le Name of the graphs actually being displayed. This is also written

as the �rst line of the �le.

To the left, is a pop-up Ring, giving a choice of Filter : Raw, Monotonic, Mono-

tonic+Log.Smooth, Monotonic+Log.Smooth+5pt.Smooth. Monotonic ap-

plies the constraint of monotonicity to the data � this is a very powerful noise reducing

algorithm that does not blur the data. Log.Smooth applies a smoothing algorithm,

with logarithmically varying resolution, to the data, to help remove measurement noise.

In the centre is Decade Resolution, which allows one to adjust the number of resolv-

able peaks per decade for the logarithmic smoothing to suit the measurement.

Below this is a text box Description, in which one can describe the experiment.

Finally comes the fullHeader of the data being graphed, which is written as the second

line of the �le. After the �le name comes the description, then the measuring liquid,

then the date and time, and �nally the Experimenter.



Appendix D

Determination of the

cryoporometric resolution from

the bulk liquid melting step.

We wish to determine the thermal characteristics of the cryoporometric sample in

the NMR probe; in particular we wish to know the residual �T along the sample, at

zero warming rate. When the liquid around the porous grains melts at the end of a

cryoporometric run, there is a further trapezoidal step in the volume of melted liquid,

at e�ectively the bulk melting point. We can obtain information about the residual

�T from the way the slope of the bulk warming step changes with warming rate, as

in the limit of no residual �T the slope would go to 1 at zero warming rate. From

this �T we may deduce the limits on the cryoporometric resolution of the system.

Using the data gathered for cryoporometric runs at warming rates of 0.2, 0.1, 0.05

C��min�1 using water in 200�A sol gel silica and warming rates of 0.05, 0.02, 0.01

C��min�1 using cyclohexane in 1930�A Trisopor
R porous glass (see chapter 9), we may

measure the parameters of the bulk melting step.

Apl routine mpcstep was written; given a project directory name, a data �le mask and

the name of a table of measured masses, this in turn reads in the melting point data

(before application of the monotonic routine), displays the melting point data as a

function of sample thermocouple temperature, and with user interaction normalises it

in terms of melted mass of liquid per unit mass of dry porous solid and calculates a bulk

melting point. The routine graphs this data and writes it to disk and then displays and

saves the parameters. It then reads monotonic processed data to calculate a volume
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normalised pore size distribution using the measured value of the bulk melting point; it

graphs the distribution and writes it to disk.

When de�ning the bulk melting point step, the routine allows the user to mark with

the cursor six points de�ning three regions where the data forms reasonably straight

lines: the plateau corresponding to the melted pore liquid, the bulk melting step, and

the plateau corresponding to all the liquid.

The routine then linear least squares �ts the data bounded by the marked x values

(returning the equations), plots the lines, and calculates the two intersections of adjacent

sections. Given the equations of two straight lines :

y = c1 + a1�x

y = c2 + a2�x

then the lines intersect at

x = � c1�c2
a1�a2

y = c2 + a2�x

Thus, given a variable Coefs containing the coe�cients of the equations of the lines, we

may calculate the intersection x,y using the Apl expressions :

X  � �/ -/[1] Coefs
XY  X, Coefs[2;] genlin X

These intersection (Tl;Ml); (Tu;Mu) are marked on the graph (see �gure 123), and used

to calculate the parameters associated with the bulk liquid melting step.

Thus for the bulk step, we may write :

�Tb = Tu�Tl
�Mb = Mu�Ml

Thus the gradient G of the (trapezoidal) step is given by G = �Mb
�Tb

.

A sample of liquid undergoing an isothermal phase transition will require a certain time

�tm to melt, depending of the mass of liquid melting �Mb, and the size of the heat
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Extracting the coefficients of the bulk melting point step.
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}
(Tu,Mu) : 6.324 0.119
(Tl,Ml) : 6.182 0.06207
 hence :
  ∆Tb =  0.1423 {C°}
  ∆Mb =  0.0569 {g}

Measured bulk melting point = 6.231 {°C}
VPore/VTotal = 0.522
VPore = 1.022 {mlzg¯¹(of dry glass)}

Figure 123: Calculation of the parameters associated with the bulk liquid melting step,
for cyclohexane in 1930�A Trisopor at 0.01C�.min�1 warming rate.


ux into the sample Ws. Hence we have :

�tm =
Lf ��Mb

Ws

where Lf= Latent Heat of Fusion of the solid to liquid transition.

Given that the probe is being warmed at a constant rate dT
dt , the thermocouple (that

is insulated from the isothermal melting solid by the silica tube wall and a layer of

porous silica and melted liquid) will measure a temperature rise �Tm while the liquid

melts. Thus the measured melting step will be spread over a total temperature range

�Tb = �Ts +�Tm, where �Ts= the total temperature range along the sample due to

thermal gradients (at zero heating rate).

Thus we have for the gradient G of the (trapezoidal) step :

G =
�Mb

�Tb

=
�Mb

�Ts +�Tm
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If however we just consider �Tb directly, we have

�Tb = �Ts +�Tm

= �Ts +�tm��Tm
�tm

� �Ts +
Lf ��Mb

Ws
�dT
dt

i.e. we see that provided the heat 
ux into the sample Ws is independent of the heating

rate (it is not obvious that it should be), if we plot �Tb as a function of warming rate

dT
dt , then we obtain a straight line with an intercept on the y axis that gives us �Ts,

the temperature range along the sample due to thermal gradients, at zero heating rate.

If the heat 
ux into the sample Ws was proportional to the heating rate, then the slope

G of the melting curve would be independent of the heating rate, which is not what we

see; if Ws was a function of the heating rate such that

Ws = Ws0�
�
dT

dt

�p

where power p<1, then we would have

�Tb = �Ts +
Lf ��Mb

Ws0
�
�
dT

dt

�1�p

If we plot �Tb for water in 200�A sol gel silica at warming rates 0.2, 0.1, 0.05 C��min�1,
and for cyclohexane in 1930�A Trisopor
R porous glass, at warming rates 0.05, 0.02,

0.01 C��min�1, using power p�0:5(0.463) we obtain �gure 124; we have a reasonably

consistent �t, with a y intercept of 0.058C�.

Thus we conclude that the sample has a variation in temperature of about �30mK
at zero warming rate; for a sample with cyclohexane in 2000�A diameter pores, this

corresponds to an instrument resolution function with a full width of about 130�A, and

considerably less for smaller pore sizes � the corresponding value for 200�A is about

1.3�A. The values at �nite warming rates are given for cyclohexane in table 22 and for

water in table 23.
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∆T for cryoporometric bulk step vs. probe warming rate

(Warming Rate)0.537 {(C°zmin¯¹)0.537}

∆T
 {

C
°}

H2O

C6H12 

A y intercept of 0.058 {C°}
is the probable residual
temperature ∆Ts 
along the sample  (at
zero warming rate) using
water and cyclohexane as
the cryoporometric liquids.

We obtain consistent fits :

H2O  ∆Tb = 0.0579 + 3.198z(dT/dt)0.537 

C6H12 ∆Tb = 0.0575 + 0.981z(dT/dt)0.537 

Figure 124: Plot of �Tb for water in 200�A sol gel silica at warming rates 0.2, 0.1, 0.05
C��min�1, and for cyclohexane in 1930�A Trisopor porous glass, at warming rates 0.05,
0.02, 0.01 C��min�1.
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Warming �Tb �Mb Resolution
Rate @ 2000�A

fC��min�1g fC�g fgg f�Ag
0.05 0.2548 0.0565 682
0.02 0.1744 0.0560 484
0.01 0.1423 0.0569 384
0 0.0575 126

Table 22:
Measured bulk step �T, �M values for various probe warming rates, and inferred e�ect
on pore size resolution, when using cyclohexane as the cryoporometric liquid.

Warming �Tb �Mb Resolution
Rate @ 200�A

fC��min�1g fC�g fgg f�Ag
0.2 1.384 0.06433 140
0.1 1.013 0.06153 98
0.1 1.033 0.06255
0.1 0.9662 0.06377
0.05 0.6705 0.09228 71
0.05 0.6944 0.06425
0 0.0579 4.6

Table 23:
Measured bulk step �T, �M values for various probe warming rates, and inferred e�ect
on pore size resolution, when using water as the cryoporometric liquid.



Appendix E

T2 corrections for pore liquid

signal to total liquid signal ratio.

We show that even if the pore liquid and bulk liquid have di�erent relaxation times,

we may describe a function of the ratio of the measured signal from the pore liquid

to that from all the liquid with a single decay time, and hence obtain the true pore

volume from a number of cryoporometric measurements at di�erent � values.

Consider, when the sample is a few degrees above the bulk melting point of the liquid,

we obtain a signal from the total liquid VTL. (In practice we assume this is slightly

temperature dependent, and do a linear �t and extrapolate to �nd the value at the bulk

melting point, see appendix D.)

Since we have measured the total mass of the liquid in the sample MTL, and know

the density �L, we may calculate the e�ective sensitivity of the cryoporometer for this

sample :

S = �L� VTL
MTL

fV �l�1g

Consider now the case during a cryoporometric run, when the liquid in the pores has

all melted (giving a plateau), but that around the grains has not. If we knew the signal

from just the liquid component in the pores VPL at time 0 :

VPL(0) = S�vP fV g
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then we could write for the pore volume :

vP =
1

�L
�MTL�VPL

VTL
(0) flg

(We have already compensated for Boltzmann and copper coil resistivity changes as a

function of temperature, thus in case of any residual slope, measurement is by linear

�tting of the plateaus and extrapolating to a common temperature � the bulk melting

point.)

However at time t = 0 we also have the signal from the solid around the grains.

NMR is a sensitive technique for distinguishing between solid and liquid, as the coherent

transverse nuclear spin magnetisation decays much more rapidly in a solid than in a

mobile liquid. Measurement of the volume of liquid present is usually most conveniently

done using a 90�x-� -180�y-� -echo sequence [Abragam, 1961, Harris, 1987] where the time

interval 2� is set to be longer than the T 2 decay time in the solid but less than the T 2

decay time in the liquid [Strange et al., 1993]. For cyclohexane and water � = 2ms to

20ms was mainly used.

However in pores the T 2 of the liquid will be reduced compared with the bulk value

(see chapter 7.5.4) and we will measure echo amplitudes that are � dependent.

If we have for the total signal from the liquid in the pores and the bulk liquid :

VT (t) = VPL(t) + VBL(t) fV g

where

VPL(t) = VPL(0)�e�
t
�P fV g

and

VBL(t) = VBL(0)�e�
t
�B fV g;

then

VTL
VPL

(t) =
VPL(0)�e�

t
�P + VBL(0)�e�

t
�B

VPL(0)�e�
t
�P

= 1 +
VBL(0)

VPL(0)
�e�
�

1
�B
� 1
�P

�
�t
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hence

VTL
VPL

(t)�1 =
VBL
VPL

(0)�e�
�

1
�B
� 1
�P

�
�t

���
1

1
VPL
VTL

(t)
�1 =

VPL
VBL

(0)�e�
�

1
�P
� 1
�B

�
�t

=
VPL
VBL

(0)�e� t
�

We now have an expression in terms of the measured VPL
VTL

(t) with a single relaxation

time � = 1=
�

1
�P
� 1

�B

�
with a y intercept of � = VPL

VBL
(0):

We may thus write for the pore volume :

vP =
1

�L
�MTL

1 + 1
�

flg



Appendix F

Warming rate for constant

resolution.

F.1 Constant resolution on a linear scale.

If we ask the question, what warming rate pro�le do we require for a constant resolution

in pore diameter, since we have from the simpli�ed Gibbs-Thomson equation 2, for the

melting point depression �T in pores of diameter x :

�T =
k

x

then we may write

dT

dt
=

d

dt
(k�x�1)

= �k�x�2�dx
dt

= �1
k
��T 2�dx

dt

Hence for a warming rate such that we scan pore diameters at a constant rate dx
dt , then

the warming rate must reduce quadratically as we approach the bulk melting point, see

�gure 125, where for clarity an unrealistically fast warming rate, consisting of too few

points in too short a time, is plotted for the range of pore diameters 100�A ! 1000�A.
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Figure 125:
Warming rate for constant resolution on linear and Log10 pore diameter scales.

F.2 Constant resolution on a logarithmic scale.

Suppose, however, we ask the question what warming rate pro�le do we require for

a constant resolution in logarithmic (base 10) pore diameter, such that we may write

x = 10X , then we have :

�T =
k

10X

= k�10�X

���
dT

dt
=

d

dt
(k�10�X)

= �k�Ln(10)�10�X �dX
dt

= �Ln(10)��T �dX
dt

We see that we now have a warming rate that is proportional to -�T, see �gure 125,

where we now plot for the range 100�A ! 10�m. We see the largest temperature step

is smaller than in the previous case, in spite of the much larger range.
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F.2.1 De�ning a warming pro�le.

In practice at low temperatures we do not wish to warm at the high rates implied by

a linear change in warming rate, and set a (settable) upper limit on the warming rate.

We arbitrarily choose, as an alterable default when using cyclohexane, to warm at a

constant rate when the temperature is below 0�C (corresponding to about 280�A pore

diameter), then decrease the warming rate linearly with temperature until we reach the

temperature corresponding to measuring pores of diameter 10�m; this warming rate is

maintained through the bulk melting point (BMP), then increased back to the maximum

warming rate to measure the bulk step. The run is �nally terminated at a (settable)

upper temperature (default 8�C).

We may de�ne this warming rate pro�le with the function :

WarmRate  MaxWarmRateb
�
MaxWarmRate

BMP
� k
105

�
d

(SampleTemp>BMP ) + jMaxWarmRate

BMP
�(SampleTemp�BMP )

The time required for a measurement run at constant warming rate is :

RunT ime (UpperTemp�LowerTemp)� 1

WarmRate

This becomes for the above pro�le

RunT ime 
Z UpperTemp

LowerTemp

1

WarmRate
dT

which is given by :

RunT ime  ((UpperTemp�BMP ) +BMP

+

�
Ln(10)�

�
5�Log10 k

BMP

�
�BMP

�
�LowerTemp)� 1

MaxWarmRate

Thus the averaging time for a reading at any one temperature is, since we wish to gather

about 300 points per run, the run time divided by 300.



Appendix G

First order numerical simulation

of bulk melting step behaviour.

The thermocouple that is attached to the sample tube in a scanning cryoporometer

does not measure the actual temperature of the melting solid, since heat to melt the

sample must 
ow past the measuring thermocouple.

We simulate numerically the behaviour of the bulk liquid melting curve, using a

simple �rst order model, and predict a function for the displacement of measured

bulk melting point as a function of warming rate that is in agreement with measured

displacements.

In scanning cryoporometers the temperature is ramped at a rate that may be either

constant or a function of time. Examining typical measured melting curves for constant

warming rate (see �gures 123, 128) we see that we have at least a second order process,

due to distributed thermal masses and resistances.

We choose however, for simplicity, to use a �rst order model, consisting of a splashpot

at temperature Tsp that is warmed at a constant rate WarmingRate = dTsp
dt , connected

by a single thermal resistance R to a sample at temperature T s consisting of a single

thermal mass M Th composed of a glass tube of mass M g, containing porous silica of

mass M s, and liquid of total mass M l, of which mass Mm is undergoing a melting

transition. We use appropriate speci�c heats c for each component, and latent heat of

fusion Lf for the melting liquid so that prior to liquid melting we have

MTh = J �
X
i

ci�Mi

where J is 4.184 fJ�Cal�1g
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Figure 126: First order simulation of bulk melting step for water in 200�A Unilever silica
sample warming at 0.1C��min�1.

We thus assume that the 
ux of heat 
owing into the sample is given by :

�(t) =
Tsp�Ts

R

such that the heat added to the sample (from the start of the experiment at temperature

TL), to raise the temperature to T s is given by :

Q(t) =

Z T=Ts

T=TL

�(t)dt

Further, since the experimental con�guration has the sample thermocouple soldered to

a copper foil around the sample tube, we assume that this heat 
ux passes through the

thermal resistance Rm between the thermocouple and the melting solid/liquid, com-

prising the thermal resistance of the glass tube, that of the interfacial layers, and the

thermal resistance of the porous silica. Thus we measure a temperature Tm that is

��Rm degrees above T s.

If for simplicity we choose to consider liquid melting at the bulk melting point TB

(though the argument applies to any fractional mass of melting liquid), ramping the

splashpot temperature from TL to TU through the bulk melting point TB .

For Ts(t)<TB
Ts(t) = TL +

Q(t)

MTh

hence at the bulk melting point we have

QB =MTh�(TB � TL)
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Figure 127: First order simulation of bulk melting step for water in 200�A Unilever silica
sample warming at 0.1C��min�1.

Thus we set all the system initially at TL and then use the above expressions for �, Q

and T s until Q(t) = QB

The sample temperature then remains constant while the bulk liquid melts; the splash-

pot continues ramping however, and thus the total �T increases, and hence so does the


ux of heat. Hence the measured temperature also increases.

Thus Ts(t) = TB and the silica mass normalised volume of melted liquid (density �) is

given by :

V (t) = (Q(t)�MTh�(TB � TL))� Mm

��J �Ms�Mm�Lf
until the total heat passed to the sample is

Q =MTh�(TB � TL) + J �Mm�Lf

and the liquid mass Mm has all melted. Thereafter any additional heat passed to the

sample will act to raise the sample temperature as before.

We run this integral using masses and thermal values for a measured sample of 200�A

pore diameter Unilever silica, at a warming rate of 0.1 fC��min�1g; in �gures 126, 127

we plot as a function of time the calculated values for :

a) the sample temperature T s;

b) the thermal 
ux �;

c) the thermocouple temperature Tm;

d) the silica mass normalised volume of melted liquid V .
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In �gure 128 we plot deduced melting curves V vs. Tm for warming rates of 0.05,

0.1, 0.2 fC��min�1g, against the measured melting curves. Discrepancies due to the

simpli�ed �rst order model are clear, but the initial behaviour is modeled well.
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First order simulated signals
for bulk melting point step
with linear temperature rise,
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 0.048 g porous silica
 0.145 g total water
 0.065 g bulk water
fitted thermal resistances :
SplashpotqSample 30 {C°zW¯¹}
 Sensor  qSample 20 {C°zW¯¹}

Figure 128: Bulk melting steps: measured and simulated.

We wish to predict the behaviour of the displacement of measured bulk melting point,

as a function of warming rate. The above measured melting curves suggested that the

displacement varied approximately as :

WarmingRate0:55 at 1/3 amplitude of the bulk step.

Calculations were performed for warming rates from 0.005 to 0.5 C��min�1, and were

shown to result in displacements proportional to :

WarmingRate0:561 at 1/3 amplitude of the bulk step, and

WarmingRate0:544 at 1/2 amplitude of the bulk step.



Appendix H

Calculation of the maximum

radius for a sphere enclosed in a

tetragon of touching spheres of

radius r.

We need to know the pore size between nanocrystals. Using a simple geometric

argument we deduce that the maximum radius for a sphere enclosed in a regular

tetragon of touching spheres of radius r is
�p

3p
2�1

�
�r � 0:22474�r.

Consider four touching spheres of equal radius r arranged

A

B

C

D

Figure 129: A regular

tetragon of spheres.

in a tetragon, at positions A,B,C,D (see �gure 129).

We wish to know the maximum radius of sphere that

can be enclosed in such a tetragon of spheres. i.e. we

�rst need to know the location G of the centre of such a

sphere.

First consider the triangleABC at the base of the tetragon

(see �gure 130).

We drop normal from C onto AB at E ; by symmetry

this must intersect the normals from A,B at F ; we wish

to �nd F .

If we consider triangle CEB , we see that we have inter-column spacing AB = a = 2�r,
and that by Pythagoras the inter-row spacing CE = b =

p
3�r.
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We then have :

A B

C

E

F

p

q

r r

r

r

Figure 130:

Triangle ABC : base of tetragon.

p+ q =
p
3�r

q2 + r2 = p2

= (
p
3�r�q)2

��� q2 = 3�r2�2�p3�r�q + q2�r2

��� q =
1p
3
�r

��� p =
2p
3
�r

Hence for A at (-r , 0, 0), B at (r , 0, 0), then C is

at (0;
p
3�r; 0) and F is at

�
0; 1p

3 �r; 0
�
.

We note that by symmetry the line from the point G that we seek to F must be normal

to the plane ABC , therefore we may draw �gure 131.

We consider triangle ADF ; we have shewn that the distance AF = p = 2p
3 �r, hence by

Pythagoras the inter-layer spacing FD = c = 2�
p
2p
3 �r.

We wish to determine the position of G ; i.e. we wish to position G so that triangle

GAD is equilateral and thus t = s; we then have :

A

D

F

G

p

r

r

s

h

t

Figure 131: Side view of tetragon,

with triangle ADF .

t = s

c = s+ h

t2 = p2 + h2

��� p2 + h2 = (c�h)2

= c2�2�c�h+ h2

��� h =
1

2
�
 
c�p

2

c

!

=
1p
6
�r

��� s =

p
3p
2
�r

Hence G is at
�
0; 1p

3 �r; 1p
6 �r
�
, and it is at a distance

�p
3p
2�1

�
�r � 0:22474�r from the

enclosing spheres.
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In chapter 17.3 we use the ratio s
r as the parameter � for an HCP lattice.

Using Apl to check numerically that we have found the correct position :

We have for the tetragon ABCD :

+ Tetragon  4 3 � �1 0 0 1 0 0 0 ,(3*�2), 0 0, (�3*�2), 2�(2�3)*�2

�1 0 0

1 0 0

0 1:73205 0

0 0:57735 1:63299

and for G :

+ G  0 , (�3*�2), (�6)*�2

0 0.57735 0.408248

Thus we may calculate the vector lengths from G to each of A,B,C,D :

(+/(Tetragon -[2] G )*2)*�2

1.22474 1.22474 1.22474 1.22474

We have thus con�rmed that we have found the position we want, and the maximum

radius of the sphere that just touches the other four is

��
3
2

� 1
2 �1

�
�r � 0:22474�r .



Appendix I

Volume of a cap of a sphere.

We require the volume of the cap of a sphere, as part of the calculation of the total

void volume for intersecting spherical voids.

Consider a sphere, of radius R, centered on the origin O . We wish to know the volume

of the sphere to the right of a plane parallel to the x = 0 plane, through x = X.

The sphere intersects the z = 0 plane, and traces out a circular locus, which we can

represent in the �rst quadrant by y2 = R2�x2 (�gure 132).
If we cut through the cap with two planes parallel to it's base, at x; x+�x, the enclosed

slice will have a radius of

O X x x+δx

R y

Figure 132: Geometry of slice �x , for the

integration of the cap of a sphere.

y = (R2�x2)1=2

and a volume of

�V = �y2��x

Hence the volume of the cap to the right of

X is

V =

Z R

X
�y2 dx

= �

Z R

X
(R2�x2) dx

= �

�
R2�x�1

3
x3
�R
X

= �

�
2

3
R3�R2�X +

1

3
X3
�

=
�

3

�
2�R3�3�R2�X +X3

�
=

�

3
(2�R+X)�(R�X)2
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Surface area of a cap of a sphere.

We require the surface area of the cap of a sphere, as part of the derivation of an

analytic expression for the G(R) of an in�nite slab.

Consider a sphere, of radius R, centered on the origin O . We wish to know the surface

area of the sphere to the right of a plane parallel to the x = 0 plane, through x = X .

The sphere intersects the z = 0 plane, and traces out a circular locus, which we can

represent in the �rst quadrant by y2 = R2�x2 ( �gure 133).
If we cut through the cap with two planes parallel to it's base, at x; x+�x , the enclosed

ribbon will have a radius of

O X x x+δx

R y

Figure 133: Geometry of slice �x, for the

integration of the cap of a sphere.

y = (R2�x2)1=2

and a surface area of

�S = 2�y�(�x2 + �y2)1=2

We have

dy = (1=2)�(R2�x2)�1=2�(�2�x) dx

=
�x

(R2�x2)1=2 dx

���dy2 =
x2

R2�x2 dx2

=
x2

y2
dx2
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Hence the surface area of the cap to the right of X =

S =

Z R

X
2�y�(dx

2 + dy2

dx2
)1=2 dx

= 2�

Z R

X
(R2�x2)1=2�

 
1 +

x2

R2�x2
!1=2

dx

= 2�

Z R

X
y�
 
1 +

x2

y2

!1=2

dx

Since we know that R, y and �S are real and positive, we may simplify this to :

S = 2�

Z R

X
R dx

= 2�R(R�X)

In conclusion, we may note that if the sphere is located at x = X0 , the surface area of

the cap, =

S = 2�R(R�(X�X0))

= 2�R(R+X0�X)



Appendix K

Analytic derivation of G(r) for a

uniform solid sphere.

We use analytically calculable 
0(r) for a sphere as a model system for scattering

from pores, and as a check of our calibration when converting from q to r. The

expected fall o� in g(r) due to a spherical test volume having a limited radius R is

calculable analytically, and is just 
0(r) for a sphere. Thus we reproduce the standard

derivation.

K.1 E�ect on g(r) of �nite sample volume.

We place a test point at distance x from the centre of our sphere of radius R, and

consider a spherical region around it of radius r ; we wish to know what proportion of

the secondary test points on the surface at r fall within sphere radius R.

There are three cases for the function F(r,R,x) :

1) For all points r < (R-x), all points on sphere surface of radius r will fall inside sphere

radius R, ��� F(r,R,x) = 1

2) For all points r > (R+x), no points on sphere surface of radius r will fall inside

sphere radius R, ��� F(r,R,x) = 0

3) For all points (R-x) < r < (R+x), a fraction of the surface of sphere of radius r will

fall within sphere of radius R, and is given by [Steytler et al., 1983a] :

F (r;R; x) = 1=2�
 
1�x

2 + r2 �R2

2�x�r

!
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Integrating over all the values of x between x=0 and x=R, we get :


0(r) = F (r;R) = 1�3
4
�
�
r

R

�
+

1

16
�
�
r

R

�
3

Dividing the calculated g(r) for a sphere of radius R by F(r,R) will give a better ap-

proximation to g(r) for an in�nite volume, though of course we must truncate the

representation at r < 2�R, for practical signal to noise limitations.
Note: this modi�cation of the calculated g(r) applies only to initial test calculations

in this study. The main work was performed inside in�nite lattices, using de�ned

distributions of radial distances.



Appendix L

Calculation of G(r) for an in�nite

slab.

Calculations of G(r) for porous media show a rapid fall o� at small radii from an

initial value of unity. We can understand this behaviour if we approximate the

geometry in and close to a pore wall as an in�nite plane, with geometric e�ects due

to wall curvature and pore lattice spacing only taking place at larger radii.

We wish to analytically calculate the form of G(r) for an in�nite slab, of thickness t

and of unit density between z = +T; z = �T . We will in the process generate a semi-

analytic description to aid our understanding (and act as a check), and compare these

results with a Monte-Carlo calculation.

Consider a sphere of radius R, whose centre is at O , and lies within the slab, but distance

Z from the z = 0 plane. We wish to know what fraction, �, of the surface of the sphere

is embedded in the slab, as a function of R and of Z : i.e we wish to know �(R,Z), for

0�R<1, �T �Z� + T .

With reference to �gure 134, we can see that we have three main cases :

1) R+ jZj�T : R�T � jZj : all embedded, � = 1

2) R+ jZj�T : T � jZj�R�T + jZj : a hemisphere imbedded.

R� jZj�T
3) R� jZj�T : R�T + jZj : sphere straddles slab.

In appendix J, we derive an expression for the surface area of the cap of a sphere; thus

for case 3, when both hemispheres, (upper and lower), are only partly embedded in the

slab, the surface area not in the slab =

269



APPENDIX L. CALCULATION OF G(R) FOR AN INFINITE SLAB. 270
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Figure 134: Intersection of a sphere with a plane slab.

Su = 2�R(R + Z�T )

Sl = 2�R(R�Z�T )

Hence the fraction of the sphere embedded in the slab =

� =
4�R2�(Su + Sl)

4�R2

=
4�R2�2�R�(2R�2T )

4�R2

=
4��R�T
4�R2

=
T

R
=

t

2�R

Thus we have the slightly surprising result that provided the sphere straddles the slab,

the surface area inside the slab is independent of the Z position, and only depends on

the ratio of the the thickness of the slab to the radius R.

We can check this by generating 104 points on the surface of a sphere, using von Neu-

man's method [Powles, 1994], and causing the sphere to traverse a slab, while calculating

the fraction of the points that fall within the slab (�gure 135).
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For a sphere of radius 4
traversing a slab of width 2
we plot the fraction of the
sphere surface in the slab.

With 10A points randomly on
the surface of the sphere :
For |z| r 5 we see no points
in the slab;
For 5 < |z| < 3 we see a linearly
increasing number of points in
the slab as the sphere enters;
For |z| s 3 we see an
approximately constant number
of points in the slab, while
the sphere straddles the slab,
the exact position not mattering.

Figure 135: Con�rmation that G(r) is constant for a sphere straddling a slab.

Before treating the other cases in detail, we will note that at the point a hemisphere

just touches the surface, the area of the hemisphere in the slab = 2�R2, and is the same

as the area when that hemisphere is fully embedded in the slab.

Thus we may write an expression for �(R,Z) that covers all the above cases, (using the


oor function b , that just returns the lower of its two arguments) :

�(R;Z) =
4�R2�((2�R2)b(Su) + (2�R2)b(Sl))

4�R2

=
4�R2�((2�R2)b(2�R�(R+ Z � T )) + (2�R2)b(2�R�(R� Z � T )))

4�R2

=
1

2
�
�
1b T � Z

R
+ 1b T + Z

R

�

This de�nes a surface in two dimensions; we may plot it as an aid to understanding the

regions we have to consider to derive a fully analytic expression for G(R) (�gure 136).

To calculate the solid-solid radial density distribution, we need to calculate the aver-

age value of the above function for all possible sphere centres within the slab (this is

e�ectively the correlation of �(R; 0) with the top-hat density pro�le of the slab) :
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Figure 136: Integration surface for �(R,Z) for G(r) for a slab.

G(R) =

R+T
�T �(R;Z) dZR +T

�T dZ

=
1

2T

Z +T

�T
�(R;Z) dZ

=
1

4T

Z +T

�T
1b T � Z

R
+ 1b T + Z

R
dZ

We may readily evaluate this integral numerically; this is plotted in �gure 137.

However we wish for an analytic expression for G(R).

Returning to case 3), we have R�T + jZj, where jZj has a maximum value of T .

Therefore,

For R�2T = t :

G(R) =

R+T
�T

T
R dZR +T

�T dZ
=

T

R
=

t

2R
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which is seen to be in agreement with the the numerical integration in �gure 137.

For R�T = t=2,

we see with reference to �gure 136 that the integral for G(R) is a combination of case

1) and the two parts of case 2).

We have for case 1) : R�T � jZj, i.e. jZj�T �R,

��� �(T �R)�Z�T �R, while �(R;Z) = 1.

We have for case 2) :

R�T + jZj, i.e. jZj�R� T ,

��� �T�Z� � (T �R), while �(R;Z) = R+T+Z
2R

and

T �R�Z� + T , while �(R;Z) = R+T�Z
2R .

���G(R) =
1

2T
�
 Z Z=�(T�R)

Z=�T
R+ T + Z

2R
dZ +

Z Z=T�R

Z=�(T�R)
1 dZ +

Z Z=+T

Z=T�R
R+ T � Z

2R
dZ

!

=
1

2T
�
 

1

2R
�
�
R�Z + T �Z +

1

2
�Z2

��T+R
�T

+ [Z]T�R�T+R +
1

2R
�
�
R�Z + T �Z�1

2
�Z2

�T
T�R

!

=
1

2T
�
�
3

4
�R+ 2�(T �R) +

3

4
�R
�

= 1�1
4
�R
T

= 1�1
2
�R
t

For T �R�2T = t,

we see that the integral for G(R) is a combination of case 3) and the two parts of case

2).

We have for case 3) : R�T + jZj , i.e. jZj�R� T ,

��� �(R� T )�Z�R� T , while �(R;Z) = T=R,

and again for case 2) :

R�T + jZj, i.e. jZj�R� T ,

however, since R>Tand jZj�1, the limits interchange : �T �Z� � (R � T ), while

�(R;Z) = R+T+Z
2R ,

and

R� T �Z� + T , while �(R;Z) = R+T�Z
2R .
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���G(R) =
1

2T
�
 Z Z=�(R�T )

Z=�T
R+ T + Z

2R
dZ +

Z Z=R�T

Z=�(R�T )
T

R
dZ +

Z Z=+T

Z=R�T
R+ T � Z

2R
dZ

!

=
1

2T
�
 

1

2R
�
�
R�Z + T �Z +

1

2
�Z2

��R+T
�T

+
T

R
� [Z]R�T�R+T +

1

2R
�
�
R�Z + T �Z�1

2
�Z2

�T
R�T

!

=
1

2T
�
  
�1
4
�R+

T 2

R

!
+ 2�

 
T � T 2

R

!
+

 
�1
4
�R+

T 2

R

!!

= 1�1
4
�R
T

= 1�1
2
�R
t

Thus in summary, for r�2T = t, we obtain a linear pro�le for G(r), with a slope of

� 1
2t . This can be seen to be consistent with the numerical integration in �gure 137.

Such a triangular function is characteristic of the correlation function of two top-hat

functions; it is slightly surprising to obtain it for a sphere and a slab.

For r�2T = t, we obtain an inverse linear pro�le for G(r) = t
2r , as approximately might

be expected for a sphere of surface area / R2 intersecting a slab with a cross-section /
R.

Finally we perform a Monte-Carlo integration (chapter 15) for 109 radial evaluations,

and plot this as points on �gure 137, which shows good agreement with the other two

methods.
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Calculated G(R) for an infinite plane slab

Radius R

G
(R

)

ρ0(R) = 1 ^ T/R

G(R)

1 + (–1/4)z(R/T)

G(R) =  (1/2T)z∫
–T

T

ρZ(R) dR
 where :
ρZ(R) = (1/2)z((1^(T–Z)/R) + (1^(T+Z)/R))

 points :
Monte Carlo G(R) – 
 curve :
Analytic G(R) – for a
plane slab of unity density
of thickness t = 2T,
between Z=+T=+1, Z=–T=–1.

For 0 s R s 2T = t
G(R) is  a straight line,
given by :
G(R) =  1 + (–1/4)zR/T.

For R r 2T = t
G(R) is  an inverse curve
given by :
G(R) =  T/R
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Appendix M

I(q) to G(r) transformations for

standard forms.

We calculate G(r) analytically (using the algebraic language Maple) for the standard

neutron scattering I(q) functions : Guinier (Gaussian), Porod (q�4), Ornstein-

Zernike (Lorentzian), Guinier-Porod (Lorentzian2), and for the porous media form

of sech.

M.1 q domain to r domain transformation.

In section 12.2 we have the relationship for the solid-solid density correlation function


(r) :


(r) = �1�(G(r)�1) = �i� 1

4�2�r �
Z 1

�1
q�I(q)�ei�q�r dq

Thus we may use the algebraic language Maple to readily obtain the following expres-

sions for 
(r). We plot I(q) and 
(r) in �gure 138.

M.1.1 Guinier : I(q) Gaussian.

For a Gaussian of the form :

I(q) = e�
q2

2�2

we obtain the Gaussian


(r) =
1

2�
p
(2�)
��3�e��2r2

2

276



APPENDIXM. I(Q) TOG(R) TRANSFORMATIONS FOR STANDARD FORMS.277

If we write the Guinier equation in the form :

I(q) = e
� q2

Q0
2

we obtain the Gaussian


(r) =
1

8�
p
�
�Q0

3�e�
�
Q0�r
2

�
2

M.1.2 Ornstein-Zernike : I(q) Lorentzian.

If we write the Ornstein-Zernike expression in the form :

I(q) =
1

1 + q2

Q0
2

where the correlation length = � = 1
Q0
, we obtain the symmetric bi-exponential �

inverse r function :


(r) =
Q0

2

4��r �
�
H(r)�e�Q0�r�H(�r)�eQ0�r

�

where H(x) is the Heaviside function, such that

x < 0 : H(x) = 0

x = 0 : H(x) is unde�ned

x > 0 : H(x) = 1

M.1.3 Guinier-Porod : I(q) Lorentzian squared.

If we write the Guinier-Porod expression in the form :

I(q) =

0@ 1

1 + q2

Q0
2

1A2

we obtain the symmetric bi-exponential function :


(r) =
Q0

3

8�
�
�
H(r)�e�Q0�r�H(�r)�eQ0�r

�
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M.1.4 Porod : I(q) inverse quartic q.

If we write the Porod expression in the form :

I(q) =

�
q

Q0

��4

we obtain the symmetric linear function :


(r) = �Q0
4�r

8�
� (H(r)�H(�r))

Since this function is always non-positive it is only physical as a modi�er of some other

function with a �nite 
(r).

M.1.5 Porous media : I(q) sech.

Up to the point where there is a q�4 departure, the I(q) for porous media is well

described by an I(q) with the form :

I(q) = sech

�
q

Q0

�
=

2

e
� q
Q0 + e

q
Q0

It is possible to show that the Fourier transform of sech is another sech [Powles, 1972-

1999, discussions], [Evans, 1972-1999, discussions], appendix R. We may then con�gure

Maple so that it knows this relationship, see appendix R.

We then obtain the symmetric function :


(r) =
Q0

2

8�r �sinh
�
�Q0�r
2

�
�
�
sech

�
�Q0�r
2

��2
� �Q0

3

16
�
�
1�1

3
��2 + 1

8
��4� 31

560
��6 + � � �

�
�sech(�)

where � = �Q0�r
2 .

i.e. 
(r) is thus sech like, particularly at small �.
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I(q) for standard scattering functions.

q/Q0 
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0.1 1 10

I(q) for standard forms:

 Guinier : Gaussian
 Ornstein–Zernike : Lorentzian
 Guinier–Porod : Lorentzian²
 Porod : q¯A
 Porous media : sech

321–1–2–3

0.2

0.1

γ(r) for standard scattering functions.
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γ(r) for standard forms:

 Guinier : Gaussian
 Ornstein–Zernike : 1/|r| Z e–|r| 

 Guinier–Porod : e–|r| 

 Porod : –|r|
 Porous media : 1/r Z sinh(r)zsech(r)²

Figure 138: I(q), 
(r) for various standard forms.



Appendix N

Angular fall-o� in measured

intensity due to a 
at detector.

Neutrons scattered at a large angle onto a 
at detector will be spread over a larger de-

tector area than those scattered through a smaller angle. We calculate this geometric-

fall o� in intensity, and compare it with the measured fall-o�. The agreement is quite

reasonable, but in practice we �nd we need to measure the fall-o� at each detector

position using a water sample.

With reference to �gure 139 we place a scattering sample at O , distance D from a 
at

detector. Neutrons scattered at angle �s will impinge on the detector at A, a radial

distance x , where :

x = D�tan(�s)

Thus we may immediately conclude that a in�nitesimal width of scattering d�s will be

spread over

dx = D�d tan(�s) ds

= D�(1 + tan2(�s)) ds

We may con�rm this geometrically, by considering neutrons scattered at angle �s+��s,

which will impinge on the detector at B , a radial distance x+�x . If we drop perpen-

dicular AP onto OB , we see that it has length R�sin(��s). Hence

�x =
R�sin(��s)
cos(�s +��s)

280
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Detector

SampleO

D

x ∆x
A B

P

θs 

θs+∆θs 

∆θs 

RX

Rzsin(∆θs)

Figure 139: Angled scattering onto a 
at detector.

=
D�sin(��s)

cos(�s)�cos(�s +��s)

��� dx � D

cos2(�s)
d�s

Simple application of Pythagoras shows these two answers to be the same.

However we have a second e�ect to consider, in that AB will trace out an anulus of

radius x+ �x
2 , such that the area on the plane detector is

�Ap =
�

2
�
�
D�tan(�s) + �x

2

�
��x

��� dAp � �

2
�D�tan(�s)� D

cos2(�s)
d�s

However if we consider the projected area on a sphere of radius D, we see that this will

trace out an anulus of radius X + �X
2 , of area

�As =
�

2
� (D�sin(�s) +D�sin(�s +��s)) �D���s

=
�

2
�D2�

�
sin(�s) +

1

2
�cos(�s)���s

�
���s

��� dAs � �

2
�D2�sin(�s) d�s

The larger �A
��s

the more pixels the scattering is spread over, and hence the lower the
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measured intensity in any particular pixel. Thus we conclude that the measured inten-

sity for a uniform scattering will fall-o� as

dAs

dAp
(�s) =

sin(�s)�cos2(�s)
tan(�s)

= cos3(�s)

We compare this with the measured fall-o� for water with the detector at 1.43m (o�set

350mm) in �gure 141. The agreement is quite reasonable at all angles, but is not

exact. In practice a symmetric quartic polynomial }4(�) = � + ���2 + 
��4 was used
to approximate the fall-o� behaviour of water and the geometric fall-o� calculated with

allowance for the angled attenuation due to a thick sample (see appendix O). We then

write

Geom(�s) =
}4(�s)

Atten(�s)



Appendix O

Attenuation due to angled

scattering in a thick sample.

Neutrons scattered at an angle in a thick sample will have a longer path length in

the sample, and will su�er increased attenuation. We calculate this using a simple

single-scattering/attenuation model.

For neutrons in an adsorbing or scattering medium, the direct path beam will be atten-

uated; for a 1/eth attenuation path length = Pe we have :

t

x

θs 

Figure 140: Angled scattering through a

thick sample.

I(x) = I0�e�
x
Pe

For distilled water in a 1mm thick Helma cell

we have for � = 12�A neutrons

I(x = 1f mmg)
I(0)

= 0:414

��� Pe = �1fmmg
Ln0:414 = 1:133 fmmg

For a 
at slab sample of thickness t , we con-

sider those (attenuated) neutrons that travel

a distance x and then su�er a scattering through angle �s = 2��Bragg. We treat the

e�ects of all further scatterings from this ensemble as though they were an attenuation

due to the remaining path length lr.
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Thus the total path length in the medium is given by (see �gure 140)

l(x; �s) = x+
t�x

Cos(�s)

��� I(x; �s) = I0�e�
1
P
�
�
x+ t�x

Cos(�s)

�
Hence, averaging over all x we obtain :

��� average Ln
�
I(�s)
I0

�
=

� 1
Pe
�
R x=t
x=0

�
x+ t�x

Cos(�s)

�
dxR x=t

x=0
1dx

= � 1
t�Pe �

R x=t
x=0

�
t

Cos(�s)
+ x�

�
1� 1

Cos(�s)

��
dx

= � 1
t�Pe �

h
t�x

Cos(�s)
+ 1

2 �x2�
�
1� 1

Cos(�s)

�it
0

= � 1
t�Pe �

�
t2

Cos(�s)
+ 1

2 �t2�
�
1� 1

Cos(�s)

��
= � t

2�Pe �
�
1 + 1

Cos(�s)

�
Thus for a sample of thickness t and for

ECT;S : Empty Cell (Transmission, Scattering)

ST;S : Sample (Transmission, Scattering)

we obtain for the 1/eth path length

Pe = � t

Ln
�

ST
ECT

�
and a normalised angular fall o� in SS due to angled path length variation in the thick

sample :

Atten(�s) =
ECT

ST
�e� t

2�Pe �
�
1+ 1

Cos(�s)

�
Although not exact this is a reasonable �rst approximation, given that even for water

the maximum loss of intensity on D22 is not large (see �gure 141).
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Appendix P

Fourier transformation of

measured I(q) results to G(r), of

calculated G(r) to I(q).

P.1 I(q) to G(r).

Generating suitable data for transformation.

We see in chapter 12 that we may use a Fourier transform to convert q�I(q) data to

r�
(r) data. We wish to use a Fast Fourier Transform for e�ciency reasons, and this

needs equally spaced data for 0 � q � Qmax, whereas the data from the area detector

at di�erent detector distances is not equally spaced; further, data near q = 0 is missing.

First we note that for the measured scattering from the sol-gel silicas the low q data

is well �tted by a Guinier (Gaussian) approximation (see chapter 12). Such �ts were

made, and the low q data that could not be measured around the beam-stop at 18m

re-created.

At high q the hydrogen subtracted data for the scattering from the pores drops with

an approximately q4 fallo� at high q (see �gures 99, 100, 101). The linear part of

these log-log data sets were straight line �tted, and extrapolated to an arbitary qmax of

1fradian��A�1g, to obtain good resolution in the spatial domain.

Since the expected scattering from pores at large q falls monotonicly, we neglect the

atomic scattering to obtain a form that is e�ectively P(q) for the pores.

The scattering data was then �tted in the log-log domain by a �ve part quartic piece-

wise polynomial. i.e. �ve polynomials }41::5(q) each constrained to be continuous at

286
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the four break-points in amplitude, gradient and curvature. This is, incidentally, an

extremely compact representation of the scattering data.

I(q) to G(r) transformation routine.

Using these analytic descriptions of the measured data, uniformly spaced data was

generated for Fast Fourier Transforming, using a 32k point complex 64bit FFT. A

routine sq2gr was written in Apl to take I(q) data, multiply by q , create anti-symmetric

data, Fast Fourier transform using a well tested algorithm, take the resulting imaginary

data, (throwing away the data for r � 0), scale the spatial axis by 2� (since the FFT

was scaled to convert time to frequency, see chapter 12), and divide by r , returning 
(r)

data measured in f�Ag.
This routine was written in Apl , translated to C [Budd, 1988, Sirlin, 1988..1999], screen

plotting of the intermediate and �nal results added, and compiled to run under Linux

on a 200MHz PC. It was tested by generating I(q) data for a sphere, and transforming

it to 
(r). This transformed data was co-linear with the analytic data for 
0(r) of a

sphere (with the exception of the missing point at zero radius).

Finally, for our silica data we use the values measured in chapter 11.5 for �s (density of

the voidless silica lattice) and �g (density of the silica grain = �s�f g) to re-scale the


(r) data to density units �g�G(r), such that at r = 0 the density was the (voidless)

silica density �s, and at r = 1 the density was the grain density �g = fg��s.
We plot the resulting G(r)s for the seven sol-gel silicas in �gures 113, 114.

P.2 G(r) to I(q).

G(r) to I(q) transformation routine.

A matching G(r) to I(q) transformation was written to transform Monte-Carlo calcu-

lated G(r) data to I(q).

Since the Monte-Carlo calculations give us data in the form fs�G(r), which tends at

large r to an average value f s, we �rst need to convert this to 
(r), with an average

value of 0. Thus this routine accepts 2+1/8 k data pairs, averages the last 1/4 k to �nd

f s, subtracts this, throws the last 1/8 k away, zero extends to 8k, multiplies by r , forms

the anti-symmetric data, performs a 16k point complex 64bit FFT, takes the imaginary

data, throws data for q � 0 away and divides by q to obtain I(q). See �gures 106, 107,

108, 109 where the Monte-Carlo calculated scattering is compared with the measured

scattering for seven sol-gel silicas.



Appendix Q

Appendices for Monte-Carlo

integration of G(r).

To enable veri�cation of the Monte-Carlo integration of G(r) for model structures,

we list the main subroutines called.

Q.1 Generating random unit vectors in 3D, using von Neu-

man's method.

We wish to generate N random unit vectors in 3D [Powles, 1994], as part of the modi�ed

Monte-Carlo integration of G(r) :

Generate just over 2N random points in a cube of side 2, centered on 0; reject those

points outside the unit sphere; then re-normalise the remainder (usually just over half)

to the surface of the sphere; trim to N .

This may be expressed as :

Vec  runitvec N;S;L2;L;Sel

\�

\� produces N random unit vectors

\� using von Neuman's method :

\�

S  �1 + 2 � 1E�6 � �1 + ? ((2+d2.1�N),3) � 1000001

L2  +/ S*2

Sel  1 � L2

L2  Sel/L2

S  Sel/[1]S

L  L2*0.5

Vec  (N,2) � S � [1] L

288
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Q.2 Generate a Gaussian distribution, using the Central

Limit Theorem.

The Central Limit Theorem states that if we convolve together su�cient distributions

of any form, the result will tend towards a Gaussian distribution [Powles, 1994].

This routine convolves together 12 uniform distributions; in principle any large number

would do, but 12 has the advantage that this gives directly a variance of 1, since the

variance of a uniform distribution is 1
12 . This method is inaccurate in the wings: it can

not generate values outside �6.
Generating 10000 points in such a distribution, with Mean = 1, Variance = 0.005, and

binning into 101 bins in the range 0..2, we get the Gaussian distribution in �gure 143.

This may be expressed as :

Distribution  SizeShape gauss MeanVar

\�

\� generate a Gaussian distribution :

\� samples from a univariate normal distribution

\� (sizeshape) gauss (mean,variance)

\�

Distribution  MeanVar[1] + (MeanVar[2]*�2) � �6 + 1E�6 � �12 +

+/ ? (SizeShape,12) � 1000001

Q.3 Generate non-uniform distributions by remapping a

uniform distribution.

In a probability distribution, the probability of x being less than XL is given by

[Abramowitz and Stegun, 1954, Evans, 1972-1999] :

Pr(x�XL) =
1

Cn
�
Z XL

�1
f(x)dx = R

Where C n is a normalisation constant.

We then need to revert this, to obtain x as a function of R; i.e. to get a mapping function

that can be applied to a uniform distribution Ru, to give us our required non-uniform

distribution.
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Q.3.1 Generate a distribution / x by remapping a uniform distribu-

tion.

When calculating S(Q) from G(r) we wish to obtain r�G(r); thus it is useful to be able to
selectively increase the density of radial evaluations at large r � i.e we wish to generate

a probability distribution that is (at least partly) weighed to have a density / r , r2.

For a simple distribution / x we have for limits of 0,L :

R
xdxR L

0 xdx
=

x2

L2
= Ru

Thus we may obtain the non-uniform distribution by remapping a uniform distribution

Ru by :

x = L�pRu

Generating 600 points in such a distribution, and 300 points in a uniform distribution

and binning into 10 bins in the range 0..5, we get the distribution in �gure 142, This

contains the �rst two parts of a function to generate G(r) data with weighting suitable

for viewing both as G(r) and r�G(r).

54321

200

100

R weighting of random distribution

R

W
ei

gh
tin

g

R weighting of random
distribution for G(r)
that is to be fitted
and transformed as
rzG(r).

Figure 142: Distribution / x + Uniform Distribution.
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Q.3.2 Generate a Sech distribution by remapping a uniform distri-

bution.

For sech(x) we have [Abramowitz and Stegun, 1954, Evans, 1972-1999, Maple, 1999] :

R
sech

�
x�Xd
X0

�
dxR+1

�1 sech
�
x�Xd
X0

�
dx

=
X0

X0�� tan
�1
�
sinh

�
x�Xd

X0

��
= Ru

Thus we may obtain a Sech distribution by remapping a uniform distribution Ru by :

x = Xd +X0�sinh�1 (tan(��Ru))

Generating 10000 points in such a distribution, with X d = 1, X 0 = 0.05, and binning

into 101 bins in the range 0..2, we get the sech distribution in �gure 143.

21

1000

500

Probability distributions : Gaussian, Sech

x

P
ro

ba
bi

lit
y

Plotted :
A Gaussian distibution of
mean value 1 and variance 0.005.
and a Sech distribution
given by :  sech((x–Xd)vX0),
with X0 = 0.05, Xd = 1.

The Gaussian distribution is
obtained using the Central Limit
theorem by convolving 12
uniform distributions Ru, and the
Sech distribution by remapping
a uniform distribution Ru by:
 x = Xd + X0zsinh¯¹(tan(πRuv2zX0))

Figure 143: Gaussian and Sech Distributions.

This may be expressed as :

Distribution  SizeShape prsech MeanVarRange;Xd;X0;Xr

\�

Xd  MeanVarRange[1]

X0  MeanVarRange[2]

Xr  MeanVarRange[3 4]

Distribution  Xd + X0 � �5
 3
 
 (�0.5�+/Xr)+

(�1+? SizeShape � 1000001) � 1000000 � � -/Xr



Appendix R

Fourier transform of Sech is Sech.

We measure scattering from sol-gel silicas that is well �tted by Sech functions. Thus

we need an analytic Fourier transform of Sech.

It is not generally appreciated outside UKC Physics that in the same way the Fourier

transform of a Gaussian is another Gaussian, so the Fourier transform of Sech is

another Sech. We use the algebraic language Maple to demonstrate this relationship

We then show how Maple can be instructed to use this relationship in further Fourier

transformations.

It is possible to prove that the Fourier transform of Sech is another Sech, either by

equating series [Powles, 1972-1999, discussions] or by a contour integration technique

[Evans, 1972-1999, discussions].

Here we just use the algebraic language Maple to indicate the relationship, and then

show howMaple can be induced to use this relationship in further transformations, such

as the I(q) to 
(r) transformation.

R.1 Demonstration of relationship : Sech <> Ft(Sech).

Maple worksheet ft sech proof.mws :

'Proof' of Fourier transform of sech <> sech - Maple version

J.B.W.Webber@ukc.ac.uk 99 10 7

> assume(n>0,n,integer);

> f(x) := sech(a*x);

f(x) := sech(ax)

> f(x) := convert(f(x),exp);

292
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f(x) := 2
1

e(a x) +
1

e(a x)
> f(x) := simplify(f(x));

f(x) := 2
e(�a x)

1 + e(�2 a x)

we have for the Taylor expansion of 1/(1+p) :

> T(p) := 1/(1+p);

T(p) :=
1

1 + p

> series(%,p);

1� p+ p2 � p3 + p4 � p5 +O(p6)

Thus the nth term is :

> fn(x) := 2*exp(-a*x)*(-1)^n*exp(-2*a*n*x);

fn(x) := 2 e(�a x) (�1)n~ e(�2 an~ x)

such that the sum of the series is sech(ax) :

> sum(fn(x),n=0..infinity);

2
e(�a x) e(2 a x)

e(2 a x) + 1

> simplify(%);

2
e(a x)

e(2 a x) + 1

We want the Fourier transform :

F(k) = int(f(x) * exp(ikx), x=-in�nity..in�nity)

we note that f(x) is symmetric, therefore

F(k) = 2* int(f(x) * cos(kx), x=0..in�nity)

= 2* int( sum( fn(x), n=0..in�nity) * cos(kx), x=0..in�nity)

= 2* sum( int( fn(x)* cos(kx), x=0..in�nity), n=0..in�nity)

at this point we need to de�ne a as positive :

> assume(a>0,a,real);

> Fn(k) := 2* int(fn(x)*cos(k*x),x=0..infinity);
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Fn(k) := 4(�1)n~
p
a~2 + 4 a~2 n~ + 4 a~2 n~2 + k2

.
(
p
%1(

a~2

%1
+ 4

a~2 n~

%1
+ 4

a~2 n~2

%1

+
k2

%1
+

k2 a~2

(a~ + 2 a~ n~)2%1
+ 4

k2 a~2 n~

(a~ + 2 a~ n~)2%1
+ 4

k2 a~2 n~2

(a~ + 2 a~ n~)2%1

+
k4

(a~ + 2 a~ n~)2%1
))

%1 := 1 +
k2

(a~ + 2 a~ n~)2

> Fn(k) := simplify(Fn(k));

Fn(k) := 4
(�1)n~ a~ (1 + 2n~)

a~2 + 4 a~2 n~ + 4 a~2 n~2 + k2

Thus we now have the Fourier transform of a sech expressed as an in�nite sum of

Lorentzians, with the nth term of the form :

> t(n) := 4*(-1)^n/(a*((2*n+1))*(1+(k/(a*(2*n+1)))^2));

t(n) := 4
(�1)n

a (2n+ 1) (1 +
k2

a2 (2n+ 1)2
)

At this point Maple has di�culties caused by the presence of the constant a

(probably because I have not told it something it needs to know) and it generates

hypergeometric expressions.

If we write K = k/a, we have :

> Fn(K) := 4*(-1)^n*(1+2*n)/(a*(1+4*n+4*n^2+K^2));

Fn(K) := 4
(�1)n~ (1 + 2n~)

a~ (1 + 4n~ + 4n~2 +K2)

> F(K) := sum(Fn(K),n=0..infinity);

F(K) :=
(1 + I K) (�1 + I K)�

a~ (1 +K2) sin(
1

2
� (3 + I K))

> F(K) := expand(F(K));

F(K) :=
�

a~ (1 +K2) cosh(
1

2
�K)

+
�K2

a~ (1 +K2) cosh(
1

2
�K)

> F(K) := simplify(F(K));

F(K) :=
�

cosh(
1

2
�K) a~

> a := 'a';

a := a

Hence we have obtained F(k), the Fourier transform of f(x) = sech(a*x) :
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> f(x);

2
e(�a x)

1 + e(�2 a x)

> F(k) := (Pi/a)*sech((Pi*k)/(2*a));

F(k) :=
� sech(

1

2

� k

a
)

a

We may now add this to the de�nition of known Fourier transforms using :

> with (inttrans);

[addtable ; fourier ; fouriercos ; fouriersin; hankel ; hilbert ; invfourier ; invhilbert ;

invlaplace ; invmellin; laplace ; mellin; savetable ]
> addtable(fourier,1/(exp(a*t)+exp(-a*t)),(Pi/(2*a))*sech(Pi*w/(2*a)),t

> ,w,fag,a::Range(0,infinity));
> savetable(fourier,`ftsech_defn.m`);

This saves the de�nitions in a �le; in a later session we may say :

> with (inttrans);

[addtable ; fourier ; fouriercos ; fouriersin; hankel ; hilbert ; invfourier ; invhilbert ;

invlaplace ; invmellin; laplace ; mellin; savetable ]
> read(`ftsech_defn.m`);

> assume(Q0>0);

> fourier(sech(q/Q0),q,r);

fourier(sech(
q

Q0~
); q; r)

> simplify(%);

Q0~ �

cosh(
1

2
� rQ0~)

and for the neutron scattering I(q) <> G(r) - 1 transform we have :

> Gs(r) := I*(1/rho)*(1/r)* fourier(q*sech(q/Q0),q,r);

Gs(r) := �
@
@r fourier(sech(

q

Q0~
); q; r)

� r

> simplify(%);

1

2

Q0~2 �2 sinh(
1

2
� rQ0~)

� r cosh(
1

2
� rQ0~)2
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