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Abstract

This thesis explores non-standard numerical integration methods for a range of

non-linear systems of differential equations with a particular interest in looking for

the preservation of various features when moving from the continuous system to a

discrete setting. Firstly the exsiting non-standard schemes such as one discovered

by Hirota and Kimura (and also Kahan) [21, 32] will be presented along with

general rules for creating an effective numerical integration scheme devised by

Mickens [40].

We then move on to the specific example of the Lotka-Volterra system and

present a method for finding the most general forms of a non-standard scheme

that is both symplectic and birational. The resulting three schemes found through

this method have also been discovered through an alternative method by Roeger

in [52].

Next we look at discretizing examples of 3-dimensional bi-Hamiltonian systems

from a list given by Gümral and Nutku [18] using the Hirota-Kimura/Kahan

method followed by the same method applied to the Hénon-Heiles case (ii) system.

The Bäcklund transformation for the Hénon-Heiles is also considered.

Finally chapter 6 looks at systems with cubic vector fields and limit cycles with

an aim to find the most general form of a non-standard scheme for two examples.

First we look at a trimolecular system and then a Hamiltonian system that has a

quartic potential.
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Chapter 1

Introduction

This thesis is concerned with non-standard numerical integration methods for

non-linear systems of differential equations, with a particular focus on preserving

features of the continuous system through the discretization process. We mainly

consider continuous systems that are Hamiltonian in nature.

1.1 Motivation

As there are plenty of systems of differential equations that can only be solved

numerically it is vital that effective discretization methods are devised, and the

search for such schemes that also preserve the structural properties of the original

system are fundamental to numerical analysis. One of the first suggestions of a

non-standard (not the typical known numerical schemes) discretization method

came in the form of unpublished lecture notes by Kahan in 1993 in which he

presented a method for discretizing a set of differential equations in which all

of the components of the vector field are quadratic. One of the systems that

Kahan applied this scheme to was the Lotka-Volterra system, and he found that

it peserved the strucural properties of the original continuous system. There was

no accompanying explanation as to how the scheme was devised or why it worked
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so well.

A few years later Hirota and Kimura independently rediscovered this dis-

cretization method, but this time applied to mechanics, and more specifically

to the Euler Top system [21]. This prompted further interest and as a result new

integrable maps were found, for example [27]. Although this new ’unconventional’

method had been sucessfully used many times to produce new maps, there was

still a lot of mystery around the conditions for which a map that preserves a sym-

plectic structure and one of more first integrals is produced. Recently there has

been more progress made with Celledoni et al [7] showing that Kahan’s method ac-

tually coincides with the Runge-Kutta method applied to quadratic vector fields.

Celledoni et al also went on to propose that if the continous system is a Hamilto-

nian system with a constant Poisson structure and a cubic Hamiltonian then the

corresponding map has a rational first integral and peserves a volume form. In

this thesis this Kahan/Hirota/Kimura scheme will be applied to further examples

of continous systems such as 3-dimensional Bi-Hamiltonian systems in chapter 4

and an integrable case (ii) Hénon-Heiles system in Chapter 5.

Another interesting development was the work of Mickens in proposing a non-

standard approach to creating discretization methods that preserve structual fea-

tures [40] in which some of the rules could have been used to develop the Ka-

han/Hirota/Kimura scheme. This approach was used by Mickens himself to pro-

duce another discretization of the Lotka-Volterra system [39] that is similar to

that of Kahan’s, but used an asymmetric rule rather than a symmetric one. This

has been the motivation to devise a general method for discretizing particular

systems using some of these rules, and this has been done for the Lotka-Volterra

system (to reproduce results already obtained by Roeger) in Chapter 3, reaction

kinetics governed by the Law of Mass Action and a Hamiltonian system with a

quartic potential, both in Chapter 6.
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1.2 Summary of Results

In Chapter 3 a generalised discretization of the Lotka-Volterra system was pre-

sented, and although the findings of the three symplectic maps have already been

presented by Roeger the method used to discover them took a different approach.

By requiring that the map produced by the numerical scheme is birational before

restraining it to be symplectic, a list of 7 birational maps for the Lotka-Volterra

system has been generated, which were then used to reproduce the three symplec-

tic maps. Given that the most general form of the Lotka-Volterra system is given

as

x̃− x
h

= ax+ (1− a)x̃− (bxy + cx̃ỹ + dxỹ + ex̃y), (1)

ỹ − y
h

= −Ay − (1− A)ỹ +Bxy + Cx̃ỹ +Dxỹ + Ex̃y. (2)

then the 7 birational maps are given by the following sets of parameter values:

Case (i): {a, b, 0, 0, 1− b, A, 0, C, 0, 1− C}

Case (ii): {a, b, 0, d, 1− b− d,A, 0, 0, 0, 1}

Case (iii): {a, 0, c, d, 1− c− d,A, 0, 0, 1, 0}

Case (iv): {a, 0, 0, d, 1− d,A, 0, 0, D, 1−D}

Case (v): {a, 0, 0, 1, 0, A,B, 0, D, 1−B −D}

Case (vi): {a, 0, 0, 0, 1, A, 0, C,D, 1− C −D}

Case (vii): {a, 0, c, 1− c, 0, A,B, 0, 1−B, 0}

The three symplectic maps are given by:

Case (i): {a, b, 0, 0, 1− b, A, 0, C, 0, 1− C}

Case (ii): {a, 0, 0, d, 1− d,A, 0, 0, d, 1− d}

Case (iii): {a, 0, c, 1− c, 0, A,B, 0, 1−B, 0}

This result further confirms that these three maps are the only currently known

discretizations of the Lotka-Volterra system that peserve the structural properties

of the original continuous system.
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The key results from Chapter 4 are the presentations of three new maps created

by applying the Kahan discretization to three flows found in a list of twelve pre-

sented by Gumral and Nutku [18] which are bi-Hamiltonian flows each associated

with a pair of real three-dimensional Lie algebras. The Diophantine integrability

test has been applied to each of these with the conclusion that none of them are

likely to be integrable. The three new maps are as follows:

x̃− x
ε

= −x̃z − xz̃, ỹ − y
ε

= −a(ỹz − yz̃),
z̃ − z
ε

= 2x̃x+ 2aỹy, (3)

x̃− x
ε

= −x̃z − xz̃, ỹ − y
ε

= −(x̃+ ỹ)z − (x+ y)z̃,

z̃ − z
ε

= (2x̃+ ỹ)x+ (x̃+ 2ỹ)y,

(4)

x̃− x
ε

= x̃y + (ỹ − 2bx̃)x,
ỹ − y
ε

= −bx̃y − (2x̃+ bỹ)x,

z̃ − z
ε

= (2ỹ + bz̃)x+ (2x̃+ 2bỹ − z̃)y + (bx̃− ỹ)z.

(5)

In Chapter 5 the Hirota-Kimura/Kahan discretization method was applied to

an integrable case (ii) Hénon-Heiles system which produced a discrete system that

is symplectic but unfortunately does not preseve the Hamiltonians. In comparison

to the Bäcklund transformation for the same system it is noted that while the

Hirota-Kimura type numerical scheme produces a map lacking some of the original

features, it is a much simpler method to apply and is likely to produce similar

maps for other Hénon-Heiles systems.

The key results from Chapter 6 arise from applying the same method for

producing general discretization schemes to two different systems. First it is

applied to a reaction kinematics system with the result of confirming the only

birational discretization of the system which had already been presented by Hone
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[26], which is as follows:

x̃− x
ε

= a− cx− (1− c)x̃+ xx̃ỹ,
ỹ − y
ε

= b− x2ỹ, (6)

where a, b, c are free parameters.

Secondly the method is applied to a Hamiltonian system with a quartic po-

tential, with the result of producing a single map with free parameters a and

b:

x̃− x
h

= p̃,
p̃− p
h

= ax3 − bx. (7)

1.3 Continuous Dynamical Systems

A continuous dynamical system has a phase space that evolves over continuous

time and can be represented by an ordinary differential equations (ODEs) or

partial differential equations (PDEs). We will be looking only at ODEs. A typical

first order n-dimensional system of ODEs can be given by

ẋ = F(x), (8)

where ẋ represents the time derivatives of the dependent variables x = (x1, x2, ..., xn),

and the F : Rn 7→ Rn is a vector of functions:

F(x) =



f1(x)

f2(x)

.

.

fn(x)


. (9)

It should be noted that this is an autonomous system which means that the

differential equations do not depend on the independent variable t. A key feature
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of such continuous systems that will be important throughout this thesis is the

stability of the fixed points of the system. A fixed point of an ODE is a set of

coordinates in the phase space that is fixed under the time evolution of the system,

and are defined as follows.

Definition 1.3.1. A point x∗ is called a fixed point, or steady state, of a contin-

uous dynamical system (8) , if F(x∗) = 0.

In the phase space the fixed points will be the intersections of the nullclines

which are the sets of points that satisfy each equation fi(x1, x2, ..., xn) = 0 for all

i = 1, .., n.

In order to analyse the stability of the fixed points, and therefore the behaviour

of the solutions of the system, we need to define the Jacobian matrix.

Definition 1.3.2. The Jacobian matrix, J , of a system of ODE’s in definition

1.1.1 is a matrix of the partial derivatives of F as follows

J(x) =



∂f1
∂x1

. . . ∂f1
∂xn

. . .

. . .

. . .

∂fn
∂x1

. . . ∂fn
∂xn


.

The Jacobian matrix is used to linearize the system of ODE’s which means to

approximate them using a linear system, and near the fixed points this will usually

be a good enough approximation to identity the nature of the fixed point. The

linear system for each fixed point is created by evaluating the Jacobian matrix at

the fixed point to give the system

ẋ = Ax, (10)
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where A = J(x∗) is sometimes known as the community matrix [42]. The eigen-

values, λj of the matrix A are calculated as the roots of the characteristic equation

det |A− λI| = 0, (11)

where I is the n × n identity matrix. If all these eigenvalues have non-zero real

parts ( Re(λj) 6= 0, for all j) then x∗ is known as a hyperbolic fixed point.

The linear stability analysis criteria are given as follows.

Theorem 1.3.3. (Poincare-Lyapunov). If the eigenvalues λj of the Jacobian

matrix evaluated at the fixed point have non-zero real parts, then the trajectories

of the system around the fixed points will behave in the same way as the associated

linear system. The different cases of stability are:

(i) λj ∈ R and λj < 0 indicates a stable node (sink) and nearby solutions will

be attracted to and end at the fixed point.

(ii) λj ∈ C and Re(λj) < 0 indicates a stable spiral (sink) and nearby solutions

will spiral around and eventually end at the fixed point.

(iii) λj ∈ R and λj > 0 indicates an unstable node (source) and nearby solu-

tions will move away from the fixed point.

(iv) λj ∈ C and Re(λj) > 0 indicates an unstable spiral (source) and nearby

solutions will spiral away from the fixed point.

(v) λ ∈ R and λj have different signs indicates a saddle point (unstable).

In the degenerate case of Re(λj) = 0 (pure imaginary) the fixed point is

classified as a centre, and the trajectories of the linear system will form elliptical

orbits with the fixed point lying in the centre of the ellipse, which is considered

stable.

See Appendix B for an example demonstrating stability analysis.
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1.4 Hamiltonian Mechanics

The phase space of a canonical Hamiltonian system has even dimension 2m and

the coordinates consist of m position variables qi and m momentum variables

pi which are canonical coordinates. On the phase space a Hamiltonian system

is specified by a function H(qi, pi) called the Hamiltonian, and it is the partial

derivatives of this function that define the time evolution of the system,

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (12)

The Hamiltonian H is known as an invariant or first integral because it is con-

served with time, dH
dt

= 0, and in classical mechanics it is the total energy of the

system (usually the sum of kinetic and potential energy). In order to consider the

integrability of Hamiltonian systems we must first define Poisson brackets and

symplectic forms which follows in the next section.

1.4.1 Poisson brackets

A Poisson bracket is an important operator in Hamiltonian mechanics, and to

define this operator we shall let M be an n-dimensional manifold and F be the

set of all smooth real-valued functions that are defined on M .

Definition 1.4.1. A Poisson bracket on M is defined as a bilinear operator,

denoted {, } : F(M)×F(M) 7→ F(M), such that for any f, g, h ∈ F ,

(i) {αf + βg, h} = α{f, h}+ β{g, h}, (linearity)

(ii) {f, g} = −{g, f}, (skew-symmetry)

(iii) {f, {g, h}}+ {g, {h, f, }}+ {h, {f, g}} = 0, (Jacobi identity)

(iv) {f, gh} = g{f, h}+ {f, g}h, (Leibniz property)

for all α, β ∈ R.
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The general representation of a Poisson bracket is given (using local coordi-

nates xi, i = 1, ..., n) as

{f, g} =
n∑

j,k=1

{xj, xk}
∂f

∂xj

∂g

∂xk
, (13)

When using canonical coordinates (qi, pi), i = 1, ...,m, and a manifold with

dimension n = 2m the Poisson bracket is represented as a special case of (13)

{f, g} =
m∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(14)

with {qj, pk} = δjk.

Definition 1.4.2. A Poisson bracket is described as nondegenerate if {f, g} = 0

for all f implies that g is a constant function.

A nondegenerate Poisson bracket can only exist when n is even, and a canonical

Poisson bracket will always be nondegenerate and the manifold M it is defined on

will be symplectic (see section 1.5).

One last feature of a Poisson structure to mention before relating back to

Hamiltonian systems is the possible existence of Casimir functions, which is only

possible if the Poisson structure is degenerate.

Definition 1.4.3. A Casimir C of a Poisson bracket is a non-constant function

on M , so that {C, f} = 0, for all f ∈ F(M).

For a canonical Hamiltonian system the equations of motion (12) can be writ-

ten using the Poisson bracket (14) as follows

q̇i = {qi, H}, ṗi = {pi, H}, (15)

where the dot denotes the time derivative. The evolution with time of any function

9



f on the phase space of a Hamiltonian system is defined by the Poisson bracket,

ḟ = {f,H}, (16)

which leads to the fact that any Casimir function C on the phase space is also an

invariant of the system (conserved with time), as Ċ = {C,H} = 0. Any system

with an even dimension and a Poisson bracket is automatically symplectic, and

therefore all Hamiltonian systems are symplectic, which also implies that they

preserve phase space volume.

It is also possible for a system to exhibit two Poisson brackets, in which case

the system has a bi-Hamiltonian structure. The two Poisson brackets are called

compatible and are defined as follows.

Definition 1.4.4. The Poisson brackets {·, ·}1 and {·, ·}2 are said to be compatible

if

{·, ·}µ,λ = µ{·, ·}1 + λ{·, ·}2,

i.e any linear combination, is also a Poisson bracket.

1.4.2 Integrability

In this thesis we will be taking integrability to be as defined by Liouville, who

first introduced the notion of integrability in the 19th Century [5]. The notion of

integrability for Hamiltonian systems is defined as follows.

Definition 1.4.5. A Hamiltonian system ẋi = {xi, H} on a manifold M , dim

M=2N , with a non-degenerate Poisson bracket {, } is completely integrable in

the sense of Liouville if there exist N functionally conserved quantities F1, ..., FN

which are in involution with respect to {·, ·}, that is {Fj, Fk} = 0 for all j, k.

When a system is integrable it is possible to integrate it in the following sense

[3].
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Theorem 1.4.6. (Liouville-Arnold). The solutions to the equations of motion of

a completely integrable system can be found using quadratures.

It is clear that any two-dimensional Hamiltonian system must be completely

integrable as it already possesses one conserved quantity, H.

1.4.3 Examples of Hamiltonian Systems

In this section we will give a few examples of Hamiltonian systems to demonstrate

the descriptions and definitions in this chapter so far. The examples given will be

in addition to the systems explored in the later chapters.

Example 1. The first example is a well known two-dimensional system called

the harmonic oscillator, and in the coordinates (q, p) the Hamiltonian is given as

H =
1

2m
p2 +

1

2
mw2q2, (17)

where m is the mass of the particle and w is the angular frequency of the oscillator.

The first term of the Hamiltonian represents the kinetic energy and the second

term represents the corresponding potential energy. The equations of motion for

this system are as follows.

q̇ = {q,H} =
p

m
, ṗ = {p,H} = −mw2q. (18)

Different values of the Hamiltonian correspond to ellipses in the (q, p) plane

as shown in figure 1, and each value is fixed by initial conditions.

Example 2. The four-dimensional example given here is known as the two-body

problem, or the Kepler problem, and it is a Hamiltonian system that describes

the motion of two bodies, such as a planet and the sun. If one body is much

heavier then we can take it to be the center of the coordinate system and consider

it motionless, and the position of the second body is given by (q1, q2) with its

11



Figure 1: Orbits of the harmonic oscillator with m=0.01 and w=60.

motion restricted to the plane. The Hamiltonian for this system is as follows.

H =
1

2
(p21 + p22)−

1√
q21 + q22

, (19)

and this gives rise to the following equations of motion:

q̇1 = p1, q̇2 = p2, ṗ1 =
−q1

(q21 + q22)
3
2

, ṗ2 =
−q2

(q21 + q22)
3
2

. (20)

As this system is four-dimensional, to be completely integrable in the sense of

Liouville, it must have a second conserved quantity that is in involution with H

meaning {H,L} = 0 for some function L, and in this case this second invariant is

the angular momentum L as given below:

L = q1p2 − q2p1. (21)

To confirm that this is indeed constant along any orbit we can check that it is a

Casimir of the Poisson bracket:

{H,L} =
q1

(q21 + q22)
3
2

· (−q2)− p1 · p2 +
q2

(q21 + q22)
3
2

· q1 − p2 · (−p1) = 0. (22)
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Figure 2: Invariant surface arising from the two-body system, with h = 4× 10−3

and l = 100.

Given the two invariants H and L we can also assert that all solutions of this

system are confined to the intersections of the four-dimensional surfaces H = h

and L = l, where h, l are constants determined by the initial conditions. This in-

tersection implicitly defines a two-dimensional surface in a four-dimensional phase

space, and depending on the sign of h we get two different types of surface. If

h > 0 or h = 0 the surface is essentially a cylinder (figure 2), and this corresponds

to the case where one of the bodies has enough energy to escape the gravitational

attraction and the trajectories will wind around this surface towards positive or

negative infinity. The other case h < 0 gives a torus (figure 3) and one would

expect the generic trajectories will be quasi-periodic, and will wind around the

torus without repeating themselves. However, for the Kepler problem, it can be

shown that the h < 0 solutions always form ellipses.

1.5 Numerical Integration

Numerical integration is a process that takes a continuous dynamical system that

is described by differential equations and reformulates it into a discrete dynamical

13



Figure 3: Invariant surface arising from the two-body system, with h = −1.5×10−4

and l = 50.

system that is described by difference equations. Numerical integration methods

provide a way to find numerical approximations to the solutions of continuous

dynamical systems, which is particularly useful for the many continuous systems

that cannot be solved analytically.

During the process of numerical integration the continuous dependent and in-

dependent variables are replaced by discrete counterparts. The discrete indepen-

dent variable can take any real or complex value whereas the discrete dependent

variable is evaluated only at integer shifts of the independent variable. If we take

an ODE

dx

dt
= F(x), (23)

where F(x) is a vector of non-linear functions and define a time step to be ∆t = h,

a fixed real value, then the variables (t,x(t)) are replaced as follows:

t→ tn = t0 + nh, x(t)→ xn = x(t0 + nh), (24)

with n being an integer. The function F(x) is replaced by Fn which is an ap-

proximation of F(xn). The first derivative of x(t) can be approximated using the

14



Taylor expansion of x(t),

x(t+ h) = x(t) + h
dx

dt
+
h2

2

d2x

dt2
+ ... =

∞∑
k=0

hk

k!

dkx

dtk
. (25)

Using the notation described above we have x1 = x(t + h) and x0 = x(t), and

denoting all terms involving h2 and higher as O(h2) we have

x(t0 + h) = x(t0) + h
dx(t0)

dt
+O(h2). (26)

Rearranging this gives the first derivative as:

dx(t0)

dt
=

x(t0 + h)− x(t0)

h
+O(h), (27)

and the smaller the time step h the more accurate this approximation is. For any

integer value n the overall difference equation that replaces the ODE (23) is

xn+1 − xn
h

= Fn, (28)

where Fn is defined by the particular method used. The replacement of the

first derivative on the left hand side is known as the forward difference scheme,

and Fn = F(xn) gives the forward Euler method, one of the standard schemes

mentioned in section 1.4 on standard numerical integrators.

Throughout this thesis we will use the following notation and conventions when

working with discrete systems (x will be replaced by the variable/s concerned in

the system being discussed).

Definition 1.5.1. Notation for difference equations.

(i) x̃ represents xn+1, and x represents xn.

(ii) h will always represent the step-size ∆t.

(iii) x0 will represent an initial value.
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1.6 Local and Global Error

When referring to the accuracy of a numerical integrator we are actually con-

sidering the local and global error. Up to given time step in the iteration of a

numerical scheme the global error is defined as the difference between the exact

solution and the numerical approximation. The local error however, is the error

incurred by a single step in the iteration. The smaller these errors are the more

accurate the numerical integrator is at approximating the solution. However, in

this thesis we are not interested in the error as such, but rather in the long term

behaviour of the solutions.

1.7 Standard Numerical Integrators

The simplest numerical integrator for a typical ODE

dx

dt
= F(x)

is to take the forward Euler finite difference scheme as an approximation of the

first derivative, and then simply replace all x terms in F(x) with xn.

x̃− x

h
= F(x). (29)

This difference equation can be rearranged to give an explicit equation for the

step variable x̃:

x̃ = hF(x) + x. (30)

This very basic scheme is sufficient for approximating the first few iterations, given

an initial value, to a reasonable degree of accuracy. However, even with a very

small time step, the orbit produced by this difference equation usually begins to

wander far from the path of the trajectories of the original continuous system.
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Figure 4: 30 iterations of the Euler forward difference scheme (h = 0.01) applied
to the Harmonic Oscillator, with m = 0.01 and w = 60, and initial conditions
q0 = p0 = 0.3.

This lack of conservation of qualitative behaviour can be seen very well using

the first example given in the previous section. Applying this finite difference

scheme to the harmonic oscillator equations of motion (18) we have the following

difference equations.

q̃ =
hp

m
+ q, p̃ = −hmw2q + p. (31)

As seen in figure 1 the orbits of the Harmonic Oscillator are closed curves (ellipses),

and therefore we would expect the iterations of a discrete model of this system to

also follow a closed curve in the phase space. However, as seen in figure 4 with

only a few iterations the orbit is increasingly spiraling out from the initial values.
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The time derivative can also be replaced with other finite difference approxi-

mations:

xn − xn−1
h

= F(xn), (32)

xn+1 − xn−1
2h

= F(xn). (33)

The first is the implicit backward Euler method, and the second is the explicit

central difference method (also known as the mid-point method).

1.7.1 Multi-step Methods

Multi-step methods have been developed as they offer a better approximation to

the continuous system, since they depend on more than one previous value. A

generalised form of a multi-step method looks like

k∑
i=0

αixn+i = h
k∑
i=0

βiF(xn+i), (34)

where αk = 1 and |α0|+ |β0| > 0. These methods are implicit unless βk = 0, and

are not very useful for the preservation of the properties of the original continuous

system as they need extra initial conditions, therefore creating spurious solutions.

1.7.2 Runge-Kutta Methods

This class of methods is made more accurate due to the use of more points in the

single time step interval [tn, tn+1] in the calculation of each iteration. A general

form of a Runge-Kutta (RK) method is given as

xn+1 − xn
h

=
m∑
i=1

biki, ki = F (tn + cih, xn + h
m∑
j=1

aijkj), (35)
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where m denotes the stages of the method. A very well known and used RK

method is a fourth order method (RK4) given below.

xn+1 − xn
h

=
1

6
(k1 + 2k2 + 2k3 + k4) ,

with

k1 = F (tn, xn),

k2 = F (tn +
h

2
, xn +

hk1
2

),

k3 = F (tn +
h

2
, xn +

hk2
2

),

k4 = F (tn + h, xn + hk3).

(36)

In this method each iteration is a weighted average of four increments, each of

which are a product of h and an estimate of the slope.

1.8 Symplectic forms and symplectic maps

Any manifold with a canonical Poisson bracket is an example of a symplectic

manifold, a smooth manifold equipped with a closed differential two-form ω, called

a symplectic form, defined as

ω =
∑

dpj ∧ dqj. (37)

A map is said to be symplectic if it preserves the sum of areas projected onto

a set of (qi, pi) planes, and these areas are represented by symplectic forms.

Definition 1.8.1. A map φ : M 7→ M on a 2N dimensional manifold M is

symplectic if the symplectic form ω is preserved, that is φ∗ω = ω.

Furthermore, the condition for which a map is defined as symplectic is
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DφTPDφ = P, P =

 0 I

−I 0

 , (38)

where P is the Poisson matrix, I is the N × N identity matrix and Dφ is the

Jacobian of the map. For a two dimensional map (N = 1), the condition for the

map to be symplectic is simply det(Dφ) = 1.

A symplectic map has the equivalent features that a symplectic continuous

system has, including invariants (conserved quantites).

Definition 1.8.2. A function F on M is an invariant for the map φ if and only

if

F ◦ φ = φ∗F = F

holds.

Integrabilty also needs to be defined for maps, and the definition for integra-

bility in the Liouville sense can be extended to discrete systems [57].

Definition 1.8.3. A symplectic map φ : M 7→M on the 2N dimensional manifold

M is said to be integrable if it has N first integrals f1, f2, ..., fN in involution.

Finding any possible first integrals (invariants) of a map can prove challenging,

so we will be employing a test for integrability (Diophantine test) to assess the

nature of the maps studied later in the thesis, and this test is presented in section

1.9.

It will be necessary to check that a map preserves a Poisson bracket.

Definition 1.8.4. The map φ : M 7→ M is said to preserve the Poisson bracket

{·, ·} if

φ∗{f, g} = {φ∗f, φ∗g}

for all f, g.
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It is worth noting that for a two dimensional symplectic map it is possible

to narrow the classification of fixed points. To demonstrate this we start with a

symplectic map in Darboux (canonical) coordinates.

φ :

 q

p

 7→
 q̃

p̃

 =

 F (q, p)

G(q, p)

 . (39)

For this map we have that the fixed points are defined by F (q, p) = q and G(q, p) =

p, and the Jacobian matrix is

J =

 ∂F
∂q

∂F
∂p

∂G
∂q

∂G
∂p

 . (40)

If we then diagonalise at the fixed points of the map we get that the two eigenvalues

λ1, λ2 satisfy λ1λ2 = det(J), but because we know the map is symplectic we have

that det(J) = 1 so λ1λ2 = 1. This gives two possibilities, one of which is that both

eigenvalues are real and non-zero which implies |λ1| ≥ 1 and |λ2| ≤ 1 without loss

of generality, and therefore giving a saddle point. The other possibility is that

the two eigenvalues are complex conjugate pairs with modulus 1, which gives a

center, [29].

We have now defined what we expect from symplectic maps (also known as

canonical transformations), which we are aiming to produce using non-standard

finite difference schemes later in the thesis.

1.9 Symplectic Integrators

Symplectic integrators are finite difference schemes that respects the symplectic

nature of Hamiltonian dynamics, and the resulting maps will possess a Hamil-

tonian that is slightly perturbed from that of the original continuous system.

Examples of standard symplectic integrators are the symplectic or semi-explicit
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Euler methods and the implicit mid-point method, the latter of which has been

covered in section 1.4, and the former will be presented in section 2.5.

For continuous systems with a Hamiltonian of the form H(q, p) = T (p) +V (q)

symplectic integrators can be derived using the splitting method [11].

1.10 Diophantine Test for Integrability

The criteria for the integrability of discrete equations have developed rapidly

over the last few decade; for example the singularity confinement property of

Grammaticos, Ramani and Papageorgiou has resulted in the discovery of many

integrable discrete equations [17]. However, not all of these criteria have been

sufficient to detect integrability alone, and in the case of singularity confinement

Hietarinta and Viallet [20] found non-integrable equations that possess this prop-

erty, showing that further criteria are needed to fully determine integrability. The

additional concept that Hietarinta and Viallet introduced is that of algebraic en-

tropy as a measure of degree growth, and the idea that, for an integrable equation,

the degree of the nth iterate as a rational function of the initial conditions grows

no faster than a polynomial in n is something that a number of authors have been

studying [58, 4, 20].

The algebraic entropy approach has a related numerical test that is much

quicker to use as a detector of integrability, as presented by Halburd in [19].The

measure of growth is achieved by analysing the heights of the iterates over the

discrete time evolution.

Definition 1.10.1. The height H of a rational nonzero number x = s
t
∈ Q is

H(x) = max {|s|, |t|}, where s, t have no common factors and H(0) = 1.

Definition 1.10.2. Diophantine integrability (Halburd). A polynomial discrete

equation, yn+1 = f(yn), is Diophantine integrable if the logarithmic height of its

iterates, h(yn) = logH(yn), grows no faster than a polynomial in n.
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The concept of using this property as a measure of complexity comes from

a similarity between the definitions and theorems of Diophantine approximation

and Nevanlinna theory, observed by Osgood [45] and independently ’translated’ by

Vojta [59] to produce a dictionary between the two areas. For difference equations

Diophantine integrability is the natural analogue of the Painleve property for

ODE’s [9].

1.11 Outline of Thesis

We now give an outline of the contents of the rest of the chapters in this thesis.

Chapter 2 presents non-standard numerical schemes that have already been

discovered, including a method that was first noted by Kahan in 1993 in a set of

lecture notes [32], and then presented again by Hirota and Kimura in 2000 applied

to the Euler top system [21]. We also present a set of rules devised by Mickens

[40] that if followed are expected to produce discrete systems with very desirable

features, an example of which Mickens applied to the Lotka-Volterra system in

2003 [39]. These non-standard schemes have been reported to preserve features

of various continuous systems but sometimes it is unclear as to exactly why they

work so well.

In Chapter 3 the 2-dimensional Lotka-Volterra system is presented along with

known non-standard discretizations applied to it. We then go on to find a gener-

alised scheme that creates a discrete analogue of the Lotka-Volterra system that is

birational and symplectic, and therefore preserves the fixed points and their sta-

bility. Three different cases for the parameters involved are discovered by looking

at the constraints on the most general version of the system given when we require

birationality and then symplecticity. These cases are identical to those presented

by Roeger in [52] although they were discovered using a different method.
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Chapter 4 looks at 3-dimensional Bi-Hamiltonian systems and starts by pre-

senting the Hirota-Kimura discretization of the Euler top. We then go on to look

at 3-dimensional flows from a list of 12 presented by Gümral and Nutku [18], nine

of which have been discretized using the Kahan scheme by Hone and Petrera [27].

The remaining three are then presented and the Diophantine test for integrability

is applied.

In Chapter 5 the focus is on the Hénon-Heiles system, and in particular the

integrable case (ii) which is presented through the reduction of the fifth order

KdV equation. The Hirota-Kimura/Kahan method is then applied and through

a numerical example we see that the elliptic fixed point of the original system is

preserved. This discretization is briefly compared to the Bäcklund transformation

for the Hénon-Heiles case (ii).

Finally in Chapter 6 a general non-standard discretization of a trimolecular

system is investigated and although no new discretizations are discovered, the

method used does confirm that those given in [40] are indeed the only birational

possibilities. A Hamiltonian system with a quartic potential is then looked at in

the second part of the chapter and the same method for finding the general dis-

cretization is used and then the Diophantine integrability test is used to conclude

that the discrete system is in fact not Diophantine integrable.
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Chapter 2

Non-standard Numerical

Integration Methods

2.1 The Hirota-Kimura Discretization/Kahan’s

Method

In 1993 a set of lectures was delivered by Kahan in which he proposed a new

method for discretizing an ODE ẋ = f(x) where the function f(x) is a polynomial

of degree two in the components x1, x2, ..., xn of the vector x. The difference

equation formed as a result of applying Kahan’s method is of the form

x̃− x

h
= Q(x̃,x), (41)

where Q(x̃,x) is a quadratic function that is defined by the rule (42) below. The

time derivative has been replaced by the usual Euler forward difference, and the

terms of the polynomial are each replaced according to a symmetric rule as follows:

ẋj 7→
x̃j − xj
h

, xjxk 7→
xjx̃k + x̃jxk

2
, xj 7→

xj + x̃j
2

, c 7→ c. (42)
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On first inspection this scheme appears to be implicit; however, as the right

hand side is linear in each x̃j and xj equation (41) can be solved explicitly to find

x̃ as a rational function of x and vice versa. This means that Kahan’s scheme

produces a birational map φ : x 7→ x̃, which can be written explicitly [32] as:

φ : x̃ = x + h

(
I− h

2
f ′(x)

)−1
f(x),

(
I− h

2
f ′(x)

)−1
f(x) = Q(x̃,x), (43)

where I is the n × n identity matrix and f ′ is the Jacobian of f . The inverse of

this map is

φ−1 : x = x̃− h
(

I +
h

2
f ′(x̃)

)−1
f(x̃), (44)

It has already been proven by Roegers that Kahan’s method produces a dis-

crete map with the same fixed points possessing the same local stability as the

original continuous system. If the fixed point of the original system is x∗ then it

holds that

φ(x∗) = x∗, (45)

and taking the derivative of the map at the fixed point we have

φ′ : x∗ = I + h

(
I− h

2
f ′(x∗)

)−1
f ′(x∗). (46)

For each eigenvalue of the original system we have a corresponding eigenvalue

µ(h) of (46):

µ(h) =
1 + hλ

2

1− hλ
2

, (47)

where λ represents an eigenvalue of the original system.

2.2 Mickens’ Method and its Modifications

In 1994 Mickens wrote a book [40] in which he presents rules for the construction

of non-standard finite-difference schemes. These rules are as follows:
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• Rule 1: The orders of the discrete derivatives must be exactly equal to the

orders of the corresponding derivatives of the differential equations.

• Rule 2: Denominator functions for the discrete derivatives must, in general,

be expressed in terms of more complicated functions of the step-sizes than

those conventionally used.

• Rule 3: Nonlinear terms must, in general, be modeled non-locally on the

computational grid or lattice.

• Rule 4: Special solutions of the differential equations should also be special

(discrete) solutions of the finite-difference models.

• Rule 5: The finite-difference equations should not have solutions that do

not correspond exactly to solutions of the differential equations.

Although these rules will not always result in the creation of an exact finite-

difference scheme, Mickens suggests that the discrete systems produced will pos-

sess very desirable properties.

Later, in 2003, Mickens presented a non-standard discretization of the Lotka-

Volterra system, [39], that produces a map that preserves the qualities of the

solutions of the original system. In creating this scheme Mickens used the rules

outlined above, to give the following discrete Lotka-Volterra system:

x̃− x
sin(h)

= 2x− x̃− x̃y, ỹ − y
sin(h)

= −ỹ + 2x̃y − x̃ỹ. (48)

This map has the same qualities as the continuous Lotka-Volterra system

(which will be studied in more detail in the next chapter):

dx

dt
= x(1− y),

dy

dt
= y(x− 1). (49)

It can be seen that the derivatives of these differential equations have been

approximated by modified forward Euler expressions and therefore have the same
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order (Rule 1), and that they have been modified by the replacement of the

denominator h with sin(h), such that the denominator function φ(h) = h+O(h2)

(Rule 2). Rule 3 has been enforced by ensuring that each term on the right hand

side of the differential equations is modeled non-locally, for example meaning that

x cannot simply be replaced with xn or xn+1, but it must be expressed as 2x− x̃

so that it can be modeled using both xn and xn+1. Mickens does not give the

reasons as to why these replacements work, but the numerical evidence is clear

that this map produces the same periodic solutions as the continuous system.

2.2.1 Modifications

In 2004 Mounim and de Dormale [41] presented two numerical methods for the

Lotka-Volterra system as modifications of Micken’s method (48), with a claim that

they produce more accurate numerical solutions. These two modified methods

are created by enforcing the condition that the discrete system has the symmetry

property that the right-hand sides of (49) has. The discrete equivalent of this

property is that the right-hand sides of the discrete system should transform to

each other under the interchanges x↔ y and n↔ ñ.

Modified scheme 1:

x̃− x
φ(h)

= x− 2x̃y − xy, ỹ − y
φ(h)

= −ỹ + 2x̃y − x̃ỹ. (50)

Modified scheme 2:

x̃− x
φ(h)

= 2x− x̃− x̃y, ỹ − y
φ(h)

= −2ỹ + y − x̃y. (51)
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2.3 The Symplectic Euler method

In [16] Gander and Meyer-Spasche presented a symplectic version of Euler’s method

restricted to two dimensional canonical Hamiltonian systems. Given a two di-

mensional canonical Hamiltonian system with a separable Hamiltonian H(p, q) =

f(p) + g(q),

q̇ =
∂H(p, q)

∂p
= Hp(p, q), ṗ = −∂H(p, q)

∂q
= −Hq(p, q) (52)

the symplectic Euler method is presented as

q̃ − q
h

= Hp(p̃, q),
p̃− p
h

= −Hq(p, q). (53)

Gander and Meyer-Spasche then go on to define the symplectic Euler method

for the two dimensional non-canonical Hamiltonian system: the Lotka-Volterra

system, which using the same notation and variables as the previous section (with

all parameters set to 1) is presented as

x̃− x
h

= x− xy, ỹ − y
h

= −y + x̃y. (54)
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Chapter 3

General discretizations of the

Lotka-Volterra system

3.1 The Lotka-Volterra System

The Lotka-Volterra system models the behaviour of various populations which

can have different types of interaction with each other. The 2-dimensional Lotka-

Volterra system we will be looking at in this paper is the predator-prey interaction

of two species [23, 22, 42]. The most general form of this system of first order

differential equations is shown in (55) where u(τ) represents the population of

the prey, and v(τ) represents the predator, and of course a, b, c and d are positive

constants.

du

dτ
= u(a− bv),

dv

dτ
= v(cu− d), (55)

To give the simplest and most general form of this system we can non-dimensionalise

to reduce the four parameters to just one parameter. To do this we start with

the change of variables u = λx, v = µy, τ = νt and then choose the values

ν = 1
a
, µ = a

b
, λ = a

c
which gives the system
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dx

dt
= x(1− y),

dy

dt
= y(x− α), (56)

where α = d
a

is the only parameter, and in this chapter I will be looking at this

system with α = 1. It is well known that this system is a Hamiltonian system

which we can see by the following change of variables:

x = eq, y = ep (57)

Substituting these new variables into the system (56) with α = 1 gives the

new system:

q̇ = 1− ep, ṗ = eq − 1. (58)

This system now satisfies Hamilton’s equations:

ṗ =
∂H

∂q
, q̇ = −∂H

∂p
, (59)

with the Hamiltonian H = eq + ep − q − p.

The system (56) with α = 1 also features a Poisson bracket and invariant

volume form which are given below:

{x, y} = xy, (60)

ω = d log(x) ∧ d log(y) =
1

xy
dx ∧ dy. (61)

This system exhibits two fixed points, (0, 0) and (1, 1) and linear stability analysis

can be used to show the nature of these. The Jacobian of the system,

J =

 1− y −x

y x− 1

 , (62)
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Figure 5: The phase portrait of (56) with α = 1 showing two closed curve solutions
created using initial conditions x0 = 0.5, y0 = 1 and x0 = 1, y0 = 0.2.

evaluated at each of the fixed points gives the following eigenvalues:

(0, 0)→ λ1 = 1, λ2 = −1, (1, 1)→ λ1 = i, λ2 = −i, (63)

which indicate a saddle point at (0, 0) and a centre at (1, 1). The phase portrait

of this system clearly shows that the solutions lie on closed level curves of the

Hamiltonian H(x, y) = x+ y − ln(x)− ln(y).

It is because this system has closed solutions in the phase space that there is

difficulty in obtaining the correct behaviour in numerical solutions of discretiza-

tions of it. Slight perturbations in the right hand side of the equations (56) can

cause solutions to spiral in or out rather than follow closed orbits.

3.2 Known Non-standard schemes

For this particular system there have been a few discretizations which have been

shown to preserve the qualitative features of the original continuous system and

also to hold the property of being symplectic (area-preserving). These discretiza-

tions are (using the notation x̃ = xn+1, x = xn and h is the time step):
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1) The Kahan or Hirota-Kimura type discretization: [27]

x̃− x
h

=
1

2
(x̃+ x− x̃y − xỹ) ,

ỹ − y
h

=
1

2
(x̃y + xỹ − ỹ − y) (64)

2) The Mickens type discretization: [39]

x̃− x
sin(h)

= 2x− x̃− x̃y, ỹ − y
sin(h)

= −ỹ + 2x̃y − x̃ỹ, (65)

3) Two modified Euler type discretizations:

x̃− x
h

= x(1− y),
ỹ − y
h

= y(x̃− 1), (66)

x̃− x
h

= x(1− ỹ),
ỹ − y
h

= y(x− 1). (67)

The aim of this chapter is to look at the most general form of a discretization

for this system and check for which values of the parameters the discretization

preserves the features of the original system, and which parameter families the

above discretizations fall into. This generalised discretization will take the form

x̃− x
h

= F1(x, y, x̃, ỹ),
ỹ − y
h

= F2(x, y, x̃, ỹ). (68)

The particular properties which we are looking for in the discretization are as

follows:

i) Birationality, meaning that each of the equations in (68) can be solved

explicitly to not only find rational functions for x̃ and ỹ, but also for x and y. The
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advantage of having an explicit method and its inverse is that the system can be

integrated forwards or backwards in time.

ii) The iteration plot of the discretization has the same qualitative features as

the original system. In this case we are looking for closed loops in the positive

quadrant of the xy-plane, even with reasonably large values of the time step

(h > 0.1).

iii) The discrete system has the same fixed points and stability as the original

system. For this example we are looking for two fixed points (0, 0) and (1, 1), with

(0, 0) as a saddle point, and (1, 1) as a centre.

iv) Preservation of the symplecticity of the original system. Further details of

how to check this condition are found in section 3.5.

3.3 Roeger’s result

In 2006 Roeger presented a class of nonstandard symplectic numerical methods

for the Lotka-Volterra systems [52] based on conditions defined by Mickens [40].

This result is presented here for comparison later in this Chapter.

The Lotka-Volterra system in [52] is defined as

dx

dt
= Ax+Bxy,

dy

dt
= Cy +Dxy, (69)

and using the notation xn = x and xn+1 = X the general numerical method before

Micken’s conditions are applied takes the form
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X − x
h

= A(a1x+ a2X) +B(b1xy + b2Xy + b3xY + b4XY ),

Y − y
h

= C(c1y + c2Y ) +D(d1xy + d2Xy + d3xY + d4XY ), (70)

where a1 + a2 = 1, c1 + c2 = 1, b1 + b2 + b3 + b4 = 1 and d1 + d2 + d3 + d4 = 1.

Roeger finds three classes for the discretization of the xy terms, with the linear

term parameters a1 = 1− a2, c1 = 1− c2 being free. These three classes are

(b1xy + b2Xy + b3xY + b4XY, d1xy + d2Xy + d3xY + d4XY ) =

Class I: (βxy + (1− β)Xy, (1− α)Xy + αXY ), (71)

Class II: (βXy + (1− β)xY, βXy + (1− β)xY ), (72)

Class III: (βxY + (1− β)XY, (1− α)xy + αxY ). (73)

3.4 A general form of a Non-standard Discrete

Lotka-Volterra map

To make the most general discretization for this Lotka-Volterra system we need

to include all combinations of the variables x, y, x̃, ỹ as the discrete equivalent of

the xy terms in (56). This gives us the following 10-parameter discretization:

x̃− x
h

= ax+ (1− a)x̃− (bxy + cx̃ỹ + dxỹ + ex̃y), (74)

ỹ − y
h

= −Ay − (1− A)ỹ +Bxy + Cx̃ỹ +Dxỹ + Ex̃y. (75)
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and with the requirement that this is a first order method we have the condition

b+ c+ d+ e = B + C +D + E = 1. (76)

In order to neatly present the final cases of general discretizations these 10 pa-

rameters will be presented as

(a, b, c, d, e, A,B,C,D,E) (77)

with the consideration that only 8 of these parameters are independent due to

condition (76).

Now we need to look at the restrictions for this particular system, and firstly we

require that it should be birational. Straight away we can see that if we solve one

of the equations for one of the variables, x say, and substitute this into the other

equation we will have a quadratic equation for one of the variables and therefore

upon solving we have two possible solutions. This formulates some constraints

on the parameters in order to produce only one solution. If we take a general

quadratic equation,

p2x
2 + p1x+ p0 = 0, (78)

then we have two possibilities for this equation to give one solution, the first of

which is to set p2 = 0 leaving a linear equation with solution x = −p0
p1

. Secondly

we can set p0 = 0 which leaves the equation x(p2x + p1) = 0 and if we assume

x = 0 cannot be a solution then we have the single solution x = −p1
p2

.

There is also the more general case to consider in which the quadratic (78) has

two rational roots where either only one of the roots is valid or there is a repeated

root. This would require the discriminant p21 − 4p2p0 to equal a perfect square

or zero respectively. This case is discussed further in [28], and although it does
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produce conditions for the parameters it does not produce any new constraints

beyond what is discovered from the previous two possibilities. Therefore the

equations produced by this case will not be presented.

So now we have various different routes to go down to produce different con-

straints on this general discretization, which should give us a few different param-

eter families which are all birational. The first routes we shall explore are those

which involve only solving for x̃ and x at first and then looking at the quadratic

formed in ỹ and y respectively. Then we can look at solving for ỹ and y first and

looking at the quadratic in x̃ and x respectively. There are also the two other

combinations of these, one is to solve for x̃ and y first, and the other is to solve

for ỹ and x first.

• Solving for x̃ and x first

Firstly (75) is solved for x̃ and this is then substituted into (74) which gives a

quadratic equation for ỹ. The coefficient of the squared term in this equation set

to zero is given below.

(−cDh2 + Cdh2)x+ c(h+ Ah2 − h2) = 0 (79)

Looking at the coefficient of x and the constant term separately we have the

two constraints

− cD + Cd = 0, (80)

c(1 + Ah− h) = 0. (81)

From the second constraint (81) we have that c = 0 as we cannot have A = h−1
h

as we require the parameters to be independent of h. Substituting c = 0 into the

first constraint (80) we have two possibilities, either C = 0 or d = 0. We are not

quite finished finding the constraints for this route however as we also need to look
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at solving for the unshifted variable x also. So solving (74) for x and substituting

this into (75) we are presented with a quadratic equation for y. Again taking the

coefficient of the squared term and setting it to zero we have:

(−Bh2d+ h2Cb−Bh2c+Bh2 + h2Db− h2b)x̃− hb+ Ah2b = 0 (82)

Again looking at the coefficient of x̃ and the constant term separately we have

the constraints

(C +D − 1)b−B(c+ d− 1) = 0 (83)

(−1 + Ah)b = 0 (84)

Here the second constraint (84) gives us b = 0 as of course we cannot have

A = 1
h
. Substituting this into the other constraint (83) gives two options again,

either B = 0 or c+ d = 1⇒ d = 1 as c = 0.

Therefore this route has given us in total three 4-parameter families which are

listed below:

1) c = C = 0, b = 0 and B = 0 which leaves {A, a,D, d} as the free parameters.

2) c = C = 0, b = 0 and d = 1 which leaves {A, a,B,D} as the free parameters.

3) c = 0, d = 0, b = 0 and B = 0 which leaves {A, a, C,D} as the free

parameters.

We can also look at the other possible routes, where we take the constant

term to be zero and assume that the variable in question cannot equal zero as a

solution. So if we take the same constraints (80) and (81) but then when solving

for x we take the constant term equal to zero in the quadratic equation for y.
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This gives us the following equation:

(−h2d+ dh+ h2Ad+Dx̃h2c− Cx̃h2d)ỹ2+

(−1 +h−Ah−Ah2a+h2a+ x̃h2Ca− x̃h2D−ha+ x̃hC+ x̃h2Da+ x̃hD)ỹ = 0.

(85)

This equation gives more constraints which are listed below:

Dc− Cd = 0, (86)

d(1− h+ hA) = 0, (87)

D(1− h+ ah) + C(1 + ah) = 0, (88)

(Ah− 1)(ah− h+ 1) = 0. (89)

Now we can see that we can have choices of the parameters which will satisfy the

first three constraints (86), (87) and (88), however the last constraint (89) cannot

be solved as we cannot have either A = 1
h

or a = h−1
h

. Therefore we gain no new

families of discretizations from this route.

Another route to consider is when we are solving for x̃ and this time we take

the constant term to be zero in the quadratic equation for ỹ. This route gives the

following constraints:

b(1− C −D)−B(1− c− d) = 0, (90)

(1− Ah)(b+ c+ d+ 1) = 0, (91)

(1 + ah)(C +D − 1) +Bh = 0, (92)

(Ah− 1)(ah− h+ 1) = 0. (93)
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This route also brings us to a dead end as we have the same constraint (93) as

we did before (89) so it is not possible to satisfy all of these constraints. So from

solving for x̃ and x first we have found three 4-parameter families of birational

discretizations.

As we have seen we cannot get any more families from setting the constant

term in the quadratic equation to zero, and this continues to be the case for all

the other possible routes, so from now we will just look at setting the squared

term to zero.

• Solving for ỹ and y first

The next routes to inspect are those starting with solving for ỹ and y, which

gives the following constraints:

c(1−B −D)− C(1− b− d) = 0, (94)

C(ah+ 1− h) = 0, (95)

Bd− bD = 0, (96)

B(1 + ah) = 0. (97)

Solving all 4 of these constraints at once gives another three 4-parameter fam-

ilies which are given below:

4) c = C = 0, b = 0 and B = 0 which leaves {A, a,D, d} as the free parameters.

5) c = C = 0, B = 0 and D = 0 which leaves {A, a, b, d} as the free parameters.
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6) C = 0, B = 0, D = 1 and b = 0 which leaves {A, a, c, d} as the free

parameters.

Clearly family 4) is exactly the same as family 1) found through the previous

routes, so we have only gained two new families, bringing the running total now

to five 4-parameter families.

• Solving for ỹ and x first

This route provides the following constraints:

c(1−B −D)− C(1− b− d) = 0, (98)

C(ah+ 1− h) = 0, (99)

(C +D − 1)b−B(c+ d− 1) = 0, (100)

(−1 + Ah)b = 0. (101)

Again solving these constraints we have the following 4-parameter families

arising:

7) c = C = 0, b = 0 and B = 0 which leaves {A, a,D, d} as the free parameters.

8) c = C = 0, b = 0 and d = 1 which leaves {A, a,B,D} as the free parameters.

9) C = 0, b = 0, D = 1 and B = 0 which leaves {A, a, c, d} as the free

parameters.

10) C = 0, b = 0, B + D = 1 and c + d = 1 which leaves {A, a,B, c} as the

free parameters.

Here 10) is the only new family giving six families in total.
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• Solving for x̃ and y first

This final route provides the following constraints:

− cD + Cd = 0, (102)

c(1 + Ah− h) = 0, (103)

Bd− bD = 0, (104)

B(1 + ah) = 0. (105)

Again solving these constraints we have the following 4-parameter families

arising:

11) c = C = 0, B = 0 and b = 0 which leaves {A, a,D, d} as the free

parameters.

12) c = C = 0, B = 0 and D = 0 which leaves {A, a, b, d} as the free

parameters.

13) c = 0, B = 0, d = 0 and b = 0 which leaves {A, a, C,D} as the free

parameters.

14) c = 0, B = 0, d = 0 and D = 0 which leaves {A, a, C, b} as the free

parameters.

We only have one new family, which is family 14), bringing the total number

of 4-parameter families to seven which is a final total as we have now explored all

possible routes.

For all families of the birational discretization we have that A and a are always
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free as they are in Roeger [52] ,and then the remaining paramters fit into one of

the following cases, which have been presented as the following theorem using the

notation (77):

Theorem 3.4.1. The system (74),(75) is a birational discretization of the Lotka-

Volterra system (56) with α = 1 if and only if the parameters belong to one of the

following cases:

Case (i): {a, b, 0, 0, 1− b, A, 0, C, 0, 1− C}

Case (ii): {a, b, 0, d, 1− b− d,A, 0, 0, 0, 1}

Case (iii): {a, 0, c, d, 1− c− d,A, 0, 0, 1, 0}

Case (iv): {a, 0, 0, d, 1− d,A, 0, 0, D, 1−D}

Case (v): {a, 0, 0, 1, 0, A,B, 0, D, 1−B −D}

Case (vi): {a, 0, 0, 0, 1, A, 0, C,D, 1− C −D}

Case (vii): {a, 0, c, 1− c, 0, A,B, 0, 1−B, 0}

We can see that the four discretizations outlined in the introduction all fit

into one or more of these cases. The Hirota-Kimura type discretization (64) falls

under case (iv) only with {d,D} as the extra free parameters. Micken’s method

(65) falls under both cases (i) and (vi), as this method just requires C to be free

(apart from the replacement of h with sin(h)). The first modified Euler method

(66) falls under either case (i) or (ii), requiring b to be a free parameter, and the

second modified Euler method (67) fits into case (v) or (vii), with B as a free

parameter.

3.5 General symplectic discretizations of the Lotka-

Volterra system

We know that the four methods defined in the introduction are all symplectic but

this does not imply that all members of the family which they fall under are also
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symplectic. The way to check if a discretization is symplectic is to confirm whether

or not the area form for the continuous system is preserved under the time step.

The area form for the continuous Lotka-Volterra system is shown below.

Ω =
1

xy
dx ∧ dy (106)

For (106) to be preserved with each time step we need the following equation

to be satisfied:

dx̃ ∧ dỹ =
x̃ỹ

xy
dx ∧ dy, (107)

This is equivalent to

det(J)− x̃ỹ

xy
= 0, (108)

where J is the Jacobian of the system:

J =

 ∂x̃
∂x

∂x̃
∂y

∂ỹ
∂x

∂ỹ
∂y

 (109)

Performing this calculation for the seven bi-rational maps found in the last

section, only two cases are symplectic without further restrictions on the param-

eters, which are case (i) and case (vii). All of the other cases become symplectic

with an extra condition on the parameters. To find these extra conditions we

look for factorisations of the parameters in the left hand side of equation (108).

For example, the equation (108) applied to case (ii) yielded the following after

factorisation:

−d(xyh2)f

g
= 0 (110)

where f, g are functions of (x, y, h, A, a, b, d). From this we can clearly see adding

the constraint d = 0 we satisfy this equation, therefore case (ii) is symplectic with
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d = 0. The new list of cases which are birational and also symplectic are shown

below:

Symplectic Case (i) : {a, b, 0, 0, 1− b, A, 0, C, 0, 1− C}

Symplectic Case (ii) : {a, b, 0, 0, 1− b, A, 0, 0, 0, 1}

Symplectic Case (iii) : {a, 0, c, 1− c, 0, A, 0, 0, 1, 0}

Symplectic Case (iv) : {a, 0, 0, d, 1− d,A, 0, 0, d, 1− d}

Symplectic Case (v) : {a, 0, 0, 1, 0, A,B, 0, 1−B, 0}

Symplectic Case (vi) : {a, 0, 0, 0, 1, A, 0, C, 0, 1− C}

Symplectic Case (vii) : {a, 0, c, 1− c, 0, A,B, 0, 1−B, 0}

We find here that case (vi) and case (v) are the inverses of each other, as are

case (ii) and case (iii).Also, case (ii) falls under case (i) with the added condition

of C = 0. Similarly, (v) under (vii), with the added condition of c = 0. Therefore

we only have three cases left, two with four free parameters and one with only

three:

Theorem 3.5.1. The system (74,75) is a symplectic bi-rational discretization of

the Lotka-Volterra system (56) with α = 1 if and only if the parameters belong to

one of the following cases:

Case (i): {a, b, 0, 0, 1− b, A, 0, C, 0, 1− C}

Case (ii): {a, 0, 0, d, 1− d,A, 0, 0, d, 1− d}

Case (iii): {a, 0, c, 1− c, 0, A,B, 0, 1−B, 0}

In [52] Roeger presented a method that leads to these same three cases by first

requiring that the maps are symplectic, and the resulting maps happened to also

be birational.

Due to the way the most general discretization (74), (75), was formulated

it will always have the fixed points (0, 0) and (1, 1), and as these cases are all

symplectic it is given that their fixed points will be either saddles or centers (as
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explained in section 1.5 of Chapter 1) and therefore they automatically preserve

the stability of the original Lotka-Volterra system. An example to denomstrate

this is given in section 3.6.

3.6 Stability Analysis

We will take case (i) with parameter values A = a = 0.5, C = b = 1 as a particular

example. Using these values for the free parameters we can look at the stability

of the two fixed points and we expect to find a saddle point at (0, 0) and a center

at (1, 1), and given these stability conditions we would also expect the iteration

plot of this particular system to represent the original system almost perfectly,

even with fairly large values of h and many iterations.

First we look at the fixed point (0, 0), and to analyse the stability of this fixed

point we first need to look at the Jacobian evaluated at (0, 0), which happens to

be exactly the same for all of the symplectic families of discretizations listed above

when keeping all the parameters free. So we have

J(0, 0) =

 1+ah
1+ah−h 0

0 1−Ah
1+h−Ah

 (111)

where the diagonal entries are the eigenvalues as the matrix is diagonal. For this

particular system with A = a = 0.5 we have the eigenvalues:

λ1 =
1 + 0.5h

1− 0.5h
, λ2 = −1− 0.5h

1 + 0.5h
. (112)

From these eigenvalues it is clear that this fixed point is a saddle point as |λ1| > 1

and |λ2| < 1. Now we just need to check the second fixed point, (1, 1) which has

a more complicated Jacobian, shown below for this particular system:
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J(1, 1) =

 1+ah
1

2h
h−2

− 2h
h−2 −

3h2+4h−4
h2−4h+4

 . (113)

To find the eigenvalues we find the characteristic equation det(J − λI) = 0 where

I is the identity matrix, then we solve for λ which gives:

λ1 = −h
2 + 4h− 4− 4

√
h3 − h2

h2 − 4h+ 4
, λ2 = −h

2 + 4h− 4 + 4
√
h3 − h2

h2 − 4h+ 4
, (114)

and as h3 < h2 for h < 1 we have two complex eigenvalues which are conjugate

to each other. This is typical of a center in a discrete system, which is exactly

what we were looking for. Now that we have confirmed that the fixed points have

exactly the same stability as the original system the last property to confirm is

that this system preserves the qualitative features of the system. Figure 6 shows

the iteration plot for this map with initial conditions x0 = 0.1, y0 = 1, 10000

iterations and a step size of h = 0.1, and as expected we appear to have a close

loop as in the original system.

Figure 6: The iteration plot of a particular example of Case (i) with initial
conditions x0 = 0.1, y0 = 1 and h = 0.1.

If we compare this plot with an iteration plot using a case (ii) discretization
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without the extra parameter conditions to make it symplectic, as in figure 7,

we can see that this system preserves the features of the original Lotka-Volterra

system but only for the first few iterations, and then it quickly begins to spiral

towards the fixed point and therefore no longer has the correct stability of the

fixed point (1, 1).

Figure 7: The iteration plot of a particular example of case (ii) with initial
conditions x0 = 0.1, y0 = 1 and h = 0.1.

3.7 Conclusion

In this Chapter we have reproduced the three symplectic maps derived by Roeger,

[52], using a different approach and therefore also producing a list of seven bira-

tional maps for the Lotka-Volterra system. We began with a generalised form of

the discrete Lotka-Volterra map that included every combination of the variables

x, y, x̃, ỹ for the quadratic term in the continuous system, which featured 10 pa-

rameters (8 independent) that we then looked for constraints for. Rather than

beginning this parameter reduction by requiring that the map is symplectic, we

took the approach of enforcing birationality to produce the parameter constraints.

Future work on this would include applying this generalised discretization method

to other systems with quadratic vector fields to build up a library of birational
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and symplectic discrete systems produced using this Mickens style approach.
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Chapter 4

Discretizations of 3-dimensional

Bi-Hamiltonian systems

In this chapter the Hirota-Kimura or Kahan discretization method is applied to

three-dimensional bi-Hamiltonian systems, starting with an overview of the case of

the Euler top, which was published by Hirota and Kimura [21] and provides a new

integrable discrete analogue of the system. Next, a bi-Hamiltonian flow associated

with a pair of real three-dimensional Lie algebras is presented and shown to have

its properties preserved under the Hirota-Kimura discretization. This flow came

from a list of twelve presented by Gumral and Nutku [18], and is one of the nine

that were analysed under the Hirota-Kimura discretization by Hone and Petrera

[27]. A further three flows from the same list not considered in [27], having one

transcendental invariant alongside a rational one, are subjected to the Hirota-

Kimura discretization and the properties of the resulting maps are investigated.

Finally these new discretizations of the three-dimensional bi-Hamiltonian flows

will be tested using the Diophantine integrability test presented by Halburd in

[19].
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4.1 The Euler top

4.1.1 The Continuous System

The Euler top is a well known bi-Hamiltonian system of differential equations that

describe the motion of a rigid body with a fixed centre of mass [24]

ẋ = α1yz, ẏ = α2zx, ż = α3xy, (115)

with αi being the parameters of the system. This system possesses two functionally

independent integrals of motion, which are in involution with respect to a Poisson

bracket, and has an explicit solution in terms of elliptic functions. The quadratic

function H = β1x
2 + β2y

2 + β3z
2 is an integral of motion subject to a restriction

on the parameters βi:

2β1xẋ+ 2β2yẏ + 2β3zż = 2(α1β1 + α2β2 + α3β3)xyz,

so that

α1β1 + α2β2 + α3β3 = 0.

More precisely, the following three functions are invariant under these equations:

K1 = α3y
2 − α2z

2,

K2 = α1z
2 − α3x

2,

K3 = α2x
2 − α1y

2,

(116)

although only two of them are functionally independent as α1K1+α2K2+α3K3 =

0.

It can be noted that the invariants H and Ki are related in the following way:

αiH = βkKj − βjKk,

51



where (i, j, k) are permutations of (1, 2, 3). The Poisson bracket related to this

system is given below, with λ = (λ1, λ2, λ3)
T ∈ R3:

{x, y} = λ1z, {y, z} = λ2x, {z, x} = λ3y,

and for the system to be Hamiltonian with respect to this Poisson bracket we have

a restriction on the parameters involved:

ẋ = {x,H} =
∂H

∂y
{x, y}+

∂H

∂z
{x, z},

α1yz = 2β2λ3yz − 2β3λ2yz, ⇒ α1 = 2(β2λ3 − β3λ2),

and similar calculations give the other two constraints:

α2 = 2(β3λ1 − β1λ3), α3 = 2(β1λ2 − β2λ1).

4.1.2 The Hirota-Kimura discretization

The discretization of (115) that was presented in [21] reads as

x̃− x = εα1(ỹz + yz̃),

ỹ − y = εα2(x̃z + xz̃),

z̃ − z = εα2(x̃y + yx̃).

(117)

Solving (117) for x̃ gives the map f : x 7→ x̃ as defined by

x̃ = f(x, ε) = A−1(x, ε)x, (118)
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with the matrix A given by

A(x, ε) =


1 −εα1z −εα1y

−εα2z 1 −εα2x

−εα3y −εα3x 1


The details of the features of this map (such as integrals of motion and an

invariant volume form) are given in [48].

4.2 Gümral and Nutku examples

In [18] Gumral and Nutku present a list of all of the non-trivial three-dimensional

bi-Hamiltonian flows, meaning that each system has two compatible Poisson ten-

sors, P and Q, that are associated with the two independent integrals of motion,

H and K. Using this notation, H is the Casimir for P , and K is the Casimir for

Q, and the vector field, ẋ = V is described as

V = −PdH = −1

c
QdK,

with c being the conformal factor. These flows also preserve a volume form which

also features c:

Ω = c dx ∧ dy ∧ dz.

Hone and Petrera presented the Hirota-Kimura or Kahan discretization of nine

of the twelve flows found in [18], along with two independent integrals of motion

and an invariant volume form related to each map in [27]. Explicit solutions in

terms of elliptic or elementary functions were also found for these maps. The

first six of these flows all had non-transcendental invariants, one of which will be

recalled along with the H-K discretization and the features of the new map. The

last two flows featured one transcendental invariant, and three more of these type
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of flows will be investigated in the next section.

Throughout this chapter the vector x = (x1, x2, x3) represents the system

coordinates (x, y, z).

4.2.1 The Continuous Flow

To demonstrate the Hirota-Kimura discretization preserving the features of a con-

tinuous three-dimensional bi-Hamiltonian flow an example from [27] will now be

presented. The flow reads as

ẋ = −x2, ẏ = −xy, ż = 2y2 + xz. (119)

There are two conserved quantities for (119) as follows:

H =
y

x
, K = xz + y2. (120)

The two Poisson brackets of the system, which define the Poisson tensors P and

Q respectively are defined by

{xj, xk}1 = εjklφ
∂K

∂xl
, {xj, xk}2 = εjklψ

∂H

∂xl
, (121)

where εjkl is the anti-commuting symbol and the two functions of the local coordi-

nates φ, ψ are yet to be determined. The equations of motion can also be written

in terms of these Poisson brackets:

ẋ = {x, H}1 = {x, K}2. (122)

This relation can be used to find the two functions φ, ψ, and therefore express

the Poisson tensors purely in terms of the system variables. Starting with the first
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Poisson bracket that defines P we have the following:

ẋ =
∂H

∂y
{x, y}1 +

∂H

∂z
{x, z}1 =

(
1

x

)
φx = φ = −x2.

The first equation of motion indicates that the function φ = −x2 so now we just

need to check this for the other two equations of motion.

ẏ =
∂H

∂x
{y, x}1 +

∂H

∂z
{y, z}1 =

(
−y
x2

)
(−φx) = −xy,

ż =
∂H

∂x
{z, x}1 +

∂H

∂y
{z, y}1 =

(
−y
x2

)
(2φy)−

(
1

x

)
φz = 2y2 + xz.

Clearly having φ = −x2 satisfies all of the equations of motion when defined by

the first Poisson bracket, and therefore we can now write down the Poisson tensor

P as follows:

P =


0 −x3 2x2y

x3 0 −x2z

−2x2y x2z 0

 (123)

The Poisson tensor Q is defined by the second Poisson bracket which satisfies

the following first equation of motion.

ẋ =
∂K

∂y
{x, y}2 +

∂K

∂z
{x, z}2 = x

(
−ψ
x

)
= −ψ = −x2.

This shows that ψ = x2 so now this just needs to be checked for the other equations

of motion.

ẏ =
∂K

∂x
{y, x}2 +

∂K

∂z
{y, z}2 = x

(
−ψy
x2

)
= −xy,

ż =
∂K

∂x
{z, x}2 +

∂K

∂y
{z, y}2 = z

(
ψ

x

)
+ 2y

(
ψy

x2

)
= y2 + xz.
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The second Poisson bracket Q is defined below.

Q =


0 0 −x

0 0 −y

x y 0

 (124)

To define the volume form for this particular system it is necessary to find c,

the conformal factor, which can be achieved by requiring that the volume form is

preserved and solving the resulting equation.

Ω̇ = ċdx ∧ dy ∧ dz + c[dẋ ∧ dy ∧ dz + dx ∧ dẏ ∧ dz + dx ∧ dy ∧ dż] = 0,

(ċ− 2cx)(dx ∧ dy ∧ dz) = 0.

Solving ċ = 2cx we have c = 1
x2

up to an overall constant and therefore a fully

defined volume form Ω = 1
x2
dx ∧ dy ∧ dz.

Now that the Poisson structure of this map has been fully defined it is inter-

esting to look at the features of the two Casimir functions. It is easy to see that

H and K are preserved under the map (119), which is expected as they are the

integrals of motion for the system:

dH

dt
=
ẏ

x
+
ẋy

x2
=
−xy
x
− (−x2y)

x2
= −y + y = 0,

dK

dt
= xż + ẋz + 2yẏ = 2xy2 + x2z − x2z − 2xy2 = 0.

Both of these invariants define a surface when set equal to a constant, and the

intersection of these surfaces gives a curve which is a solution trajectory of the

system. Setting H equal to a constant gives a plane, and setting K to a constant

gives a hyperboloid.
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4.2.2 The Discretization

The Hirota-Kimura (Kahan) discretization applied to the flow (119) reads as (note

that h = 2ε)

x̃− x
ε

= −2x̃x,
ỹ − y
ε

= −x̃y − xỹ, z̃ − z
ε

= 4ỹy + x̃z + xz̃, (125)

which given in matrix form is

x̃ = A(x̃; ε)x, A =


1− 2εx̃ 0 0

−εỹ 1− εx̃ 0

εz̃ 4εỹ 1 + εx̃

 .

To get the equations in the explicit form x̃ = f(x) the matrix A is inverted and

the following replacements are made: x̃ 7→ x and ε 7→ −ε.

x̃ = A(x̃; ε)x = A−1(x;−ε)x,

giving the following explicit formulae for the map:

x̃ = x
1+2εx

,

ỹ = y
1+2εx

,

z̃ = − 3εxz+4εy2+z
(εx−1)(1+2εx)

.

(126)

In order to show that the properties of the continuous system have been pre-

served we now need to show that the map possesses two conserved quantities,

which will be denoted Ĥ and K̂, that are equal to the invariants (120) of the

original system multiplied by a correction factor. It is clear to see from (126) that

the invariant H from the continuous system will be conserved under the discrete

time step, that is

H(x̃, ỹ) =
ỹ

x̃
=
y

x
= H(x, y),
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and therefore we have that Ĥ = H = y
x
. Hone and Petrera [27] give the second

conserved quantity K̂ in terms of the second original invariant K and it reads as

K̂ =
K

1− ε2x2
=

xz + y2

1− ε2x2
,

which is shown to be conserved under the map by showing that the following

holds:

(x̃z̃ + ỹ2)(1− ε2x2) = (xz + y2)(1− ε2x̃2).

Substituting the expressions for x̃, ỹ and z̃ into the above equation and simplifying

gives

(xz + y2 + 3εxy2 + 3εx2z)(1 + εx)

(1 + 2εx)2
=

(1 + 4εx+ 3ε2x2)(xz + y2)

(1 + 2εx)2
,

of which the numerators are equal if the brackets are expanded. Therefore it is

confirmed that K̂ as defined above is indeed a conserved quantity of this map.

It is also necessary to show that the discretization has a volume form that is

also preserved by the map, which is denoted Ω̂ and is related to Ω, the volume

form of the continuous system, and the two invariants H and K.

Ω̂ =
Ω

HK
=

1

xy(y2 + xz)
dx ∧ dy ∧ dz. (127)

To show that this is preserved under the map we need to show the following holds:

dx̃ ∧ dỹ ∧ dz̃ =
x̃ỹ(x̃z̃ + ỹ2)

xy(xz + y2)
dx ∧ dy ∧ dz.

This is equivalent to

det

(
∂x̃

∂x

)
− x̃ỹ(x̃z̃ + ỹ2)

xy(xz + y2)
= 0,
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and we have that

det

(
∂x̃

∂x

)
=

1

(1 + 2εx)2

(
1 + 3εx

(1− εx)(1 + 2εx)2

)
.

Substituting in the expressions for x̃, ỹ, z̃ into the right hand side we have

x̃ỹ(ỹ2 + x̃z̃)

xy(y2 + xz)
=

1

xy(xz + y2)

(
xy(1 + 3εx)(xz + y2)

(1− εx)(1 + 2εx)4

)
.

Therefore it is clear that both sides of the equation are equal, and therefore the

volume form Ω̂ is indeed preserved under the map.

Finally, to show that this discrete map is also completely integrable, two com-

patible Poisson tensors need to be found which will be similarly denoted P̂ and

Q̂ that are defined by the Poisson brackets

{xj, xk}1 = εjklφ̂
∂K̂

∂xl
, {xj, xk}2 = εjklψ̂

∂Ĥ

∂xl
(128)

respectively. The two functions φ̂, ψ̂ are very closely related to the equivalent

functions in the continuous set up with an extra factor to counteract the alteration

to the Casimir function K̂:

φ̂ = (1− ε2x2)φ, ψ̂ = (1− ε2x2)ψ.

Therefore the discrete Poisson brackets (128) define the following Poisson tensors

for this system:

P̂ =


0 −x3 2x2y

x3 0 −x2z(1+ε2x2)−2ε2x2y2
(1−ε2x2)

−2x2y x2z(1+ε2x2)+2ε2x2y2

(1−ε2x2) 0

 , (129)
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Q̂ =


0 0 −x(1− ε2x2)

0 0 −y(1− ε2x2)

x(1− ε2x2) y(1− ε2x2) 0

 . (130)

4.3 New examples of discretizations

For the following examples the two Poisson brackets will be represented by {, }∗i
and {, }∗∗i , which define the Poisson tensors Pi, Qi respectively, with i ∈ {1, 2, 3}.

These brackets will take the form

{xj, xk}∗i = εjklφi
∂Ki

∂xl
, {xj, xk}∗∗i = εjklψi

∂Hi

∂xl
,

withHi, Ki being the two Casimir functions. The volume forms will be represented

in a similar way, all with a distinct conformal factor,

Ωi = cidx ∧ dy ∧ dz.

4.3.1 The Continuous Systems

The first example, flow ξ1, reads as

ξ1 : ẋ = −xz, ẏ = −ayz, ż = x2 + ay2, (131)

where a is a constant, and the two integrals of motion for this system are

H1 = x2 + y2 + z2, K1 = x−ay. (132)

Note that strictly the second invariant K1 is only transcendental when a /∈ Q,

otherwise it is algebraic. Moreover, if a ∈ Z then K1 is rational, and if a ∈ Q\Z

then a power of K1 will be rational. The trajectories of the system can be shown

by the intersection of the sphere defined by H and the surface of section y = Kxa
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and the system has two possible sets of steady states depending on the sign of a.

To find the steady states the following equations need to be satisfied:

ẋ = −xz = 0, ẏ = −ayz = 0, ż = x2 + ay2 = 0, (133)

and when a > 0 the third equation requires that x = y = 0 and therefore z is free

to take any value, say k1. However when these values are substituted into H1 we

can define the steady state values in terms of a fixed value of H > 0.

H1 = x2 + y2 + z2 = 0 + 0 + k21, ⇒ k1 = ±
√
H1.

x∗1,2 = (0, 0,±
√
H1)

T .

When a < 0 we still have the two fixed points defined above, but the third equation

in (133) now has more solutions. If we let x = α1 then we have

x2 = −ay2, ⇒ y = ± α1√
−a

,

and we therefore require that z = 0. To eliminate the need for the parameter α1

we can again use the invariant H1 such that

H1 = α2
1 +

α2
1

−a
, ⇒ α1 = ±

√
aH1

a− 1
,

to give the extra stationary points

x∗3,4 =

(
±
√

aH1

a− 1
,±

√
aH1

a(1− a)
, 0

)T

.

As with the flow (119) this system also has a Poisson structure with the brack-

ets and by performing similar calculations as before we can define the following
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functions:

c1 = x−(a+1), φ1 = xa+1, ψ1 =
−xa+1

2
.

Using this we can define the two Poisson tensors and preserved volume form as

P1 =


0 0 x

0 0 ay

−x −ay 0

 , Q1 = xa+1


0 z −y

−z 0 x

y −x 0



Ω1 =
1

xa+1
dx ∧ dy ∧ dz.

The second example, flow ξ2, reads as

ξ2 : ẋ = −xz, ẏ = −z(x+ y), ż = x2 + xy + y2, (134)

and the two integrals of motion for this system are

H2 = x2 + y2 + z2, K2 =
y

x
− log x. (135)

Again the trajectories of the system are the intersection between a sphere defined

by H2 and a surface with section defined by y = x(K + log x). The steady states

of this system are found by solving the equations

−xz = 0, −z(x+ y) = 0, x2 + xy + y2 = 0,

which gives only two possible solutions

x∗1,2 = (0, 0,±
√
H2)

T .
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The third example, flow ξ3, reads as

ξ3 : ẋ = x(y−bx), ẏ = −x(x+by), ż = 2y(x+by)+z(bx−y), (136)

where b is a constant, and the two integrals of motion for this system are

H3 = xz + y2, K3 = ϕ(1+ib) ¯ϕ(1−ib), (137)

where ϕ = x+ iy.

4.3.2 The Discrete maps

Applying the Hirota-Kimura type discretization to flow ξ1 gives a map, dξ1, that

reads as

dξ1 :
x̃− x
ε

= −x̃z − xz̃, ỹ − y
ε

= −a(ỹz − yz̃),
z̃ − z
ε

= 2x̃x+ 2aỹy,

(138)

which written in matrix form gives

x̃ = A1(x̃; ε)x, A1 =


1− εz̃ 0 −εx̃

0 1− aεz̃ −aεỹ

2εx̃ 2aεỹ 1

 . (139)

Applying the Hirota-Kimura type discretization to flow ξ2 gives a map, dξ2,

that reads as

dξ2 :
x̃− x
ε

= −x̃z − xz̃, ỹ − y
ε

= −(x̃+ ỹ)z − (x+ y)z̃,

z̃ − z
ε

= (2x̃+ ỹ)x+ (x̃+ 2ỹ)y,

(140)
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which written in matrix form gives

x̃ = A2(x̃; ε)x, A2 =


1− εz̃ 0 −εx̃

−εz̃ 1− εz̃ −ε(x̃+ ỹ)

ε(2x̃+ ỹ) ε(x̃+ 2ỹ) 1

 . (141)

The flow dξ3 reads as

dξ3 :
x̃− x
ε

= x̃y + (ỹ − 2bx̃)x,
ỹ − y
ε

= −bx̃y − (2x̃+ bỹ)x,

z̃ − z
ε

= (2ỹ + bz̃)x+ (2x̃+ 2bỹ − z̃)y + (bx̃− ỹ)z,

(142)

which written in matrix form gives

x̃ = A3(x̃; ε)x, A3 =


1 + ε(ỹ − 2bx̃) εx̃ 0

−ε(2x̃+ bỹ) 1− bεx̃ 0

ε(2ỹ + bz̃) ε(2x̃+ 4bỹ − z̃) 1 + ε(bx̃− ỹ)

 .

(143)

The Diophatine integrability test has been applied to each of these systems

below and it is clear that all of them have growth of the heights of their iterates

greater than that of a polynomial, which indicates that the discrete systems are

not integrable.

4.4 Conclusion

In this Chapter we have considered three-dimensional bi-Hamiltonian systems that

originally appeared in a list produced by Gumral and Nutku [18]. In [27] Hone

and Petrera present the Hirota-Kimura discretizations of six of these systems, all

of which are algebraically integrable, and all of which provide maps that admit

two independent rational integrals of motion. These six discrete maps have been

shown to be Diophantine integrable, and one of these maps has been presented in
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Figure 8: A plot of the growth of the heights of the iterates of x for the map in
(138).

Figure 9: A plot of the growth of the heights of the iterates of x for the map in
(140) .

this Chapter for comparison against three Hirota-Kimura maps that arised from

continuous systems that have one rational and one transcendental integral. We

find that when the Hirota-Kimura discretization is applied to a continuous system

that features a transcendental integral the map produced is not integrable, unlike

the case when both integrals are rational.

Further work here would include deriving the Poisson structures and volume

forms for the two flows ξ2 and ξ3, and also to find the corresponding discrete Pois-

son structures for all three maps. It would also be interesting to investigate further
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Figure 10: A plot of the growth of the heights of the iterates of x for the map in
(142).

into why the presence of a transcendental integral causes the lack of integrability

of the map when using the Hirota-Kimura discretization scheme.
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Chapter 5

Hamiltonian systems with two

degrees of freedom

In this chapter the Hénon-Heiles system will be used as an example of a Hamil-

tonian system with two degrees of freedom, and Kahan’s discretization will be

applied to a particular integrable case and then compared to the Bäcklund trans-

formation. The Hénon-Heiles system was first introduced in 1964 to model the

dynamics of a star within the galaxy. It is a two body system which describes mo-

tion in the plane using coordinates q = (q1, q2), the position vector of the particle

and p(= q̇) = (p1, p2) the momentum vector. The potential can be constructed by

the addition of two cubic terms to the potential of the planar harmonic oscillator

to give

U(q) = Aq21 +Bq22 + Cq22q1 +Dq31. (144)

The kinetic energy of the particle can be written as T (p) = 1
2
(p21 + p22) and

combining this with the potential shown above we have the Hamiltonian

H(q, p) = T (p) + U(q) =
1

2
(p21 + p22) + Aq21 +Bq22 + Cq22q1 +Dq31. (145)

This Hamiltonian represents the total energy of the system which is conserved
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along all orbits. The equations of motion for this system are calculated using

q̇ =
∂H(q,p)

∂p
, ṗ = −∂H(q,p)

∂q
, (146)

to give

q̇1 = p1, q̇2 = p2, (147)

ṗ1 = −Cq22 − 2Aq1 − 3Dq21, ṗ2 = −2Bq2 − 2Cq1q2. (148)

5.1 The Integrable cases of the Hénon-Heiles sys-

tem

The three integrable cases of the Hénon-Helies system are given in terms of the

parameters (A,B,C,D) presented in the Hamiltonian (145) and are as follows:

Case (i): A = B,D = 1
3
C,

Case (ii): A,B arbitrary, D = 2C,

Case (iii): B = 16A,D = 16
3
C.

These cases can also be derived through the traveling wave reduction of fifth-

order soliton equations. Case (i) is achieved by the reduction of the SK (Sawada-

Kotera) equation [54], case (ii) by the reduction of the KdV5 equation [35] and

case (iii) by the reduction of the KK (Kaup-Kupershmidt) equation [34, 14]. The

derivation of case (ii) will be presented in the next section.
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5.2 Derivation of case (ii) by the reduction of

fifth order KdV equation

The fifth order KdV partial differential equation that will be reduced to give an

example of a case (ii) Hénon-Heiles system of ODE’s is given as

ut = uxxxxx + 10uuxxx + 20uxuxx + 30u2ux, (149)

where ut and ux represent the partial derivatives of the function u = u(x, t). This

PDE can also be written as

ut = (D3 + 4uD + 2ux)(uxx + 3u2), (150)

to which we apply the travelling wave reduction of w = u(z), z = x− ct to give

(D3 + 4wD + 2w′)(w′′ + 3w2 +
c

2
) = 0, f = w′′ + 3w2 +

c

2
. (151)

Expanding this gives the following ODE in f

ff ′′ − 1

2
(f ′)2 + 2wf 2 +

l2

2
= 0 (152)

with l2

2
being a constant of integration. If we take f = −1

2
q22 and w = q1 then we

arrive at the following system of ODE’s

q′′1 + 3q21 +
c

2
+

1

2
q22 = 0, q′′2 + q1q2 +

l2

q32
= 0. (153)

With p1 = q′1 and p2 = q′2 we have a Hénon-Heiles system with Hamiltonian

H =
1

2
(p21 + p22) + q31 +

1

2
q1q

2
2 −

l2

2q32
+
c

2
q1. (154)
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If we consider the case with l = 0 then we can write down the steady states of

this system in terms of c. The four fixed points and their stability for the variables

(p1, p2, q1, q2) are

(0, 0, µ, 0) :elliptic (center)

(0, 0,−µ, 0) :hyperbolic (saddle)

(0, 0, 0,
√

6µ) :hyperbolic (saddle-ellipse)

(0, 0, 0,−
√

6µ) :hyperbolic (saddle-ellipse)

with c = −6µ2.

The next sections will focus on this example with c = −6 to give real steady

states.

5.3 Kahan’s method

Here we will apply Kahan’s method the following particular example of a case (ii)

Hénon-Heiles system:

q̇1 = p1, q̇2 = p2, (155)

ṗ1 = −1

2
q22 − 3q21 + 3, ṗ2 = −q1q2, (156)

which has four real steady states (0, 0,±1, 0) and (0, 0, 0,±
√

6). The map created

using Kahan’s method takes the form

q̃1 − q1
h

=
p̃1 + p1

2
,

q̃2 − q2
h

=
p̃2 + p2

2
, (157)

p̃1 − p1
h

= −1

2
q2q̃2 − 3q1q̃1 + 3,

p̃2 − p2
h

= −q1q̃2 + q̃1q2
2

. (158)
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If we take initial conditions close to the elliptic fixed point (0, 0, 1, 0) then

we expect to see a closed compact orbit if this map is to preserve the qualitative

features of the continuous system. The following plots have been created using the

intial conditions (0.1, 0.1− 1.1, 0.1) and stepsize h = 0.01 and n = 10000. Figures

11, 12, 13 show clearly that the stability of the elliptic fixed point is indeed the

same for the discrete system as it is for the continuous system.

Figure 11: The iteration plot of q1 and q2 with initial conditions
(0.1, 0.1,−1.1, 0.1) .

Figure 12: The iteration plot of p1 and p2 with initial conditions
(0.1, 0.1,−1.1, 0.1) .

We can also check whether the Hamiltonian H = 1
2
(p21 + p22) + q31 + 1

2
q1q

2
2 − 3q1

is preserved under the time-step by plotting the value of H against n. As figure
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Figure 13: The iteration plot of p1 and q1 with initial conditions
(0.1, 0.1,−1.1, 0.1) .

14 shows the map does not exactly preserve the value of H, but it does stay in

the neighbourhood of −1.95 to three significant figures.

Figure 14: The value of H against n for 1000 iterations with initial conditions
(0.1, 0.1,−1.1, 0.1) .

5.4 Diophantine integrability test on Kahan’s method

To give an indication of the integrability of Kahan’s method for this case (ii)

Hénon-Heiles system we will now check whether the discrete system is Diophantine

integrable. Figure 15 shows the logarithm of the heights of the first 10 q1 iterates,
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and it is clear that the growth of the heights is greater than that of a polynomial.

Therefore we can say that the discrete system (157),(158) is not Diophantine

integrable.

Figure 15: A plot of the growth of the logarithm of the heights of the iterates of
q1.

5.5 The Bäcklund transformation

As a comparison to Kahan’s method we will now consider the Bäcklund transfor-

mation of a particular example of case (ii). The Bäcklund transformation for the

many-body generalization of case (ii) is given in [25] which we will use to present

our particular example (the original case - parameter values c = mj = aj = 0 and

n = 1 in [25] ).

First we need to give the Lax matrix L for this system:

L(λ) =

 p1q1
λ

−p21
λ

q21
λ
−p1q1

λ

+B(λ), (159)
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where the matrix B(λ) is given as

B(λ) =

 −4p2 E

−16λ− 8p2 4p2

 , E = −16λ2 + 8λq2 − 4q22 − q21. (160)

The equations for the Bäcklund transformation are found from the entries of the

matrix created by the discrete Lax equation

L̃M −ML = 0, (161)

where L̃ is the updated Lax matrix with the variables replaced with their images

under the Bäcklund transformation, and M is the Darboux matrix

M =

 −y 1

y2 + α− λ −y

 , y = −
√
λ− 1

2
(q2 + q̃2). (162)

The entires of the discrete Lax equation matrix are polynomials in λ and the

equations for the Bäcklund transformation are found by requiring the coefficients

of λ to be zero.

5.6 Conclusion

In this Chapter we have applied the Hirota-Kimura/Kahan discretization scheme

to an example of the integrable case (ii) Hénon-Heiles system and showed that al-

though the fixed points of the continuous system and their stability are preserved

in the discrete system, the Hamiltonian is not. Also we apply the Diophantine in-

tegrability test to the map and discover that it is not integrable, unlike the contin-

uous system. As a comparison to the map produced by the Hirota-Kimura/Kahan

type discretization we have also mentioned the Bäcklund transformation for the
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same Hénon-Heiles system, which is exact in the sense that it preseves the Hamil-

tonians and it is symplectic. Although it is clear that the Bäcklund transformation

produces a map with favourable features, Kahan’s method as it is much simpler,

explicit and will likely give similar results for all of the Hénon-Heiles systems,

whereas the Bäcklund transformations for each case are quite complicated.

This work could be extended by applying Kahan’s method to other examples

of the integrable cases of the Hénon-Heiles system and look for any outcomes

where it does produce a map that preserves the Hamiltonian.
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Chapter 6

Systems with cubic vector fields

and Limit Cycles

6.1 General Non-Standard Discretizations of a

Trimolecular System

In this chapter we will be looking at a cubic system of first order differential

equations which arise from a trimolecular reaction. This system is of particular

interest as it has a solution which includes a limit cycle and we seek to produce

one or more discrete models of the system which also have a limit cycle in their

solution. A limit cycle is an isolated solution of the system which is periodic

and corresponds to a closed curve in the phase space. This system is a result of

applying the Law of Mass Action to the following reaction scheme:

X → A, B → Y, 2X + Y → 3X. (163)

In this reaction scheme A,B,X, Y are four molecular species and kj, j =

1, 2, 3, 4 are the rate constants. If we assume the concentrations of A and B are

kept constant (denoted a, b respectively), and we non-dimensionalise the resulting
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system from applying the Law of Mass Action then we have the following:

ẋ = a− x+ x2y, ẏ = b− x2y (164)

where x, y are the scaled concentrations of X, Y respectively. This system has a

fixed point at (x∗, y∗) = (a+ b, b/(a+ b)2) which lies inside the limit cycle that is

produced in the parameter range b− a > (a+ b)3 with 0 6 b < 1 (see chapter 7 in

[22] for details). The system has a pair of complex conjugate eigenvalues which

cause a stable spiral for b−a < (a+ b)3 and then a Hopf Bifurcation occurs along

the line b − a = (a + b)3 where the spiral becomes unstable, and a limit cycle is

formed. We can derive the equation of the curve b−a = (a+ b)3 in the parameter

space (a, b) by looking at the Jacobian of the system evaluated at the fixed point,

and performing stability analysis. This gives us the Jacobian:

J |(x∗,y∗) =

 −1 + 2b
(a+b)

(a+ b)2

−2b
(a+b)

−(a+ b)2

 (165)

From this we have the determinant D = (a + b)2 and the trace T = 2b
(a+b)

−

1 − (a + b)2 = 2b−a−b−(a+b)3
a+b

= b−a−(a+b)3
a+b

. Clearly D > 0 as a > 0, b > 0 and for

the trace we have an equation which determines whether T > 0 or T < 0 which

gives either an unstable spiral or a stable spiral respectively. Therefore we have a

stable spiral for b− a < (a+ b)3, and then a Hopf bifurcation at b− a = (a+ b)3

and an unstable spiral and a limit cycle appear for b− a > (a+ b)3.

In an article by Hone [26] this exact system was discretized using ideas from

Micken’s approach [40] with seven parameters, all of which were constrained to

take just one possible value in order for the system to be bi-rational, giving just one

possible system with an inverse. However, this has been extended this slightly by

introducing the maximum number of possible parameters into the discrete scheme

which totals to eleven. This has been done in the hope that additional possibilities

for the values of the parameters will be discovered and therefore one or more new
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discrete system will be uncovered.

6.1.1 The general non-standard discretization

The set up for this discretization is to take a system of differential equations:

ẋ = f(x)

and replace the differential term with the usual forward step

xn+1 − xn
ε

,

where ε is the step size and xn is the value at step n. The right hand side, f(x) is

then replaced with a new function F(xn,xn+1) which will be an estimation of the

original function.

In the system (164) we have linear and cubic terms which need to be dealt

with for the discretization. One of the ideas for the Mickens approach is to take a

kind of average of all the possible combinations of each term using the variables

and their up-shifted value. For example, when discretizing a quadratic term xy

there are four ways of combining the variables: (xy, x̃y, xỹ, x̃ỹ) where x and x̃

represent xn and xn+1 respectively. This form of discretization gives the following

result on (164):

x̃− x
ε

= a−cx−(1−c)x̃+dx2y+exx̃y+fx2ỹ+gx̃2y+hxx̃ỹ+(1−d−e−f−g−h)x̃2ỹ,

(166)

ỹ − y
ε

= b−Dx2y−Exx̃y−Fx2ỹ−Gx̃2ỹ−Hxx̃y− (1−D−E−F −G−H)x̃2ỹ.

(167)
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where (a, b) are constants and (c, d, e, f, g, h,D,E, F,G,H) are the eleven param-

eters which we will be finding constraints for. The reason for this type of general

average is so that as x̃ tends to x this discrete system tends to the original system,

and therefore we will always get the same fixed points from the discrete system as

we do in the original, which is of course one of the main features of the continuous

system that we want to preserve.

In order to refine this discrete system so that it mimics the original system

as closely as possible we now need to find conditions on the parameters which

cause the system to be explicit for both the (x, y) and (x̃, ỹ) variables which will

give us a birational system. We will then be able to write (166) and (167) as the

following:

(166) : x̃ = f1(x, y), or x = f̃1(x̃, ỹ), (168)

(167) : ỹ = f2(x, y), or y = f̃2(x̃, ỹ). (169)

where fi, f̃i, i = 1, 2 are rational functions yet to be determined.

6.1.2 Finding the Parameter Constraints

To achieve these constraints in the most efficient way we will use resultants as de-

fined in Appendix A. Resultants are particularly useful for generating constraints

on the parameters by requiring the function RP,Q have just one solution for the

corresponding variable. For example if we compute the resultant for x̃ then we’re

left with a polynomial in x, and if coefficients are eliminated so that RP,Q(x̃) = 0

has one solution then the solution we have will in fact be the function f̃1(x̃, ỹ) as

described in (168), and similarly for the other variables. For our calculation the

two functions P,Q will be as follows:
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P = a−cx−(1−c)x̃+dx2y+exx̃y+fx2ỹ+gx̃2ỹ+hxx̃ỹ+(1−d−e−f−g−h)x̃2ỹ−(x̃− x)

ε
,

(170)

Q = b−Dx2y−Exx̃y−Fx2ỹ−Gx̃2ỹ−Hxx̃ỹ−(1−D−E−F−G−H)x̃2ỹ− (ỹ − y)

ε
.

(171)

Then we have four resultants to use for the constraints as we can look at P,Q

as polynomials in either x̃, ỹ, x or y variables, and treat the remaining variables

as constants. However the resultants are paired as each variable and its unshifted

counterpart to have their resultants satisfied simultaneously so a bi-rational sys-

tem is produced. So we need to find constraints on the parameters which give one

solution for both RP,Q(x̃) = 0 and RP,Q(x) = 0 and then also for both RP,Q(ỹ) = 0

and RP,Q(y) = 0.

When the resultant is performed on one of these functions a new function

is formed which will be treated as a polynomial in the other variable, so if the

resultant was computed with x̃ as the variable, then the new function formed

would be considered to be a polynomial in ỹ, and the same for x, y and the

inverses. This new function will always be a polynomial of degree 4, however as

only one solution should be produced when set to zero certain coefficients need to

be eliminated. Consider this new function in the form

p4x
4 + p3x

3 + p2x
2 + p1x+ p0 = 0, (172)

where pi, i = 0, .., 4 are the coefficients and x represents one of the variables

x̃, ỹ, x, y. The obvious choice of coefficients to eliminate are p4, p3 and p2 so that we

are left with p1x+p0 = 0 which gives the desired single solution x = −p0
p1

. However

there also other choices which give equations with a single solution provided we
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assume x = 0 cannot be a solution. These are outlined below:

p4 = p3 = p2 = 0 ⇒ p1x+ p0 = 0 ⇒ x =
−p0
p1

, (173)

p4 = p3 = p0 = 0 ⇒ x(p2x+ p1) = 0 ⇒ x =
−p1
p2

, (174)

p4 = p1 = p0 = 0 ⇒ x2(p3x+ p2) = 0 ⇒ x =
−p2
p3

, (175)

p2 = p1 = p0 = 0 ⇒ x3(p4x+ p3) = 0 ⇒ x =
−p3
p4

. (176)

These conditions will be what we will use as constraints as each pi will be

a function of the variables and the parameters so setting the parameters to take

certain values will lead to the coefficient vanishing. It is possible that we may come

across situations where even after eliminating all the parameters in a coefficient

we may be left with either variables with constant coefficients or an expression in

ε, neither of which can be set to zero, and therefore we cannot retrieve a constraint

from that particular condition.

6.1.3 Resultants for x̃ and x.

Note: Most of the equations for the parameters found in these next two sections

are the most simplified versions of the coefficients {pi} with all the common factors

having been removed.

The first resultant computed is the one for x̃ which as stated above gives

a polynomial in ỹ of degree 4. Condition (173) from above is the first to be

considered and initially we have to eliminate p4 which in this case is itself a

polynomial in x of degree 4. Most of the coefficients in the resultant for x̃ are

significantly more complex than those for ỹ and therefore will not be displayed

in this section, however the coefficients for ỹ are compact enough to be quoted

in the following section. Inspecting p4 we discover that the most general option

for the elimination of this coefficient is a choice of parameter values such that
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D + E + F +G+H = 1, d+ e+ f + g + h = 1.

Next we look at p3, and as we want this to vanish simultaneously with p4

we can substitute the parameter values we just found straight into p3. Having

substituted H = 1 − D − E − F − G and h = 1 − d − e − f − g into p3 we

find that the only extra condition needed to cause it to vanish is G = g = 0.

Conveniently we also discover that these parameter values eliminate p2, p1 and

p0 and therefore make the whole resultant vanish. This is seen as a null result as

it does not give any solution, and as a result there is no point investigating the

resultant with respect to x as we need both resultants to have a unique solution

to give a birrational system.

6.1.4 Resultants for ỹ and y.

Firstly we will look at (173), which means eliminating p4, p3 and p2. The constraint

p4 = 0 applied to the resultant with respect to ỹ, which in this case is the coefficient

of x̃4, gives the following equation:

p4 = G(1− d− e− f − h)− g(1−D − E − F −H) = 0. (177)

This coefficient is only in terms of the parameters and it is therefore easy to

see values of these parameters which will cause p4 to vanish. There are three

ways to achieve this, firstly we can take G = g = 0, and secondly we could take

d+e+f+h = 1 and D+E+F+H = 1 and thirdly we could take g = 1−d−e−f−h

and G = 1 − D − E − F − H. If we take G = g = 0 first and apply this to p3,

which in this case is a monmial in x, we have the following two parts of p3 which

both need to be eliminated:

Coeff of x in p3 := E(1− d− f − h) + e(1−D − F −H), (178)
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From (178) we can see that taking E = e = 0 will eliminate the coefficient of

x, but it will not do the same for the constant term so this is not useful. However,

taking E = 0 along with D + F +H = 1 does in fact eliminate both parts giving

p3 = 0. Now we just need to ensure p2 = 0 is satisfied and we have found one set

of parameter values which give the condition (173) and causes the resultant with

respect to ỹ to have only one solution. Using the constraints G = g = 0, E = 0

and H = 1−D−F substituted into p2 we have the following parts which all need

to be eliminated:

Coeff of x2 in p2 := (1− d− f − h)D + (1− F )e, (179)

Coeff of x in p2 := {(1−D − F )c+ F +D − 1}ε+ F +D − 1, (180)

Coeff of x0 in p2 := (1− d− e− f − h)bε+ (1− d− e− f − h)y. (181)

Straight away we can see that the only option for the elimination of the con-

stant term is d + e + f + h = 1, and similarly there is only one option for the

elimination of the coefficient of x, namely D + F = 1. Taking h = 1− d− e− f

and F = 1−D we conveniently find that the coefficient of x2 also vanishes. The

condition F = 1 − D results in H = 0 as H = 1 − D − F from before. So this

gives us our first provisional set of parameter values for the resultant with respect

to ỹ which are:

Provisional Set 1 : E = 0, G = g = 0, H = 0, h = 1−d−e−f, F = 1−D

(182)

Now we return to p4 as we had two other options which caused p4 to vanish,

and now we will assess the second option, which was d + e + f + h = 1 and

D+E+F +H = 1. So if we subsitute h = 1− d− e− f and H = 1−D−E−F

into p3 we have the following:
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Coeff of x in p3 := (1−D − F )g + (1− d− f)G, (183)

Coeff of x0 in p3 := G(1 + ε− cε). (184)

Clearly we need G = 0 to eliminate the constant term here, and then we have

two options again for the coefficient of x, which are g = 0 or D + F = 1. Dealing

with g = 0 first and substituting this into p2 we have:

Coeff of x2 in p2 := (1−D − F )e− (1− d− f)E, (185)

Coeff of x in p2 := {(1−D−E−F )c−(1−D−E−F )}ε−(1−D−E−F ). (186)

The coefficient of x gives no choice but D + E + F = 1. Substituting F =

1 − D − E into (185) gives E(1 − d − e − f). Once again we have two choices:

E = 0 or d + e + f = 1. So for the option g = 0 from p4 we have two more

provisional sets of parameter values:

Provisional Set 2 : E = 0, G = g = 0, H = 0, h = 1−d−e−f, F = 1−D,

(187)

Provisional Set 3 : G = g = 0, H = h = 0, f = 1− d− e, F = 1−D − E.

(188)

Straight away it is clear that provisional set 2 (187) is identical to provisional

set 1(182) so in fact we only have two sets of parameter values.

Now we go back to the other option, namely D + F = 1, and we substitute

F = 1−D and H = E into p2 to give:

Coeff of x2 in p2 := (2e+ f − 1− d)E + g, (189)

Coeff of x in p2 := (3c− 1)Eε− 3E. (190)
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Here the coefficient of x gives E = 0 as only option, and this substituted into

(189) gives g = 0. Now we have a fourth provisional set of parameter values:

Provisional Set 4 : E = 0, G = g = 0, H = 0, h = 1−d−e−f, F = 1−D.

(191)

Again we have a copy of the first provisional set (182), so we can conclude that

we still only have two sets of parameter values so far, which are outlined below:

Set 1 : E = 0, G = g = 0, H = 0, h = 1− d− e− f, F = 1−D, (192)

Set 2 : G = g = 0, H = h = 0, f = 1− d− e, F = 1−D − E. (193)

Finally we shall now look at the third option for the parameters which eliminate

p4, which were g = 1− d− e− f − h and G = 1−D −E − F −H. Substituting

this into p3 gives the following:

Coeff of x in p3 := (1− d− e− f)H − (1−D − E − F )h, (194)

Eliminating the coefficient here requires one of three options for the parame-

ters: (1) H = h = 0, (2) d+ e+ f = 1 and D +E + F = 1, (3) h = 1− d− e− f

and H = 1−D − E − F . Substituting H = h = 0 into p2 gives the following:

Coeff of x2 in p2 := (1− d− e)F − (1−D − E)f, (195)

Coeff of x0 in p2 := 1− d− e− f. (196)

Again there are a few choices here, firstly we could take F = 0 and f = 0

which results in needing d + e = 1 and therefore g = 0 and G = 1 − D − E.

Secondly we could take f = 1 − d − e and F = 1 −D − E which also results in

G = g = 0.
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Now substituting the second choice (2) d + e + f = 1 and D + E + F = 1,

which also gives G = H and g = h, into p2 we have:

Coeff of x2 in p2 := (2e− d− 1)H − (2E −D − 1)h, (197)

Coeff of x in p2 := (3cε− ε− 3)H, (198)

Coeff of x0 in p2 := (y + 2bε)h+ 2aεH. (199)

The only choice here is H = h = 0, however we can discard this result as

it is identical to the one discovered previously. The third option was (3) h =

1 − d − e − f , H = 1 − D − E − F and therefore G = g = 0. These values

substituted into p2 gives the following constraints:

Coeff of x2 in p2 := (1−D − F )e− (1− d− f)E, (200)

Coeff of x in p2 := {(1−D−E−F )c−(1−D−E−F )}ε−(1−D−E−F ). (201)

Here we have two options, either E = 1−D−F and e = 1−d−f , or E = e = 0

and F = 1 − D, f = 1 − d. The first option is again identical to a previous

result, and the second option is just a particular case of that result.

The next step is to look at the other coefficient constraints, (174), (175) and

(176). However, it is not actually possible to do these as we cannot use parameter

values to eliminate the coefficients p1 and p0. For p1 we find the constant term

cε− ε−1 which cannot be eliminated as setting c = 1+ε
ε

will alter the behaviour of

the system. Similarly for p0 we have the constant term aε and also the coefficient

of x: 1− cε, neither of which can be eliminated for the same reason.

These sets of parameter values, (192) and (193), will allow us to write the

original system in the form x̃ = f1(x, y) and ỹ = f2(x, y), but we also need to be

able write the system inversely, so now we need to find additional constraints on

the parameters by looking at the resultant with respect to y. As we need both
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resultants to be satisfied simultaneously we can use the parameter sets (192) and

(193) to simplify the resultant of y. As we did with the resultant for ỹ we find

that we cannot use the coefficient constraints (174), (175) and (176) due to terms

which cannot be eliminated, which are as follows:

Coeff of x̃0 in p0 := aε, (202)

Coeff of x̃ in p0 := 1 + ε− cε, (203)

Coeff of x̃0 in p1 := cε− 1. (204)

So this leaves us with only (173) to use to find extra constraints. Starting with

p4 and substituting the parameter values from set 1 we have the following:

(f + d)D − d, (205)

which gives the only option of D = 0 and d = 0. Substituting these into p3 gives

e = 0, and then for p2 we get f = 0. Now we have a complete set of parameter

values for set 1 which will give a birational system.

Now we look at the parameter values from set 2 for the resultant with respect

to y. Here we encounter a problem in that p2 with these particular parameter

values cannot be eliminated. If we look at p2 we can see why:

p2 : (cεx̃− εx̃− x̃+ aε)D + (x̃− cεx̃)E + bεd+ ỹe− ỹ, (206)

Even with taking D = 0, E = 0, d = 0, e = 0 we are still left with the term −ỹ

and so we can now discard parameter set 2 as we cannot use the parameter values

in it to make the system birational.

Finally we need to assess the resultant for y using the parameter values in set

3. These values conveniently eliminate p4, so we just need to look at p3 and p2,
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which are shown below:

p3 : (1− cε)D, (207)

p2 : (cεx̃− εx̃− x̃+ aε)D + (x̃− cεx̃)E − (bε− ỹ)d. (208)

From this we find the parameter values D = 0, E = 0, d = 0 cause both p2 and

p3 to vanish, and as a result we have the second and last set of parameter values

which give a birational system. These two parameter sets are outlined below:

Final Set 1 : d = 0, e = 0, f = 0, g = 0, h = 1, D = 0, E = 0, F = 1, G = 0, H = 0.

(209)

Final Set 2 : d = 0, e = 1, f = 0, g = 0, h = 0, D = 0, E = 0, F = 0, G = 1, H = 0.

(210)

As has been found in other discrete systems, such as the Lotka-Volterra system,

we find that the parameter for the linear part of the system, in this case c, is left

with no constraint and can take any value.

6.2 The Final Result

Now that we have the only feasible parameter values that give a birational system

we are finished with investigating the resultants from the most general version of

the discrete system. We now have the following two maps, both of which only

have the parameter c left from the new parameters introduced in (166) and (167):

x̃− x
ε

= a− cx− (1− c)x̃+ xx̃ỹ,
ỹ − y
ε

= b− x2ỹ. (211)

x̃− x
ε

= a− cx− (1− c)x̃+ xx̃y,
ỹ − y
ε

= b− x̃2ỹ. (212)
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Unfortunately we have not found any new ways to discretize this system be-

yond those found in [26] despite introducing a full range of parameters. Nonethe-

less this now confirms that these two are definitely the only possibilities for a

bi-rational discretization of (164) using Micken’s approach. In fact we only really

have one discretization here as they are the inverses of each other.

Having found the only possibility for a bi-rational discrete system which is

based on the original trimolecular system we can now investigate the existence

of the limit cycle for certain values of the parameters a, b. To begin with we can

check that we get a stable spiral for b − a < (a + b)3 as we do in the original

system, which as the plot below shows we do at least for one set of values that

satisfy this inequality. In figure 16 we have ε = 0.05 and c = 1
2
.

Figure 16: The iteration plot of the discrete system (211) with initial conditions
x0 = 0.1, y0 = 0.8 and parameter values a = b = 1

2
.

Here we see that the iteration quickly spirals into the fixed point which in this

case is (a+ b, b
(a+b)2

) = (1, 1
2
) and therefore is behaving how we had hoped. Next

we need to check to see if we get a limit cycle for parameters values defined by

b− a > (a + b)3. Figure 17 is with initial values which lie outside the limit cycle

and so we see the plot spirals around into the limit cycle and stays there. The

length of the iteration is 10000 steps but the plot hits the limit cycle after about

1500 steps. Again we have ε = 0.05 and c = 1
2
.
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Figure 17: The iteration plot of the discrete system (211) with initial conditions
x0 = 0.5, y0 = 1.1 and parameter values a = 9

50
, b = 1

2
.

We can also look at having the initial values being on the inside of the limit

cycle and therefore the plot spiraling out to meet it.

So we have clear evidence that limit cycles do exist for certain values of the

parameters in this discrete system, and for the above examples at least the pa-

rameter boundaries for the bifurcation appear to line up with the original system,

however it is unlikely that the bifurcation line b − a = (a + b)3 from the original

system will hold for the discrete system due to the introduction of ε.

6.3 General Non-Standard Discretizations of a

Hamiltonian System with a Quartic Poten-

tial

We will look at a Hamiltonian system with a quartic potential which gives a cubic

system of Hamilton’s equations.

H =
1

2
p2 − a

4
x4 +

b

2
x2 (213)
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ẋ = p, ṗ = ax3 − bx. (214)

We are using this particular Hamiltonian because it gives the possibility, (de-

pending on the parameters a, b), of seeing a center at the fixed point (0, 0) and

therefore elliptic orbits around (0, 0). The other two fixed points are (
√

b
a
, 0) and

(−
√

b
a
, 0) which are both hyperbolic. Elliptic orbits in the original continuous

system are preferable as they are a good visual structure to try to preserve in the

discrete version of the system. Without such orbits numerical plots of the discrete

system would be considerably less interesting.

The general form for this type of discretization is given below:

x̃− x
h

= Ap+ (1− A)p̃, (215)

p̃− p
h

= a[Bx3 +Cx2x̃+Dxx̃2 + (1−B −C −D)x̃3]− b[Ex+ (1−E)x̃]. (216)

This gives us the 5 parameters A,B,C,D,E which will need to be constrained

in order to give a bi-rational system, and then further constrained to give a sym-

plectic system.

Again we will be using the resultant to ensure that the discrete system is bi-

rational, and fortunately this system requires little work as the constraint options

within the resultant are limited.

6.3.1 Finding the constraints

First we need to define the functions that we will be applying the resultant to

and set up some notation. The two functions will be labeled P (x, p, x̃, p̃) and

Q(x, p, x̃, p̃) and appear as follows:

91



P = Ap+ (1− A)p̃− x̃− x
h

, (217)

Q = a[Bx3+Cx2x̃+Dxx̃2+(1−B−C−D)x̃3]−b[Ex+(1−E)x̃]− p̃− p
h

. (218)

The resultant of P and Q will be expressed as Rx where x ∈ {x, p, x̃, p̃} where

the lower index corresponds to the variable the functions P,Q are considered to be

in. As the resultants with respect to a variable will give a polynomial in the oppo-

site variable we have that Rx = Rx(p), Rx̃ = Rx̃(p̃) and so on. These polynomials

will all be of degree three and will therefore have the following structure:

Rx = c3x̂
3 + c2x̂

2 + c1x̂ + c0, (219)

where x̂ is the ’opposite’ variable to x and the coefficients ci are themselves func-

tions of the two remaining variables. Now we want to be able to solve this poly-

nomial to give a unique solution so that we have a rational map. Achieving a

bi-rational map then means ensuring there is also a unique solution from the re-

sultant in the up shifted variable simultaneously. If we assume that we cannot

have x = 0 as a possibility we have three choices for setting the coefficients in

(219) to zero to give a unique solution, which are as follows:

c3 = c2 = 0 ⇒ c1x + c0 = 0 ⇒ x =
−c0
c1

, (220)

c3 = c0 = 0 ⇒ c2x + c1 = 0 ⇒ x =
−c1
c2

, (221)

c1 = c0 = 0 ⇒ c3x + c2 = 0 ⇒ x =
−c2
c3

, (222)
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6.4 Resultants for x and x̃.

Looking first at the resultant for x and applying the constraint c3 = c2 = 0 we

have the following equations:

c3 = 0 ⇒ −BA3 = 0, (223)

c2 = 0 ⇒ (3B + C)A2x̃+ (A3 − A2)3hBp̃ = 0. (224)

It is clear that A = 0 will cause both coefficients to vanish, but there is also a

second choice of B = 0 and C = 0 leaving A free.

Now applying the constraint c3 = c0 = 0 to the same resultant we know from

above we need either A = 0 or B = 0 so we can substitute these straight into c0

and look for further parameter constraints to cause it to vanish:

A = 0 ⇒ c0 = ahx̃3 − bhx̃+ p = 0, (225)

B = 0 ⇒ c0 = ahx̃3+(ah2AD−2ah2AC)px̃2+(−bh+ah3A2Cp2)x̃+(1+bh2AE)p = 0,

(226)

Here we can see that it is not possible to make c0 vanish due to the terms p

and ahx̃3 that appear above, neither of which contain parameters which can be set

to zero. In fact, these terms appear in c0 before using the parameter constraints

from c3 = 0 and therefore it is also not possible to find any new parameter values

by using the constraints c1 = c0 = 0. Having exhausted the choices for parameter

values which give a unique solution of the resultant with respect to x we have two

sets of parameter values which give a rational forward map. Now we can apply

these values into Rx̃ (as both need to be solved simultaneously) and check for

rationality in the backwards map.
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Starting with the choice of A = 0 and looking at c3 = c2 = 0 we have the

following parameter equations:

c3 = 0 ⇒ B + C +D − 1 = 0, (227)

c2 = 0 ⇒ (3B + 3C + 2D − 3)x = 0, (228)

Here (227) gives us that D = 1 − B − C which substituted into (228) gives

us (B + C − 1)x = 0 and therefore D = 0, C = 1 − B. These two parameter

constraints along with A = 0 is the first complete set which gives a bi-rational

map. As we found with Rx c1 = c0 = 0 is also not possible for Rx̃ due to the

presence of terms which cannot be eliminated using the parameters.

Now we need to check the case B = 0, C = 0 for Rx̃, which gives the following

parameter equations:

c3 = 0 ⇒ (1−D)(A− 1)3 = 0, (229)

c2 = 0 ⇒ 3hyA(D − 1)(A− 1)2 + x(2D − 3)(A− 1)2 = 0. (230)

Here (229) gives two options of either D = 1 or A = 1. Using D = 1 in (230)

only leads to needing A = 1 anyway, but using A = 1 first eliminates c2 without

the need for further parameter constraints. So here we have found a second set

of parameter values which give a bi-rational map: A = 1, B = 0, C = 0. Now

we have finished analysing the resultants for the x variables and have discovered

two sets of parameter values, next we look at the resultants with respect to the p

variables.
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6.4.1 Resultants for p and p̃.

The calculations for Rp and Rx̃ are very similar to those done in the previous

section. In fact they also lead to exactly the same outcome so we will not go

through the calculation again, but instead state the two sets which come from

them:

Parameter set 1): A = 0, B = 1− C, D = 0 and C,E free.

Parameter set 2): A = 1, B = 0, C = 0 and D,E free.

6.5 The Bi-rational Maps

The two bi-rational discrete systems which emerged from the previous sections

are as follows:

x̃− x
h

= p̃,
p̃− p
h

= a[Bx3 + (1−B)x2x̃]− b[Ex+ (1− E)x̃]. (231)

x̃− x
h

= p,
p̃− p
h

= a[Dxx̃2 + (1−D)x̃3]− b[Ex+ (1− E)x̃]. (232)

6.5.1 Finding the symplectic maps

Now we have found the only two possible discrete systems which are bi-rational,

we can move on to confirming whether or not each is symplectic. The original

system is symplectic with the canonical 2-form ω = dx ∧ dp and for the same

2-form to be preserved in a discrete version of this system we need the following:

dx̃ ∧ dp̃ = dx ∧ dp ⇒ DetJ = 1, (233)
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where J is the Jacobian of the system evaluated at any of the fixed points. If a

system is symplectic then it can easily be shown that detJ = 1 for all fixed points,

and therefore the product of the eigenvalues is always 1. This implies that each

fixed point with eigenvalues λ1, λ2 must either be a saddle point, with |λ1| > 1

and |λ2| < 1 without loss of generality, or a center, with a complex conjugate pair

of eigenvalues with |λ1,2| = 1. For the discrete version of this particular system we

need the fixed point (0, 0) to be a center, and the other two (
√

b
a
, 0) and (−

√
b
a
, 0)

to both be saddle points, which would give the correct qualitative imitation of the

continuous system phase portrait.

We can check that our two discrete maps are symplectic or not by looking at

the 2-form for each.We start with (231) and write the system in a simpler format:

x̃− x = hp̃, p̃− p = hf(x̃, x). (234)

Now if we apply the exterior derivative we have the following:

dx̃− dx = dp̃, (235)

dp̃− dp = fx̃dx̃+ fxdx, (236)

And then take the wedge product of dx̃ with (235) we have:

dx̃ ∧ dx̃− dx ∧ dx̃ = dp̃ ∧ dx̃ ⇒ −dx ∧ dx̃ = dp̃ ∧ dx̃, (237)

and then doing the same but with dx:

dx̃ ∧ dx− dx ∧ dx = dp̃ ∧ dx ⇒ dx̃ ∧ dx = dp̃ ∧ dx. (238)

Now seeing as −dx ∧ dx̃ = dx̃ ∧ dx we have the following result:
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dp̃ ∧ dx = dp̃ ∧ dx̃ (239)

We will use this soon, but now we need to look at the wedge product of (236)

with dx:

dp̃ ∧ dx− dp ∧ dx = fx̃dx̃ ∧ dx. (240)

The fxdx term from (236) vanishes as dx∧dx = 0. Now we can use the results

(239) and (237) to give the following:

dp̃ ∧ dx̃− dp ∧ dx = fx̃dp̃ ∧ dx̃. (241)

Reversing the order of the wedge products and rearranging we have

dx ∧ dp = (1− fx̃)dx̃ ∧ dp̃, (242)

and therefore we need fx̃ = 0 for (234) to be symplectic with the same sym-

plectic structure as the original system.

A very similar calculation leads to almost the same result for the second system

(243), also written in a simpler form:

x̃− x = hp, p̃− p = hg(x̃, x). (243)

which give leads to the requirement that gx = 0 as shown below:

dx ∧ dp = (1− gx)dx̃ ∧ dp̃, (244)

The next step is to calculate fx̃ and gx and evaluate at each of the fixed points

and see if we can set parameters to certain values which will cause it to vanish.
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fx̃ = a(1−B)x2 − b(1− E), (245)

gx = aDx̃2 − bE. (246)

Analysing the above for the fixed point x = x̃ = 0 we have the following:

fx̃(0) = −b(1− E) = 0 ⇒ E = 1, (247)

gx(0) = −bE = 0 ⇒ E = 0. (248)

The other two fixed points are x = x̃ =
√

b
a

and x = −
√

b
a

but as both will

give the same value when squared we just have the following:

fx̃(

√
b

a
) = b(1−B) = 0 ⇒ B = 1, (249)

gx(

√
b

a
) = bD = 0 ⇒ D = 0, (250)

So from these calculations we have two more constraints on the parameters

for each map, and in fact all of the parameters are now fixed in order to make a

symplectic birational map. These two discrete systems are displayed below:

x̃− x
h

= p̃,
p̃− p
h

= ax3 − bx. (251)

x̃− x
h

= p,
p̃− p
h

= ax̃3 − bx̃. (252)

In fact here we only see one map, as (252) is the inverse of (251) when h→ −h.
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6.5.2 Integrability

Another quality we can investigate for this discrete system is whether or not it

is integrable. Fortunately all of the possible integrable scalar difference equations

which posses a non-trivial symmetric integral have been listed in chapter 20 of

[55] so all we are required to do is compare this one to the list. In the book the

difference equations have been written as a one dimensional two-step map which

is not a problem as our system can easily be written in the same way. In fact the

original 2-dimensional system came directly from second order one-dimensional

system ẍ = ax3 − bx. Below we have (251) as a two step map (there is no need

to look at the inverse as well):

x̃− 2x+ x̂ = h2(ax3 − bx), (253)

where x̂ = xn−1.The classification of integrable difference equations includes a

polynomial as the function on the right hand side like we have here, but it requires

it to take the following form, where A,B,C,D,E are arbitrary constants:

x̃− 2x+ x̂ = −h2
(
A+Bx+ Cx2 +Dx3

1 + h2(E + Cx
3

+ Dx2

2
)

)
. (254)

Unfortunately our right hand side is lacking the denominator 1− ah2x2

2
to take

the same form as (254), and therefore our discrete system is not integrable with

a symmetric integral of the form:

J(x, y, h) = J0(x, y) + h2J1(x, y), (255)

However this does not necessarily mean that our discretization is not at all

integrable as it may well be but with a different non-symmetric integrator. We

can quickly assess whether or not this is the case by performing the Diophantine

test [19] which looks at the growth of the iterates.
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6.6 Diophantine Test for Integrability

For this test we will be using the two-step version of the system, (253) and com-

paring it to a particular case of (254) which we already know is integrable. The

particular case we will use here is the one which has the same numerator as (253):

x̃− 2x+ x̂ = −h2 ax
3 − bx

1 + h2 a
2
x2
. (256)

We will be taking a = 1
2

and b = 1. By using rational values for all inputs

to these discrete systems we can measure the growth of the iterates numerically

which will indicate whether the system is integrable or not. If we take each iterate

xi = ai
bi

to be a rational number then we can plot log(i) against log(max{ai, bi})

and then look to see whether the growth is exponential or similar to a polynomial,

the latter of which being the indication of integrability.

First we will look at the system which we know to be integrable:

Figure 18: A plot of the growth of the heights of the iterates with x0 = 1
10

, for
the integrable system.

This plot shows the first 25 iterates of the system, and it can easily be seen

that there is polynomial growth as we would expect. Now we can compare this to

the plot for our system (253):

This time only 7 iterates have been plotted and already we can see the heights
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Figure 19: A plot of the growth of the heights of the iterates with x0 = 1
10

, for
the system (253).

of the iterates are growing exponentially which indicates that in fact this system

is not integrable.

6.7 Conclusion

In the first part of this Chapter we use a similar method to that used in Chap-

ter 3 to produce a generalisation of the Micken’s type discretization scheme to

discretize a cubic system that arises from a trimolecular system. Although this

particular system had been discretized in the same way by Hone in [26], we took

the generalisation further and included all possible parameters. Even with the

inclusion of these extra parameters we did not find any new discrete maps for this

system. We have begun to investigate the presence of a limit cycle in the discrete

map (as is present the continous system) but further research into this and the

exact bifurcation line for the discrete system is needed.

In the second part of the Chapter the same generalised discretization method is

applied to a Hamiltonian system with a quartic potential, which was chosen due to

the presence of elliptic orbits. This generalisation produces a single symplectic and

birational map and its inverse, with only two of the five original parameters free
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to take any value. To investigate the integrability of this system we first compared

it to a list of all integrable scalar difference equations that posseses a non-trivial

symmetric integral [55] and we discovered that our system does not appear to

be integrable, at least with the given integrator. We then used the Diophantine

integrability test to investigate this further, and we found confirmation from this

that the discrete map is indeed not integrable. This work could be extended by

looking at other three-dimensional Hamiltonian system and looking for symplectic

birational maps that are integrable, and to try to find out why exactly this method

for producing discretizations does not always produce integrable maps.
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Appendix A

Resultants

Resultants are used to determine whether two polynomials have a common root

or not. For example, if we take two polynomials P (x), Q(x) with degrees m and

n respectively, and assume that they have a common root α. Let P =
∑m

j=0 cjx
j

and Q =
∑n

j=0 djx
j then we have the following matrix equation:

M
(
αm+n−1 αm+n . . . α 1

)T
= 0, (257)

with

M =



cm cm−1 cm−2 ... c0 0 ... 0

0 cm cm−1 ... c1 c0 ... 0

... . . . . .

0 0 . . . . . c0

dn dn−1 dn−2 ... d0 0 ... 0

0 dn dn−1 ... d1 d0 ... 0

... . . . . .

0 0 . . . . . d0



. (258)

Given that α is indeed a root of the two polynomial equations we then have

Det(M) = 0. This then becomes the condition to look for when working out if

103



two polynomials have a common root. We will define the resultant as RP,Q =

Det(M).
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Appendix B

Stability Analysis Example

In this example we will evaluate the stability of fixed points of a two-dimensional

system and compare the classifications with the phase portrait to demonstrate the

theory outlined previously.

Example 1. Given the following system of ODE’s in the (x, y) plane

ẋ = xy + y, ẏ = x2 − y2 − 8x, (259)

we can find the fixed points of the system by evaluating ẋ = 0 and ẏ = 0 simul-

taneously. The first equation gives the following two possibilities:

y(x+ 1) = 0, =⇒ y = 0 or x = −1. (260)

Taking y = 0 from this and substituting into the second equation gives

x2 − 8x = 0 =⇒ x = 0 or x = 8, (261)
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and therefore we have the first two fixed points, (0, 0) and (8, 0). Now taking

x = −1 from the first equation we have

9− y2 = 0 =⇒ y = 3 or y = −3, (262)

giving us the last two fixed points (−1, 3) and (−1,−3). Now that we have estab-

lished that this system has four fixed points, we can now perform stability analysis

on them to find out how trajectories behave near each point. The Jacobian of the

system needs to be calculated,

J =

 y x+ 1

2x− 8 −2y

 , (263)

and then evaluated at each point to give the corresponding community matrix.

We shall assign the fixed points as follows: z∗1 = (0, 0), z∗2 = (8, 0), z∗3 = (−1, 3)

and z∗4 = (−1,−3), and their corresponding community matrices as A1, A2, A3, A4.

A1 =

 0 1

−8 0

 , A2 =

 0 9

8 0

 , A3 =

 3 0

−10 −6

 , A4 =

 −3 0

−10 6

 .

(264)

The eigenvalues for each matrix can now be calculated using (11) which gives the

following characteristic equations:

z∗1 : λ2 + 8 = 0, z∗2 : λ2 − 72 = 0,

z∗3 : (3− λ)(−6− λ) = 0, z∗4 : (−3− λ)(6− λ) = 0.
(265)

Finally these equations are solved to give two eigenvalues, and then Theorem 1.3

can be used to classify each fixed point.

z∗1 : λ = ±2
√

2i : centre, z∗2 : λ = ±6
√

2 : saddle,

z∗3 : λ = 3,−6 : saddle, z∗4 : λ = −3, 6 : saddle.
(266)
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Figure 20: The phase space of the system (259).

These fixed points define the phase portrait which can be seen in figure 20 .
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