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Abstract

Ranking is one of the most used methods in not only in statistics but also

in other field such as computer science and psychology. This method helps

us determine order of objects in a group such as preference of animal species,

and has very broad applications. However, when the number of objects to

be ranked becomes larger, the uncertainty of the ranking typically increases

since it is harder for the ranker to express their preference accurately. This

leads to the idea of partial ranking which allows rankers to rank just a subset of

objects in the group and then combine their results together to form the global

ranking. This thesis focuses on this type of data. The main challenge is how to

accurately analyze partially ranked data and decide the global ranking. There

are several models that address this kind of problem such as the Bradley-Terry

(BT) model and the Plackett-Luce (PL) model.

The BT model is for paired comparisons while the PL model is for any num-

ber of ranked objects. The PL model is slow to fit using existing R packages.

We implement the algorithms in R and do empirical studies using simulated

data. The results show that our algorithms perform faster than the existing

packages in R. We also implement R code for computing the observed infor-

mation matrix. Rank-breaking methods are also considered in order to be able

to use the BT model with different weightings instead of using the PL model.

We examine the performance of various weightings by experimental studies

with the simulated data and with real-world data. Our BTw-Sqrt weighting

performs best when the number of rankers is small.



In order to choose subsets of objects to be ranked, we consider three exist-

ing criteria which are D-optimality, E-optimality, and Wald and we propose

three new methods. Experiments have been done using simulated data and

the results compared with random selection. Our result shows that the exist-

ing criteria sometimes perform better than random selection. Our proposed

methods usually ensure that the PL model can be fitted to data from fewer

rankers than random selection.

We describe two extensions of the PL model, the Rank-Ordered Logit

(ROL) model and the Benter model. The ROL model extends the PL model

by allowing covariates to be incorporated and the Benter model allows pref-

erences for higher-ranked items to be stronger than for lower-ranked items.

Both extensions improve the fit of the PL model to an example dataset when

using the Likelihood Ratio (LR) test to compare models. We combine these

two extensions to give a model that incorporates covariates and allows for a

dampening effect. The combined model further improves the fit to our exam-

ple data when compared with the ROL model by using LR test. We implement

R codes for analyzing and computing the observed information matrices of the

ROL, Benter, and combined models.

We also explore another type of partial ranking data where individuals are

allowed to mention any objects rather than being given a predefined list of

objects to rank. We consider the idea of Participatory Risk Mapping (PRM)

which provides severity and incidence scores. The severity and incidence scores

can be modelled using the PL model and a new proposed model, respectively.
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Chapter 1

Introduction

Ranking is one of the fundamental methods of data collection that is used

in many areas such as social choice (Caplin and Nalebuff, 1991; Soufiani and

Parkes, 2014), information retrieval (Cohen et al., 1999; Dwork et al., 2001),

voting and elections (Diaconis, 1988; Koop and Poirier, 1994; Gormley and

Murphy, 2008), market research (Beggs et al., 1981), and psychology (Maydeu

Olivares and Bockenholt, 2005). In this thesis we focus on ranking of objects.

The rankings of objects are very common in everyday life e.g. horse-racing

competitions for gamblers, in business, companies want to know customers’

preference on products, election systems, etc. The term preference ranking

refers to information generated by humans who rank a given set of objects,

or rank the set of object that they have in their mind, based on their own

preferences according to a specific objective. We are interested to know the

overall preferences of a population of individuals, which is sometimes called

the social choice problem. Generally speaking, social choice addresses the

problem of choosing an object or a decision from a set of objects for a group

of individuals.

There are many ways of making comparisons between objects, including

ranking, top-h ranking, discrete choice, maxDiff, and rating. The general

meaning of ranking is that individuals rank objects from most preferred to
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least preferred. When individuals rank only the first h rank positions, it is

called top-h ranking (Ailon, 2010). If individuals only choose their single most

preferred object, this is called discrete choice (Train, 2003). The MaxDiff

method asks each individual to pick his/her most preferred and least preferred

objects (Marley and Louviere, 2005). Finally, in the rating method, each

individual is asked to give a numerical score to each object. In this thesis, we

mainly focus on the ranking method.

1.1 A Brief History of Preference Ranking

There are a number of historical examples showing that people’s options are

complex in social choice (McLean et al., 1995). Dating back to eighteenth

century, the study of the social choice problem was introduced by Borda (1781),

a French engineer, philosopher, mathematician, and political scientist. In the

year 1781, Borda was interested in a political voting system in which each

voter ranks all candidates from most to least preferred. Borda introduced a

method for analyzing the voting which became known as Borda count. The

candidates are assigned scores according to their rank positions in the election,

where one indicates most preferred and the least preferred candidate receives a

score that is equal to the number of candidates in that particular ranking. The

candidate who gets the minimum total score is the winner. This system leads

to a family of voting rules. Not long after that, Condorcet (1785), who was

also interested in elections, argued against Borda’s rule. He proposed instead

the Condorcet Winner concept. This is based on pairwise comparisons where

the winning candidate is the one who gets a majority of voters support among

all pair comparisons. For example, if there are 6, 5, and 4 rankers who give

(A � B � C), (B � C � A), and (C � B � A), respectively where �

means preferred to. The pairs {A,B}, {A,C}, and {B,C} are considered.

For {A,B}, A is preferred to B 6 times and B is preferred to A 9 times.
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We drop the pairs with A out since A cannot be a Condorcet winner. Next,

{B,C}, since (B � C) 11 times and (C � B) 4 times, B is selected in this

pair. Thus, B is the Condorcet winner since B is chosen in all pairs. However,

he observed that there can be a paradox in the ranking, which became known

as the Condorcet paradox. This states that, when there are at least three

candidates, it is possible that the majority of voters prefer A over B, B over

C, and C over A. In other words, the majority preference relation turns out

to be cyclic. Hence, Condorcet’s proposal does not always lead to a clear

outcome.

In the early twentieth century, probability models for ranking data were

introduced. Thurstone (1927) proposed his law of comparative judgement,

which models the comparison of perceived intensities of physical stimuli. Ex-

periments showed that the same individual may give different rankings on

different occasions. Thurstone introduced randomness and modelled the per-

ceived intensity of each stimulus of taking this issue into account. This model

is based on the normal distribution and is called the Thurstonian order statis-

tics model. Luce and Suppes (1965) provided a review of the experimental

validation of Thurstonian model. Thurstone also proposed a model for pair-

wise comparisons.

Later, Arrow (1951) published a paper about what become known as Ar-

row’s impossibility theorem. Arrow studied the problem of preference aggre-

gation and his theorem illustrated the impossibility of having an ideal voting

system that satisfied reasonable fairness criteria. The theorem states that

there is no clear order of preferences to be determined. Arrow illustrated the

difficulty in using this kind of information in social choice and economics.

Many probability models were proposed in the twentieth century after the

Thurstonian model. The Bradley-Terry (BT) model (Bradley and Terry, 1952)

is a widely used model for paired comparisons. The idea is that each object is

assigned a latent value and the probability that one object is preferred to an-
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other depends on the difference in their latent values, where objects with high

latent value likely to be preferred. In 1957, Mallows (1957) proposed a general

distance-based model. The Mallows’ model assumes that there is a modal

ranking and that the probability of a ranking decreases as its distance from

the modal ranking increases. Special cases of this model are called Mallows’

φ model and Mallows’ θ model, when using Kendall distance and Spearman

distance, respectively.

Luce (1959) introduced an alternative way of analyzing ranking sets which

was an axiomatic approach to choice modeling. Luce proposed what is now

called the Luce choice axiom (LCA) and this led to the development of mul-

tistage models e.g. models from Luce (1959), Plackett (1975), Henery (1981),

and Fligner and Verducci (1986). The Plackett-Luce (PL) model belongs to

the class of multistage models (Plackett, 1975). The PL model can be viewed

as an extension of the BT model. The relationship between Luce’s (1959)

model and the Thurstonian model was established by Yellott (1977). Yellott

(1977) showed that the Luce model satisfies LCA and Thurstonian’s compar-

ative law with independent random variables.

Many other models have been proposed based on different approaches.

Critchlow et al. (1991) divided these models into four classes, which are or-

der statistics models, paired comparisons models, distance-based models, and

multistage models. A brief review is provided in Chapter 2.

In this thesis, we are interested mainly in the BT and the PL models.

Our main objective is to learn and exploit these models for finding the global

preference.

1.2 Why ranking?

We believe that a hidden true preference underlies the ranker’s choices such as

ratings, ranking list. A ranking refers to a rank-ordered list of objects while
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a rating refers to a list of scores e.g. assign between 1 to 10 points to a movie

on http://www.imdb.com.

A common method of collecting rating data is the use of Likert scales in

which respondents record their level of preference on a predefined number of

scale points. Such scales are often unreliable since the interpretation varies

from ranker to ranker, for instance a rating of “4” may not have the same

meaning for every ranker. Therefore, the rating method often provides unsta-

ble and inconsistent preference information (Peng et al., 1997).

Conversely, the ranking method does not have this problem. The informa-

tion from ranking method is more absolute e.g. if two rankers ranked A higher

than B, this means they both prefer A to B; however, this does not give an

information about how much they like A more than B.

In term of achieving a global ranking, the rating method can simply use

average scores, while the ranking method has some difficulty in this stage and

ranking method may require more complex computation.

1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 provides an overview of background information related to rank-

ing, including types of ranking data and parametric models. There are three

different real world datasets involved in this thesis. All of them involve par-

tial ranking data. Descriptive statistics for these datasets are provided in this

chapter. The first dataset is the Animal dataset, which has four groups of

data. This data was collected by giving the same number of images to all

individuals to rank them, where the images are randomly selected for each in-

dividual. Information about individuals and images is presented. The second

dataset, the Sushi dataset, is similar to the Animal dataset. However, sushi

flavours are not randomly assigned to the individual. The final dataset is the
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Sundarbans dataset. The Sundarbans dataset is different from the previous

datasets. An individual was asked an open-ended question and the individual

mentioned all choices that they thought were important and then ranked these

choices.

Chapter 3 describes two models for analyzing ranking data, the BT model

and the PL model. We present a necessary axiom, the Luce Choice Axiom.

Algorithms for fitting the BT and the PL models are implemented and their

performances are compared with existing algorithms. The PL model is applied

to the Group I data from the Animal dataset for illustration. A bootstrap

goodness-of-fit test is performed in order to test whether this data can be

fitted by the PL model. We then explore rank-breaking methods. Three rank-

breaking methods are compared using simulated data. The results show that

the full rank-breaking method is the best among them. We study further the

full rank-breaking method. Different weights for the BT model are introduced

in order to compare and improve the performance of equal weighting. We

apply non-weighting and weighting to full breaking pairs from simulated data,

the Sushi dataset, and the Group I data from the Animal dataset.

Chapter 4 shows that we can roughly estimate the logarithm of the ob-

served information matrix of the estimates from the PL model by using a

regression model. This gives us insight into the loss of information that occurs

when individuals rank only a subset of the items of interest. In this chapter,

we choose a subset of objects that maximize the gain in expected information.

Two criteria, D-optimality and E-optimality, which are adopted from the ex-

perimental design framework, are considered. Another criterion is the Wald

criterion. We compare these criteria with random selection. Empirical results

are presented using synthetic data with a small number of items and a large

number of items. We propose three systematic methods. We apply these three

methods to simulated data with large numbers of items. We compare the three

statistical criteria with the three proposed methods and discuss results.
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Chapter 5 extends the PL model from the third chapter in two ways. The

rank-order logit (ROL) model can incorporate covariates and the Benter model

allows dampening parameters. Furthermore, we provide a model that com-

bines the ROL model and the Benter model. We apply these models to the

Animal dataset. The results are presented and tests are run to determine

whether these models are better than the PL model. We perform bootstrap

goodness-of-fit tests to investigate whether the models fit the Animal dataset

well.

Chapter 6 explores the analysis of open-ended rankings. In the previous

chapters, we use datasets in which researchers give a specified subset of items

to an individual to rank. In this chapter, we introduce another type and

ranking data where an individual has to identify his/her own list of items.

Participatory Risk Mapping (PRM) is an established tool for analyzing this

kind of data. We explain the PRM at the beginning of this chapter. The

Sundarbans dataset comes from the open-ended questionnaire and we use this

dataset here. Moreover, tied rankings are allowed in this dataset. We consider

two approximation methods, which are Breslow and random, to handle the ties.

After that we explore the number of mentioned objects. Logistic regression is

considered in order to estimate these numbers. We propose a new model to

analyze the open-ended rankings. The PL, ROL, and the proposed models are

applied to the Sundarbans dataset. Results are discussed.

Chapter 7, the final chapter, offers some contributions and ideas for future

work.



Chapter 2

Preliminaries

In this chapter, we describe several things that we are going to use later on in

this thesis. Notations are defined in Section 2.1. Three types of ranking data

are described in Section 2.2. To evaluate performance of models, Kendall tau

correlation is used widely in the literature on ranking. As this is less familiar

than the Pearson and Spearman correlation coefficients, it is explained briefly

in Section 2.3. A goodness-of-fit test is introduced in Section 2.4 that can be

used to assess whether a model fits well with the data. Section 2.5 provides

a brief review of some existing probability models for ranking data. Sections

2.6 to 2.8 give details of real-world datasets which are used in this thesis, the

Animal dataset, the Sushi dataset, and the Sundarbans dataset.

2.1 Notation

Suppose that n rankers participate in a survey in which there is a total of K

items to be ranked denoted by O = {1, 2, . . . , K}. If K is large, it is usually

impractical for all items to be ranked by all rankers. Let pi denote the number

of items ranked by ranker i, where pi ≤ K. Additionally, p is used instead of

pi when all rankers rank the same number of items. Let ρij denote the item

which was ranked in jth position by ranker i, j = 1, . . . , pi.
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2.2 Types of Ranking Data

There are many different types of ranking data. Here, we define ranking types

where ties are not allowed. When ties are allowed that means more than one

item can be ranked at the same preference. Mainly, we do not consider data

with ties in this thesis, except in Chapter 6 where tied rankings are involved.

Three types of ranking data are considered in this thesis, full ranking, partial

ranking, and top-h ranking data.

2.2.1 Full Ranking

A full ranking has all K items ranked. A ranker assigns a complete ordering

to the items and the observed ordering is denoted by (ρi1 � ρi2 � · · · � ρiK),

where � denotes ‘is preferred to’. Thus, there is the most preferred item,

second most preferred item, . . . , and the least preferred item for all items.

2.2.2 Partial Ranking

A partial ranking provides a full ranking of a subset O′ ( O of items, where

O′ contains at least two items. The ordering is (ρi1 � ρi2 � · · · � ρiK′) where

K ′ is the number of items in the set O′ and K ′ < K.

This kind of data occurs when the total number of items is too large and/or

it is too costly for rankers to undertake a full ranking. This commonly occurs

in sports tournaments such as car and horse racing data where only a subset of

the racers is compared in each race. In the area of item preference, it may be

unreasonable to ask rankers to rank the full set of K items. When the ranker

ranks too many things, the quality of judgements will decline. Thus, we may

obtain more reliable rankings if each ranker is asked to rank only a subset of

items. Miller (1955) suggested that number of objects to be judged/ranked

should be no more than seven, because we get more inconsistency in the rank-

ing list when the number exceeds seven.
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2.2.3 Top Ranking

A top ranking provides a full ranking of a subset O′ ( O of items and the

additional information that all items in O′ are preferred over the items in Ō′

where Ō′ = O\O′. There is no preference information for the items in the

set Ō′. An extreme case is when an individual chooses only the single most

preferred item.

The observed ordering is (ρi1 � ρi2 � · · · � ρiK′) where K ′ is the number

of items in the set O′ and K ′ < K. All items in the set O′ are fully ranked.

Moreover, O′ is preferred to the remaining items in Ō′. Irish elections provide

one example of this type of data. The voters rank their preferred candidates

in order of preference but may leave some candidates unranked.

2.3 Kendall Tau Correlation

Two popular methods to measure correlation between two variables are the

Spearman rho and Kendall tau correlation coefficients. Another well-known

correlation is the Pearson correlation; however, this correlation measures the

strength of linear relationship between two continuous variables (Khamis,

2008). The strength of relationship is the strength of tendency of the two

variables to move in the same or opposite direction. Thus, Pearson correlation

is not suitable to measure the association of two rankings. The Kendall tau

is preferred to the Spearman rho in term of robustness and efficiency (Croux

and Dehon, 2010). Morever, the Kendall tau correlation is preferred due to

simplicity and direct interpretation (Kendall and Gibbons, 1990).

The Kendall tau correlation was developed by Kendall (1938) and it deter-

mines the correlation between two rankings of equal size based on the number

of pairwise swaps of adjacent items needed to transform one ranking into an-

other ranking. This is termed the Kendall distance and is denoted by d′τ . The

maximum number of swaps is 1
2
K(K − 1). Then the Kendall tau correlation



2. Preliminaries 11

is given by normalizing the distance, multiplying by 2 and subtracting from 1,

ρτ = 1− 2d′τ
1
2
K(K − 1)

,

where the denominator is the total number of pairs of K items in the ranking;

thus, −1 ≤ ρτ ≤ 1. If ρτ = 1, the two rankings are the same and if ρτ = −1,

one ranking is the reverse of the other ranking. For example, suppose there are

four items (K = 4) and let O = {A,B,C,D}, and consider the two rankings

S1 = {A � D � C � B}, and S2 = {A � C � D � B}. Thus, d′τ = 1 and

ρτ = 2
3
. The normalized Kendall tau distance is denoted by dτ and can be

given as follows

dτ =
d′τ

1
2
K(K − 1)

=
(1− ρτ )

2
,

where dτ lies in the interval [0, 1]. A value of 0 means the two rankings are

exactly the same and a value of 1 indicates maximum disagreement. This

makes it easier to compare the rankings.

An equivalent and more common expression for the Kendall tau correlation

is given by introducing concordant and discordant pairs. A pair is concordant

if the relative ranking of the two items is the same in both ranked lists. From

the previous example, A is ranked above B in both rankings above and the

pair (A,B) is therefore concordant. A discordant pair is when an item is

ranked above another item in one list, but below it in the other list. In the

example above the pair (C,D) is discordant. Let nc denote the number of

concordant pairs and nd denote the number of discordant pairs. The Kendall

tau correlation is

ρτ =
nc − nd

1
2
K(K − 1)

.
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Using the previous example, then we can calculate nc and nd as shown in Table

2.1. The nc and nd are 5 and 1 pairs, respectively. The Kendall tau correlation

between S1 and S2 is 4
1
2

(4)(3)
= 2

3
, as before.

Table 2.1: Example for calculating the Kendall tau correlation

Item Ranker 1 Ranker 2 nc nd

A 1 1 3 0
D 2 3 1 1
C 3 2 1 0
B 4 4

Total 5 1

2.4 Goodness-of-Fit Test

It is problematic to test the goodness of fit of ranking models to data because

not all possible patterns are observed. The classical approaches such as Pear-

son χ2 and likelihood-ratio are not suitable. The Bootstrap is an alternative

approach to assess statistical accuracy. The bootstrap is suggested for use

with sparse categorical data (von Davier, 1997).

The idea is to simulate data according to the model using the estimated

parameters from fitting the model to the original data. The model is re-

fitted to the simulated data and this process is repeated B times, where B is

number of bootstrap samples. We examine the behaviour of the fits over the

B bootstrap samples.

Let T denote a goodness-of-fit statistic and let t be the value of this statistic

when it is calculated from the original data. We can approximate the distribu-

tion of T by generating a sample of independent outcomes t∗b for b = 1, . . . , B

and constructing the empirical distribution F̂t∗ . In our case, we use two test

statistics, the mean Kendall tau distance and the IOS statistic as t value.

The abbreviation IOS comes from “in-and-out-of-sample” (Presnell and Boos,
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2004). If t is not significantly different from the bootstrap sample t∗, it means

the model is an appropriate model for fitting the original data.

The mean Kendall tau distance is calculated as the mean over all rankers

of the distance between the ranking produced by the ranker and the ranking

of the items expected on the basis of the estimated parameters.

Let Y1, . . . , Yn be independent and identically distributed and λ be a pa-

rameter vector, and let

I(λ) = E[−`′′(Y1;λ)]

B(λ) = E[`′(Y1;λ) `′(Y1;λ)ᵀ],

where `′(Y1;λ) is the gradient vector with respect to the elements of λ and

`′′(Y1;λ) is the Hessian matrix. The I(λ) is the information matrix and the

B(λ) is another way of defining the information matrix. The IOS statistic is

IOS = E[`′(Y1; λ̂)ᵀ I(λ̂)−1 `′(Y1; λ̂)]

= tr[I(λ̂)−1 B(λ̂)],

where tr(A) denotes the trace of a matrix A. The IOS is the ratio of B(λ̂) and

I(λ̂). If B(λ̂) and I(λ̂) are equivalent, the trace of I(λ̂)−1B(λ̂) is the number of

parameters. Thus, the IOS statistic tends to the number of parameters (K) as

the numbers of items under the null hypothesis of correct model specification.

We compute a two-sided p-value based on how far the value of the mean

Kendall tau distance lies in the tails of the bootstrap distribution where the

null hypothesis is that the model is suitable for fitting the data. For the

IOS statistic, if the IOS value approaches K then an one-sided p-value is

calculated. The one-sided test looks only the upper tail. However, a two-sided

test is suggested instead of the one-sided test (Capanu and Presnell, 2008)
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when the IOS value approaches zero. The two-sided p-value is

p-value2-sided = 2×min(p-value1-sided, 1− p-value1-sided).

von Davier (1997) suggested that in order to estimate the distribution of

T , B has to be very large. However, if the bootstrap is aimed for testing, B

can be relatively small.

To illustrate the procedure, we generate data under the Plackett-Luce

model with K = 100 and p = 10 where the true parameter values are gen-

erated from a uniform distribution. The bootstrap is performed for 99 times

(B = 99). We repeat this process 100 times. The IOS statistics from the

bootstrap approach zero. This suggests that we should compute the two-sided

test instead of the one-sided test.
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Figure 2.1: Cumulative distribution of the two-sided p-values of the Kendall
tau distance and IOS tests from the bootstrap goodness-of-fit for the PL model

The cumulative distributions of the two-sided p-values from the Kendall

tau distance and the IOS test are shown in Figure 2.1. If the p-values have

an approximate uniform distribution, it means the null hypothesis is true

(Murdoch et al., 2008). We conclude that there is no evidence against the PL

model. Figure 2.1a shows that the p-values from the Kendall tau distance do

not have a uniform distribution. Figure 2.1b presents that the p-values from

the IOS test have an approximate uniform distribution. We conclude that

the IOS test is more suitable than the Kendall tau distance for assessing the

goodness-of-fit of the ranking data.
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Next, we would like to confirm that our procedure can detect model failure.

We use the same setting as previously. However, instead of generating data

under the PL model, we randomly generate data. The two-sided p-values from

the Kendall tau distance and the IOS test are shown in Figure 2.2.
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Figure 2.2: Cumulative distribution of the two-sided p-values of the Kendall
tau distance and IOS tests from the bootstrap goodness-of-fit for the PL model
when the data is randomly generated

Both Figure 2.2a and Figure 2.2b show that the p-values of the Kendall

tau distance and the IOS test, respectively, do not have uniform distribution.

This means the PL model is not a suitable model. In conclusion, the Kendall

tau distance and the IOS statistc can be used to detect the model failure.

2.5 A Brief Survey of Probability Models for

Ranking Data

Critchlow et al. (1991) broadly categorized probability models on rankings

into four classes: (1) Thurstonian order statistics models, (2) paired compar-

ison models, (3) distance-based models, and (4) multistage models. Marden

(1995) also categorized the models in the same way. In this section, we briefly

introduce these four classes of models.
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2.5.1 Thurstonian Order Statistics Models

The class of order statistics models has the longest history in the statistical

and psychological literature among the four classes of probability models. The

Thurstonian model is one of the oldest and best-known order statistics mod-

els. Thurstone (1927) proposed the Law of Comparative Judgement to model

paired comparisons data and later on the Thurstonian model was proposed as

a scaling method for ranking data (Thurstone, 1931). The latter model as-

sumes that an observer ranks items by ranking unobserved continuous response

variables representing the observer’s psychological perception of each item. A

Thurstonian model ranking derives the probability of a given ranking on the

basis of the distribution of these K latent response variables Zi1, Zi2, . . . , ZiK

that depend on the ranker i (Marden, 1995). For example, the items A, B,

and C are ranked in the order A � B � C if and only if ZA > ZB > ZC .

Thurstone assumed that these latent response variables have a K-dimen-

sional multivariate normal distribution, NK (µ,Σ), with K means, K vari-

ances, and
(
K
2

)
correlations. Simpler forms arise by setting the correlations to

be equal, the variances to be equal, and/or setting the correlations to zero so

that the Zi are independent. The most popular simplification is the so-called

Case V model which assumes that the latent variables are uncorrelated with

equal variance.

As alternatives to the normal distribution, Luce (1959) used the Gum-

bel distribution, which leads to the Plackett-Luce model that is discussed

extensively in this thesis, and Henery (1983) and Stern (1990) used Gamma

distributions.

2.5.2 Paired Comparison Models

The paired comparison models aim to combine models for paired compar-

isons to generate a probabilistic model for ranking data. For K items, there
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are K(K−1)
2

possible comparisons. Babington-Smith (1950) introduced the

Babington-Smith model. This model assumed that the ranking has come

from a set of K(K−1)
2

arbitrary paired comparison probabilities, pab. The pab

is the probability that item a is preferred to item b where a < b. Moreover,

pab = 1− pba if ties are not allowed. Let πi(a) be the rank assigned to item a

by ranker i then the probability of a ranking πi is

P (πi) = C
∏

(a,b):πi(a)<πi(b)

pab,

where C is a constant to make the probabilities sum to 1. This model assumes

that the pairwise comparisons are independent.

Later, Mallows (1957) introduced four simple subclasses of the Babington-

Smith model. One of them is the Bradley-Terry model (described in Chapter

3) and the other models incorporate a distance function. We describe only

two of these three models in this thesis. The most general model among the

three models, the Mallows two-parameter model, is described below.

The Mallows two-parameter model assumes that rankings which have the

same distance from a modal ranking π0, should have the same probability.

The Mallows two-parameter model is given by

P (πi) = C(θ, φ) θdS(πi,π0) φdK(πi,π0), (2.1)

where θ, φ ∈ (0, 1) and C(θ, φ) is a constant to make the probabilities sum to

1. The dS and dK are the Spearman and Kendall distances between π and π0,

respectively.

If θ = 1 in Equation (2.1), this yields Mallows φ-model,

P (πi) = C(φ)φdK(πi,π0), (2.2)

where 0 < φ ≤ 1. The ranking probability decreases according to increasing
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Kendall distance from πi to π0. This model also belongs to the class of distance-

based models which are described in the next section.

2.5.3 Distance-based Models

Distance-based models use distance functions to measure the discrepancy be-

tween two rankings. The probability of an observed ranking is inversely pro-

portional to a distance between the observed ranking, π, and a modal ranking,

π0. The models assume that a modal ranking exists. The advantages of this

type of model are simplicity and elegance. However, there are two major weak-

nesses which are (1) difficulties in incorporating covariates, and (2) the model

has only one parameter and therefore lacks flexibility, particularly if many

items are compared. These weaknesses mean that distance-based models are

of limited use in practice (Lee and Yu, 2010).

Let π and τ be rankings. The usual properties of a distance function, d(·, ·),

between π and τ are:

(1) reflexivity: d(π, π) = 0

(2) positivity: d(π, τ) > 0 if π 6= τ

(3) symmetry: d(π, τ) = d(τ, π).

Another property that is required for the ranking data is termed right in-

variance. The right invariance requirement ensures that the distance is not

affected if labelling of items is permuted. Suppose that π(k) is the rank given

to item k in the ranking π. Let ϕ be a permutation of the items and define

the new ranking π ◦ ϕ by

π ◦ ϕ(k) = π(ϕ(k)).

Then the right invariance property is d(π, τ) = d(π ◦ ϕ, τ ◦ ϕ).

Many distances have been considered for this model such as Kendall tau
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and Spearman distances. The Kendall tau distance is given by

dK(π, τ) =
∑
k<k′

I {[π(k)− π(k′)] [τ(k)− τ(k′)] < 0}

where I() is the indicator function. This is equivalent to d′τ in Section 2.3.

The Spearman distance is

dS(π, τ) =

(
K∑
k=1

[π(k)− τ(k)]2
) 1

2

.

Diaconis (1988) discussed many other distances and considered a general

class of distance based models. Let ζ be a dispersion parameter where ζ ≥ 0

and C(ζ) denote the normalizing constant. Suppose d(π, π0) is an arbitrary

right-invariant distance. Then a general distance-based model is

P (π|ζ, π0) = C(ζ) e−ζd(π,π0).

We expect most of the rankers to have rankings close to the modal ranking

π0. Rankings nearer to π0 have a higher probability of occurrence and this is

controlled by ζ.

If the Kendall distance is used in the model, this is equivalent to the Mal-

lows φ-model when φ = e−ζ in Equation (2.2) (Mallows, 1957).

2.5.4 Multistage Models

Multistage models assume that the ranking process can be decomposed into

a sequence of independent stages. Suppose rankers independently rank a set

of p objects. The process of ranking for each ranker is decomposed into p− 1

stages. At stage one, the most preferred object is selected. At the second

stage, the most preferred remaining object is selected, and so on until the

(p− 1)th stage.
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The Plackett-Luce model which was mentioned before as an order statis-

tics model also belongs to the class of multistage models. The probability

of choosing a particular object k at any stage is conditional on the set O of

objects remaining in each stage. This is discussed in more detail in Chapter

3.

Fligner and Verducci (1988) defined a different kind of probability at each

stage which does not depend on the objects remaining at that stage, assuming

that the accuracy of the choice made at any stage is independent of the accu-

racies at the other stages. That is the set of choice probabilities at a particular

stage depends only on the stage. The probability of a ranking is affected by

the correctness of a ranker’s choice at each stage based on how close the se-

lected best object of the remaining objects is to a central ranking π0. Let Vj

denote the number of adjacent transpositions required to move the jth ranked

object to have the same ranking as π0 and let π−1 denote an ordering set. For

example, suppose π−1
0 = (C,A,B,D) and π−1 = (C,D,B,A), then the value

of Vj are V1 = 0, V2 = 2, and V3 = 1. The most general model for independent

V = (V1, . . . , Vp−1) is

P (Vj = m) = p(m, j),

where p(m, j) ≥ 0 and
∑p−j

m=0 p(m, j) = 1. The general multistage model for

independent V with
(
p
2

)
parameters is given by

P (π) =

p−1∏
j=1

p(Vj, j).

This is called the free model (Fligner and Verducci, 1988).

2.5.5 Properties of Ranking Models

Critchlow et al. (1991) defined five properties of ranking models. A brief

explanation of these properties is as follows:
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(1) Label Invariance

Relabelling of objects does not affect the probability models.

(2) Reversibility

This concept was introduced by Luce (1959). Normally rankers rank

the objects from best to worst; however, sometimes the rankers may

rank from worst to best. If a model has the reversibility property, it

means that the ranking probabilities should be the same. The reverse

function,γ(π), for a ranking, π, of p objects is

γ(j) = (p+ 1)− j, j = 1, . . . , p.

(3) Strong Unimodality or Weak Transposition property

A ranking distribution is called unimodal if there is one ranking, π0,

that has higher probability than any other. Let τij be a transposition

function in which i and j are interchanged as τ(i) = j, τ(j) = i, and

τ(m) = m for all m 6= i, j. Moreover, π ◦ τij is the permutation that

agrees with π except that the ranks assigned to item i and item j are

transposed. With a modal ranking π0 for every pair of item i and j such

that

π0(i) < π0(j)

and any permutation π such that

π(i) = π(j)− 1

P (π) ≥ P (π ◦ τij)

with equality if π = π0. This guarantees the probability is non-increasing

as π moves one step away from π0. Then a model is strongly unimodal

with modal ranking π0. For example, suppose a modal ranking is (C �

B � A � D) where B is more preferred than A. We consider two
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rankings which are (A � B � C � D) and (B � A � C � D). Under

the strong unimodality property then P (B � A � C � D) should be

greater than P (A � B � C � D).

(4) Complete Consensus (Transposition property)

Complete consensus is a stronger version of the unimodality property. It

applies to every pair of items (i, j). Suppose that π0(i) < π0(j) and for

every π that

π(i) < π(j)

P (π) ≥ P (π ◦ τij).

Therefore, the complete consensus implies strong unimodality.

(5) L-decomposability

The idea of L-decomposability (also called Luce-decomposability) is mo-

tivated by Luce (1959). The ranking of p objects for a ranker can be

decomposed into p− 1 stages. At stage t, where t = 1, 2, . . . , p− 1, the

best among the objects remaining at each stage is selected and then the

selected object will be removed from the following stages.

Properties of each model

The four classes of models satisfy the first property, label invariance. However,

not all models satisfy the other properties.

The Thurstonian model satisfies the reversibility property if the random

error distribution is symmetric. The L-decomposability property is difficult

to verify because it may not have a closed form as it involves a multiple

integral. However, the Plackett-Luce model does satisfy this property because

the Plackett-Luce model views rankings as a sequential process. The complete

consensus property is satisfied as shown by Savage (1956, 1957) and Henery

(1981). Thus, since the complete consensus property is satisfied the strong
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unimodality property is also satisfied.

For paired comparison models, Marley (1968) showed that models in this

class satisfy the reversibility and L-decomposability properties. Later, the

strong unimodal and complete consensus properties were shown to hold (Critchlow

et al., 1991). Thus, the paired comparison models satisfy all of the properties.

Properties of the distance-based models are discussed in Critchlow et al.

(1991). The distance-based model satisfies all the properties with specific

distances e.g. Spearman distance and Kendall distance.

The multistage models do not satisfy the reversibility property but it is

obvious that they satisfy L-decomposability. The free model satisfies strong

unimodality (Alvo and Yu, 2014).

2.6 Animal Dataset

Our motivating dataset is from an internet survey. The survey was undertaken

in order to assess the visual appeal of animal species. This survey was part

of a research project at the Durrell Institute of Conservation and Ecology, the

University of Kent, in partnership with the Australian Geographic Society.

The objective of this survey is to understand what drives people to donate to

the conservation of certain species and not others, with the long term aim of

improving fundraising for animals.

A total of 385 pictures of species were used in the survey, divided into 4

groups as follows:

Group I: pictures 1 - 97 (97 pictures) are illustrations.

Group II: pictures 98 - 185 (88 pictures) are photographs.

Group III: pictures 186 - 281 (96 pictures) are illustrations.

Group IV: pictures 282 - 385 (104 pictures) are photographs.

The images in first two groups were provided by the organization EDGE (Evo-
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lutionarily Distinct and Globally Endangered species). The others were pro-

vided by the organization WWF (World Wide Fund for Nature).

The data set was collected over a period of about four months between

November 2011 and February 2012. The survey consisted of three parts:

Part I: Ten pictures were randomly selected from one of the groups and

the participant ranked them from the most appealing picture to the least,

by rearranging the ordering on the screen interactively using the mouse.

Figure 2.3: Screenshot from the survey

Part II: The participant identified unfamiliar species amongst these 10

pictures.

Part III: The participant provided his/her details which were gender, year

of birth and country of origin.

There were 2,040 participants who completed the survey. A small number of

observations containing a missing value in gender were removed. Moreover,

any cases in which the species in the initial and final order were not the

same or when the initial order was exactly the same as the final order were

removed from the data set as error records. The reason why the second case

was removed is that the probability of the initial ordering being exactly the

same as the participant’s true preference is very small since there are 10!
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different possible orderings of ten items. Therefore it is much more likely

that the participant accidentally pressed the “Next Question” button without

attempting to rank the species. After cleaning of the data, there were 1,901

participants remaining. The numbers of participants for each group were 450,

468, 529, and 454 for Group I, II, III and IV, respectively.

Each record includes covariates describing item, ranker, and ranker-item

covariates. The only item-specific covariate is the animal’s type, classified into

3 groups namely mammal, bird, or other.

The ranker-specific covariates are:

(1) Nationality: divided into five groups which are Latin America, North

America, Australia, Europe, and other.

(a) Latin America consists of twelve countries: Argentina, Belize, Brazil,

Chile, Colombia, Costa Rica, Cuba, Ecuador, Mexico, Paraguay,

Peru, and Uruguay.

(b) North America consists of two countries: Canada and United States.

(c) Australia and New Zealand are grouped in Australia nationality.

(d) Europe consists of thirty-nine countries: Albania, Andorra, Arme-

nia, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croa-

tia, Czech Republic, Denmark, Estonia, Finland, France, Georgia,

Germany, Greece, Hungary, Iceland, Ireland, Italy, Jersey, Latvia,

Lithuania, Monaco, Netherlands, Norway, Poland, Portugal, Roma-

nia, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Serbia,

Turkey, Ukraine, and United Kingdom.

(e) The other group consists of twenty-nine countries: Afghanistan, Al-

geria, Bermuda, Hong Kong, India, Indonesia, Iran, Israel, Japan,

Kenya, Korea South, Laos, Lebanon, Malaysia, Mauritius, Mo-

rocco, Myanmar (Burma), Nepal, Pakistan, Philippines, Qatar,

Singapore, South Africa, Thailand, Trinidad and Tobago, Tunisia,
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Vietnam, Wake Island, and Zimbabwe.

(2) Age is calculated from year of birth and is a continuous covariate (in

years).

(3) Gender is a dummy variable where

Gender =

 1, if female

0, if male.

The last type of covariate, ranker-item-specific covariates, are as follows:

(1) Start Position: each participant ranked 10 species which were displayed

in two rows as shown in Figure 2.3. The dummy variable Start Position

is

Start Position =

 1, if top row

0, otherwise.

(2) Familiarity: each participant indicated the species that they were famil-

iar with. Therefore, Familiarity is a dummy variable where

Familiarity =

 1, if familiar with the species

0, if not familiar with the speices.

2.6.1 Assessment of Ranking Quality

In this section, we investigate whether the participants ranked the given images

properly. One question is whether participants only move some species that

they have strong opinions about to the top and bottom of the list, while the

others are left in the middle.

The normalized Kendall tau distance between the initial and final order-

ings, dτ , is calculated in order to investigate this problem. The distance has a

value between 0 and 1 where a value of 0 occurs if and only if the original and

final orderings are the same and a value of 1 occurs if and only if the final is
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the reverse of the initial orderings.

Since the initial ordering in which images were presented was random, we

expect it to be unrelated to the final ordering after ranking. In this situation,

the sampling distribution of dτ converges towards a normal distribution as

the number of item ranked (p) increases (Kendall, 1938). Therefore we can

use the approximate normal distribution of dτ to assess whether participants

are ranking properly. Abdi (2007) stated that the sampling distribution is

approximated well by a normal distribution if p is larger than 10; here we

have p = 10. The normal approximation is given in Kendall (1970). The

approximate normal distribution has a mean of 0.5 and a standard deviation

στ =

√
2p+ 5

18p(p− 1)
.

With p = 10, the asymptotic null standard deviation of Kendall tau distance

is 0.124.

Figure 2.4 shows the empirical cumulative distribution function of the

Kendall tau distance and the asymptotic cumulative normal distribution for

each group of images. The Kolmogorov-Smirnov test is applied to test the

fit of the normal distribution in each group and results are shown in Table

2.2. Table 2.2 shows the Kolmogorov-Smirnov goodness of fit statistic (D)

Table 2.2: Kolmogorov-Smirnov test for testing empirical distribution of the
Kendall tau distances

ALL Group I Group II Group III Group IV

D 0.033 0.049 0.049 0.035 0.033
p-value 0.130 0.470 0.438 0.782 0.896

and p-value for each group. The p-value for all participants is smaller than in

the separated groups. This is because of the size effect. The sample distribu-

tion agrees with the asymptotic distribution at 0.05 significance level in each

group. This suggests that the initial orderings are a random permutation of
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Figure 2.4: Cumulative distribution of the Kendall tau distance between initial
and final orderings for each group of images.

the participants specific preference and that in this sense the rankings have

been done properly.

As we mentioned before, one possible scenario of improper ranked is that

the participants only move some species for the top and bottom preference,

while the others are left in the middle. Later on, in the Plackett-Luce model,

it is assumed that rankings are ranked from best to worst. We explore whether

the Kendall tau distance between the initial and final orderings can detect if

participants rank in this way. This can be done by doing simulation study. We
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generate data according to the Plackett-Luce model with K = 100, p = 10,

and n = 500 where each ranking is assumed to rank only top-h and bottom-l.

The h and l values are randomly generated integers from 1 to 3. The empirical
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Figure 2.5: Cumulative distribution of the Kendall tau distance between initial
and final orderings for the simulated data

cumulative distribution of the Kendall tau distance for the simulated data is

shown in Figure 2.5. The results of the Kolmogorov-Smirov test are D = 0.085

and p-value = 0.011. Therefore, the sample distribution does not agree with

the asymptotic distribution at 5% significance level. This means the rankings

have not been done properly. The way of investigating the data can distinguish

improper ranked data.

2.6.2 Descriptive Statistics

Animal’s Type

Animals were classified only to the level of mammal, bird, or the other species.

The frequencies of each type are shown in Table 2.3. Table 2.3 is only for

Table 2.3: Frequency for Animal’s type

Mammal Bird Other

Group III 67 15 14
Group IV 75 15 14

Mammal Other

Group III 67 29
Group IV 75 29

Group III and Group IV since there is no information provided for Group I
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and Group II. Mostly the animals are from mammal type, therefore, we group

bird and other and compare the mammal with other types.

Nationality

As explained above, the dataset used for analysis consisted of 1,901 partic-

ipants. Table 2.4 shows that most participants were from Europe or North

America. There were few from Latin America or Australia; therefore, we com-

bined them with the other groups. After combining, there were three groups

of Nationality which were North America, Europe, and other, as shown in the

lower half of Table 2.4.

Table 2.4: Frequency for Nationality

Nationality Group I Group II Group III Group IV

Latin America 18( 4.0%) 17( 3.6%) 18( 3.4%) 18( 4.0%)
North America 160(35.6%) 162(34.6%) 196(37.1%) 127(28.0%)
Australia 21( 4.7%) 24( 5.1%) 20( 3.8%) 28( 6.2%)
Europe 224(49.8%) 231(49.4%) 261(49.3%) 235(51.8%)
Other 27( 6.0%) 34( 7.3%) 34( 6.4%) 46(10.1%)
Total 450 468 529 454

Nationality Group I Group II Group III Group IV

North America 160(35.6%) 162(34.6%) 196(37.1%) 127(28.0%)
Europe 224(49.8%) 231(49.4%) 261(49.3%) 235(51.8%)
Other 66(14.7%) 75(16.0%) 72(13.6%) 92(20.3%)
Total 450 468 529 454

Age

Age is a continuous variable. The youngest and oldest participants in the

dataset are 7 and 81 years old, respectively as shown in Table 2.5. There

is little variation between groups, which is expected since participants were

given images from a randomly chosen group. The median of age was 29 and

the overall mean was 31.8 years.
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Table 2.5: Descriptive statistics of Age (in years)

Minimum Median Mean Maximum

Group I 7 28 31.3 70
Group II 7 29 32.0 71
Group III 7 29 32.1 73
Group IV 7 29 32.0 81
Overall 7 29 31.8 81

Kernel density plots of Age for participants who ranked the animal images

are provided in Figure 2.6. The plots show that males and females have very

similar distributions of Age over four groups. Moreover, all the plots are

right-skewed, which probably reflects the fact that participants were recruited

through social media.

We use Age as a categorical covariate in Chapter 5. Age is divided into two

groups by using Age 30 year-old as a threshold. The first group contains the

participants from 7 year-old to 30 year-old and the rest belong to the other

group. The frequency for Age (as a factor covariate) is shown in Table 2.6.

Table 2.6: Frequency for Age

Age Group I Group II Group III Group IV

≤ 30 year-old 268(59.6%) 258(55.1%) 293(55.4%) 251(55.3%)
> 30 year-old 182(40.4%) 210(44.9%) 236(44.6%) 203(44.7%)
Total 450 468 529 454

Gender

Of the 1,901 participants, 571(30.0%) are male and 1,330(70.0%) are female.

Table 2.7 shows the breakdown by group.

Start Position

The positions of images are given randomly at the start. We study how par-

ticipants moved the images on the screen.
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Figure 2.6: Kernel density plots of Age by Gender

Table 2.7: Frequency for Gender

Gender Group I Group II Group III Group IV

Male 134(29.8%) 141(30.1%) 144(27.2%) 152(33.5%)
Female 316(70.2%) 327(69.9%) 385(72.7%) 302(66.5%)
Total 450 468 529 454

Figure 2.7 shows the correlation of the start position and final position

where x-axis and y-axis are start position and final position, respectively. The

blue colour indicates a high correlation between the start position and the final

position. For example, the participants had a tendency not to move images
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Figure 2.7: The standardized proportion of moving between start position and
final position where x-axis is Start Position and y-axis is Final Position

in the most preferred and least preferred position (image 1 and 10). Figure

2.7 also suggests that the images tended to be shuffled in the same row rather

than moved between rows.

Familiar Species

During the survey, the participants were asked to indicate which of the species

that they had ranked were familiar.
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Figure 2.8: Proportion of familiar species in a particular rank position

Figure 2.8 shows the proportion of records that contained a familiar species

in each rank position. The proportion decreases steadily as the rank position
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increases for all groups and all records. Familiarity is much higher in Group

III and IV than in Group I and II as shown in Figure 2.8 and Table 2.8. One

possibility is that the animals in these groups, which are from WWF organi-

zation, are better known than animals from Group I and Group II. Animals in

Group I and Group II are supported by EDGE. These organizations may focus

their conservation efforts on different types of species. Table 2.8 indicates that

on average the participants are familiar with 6 or 7 of the ten species from

Group I and II, and 8 or 9 species from Group III and IV, respectively.

Table 2.8: Mean number of familiar species in the set of ten images (SE in
brackets)

Group I II III IV

Mean 6.85(0.094) 6.13(0.088) 8.49(0.066) 8.45(0.076)

The distributions of number of familiar species across all the records and

each group are shown in Figure 2.9. Figure 2.9 shows that the distribution of

Group I and II have similar shape while Group III and IV results also have

similar shape, but different shape to those of Group I and II. Most of the

species are considered familiar in Group III and IV as shown in Figure 2.9c.

Two-sample Kolmogorov-Smirnov tests are applied to test whether the

numbers of familiar species from Group I and II, and Group III and IV have

the same distributions. The results in Table 2.9 indicate that Group I and

Group II do not have the same distribution while Group III and IV have the

same distribution of number of familiar species at 0.05 significance level.

Table 2.9: Kolmogorov-Smirnov test for testing distribution of number of fa-
miliar species across all the records

Group I vs II III vs IV

D 0.184 0.033
p-value 3 ×10−7 0.952

Moreover, Figure 2.10 shows the distribution of the proportion of partic-

ipants who were familiar with each species and these plots indicate that all
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Figure 2.9: Frequency distribution of number of familiar species for each group
of images.

the distributions are skew to the left. That means most of the species are

recognized by the participants, especially most species in Group III and IV.

The number of times that the species was considered familiar as a pro-

portion of the total number of times that it appeared in the survey is shown

in Figure 2.11. It can be observed that the proportion varies among species.

There is a difference between Group I and II and Group III and IV. The par-

ticipants, again, recognized the species in Group III and IV more than Group

I and II. In Group II, there are 5 species that less than 20% of participants

were familiar with. These species are Anderson’s Mouse Opossum, Southern
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Figure 2.10: Histogram of the proportion of times that a species was considered
familiar for each species in each group.

Marsupial Mole, Persian Mole, Hainan Gymnure, and Senkaku Mole which are

shown in pink in Figure 2.11a and Figure 2.11b.

These figures show that most participants are familiar with Persian Mole

and Senkaku Mole images in Group I but not in Group II. The percentage of

familiarity of Persian Mole in Group I and II are 83 and 4 percent, respectively.

Moreover, Senkaku Mole is recognized by 89 and 4 percent of participants who

ranked this species in Group I and II, respectively. Note that images from

Group I and II are illustrations and photographs, respectively. However it is

unclear why there are such large differences.

There are 85 species that appear in both Group I and Group II. Moreover,

Group III and Group IV have 96 species that appear in both groups. Figure

2.12b shows that most of the species have almost the same proportion of

familiarity between Group III and Group IV.

There was no effect of gender on familiarity, the mean number of familiar
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Figure 2.11: Proportion of times that a species was considered familiar. The
vertical red line represents the mean proportion of familiar of the group.
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Figure 2.12: Proportion of times that a species was considered familiar for the
same species in Group I and II, and Group III and IV.

images in the set of 10 images are 7.56(SE=0.055) and 7.41(SE=0.087) images

for females and males, respectively.

The effect of age on familiarity is shown by the mean number of familiar

images for participants. Age is divided into 6 ranges in order to provide more

information as shown in Table 2.10. Most of the age groups are familiar with

6 to 7 images and 8 to 9 images on average for Group I and II, and Group

III and IV, respectively; however, the youngest and the oldest groups give

different number of familiar images. Participants aged less than 16 years are

familiar with 5 to 6 images in Group I and II and with 7 to 8 in Group III and
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Table 2.10: Frequency and mean of familiarity for Age in each new age group

Age Group Frequency Mean(SE)

< 16

I 5 6.2(0.663)
II 10 5(0.537)
III 9 8(0.745)
IV 5 6.8(1.068)

16 - 25

I 179 6.84(0.150)
II 160 6.10(0.155)
III 188 8.40(0.113)
IV 158 8.27(0.132)

26 - 35

I 123 6.78(0.175)
II 151 6.12(0.152)
III 168 8.41(0.126)
IV 145 8.59(0.133)

36 - 45

I 78 7.06(0.204)
II 76 6.04(0.211)
III 78 8.62(0.150)
IV 80 8.45(0.164)

46 - 55

I 42 6.36(0.367)
II 48 6.60(0.252)
III 54 8.93(0.156)
IV 51 8.80(0.225)

55 - 65

I 21 7.71(0.437)
II 19 6(0.501)
III 22 8.5(0.321)
IV 12 8.67(0.333)

>65

I 2 7(2)
II 4 7.25(1.031)
III 10 8.7(0.473)
IV 3 7.33(1.764)

IV, while participants aged greater than 65 years are more familiar with the

species from Group I and II (7 to 8 images) and from Group III and IV (8 to 9

images). In general, those older than 65 years old (19 participants) are familiar

with 8(SE=0.452) images on average in the set of 10 images, while children

aged less than 16 years old (29 participants) are familiar with 6.5(SE=0.417)

images on average.
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2.7 Sushi Dataset

Kamishima (2003) and his colleagues at the National Institute of Advanced

Industrial Science and Technology in Japan collected three types of Sushi

Preference datasets by using a questionnaire survey method. The three types

of dataset were:

• Dataset A: full ranking with 10 sushi flavours

• Dataset B: partial ranking with a total of 100 sushi flavours

• Dataset C: partial rating with a total of 100 sushi flavours.

The Dataset A had only 10 types of sushi which are popular sushi: Shrimp,

Sea eel, Tuna, Squid, Sea urchin, Salmon row, Egg, Fatty tuna, Tuna roll and

Cucumber roll. The other two datasets contained 100 types of sushi which

included these 10 types. The datasets have been used in many ranking studies

e.g. Soufiani et al. (2013b), Lu and Boutilier (2011), Bonilla et al. (2010), and

Kamishima (2003).

In this thesis, we focus on Dataset B, which involves partial rankings. This

dataset contained 100 types and participants were asked to rank 10 types of

sushi, which were randomly selected with unequal probabilities. These proba-

bilities were derived from counts of how many of twenty-five sushi restaurants

had each sushi type in their menu. The common sushi types, which were

present in Dataset A, tended to be selected to be ranked more often than the

other types as shown in Figure 2.13. Each individual ranked the 10 selected

sushi types according to their preferences. There were 5000 individuals who

participated this survey.

2.8 Sundarbans Dataset

The final dataset is from a survey that took place in the Sundarbans, one of

the largest mangrove forests in the world (UNESCO, 2016). The Sundarbans
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Figure 2.13: Number of times that each sushi type is selected in Dataset B.
The orange colour shows the types that are also in Dataset A while the types
which appear only in Dataset B are shown in blue.

is located in the south-west of Bangladesh and India, mostly in Bangladesh.

The survey was focused on only the Bangladesh Sundarbans because this area

is a Class 3 Tiger Conservation Landscape of Global Priority and is one of

the world’s largest tiger habitats (Inskip et al., 2013). The objective of the
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survey was to understand the problems of people who live in, or bordering, this

area, especially on human-tiger conflict issues. Data were collected from ten

villages which are Bhola, Jewdhara, Khatakhali, Nangli, Terabeka, Bojboja,

Kadamtola, Kassiabad, Munshigani, and Tengrakhali. These ten villages were

divided into two groups, East and West, according to their location. The first

five villages belonged to the West group and the others formed the East group.

The survey was carried out by 2-stage interview. First, interviewees were

asked to list all of the problems that they worried about. Second, the in-

terviewees were asked to rank the problems that they had mentioned in the

first stage, based on the severity of the problems. Tied rankings were allowed.

There are 62 rankings that have ties. A total of 385 participants were inter-

viewed. Interviews were conducted in the Bengali language and the problems

identified were translated into English. Then the problems were grouped into

25 categories. Three respondents were removed during this process due to

uncertainty about their answers. Moreover, one further respondent was elim-

inated since there was an error in the record. There were 381 participants

remaining.

The 25 categories could be broadly classified into 5 types of problem which

were natural, financial, human, social, and physical.

2.8.1 Descriptive Statistics

Number of Problems

The number of problems identified varied between the respondents, ranging

from 1 to 7. The average number of problems which the respondents mentioned

is 3.15 with standard error 0.060.

A histogram of the number of problems is shown in Figure 2.14. Illustrating

that most of the participants listed 1 to 4 problems.

Next, we introduce six ranker-specific covariates which are Gender, Inter-
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Figure 2.14: Histogram of number of problems.

view Type, Village Location, Age, Education, and Household categories.

Table 2.11: Frequency of Gender and Head of Household

Gender
Frequency

Interview Type Village Location
Total

Head Spouse East West
Male 250(94.0%) 0(0%) 147(65.6%) 103(65.6%) 250(65.6%)
Female 16( 6.0%) 115(100%) 77(34.4%) 54(34.4%) 131(34.4%)
Total 266(69.8%) 115(30.2%) 224(58.8%) 157(41.2%) 381

Gender

The data consist of 250(65.6%) males and 131(34.4%) females, as shown in

Table 2.11.

Interview Type

Interview type consists of two types which are head of household and spouse.

The frequency for Interview Type is presented in Table 2.11. The 266 par-

ticipants are head of households and 115 participants are spouses. Among

266 head of households, there are 250 males and 16 females. All spouses are

female.
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Villages Location

There are 224 participants from East villages and 157 participants from West

villages. Both East and West villages have the same proportion of male and

female which are 65.6% and 34.4%, respectively.

Education

Education is recorded as the number of years the participant has spent in

education, where 0 means no education. Most of the participants have low

education since the distribution is skewed to the right as shown in Figure 2.15.

There are 137(36.0%) participants who have no education. School period is
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Figure 2.15: Frequency distribution of education

from 1 to 10 years. The 227(59.6%) participants have school-level education.

Only 17(4.5%) participants have higher education than school-level.

Age

The youngest and oldest participants are 18 and 82 years old, respectively. The

median and mean ages are 40 and 41.7 years, respectively. The distribution of

age is present in Figure 2.16. The distribution is slightly skewed to the right.

The distribution of age by gender is provided in Figure 2.17. The age of

both male and female distributions are skewed towards the right. The median

and mean ages for male are 42 and 45.12 years, respectively. The median
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Figure 2.16: Frequency distribution of age.

and mean ages for female are lower than male which are 35 and 35.06 years,

respectively.

0

10

20

30

25 50 75
Age (years)

F
re

qu
en

cy

(a) Male

0

10

20

20 40 60 80
Age (years)

F
re

qu
en

cy

(b) Female

Figure 2.17: Frequency distribution of age by gender

Household Categories

Originally, there were four household categories which indicate the degree of

conflict that the household has experienced with tigers. The four categories

are fatal human attack, non-fatal human attack, livestock depredation, and

no conflict. The frequency of participants who experienced tiger problems is

Table 2.12: Descriptive statistics of number of problems

Category Frequency

Fatal Attack 95(24.9%)
Non-Fatal Attack 84(22.0%)

Livestock Depredation 102(26.8%)
No Conflict 100(26.2%)



2. Preliminaries 46

shown in Table 2.12. Later, we group fatal attack household with non-fatal

attack household categories because these two categories both involve attacks

on people. There are 179(47.0%) households in which family members had

been attacked by tigers.



Chapter 3

Models for Partial Ranking

In partial ranking, the main challenge is to decide a global ranking based on

partial preferences from rankers. One approach to tackle this kind of data is to

assume that the rankings come from a probabilistic model. The most popular

statistical models are the Bradley-Terry (BT) model, and the Plackett-Luce

(PL) model which is one among several generalized versions of the BT model.

The BT model is applicable only for pairwise comparisons, while the PL model

allows us to deal with any number of comparisons. Moreover, the PL model

is applicable for a complete ranking, or a partial ranking, or a top-h ranking.

In this chapter, we begin with an introduction to the BT model in Section

3.1. The BT model is a popular model for analyzing paired comparisons. This

model can be viewed as a logistic regression model. The parameters can be

estimated by using maximum likelihood (ML). Many methods can be used

to fit this model such as the Newton-Raphson method. However, we follow

the early work by Hunter (2004) on the Minorization-Maximization (MM)

algorithm. This is because we are going to use this algorithm to fit the more

complex model, the PL model in Section 3.2. The observed information matrix

can be found through the negative of the Hessian matrix with given data and

estimates.

Next in Section 3.2, we explore the PL model. There are two types of
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ranking behavior which are forward ranking and backward ranking. In this

thesis, we mainly focus on forward ranking. The Luce’s Choice Axiom (LCA),

which has an important implication – the constant ratio rule, is discussed.

The constant ratio rule makes the PL model attractive for partial ranking

data. As before, we follow the MM algorithm, which was proposed by Hunter

(2004), in order to find the estimates by using ML. Moreover, in a recent work

of Caron and Doucet (2012), they proposed the Expectation Maximization

(EM) algorithm that works within a Bayesian framework. As for the BT

model, the observed information matrix is calculated from the negative of the

matrix of second derivatives of the log-likelihood function.

We consider existing packages for the BT and the PL models in the R

programming language. Different packages in R, PLem and PLmm algorithms

for both models are examined and compared by using simulated data in Sec-

tion 3.3. As far as we know, there is no package for computing the observed

information matrix of the PL model with partial ranking data. We compare

our observed information matrix algorithm with the negative of the Hessian

matrix from optim function in order to confirm results.

In section 3.4, we discuss the application of the PL model to the Group I

data from the Animal dataset. This has been done in order to give an example

of interpretation. Afterwards, we perform a bootstrap goodness-of-fit test to

check whether the PL model provides a good fit to the Group I data.

In the last section, Section 3.5, we study rank-breaking methods. Soufiani

et al. (2013a) and Soufiani and Parkes (2014) studied rank-breaking methods

for complete ranking data. The rank-breaking methods are used to break a

ranking set into pairwise comparisons. The full, adjacent, and top-h rank-

breaking methods are considered in this section. We compare computational

times and statistical efficiencies of fitting the BT model to the paired datasets

from rank-breaking methods with results of fitting the PL model to the original

simulated data. Later in this section, we only focus on the full rank-breaking



3. Models for Partial Ranking 49

method. Khetan and Oh (2016) studied the full rank-breaking method for

partial rankings and suggested to use a different weighting instead of equal

weighting. They proposed the weighting that is optimal for MSE. We propose

other weightings by extending their weighting approach. We present experi-

mental results using both simulated and real-world datasets.

3.1 Bradley-Terry Model

Paired comparisons occur in various fields and Davidson and Farquhar (1976)

gave an extensive bibliography on the method of paired comparisons which

listed more than 350 papers. Most models for paired comparisons are based

on the models of Thurstone (1927) and Bradley and Terry (1952). Here, we

focus on the Bradley-Terry model. Bradley and Terry (1952) introduced a

model for paired comparisons, where ranking takes place between pairs of

items usually drawn from a larger set of items that are of interest. The same

idea had been studied before by Zermelo (1929) for estimating the playing

strength of participants in chess tournaments (Ebbinghaus, 2008), but despite

this the model is generally known as the Bradley-Terry (BT) model.

In the BT model, the probability that item i is preferred to item j is given

by

P (i � j) =
λi

λi + λj
, i 6= j

where λi and λj are positive-valued parameters associated with items i and j,

respectively.

The model has been applied in many areas including psychology (Tutz,

1986), genetics (Sinsheimer et al., 2000) and sport (Koehler and Ridpath,

1982). In modelling sporting contests, many extensions of the model have

been proposed to include factors such as home advantage and current form of

players (Agresti, 2002), and to allow the possibility of a tie (Rao and Kupper,
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1967). In a recent extension, Cattelan et al. (2013) developed a dynamic paired

comparison model for sport tournament data, which allows for time varying

abilities in home and away matches. The BT model has also been used for

formulating classification problems (Hastie and Tibshirani, 1998).

3.1.1 Connection between the BT Model and Logistic

Regression

Suppose that the paired comparisons involve K different items in total and let

λ = (λ1, λ2, . . . , λK)ᵀ denote the vector of parameters. It is more common to

work with a reparameterized version of the BT model. Letting vi = log(λi),

the model is

P (i � j) =
exp(vi)

exp(vi) + exp(vj)

=
1

1 + exp(−(vi − vj))
,

which is the standard logistic cumulative distribution function evaluated at

vi − vj. Let x = (x1, . . . , xK)ᵀ denote a vector of length K with xi = 1

and xj = −1, and the remaining elements of x set to 0. Also letting v =

(v1, . . . , vK)ᵀ, the model becomes

logitP (i � j) = xᵀv,

where xᵀv =
∑K

k=1 xkvk and logit p = log p
1−p , where p is a probability. This

is a logistic regression model with a linear predictor containing the unknown

parameters v.
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3.1.2 Maximum Likelihood Estimator for the BT Model

The parameters λ can be estimated by using maximum likelihood (ML). In

order to use this estimator, the likelihood function is required.

Suppose that there are n independent comparisons between pairs of items

and that ties are not allowed. Let nij denote the number of comparisons

between item i and item j and let wij denote the number of comparisons where

item i is preferred to item j, so that nij = wij +wji. Also let wi =
∑K

j=1,j 6=iwij

denote the total number of times that item i is preferred in a comparison with

another item. Then, since comparisons are assumed to be independent the

likelihood function is

L (λ) =
∏

1≤i 6=j≤K

(
λi

λi + λj

)wij

and the log-likelihood function is therefore

` (λ) =
∑

1≤i 6=j≤K

log

(
λi

λi + λj

)wij
=

K∑
i=1

wi log(λi)−
∑

1≤i<j≤K

nij log(λi + λj), (3.1)

where 1 ≤ i < j ≤ K denotes the set of ordered pairs (i, j) ∈ {1, . . . , K}2 such

that i < j.

The preference probabilities P (i � j) are unchanged if all elements of

the parameter λ are multiplied by a constant. Therefore, in order for the

ML estimators to be well-defined, an additional constraint is required such as∑K
i=1 λi = 1. Even with this constraint, the ML estimator of λ may not exist.

This is because if the assumption below does not hold then the estimates are

approaching infinity. Ford (1957) showed that λ̂ will exist if and only if in

every partition of the items in two groups, some item in the second group is

preferred at least once to some item in the first group.
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Minorization-Maximization Algorithm

There are many different algorithms that can be used to fit the BT model

(Tsukida and Gupta, 2011), including methods such as iteratively weighted

least squares based on the formulation of the BT model as a logistic re-

gression model. Here we discuss one particular algorithm, the Minorization-

Maximization (MM) algorithm, because this is also used to fit more complex

models discussed later in the thesis.

Lange et al. (2000) and Hunter (2004) showed that the ML estimates for the

parameters of the BT model can be obtained by applying the MM algorithm.

The MM algorithm is guaranteed to converge to the unique ML estimator un-

der Ford’s (1957) assumption mentioned earlier. The MM algorithm creates

a surrogate function that minorizes the log-likelihood function and then op-

timizes the surrogate function. The surrogate function allows maximization

of the log-likelihood to be transferred. This is potentially beneficial when the

surrogate function is easier to maximize than the log-likelihood function. The

log-likelihood function is as in Equation (3.1).

Before moving to the next step, the term convex is introduced. Roughly

speaking, a convex function is a function that has a bowl shape. A function f

is called convex if for all x, y ∈ f and for any 0 ≤ λ ≤ 1,

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x),

and it is called strictly convex if strict inequality holds as shown in Figure 3.1.

In order to construct the surrogate function, we apply the supporting hy-

perplane property

f(x) ≥ f(y) + f ′(y)(x− y) for all x, y > 0, (3.2)

where f(x) is a convex function and, regarded as a function of x, the RHS is
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Figure 3.1: f is convex function then f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)
for any 0 ≤ λ ≤ 1

the tangent line at y (as it passes through (y, f(y)) and has slope f ′(y)) and the

RHS is the first-order Taylor approximation. Thus, the result is that a convex

function lies above its tangent line(s) as shown in Figure 3.2. This is because

the first-order Taylor approximation is known as a global underestimator of a

convex function (Boyd and Vandenberghe, 2004).

●

f(y)+f'(y)(x−y)

(y,f(y))

 

 

Figure 3.2: f is convex function then f(x) ≥ f(y)+f ′(y)(x−y) for all x, y > 0

The strict convexity of the negative logarithm function implies that for

positive x and y and for the choice f(x) = − log(x), this minorization amounts

to

− log(x) ≥ 1− log(y)− x

y
for all x, y > 0, (3.3)

with equality if and only if x = y. We apply this to the second term in the

log-likelihood (3.1). Let x = λi + λj and y = λ∗i + λ∗j where λ∗i and λ∗j are the

values from the previous iteration. Then we define Q(λ,λ∗) to be the function

Q(λ,λ∗) =
K∑
i=1

wi log(λi)−
∑

1≤i<j≤K

nij

[
1− log(λ∗i + λ∗j)−

λi + λj
λ∗i + λ∗j

]
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≡
K∑
i=1

wi log(λi)−
∑

1≤i<j≤K

nij

(
λi + λj
λ∗i + λ∗j

)
,

where, since we are interested in maximizing this function with respect to λ,

we omit terms that do not depend on λ. By the construction of the Q function,

Q(λ,λ∗) is equal to or less than `(λ) with equality if and only if λ = λ∗ which

implies that

`(λ∗+1) ≥ Q(λ∗+1,λ∗) ≥ Q(λ∗,λ∗) = `(λ∗).

This sequence of λ∗ values is therefore guaranteed to increase the log-likelihood.

We maximize the Q function by taking the first derivative of this function with

respect to λi setting this equal to zero and solving for λi, which gives

λ̂∗+1
i =

wi∑K
j=1

nij
λ∗i+λ∗j

where λ̂∗+1
i is the estimated preference value for item i at (∗ + 1)th iteration.

The optimal point is not hard to find because the parameters are estimated

separately and explicitly.

So far we have used the constraint
∑K

i=1 λi = 1. The constraint can be

done once at end of the final iteration. An alternative way of introducing

a constraint is to treat one of the items as a reference item. We therefore

consider this parametrization. The parameters, λ̂, can be reparameterized

following Hunter (2004),

µ̂i = log(λ̂i)− log(λ̂reference item). (3.4)

The range of the reparameterized parameters is −∞ < µ̂i < ∞. The µ̂i can

be interpreted that if the µ̂i > 0 it means item i is preferred to the reference

item and vice versa if µ̂i < 0. The reference item has µ̂reference item = 0.
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Observed Information Matrix

Based on the large sample theory of ML estimation, either the observed or

the expected information matrix can be used to characterize the parameter

estimation performance. However, for ranking models it is usually difficult to

calculate the expected information matrix (see further discussion in Chapter 4)

and we therefore estimate the variance-covariance matrix of the ML estimator,

var(λ̂), by the inverse of the observed information matrix (J):

var(λ̂) = [J(λ̂)]−1

=



var(λ̂1) cov(λ̂1, λ̂2) · · · cov(λ̂1, λ̂K)

cov(λ̂2, λ̂1) var(λ̂2) · · · cov(λ̂2, λ̂K)

...
...

. . .
...

cov(λ̂K , λ̂1) cov(λ̂K , λ̂2) · · · var(λ̂K)


.

The elements of the observed information matrix are the negative second

derivatives of the log-likelihood function. Let λi(t) be the λ for the item i which

is preferred by ranker t and λj(t) be the λ for the item j which is less preferred

by ranker t. The log-likelihood function can be written in this form

`(λ) =
n∑
t=1

log

(
λi(t)

λi(t) + λj(t)

)
=

n∑
t=1

[
log(λi(t))− log(λi(t) + λj(t))

]
.

Considering only a single ranker, we drop the subscript t and then the first

and second derivatives are

∂`

∂λi
=

1

λi
− 1

λi + λj
,

∂2`

∂λ2
i

=
1

−λ2
i

+
1

(λi + λj)2
,

∂`

∂λj
= − 1

(λi + λj)
,

∂2`

∂λ2
j

=
1

(λi + λj)2
,
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and because i 6= j

∂2`

∂λi∂λj
=

1

(λi + λj)2
.

Summing the above second derivative terms over all rankers, we get the Hessian

matrix. The negative of the Hessian matrix is the observed information matrix

of λ̂.

The observed information matrix of the reparameterized parameters can

be found from the re-expressed form of the log-likelihood function:

`(µ) =
n∑
t=1

log

(
exp(µi(t))

exp(µi(t)) + exp(µj(t))

)
=

n∑
t=1

[
µi(t) − log

(
exp(µi(t)) + exp(µj(t))

)]
.

The first and second derivatives for a single ranker are

∂`

∂µi
= 1− exp(µi)

exp(µi) + exp(µj)
,

∂2`

∂µ2
i

= − exp(µi + µj)

(exp(µi) + exp(µj))
2

∂`

∂µj
= − exp(µj)

exp(µi) + exp(µj)
,

∂2`

∂µ2
j

= − exp(µi + µj)

(exp(µi) + exp(µj))
2

and since i 6= j

∂2`

∂µi∂µj
=

exp(µi + µj)

(exp(µi) + exp(µj))
2 .

3.2 Plackett-Luce Model

The Plackett-Luce (PL) model generalizes the BT model, which is only for

pairwise comparisons, to a model for any number of ranked items. The PL

model was proposed independently by Luce (1959) and Plackett (1975). Plack-

ett (1975) was inspired by horse races. Luce (1959) established a choice based

axiomatic foundation for this model, Luce’s Choice Axiom (LCA), to describe

individual choice behaviour based on a general axiom. We describe LCA later

in Section 3.2.1. The extension of LCA led to a model of an individual’s ten-
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dency to choose one object over another. Plackett (1975) proposed a series of

increasingly complex models, the Luce model is equivalent to the first-order

model in this series (Critchlow et al., 1991). The PL model is appropriate for

partial or incomplete rankings, such as horse racing and auto car racing. In

the preference area, the items are ranked from best to worst, such that there

are no ties in the ranking. This kind of ranking is called forward ranking.

There is another way of ranking, in the opposite direction, which is backward

ranking. Luce (1959) stated that forward and backward ranking do not lead

to the same result since the PL model is irreversible.

The PL model has been applied to many fields including horse racing

(Plackett, 1975), Irish election data (Gormley and Murphy, 2008), label rank-

ing (Cheng et al., 2010), and including time variation e.g. individuals’ prefer-

ences may change over time (Baker and McHale, 2015). In psychology, the PL

model is also a popular model for investigating the preferences of a specific

population or for studying how people make choices under uncertainty (Hino

et al., 2010; Tran et al., 2016).

In the PL model, the probability of the ranking ρi ≡ (ρi1 � ρi2 � · · · � ρipi)

is

P (ρi;λ) =
λρi1

λρi1 + · · ·+ λρipi
× λρi2
λρi2 + · · ·+ λρipi

× · · · ×
λρipi−1

λρipi−1
+ λρipi

×
λρipi
λρipi

=

pi∏
j=1

λρij∑pi
m=j λρim

(3.5)

=

pi−1∏
j=1

λρij∑pi
m=j λρim

, (3.6)

where λρij is a positive value indicating the preference for item ρij. The PL

model views ranking as a sequential process as shown in Equation (3.5). First,

the rankers choose their preferred item, then they continually choose their

preferred item from those that remain until the ranking is complete so that
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the PL model belongs to the family of multistage ranking models (Marden,

1995). The reduced form of the PL model in Equation (3.6) arises because

the last term in the full form always equals one, the probability that the last

item is ranked first when there is only one item left to rank. We can re-express

Equation (3.5) as

P (ρi;µ) =

pi∏
j=1

exp(µρij)∑pi
m=j exp(µρim)

, (3.7)

where µρij is reparameterized parameter as in the previous section.

The reverse PL model for backward ranking can be seen as choice by elim-

ination (Tran et al., 2014). That means the ranking process is reversed – the

least preferred item is ranked/eliminated first. Tversky (1972) introduced this

choice by elimination and after that it has been studied in the psychological

area. The advantage is that near the end of the process only the best items

remain and comparisons should be easier when there are only a small number

of items to compare. This is different from the PL model because in the PL

model the best items are compared against all other items. Tran et al. (2014)

introduced a reverse PL model as follows

P (ρi;λ) =

pi∏
j=1

exp(−µρij)∑j
m=1 exp(−µρim)

.

Tran et al. (2014) assumed that the probability of an item being eliminated is

inversely proportional to its worth.

The PL model satisfies LCA (Marden, 1995). This result follows from

Yellott (1977). Yellott (1977) showed that the PL model satisfies the LCA

through a Thurstonian model. This is because the PL model is the Thursto-

nian model based on the Gumbel distribution. Moreover, because the Gumbel

distribution is asymmetric the PL model does not satisfy reversibility property,

as mentioned before.
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3.2.1 Luce’s Choice Axiom

Luce (1959) proposed an axiom which is an assumption about how rankers

make choices. LCA is a probabilistic choice theory. Let S and T be subsets of

items with S ⊂ T and suppose that an item is chosen from T . Let PT (S) be

the probability that the chosen element lies in S. The probability axioms are

(i) For S ⊂ T, 0 ≤ PT (S) ≤ 1

(ii) PT (T ) = 1

(iii) If R, S ⊂ T and R ∩ S = ∅ then PT (R ∪ S) = PT (R) + PT (S).

Let x ∈ T and PT (x) denote the probability that x is selected. The probability

axiom (iii) implies that

PT (S) =
∑
x∈S

PT (x).

The probability axioms do not indicate how probabilities of selection are

related over different sets. For example, how a ranker selects an object from

a smaller set when the same object is also in a larger set of alternatives. This

connection is necessary for a theory of choice. Thus, LCA investigates this

connection. Let P (x, y) stand for P{x,y}(x) when x 6= y and then P (x, y) +

P (y, x) = 1. The axiom has two parts as follows:

(i) If P (x, y) 6= 0, 1 for all x, y ∈ T then for R ⊂ S ⊂ T

PT (R) = PS(R) · PT (S)

(ii) If P (x, y) = 0 for some x, y ∈ T then for every S ⊂ T

PT (S) = PT−{x}(S − {x}).

Part (i) of LCA states that the probability of choosing the set of alternatives

R from T is the same as the probability of choosing R from S multiplied by

the probability of choosing S from T . This can be viewed as a conditional
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probability

PT (R|S) = PS(R)

=
PT (R)

PT (S)
,

where PT (R|S) is the probability that R is chosen from S when the larger

set T is available and PT (S) > 0. For example, suppose that T is the set

of desserts where T = {shortcake, ice cream, pudding}, S is a subset of T

(S = {shortcake, pudding}), and R has only one element which is shortcake.

According to part (i), the probability of choosing shortcake from S, is the same

as the conditional probability of choosing shortcake from S when the whole

menu, T , is available.

Part (ii) allows us to delete x from T without impacting the choice prob-

ability if x is never preferred in pairwise choices. For example, if pudding

is never chosen in preference to shortcake, then the choice among pudding,

shortcake, and ice cream can be safely reduced to the choice of shortcake and

ice cream.

The implication of LCA from LCA (i) is that if P (x, y) 6= 0, 1 for all

x, y ∈ T then for any S ⊂ T such at x, y ∈ S,

P (x, y)

P (y, x)
=
PS(x)

PS(y)
.

That is when LCA holds for T and its subsets, the ratio PS(x)
PS(y)

is indepen-

dent of S. It implies that the relative probabilities of choosing between two

items is independent among the choices available. For example, suppose that

O = {A,B,C,D} and S ⊂ T where S = {A,B}, and T = O then by the

independence of choosing item among the choice

P{A,B}(A)

P{A,B}(B)
=
P{A,B,C}(A)

P{A,B,C}(B)
=
PO(A)

PO(B)
.
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LCA states that the relative probability of choosingA in preference toB should

not depend on whether other items are in the set of choices. When more items

are introduced, we expect the absolute probabilities of choosing A or choosing

B to decrease. However, according to LCA, this ratio of probabilities of any

two alternatives should remain the same when expanding to the set of all

items. In other words, the ratio of the probability of choosing one item to the

probability of choosing another should be constant and this relationship can

be called the constant ratio rule. The constant ratio rule is a probabilistic

version of the Independence from Irrelevant Alternatives (IIA) from Arrow

(1951). However, this property is unrealistic when items are very similar

or substitutes for the others (Yu, 2000). Considering the red-bus-blue-bus

problem as an example, a person has a choice of going to work by driving

a car or taking a blue bus then O = {Car, Blue Bus}. By assuming that

the probabilities of taking a car and taking a blue bus are equal such that

PO(Car) = PO(Blue Bus) = 1
2

then the ratio of probabilities is

PO(Car)

PO(Blue Bus)
= 1.

Later a new bus, red bus, is introduced then O′ = {Car, Blue Bus, Red Bus}

and the person considers the red bus to be the same as the blue bus. The

probability of taking the blue bus is the same as taking the red bus then

PO′(Blue Bus)

PO′(Red Bus)
= 1.

However, with the constant ratio rule, the ratio of
PO′ (Car)

PO′ (Blue Bus)
remains the

same when the red bus is introduced. This ratio will remain the same if

PO′(Car) = PO′(Blue Bus) = PO′(Red Bus) =
1

3
,
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then

PO′(Car)

PO′(Blue Bus)
= 1 and

PO′(Blue Bus)

PO′(Red Bus)
= 1.

This is hard to believe in real life since we would expect the probability of

taking the car to remain the same when the red bus is introduced. The prob-

ability of taking bus is shared between the blue and the red buses then the

probabilities are

PO′(Car) =
1

2
and PO′(Blue Bus) = PO′(Red Bus) =

1

4
.

In this case, the IIA property underestimates and overestimates the probabili-

ties of taking the car and taking buses, respectively. The ratio of probabilities

of taking car and blue bus changes when the red bus is introduced rather than

remaining constant as stated in the IIA. Therefore, the IIA property can be

violated when items are substituted.

The constant ratio rule is very attractive for partial ranking data because it

implies that we can get information about overall preferences from the partial

rankings.

Yellott (1977) showed that a Thurstonian model satisfies the LCA only

if the distribution of preferences is a Gumbel distribution with fixed scale

parameter, which is equivalent to the PL model.

The Gumbel distribution, or the extreme value distribution, is right-skewed

and has two parameters, a location parameter µ and a scale parameter β.

The probability density function (PDF) f(x|µ, β) and cumulative distribution

function (CDF) F (x;µ, β) are given by

f(x;µ, β) =
z

β
e−z,

F (x;µ, β) = e−z,
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respectively, where z(x) = e−
x−µ
β and x ∈ (−∞,∞). The Gumbel distribution

with fixed location of 0 and fixed scale of 1, which is termed the standard

Gumbel distribution, has PDF and CDF as follows

f(x) = e−(x+e−x), x ∈ (−∞,∞)

F (x) = e−e
−x
, x ∈ (−∞,∞).

Assume that all individuals make the ranking decision according to their

preferences where a high ranking implies a high value. The value of item k for

individual i, Uik, is defined as

Uik = Vik + εik, k = 1, . . . , K

where Vik is a constant variable and εik is an error term which is a random

unobserved variable. If the error terms are independent and have a standard

Gumbel distribution then the probability that an individual’s value of item l

is less than z is

P (Ul ≤ z) = P (εl ≤ z − Vl),

where, for convenience, the subscript i for indicating the individual is omitted.

Then the probability that the value of item k is larger than the value of item

l is

P (Ul ≤ Uk) = P (εl ≤ Uk − Vl)

= e−e
−(Vk+εk−Vl) , k, l ∈ 1, . . . , K and k 6= l.

Now, we are interested in which of the two items, k and l will be preferred.

An individual ranks the item with greater value higher than the other item.

Moreover, if Uk and Ul are continuous variables then P (Uk = Ul) = 0. Thus,
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the probability that item k is preferred to item l where k 6= l is

P (k � l) = P (Uk > Ul)

=

∫ ∞
−∞

P (Uk > Ul | εk)fε(εk) dεk

=

∫ ∞
−∞

e−e
−(Vk+εk−Vl)e−εke−e

−εk dεk

=

∫ ∞
−∞

e−e
−εk (e−(Vk−Vl)+1)e−εk dεk

= −
∫ 0

∞
e−t(e

−(Vk−Vl)+1) dt, t = e−εk and dt = −e−εkdεk

=

∫ ∞
0

e−t(e
−(Vk−Vl)+1) dt

=

[
−e
−t(e−(Vk−Vl)+1)

e−(Vk−Vl) + 1

]t=∞
t=0

=
1

e−(Vk−Vl) + 1

=
eVk

eVk + eVl

where ∞ < t < 0 (Train, 2003). We can extend this to obtain the proba-

bility that the value of item k is the largest among all items ranked by the

individual. Under the assumption that εk’s are independent and identically

Gumbel distributed, that means the Uk’s are independent where k = 1, . . . , K

(Cramer, 2003). Then

P (Uk > Ul,∀k 6= l) =

∫ ∞
−∞

K∏
j 6=k

e−e
−(Uk−Vj)

e−εke−e
−εk dεk

=

∫ ∞
−∞

K∏
j=1

e−e
−(Vk+εk−Vj)

e−εk dεk

=

∫ ∞
−∞

e−e
−εk

∑K
j=1 e

−(Vk−Vj)
e−εk dεk

substitute t = e−εk

dt = −e−εkdεk
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∞ < t < 0 then

P (Uk > Ul,∀k 6= l) =

∫ ∞
0

e−t
∑K
j=1 e

−(Vk−Vj)
dt

=

[
−e
−t

∑K
j=1 e

−(Vk−Vj)∑K
j=1 e

−(Vk−Vj)

]∞
0

=
1∑K

j=1 e
−(Vk−Vj)

=
eVk∑K
j=1 e

Vj
.

The overall probability of the ranking of p items out of K items can be ex-

pressed by using all derived results. Following Beggs et al. (1981) and letting

ρj be the item index that ranked in jth position then the probability is

P (Uρ1 > Uρ2 > · · · > Uρp)

=

∫ ∞
−∞

∫ Uρ1

−∞

∫ Uρ2

−∞
· · ·
∫ Uρp−1

−∞

p∏
j=1

e−e
−(Uρj−Vρj )

e−(Uρj−Vρj ) dUρp · · ·Uρ1

=

∫ ∞
−∞

∫ Uρ1

−∞

∫ Uρ2

−∞
· · ·
∫ Uρp−2

−∞
Ce−e

−Uρp−1 (e
Vρp−1 +e

Vρp )e−(Uρp−1−Vρp−1 )

dUρp−1 · · ·Uρ1 , where C =

p−2∏
j=1

e−e
(Uρj−Vρj )

e(Uρj−Vρj )

= −eVρp−1

∫ ∞
−∞

∫ Uρ1

−∞

∫ Uρ2

−∞
· · ·
∫ ∞
e
−Uρp−2

Ce−t(e
Vρp−1 +e

Vρp ) dUρp−1 · · ·Uρ1 ,

t = e−Vρp−1

=
eVρp−1

eVρp−1 + eVρp

∫ ∞
−∞

∫ Uρ1

−∞

∫ Uρ2

−∞
· · ·
∫ Uρp−3

−∞
Ce−e

−Uρp−2 (e
Vρp−1 +e

Vρp )

dUρp−2 · · ·Uρ1 ,

= · · · =
p−1∏
j=2

(
eVρj∑p
m=j e

Vρm

)∫ ∞
−∞

e−e
−Uρ1 (

∑p
m=2 e

Vρm )e−e
−(Uρ1−Vρ1 )

e−(Uρ1−Vρ1 )dUρ1

=

p−1∏
j=2

(
eVρj∑p
m=j e

Vρm

)∫ ∞
−∞

e−e
−Uρ1 (

∑p
m=1 e

Vρm )e−(Uρ1−Vρ1 )dUρ1

substitute t = e−Uρ1

dt = −e−Uρ1dUρ1
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∞ < t < 0 then

P (Uρ1 > Uρ2 > · · · > Uρp) =

p−1∏
j=2

(
eVρj∑p
m=j e

Vρm

)
eVρ1

∫ ∞
0

e−t(
∑p
m=1 e

Vρm )dt

=

p−1∏
j=2

(
eVρj∑p
m=j e

Vρm

)
eVρ1

[
−e
−t(

∑p
m=1 e

Vρm )∑p
m=1 e

Vρm

]∞
0

=

p∏
j=1

(
eVρj∑p
m=j e

Vρm

)
.

The result matches the Equation (3.7) where Vρ·j = µρij . Therefore, this is

the probability of a ranking in the PL model.

Figure 3.3: Probability density functions for items A, B, and C

As an illustration, Figure 3.3 shows the hypothetical preference distribu-

tions of items A, B, and C. Figure 3.3 shows a rank order among three items,

A, B, and C, based on a particular sample of values form these distributions

which leads to the ranking B � A � C.

3.2.2 EM Algorithm and MM Algorithm

Computation of the ML estimator of the PL model is a problem that already

has been considered in the literature from both classical and Bayesian perspec-

tives e.g. Hunter (2004), Guiver and Snelson (2009), Caron and Doucet (2012).

The ML estimator can be determined only by numerical methods (Plackett,

1975). In addition, the ML estimator requires the assumption that no item

is always ranked first or always ranked last in all comparisons, in order to
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prevent the estimates from approaching infinity (Marden, 1995).

The Expectation Maximization (EM) and MM algorithms for fitting the

PL model to ranking data, which are proposed by Caron and Doucet (2012)

and Hunter (2004), respectively, are typically used. Standard optimization

procedures such as the Newton-Raphson method can also be used; however,

Hunter (2004) reported that this method is slower and less practical. The

Newton-Raphson method is not well-behaved even though the log-likelihood

function is strictly concave in the reparameterized parameter space. The possi-

ble reasons why the Newton-Raphson method fails are sensitive starting values

and over-shooting. The EM and MM algorithms perform well for both com-

plete and partial ranking data. The EM algorithm is a special case of the

MM algorithm and both algorithms are guaranteed to converge to the unique

maximum of the likelihood function (Hunter, 2004). The algorithms proceed

iteratively to find the estimated parameter, λ = (λ1, λ2, . . . , λK)>, which gives

the preference value for each item.

The log-likelihood function can be written as

`(λ) =
n∑
i=1

pi−1∑
j=1

[
log(λρij)− log

(
pi∑
m=j

λρim

)]
. (3.8)

Hunter (2004) proposed an MM algorithm for the PL model. The MM al-

gorithm uses surrogate minimizing functions of the log-likelihood function to

define an iteration. That is, the optimization is performed on a surrogate

function rather than on the log-likelihood itself. Each iteration in the MM

algorithm involves two steps as follows:

(1) Minorization step

As in the BT model, Equation (3.3) is also considered here. We apply

this to the second term in the log-likelihood. Let x =
∑pi

m=j λρim and

y =
∑pi

m=j λ
∗
ρim

where λ∗ρim denotes the estimate of λρim from the previous
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iteration. The inequality in Equation (3.3) becomes

− log

(
pi∑
m=j

λρim

)
≥ 1− log

(
pi∑
m=j

λ∗ρim

)
−
∑pi

m=j λρim∑pi
m=j λ

∗
ρim

,

and the surrogate objective function is given by

Q (λ,λ∗) =
n∑
i=1

pi−1∑
j=1

[
log(λρij) + 1− log

(
pi∑
m=j

λ∗ρim

)
−
∑pi

m=j λρim∑pi
m=j λ

∗
ρim

]

≡
n∑
i=1

pi−1∑
j=1

[
log(λρij)−

∑pi
m=j λρim∑pi
m=j λ

∗
ρim

]
(3.9)

=
n∑
i=1

pi−1∑
j=1

[
log(λρij)− c∗ij

pi∑
m=j

λρim

]
,

where

c∗ij =
1∑pi

m=j λ
∗
ρim

.

Equation (3.9) contains only the terms that depend on elements of λ.

(2) Maximization step

The maximization of Q(λ,λ∗) with respect to λk can be done explicitly

since the elements of the parameter vector λ are separated. Differen-

tiating the surrogate objective function, Q(λ,λ∗), with respect to λk

gives

∂Q

∂λk
=

n∑
i=1

pi−1∑
j=1

[
ηijk − c∗ijδijk

]
,

where ηijk and δijk are indicator functions defined as follows

ηijk =

 1, if ρij = k

0, otherwise,

and

δijk =

 1, if k ∈ {ρij, . . . , ρipi}

0, otherwise.
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In other words, ηijk is the indicator of the event that item k is not ranked

last and δijk is the indicator of the event that item k receives a rank no

better than jth position by ranker i. Then setting the derivative of the

surrogate objective function to zero yields

λ̂∗+1
k =

∑n
i=1

∑pi−1
j=1 ηijk∑n

i=1

∑pi−1
j=1 c∗ij δijk

=
wk∑n

i=1

∑pi−1
j=1 c∗ij δijk

(3.10)

where wk is the number of rankings in which item k is not ranked last.

Hunter (2004) also proved that the MM algorithm is guaranteed to converge

to the unique ML estimator if the following assumption holds:

“Assumption 1. In every possible partition of the items into two

nonempty subsets, some item in the second set ranks higher than an

item in the first set at least once.”

This assumption is an extension of the assumption from Ford (1957) in the

BT model. Hunter (2004) concluded that the MM algorithm is guaranteed to

converge to the unique ML estimator if Assumption 1 holds.

Algorithm 1 is pseudo code for estimating the PL model, which we have

implemented in the R programming language.

Algorithm 1 PLmm algorithm

1: initialize parameter estimates λ(0) = ( 1
K
, . . . , 1

K
) and h = 0

2: repeat
3: compute c

(h)
ij based on λ(h)

4: increment h
5: compute λ(h) by using Equation (3.10)
6: until converged
7: normalize parameters to satisfy

∑K
i=1 λi = 1

Later, Caron and Doucet (2012) introduced a set of latent variables that

enabled the standard EM algorithm to be used to find estimated parameters.

Acceleration techniques for the EM algorithm can be applied in order to make
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the algorithm converge faster. Moreover, by doing this, it allows the algorithm

to work in a Bayesian framework. The two steps of the EM algorithm are as

follows:

(1) Expectation step (E-step)

The latent variable is introduced to define the EM and data augmenta-

tion step. Let Zρij be an independent variable, exponentially distributed

with rate parameter λρij where

Ziρi1 < Ziρi2 < · · · < Ziρipi .

Let Z = {Ziρij : i = 1, . . . , n, ρipi ∈ Oi} where Oi is a set of items for

ranker i. The latent variables can be introduced as

p (z|λ) =
n∏
i=1

pi−1∏
j=1

Exp

(
zij;

pi∑
m=j

λρim

)
, (3.11)

where Exp is the exponential distribution function. Equation (3.11) is

used in implementation of the posterior optimization. The log-likelihood

function becomes

` (λ) =
n∑
i=1

pi−1∑
j=1

[
log
(
λρij
)
− log

(
pi∑
m=j

λρim

)]

+
n∑
i=1

pi−1∑
j=1

[
log

(
pi∑
m=j

λρim

)
−

(
pi∑
m=j

λρim

)
zij

]

=
n∑
i=1

pi−1∑
j=1

[
log
(
λρij
)
−

(
pi∑
m=j

λρim

)
zij

]
.

The Q function can be constructed by assigning an additional term, the

prior for λ (Caron and Doucet, 2012),

p(λ) =
K∏
k=1

Gamma (λk; a, b) ,
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where Gamma is the gamma distribution with shape and scale param-

eters, a and b. Caron and Doucet (2012) showed that the Q function is

given by

Q (λ,λ∗) = EZ|λ∗ [`(λ)] + log (p(λ))

≡
n∑
i=1

pi−1∑
j=1

[
log
(
λρij
)
−
∑pi

m=j λρim∑pi
m=j λ

∗
ρim

]
+

K∑
k=1

[(a− 1) log(λk)− bλk] .

This function is the same as the majorizing function in Hunter (2004)

where a = 1 and b = 0 because the logarithm of the prior term equals 0.

(2) Maximization step (M-step)

Maximizing Q (λ,λ∗), where λ∗ is value from previous iteration, can be

done iteratively by

λ̂∗+1
k =

(a− 1 + wk)[
b+

∑n
i=1

(∑pi−1
j=1

δijk∑pi
m=j λ

∗
ρim

)]
=

(a− 1 + wk)[
b+

∑n
i=1

∑pi−1
j=1

(
c∗ijδijk

)] ,
where c∗ij, δijk, and wk are defined as previous in the MM algorithm.

Caron and Doucet (2012) claimed that the MM algorithm from Hunter

(2004) is a special case of the EM algorithm. However, the EM algorithm

is known as a special case of the MM algorithm in general. Since the Q

functions are the same in both algorithms and `(λ(h+1)) ≥ `(λ(h)), the λ(h)

is a stationary point of `(λ(h+1)) if `(λ(h)) = `(λ(h+1)) where h is the current

iteration. Moreover, Caron and Doucet (2012) showed that their algorithm can

be used even when Assumption 1 is not met by following a Bayesian approach

with specific a and b parameters in prior. This is because the items that

violate the assumption above have extra information from prior. Therefore,
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these estimates do not approach infinity.

Another assumption is mentioned in Hunter (2004) for the strict concavity

of the log-likelihood function under the reparameterization. The assumption

is:

“Assumption 2. In every possible partition of the items into two nonempty

subsets, some item in the second set is compared with some item in the

first set at least once.”

Hunter (2004) stated that Assumption 2 is necessary and sufficient for the

strict concavity of log-likelihood function under the reparameterization. The

log-likelihood function is not strictly concave as a function of the original λ

parameters. The log-likelihood function is strictly concave as a function of the

µ’s. Hunter (2004) also suggested to use the reparameterization parameters.

The MM algorithm does not change after reparameterization (Hunter, 2004).

The expression of the reparameterized parameters is shown in Equation (3.4).

3.2.3 Observed Information Matrix

The ML estimator for the PL model is calculated by maximizing the log-

likelihood function

`(λ) =
n∑
i=1

pi∑
j=1

[
log(λρij)− log

(
pi∑
m=j

λρim

)]
, (3.12)

which assumes that the rankings done by different rankers are independent.

Thus the formulas below relate to a single ranker. The observed information

matrix can be found from summing these expressions over all rankers. The

second derivative of the log-likelihood function for each ranker can be found

from the first derivative, which is

∂`

∂λρir
=

1

λρir
−

r∑
j=1

1∑pi
m=j λρim

, r = 1, . . . , pi.
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The second derivative can, therefore, be written as

∂2`

∂λ2
ρir

=
1

−λ2
ρir

+
r∑
j=1

1(∑pi
m=j λρim

)2 , r = 1, . . . , pi

and, assuming thatm is greater than r, the off-diagonal elements of the Hessian

matrix can be expressed as

∂2l
∂λρir∂λρim

=
∑r

j=1
1

(
∑pi
m>j λim)2

, m = r + 1, . . . , pi.

The observed information matrix is the negative of the matrix of second deriva-

tives of the log-likelihood function. Moreover, the observed information matrix

for the parameters from the PL model is a singular matrix since the parameter

preferences, λ, are only determined up to a multiplicative constant. Therefore,

one item, e.g. item 1, should be left out of the information matrix in order to

find the inverse and item 1 is considered as baseline. The item 1 is referred

to the reference item as in reparameterized parameters. The inverse of the

information matrix is the variance-covariance matrix.

The observed information matrix of the reparameterized parameter, µk

from Equation (3.4), from the log-likelihood function in Equation (3.12) can

be found by using chain rule:

∂`

∂µ
=
∂`

∂λ
× ∂λ

∂µ

then the second derivative is

∂2`

∂µi∂µj
=

∂2`

∂λk∂λr
× ∂λk
∂µi
× ∂λr
∂µj

+
∂`

∂λk
× ∂2λk
∂µi∂µj

,

where i, j, k, and r are indices of the items. The observed information matrix
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is

J(µ) = − ∂2`

∂µi∂µj

= − ∂2`

∂λk∂λr
× ∂λk
∂µi
× ∂λr
∂µj
− ∂`

∂λk
× ∂2λk
∂µi∂µj

= J(λ)× ∂λk
∂µi
× ∂λr
∂µj
− ∂`

∂λk
× ∂2λk
∂µi∂µj

. (3.13)

Note that λk = exp(µk)∑K
m=1 exp(µm)

and consider each element in Equation (3.13). The

first and the fourth terms can be found as described previously. We consider

the other terms. Considering ∂λk
∂µi

when i = k

∂λk
∂µi

=
∂λk
∂µk

=

∑K
m=1 exp(µm) exp(µk)− exp(µk) exp(µk)(∑K

m=1 exp(µm)
)2

= λk − λ2
k,

and when i 6= k

∂λk
∂µi

=
0− (exp(µk) exp(µi))(∑K

m=1 exp(µm)
)2

= −λkλi.

The derivative ∂λr
∂µj

follows in the same way as ∂λk
∂µi

and the results for j = r

and j 6= r are λr − λ2
r and −λrλj, respectively. The last term, ∂2`

∂µi∂µj
, has five

possible expressions, depending on which, if any, of i, j, and k are equal.

(1) i = j = k

∂2λk
∂µi∂µj

=
∂2λk
∂µ2

k
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=

(∑K
m=1 exp(µm)

)
exp(µk)− exp(µk) exp(µk)(∑K

m=1 exp(µm)
)2 −

1(∑K
m=1 exp(µm)

)4

( K∑
m=1

exp(µm)

)2

2 exp(µk) exp(µk)−

(exp(µk))
2 2

(
K∑
m=1

exp(µm)

)
exp(µk)

]

= λk − λ2
k −

(
2λ2

k − 2λ3
k

)
= λk (1− λk) (1− 2λk) .

(2) i 6= j 6= k

∂2λk
∂µi∂µj

= 0 +
exp(µk) exp(µi) exp(µj)2

(∑K
m=1 exp(µm)

)
(∑K

m=1 exp(µm)
)4

= 2λkλiλj.

(3) (i = j) 6= k

∂2λk
∂µi∂µj

=
∂2λk
∂µ2

i

= − 1(∑K
m=1 exp(µm)

)4

( K∑
m=1

exp(µm)

)2

exp(µk) exp(µi)−

exp(µk) exp(µi)2

(
K∑
m=1

exp(µm)

)
exp(µi)

]

= −λkλi + 2λkλ
2
i

= −λkλi(1− 2λi).

(4) (i = k) 6= j

∂2λk
∂µk∂µj

= 0− exp(µk) exp(µj)(∑K
m=1 exp(µm)

)2 −
1(∑K

m=1 exp(µm)
)4

[
0 −
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exp(µk) exp(µk)2

(
K∑
m=1

exp(µm)

)
exp(µj)

]

= −λkλj + 2λ2
kλj

= −λkλj(1− 2λk).

(5) (j = k) 6= i

∂2λk
∂µk∂µi

= 0− exp(µk) exp(µi)(∑K
m=1 exp(µm)

)2 −
1(∑K

m=1 exp(µm)
)4

[
0 −

exp(µk) exp(µk)2

(
K∑
m=1

exp(µm)

)
exp(µi)

]

= −λkλi + 2λ2
kλi

= −λkλi(1− 2λk).

The Expression (3), (4), and (5) have the same form. They differ by index

values.

Another way to find the observed information matrix of the reparameter-

ized parameters is to find it directly from Equation (3.7) then the log-likelihood

becomes

`(µ) =

pi∑
j=1

[
µρij − log

(
pi∑
m=j

exp(µρim)

)]
. (3.14)

Similarly to the derivation of J(λ), we consider only a single ranker to find

the first and second derivatives of Equation (3.14). The first derivative is:

∂`

∂µρir
= 1−

r∑
j=1

exp(µρir)∑pi
m=j exp(µρim)

, r = 1, . . . , pi

Then the second derivative is

∂2`

∂µ2
ρir

= −
r∑
j=1

(∑pi
m=j exp(µρim)

)
exp(µρir)− (exp(µρir))

2(∑pi
m=j exp(µρim)

)2 , r = 1, . . . , pi
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and the off-diagonal elements are

∂2`

∂µρir∂µρit
=

r∑
j=1

exp(µρir) exp(µρit)(∑pi
m=j exp(µρim)

)2 , t = r + 1, . . . , pi

3.3 Packages in R for the Bradley-Terry and

the Plackett-Luce Models

The standard models for analyzing partial ranking data are the BT and the

PL models. Both the BT and the PL models have existing packages in the R

programming language. In this section, we compare the computational times

and efficiency of the existing packages with our algorithms. We implement code

to compute the observed information matrix and then compare results with

the optim function. All experiments were conducted on a Toshiba notebook

with Intel Core i5-3210M and 8 GB RAM in the R programming language.

3.3.1 Packages in R for the Bradley-Terry Model

The BT model is included in several existing packages in R, including prefmod,

RankResponse, and BradleyTerry2. Among them, the BradleyTerry2 pack-

age, which is implemented by Turner and Firth (2012), appears to be the

most widely used package. This package is an extension of the earlier package

BradleyTerry (Firth, 2008). The BTm function from the BradleyTerry2 pack-

age can also incorporate covariates. Another algorithm, BTmm, we coded in R,

based on the original code in Matlab by Caron and Doucet (2012). Since the

BT model is a special case of the PL model when there are only two items, any

algorithm for fitting the PL model can apply to the paired data. We translated

Matlab code of Caron and Doucet (2012) for PLem and we also implemented

the PLmm. Both are based on the Algorithm 1; however, they are different in

matrix structure. We ran these four algorithms with the same simulated data



3. Models for Partial Ranking 78

in order to compare computational time and mean square error (MSE) of the

parameter estimates.

We use simulations to assess the performance for both small and large

datasets. The small dataset is simulated with 10 items (K = 10) and this

dataset contains 200 pairwise comparisons (n = 200). The large dataset con-

tains 100 items (K = 100) with 10,000 pair comparisons (n = 10, 000), to make

sure that the algorithms have enough data to make the BT model converges.

Table 3.1: Computational times of BradleyTerry2, BTmm, PLem, and PLmm

Time (seconds)

BradleyTerry2 BTmm PLem PLmm

Small data 0.01 2.92 0.42 0.03
Large data 2.85 9.67 21.34 5.78

Table 3.1 shows the computational times (in seconds) of the four algo-

rithms. The BradleyTerry2 algorithm is the fastest, followed by the PLmm,

PLem, and BTmm for the small data. Moreover, the BradleyTerry2 is also

the fastest algorithm for the large data, while the PLem is a lot slower. The

BradleyTerry2 package uses the glm function in stats package. The rea-

son why the PLem performs poorly here is that the PLem is for the PL model;

therefore, it has unnecessary loops for paired data. Moreover, PLmm is based

on another way of introducing matrices of data and ran faster than PLem in

both cases.

To evaluate these four algorithms, the MSE is calculated in order to com-

pare the estimated parameters (λ̂) with true parameter values. The results are

given in Table 3.2. Table 3.2 indicates that all algorithms give almost the same

MSE. The computational time is therefore considered as main criterion. The

BradleyTerry2 is the best according to computational times for both small

and large datasets; however, we have to transform the datasets into a specific

format. This is computationally demanding when K increases. Therefore,
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Table 3.2: MSE of BradleyTerry2, BTmm, and PLmm

MSE

BradleyTerry2 BTmm PLem PLmm

Small data 6.913e-03 6.912e-03 6.913e-03 7.027e-03
Large data 6.779e-06 6.729e-06 6.779e-06 6.855e-06

the PLmm is chosen to fit the paired dataset because it is the second fastest

algorithm and it is more convenient in terms of data format.

3.3.2 Packages in R for the Plackett-Luce Model

The PL model is not implemented in many existing packages. Lee and Yu

(2013) developed the pmr package; however, the pl function in this package

only works for full ranking data. Later, Chen and Soufiani (2013) imple-

mented the StatRank package. The Estimation.PL.MLE function works for

both full and partial ranking data. This function is for the PL model with a

flipped Gumbel distribution. However, the flipped Gumbel distribution can

be seen as a Gumbel distribution where the smaller λ is more preferred. The

Estimation.PL.MLE is forced to work for a specific number of iterations. The

default number of iterations is 10. This means that the algorithm is forced to

work even though it already converged in less than 10 iterations. This is a big

drawback because the algorithm will always work up to this number of itera-

tions. Moreover, for a large number of items, it is hard for the algorithm to

converge within 10 iterations, but we can change this default number. Thus,

the Estimation.PL.MLE does not check the convergence.

The computational times, which are shown in Table 3.3, are computed by

applying the Estimation.PL.MLE, the PLem, and the PLmm on both synthetic

and real world datasets. We simulate two kinds of dataset as in the previous

section. First, for a small number of items, we generated 200 rankings with

K = 20 and each ranker ranking a random sample of p = 5 items. The
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second data contain 500 rankings with K = 100 and p = 10 items. The real

dataset, NASCAR is also used since this dataset is provided in the StatRank

package. Moreover, Hunter (2004) used this dataset as a test dataset as well.

The NASCAR dataset contains records of auto racing in the United States. In

the 2002 season, there were 87 drivers who participated in 36 races. However,

Assumption 1 is violated and therefore we removed four drivers and then there

are 83 drivers and 36 races in the dataset. We set the number of iterations

in the Estimation.PL.MLE equal to the number of iterations that the PLem

algorithm used.

Table 3.3: Computational times of StatRank, PLem and PLmm

Time (seconds)

StatRank PLem PLmm

Small data 14.54 0.42 0.48
Large data 415.72 1.37 15.34
NASCAR 4295.53 0.11 12.52

Table 3.3 shows that the PLem algorithm performs much faster than the

StatRank package. StatRank does not take much computational time for

the small dataset but still much slower than alternatives. Moreover, when

the dataset becomes large, the StatRank package works even slower than the

others. StatRank suffers from large computational time because the function

contains a lot of loops while the PLem and the PLmm algorithms work in matrix

form. The PLem and the PLmm algorithms are different in data structure. The

PLem algorithm and PLmm algorithm use almost the same computational times

for the small dataset. When the dataset becomes larger the PLem algorithm is

faster than the PLmm algorithm. Because of this clear difference in performance,

the PLem algorithm is used when covariates are not considered in later sections.

The PLmm algorithm will be extended in Chapter 5 since it is easier to introduce

covariates to the algorithm.

We mentioned about the pmr package for full ranking earlier. We also
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Table 3.4: Computational times of StatRank, pmr, PLem, and PLmm

Time (seconds)

StatRank pmr PLem PLmm

Small data 0.83 60.04 0.52 0.58

compare these three algorithms with the pl function from that package. A

dataset with 500 rankings and K = p = 6 is generated. The computational

times are shown in Table 3.4. The PLem and PLmm algorithms are the fastest,

followed by the StatRank package while the pmr package is by far the worst

among them. The pmr package uses the optim function; however, the log-

likelihood code contains double loops. This is likely to be the reason why the

pmr package is slow.

3.3.3 The optim Function in R and Our Algorithm for

Computing the Observed Information Matrix

As far as we know, there is no existing package in R which can calculate the

observed information matrix for the PL model with partial ranking data. We

implemented the PLinfm algorithm. Standard errors are computed from the

Hessian matrix from the optim function when Hessian option is set to TRUE

and the PLinfm algorithm. Results are shown in Figure 3.4. Both algorithms
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Figure 3.4: Adjacent ranking method

give the same standard error of each parameter. We use the PLinfm algorithm

to calculate the observed information matrix for the µ̂ later in this chapter.
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3.4 Results of Fitting the PL Model

The PL model is applied to the Group I data from the Animal dataset in

order to estimate the preference of each animal species, λk. Each participant

was asked to rank the given animal images according to his/her preferences

in descending order. The reparameterized parameters (µ̂) and their standard

errors were computed by using Baji as the reference species and hence µ̂Baji =

0.

Table 3.5: Top five and bottom five values according to µ̂k when fitting the
PL model to the Group I data from the Animal dataset

Animal Species Contests
Average

λ̂k µ̂k SE(µ̂k)Rank

Red Panda 50 2.200 0.057 1.959 0.278
Giant Panda 60 2.367 0.046 1.745 0.265
African Elephant 37 2.973 0.031 1.364 0.286
Fin Whale 42 3.143 0.029 1.294 0.275
Asian Elephant 63 3.000 0.028 1.245 0.254

...
Mindanao Gymnure 42 8.000 0.003 -1.052 0.282
Eastern Sucker-footed Bat 40 7.175 0.003 -1.182 0.301
Chiapan Climbing Rat 43 8.116 0.002 -1.226 0.284
New Guinea Big-eared Bat 64 7.609 0.002 -1.252 0.265
Southern Marsupial Mole 39 7.641 0.002 -1.359 0.307

Table 3.5 shows the number of contests, average place, estimated parameter

(λ̂k), reparameterized parameter (µ̂k), and standard error of reparameterized

parameter (SE(µ̂k)). Considering, for example, the Red Panda; its picture

is ranked by 50 rankers and the average place is 2.2 which is the highest

average place. The reparameterized parameter, µ̂Red Panda, is 1.959 and it can

be interpreted that Red Panda has substantially higher preference than Baji.

Moreover, the estimated parameter, λ̂Red Panda, has the highest value which

is 0.057. This means that Red Panda is the most appealing animal species

among 97 animal species in Group I data.

It is clear from Table 3.5 that the preference order according to average



3. Models for Partial Ranking 83

(a) Red Panda (b) Baji (c) Southern Marsupial Mole

Figure 3.5: Pictures of Red Panda, Baji, and Southern Marsupial Mole

place is not the same as the order based on µ̂. This is because the average place

does not consider the effect of the partial ranking. For example, if animals are

ordered by average place then Asian Elephant has higher preference than Fin

Whale since the scores are 3 and 3.143, respectively while ordering according

to µ̂, the result is the other way around.

The 95% confidence intervals for µ̂ are plotted in Figure 3.6. Figure 3.6

indicates that Red Panda and Giant Panda are the most preferred species but

their 95% confidence intervals overlap the next six species which are African

Elephant, Fin Whale, Asian Elephant, Vaquita, Blue Whale, and Amazonian

Manatee. However, the overlaps between these next six species are less than

the overlap between Red Panda and Giant Panda. There is a small gap be-

tween the least four favorite species and the species ranked above, these species

are Eastern Sucker-Bat, Chiapan Climbing Rat, New Guinea Big-eared Bat,

and Southern Marsupial Mole. Moreover, two of the highest standard errors

are in the last four species. The SE(µ̂) of Southern Marsupial Mole has the

largest value and is followed by the Eastern Sucker-footed Bat which are 0.307

and 0.301, respectively.

3.4.1 Goodness-of-Fit for the PL Model for the Group

I Data from the Animal Dataset

We perform a bootstrap goodness-of-fit test in order to check whether the

Group I data from the Animal data can be fitted by the PL model. The
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Figure 3.6: The 95 % confidence interval of µ̂ for the Group I data from the
Animal Dataset

bootstrap sample is 10000 (B = 10000).

Figure 3.7 shows the Kendall tau distance from the bootstrapping. The

two-sided p-value is 0.072. We conclude that the PL model is an appropriate

model for fitting the Group I data from the Animal dataset at 5% significance
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Figure 3.7: Histogram of Kendall tau distance from the bootstrapping
goodness-of-fit for the PL model where dashed line is the Kendall tau dis-
tance from the Group I data

level.

The IOS value is approaching to zero. This leads us to compute the two-

sided p-value. The two-sided p-value is 0.264 and this gives the same conclu-

sion as the Kendall tau distance that the PL model is a suitable model for

fitting the Group I data.

3.5 Rank Breaking

Another approach to deal with partial rankings is to break them into pair-

wise comparisons and treat the pairs as if they were independent. Soufiani

and Parkes (2014) proposed a rank-breaking methodology that breaks the full

ranking into a subset of pairwise comparisons according to rank positions. The

BT model, which is less complicated than the PL model, can then be used in-

stead of the PL model. We apply the rank-breaking method to partial ranking

data and compare results of fitting the PL model to the original ranking data

and fitting the BT model to a collection of pairs generated by rank-breaking.

3.5.1 Three Methods of Rank Breaking

Soufiani and Parkes (2014) presented a rank-breaking by using an undirected

breaking graph. The nodes in the graph are ranked positions. Soufiani et al.



3. Models for Partial Ranking 86

(2013a) proposed five methods of rank breaking. In this thesis, we consider

only three methods which are full rank-breaking, adjacent rank-breaking, and

top-h rank-breaking as shown in Figure 3.8.

(a) Full breaking (b) Adjacent breaking (c) Top-2 breaking

Figure 3.8: Three methods of rank-breaking when p = 6

1 Full Rank-Breaking

The full rank-breaking method considers all possible paired comparisons;

therefore, the number of pairwise comparisons generated is
(
pi
2

)
where pi

is the number of items for ranker i to rank.

Figure 3.9: Full ranking method

Figure 3.9 shows an example of full rank-breaking method for a ranking

of 4 items. Thus, the original ranking generates 6 pairwise comparisons.

2 Adjacent Rank-Breaking

The adjacent rank-breaking method considers only adjacent positions.

The number of pair comparisons after applying the adjacent method to

the partial ranking is pi − 1 pairs. An example of applying the adjacent

rank-breaking method to a ranking set is given in Figure 3.10.

In other words, pairwise comparisons come from

{ρi1, ρi2}, {ρi2, ρi3}, . . . , {ρi(p1−1), ρρi,pi}.
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Figure 3.10: Adjacent ranking method

3 Top-h Rank-Breaking

The position-h rank-breaking method is a special case of the full rank-

breaking method (when h = pi) but this breaking considers only items

ranked up to hth position compared to items in lower positions. The

value of h can be any number between 1 and pi. For example, in Figure

Figure 3.11: Top-h ranking method

3.11, if h = 2 then the Top-2 rank-breaking method is applied. The

ranking gives five pairwise comparisons.

3.5.2 Rank Breaking with Unequal Weights

Later, Khetan and Oh (2016) extended Soufiani and Parkes’s (2014) idea by

applying weightings to the pairs from the full rank-breaking method. These

pairwise comparisons can come from either full or partial ranking data. Here,

again the pairwise comparisons were treated as if they are independent. They

used a directed acyclic graph (DAG) to present a partial ordering and let

Gi denote the DAG of an ordering from ranker i. The term “separator” is

introduced. A separator is a node that can partition the rest of the nodes into

two parts. Let a be a set of separator items. Moreover, let Atop be the set of

items that are ranked higher than the separator item and Abottom be the set of

items that are ranked lower than the separator item where Atop is allowed to

be the empty set but Abottom cannot be empty. For example, given an ordering
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set {1, 3, 6, 4} from ranker 1, the G1 is shown in Figure 3.12. There are 3

Figure 3.12: The G1 for the ordering {1, 3, 6, 4}

separators which are a = {1, 3, 6} in this example.

Let li denote the number of separators and Gi,aj denote the rank-breaking

graph for ranking i with separator aj where j = 1, . . . , li. From the previous

example then l1 = 3 and G1,· is given in Figure 3.13. Thus, the number of

(a) G1,1 (b) G1,3 (c) G1,6

Figure 3.13: Rank-breaking graphs (G1,·) from the full rank-breaking method
for G1

rank-breaking graphs for ranker i is equal to li rank-breaking graphs. In our

case, our datasets do not have tied ranking, therefore, li = pi − 1. We can

rewrite Gi,aj as Gi,ρij where j = 1, . . . , pi − 1.

Khetan and Oh (2016) suggested that the pairwise comparisons should

not have the same weighting. If the equal weighting is given, it means the

dependencies in the original data are ignored. They also suggested that all

pairwise comparisons in each Gi,ρij have the same weighting; however, the

weights differ between the Gi,ρij . Let wi,ρij be weight for the Gi,ρij and wi,ρij

has a positive value. The wi,ρij is computed from

wi,ρij =
1

li − j + 1
. (3.15)
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The log-likelihood function of the BT model with these weightings becomes

` (µ) =
n∑
i=1

pi−1∑
j=1

wi,ρij

 ∑
k,k′∈Gi,ρij

(µk − log (exp (µk) + exp (µk′)))

 ,
where item k is preferred to item k′. The estimates can be found via the MM

algorithm as for the BT model with equal weightings then

µ̂k =

∑n
i=1

∑pi−1
j=1 wi,ρij

∑
k�k′∈Gi,ρij

ηk∈Gi,ρij∑n
i=1

∑pi−1
j=1 wi,ρij

∑
k,k′∈Gi,ρij

ηk,k′∈Gi,ρij
exp(µ∗k)+exp(µ∗

k′ )

,

where ηk∈Gi,a is an indicator function such that

ηk∈Gi,ρij =

 1, if k ∈ Gi,ρij

0, otherwise.

Observed Information Matrix

The observed information matrix of the reparameterized parameters is the

negative of the Hessian matrix and it is a positive semi-definite matrix. The

Hessian matrix can be found by using the second derivative of the log-likelihood

function. Summing these over all rankers will obtain the Hessian matrix. The

first derivative is:

∂`

∂µk
=

pi−1∑
j=1

wi,ρij

 ∑
k,k′∈Gi,ρij

(
1− exp(µk)

exp(µk) + exp(µk′)

) ,
then the second derivative is:

∂2`

∂µ2
k

=

pi−1∑
j=1

wi,ρij

 ∑
k,k′∈Gi,ρij

− exp(µk + µk′)

(exp(µk) + exp(µk′))
2

 ,
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and since k � k′ then

∂2`

∂µk∂µk′
=

pi−1∑
j=1

wi,ρij

 ∑
k,k′∈Gi,a

exp(µk + µk′)

(exp(µk) + exp(µk′))
2

 .
This is Hessian matrix and the observed information matrix is the negative of

the Hessian matrix.

3.5.3 Consistency

Inappropriate use of the rank-breaking method can introduce bias and lead

to inconsistent estimators. Soufiani and Parkes (2014) developed a general

condition to determine whether the rank-breaking will provide a consistent

estimator for the PL model for complete ranking data. Soufiani et al. (2013a)

and Soufiani and Parkes (2014) proved that a rank-breaking graph is consistent

if and only if it satisfies this property. Recall that the nodes in a rank-breaking

graph represent positions in the original ranking. The property is that if a node

a is connected to any node b where b > a, then node a must be connected to

all the nodes c when c > a. Following this property, the full rank-breaking

and top-h rank-breaking methods are consistent for the PL model but the

adjacent rank-breaking is inconsistent for the PL model. Thus, the adjacent

rank-breaking will not provide good estimates of the PL model.

In the recent work of Khetan and Oh (2016), they applied the full rank-

breaking method to partial ranking sets. Khetan and Oh (2016) used the

proof from Soufiani et al. (2013a) and Soufiani and Parkes (2014). The rank-

breaking graph Gi,ρij has a separator node which is connected to all other items

in the graph that are ranked below it. Thus, the Khetan and Oh’s (2016)

rank-breaking graph satisfies the property. Khetan and Oh (2016) stated

that all pairwise outcomes, in the rank-breaking graphs, give a consistent

estimator when all pairwise comparisons in each Gi,ρij have the same weighing.
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Weightings between rank-breaking graphs can be different. They showed that

the full rank-breaking method with unequal weighting for each rank-breaking

graph is consistent.

3.5.4 Experimental Results

Synthetic Data: Compare Rank-Breaking Methods in Section 3.5.1

Synthetic data were generated as follows: Suppose that there are K = 100

items. We generate n partial rankings with p = 10 according to the PL

model with true parameter values, λ. Then for each ranking, we apply the

three methods of rank-breaking from Soufiani and Parkes (2014). The PLmm

algorithm is applied to the pairwise comparisons due to the data format and

to the original synthetic data samples of size 500 to 5000 rankers, in steps of

500. This process is repeated 500 times and the average computation time is

shown in Figure 3.14 while the average of the Kendall tau correlation and the

average of the MSE are presented in Figure 3.15.
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Figure 3.14: Computational time of breaking into pairs and fitting the BT and
the PL models to synthetic data

Figure 3.14a shows the overall computational times of breaking into pairs

and fitting the BT and the PL models on synthetic data. The computational

times of the three rank-breaking methods are presented in Figure 3.14b. Figure
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3.14a illustrates that the PL and BT-Adjacent (adjacent rank-breaking) take

more time when the number of rankers becomes higher, while for the other two

method, BT-Full (full rank-breaking) and BT-Top5 (top-5 rank-breaking), the

running time decreases with increasing in n. This is because the algorithms

need more iterations to converge when the number of rankers is small for

BT-Full and BT-Top5. The PL is the fastest method among them.

All rank-breaking methods need more computational time for breaking the

data into pairs as the number of rankers increases as presented in 3.14b. We use

the Breaking function from the StatRank package in order to decompose into

pairwise comparisons. The BT-Top5 is the slowest method while the adjacent

and full rank-breakings use almost the same amount of time. The breaking

time for PL remains zero for all sample sizes since the PLmm algorithm is

applied to the original data.
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Figure 3.15: The average of Kendall tau correlation and average of MSE crite-
ria when applied the PL model to original synthetic data and the BT model to
pairwise data from BT-Full (full breaking), BT-Adjacent (adjcent breaking),
and BT-Top5 (top-5 breaking)

The MSE and Kendall tau correlation are employed to evaluate and com-

pare the fitting results, as shown in Figure 3.15. Both figures give the same

conclusion that the accuracy of all the methods improves as number of rankers

increases in which the PL performs best and is followed by BT-Full, BT-Top5

and BT-Adjacent. It is clear in Figure 3.15b that the BT-Adjacent does not

perform well under the MSE criterion. The BT-Full performs almost as well
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as PL as the number of rankers increases. However, the efficiency of Top-h

rank-breaking method depends upon the h value.

The paired t-test is applied to evaluate whether the averages of Kendall

tau correlation from the PL model and the BT model with full rank-breaking

method are different. The differences between these are significant at 1% level

which confirms that the PL model performs better than the BT model with

the full rank-breaking.

Moreover, adjacent breaking provides poor estimates even when compared

to the other methods as the data size grows. This reflects the fact that the

adjacent rank-breaking estimator is inconsistent.

Synthetic Data: Full Rank-Breaking with Equal and Unequal Weights

The synthetic data were generated as previously stated in order to compare

the performance of different weightings. Only the full rank-breaking method

is used to break the synthetic data into pairwise comparisons. The PLmm

algorithm is applied to paired data and original synthetic data. One of the sets

of unequal weights is from Khetan and Oh (2016). We explore other weightings

by extending Equation (3.15). The reasons why we explore other weightings

are (1) to confirm empirically that the original weighting was optimal for MSE

as mentioned by Khetan and Oh (2016) and (2) to see if it was also optimal

for other criteria (Kendall tau correlation and logarithm of determinant of

the observed information matrix) or whether alternative weightings might do

better. The different powers, which are shown in Table 3.6, are taken of

the weight in Equation (3.15). This is an empirical idea to see how these

weightings affect the estimates from the BT model. We rescale these new

weights by introducing a constant value,

ci =

pi−1∑
j=1

wi,ρij (li − j − 1),
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Table 3.6: Unequal weights from Equation (3.15) for full rank-breaking pairs

Weighting method Power Name

(1) - 1 BTw
(2) Square root 1

2
BTw-Sqrt

(3) Cube root 1
3

BTw-3Sqrt
(4) 4th root 1

4
BTw-4Sqrt

(5) Square (Sq) 2 BTw-Sq

then the new weight is

w′i,ρij = (pi − 1)
wi,ρij
ci

.

The w′i,ρij is used instead of wi,ρij in analysis.

●

●

●

●
●

●
●

●
● ● ●

●

●

●

●

●

●
●

●
● ●

●

0.7

0.8

0.9

0 1000 2000 3000 4000 5000
Number of Rankers

K
en

da
ll 

Ta
u 

C
or

re
la

tio
n

● ●BT
BTw

BTw−3Sqrt
BTw−4Sqrt

BTw−Sq
BTw−Sqrt

PL

(a) Kendall Tau Correlation criterion

●

● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000
Number of Rankers

M
S

E

● ●BT
BTw

BTw−3Sqrt
BTw−4Sqrt

BTw−Sq
BTw−Sqrt

PL

(b) MSE criterion

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

100

200

300

400

500

0 1000 2000 3000 4000 5000
Number of Rankers

Lo
ga

rit
hm

 o
f D

et
er

m
in

an
t o

f I
nf

or
m

at
io

n 
m

at
rix

● ●BT
BTw

BTw−3Sqrt
BTw−4Sqrt

BTw−Sq
BTw−Sqrt

PL

(c) Logarithm of Determinant of Informa-
tion matrix criterion

Figure 3.16: The average of Kendall tau correlation, MSE, and logarithm of
the determinant of the observed information matrix criteria when applied the
PL model to original synthetic data and the BT model to pairwise data with
BT, BTw, BTw-Sqrt, BTw-3Sqrt, BTw-4Sqrt and BTw-Sq weightings from
Table 3.6, respectively

The averages of Kendall tau correlation, MSE, and the logarithm of de-



3. Models for Partial Ranking 95

terminant of the observed information matrix are shown in Figure 3.16 where

BT is the BT model with equal weight and the BTw stands for the BT model

with different weights.

Figure 3.16a presents that the BT model with square weighting (BTw-Sq)

performs the worst while the other methods are comparable to the PL model.

The MSE criterion gives almost the same conclusion as shown in Figure 3.16b.

When number of rankers is small (n=100), it is obvious that the BTw performs

best and is followed by BTw-Sqrt, BTw-3Sqrt, BTw-4Sqrt, BT, and BTw-Sq.

However, all methods give almost the same results when number of rankers

is large. The logarithm of the determinant of the observed information shows

that the PL model is the best among all methods while the BT model with

weightings, except BTw-Sq, and equal weightings yield the same performance,

while the BTw-Sq gives the poorest performance.

Sushi Dataset: Full Rank Breaking with Equal and Unequal Weights

The Sushi dataset is considered here. We recall that there are 5000 participants

who ranked sushi flavours where K = 100, and p = 10. The ‘true’ parameter

values are obtained by applying the PLmm algorithm to all 5000 ranking sets.

In order to compare performances of different weightings, the three eval-

uating criteria used previously are considered. The estimates are calculated

after every 500 rankers from 500 to 5000 rankers. We randomly choose 500

rankers from the original Sushi dataset at each point with replacement. This

process is repeated 200 times after that we calculate average of correlation,

MSE, and logarithm of determinant of the observed information matrix values.

We compare only three weightings which are BT, BTw, and BTw-Sqrt.

The other weightings are excluded as the BTw-3Sqrt and BTw-4Sqrt give

almost the same results as BTw-Sqrt, and BTw-Sq performed poorly with the

synthetic data. Results are presented in Figure 3.17 where the BTw and BTw-

Sqrt are weighting (1) and (2) in Table 3.6, respectively. Both MSE and the
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Figure 3.17: The average of Kendall tau correlation, MSE, and logarithm of
the determinant of the observed information matrix criteria when applied the
PL model to Sushi dataset and the BT model to full rank-breaking data with
BTw and BTw-Sqrt weightings in Table 3.6

logarithm of the determinant of the observed information matrix criteria reveal

the same conclusion while the correlation criterion gives a different conclusion

at the beginning. The MSE and logarithm of the determinant of the observed

information matrix, in Figure 3.17b and Figure 3.17c, respectively, show that

the BTw performs much better than equal weight for MSE, while it performs

slightly better than equal weight for the logarithm of the determinant of the

observed information matrix. However, Figure 3.17a, correlation criterion,

indicates that BTw-Sqrt gives a slightly better result when the number of

rankers is less than 2500.

The 95% confidence intervals for µ̂ are shown in Figure 3.18. This fig-

ure shows that the confidence interval for the µ̂PL are smaller than the µ̂BTw

and the µ̂BTw-Sqrt. Moreover, most of the µ̂PL lie between the µ̂BTw and the
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µ̂BTw-Sqrt.

The PL model and the BT model with BTw and BTw-sqrt weightings are

applied to the Group I data from the Animal dataset and the Sushi dataset.

Table 3.7 shows that the Kendall tau correlation and the MSE from BTw-Sqrt

Table 3.7: Kendall tau correlations and MSE for the BT model with BTw and
BTw-Sqrt weightings when compared with the PL model

Correlation MSE

Group I
BTw 0.948 0.015

BTw-Sqrt 0.956 0.004

Sushi
BTw 0.971 0.002

BTw-Sqrt 0.961 0.005

weighting provide better results from the Animal dataset. The BTw weighting

performs better in these criteria with the Sushi dataset. The total number of

rankers of the Group I data is 450 which is less than 2500 rankers. This may be

reason why the BTw-Sqrt weighting performs better than the BTw weighting.

3.6 Conclusions

In this chapter, we focus on two models for analyzing ranking data. The

BT model is for pairwise comparisons data and the PL model is for complete

or partial ranking data. We follow the MM algorithm from Hunter (2004)

in order to obtain the ML estimates for the parameters of both the BT and

the PL models. The PL models satisfy LCA (Marden, 1995). The essential

implication of LCA is the constant ratio rule which is important for analyzing

partial ranking data, since this rule implies that information about overall

preferences can be found from the partial rankings.

We translated two Matlab codes of Caron and Doucet (2012) for the BT

model and the PL model. These algorithms are called the BTmm and the PLem,

respectively. We also implemented our own code, the PLmm, for the PL model.
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The PLem and the PLmm algorithms require the same data format and they are

based on matrices. However, they are different in the way of using matrices.

In the PLmm algorithm, we produce more matrices than in the PLem algorithm.

We compare algorithms from different existing packages in R with each

other and with our algorithms. The experiments for the BT model show

that the BTmm algorithm is slower than the existing BradleyTerry2 package.

Moreover, for the PL model, the PLem algorithm is the fastest algorithm,

followed by the PLmm algorithm. Both of the algorithms for the PL model have

much faster computational times than the existing packages.

The PLinfm algorithm for computing the observed information is imple-

mented. The standard errors which are calculated from the observed informa-

tion matrix from the PLinfm algorithm and the optim function are compared

in order to confirm our algorithm. The results show that they give the same

standard errors.

The PLem and the PLinfm algorithms are applied to the Group I data

from the Animal dataset as an illustration on how to interpret the results.

The bootstrap goodness-of-fit tests with both the Kendall tau distance and

IOS statistic show that the PL model is an appropriate model for fitting the

Group I data.

Next, we explore the rank-breaking methods which were introduced by

Soufiani et al. (2013a). The rank-breaking method will reduce complexity of

analyzing of p items for a partial ranking to a set of pairwise comparisons.

We apply three rank-breaking methods which are full, adjacent, and top-h to

synthetic data. The full rank-breaking outperforms the other rank-breaking

methods in both running time and quality of parameter estimates.

We further explore the full rank-breaking method with different weight-

ings. Most of the weightings improve the estimates when compared with the

non-weighting on the simulated data. Among the proposed weightings, the
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BTw-Sqrt performs the best in the simulated data. Thus, we compare the

BTw with the BTw-Sqrt on a real dataset, the Sushi dataset. The results

show that the BTw-Sqrt is slightly better than BTw when n is less than 2500

rankers in term of the Kendall tau correlation criterion. However, the MSE

criterion gives a different conclusion, that the BTw weighting performs better

than the BTw-Sqrt. We prefer comparing the Kendall tau correlation because

in many real world applications the parameter values are of less importance

than the true rankings of the items. Thus, the BTw-Sqrt is a better option to

use when number of rankers is small in this situation. Moreover, we further

investigate the BTw and the BTw-Sqrt weightings by applying these weight-

ings to the pairs from the Group I data from the Animal dataset. The Kendall

tau correlation and MSE show that our BTw-Sqrt performs better than the

BTw.
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Chapter 4

Preference Learning

In many applications, ranking information is collected sequentially from each

successive participant ranking a subset of the items. For example, in the

Animal dataset, participants were asked to rank subsets of ten images. These

subsets were chosen at random from all the images available. The general

question addressed in this chapter is whether the rankings which have already

been completed can be used to make a more effective choice of future subsets

of items to be ranked than simply choosing at random. Moreover, we also aim

to elicit rankings from as few participants as possible. Our main objective is

to find methods that can efficiently pick subsets for ranking which quickly lead

us to good estimates of the preference parameters.

This chapter presents methods for selecting informative subsets which con-

tain more than two objects. We review some related work in Section 4.1. We

describe why we are interested in this problem as presented in Section 4.2. We

give small examples to illustrate our motivation. Section 4.3 discusses estima-

tion of the logarithm of the expected information matrix by using a multiple

regression model. In Section 4.4, we explore three existing criteria and three

proposed methods for selecting a suitable subset. The existing criteria are

adapted from experimental design framework, D-optimality and E-optimality.

We also consider another criterion proposed by Soufiani et al. (2013b) which



4. Preference Learning 102

we call the Wald criterion. Due to computational problems with the existing

criteria, we propose three methods which are simpler to implement. Experi-

mental results are shown in Section 4.5. First, the existing criteria were applied

on simulated data. The data was generated under the PL model with small

and large number of items, K = 6 and K = 100, respectively. In order to

compare performance, random selection of subsets was also used. Second, the

proposed methods were applied to simulated data with K = 100. These three

proposed methods are again compared with random selection. Lastly, we com-

pare the results from the existing criteria with K = 100 with the results from

the proposed methods.

We change some of the notations here where λ and µ from Chapter 3

become π and λ, respectively.

4.1 Related Work

The problem of item selection has been considered in the literature on paired

comparisons. The scheduling method was introduced by Aftab et al. (2011).

The result showed that the scheduling method performed better than random

selection for pairwise comparison. Later, Pfeiffer et al. (2012) proposed an

adaptive elicitation method for pairwise comparisons that was based on the

Thurstone-Mosteller model. This study was done by using Amazon Mechanical

Turk (MTurk). MTurk is a system in which internet users are paid a small fee

for completing an online task, in this case doing a comparison. The adaptive

method was compared with the random choice of pairs. Better results were

obtained with the adaptive method. It increased the accuracy of estimating

parameters more quickly. Both studies revealed that, for paired comparison

data, if suitable pairs were selected then the estimated parameters converged

more rapidly to the true values.
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Soufiani et al. (2013b) extended these studies to multiple comparisons.

They showed that criteria from experimental design can be adapted for using

in this framework. Two such criteria are D-optimality and E-optimality. They

also proposed a new method based on the t-test. Their simulation experiments

used data generated from the Normal distribution and compared results with

the random selection of subsets. The results showed that the D-optimality

and E-optimality criteria sometimes perform worse than random selection.

The proposed t-test criterion performed better than existing criteria.

4.2 Motivation

The main question of this study is how to find an effective way to elicit infor-

mation about preferences. If the number of items is small, then rankers can

be asked to undertake a full ranking. The problem occurs when there are too

many items and it is impossible for rankers to rank them all. Thus, we need

to choose the subset of items that provides the most useful information.

The difference in information gained between full and partial ranking is

illustrated in Figure 4.1, which shows the Kendall tau correlation between es-

timated parameters and true parameters and the logarithm of the determinant

of the observed information matrix (log(det (J(λ̂)))) after every 100 rankings

starting from 100 to 500. The full and partial rankings were generated under

a PL model for a total of 20 items in which each ranker ranked all of the

items for the full ranking data, while only 6 items were required to be ranked

for the partial ranking data. The subsets of 6 items were randomly selected

for each ranker. The true parameter values for items 1 to 20 were πk ∝ k,

k = 1, . . . , 20.

We simulated 500 times at each point. As expected, the full and partial

ranking data reveals the same trend that the Kendall tau correlation increases

as the number of rankers increases, but the correlations from the full ranking
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(b) Logarithm of the Determinant of the Observed Informa-
tion matrix

Figure 4.1: Boxplot of Kendall tau correlation between estimated parameters
and true values and the logarithm of the determinant of the observed infor-
mation matrix for the PL model when fitted to the full and partial simulated
datasets

data are higher than from the partial ranking data when the data has the

same number of rankers (Figure 4.1a). The boxplots show that the estimated

Kendall tau correlation varies considerably between simulation runs, particu-

larly for partial rankings, and variability gradually decreases as the number of

rankers increases.

Figure 4.1b shows that log(det (J(λ̂))) also increases as the number of

rankers increases. However, the log(det (J(λ̂))) does not vary much between

simulation runs. Moreover, if we change the x-axis to be log(n), it does not
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have a linear relationship with the log(det(J)). This gives us the idea to

estimate the log(det (J(λ̂))) in Section 4.3.

To increase the Kendall tau correlation between the estimated parameters

and the true ranks and the log(det (J(λ̂))) for the partial ranking dataset, a

suitable subset of items must be chosen to be ranked at each stage. A small

example is given for illustrative purpose. Suppose we are interested in the

preferences of 6 items but require only 4 items to be ranked at a time. The

true parameters for item 1 to item 6 are generated from a uniform distribution

and then sorted into ascending order. The true values are π = (0.014, 0.018,

0.107, 0.271, 0.289, 0.300)ᵀ and if we let item 1 be the reference item then λ =

(0, 0.244, 2.007, 2.942, 3.005, 3.043)ᵀ. Initial data was obtained by simulating

the ranking of 20 randomly chosen subsets of size 4. The reason why we need

these preliminary rankings is to have enough initial data to ensure that the

PL model converges, to give a value of λ̂. We then calculate the expected

information matrix (Inew subset), evaluated at λ̂, for each possible subset. This

involves calculating the observed information matrix for each possible ranking

of the subset and calculating a weighted average of these matrices where the

weights are the estimated probabilities of the different rankings. Moreover,

the estimates λ̂ from the PL model are also required in this computation. The

estimates and the initial data both affect the expected information matrix. To

reduce the variability from the initial data, we repeat this process many times.

The process is repeated 500 times (nsim = 500). The algorithm is described in

Algorithm 2.

Before presenting the results from Algorithm 2, we give a small example

showing how to calculate the expected information matrix. We consider K =

4, p = 3, and ninit = 20. First, we generate an initial dataset under the PL

model where true parameter values are generated from a uniform distribution.

The PL model is fitted to the initial data and λ̂ = (0, 0.472, 2.142, 2.980)ᵀ.
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Algorithm 2 Find the expected information matrix for an extra subset

1: Given K, p, ninit, and nsim

2: Find all possible subsets of p items from k items (nC)
3: for t = 1 to nsim do
4: Generate an initial dataset under the PL model with an appropriate
5: number of individuals (ninit)
6: Estimate the preference parameters (λ̂)
7: for i = 1 to nC do
8: Find all possible orderings (nP ) of subset i
9: for j = 1 to nP do

10: Update Inew(λ̂) weighted by probability of ordering j
11: end for
12: end for
13: end for
14: Calculate mean of log(det(Inew(λ̂))) of each subset

The subset {1, 2, 3} is considered; therefore, there are 6 possible orderings.

We calculate the probability and the observed information matrix for each

ordering as shown in Table 4.1. If K and/or p are large, This approach leads

to computational problems.

Table 4.1: Probability for each ordering when K = 4 and p = 3

Probability J(λ̂) Probability × J(λ̂)

(1 � 2 � 3) 0.014 J1(λ̂) 0.014 × J1(λ̂)

(1 � 3 � 2) 0.076 J2(λ̂) 0.076 × J2(λ̂)

(2 � 1 � 3) 0.015 J3(λ̂) 0.015 × J3(λ̂)

(2 � 3 � 1) 0.129 J4(λ̂) 0.129 × J4(λ̂)

(3 � 1 � 2) 0.294 J5(λ̂) 0.294 × J5(λ̂)

(3 � 2 � 1) 0.472 J6(λ̂) 0.472 × J6(λ̂)

Sum 1 - I(λ̂)

In Figure 4.2, the 15 possible subsets are presented on x-axis while the

y-axis shows the mean of the logarithm of the determinant of Inew subset(λ̂).

The determinant of the observed information matrix is the reciprocal of the

generalized variance which is the determinant of the variance-covariance ma-

trix. This value clearly shows how much information is provided by adding one

extra subset since the determinant can be thought as a measure of volume. In
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Figure 4.2: The average of the logarithm of determinant of the expected in-
formation matrix when a single extra subset is added to the initial data

this example, the last subset, which contains items {3, 4, 5, 6}, is chosen to be

the next subset since this subset gives the largest average gain in expected in-

formation, in other words, gives the most information. Therefore, if we choose

a good subset, we will get better estimated parameters in a shorter time.

4.3 Estimated Logarithm of Determinant of

Expected Information Matrix

In this section, we try to estimate the expected information matrix given the

values of n, K and p. We cannot compute the expected information matrix

when K is large because of excessive computational times. The objective is to

find the relationship among n, K, and p and extend this to find approximate

relationships for the observed information matrix.

In general, information is additive if experiments are independent. Then

we can write In(λ), the expected information matrix for sample size n, in

terms of I1(λ):

In(λ) = n× I1(λ).



4. Preference Learning 108

Therefore,

det(In(λ)) = n(K−1) det(I1(λ)),

where the term n(K−1) arises because the information matrix has rank K − 1

(Section 3.2.3). Therefore

log (det(In(λ))) = (K − 1) log(n) + log(det(I1(λ)))

= (K − 1) log(n) + constant. (4.1)

Instead of I1(λ), we can write this term as Inmin
(λ) where nmin is a minimum

sample size. The nmin is introduced here to confirm that we have enough

rankings for the PL model to converge. Then the Equation (4.1) becomes

log (det (In(λ))) = (K − 1) log(n) + constant−K log(nmin) + log(nmin).

(4.2)

In order to get rid of nmin terms, we include K as one of covariates in the

model. We combine the last terms in Equation (4.2) with the constant term.

We get the same equation as in Equation (4.1). Therefore, we do not need to

know nmin for estimating the log (det (In(λ))).

The relationship in Equation (4.1) can also be applied to the observed

information matrix. The observed information matrix is dependent on the

data which involves n, K, and p. Thus, we can estimate log(det(J)) given these

parameters. This study investigates the effect of varying n, K, and p on the

value of log(det(J)), using multiple regression. The multiple regression model

is a good model to start with because it is simple. The dependent variable is

log(det(J))− (K−1) log(n) since we expect det(J) to be proportional to nK−1

from Equation (4.1). The independent variables that we consider are p, K,

log
(
p
2

)
, log

(
p
K

)
, log

(
n
K

)
, and some interaction terms between pairs of these
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independent variables. Backward elimination and stepwise variable selection

methods are used to find the best model.

We start by fixing K = 100, and simulate data based on varying n and

p under the PL model. The true parameter values are randomly generated

from a uniform distribution. The settings of the simulated data, with fixed

K = 100, and varying p and n are shown in Table 4.2. We simulate under

these settings 20 times and apply the multiple regression model to these data.

Table 4.2: Values of p and n used to
simulate data with fixed K = 100.

K p n

100 10 200, 300, 400, 500
100 20 200, 300, 400, 500
100 30 200, 300, 400, 500
100 40 200, 300, 400, 500
100 50 200, 300, 400, 500
100 60 200, 300, 400, 500
100 70 100, 200, 300, 400
100 80 100, 200, 300, 400
100 90 100, 200, 300, 400
100 100 100, 200, 300, 400

Table 4.3: Values of K and n used to
simulate data with fixed p = 10.

K p n

10 10 50, 100, 150, 200
20 10 100, 200, 300, 400
30 10 100, 200, 300, 400
40 10 200, 300, 400, 500
50 10 200, 300, 400, 500
70 10 200, 300, 400, 500
80 10 300, 400, 500
90 10 200, 300, 400, 500
100 10 200, 300, 400, 500, 600, 700
150 10 300, 400

Table 4.4 shows the multiple regression result. The terms log
(
p
2

)
and

log
(
p
K

)
are chosen by both selection methods, which are backward elimination

and stepwise variable, and they are significant at the 0.1% significance level

while log
(
n
K

)
is significant at 1% level. This shows that log

(
p
2

)
, log

(
p
K

)
, and

Table 4.4: Regression estimates when fixed K = 100

Coefficient SE t-value p-value

Intercept -3207.742 43.232 -74.199 < 0.001
log
(
p
2

)
375.595 5.078 73.963 < 0.001

log
(
p
K

)
-649.112 10.353 -62.700 < 0.001

log
(
n
K

)
-0.295 0.106 -2.782 0.006

log
(
n
K

)
have an effect on log(det(J)). The R2

adj is 0.9997. The fitted regression
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model is

̂log(det(JReg)) = (K − 1) log(n)− 3207.742 + 375.595 log

(
p

2

)
− 649.112 log

( p
K

)
− 0.295 log

( n
K

)
(4.3)
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Figure 4.3: The estimated values ̂log(det(Jreg)) − (K − 1) log(n) from the
regression model in Equation (4.3) with p = 10, 20, . . . , 100, K = 100 and
n = 200

In order to see the relationship between p and ̂log(det(JReg)) − (K −

1) log(n), we set K = 100 and n = 200 to plot those values as displayed

in Figure 4.3. This figure indicates that when increasing p, the value of

̂log(det(JReg))− (K − 1) log(n) also increases.

We next explore the effect of varying K but fixing p. The datasets are

simulated by fixing p = 10 and varying K and n as presented in Table 4.3.

Each setting is generated 20 times. Both model selection methods agree that

K, log
(
p
K

)
, and log

(
n
K

)
should be included in the model. However, log

(
n
K

)
is not significant at the 5% level. After we remove log

(
n
K

)
from the model,

the R2
adj = 0.9987 remains the same. The estimated regression coefficients are

shown in Table 4.5.

We plot the estimated values ̂log(det(Jreg))− (K − 1) log(n) given p = 10

against K in Figure 4.4. We get less information when K increases and p is

fixed. This is because we have more parameters to estimate when we have more
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Table 4.5: Regression estimates when fixed p = 10

Coefficient SE t-value p-value

Intercept 31.469 0.393 80.010 < 0.001
log
(
p
K

)
-46.420 0.604 -76.860 < 0.001

K -4.242 0.013 -338.590 < 0.001
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Figure 4.4: Plot of ̂log(det(Jreg)) − (K − 1) log(n) from the regression model
in Table 4.5 against K with fixed p = 10.

items involved but each ranker still provides the same amount of information,

p = 10 items out of K. Thus, the ̂log(det(Jreg))−(K−1) log(n) has a negative

relationship to K.

Finally, we vary both K and p as shown in Table 4.6. Twenty sets of data

were simulated according to each of these settings and multiple regression

models were fitted to this dataset. The regression model that gave the highest

R2
adj, R2

adj = 0.9992, included all terms in Table 4.7.

Table 4.6: The values of K, p, and n used to simulate data when varied both
K and p.

K p n

10 4, 5, 7, 10 50, 100, 200
20 5, 10, 15,20 100, 200, 300
50 10, 15, 35, 50 200, 300, 400
70 10, 20, 30, 40, 50 , 60, 70 200, 300, 400
90 10, 20, 30, 40, 50 , 60, 70, 80, 90 200, 300, 400
100 10, 20, 30, 40, 50 , 60, 70, 80, 90,100 200, 300, 400

Both model selection methods give the same result which is that K, p,
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log
(
p
2

)
, log

(
p
K

)
, K × p, and K × log

(
p
2

)
are all included in the model. All

Table 4.7: Regression estimates where the dependent variable is log(det(J)−
(K − 1) log(n)) from simulations that varied both K and p

Coefficient SE t-value p-value

Intercept -30.854 0.838 -36.838 < 0.001
K -6.386 0.024 -264.954 < 0.001
p 0.241 0.028 8.741 < 0.001
log
(
p
2

)
15.821 0.279 56.729 < 0.001

log
(
p
K

)
-37.303 0.534 -69.909 < 0.001

K × p -0.005 0.001 -17.958 < 0.001
K × log

(
p
2

)
0.645 0.004 168.338 < 0.001

terms in the table are significant at the 0.1% significance level. The estimated

logarithm of the determinant of the observed information matrix from the

regression model is

̂log(det(JReg)) = (K − 1) log(n)− 30.854− 6.386K + 0.241p+ 15.821 log

(
p

2

)
− 37.303 log

( p
K

)
− 0.005(K × p) + 0.645

(
K × log

(
p

2

))
.

(4.4)

We compare ̂log(det(JReg)) from Equation (4.4) with the average of log(det(J))

from the PL model when we simulated 100 times, which we refer to as true

values. We plot four different settings in Figure 4.5 to compare ̂log(det(JReg))

with log(det(JTrue)). The estimated logarithm of the determinant of the ob-

served information from the regression model captures the trend of the true

values well. Thus, the regression model provides a good approximation to the

logarithm of the determinant of the information matrix. The regression model

can be used as a guideline to predict the logarithm of the determinant of the

information matrix as it is easy and quick to compute.
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Figure 4.5: Plot of the estimated logarithm of the determinant of the observed
information matrix from Equation (4.4) against true values.

4.4 Elicitation Criteria

In order to find the suitable next subset to be ranked, we consider three existing

criteria. Two criteria are classical criteria used in experimental design and

another criterion is the Wald criterion, which was introduced by Soufiani et al.

(2013b). We also propose three new methods in this section.

4.4.1 Experimental Design Criteria

In the experimental design framework, many criteria have been introduced

to quantify the performance of different designs, and these can be adapted

to assess the performance of different elicitation schemes in our case. The

main idea is to minimize the variance, which corresponds to maximizing the

information. A “large” information matrix implies more efficient estimators.

To measure how “large” an information matrix is, we require a scalar function
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of the matrix. Different functions give raise to different optimality criteria.

Well-known optimality criteria can be used. Two criteria are considered here,

namely D-optimality and E-optimality.

D-optimality

The most popular criterion in the optimum experimental design framework

is D-optimality which aims at maximizing the determinant of the expected

information matrix which can be written as:

max det(I).

Moreover, in order to ensure a convex optimization problem, it is given by

max(log(det(I))) or min(− log(det(I))),

(Atkinson et al., 2007, Chapter 10).

Additionally, as the variance-covariance matrix is the inverse of the in-

formation matrix, the D-optimality criterion is equivalent to minimizing the

determinant of the variance-covariance matrix. The adaptive algorithm pro-

posed by Pfeiffer et al. (2012) is closely related to the D-optimality criterion

and their method works well for pairwise comparisons. Later, Soufiani et al.

(2013b) suggested that D-optimality might not be a suitable choice for pref-

erence rankings; however, they studied a different setting than this. They

focused on General Random Utility models and generated datasets from a

normal distribution.

In our case, we aim to find the next subset. To achieve this, we need

to know the probabilities of all possible orderings. Then the expected infor-

mation matrix for each possible subset is calculated. The subset that gives

the information matrix with the greatest logarithm of determinant is chosen.
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Details are given in Section 4.5.1.

E-optimality

The E-optimality criterion is quite widely used in optimum experimental de-

sign as well. This criterion chooses the subset that maximizes the minimum

eigenvalue of the expected information matrix and it can be expressed as:

max min (eigenvalue (I)) .

In the experimental design area, the E-optimality criterion is used for de-

signs in which all factors are qualitative, while D-optimality is mostly used

for quantitative factors. The E-optimality criterion is expected to be more

suitable than the D-optimality criterion in our case.

As for the D-optimality criterion, we need to find the expected information

for each subset. The eigenvalues are computed from this matrix and we choose

the subset that maximizes the minimum eigenvalue. See Section 4.5.1.

4.4.2 Wald Criterion

Soufiani et al. (2013b) proposed a new elicitation criterion which we refer to

the Wald criterion. This criterion is based on the idea of the t-test to compare

λ−values in a pairwise comparison. The larger the value of the Wald criterion,

the easier it is to distinguish itemi from itemj. The Wald criterion is as follows:

Waldij =
| λ̂i − λ̂j |√

var
(
λ̂i

)
+ var

(
λ̂j

)
− 2cov

(
λ̂i, λ̂j

) .
The subsets that contain the pair which has minimum value overall the Waldij

are selected. We choose a subset among the selected subsets which has max-

imum value of sum of all possible pairs based on the item i in the selected

subset. For example, K = 4 and p = 3, if (1, 2) has minimum value, there are
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two selected subsets which are (1, 2, 3) and (1, 2, 4). We calculate Wald12 +

Wald13 + Wald23 and Wald12 + Wald14 + Wald24 and choose the subset that

has greater value.

4.4.3 Proposed Selection Methods

Random selection is the most popular method for selecting subsets of items to

be ranked; however, random selection ignores the information available from

the previously ranking sets. Three proposed methods are introduced here and

these methods will make use of the previous rankings. We suggest a systematic

way to perform an effective way of choosing the next subset. The proposed

methods are started with random selection and then use the ranked sets to

find new subsets.

Suppose for illustration that there are 16 items and that each ranker ranks

a subset of 4 items. First, the 16 items are randomly divided into 4 subsets so

that each item belongs to only one subset. Each ranker gives their preference

ranking of one subset. These are starting ranking sets as presented in Figure

4.6.

Figure 4.6: The starting ranking sets

Method I

Method I selects the first item in each ranking set, shown in the blue box in

Figure 4.7, to be a new subset. Then selects items ranked second (the orange

box) as another new subset and so on.
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Figure 4.7: Method I

In order to perform Method I, it needs at least p starting ranked sets. The

pseudo code of Method I is shown in Algorithm 3 which explains how Method

I works. We repeat this algorithm by using the output, the rankedSubsets,

as the starting data for the next iteration.

Algorithm 3 Method I

1: Given a starting data which contain all K items with p ranking sets
2: for j = 1 to p do
3: newSubsets← a subset of all items with rank jth in the starting data
4: end for
5: return newSubsets

Method II

Figure 4.8: Method II

Method II is a mixed method between Method I and random selection.

Method II will perform like Method I for s times and after that random selec-

tion is applied. Random selection is considered after s times because the data

from the proposed method may make the PL model converge for a smaller

number of rankers and after that random selection, which performed well in
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Soufiani et al. (2013b), is used. Again Method II needs at least p starting

ranking sets since the first part of this method is Method I.

Method III

Methods III consists of two steps. The first step is dividing the starting ranked

sets into 2 groups as shown in red and yellow boxes in Figure 4.9.

Figure 4.9: Method III

The first group contains the items in 1st to dp
2
eth rank position and the

remaining items belong to the second group. The second step is to match the

first group from ranker i with the second group from ranker i + 2. We get

p new subsets. Like the previous methods, this method requires at least p

starting ranking sets. The algorithm is presented in Algorithm 4.

Algorithm 4 Method III

1: Given a starting data with a total number of K items and p ranking sets
2: group1← 1st to dp

2
eth rank in the starting data

3: group2← bp
2
cth to pth rank in the starting data

4: for j = 1 to p do
5: newSubsets ← a subset from ranker j in group1 and a subset from

ranker j + 2 in group2
6: end for
7: return newSubsets
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4.5 Simulation Study

4.5.1 Evaluation of the D-optimality, E-optimality, and

Wald Criteria

In application for finding the next subset, the generating process is presented

in Algorithm 5. Algorithm 5 processes through all of the possible subsets (nC)

and all of the possible orderings (nP ). J denotes the observed information

matrix from the data and Inew is the expected information matrix when adding

each possible subset. We target the next subset of items that can provide the

best expected improvement upon each criterion to the current estimation.

Algorithm 5 D-optimality and E-optimality criteria

1: Given an initial dataset with an appropriate number of individuals (ninit)
2: Estimate the preference parameters (λ̂(0)) and compute J(0) based on the

initial dataset
3: for t = 1 to nextra do
4: Find all possible subsets of p items from k items (nC)
5: for i = 1 to nC do
6: Find all possible orderings (nP ) of subset i
7: for j = 1 to nP do
8: Update Inew to include ordering j weighted by probability of

ordering j based on the current estimates, λ̂(t−1)

9: end for
10: end for
11: Choose the subset that fulfils the criterion based on J(t−1) + Inew

12: Generate a ranking of chosen subset based on the true values or ask a
ranker to rank chosen subset

13: Add to the current dataset and recalculate λ̂(t) and J(t)

14: end for

Simulation Study: Small Number of Items

An initial study is based on a small example with K = 6 items and subsets

of size p = 4 since it is easier to understand and requires less computational

time.

We generate ninit = 20 rankers’ preference rankings of randomly chosen
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subsets of 4 items, based on the PL model and use these rankings as initial

data. Since the 4 items in each subset are chosen from a total of 6 items, there

are 15 possible subsets (nC = 15) and each subset has 4! possible orderings

(nP = 24).

The true parameters are randomly generated from a uniform distribution

between 0 and 1. Initial data is obtained by simulating 10 rankings of size 4

under the PL model.
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Figure 4.10: The average of Kendall tau correlation, MSE, and logarithm of
the determinant of the observed information matrix of parameter estimates
from different criteria, D-optimality, E-optimality, Wald criteria when fitted
the PL model on synthetic data with K = 6 and p = 4

The three criteria which consist of D-optimality, E-optimality, and Wald

criteria are considered. Random subsets are also generated in order to compare

performance with the other criteria. We find the next 50 subsets (nextra = 50)

and evaluate each new ranking subset by comparing Kendall tau correlation,

MSE, and logarithm of determinant of the observed information matrix. The
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y-axis in Figure 4.10 is the average of these criteria after repeating the Algo-

rithm 5 500 times.

The last criterion, log(det(J)), is shown in Figure 4.10c. This criterion

shows that the D-optimality and E-optimality criteria give the same perfor-

mance as random selection. These two perform the best in log(det(J)) crite-

rion. The Wald criterion performs slightly worse than them.

Overall the E-optimality and Wald criteria are comparable with the random

selection.

Simulation Study: Larger Number of Items

In order to compare the performances of the different criteria used to find the

next subset when K is large, we explore one specific case when K = 100 and

p = 10. Therefore, there are 1.731 × 1013 possible subsets and each subset

has 3,628,800 possible orderings. These number of subsets and orderings are

too large to compute for all possible situations. Instead, we have to select a

random sample of subsets and orderings as shown in Algorithm 6.

Algorithm 6 D-optimality and E-optimality criteria

1: Given an initial dataset with an appropriate number of individual (ninit)
2: Estimate the preference parameters (λ̂(0)) and compute J(0) based on the

initial dataset
3: for t = 1 to nextra do
4: for i = 1 to nC do
5: Randomly select p items
6: for j = 1 to nP do
7: Generate a ordering under the PL model and update Inew to

include the ordering weighted by probability of it which based on the
current estimates, λ̂(t−1)

8: end for
9: end for

10: Choose the subset that fulfils the criterion based on Inew

11: Generate a ranking set of chosen subset based on the true values then
add it to the current dataset and calculate λ̂(t) and J(t)

12: end for

We set nC and nP equal to 200 subsets and 100 orderings, respectively.
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The true values are generated from a uniform distribution between 0 and 1.

A sample of 100 rankings (ninit = 100) are generated under the PL model and

used as an initial dataset. We repeat the Algorithm 6 200 times with different

initial datasets. To evaluate the three criteria, the same evaluating criteria

are considered as in the previous section. The results are illustrated in Figure

4.11.
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Figure 4.11: The average of Kendall tau correlation, MSE, and logarithm
of the determinant of the observed information matrix, for four criteria: D-
optimality, E-optimality, Wald, and random selection, on synthetic data for
K = 100 and p = 10

Figure 4.11a shows the average of Kendall tau correlations between the

estimates and true values. All methods perform slightly better than random

selection from 100 to 150 rankers. After that the Wald gives worse perfor-

mance when compared with random selection. Figure 4.11b, the MSE gives a

clearer conclusion. The E-optimality performs the best at the beginning. Af-

terwards, it is comparable with random, while the D-optimality and the Wald
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criteria perform worse than random selection. Figure 4.11c shows that there

is no obvious conclusion, since all criteria give almost the same results as ran-

dom selection. The E-optimality seems to work slightly better than random

selection among these three criteria.

4.5.2 Evaluation of the Proposed Methods

In order to evaluate the three proposed methods, we compare them with ran-

dom selection. Figure 4.12a, Figure 4.12b, and Figure 4.12c are to show

how the Method I, Method II, and Method III perform, respectively. These

flowcharts show the calculated estimated parameters by using the Total Data

from the proposed methods to measure the performances. The measuring cri-

teria are Kendall tau correlation, MSE, and the number of rankers where the

PL model starts to converge. These are computed in Evaluate(Total Data) in

the flowcharts. For convergence criterion, we consider two things which are

the maximum number of iterations and the Assumption 2 in Chapter 3. If

the PL model runs out of iterations, we consider that the PL model does not

converge properly. Here, the maximum number of iterations is 1000. These

criteria are used to measure the performance of the proposed methods.

All the proposed methods require two inputs which are starting data and

nextra. Method I needs one extra input, r, and Method II needs two extra

inputs, r and s. Input nextra is the number of repeated iterations in which the

number of rankers at ith iteration is p+ (i×p) for each method. Input r is the

number of times that the algorithm randomly reassigns all items into subsets

without replacement when the process runs up to a multiple of r. Moreover,

r can be any number within the range of 2 to s.

The experiments are conducted on synthetic data by using the algorithms

in Figure 4.12. We set nextra = 100, r = 10, s = 40, K = 100, p = 10, and true

parameter values are the same as previous as for the larger number of items



4. Preference Learning 124

(a
)

M
et

h
o
d

I
(b

)
M

et
h

o
d

II
(c

)
M

et
h

o
d

II
I

F
ig

u
re

4.
12

:
F

lo
w

ch
ar

t
fo

r
ev

al
u
at

in
g

th
e

p
ro

p
os

ed
m

et
h
o
d
s



4. Preference Learning 125

when K = 100 and p = 10. The algorithms are repeated 500 times and then

the average of results from the Evaluate(Total Data) process in Figure 4.12

are plotted in Figure 4.13.
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Figure 4.13: The average of Kendall tau correlation, MSE, and logarithm of
the determinant of the observed information matrix criteria for the proposed
methods and random selection when fitted the PL model on synthetic data
with K = 100 and p = 10

The results are not clear for the Kendall tau correlation and the logarithm

of the observed information matrix criteria. All the methods have almost the

same performance as shown in Figure 4.13a and Figure 4.13c. We look closer

at Figure 4.14a. It shows that all proposed methods perform slightly better

than random selection. The MSE criterion in Figure 4.13b gives a clearer

idea. At the beginning from 30 to 90 rankers, the Method III performs the

best followed by random, and the Method I and Method II which give similar

results. We plot another figure from 100 to 500 rankers to have a closer look

as shown in Figure 4.14b. The Method III still gives a better performance
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Figure 4.14: The average of Kendall tau correlation and MSE criteria for the
proposed methods and random selection when fitted the PL model on synthetic
data with K = 100 and p = 10 from 100 to 500 rankers

than other methods followed by Method I, Method II, and random when the

number of rankers is between 100 and 500. After 500 ranks, all methods are

comparable.
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Figure 4.15: Convergence rate for the proposed methods and random selection

The last criterion is convergence rate as shown in Figure 4.15. At 20

rankers, none of the methods converge. All methods start to converge after

30 rankers. The proposed methods converge faster than random method. At

30 rankers, around 70% of datasets generated from the proposed methods

converge, while datasets from random selection rarely converge.

Focusing on convergence rate, the proposed methods outperform random

selection. Method III is slightly better than the others in term of MSE crite-

rion.
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4.5.3 Comparisons for D-, E-optimality, Wald Criteria

and Proposed Methods

We compare all the methods which are D-optimality, E-optimality, Wald,

Method I, Method II, and Method III. We use the same setting as Section

4.5.1: Larger Number of Items for D-optimality, E-optimality, and Wald cri-

teria. We generate 100 rankings under the PL model to be starting data. The

first 90 rankings are randomly generated and the last 10 rankings are gener-

ated based on the data structure that is required for the proposed methods.

We randomly divide K items into p subsets with p items in each subset and

then each subset is assigned an ordering under the PL model.
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Figure 4.16: The average of Kendall tau correlation, MSE, and logarithm of the
determinant of the observed information matrix criteria for the D-optimality,
E-optimality, Wald criteria, the proposed methods, and random selection when
fitted the PL model on synthetic data with K = 100 and p = 10

The three evaluating criteria as before are performed in order to compare
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results. We repeat this process 200 times and the average of each criterion is

shown in Figure 4.16. Figure 4.16a shows average of the Kendall tau corre-

lation and reveals that the Method III outperforms. The other methods give

almost the same performance. Figure 4.16b confirms that the Method III has

best performance under the MSE criterion when compared with other meth-

ods. Moreover, the proposed methods perform better than the D-optimality,

E-optimality, and Wald criteria when the number of rankers is less than 150.

After that E-optimality is comparable with Method I and Method II while

the Wald performs better than Method I and Method II at the end of the

figure. All methods perform better than random selection when number of

rankers is greater than 155. The average of the logarithm of the determinant

of the observed information matrix is shown in Figure 4.16c. The proposed

methods give slightly better result than the D-optimality, E-optimality, Wald,

and random.

4.6 Conclusions

In this chapter, we explored whether existing ranking sets contain useful in-

formation that can be used to improve the selection of subsets to be ranked

in comparison to random selection. We explained this idea by giving small

examples. One of these examples, gave us the idea that it might be possible

to develop useful predictive models of the logarithm of the determinant of the

information matrix. We used a simple model, multiple regression model, to

estimate the logarithm of the determinant of the observed information ma-

trix. The multiple regression with K, p, log
(
p
2

)
, log p

K
, K × p, and K × log

(
p
2

)
included in the model provided good estimates of the logarithm of the deter-

minant of the observed information matrix.

We compared the existing criteria, D-optimality, E-optimality, and Wald,

for eliciting preference data. The first two criteria are from the framework
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of experimental design. Another criterion, Wald, is based on the idea of the

t-test. We investigated the performance of these criteria on simulated data.

The E-optimality and Wald criteria improve the precision of estimation when

compared with random selection in MSE when K = 6 and p = 4. The D-

optimality criterion performs the worst in MSE. Wald does not perform well in

correlation. Therefore, the E-optimality criterion provides good performances

in overall criteria, Kendall tau correlation, MSE, and log(det(J)).

We increase the number of items and the same criteria are applied to

simulated data with K = 100 and p = 10. There are too many possible

subsets to explore when K = 100. We randomly choose 200 possible subsets

for further investigation. With p = 10, again we cannot test all the possible

permutations/rankings due to computational time. The PL model is used

to generate 100 rankings. We explore large K with these conditions. The

results show that the D-optimality and E-optimality criteria are comparable

with random selection while the Wald criterion performs slightly worse than

random selection under the MSE criterion. The Kendall tau correlation does

not give any obvious conclusion. As before, the E-optimality performs the best

among the existing criteria and in overall evaluating criteria when K = 100

and p = 10.

The D-optimality, E-optimality and Wald criteria have little improvement

over random selection when number of rankers is less than 150 in the Kendall

tau correlation criterion. Our results are different from Soufiani et al. (2013b).

Soufiani et al. (2013b) concluded that the Wald criterion can significantly im-

prove the precision of estimation in comparison with random selection. How-

ever, we use larger number of rankers to ensure that the PL model converges

and fits the data properly. Moreover, the data in Soufiani et al.’s (2013b)

paper are not available. We cannot reproduce their works.

We propose systematic methods that can select the next p subsets. The

simulation experiments show that the proposed methods slightly improve the
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performance in both the Kendall tau correlation and MSE compared to random

selection. Moreover, the convergence rate also reveals the same conclusion that

the PL model can be fitted to the data from the proposed methods with less

number of rankers when compared with random selection.

Finally, we compare performances of the three statistical methods and the

three proposed methods. We use the same setting as before where K = 100

and p = 10. The Kendall tau correlation and MSE show that the Method

III performs best. Most of the proposed methods perform better than the D-

optimality, E-optimality, Wald, and random. All the methods give almost the

same results of the logarithm of the determinant of the observed information

matrix.

The idea of selecting informative subset is a good idea since it can quickly

lead to good estimates of the parameters. However, the D-optimality, E-

optimality and Wald criteria do not have outstanding results in our practical

experiments. The computational costs of implementing the D-optimality, E-

optimality, and Wald criteria imply that it is not worthwhile to use these

criteria in practice. While the proposed methods performs better in the con-

vergence rate criterion and they do not need much computational time.



Chapter 5

Extensions of the Plackett-Luce

Model

In this chapter we describe two extensions of the Plackett-Luce (PL) model,

the Rank-Ordered Logit (ROL) model and the Benter model. These models

provide different types of extension. The ROL model allows the inclusion of

covariates, while the Benter model allows preferences for higher-ranked items

to be stronger than lower-ranked items. We explain the ROL model in Section

5.1. The Minorization-Maimization (MM) algorithm from Hunter (2004) is ex-

tended for using with the ROL model. The ROLmm and the ROLinfm algorithms

are implemented in R to find estimated parameters and compute the observed

information matrix of the ROL model, respectively. We compare results from

our algorithms with the optim function. Section 5.2 provides details of the

Benter model. We follow the work from Gormley and Murphy (2008) to fit the

model. We implement two algorithms, BMmm and BMinfm algorithms, in R in

order to fit the Benter model and to calculate an observed information matrix.

We apply the BMmm algorithm and the optim function to the Group I data from

the Animal dataset. The results and computational times are compared. The

BMinfm algorithm is also compared with the Hessian matrix from the optim

function in order to confirm that our algorithm works properly. We combine
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these two extensions to give a model that incorporates covariates and allows

for a dampening effect where details are given in Section 5.3. Section 5.4

briefly describes the Likelihood Ratio (LR) test. All three models are applied

to the Animal dataset, as discussed in Section 5.5, in order to compare among

the models and to find significant covariate(s) that affect the preferences. The

LR test is used to compare the models when we add covariates to the models.

The bootstrap goodness-of-fit test is applied to assess whether the Benter and

the combined models provide good fits to the Group I data.

5.1 Rank-Ordered Logit Model

The PL model can be extended to incorporate covariates into the model (Alvo

and Yu, 2014). This is a generalization of the conditional logit regression

model introduced by McFadden (1974). This model was proposed by Beggs

et al. (1981) and later Hausman and Ruud (1987) developed it further under

the name rank-ordered logit model in the field of econometrics. Moreover, this

model was also independently proposed in the marketing literature under the

name exploded logit model (Punj and Staelin, 1978; Chapman and Staelin,

1982). We call this model the ROL model in this chapter. The ROL model,

which included covariates, gives more information on each covariate about how

the specific information from rankers and items affects rankings.

The most general form of the model contains three kinds of covariates

describing item characteristics, ranker characteristics, and ranker-item char-

acteristics (Alvo and Yu, 2014). Let µρij be the corresponding ROL parameters

then a general parametric form is

µρij = exp

(
λρij +

L∑
l=1

βlzl,ρij +
R∑
r=1

γr,ρijxr,i +

Q∑
q=1

θqwq,ρij

)
, (5.1)

where zl,ρij is a covariate that depends on the item ρij e.g. cost, colour and βl
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is a parameter specific to items. The covariate xr,i describes a characteristic

of the rankers e.g. the age or gender of the ranker, but does not vary over

items, and the coefficient γr,ρij is a ranker-specific parameter. Finally, wq,ρij is

a covariate that describes a relation between item ρij and ranker i and θq is

a ranker-item specific parameter e.g. ownership of items, previous knowledge

about the items. The number of ranker-specific parameters, R, must be less

than or equal to K − 1 in order to avoid linear dependence. The simplest

case is to set γr,1 = 0. This model is not reversible; the coefficients of model

for ranking from worst to best are not the negatives of the coefficients from a

model of ranking from best to worst.

The ROL model specifies that the probability of the ranking ρi is the same

as the PL model in Equation (3.6) where µρij in Equation (5.1) is substituted

for λρij . A special case is when βl and θq are zero, and γr,ρij is non-zero. This

model is called the multinomial logit model (Allison and Christakis, 1994).

The model with βl and γr,· is McFadden’s conditional logit model (McFadden,

1976).

The Thurstonian model is similar to the ROL model. Equation (5.1) is the

same and

Uρij = µρij + ερij ,

where ερij assumes a normal distribution rather than an extreme value distri-

bution. However, it is computationally demanding to fit this model (Allison

and Christakis, 1994).

The ROL model has been applied in the economics and marketing area

(Lareau and Rae, 1989; Moore, 1990; Katahira, 1990; Kamakura and Mazzon,

1991; Koop and Poirier, 1994; Ahn et al., 2006; Kumar and Kant, 2007). More-

over, the ROL model has also been employed in the sociology field, beginning

with Allison and Christakis (1994). Commonly used covariates are

• ranker-specific covariates: gender, age, marital status, income
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• item-specific covariates: price of the item, time of day of a concert

• ranker-item-specific covariates: used the item before, ownership

5.1.1 Maximum Likelihood Estimator

The log-likelihood function of the ROL model can be written like the PL model

by using µρij from Equation (5.1) instead of λρij , giving

`(ζ) =
n∑
i=1

pi−1∑
j=1

[
log µρij − log

(
pi∑
m=j

µρim

)]
, (5.2)

where ζ = (λ1, . . . , λK , β1, . . . , βL, γ1,1, . . . , γ1,K , . . . , γR,1, . . . , γR,K , θ1, . . . , θQ)

denotes the full set of parameters. We substitute µρij from Equation (5.1) with

Equation (3.6) which can then be maximized with respect to each parameter

coefficient vector. The likelihood is known to be globally concave (Beggs et al.,

1981). This means that if a maximum is found, it is guaranteed to be a global

rather than a local maximum.

Most of the papers in this area used numerical optimization algorithms

such as Newton-Raphson algorithm (Beggs et al., 1981; Hausman and Ruud,

1987; Kamakura and Mazzon, 1991). Allison and Christakis (1994); Kumar

and Kant (2007) used the Cox regression model in SAS (PHREG procedure).

The resulting log-likelihood function in Equation (5.2) is equivalent to the Cox

proportional hazards model. The Cox proportional hazards model calculates

estimates from the rank ordering of survival times among observations (Cox,

1972).

We adopt instead an extension of the Minorization-Maximization (MM)

algorithm that was proposed for the PL model by Hunter (2004) to fit this

model. Moreover, the standard methods such as Newton Raphson method,

for finding the estimated parameters can be applied. The Newton-Raphson

algorithm is used in order to find estimates of item-specific covariates and
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ranker-item specific covariates. The Newton-Raphson algorithm does not be-

have well for estimating λ when there are too many parameters. However, it

can be used to find estimates of β and θ.

5.1.2 MM Algorithm

We use the MM algorithm from Hunter (2004), as in Chapter 3, to estimate

the parameters. Our log-likelihood function in Equation (5.2) is awkward to

maximize because of the second term. We exploit the supporting hyperplane

property of convex functions as shown in Equation (3.2) and Equation (3.3).

In Equation (3.3), let x =
∑pi

m=j µρim and y =
∑pi

m=j µ
∗
ρim

where µ∗ρim de-

notes the estimate of µρim from the previous iteration. The inequality becomes

− log

(
pi∑
m=j

µρim

)
≥ 1− log

(
pi∑
m=j

µ∗ρim

)
−
∑pi

m=j µρim∑pi
m=j µ

∗
ρim

and the Q function becomes

Q (ζ, ζ∗) =
n∑
i=1

pi−1∑
j=1

[
log
(
µρij
)

+ 1− log

(
pi∑
m=j

µ∗ρim

)
−
∑pi

m=j µρim∑pi
m=j µ

∗
ρim

]
. (5.3)

By the construction of the Q function, Q (ζ, ζ∗) ≤ ` (ζ), with equality if and

only if ζ = ζ∗. The MM algorithm involves finding ζ(∗+1) which maximizes

Q (ζ, ζ∗) with respect to ζ. Then

`
(
ζ(∗+1)

)
≥ Q

(
ζ(∗+1), ζ∗

)
≥ Q (ζ∗, ζ∗) = ` (ζ∗) ,

with equality only if ζ = ζ∗ and this sequence of ζ∗ values is guaranteed to

increase the likelihood.

In the original MM algorithm for the PL model, the maximization Q (ζ, ζ∗)

with respect to ζ can be done explicitly. Once the regression model is involved,

the maximization step at each iteration will itself be iterative. Therefore, the
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algorithm will inevitably be slower.

For the maximization step, it is convenient to separate the full set of pa-

rameters into λ, β, γ, and θ parameters. The λ parameters and γ parameters

can be optimized explicitly when fixing the other parameters. However, the

β parameters and θ parameters cannot be done without iteration. Thus, it is

better to estimate each parameter separately.

The Q function from the Equation (5.3) can be simplified, for optimization,

by omitting terms that do not depend on µ. The Q function becomes

Q (ζ, ζ∗) =
n∑
i=1

pi−1∑
j=1

[
log µρij −

∑pi
m=j µρim∑pi
m=j µ

∗
ρim

]

=
n∑
i=1

pi−1∑
j=1

[
log µρij − c∗ij

pi∑
m=j

µρim

]
,

where

c∗ij =
1∑pi

m=j µ
∗
ρim

.

Optimization of λ

We consider only λ parameters while the other parameters are fixed. Let β̄,

γ̄, and θ̄ denote these fixed parameters and let

µ̄λ,ρij = exp

(
λρij +

L∑
l=1

β̄lzl,ρij +
R∑
r=1

γ̄r,ρijxr,i +

Q∑
q=1

θ̄qwq,ρij

)
.

The Q function with µ̄λ,ρij is

Q (λ,λ∗) =
n∑
i=1

pi−1∑
j=1

[
log
(
µ̄λ,ρij

)
− c∗ij

pi∑
m=j

µ̄λ,ρim

]
.

Differentiating Q(λ,λ∗) with respect to λk gives

∂Q

∂λk
=

n∑
i=1

pi−1∑
j=1

[
ηijk − c∗ij

pi∑
m=j

δimkµ̄λ,ρim

]
,
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where ηijk and δimk are indicator functions such that

ηijk =

 1, if ρij = k,

0, otherwise,

and

δimk =

 1, k ∈ {ρim, . . . , ρipi},

0, otherwise.

Setting the log-likelihood derivative to zero yields

λ̂k = log

[ ∑n
i=1

∑pi−1
j=1 ηijk∑n

i=1

∑pi−1
j=1 c∗ij

∑pi
m=j δimkµ

′
λ,ρim

]
,

where µ′λ,ρim = exp
(∑L

l=1 β̄lzl,ρim +
∑R

r=1 γ̄r,ρimxr,i +
∑Q

q=1 θ̄qwq,ρim

)
.

Optimization of β

The Newton-Raphson method is used in order to optimize the Q function for

finding the effect of item-specific covariates. Therefore, the first and second

derivative are required. The Q function with fixed λ̄, γ̄, and θ̄ parameters is

used to find the first and second derivatives. Suppose

µ̄β,ρim = exp

(
λ̄ρim +

L∑
l=1

βlzl,ρim +
R∑
r=1

γ̄r,ρimxr,i +

Q∑
q=1

θ̄qwq,ρim

)
,

then the first and second derivative with respect to βl are

Q′ (βl) =
∂Q

∂βl
=

n∑
i=1

pi−1∑
j=1

[
zl,ρij − c∗ij

pi∑
m=j

zl,ρimµ̄β,ρim

]
,

and

Q′′ (βl) =
∂2Q

∂β2
l

= −
n∑
i=1

pi−1∑
j=1

c∗ij

pi∑
m=j

z2
l,ρim

µ̄β,ρim ,
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respectively. The iteration in the Newton-Raphson method is given by

βl = β∗l −
Q′ (β∗l )

Q′′ (β∗l )
. (5.4)

The advantage of using the Newton-Raphson algorithm is that it converges

quickly in low-dimensional problems. The equation above is for one item-

specific covariate. If we introduce more than one item-specific covariate into

the model then Equation (5.4) becomes

β = β∗ −H−1Q′(β∗),

where H is the Hessian matrix. The way to calculate Hessian matrix is shown

in Section 5.1.4.

Optimization of γ

The optimization of γ parameters, the ranker-specific covariates, can be done

in the same way as λ parameters. Let

µ̄γ,ρim = exp

(
λ̄ρim +

L∑
l=1

β̄lzl,ρim +
R∑
r=1

γr,ρimxr,i +

Q∑
q=1

θ̄qwq,ρim

)
,

and the Q(γ,γ∗) function with fixed λ̄, β̄, and θ̄ parameters is

Q (γ,γ∗) =
n∑
i=1

pi−1∑
j=1

[
log
(
µ̄γ,ρij

)
− c∗ij

pi∑
m=j

µ̄γ,ρim

]
.

We differentiate Q(γ,γ∗) with respect to γr,k giving

∂Q

∂γr,k
=

n∑
i=1

pi−1∑
j=1

[
ηijkxr,i − c∗ij

pi∑
m=j

xr,iδimkµ̄γ,ρim

]
.
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Setting ∂Q
∂γr,k

equal to zero gives

γr,k = log

[ ∑n
i=1

∑pi−1
j=1 ηijkxr,i∑n

i=1

∑pi−1
j=1 c∗ij

∑pi
m=j xr,iδimkµ

′
γ,ρim

]
,

where µ′γ,ρim = exp
(
λ̄ρim +

∑L
l=1 β̄lzl,ρim +

∑Q
q=1 θ̄qwq,ρim

)
. The total number

of γ parameters is R × K and one of 1, . . . , K in γr must be set equal to 0

in order to achieve identifiability. This algorithm works when xr,· is a dummy

variable.

Optimization of θ

The parameters associated with ranker-item-specific covariates can be esti-

mated by using the same method used for item-specific covariates. Suppose

µ̄θ,ρim = exp

(
λ̄ρim +

L∑
l=1

β̄lzl,ρim +
R∑
r=1

γ̄r,ρimxr,i +

Q∑
q=1

θqwq,ρim

)
.

The first and second derivatives with respect to θq become

Q′ (θq) =
∂Q

∂θq
=

n∑
i=1

pi−1∑
j=1

[
wq,ρij − c∗ij

pi∑
m=j

wq,ρimµ̄θ,ρim

]
,

and

Q′′ (θq) =
∂2Q

∂θ2
q

= −
n∑
i=1

pi−1∑
j=1

c∗ij

pi∑
m=j

w2
q,ρim

µ̄θ,ρim ,

respectively. The Newton-Raphson algorithm for a single ranker-item-specific

covariate is given as

θq = θ∗q −
Q′
(
θ∗q
)

Q′′
(
θ∗q
) .

For more than one ranker-item-specific covariates, the estimation is

θ = θ∗ −H−1Q′(θ∗).
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5.1.3 Existing Package in R for the ROL Model

The software R programming is considered. The mlogit package, which is

implemented by Croissant (2013), enables the estimation of the ROL model.

However, this package is only for full rankings, where each ranker indicates

their preference for all of the alternatives. We implement the ROLmm based on

our algorithm in Section 5.1.2. The ROLmm can estimate partial ranked data.

The Game data which is included in this package is used in order to com-

pare results from our algorithm and mlogit. In this dataset, there are 6

gaming platforms (K = 6) and rankers are asked to rank all of them. We

consider two covariates here. First, a ranker-item-specific covariate, own is a

dummy variable where 1 if the ranker owns the platform. Second, a ranker-

specific covariate, hours is the number of hours spent on gaming per week. We

group this covariate to make a new dummy covariate which is equal to 1 if the

time spent is more than 3.5 hours per week and 0 if less than 3.5 hours. The

ROLmm algorithm and mlogit package are used to fit the model to the Game

data including own and hours as a categorical covariate (hoursInd).

There are two data formats, which are wide format and long format, pro-

vided in the package. We consider Game2 dataset with long format since

this is same format as we use in the ROLmm. The mlogit function requires

data format from mlogit.data function. That means we need to transform

Game2 dataset into another format in order to use mlogit function. The log-

likelihood values are the same which are −522.74. Using PC as the reference

platform, the estimates are shown in Figure 5.1. We get same results from

both algorithms. This experiment is conducted on a Toshiba notebook with

Intel Core i5-3210M and 8 GB RAM. The mlogit computational times with

and without the mlogit.data to transform data format are 2.55 seconds and

0.17 seconds, respectively. The ROLmm used 8.52 seconds to analyze the data.

Thus, the mlogit algorithm is faster than the ROLmm.
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Figure 5.1: Parameter estimates for the ROLmm and the mlogit algorithms
when own and hoursInd are included in the ROL model

We remove the 6th position from all records in Game2 dataset in order to

obtain partial ranking data. We attempted to apply the mlogit.data function

to this data; however, it does not work. We do not investigate this function

any further. We conclude that the mlogit package cannot analyze partial data

because the mlogit function requires the data format from the mlogit.data

function.

Next, we compare the ROLmm with the optim function in R. We compare

three optimization methods in this function. The three methods are Nelder

Mead (NM), Broyden-Fletcher-Goldfard-Shanno (BFGS), and the limited-

memory modification of the BFGS (L-BFGS-B). Due to computational time,

we compare these methods by fitting the PL model. The data are generated

under the PL model with K = 50, p = 10, and n = 200 and the optim func-

tion is used to fit the model. This process is repeated for 50 times and then

reported mean computational time and MSE for each method. The computa-

tional times are 8.02, 45.80, and 29.78 seconds from NM, BFGS, and L-BFGS-

B methods, respectively. Based on the computational times, the NM method

is the fastest and follows by the L-BFGS-B and the BFGS methods. The MSE

are 5.858, 0.128, and 0.143 for NM, BFGS and L-BFGS-B methods. The NM

method has not converged. One possible reason is that the NM method does
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not require gradient but it relies only on evaluations of the objective function.

In this case, there are too many parameters for such a simple optimizer. The

MSE shows that the BFGS method is the best method. Therefore, the BFGS

method is chosen because it gives the lowest MSE and the computational time

is not much slower than the L-BFGS-B method. Moreover, both BFGS and

L-BFGS-B methods are quasi-Newton method and require gradients. The

BFGS method uses an approximation of the inverse Hessian matrix while the

L-BFGS-B method approximates the BFGS method.
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Figure 5.2: Parameter estimates for the ROLmm and the optim function when
Familiarity and Gender are included in the ROL model

We apply the ROLmm and the optim function to the Group I data from the

Animal dataset. Here we consider two covariates, Familiarity and Gender,

where Familiarity is a ranker-item-specific covariate and Gender is a ranker-

specific covariate. We use the same initial values and Hessian option in optim

is set to FALSE in order to compare computational times. We provide only

the log-likelihood function to the optim function. The computation times are

820.43 seconds and 112.49 seconds from the optim function and the ROLmm

algorithm, respectively. Both algorithms give the same log-likelihood value

which is −6156.55. The estimates are the same as presented in Figure 5.2.

Our algorithm, ROLmm, performs faster than the optim function and both

algorithms give the same results. Thus, we use the ROLmm algorithm in later

analysis.
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5.1.4 Observed Information Matrix for the ROL Model

The observed information matrix can be calculated as the negative of Hessian.

The Hessian matrix is the matrix of second derivatives of the log-likelihood

function. The log-likelihood function is

`(µ) =
n∑
i=1

pi∑
j=1

[
log(µρij)− log

(
pi∑
m=j

µρim

)]
(5.5)

where µρij is from Equation (5.1). We use the log-likelihood function in Equa-

tion (5.5) to find first and second derivatives. The Hessian matrix is

H =



1© ∂2`
∂λ2

5© ∂2`
∂λ∂β

6© ∂2`
∂λ∂γ

7© ∂2`
∂λ∂θ

2© ∂2`
∂β2 8© ∂2`

∂β∂γ
9© ∂2`

∂β∂θ

3© ∂2`
∂γ2

10© ∂2`
∂γ∂θ

4© ∂2`
∂θ2


and it can be found separately for each ranker and then summed over rankers,

because rankings by different rankers are independent. Thus, a single ranker

is considered in order to obtain the first and second derivatives. Expressions

for the numbered components 1© to 10© are given below.

1© ∂2`
∂λ2

∂`

∂λρir
= 1−

r∑
j=1

µρir∑pi
m=j µρim

, r ∈ 1, . . . , pi

∂2`

∂λ2
ρir

= −
r∑
j=1

(∑pi
m=j µρim

)
µρir − (µρir)

2(∑pi
m=j µρim

)2

∂2`

∂λρir∂λρit
=

r∑
j=1

µρirµρit(∑pi
m=j µρim

)2 , r < t.
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2© ∂2`
∂β2

∂`

∂βs
=

pi∑
j=1

[
zs,ρij −

∑pi
m=j zs,ρimµρim∑pi

m=j µρim

]

∂2`

∂β2
s

= −
pi∑
m=j


(∑pi

m=j µρim

)(∑pi
m=j z

2
s,ρim

µρim

)
−
(∑pi

m=j zs,ρimµρim

)2

(∑pi
m=j µρim

)2


∂2`

∂βs∂βt
= −

pi∑
j=1

1(∑pi
m=j µρim

)2

[(
pi∑
m=j

µρim

)(
pi∑
m=j

zs,ρimzt,ρimµρim

)

−

(
pi∑
m=j

zs,ρimµρim

)(
pi∑
m=j

zt,ρimµρim

)]
, s < t

3© ∂2`
∂γ2

∂`

∂γa,ρir
= xa,i −

r∑
j=1

xa,iµρir∑pi
m=j µρim

∂2`

∂γ2
a,ρir

= −
r∑
j=1


(∑pi

m=j µρim

) (
x2
a,iµρir

)
− (xa,iµρir)

2(∑pi
m=j µρim

)2


∂2`

∂γa,ρir∂γa,ρit
=

r∑
j=1

xiµρirµρit(∑pi
m=j µρim

)2 , r < t

4© ∂2`
∂θ2

∂`

∂θg
=

pi∑
j=1

[
wg,ρij −

∑pi
m=j wg,ρimµρim∑pi

m=j µρim

]

∂2`

∂θ2
g

= −
pi∑
j=1


(∑pi

m=j µρim

)(∑pi
m=j w

2
g,ρim

µρim

)
−
(∑pi

m=j wg,ρimµρim

)2

(∑pi
m=j µρim

)2


∂2`

∂θg∂θh
= −

pi∑
j=1

1(∑pi
m=j µρim

)2

[(
pi∑
m=j

µρim

)(
pi∑
m=j

wg,ρimwh,ρimµρim

)

−

(
pi∑
m=j

wg,ρimµρim

)(
pi∑
m=j

wh,ρimµρim

)]
, g < h
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5© ∂2`
∂λ∂β

∂2`

∂λρir∂βs
= −

r∑
j=1


(∑pi

m=j µρim

)
(zs,ρirµρir)− (µρir)

(∑pi
m=j zs,ρimµρim

)
(∑pi

m=j µρim

)2


6© ∂2`

∂λ∂γ

∂2`

∂λρir∂γρir
= −

r∑
j=1


(∑pi

m=j µρim

)
(xiµρir)−

(
µρir

∑pi
m=j xiµρim

)
(∑pi

m=j µρim

)2


7© ∂2`

∂λ∂θ

∂2`

∂λρir∂θg
= −

r∑
j=1


(∑pi

m=j µρim

)
(wg,ρirµρir)− (µρir)

(∑pi
m=j wg,ρimµρim

)
(∑pi

m=j µρim

)2


8© ∂2`

∂β∂γ

∂2`

∂γs,ρir∂βl
= −

r∑
j=1


(∑pi

m=j µρim

)
(xs,izl,ρirµρir)− (xs,iµρir)

(∑pi
m=j zl,ρimµρim

)
(∑pi

m=j µρim

)2


9© ∂2`

∂β∂θ

∂2`

∂θg∂βl
= −

pi∑
j=1

1(∑pi
m=j µρim

)2

[(
pi∑
m=j

µρim

)(
pi∑
m=j

wg,ρimµρim

)

−

(
pi∑
m=j

wg,ρimµρim

)(
pi∑
m=j

zl,ρimµρim

)]

10© ∂2`
∂γ∂θ

∂2`

∂γs,ρir∂θg
= −

r∑
j=1

1(∑pi
m=j µρim

)2

[(
pi∑
m=j

µρim

)
(xs,iwg,ρirµρir)
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− (xs,iµρir)

(
pi∑
m=j

wg,ρimµρim

)]

5.1.5 The optim Function versus the ROLinfm Algorithm

for the Observed Information Matrix for the ROL

Model

The ROLinfm algorithm is implemented in order to calculate the observed

information matrix for the ROL model. The optim function is considered

where the Hessian option is set to TRUE. The ROLinfm needs two inputs

which are a dataset and estimates from the ROL model. We apply the optim

function to the Group I data from the Animal dataset with one covariate,

Familiarity. We get the estimates and the Hessian matrix. These estimates

are used as input in the ROLinfm algorithm. The computational time is 1.55

seconds from the ROLinfm algorithm. The computational time from the ROLmm

algorithm is 232.27 seconds then the total computation time for our algorithm

is 233.82 seconds. The computational time is 1790.16 seconds from the optim

function. Our algorithms are faster than the optim function.
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Figure 5.3: Standard errors from the ROLinfm and the optim function when
fitting the Group I data with Familiarity from the Animal dataset with the
ROL model where the 97th parameter is for Familiarity

We compute standard errors from the observed information matrix from

the ROLinfm algorithm and from the Hessian matrix from the optim function
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in order to compare results. The results from the ROLinfm and the optim are

shown in Figure 5.3. Figure 5.3 shows that both of them give the same results.

5.2 Benter Model

Benter (1994) proposed a model which is another type of extension of the

PL model. Hausman and Ruud (1987) suggested, based on their experience

and study, that rankers chose their higher preferences more carefully than the

lower preferences. The additional parameters introduced by the Benter model

can express this effect. The Benter model has two kinds of parameters which

are item preference parameters (λρij) and dampening parameters (αj). Each

ranker receives the same number of items to rank, p. In the Benter model, the

probability of the ranking ρi is

P (ρi;µ) =
µα1
ρi1

µα1
ρi1 + · · ·+ µα1

ρip

× · · · ×
µ
αp−1
ρi(p−1)

µ
αp−1
ρi(p−1) + µ

αp−1
ρip

×
µ
αp
ρip

µ
αp
ρip

=

p−1∏
j=1

µ
αj
ρij∑p

m=j µ
αj
ρim

, (5.6)

where µρij = exp
(
λρij
)
. The Benter model is characterized by the parameters

αj and constrained to αj that satisfy 0 ≤ αj ≤ 1 for all j = 1, . . . , p. This

ensures that preferences for lower ranked items are at least as random as

higher preference ones. For example, α = 0.9, it means that the probability is

dampened to model the effect where the second preference was made less care

than the first preference. To avoid over-parameterization problems, α1 and αp

are defined to be equal to 1 and 0, respectively. The PL model is a special

case of the Benter model when all αj equal to 1 (Gormley and Murphy, 2008).
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5.2.1 Maximum Likelihood Estimator

The log-likelihood function of the Benter model has the following expression

` (µ) =
n∑
i=1

p−1∑
j=1

[
log
(
µαjρij

)
− log

(
p∑

m=j

µαjρim

)]
, 0 ≤ αj ≤ 1. (5.7)

The ML estimates µ and α from this log-likelihood function is not straightfor-

ward. We consider the MM algorithm to optimize this log-likelihood function,

following Gormley and Murphy (2008).

5.2.2 MM Algorithm

The log-likelihood function in Equation (5.7) is difficult to maximize because

of the second term, as in the PL model and the ROL model. However, the µα

terms cause a problem which is different from the previous models. Gormley

and Murphy (2008) proposed the following MM algorithm for fitting the Benter

model.

Optimization of µ

The optimization of µ where µρij = exp(λρij) is the same as what we have done

for the λ parameters of the ROL model. The αj is treated as a constant ᾱj

here. The negative inequality logarithm function in Equation (3.3) in Chapter

3 is applied to the second term of Equation (5.7) with x =
∑p

m=j µ
ᾱj
ρim and

y =
∑p

m=j µ
∗
ρim

ᾱj where µ∗ρim is the estimate of µρim from the previous iteration.

The inequality becomes

− log

(
p∑

m=j

µᾱjρim

)
≥ 1− log

(
p∑

m=j

µ∗ρim
ᾱj

)
−
∑p

m=j µ
ᾱj
ρim∑p

m=j µ
∗
ρim

ᾱj
,

and the Q function becomes

Q (µ,µ∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µᾱjρij

)
+ 1− log

(
p∑

m=j

µ∗ρim
ᾱj

)
−
∑p

m=j µ
ᾱj
ρim∑p

m=j µ
∗
ρim

ᾱj

]
.
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We can simplify the Q function by omitting the terms which do not depend

on µ, then

Q (µ,µ∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µᾱjρij

)
−
∑p

m=j µ
ᾱj
ρim∑p

m=j µ
∗
ρim

ᾱj

]
.

Let

c∗ij =
1∑p

m=j µ
∗
ρim

ᾱj
,

then the Q function becomes

Q (µ,µ∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µᾱjρij

)
− c∗ij

p∑
m=j

µᾱjρim

]
.

We solve the maximization problem with respect to µρij by modifying the Q

function once again. Letting f(µ) = −µᾱ and f(µ∗) = −µ∗ᾱ since µ is an

exponential function and by the Equation 3.2 then the inequality becomes

−µᾱ ≥ −µ∗ᾱ − ᾱ(µ∗)ᾱ−1 (µ− µ∗) .

The equation above is applied to the second term in the Q function then the

Q function becomes

Q (µ,µ∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µᾱjρij

)
− c∗ij

(
p∑

m=j

µ∗ρim
ᾱj +

p∑
m=j

ᾱjµρim
(
µ∗ρim

)ᾱj−1

−
p∑

m=j

ᾱjµ
∗
ρim

(
µ∗ρim

)ᾱj−1

)]

≡
n∑
i=1

p−1∑
j=1

[
log
(
µᾱjρij

)
− c∗ij

(
p∑

m=j

ᾱjµρim
(
µ∗ρim

)ᾱj−1

)]
.

The Q function above contains only the parts that depend on µ. We substitute
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µρij = exp
(
λρij
)

and the Q function becomes

Q (λ,λ∗) =
n∑
i=1

p−1∑
j=1

[
ᾱjλρij − c∗ij

p∑
m=j

ᾱj exp (λρim)
(
exp

(
λ∗ρim

))ᾱj−1

]
.

We maximize Q(λ,λ∗) by differentiating with respect to λk for estimating the

λ parameters. The first derivative is

∂Q

∂λk
=

n∑
i=1

p−1∑
j=1

[
ᾱj ηijk − c∗ij

p∑
m=j

ᾱj exp(λρim) (exp(λ∗im))ᾱj−1 δimk

]
,

where

ηijk =

 1, if ρij = k

0, otherwise

and

δimk =

 1, if k ∈ {ρim, . . . , ρip}

0, otherwise.

We set the first derivative equal to zero and the estimated parameter becomes

λ̂k = log

[ ∑n
i=1

∑p−1
j=1 ᾱj ηijk∑n

i=1

∑p−1
j=1 c

∗
ij

∑p
m=j ᾱj

(
exp(λ∗ρim)

)ᾱj−1
δimk

]
. (5.8)

Optimization of α

In order to find α̂, we treat the λ in Equation (5.7) as constant. As for λ,

Equation (3.3) in Chapter 3 is considered. The surrogate function is applied

to the second term of Equation (5.7) with x =
∑p

m=j µ̄
αj and y =

∑p
m=j µ̄

α∗j

where µ̄α
∗
j is the estimate of αj from the previous iteration. The inequality

becomes

− log

(
p∑

m=j

µ̄αjρim

)
≥ 1− log

(
p∑

m=j

µ̄
α∗j
ρim

)∑p
m=j µ̄

αj
ρim∑p

m=j µ̄
α∗j
ρim

.
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The Q function which omits the terms that do not depend on αj is

Q (α,α∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µ̄αjρij

)
− c∗ij

p∑
m=j

µ̄αjρim

]

where

c∗ij =
1∑p

m=j µ̄
α∗j
ρim

.

The Q function above is still difficult to optimize and needs to be modified

further. The function, f(α) = −µ̄α, is a concave function. In order to find

a convex function, f(α) around α∗, this can be done by applying a quadratic

function (Lange et al., 2000) and let x = α and y = α∗ then

f(x) ≤ f(y) + f ′(y)(x− y) +
1

2
(x− y)ᵀB(x− y)

where B −H(y) > 0, B > 0 and H is the Hessian. Therefore,

µ̄α ≤ µ̄α
∗

+ log (µ̄) µ̄α
∗

(α− α∗) +
1

2
(α− α∗)ᵀB (α− α∗)

≤ µ̄α
∗

+ log (µ̄) µ̄α
∗

(α− α∗) +
1

2
(α− α∗)2 (log(µ̄))2

−µ̄α ≥ −µ̄α∗ − log (µ̄) µ̄α
∗

(α− α∗)− 1

2
(α− α∗)2 (log(µ̄))2

and (log(µ̄))2 > H(α∗). The surrogate function after applying the quadratic

function to the second term of the Q function is

Q (α,α∗) =
n∑
i=1

p−1∑
j=1

[
log
(
µ̄αjρij

)
− c∗ij

(
p∑

m=j

µ̄
α∗j
ρim +

p∑
m=j

log (µ̄ρim) µ̄
α∗j
ρim

(
αj − α∗j

)
+

p∑
m=j

1

2

(
αj − α∗j

)2
(log (µ̄ρim))2

)]
.

We iteratively maximize the Q(α,α∗) function by taking the derivative with
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respect to αj. Thus,

∂Q

∂αj
=

n∑
i=1

[
log
(
µ̄ρij
)
− c∗ij

p∑
m=j

(
log (µ̄ρim) µ̄

α∗j
ρim +

(
αj − α∗j

)
(log (µ̄ρim))2

)]
,

which implies that

α̂j =

∑n
i=1

[
log
(
µ̄ρij
)

+ c∗ij
∑p

m=j

(
− log (µ̄ρim) µ̄

α∗j
ρim + α∗j (log (µ̄ρim))2

)]
∑n

i=1 c
∗
ij

∑p
m=j (log (µ̄ρim))2

=

∑n
i=1

[
λ̄ρij + c∗ij

∑p
m=j

(
−λ̄ρim exp

(
λ̄ρim

)α∗j + α∗j λ̄
2
ρim

)]
∑n

i=1 c
∗
ij

∑p
m=j λ̄

2
ρim

. (5.9)

The algorithm for finding the parameter estimates of the Benter model is

shown in Algorithm 7.

Algorithm 7 Benter model

1: Initialize parameter estimates λ(0), α(0), and h = 0
2: λ(0) is the parameter estimates from the PL model
3: α(0) = 0.5 for all α(0)

4: repeat
5: compute c

(h)
ij based on λ(h) and α(h)

6: increment h
7: compute
8: λ(h) by using Equation (5.8)
9: α(h) by using Equation (5.9)

10: until converged

5.2.3 The optim Function versus the Algorithm for the

Benter Model

To the best of our knowledge, there is currently no package in R for fitting

the Benter model. We implemented the BMmm based on the algorithm in the

previous section. We compare the BMmm with optim function. The BFGS

optimization method is selected and the Hessian option is set to FALSE for

the optim function. We apply the optim function and BMmm algorithm to

the Group I data from the Animal dataset. The computational times are
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638.03 and 821.69 seconds for the optim function and for the BMmm algorithm,

respectively.

Our algorithm, BMmm, performs slower than the optim function and both

algorithms give the same results. However, we still consider the BMmm algorithm

since we are going to introduce covariates to the Benter model.

5.2.4 Observed Information Matrix for the Benter Model

The rankings from different rankers are independent. The information matrix

can be found directly from the negative of the Hessian matrix. The Hessian

matrix can be found by differentiating the log-likelihood function. The log-

likelihood function is

`(µ) =
n∑
i=1

p∑
j=1

[
log(µαjρij)− log

(
p∑

m=j

µαjρim

)]

=
n∑
i=1

p∑
j=1

[
αjλρij − log

(
p∑

m=j

exp (λρim)αj

)]
.

The Hessian is the matrix of second partial derivatives of the log-likelihood

function, specifically

H =

 1© ∂2`
∂λ2

3© ∂2`
∂λ∂α

3© ∂2`
∂λ∂α

2© ∂2`
∂α2

 .
A single ranker is considered in order to find the first and second derivatives

for the Hessian matrix. First, we consider 1© in the Hessian matrix. The first

derivative of the log-likelihood function is

∂`

λρir
= αr −

r∑
j=1

αj exp(λρir)
αj∑p

m=j exp(λρim)αj
, r = 1, . . . , p
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The second derivative becomes

∂2`

∂λ2
ρir

= −
r∑
j=1

(∑p
m=j exp(λρim)αj

) (
α2
j exp(λρir)

αj
)
− (αj exp(λρir)

αj)2(∑p
m=j exp(λρim)αj

)2 ,

and the elements of the off-diagonal matrix where r < t are

∂2`

∂λρir∂λρit
=

r∑
j=1

α2
j exp(λρir)

αj exp(λρit)
αj(∑p

m=j exp(λim)αj
)2 .

Second, we find the first and second derivatives for 2© . The first and second

derivatives with respect to α are

∂`

∂αj
= λρij −

∑p
m=j λρim exp (λρim)αj∑p

m=j exp (λρim)αj

and

∂2`

∂α2
j

= − 1(∑p
m=j exp (λρim)αj

)2

[(
p∑

m=j

exp (λρim)αj

)(
p∑

m=j

λ2
ρim

exp (λρim)αj

)

−

(
p∑

m=j

λρim exp (λρim)αj

)2
 .

The off-diagonal elements are

∂2`

∂αj∂αt
= 0.

Final part is 3© which is the second derivative with respect to both λ and α.

The second derivative with respect to αj and λρij is

∂2`

∂αj∂λρij
= 1− 1(∑p

m=j exp (λρim)αj
)2

[(
p∑

m=j

exp (λim)αj

)(
λρijαj exp(λρij)

αj

+ exp(λρij)
αj
)
−

(
p∑

m=j

λρim exp(λρim)αj

)(
αj exp(λρij)

αj
)]
.
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The second derivative with respect to αj and λρit when j < t is

∂2`

∂αj∂λρit
= − 1(∑p

m=j exp (λρim)αj
)2

[(
p∑

m=j

exp(λρim)αj

)
(λρitαj exp(λρit)

+ exp(λρit)
αj)−

(
p∑

m=j

λρim exp(λρim)αj

)
(αj exp (λρit)

αj)

]
.

The overall Hessian matrix is obtained by summing these terms over all rankers.

This can be done because rankings are independent.

5.2.5 The optim Function versus the Algorithm for the

Observed Information Matrix for the Benter Model

We implement the BMinfm to calculate the observed information matrix. The

optim function is used in order to compare the Hessian matrix. We compute

standard errors from both algorithms to show that they give the same results.

Figure 5.4 shows that we get same results.
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Figure 5.4: Standard errors from the BMinfm and the optim function when
fitting the Group I data with the Benter model where the 97th to the 104th

parameters are standard errors of the dampening parameters
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5.3 Combining the ROL and the Benter Mod-

els

The two extensions of the PL model, the ROL model and the Benter model,

may be combined to give a model that incorporates covariates and also allows

for a dampening effect. We call this model the combined model for short. To

fit this model, we adopt the MM algorithm that has been used for fitting the

ROL model and the Benter model.

The probability of the ranking ρi is again given by Equation (5.6) where

µρij is now given by Equation (5.1). The parameter estimates can be found in

a similar way to the ROL and Benter models. The Q function becomes

Q =
n∑
i=1

p∑
j=1

[
log(µαjρij)− c

∗
ij

(
p∑

m=j

αjµρim(µ∗ρim)αj−1

)]
. (5.10)

For example, to estimate λ parameters, the Q function is

Q(λ,λ∗) =
n∑
i=1

p−1∑
j=1

[
log(µ̄

ᾱj
λ,ρij

)− c∗ij

(
p∑

m=j

ᾱjµ̄λ,ρij
(
µ∗λ,ρim

)ᾱj−1

)]
,

where λ∗ is λ from the previous iteration, then

µ∗λ,ρim = exp

(
λ∗ρij +

L∑
l=1

β̄lzl,ρij +
R∑
r=1

γ̄r,ρijxr,i +

Q∑
q=1

θ̄qwq,iρij

)
.

Differentiating Q(λ,λ∗) with respect to λk and setting this equals to zero gives

λk = log

 ∑n
i=1

∑p−1
j=1 ᾱjηijk∑n

i=1

∑p−1
j=1 c

∗
ij

(∑p
m=j ᾱjµ

′
λ,ρim

(µ∗λ,ρim)ᾱj−1δimk

)
 ,

where

µ′λ,ρim = exp

(
L∑
l=1

β̄lzl,ρij +
R∑
r=1

γ̄r,ρijxr,i +

Q∑
q=1

θ̄qwq,iρij

)
.

The other parameters can be estimated in the same way as the ROL model
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with the Q function in Equation (5.10).

5.3.1 The optim Function versus the Algorithm for the

Combined Model

We compare our algorithm, CMmm, with the optim function. The BFGS opti-

mization method is selected and the Hessian option is set to FALSE for the

optim function in order to compare computational times and estimates. We

apply the optim function and the CMmm algorithm to the Group I data from

the Animal dataset. One covariate, Familiarity, is included in the model then

the computational times for fitting this model by using the optim function

and the CMmm algorithm are 2465.87 seconds and 1536.36 seconds, respectively.

We also get the same estimates and log-likelihood values.

Our CMmm algorithm performs faster than the optim function even though

the BMmm algorithm is slower when there is no covariate in the model.

5.4 Likelihood Ratio Test

The Likelihood Ratio (LR) test is used for comparing nested models, where

the simple model is a special case of the alternative, more general model. The

test uses the likelihood function through the ratio of two maximizations. First,

the maximum under the null hypothesis (H0, simple model) and second, the

maximum over the larger set of parameters permitting H0 or an alternative

(H1, more general model) to be true.

Let L(ζ;X) represent the likelihood function, and let Ω be the parameter

space for the more general model and ω be the null hypothesis space, for the

simple model. Let L0 denote the maximized value of the likelihood function

under H0 and L1 denote the maximized value over Ω, H0∪H1. Therefore, the
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likelihood ratio is

Λ =

sup
ζ∈ω

L0(ζ;X)

sup
ζ∈Ω

L1(ζ;X)
,

and the test statistic for the LR test, which is denoted by G2, is

G2 = −2 log Λ = −2 (logL0 − logL1) .

The test statistic G2 is distributed approximately as χ2
q−p when H0 is true and

number of rankers (n) is large where p and q are the number of parameters in

the restricted model specified by H0 and the full model under H1, respectively.

The null hypothesis is rejected at the 100α% level if G2 > χ2
(1−α;q−p).

Due to the boundary of a parameter space problem, the LR test is not a

proper test for testing the Benter model and the combined model. However,

we use the LR test in order to compare the PL model with the Benter model

and the ROL model with the combined model. This is because there is no

convenience solution for this problem.

5.5 Application to Animal Dataset

In this section, we investigate whether the addition of covariates and/or damp-

ening parameters improves the fit of the PL model and how it effects the esti-

mated preferences. We present results from fitting the ROL, the Benter, and

the combined models with various different covariates of the Animal dataset.

The Animal dataset includes item-specific covariates (Animal’s type), ranker-

specific covariates (Nationality, Gender, and Age) and ranker-item-specific co-

variates (Familiarity and Start Position).
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5.5.1 ROL Model: Animal Dataset

The ROL model is applied to all groups of the Animal dataset. First, we fitted

the model with one covariate at a time and applied the LR test in order to

compare the ROL model with one covariate to the PL model.

One covariate at a time

• Familiarity and Start Position

LR tests for the covariates are displayed in Table 5.1. The LR statistics in-

dicate that Familiarity is the most significant covariate in all four groups.

Another strongly significant covariate is Start Position. This indicates that

we should include both of these ranker-item-specific covariates in the ROL

model.

Table 5.2: Parameter estimates for the ROL model when each ranker-item-
specific covariate is included in the model (SE in brackets).

Covariates Group I Group II Group III Group IV

Familiarity 0.474(0.050) 0.501(0.051) 0.732(0.060) 0.626(0.065)
Start Position 0.152(0.036) 0.293(0.036) 0.238(0.033) 0.277(0.036)

Parameter estimates are shown in Table 5.2. Both Familiarity and Start

Position have a positive effect. The positive effect of Familiarity means that

rankers tend to rank the species that they are familiar with higher than un-

familiar species. Based on the estimates and their standard errors, it appears

that Familiarity has stronger effect in Group III and Group IV when com-

pared with Group I and Group II where species in Group I and Group II are

provided from EDGE and the others are from WWF organization.

As mentioned in Chapter 2, there are 85 same species in the Group I data

and the Group II data. We plot the µ̂Familiarity for these two groups as shown

in Figure 5.5. Figure 5.5 shows that most of the estimates are below the

reference line. This means the drawings (Group I) are more preferred to the
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Figure 5.5: The µ̂Familiarity for the Group I data against the µ̂Familiarity for the
Group II data from the Animal Dataset with the 1:1 reference line

photos (Group II) for the same species. The highlighted species show the

species that have the differences of proportion of familiarity from the Group I

and the Group II data higher than 95th percentile.

For Start Position where 1 if top row and 0 if bottom row, the rankers are

more likely to rank species in the upper row higher than species in the lower

row. This may indicate a reluctance amongst rankers to move photographs

between rows during the ranking process. Start Position has almost the same

estimated effect in all groups, except for Group I where it is slightly lower.

• Gender

We investigate heterogeneity across individuals by including ranker-specific

covariates in the ROL model. We begin with the Gender covariate which

consists of two groups. Gender is found as moderately significant in all of the

groups except Group I in which Gender is significant at the 10% level but not

at the 5% significance level. Thus, we can conclude that males and females do

differ in their preferences of animal species.

Considering the Group I data from the Animal dataset, the estimated

parameters for Gender when this is the only covariate in the ROL model

are shown in Table 5.3. Females have a stronger preference for the top 5

species than males, except for Giant Panda. The differences in coefficients for

males and females have an odds interpretation and note that the coefficients

compare with the reference species, Baiji. For example, since Asian Elephant



5. Extensions of Plackett-Luce Model 162

Table 5.3: Top 5 and bottom 5 parameter estimates, according to the PL
model, when there is only Gender in the ROL model for the Group I data
from the Animal dataset (SE in brackets)

Animal Species PL Male Female Difference

Red Panda 1.954 1.427 2.208 - 0.781(0.619)
Giant Panda 1.739 2.481 1.578 0.902(0.585)
African Elephant 1.359 1.229 1.436 - 0.207(0.603)
Fin Whale 1.288 1.125 1.427 - 0.303(0.615)
Asian Elephant 1.240 0.399 1.747 - 1.348(0.532)

...
Mindanao Gymnure - 1.052 - 1.037 - 1.116 0.079(0.587)
Eastern Sucker-footed Bat - 1.182 - 1.370 - 1.114 - 0.256(0.615)
Chiapan Climbing Rat - 1.226 - 0.914 - 1.335 0.421(0.598)
New Guinea Big-eared Bat - 1.252 - 1.887 - 1.074 - 0.812(0.614)
Southern Marsupial Mole - 1.359 - 1.385 - 1.376 - 0.009(0.711)

has a difference of −1.348 and exp(−1.348) = 0.26, this means that the odds

of preferring Asian Elephant to Baiji are 0.26 times as great for males as for

females. To compare a specific species with other species rather than the

reference species, the difference between the “Difference” in Table 5.3 of these

species are considered. For example, if we compare Red Panda with Giant

Panda then exp(−0.781 − 0.902) = 0.186. This means the odds of males

preferring Red Panda to Giant Panda is about 0.19 times the odds of females.

Another way to explore the differences of preferences between males and

females is to apply an orthogonal regression model to the preference esti-

mates. The dependent variable is λ̂Female and the independent variable is

λ̂Male from the ROL model. The orthogonal regression is λ̂Female-Reg,k =

0.214 + 0.922 λ̂Male,k. We plot λ̂Male against λ̂Female and the orthogonal re-

gression line. We calculate distances between points and the regression line

which are residuals in the regression model and show species that have dis-

tances higher than the 90th percentile in Figure 5.6. Figure 5.6 shows that

males prefer Giant Panda, Vaquita, Javan Rhinoceros, Saiga, and Northern

Marsupial Mole more strongly than females do, while females prefer Asian
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Figure 5.6: Plot λ̂Male against λ̂Female with the orthogonal regression line

Elephant, Mountain Zebra, Mount Kahuzi Climbing Mouse, Desert Dormouse,

and Chapa Pygmy Dormouse.

• Age

The ROL model with Age as a continuous covariate is fitted by using the

optim function since the ROLmm algorithm as currently implemented does not

work with a continuous ranker-specific covariate. The result is that Age as

a continuous covariate is significant in Group I at the 5% significance level.

The age coefficients can be interpreted as 100 × (exp(γAge) − 1). This is the

percent change in the odds of preferring a species over Baji for each 1-year

increase in Age. Moreover, Age (continuous) seems to be more significant

than Age (2-level) except in Group IV where neither is significant. For Red

Panda, 100 × (exp(−0.024) − 1) = -2.37%, that is with each 1 year increase

in Age the odds of preferring Red Panda over Baji goes down by 2.37%. Age

does not have much effect on Giant Panda (about 0.2%). Fin Whale has a

positive effect when Age increases. Older people tend to prefer Fin Whale to

Red Panda when they are older than 44 years old.

Age can alternatively be grouped and used as a dummy covariate similarly

to Gender. We divide Age into two groups, <30 and≥ 30 years. Age is 1 if <30

years and 0 if ≥30 years. The results from Age as a categorical covariate can
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Table 5.4: Top 5 and bottom 5 parameter estimates when only Age as contin-
uous covariate in the ROL model for the Group I data (SE in brackets)

Animal Species PL
ROL

λAge γAge

Red Panda 1.954 2.693 -0.024(0.021)
Giant Panda 1.739 1.725 -0.0002(0.021)
African Elephant 1.359 1.484 -0.005(0.021)
Fin Whale 1.288 0.467 0.026(0.021)
Asian Elephant 1.240 1.393 -0.006(0.020)

...
Mindanao Gymnure - 1.052 -0.474 -0.023(0.022)
Eastern Sucker-footed Bat - 1.182 -0.194 -0.032(0.023)
Chiapan Climbing Rat - 1.226 -0.747 -0.018(0.022)
New Guinea Big-eared Bat - 1.252 -1.594 0.010(0.019)
Southern Marsupial Mole - 1.359 -1.169 -0.009(0.021)

be interpreted similarly to the Gender covariate. This covariate is significant

in Group II and Group III at the 5% significance level while in Group I it is

significant only at the 10% significant level and it is not significant in Group

IV (Table 5.1).

• Nationality

We consider three nationality groups which are North America, Europe, and

other. Nationality does not have a significant effect in Groups II, III, and IV;

however, it does in Group I as shown in Table 5.1. The North America nation-

ality has a moderate significant while Europe is not significance at 5% level

when compared to other nationalities. Moreover, Figure 5.7 shows that there

is a correlation between North America and Europe for all groups because

the plots are scattered around the reference (45◦) line. Table 5.5 presents the

Spearman rank correlation coefficients among pairs of nationalities. There is

a strong correlation of 0.82 between North America and Europe. The plots

of Americans against other and Europeans against other have an outlier as

shown in Figure 5.7c. Suggestion for further investigation is to remove this

outlier. However, we continue without removing the outlier and combine North
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Figure 5.7: Pairwise plots of parameter estimates for the ROL model in which
the preference parameters differ between the three Nationality groups. Solid
lines are the 1:1 lines.

Table 5.5: Spearman correlation between Nationalities for the Group I data
from the Animal dataset

Nationality North America Europe Other

North America 1 0.82 0.65
Europe 1 0.69
Others 1

America nationality with Europe nationality. The Spearman rank correlation

coefficient between North America nationality and Europe nationality for the

Group III is 0.87. We combine North America nationality with Europe na-
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tionality and give a new group where Nationality = 1 if North America and

Europe nationalities and 0 if other nationalities to the ROL model. The result

is shown in Table 5.1. The rankers’ nationality affects the preferences except

in Group II.

• Animal Type

The only item-specific covariate in the Animal dataset is Animal Type where

1 if Mammal and 0 if other. We include Animal Type in the ROL model and

the LR statistics when compared with the PL model are presented in Table

5.1. We compare mammals with other types. For Group III and Group IV,

Animal Type is not significant.

Several covariates

The ROL models fitted so far have investigated the effect of fitting covariates

individually. We now consider models that include several covariates. Table

5.6 shows the LR statistics when adding sequentially the covariates that were

significant at the 5% significance level in Table 5.1. All the covariates which

are significant in Table 5.1 are also significant in Table 5.6. Therefore, the

ROL model for Group I contains three covariates which are Familiarity, Start

Position, and Nationality. Group II has four covariates in the model which

are Familiarity, Start Position, Gender, and Age. Group III has the most

covariates in the model; Familiarity, Start Position, Gender, Age, and Nation-

ality are in the ROL model for Group III. The final group, Group IV, includes

Familiarity, Start Position, Gender, and Nationality in the model.

Table 5.8 presents the coefficients of Familiarity and Start Position when

the ROL model includes the covariates displayed in Table 5.6. As before,

Familiarity has a stronger effect in Group III and Group IV. In addition, the

rankers have a stronger preference for species that they are familiar with rather

than for species that are presented in the upper row of the display.
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Table 5.8: Parameter estimates of Familiarity and Start Position for the final
ROL model in Table 5.6 (SE in brackets)

Covariates Group I Group II Group III Group IV

Familiarity 0.492(0.051) 0.507(0.053) 0.791(0.063) 0.687(0.069)
Start Position 0.166(0.037) 0.308(0.038) 0.264(0.035) 0.292(0.038)

Comparing the Familiarity and Start Position effects from Table 5.2 with

Table 5.8, these show that both Familiarity and Start Position have a slightly

stronger effect after including the covariates in Table 5.6 for each group, al-

though the difference are generally small.

Considering Group I, the ROL model has three covariates which are Fa-

miliarity, Start Position, and Nationality. Table 5.9 shows the effects of Na-

tionality in the model. The model allowing for Familiarity, Start Position,

Table 5.9: Top 5 and bottom 5 parameter estimates, according to the PL
model, for the ROL model with Familiarity, Start Position, and Nationality
covariates for the Animal dataset: Group I (SE in brackets)

Animal Species North America Other Difference
and Europe

(λ̂+ γ̂1) (λ̂) (γ̂1)

Red Panda 2.026 0.662 1.363(0.828)
Giant Panda 1.556 0.844 0.712(0.744)
African Elephant 1.316 0.309 1.007(0.826)
Fin Whale 1.278 1.290 -0.012(1.105)
Asian Elephant 1.199 -0.057 1.256(0.792)

...
...

...
...

Mindanao Gymnure -0.879 -3.062 2.182(0.772)
Eastern Sucker-footed Bat -1.128 -2.910 1.782(0.792)
Chiapan Climbing Rat -1.113 -2.467 1.353(0.806)
New Guinea Big-eared Bat -1.156 -2.988 1.832(0.745)
Southern Marsupial Mole -0.965 -3.654 2.688(1.049)

and Nationality can be written as log(µij) = λij + θ1w1,ρij + θ2w2,ρij + γ1,ρijx1,i

where x1 = 1 if North American or European, 0 if other. Table 5.9 shows that

the five most preferred species and the five least preferred species are higher

for North America and Europe nationalities as compared with other. Among
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the top five preferred species, Fin Whale has the least difference. For the five

least preferred species, the Southern Marsupial Mole has the largest difference

and the odds of preferring Southern Marsupial Mole to Baji are 14.70 times

as great for North Americans and Europeans as for the other nationalities.

5.5.2 ROL Model for Pairwise Comparisons: Animal

Dataset

In Chapter 3, we consider the full rank-breaking method with different weight-

ings. We extend this idea by including a covariate in the BT model with differ-

ent weightings. The BTw and BTw-Sqrt weightings perform the best among

them; therefore, we focus on these two weightings. The full rank-breaking

method is applied to the Group I data from Animal dataset. The ROL model

is applied to the Group I data with Familiarity and the BT model with the

BTw and BTw-Sqrt weightings are applied to the paired data from the full

rank-breaking method with Familiarity.

Table 5.10: The θ̂ of Familiarity for the ROL model and the BT model with
the equal, BTw and BTw-Sqrt weightings and the Kendall tau correlation and
MSE of the λ̂ and θ̂ when compared with the results from the ROL model

θ̂Fam
λ̂ and θ̂

Correlation MSE

ROL 0.474 - -
BT 0.579 0.914 0.020
BTw 0.693 0.907 0.023
BTw-Sqrt 0.629 0.944 0.003

Table 5.10 shows the BT model with equal, BTw, and BTw-Sqrt weightings

give higher estimates of the Familiarity covariate. We compute the Kendall tau

correlation and MSE of the estimates from the BT model with three different

weightings with the estimates from the ROL model. The BTw-Sqrt weighting

performs best and is followed equal (BT) and BTw weightings.
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The BT model with the BTw-Sqrt weighting is an alternative way for ana-

lyzing the partial ranking data with covariates. The BT model with covariates

is less complicated than the ROL model.

5.5.3 Benter Model: Animal Dataset

The Benter model is fitted to the animal dataset. The LR statistics show that

the Benter model fits significantly better than the PL model for all groups, as

shown in Table 5.11. The Benter model has 8 parameters more than the PL

Table 5.11: LR statistics when compared the PL model with the Benter model
for the Animal dataset

Group G2 df p-value

I 109.43 8 <0.001
II 143.74 8 <0.001
III 41.26 8 <0.001
IV 67.78 8 <0.001

model. We consider the result from Group I in more detail, for illustration.

First, the preference parameters are different between the PL model and the

Benter model. Table 5.12 presents the top five and bottom five preference pa-

rameters for the PL model and the Benter model where the Benter dampening

parameter estimates are α̂ = (1, 0.882, 0.702, 0.641, 0.483, 0.354, 0.319, 0.262,

0.321, 0).

The top 5 preference species rankings according to the Benter model are

the same as the PL model except Asian Elephant. The results from the Benter

model show that Asian Elephant is given the third ranking while the PL model

puts this species in fifth place. The λ̂Giant Panda is closer to the λ̂Red Panda

in the Benter model. The differences between Red Panda and Giant Panda

are 0.215 and 0.039 in the PL model and the Benter model, respectively.

This is because the participants mainly ranked Giant Panda as their first

preference as shown in Figure 5.8b. The bottom 5 rankings are not the same.
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Table 5.12: Top 5 and bottom 5 of the estimated preference parameters from
the PL model and Benter model for the Group I data according to the results
from the PL model

Animal Species Average
Position

First
Position

PL Benter

Red Panda 2.200 0.360 1.954 2.180
Giant Panda 2.237 0.567 1.739 2.141
African Elephant 2.973 0.297 1.359 1.561
Fin Whale 3.143 0.262 1.288 1.426
Asian Elephant 3.000 0.381 1.240 1.602

...
...

...
...

...
Mindanao Gymnure 8.000 0 - 1.052 - 2.615
Eastern Sucker-footed Bat 7.175 0.125 - 1.182 - 1.801
Chiapan Climbing Rat 8.116 0.023 - 1.226 - 2.960
New Guinea Big-eared Bat 7.609 0.063 - 1.252 - 2.375
Southern Marsupial Mole 7.641 0.013 - 1.359 - 2.349

The bottom five according to the Benter model are Chiapan Climbing Rat,

Mindanao Gymnure, New Guinea Big-eared Bat, Southern Marsupial Mole,

and Eastern Sucker-footed Bat, respectively. Considering the bottom five

favourite species, the least preferred species is Chiapan Climbing Rat instead

of Southern Marsupial Mole from the PL model. Figure 5.8 plots the rank

distributions. Most of the rankers ranked Chiapan Climbing Rat in lower

position than Southern Marsupial Mole. Therefore, Chiapan Climbing Rat

has lower preference in the Benter model.

The 95% confidence interval of the preference parameters from both the

PL model and the Benter model are shown in Figure 5.9. The standard errors

of parameters in the Benter model are larger than those of the corresponding

parameters in the PL model. The top 5 estimates from the Benter model shift

to the right when compared to the PL model. Whereas, the bottom 5 shift to

the left as we expect. This is because the top 5 species are tended to be ranked

in the top position and reverse for the bottom 5. The 95% confidence interval

of all species are shown in Figure 5.14. It can be observed that the bottom

species have greater effect than the top preference species in the Benter model.
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(a) Red Panda
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(b) Giant Panda
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(c) Asian Elephant
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(d) African Elephant
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(e) Fin Whale
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(f) Eastern Sucker-footed
Bat
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(g) Southern Marsupial Mole
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(h) New Guinea Big-eared
Bat
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(i) Mindanao Gymnure
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(j) Chiapan Climbing Rat

Figure 5.8: Rank position distributions of top 5 and bottom 5 preferred species
for the Group I data from the Animal dataset
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the Animal dataset

For more detail, the top and bottom preference species from the Benter model

have stronger effect than the species which are in the middle as shown in

Figure 5.14.
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Figure 5.10: The 95% confidence interval of dampening parameter estimates
for the Benter model when fitted to the Group I data from the Animal dataset

The dampening parameters are generally decreasing with rank position as

shown in Figure 5.10. That means the rankers ranked their top preferences

more carefully than their lower preference. The small dampening parameters

values will lower the preferences of the lower-ranked species. However, α9 is

slightly higher than α7 and α8. The α8 value of 0.262 suggests that the 8th
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place preferences are only made with one fourth of the certainty that the first

preferences are.

Goodness-of-Fit for the Benter Model

A goodness of the Benter model fit is evaluated by using the bootstrap to

see how well the Benter model fits the Animal dataset. We consider only the

Group I data due to computational time. The number of bootstrap samples

is 300 (B = 500) and the result is shown in Figure 5.11.
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Figure 5.11: Histogram of Kendall tau distances from the bootstrapping
goodness-of-fit for the Benter model where dashed line is the distance for
the Group I data from the Animal dataset

Figure 5.11 shows the Kendall tau distances from the bootstrapping. The

two-sided p-value is 0.572. This means the Benter model is an appropriate

model for fitting the Group I data.

Next, we consider the IOS test. The IOS statistics close to zero; therefore,

we compute the two-sided p-value which is 0.680. This leads to the same

conclusion as the Kendall tau distance criterion.

5.5.4 Combined Model: Animal dataset

The combined ROL and Benter model has also been fitted to the Animal

dataset. This model is used to find significant covariates that affect the pref-

erence of species when the dampening parameters are also in the model. The
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LR statistics for each covariate are shown in Table 5.13. Table 5.13 shows that

both Familiarity and Start Position are strongly significant among the four

groups when there is only one covariate in the model. The combined models

are less significant than the ROL model when including one ranker-specific

covariate at a time in the models. Considering the Group I data, Gender and

Age are not significant the at 5% level in either model. The North America

and Europe nationalities are significant at 1% level in the ROL model while

they achieve 5% significance in the combined model. In Group II, at 5% signif-

icance level, Age is significant in the ROL model, however, it is not significant

in the combined model. This is the same for Gender in Group III. Group IV

has the same results in both models.

Table 5.15: Parameter estimates for the combined model when including each
ranker-item-specific covariate, Familiarity and Start Position, in the model for
the Animal dataset (SE in brackets).

Covariates Group I Group II Group III Group IV

Familiarity 0.894(0.101) 0.910(0.100) 1.094(0.102) 1.040(0.127)
Start Position 0.201(0.057) 0.415(0.060) 0.282(0.042) 0.400(0.055)

The effects of the Familiarity and Start Position in the combined model,

with only one ranker-item-specific covariate in the model, are stronger than

in the ROL model with these two covariates in the ROL model as shown in

Table 5.15 and Table 5.2, respectively. This is consequence of using the Benter

model. However, the standard errors also increase.

We include the covariates that are significant at the 5% level in Table 5.13.

The LR statistics when adding one covariate at a time to the combined model

are shown in Table 5.14. All covariates that are significant in Table 5.13 are

also significant at the 5% level in Table 5.14, except Gender in Group II.

The combined model allowing for Familiarity, Start Position, and National-

ity for Group I can be written as log(µij) = (λij+θ1w1,ρij+θ2w2,ρij+γ1,ρijx1,i)
αj

where x1 = 1 if North America or Europe, 0 if other. Table 5.16 shows that the
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Table 5.16: Top 5 and bottom 5 parameter estimates for the combined model
with Familiarity, Start Position, and Nationality covariates for the Group I
data from the Animal dataset

Animal Species PL North America Other Difference
and Europe

(λ̂PL) (λ̂Cmodel + γ̂NorthEU) (λ̂Cmodel) (γ̂NorthEU)

Red Panda 1.954 2.105 0.697 1.408(1.028)
Giant Panda 1.739 4.105 0.478 3.627(0.913)
African Elephant 1.359 2.373 -0.192 2.565(1.034)
Fin Whale 1.288 4.761 0.834 3.927(1.274)
Asian Elephant 1.240 5.570 -0.639 6.209(1.021)

...
...

...
...

...
Mindanao Gymnure - 1.052 -1.779 -5.039 3.260(1.531)
Eastern Sucker-footed Bat - 1.182 -2.392 -4.316 1.924(1.370)
Chiapan Climbing Rat - 1.226 -0.179 -4.197 4.018(1.598)
New Guinea Big-eared Bat - 1.252 -0.866 -4.570 3.704(1.311)
Southern Marsupial Mole - 1.359 -1.254 -5.262 4.008(2.138)

North American and Europe nationalities have stronger preferences than other

nationalities, especially in Asian Elephant. Nationality has stronger effects in

their preferences when comparing Table 5.9 with Table 5.16.

The dampening parameters are considered when adding one more covariate

to the combined model. Figure 5.12 shows the estimated dampening param-

eters when adding more covariates to the model. The dampening parameters

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Rank Position

α̂

None
 + Familiarity
 + Start Position
 + Nationality

Figure 5.12: Plot of dampening parameter estimates when added one more
covariate to the combined model for Group I from Animal dataset

change only slightly when adding covariates to the combined model, except

the ninth rank. The α̂9 has smaller effect when Familiarity and both Familiar-

ity and Start Position are in the model. However, when North America and

Europe nationality is added, the α̂9 increases.
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We compare the ROL model with the combined model as shown in Table

5.17. Table 5.17 shows the LR statistics when comparing the ROL model with

the combined model and in brackets are p-values. The ROL model without

covariate is the PL model and the combined model without covariate which is

the Benter model. The combined model performs better than the ROL model

since the LR statistics are strongly significant at the 0.1% level. That means

the dampening parameters improve the model.

Goodness-of-Fit for the Combined Model

As previously, we perform a bootstrap to assess the goodness-of-fit statistics

for the combined model. Due to the computational time, we only perform the

bootstrap on the combined model with one covariate. We explore whether the

Group I data is appropriately fitted by the combined model with Familiarity

covariate. The bootstrap sample size is 500 (B = 500) and the result is shown

in Figure 5.13.
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Figure 5.13: Histogram of the Kendall tau distance from the bootstrapping
goodness-of-fit when B = 150 when fitted the combined model with the Fa-
miliarity and purple dashed line is the actual Kendall tau distance from the
Group I data

Figure 5.13 shows that the Kendall tau distance from the Group I data is

mostly higher than the distances from the simulated data. The 2-sided p-value

is 0.560. We conclude that the combined model with the Familiarity covariate

is an appropriate model for fitting the Group I data.

Another statistic is the IOS, the IOS statistics close to zero. This suggested
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that we should compute the two-sided p-value. The two-sided p-value is 0.048.

The IOS statistic is significant at 5% level but not at the 1% significance level.

5.6 Conclusions

In this chapter, we study several extensions of the PL model. First, the ROL

model allows for including of covariates. There are three kinds of covariates

which are item-specific, ranker-specific, and ranker-item-specific covariates.

We adopt the MM algorithm from Hunter (2004) to find estimated parame-

ters. The ROLmm algorithm was implemented. We compare results from the

ROLmm with the optim function in order to confirm the results from the ROLmm

algorithm and they give the same results. Moreover, the ROLmm algorithm

performs faster than the optim function. Our experiments are applied on the

Animal dataset. The results show that when a covariate is included, the ROL

model has been shown to give an improvement when compared to the PL

model. Moreover, it is easy to interpret the effects of the covariates by using

an odds interpretation.

We extend the BT model with weighting, which we discussed in Chapter

3, to be able to include a covariate. Two weightings, the BTw and the BTw-

Sqrt, are considered. We apply the BT model with BT, BTw, and BTw-Sqrt

weightings to the Group I data from the Animal dataset. The results show

that the BTw-Sqrt gives better results than the BT and BTw weightings in

both Kendall tau correlation and MSE criteria.

Second, the Benter model, this model allows preferences for higher-ranked

objects to be stronger than lower-ranked objects. A set of parameters, α, is

introduced in order to take care of human ranking behaviour. We implemented

the BMmm algorithm for fitting the Benter model. The BMmm gives the same

result as the optim function; however, the BMmm needs more computational

time. The experiment result shows that by including α parameters results
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in a significant improvement in the fit when compared with the PL model.

The bootstrap goodness-of-fit tests with the Kendall tau distance and IOS

statistics reveal the same conclusion that the Benter model is an appropriate

model for fitting the Group I data from the Animal dataset.

The last presented model in this chapter is the combined model. This

model combines the ROL model with the Benter model. The combined model

can corporate both extensions of the PL model. It allows the inclusion of

covariates and a set of parameters, α. We implemented the CMmm algorithm

which is faster than the optim function and they give the same results. The

combined model is applied to the Animal dataset. There are p − 1 extra

parameters in the model when compared with the ROL model with the same

covariates. The results from the analysis show that the combined model gives

a significantly better fit. We apply the bootstrap goodness-of-fit test with the

Kendall tau distance and IOS statistics to the Group I data. The Kendall tau

distance statistic shows that the combined model is a suitable model; however,

the IOS statistic indicates that the model is suitable at 1% significance level.
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Figure 5.14: The 95% confidence interval of parameter estimates for the PL
model and the Benter model for the Group I data from the Animal dataset



Chapter 6

Open Ended Rankings

In this chapter, we explore another type of partial ranking data. In the previ-

ous chapters, a set of objects is given to an individual to rank them. Now, we

are interested in open ended questionnaires. For example, we ask an individ-

ual what worries them and allow the individual to mention any subjects that

they are worried about at that moment. After the individual has mentioned

a set of subjects, they are asked to rank these subjects according to their

severity. Therefore, an open ended questionnaire allows the individuals to de-

cide on their own what are the major issues, without bias from the researcher

providing a pre-defined list of subjects to the individuals.

The purpose of this chapter is to explore this open ended ranking data.

We begin with an existing method which is normally used in the sociology

literature, Participatory Risk Mapping, in Section 6.1. Section 6.2 discusses

tied ranking, since our real-world dataset for open ended rankings allows for

ties. Two approximations, Breslow and random, are explained. The numbers

of choices varies between individuals because they are allowed to mention their

own choices. We discuss the number of choices in Section 6.3. In Section 6.4,

we propose a new model which uses ideas from the PL model. Applications

to the Sundarbans dataset are discussed in Section 6.5.
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6.1 Participatory Risk Mapping

Participatory Risk Mapping (PRM) is a simple analytical tool that can be used

in qualitative research in order to identify and classify risk. The PRM process

comprises two stages. In the first stage, problem identification, the participant

identifies problem(s), as many as he/she can think of. This is done in an open-

ended fashion. The number of problems identified varies across participants.

In the second stage, the participant is asked to rank order the problems he/she

identified in the first step. The participant decides on their own what are the

major problems rather than choosing from a given list, which may reflect the

biases of the researcher.

In the analysis stage, two measures are calculated from the data, incidence

and severity. The incidence of a problem is the proportion of participants who

identify the problem. This proportion of incidence measure, I, shows how

widespread the problem is within the population of study.

The severity measure is not straightforward to calculate because partic-

ipants list different numbers of problems. For example, participant A lists

two problems and ordinal rankings range from 1 to 2. Participant B lists five

problems with ordinal rankings ranging from 1 to 5. The participant gives the

rank 1 to the most severe problem and assigns the rank 2 to the second severe

problem, etc. Inskip et al. (2013) suggested a formula for severity which is

adapted from Barrett et al.’s (2001) equation. This equation can handle tied

rankings. The severity index score is

Sij =
(pmax + 1− rij)

pmax

,

where Sij is the severity index score for participant i and problem j, pmax is the

maximum number of problems listed by any participant, and rij is the rank

given to problem j by participant i. The value of Sij ranges from 0 to 1, where
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0 means the problem is not cited by participant and 1 means the problem is

cited as most severe. The mean severity, S, is computed by averaging over

participants who ranked that particular problem.

The PRM often includes a plot of mean severity against incidence. This

plot is called risk map.

The PRM has been applied in many areas including socio-economic appli-

cations (Smith et al., 2000; Inskip et al., 2013), psychology (Chirowodza et al.,

2009), public health (Fuller et al., 2014), and science (Jing et al., 2013).

6.2 Tied Data

Previously in this thesis we have assumed that rankings do not contain ties,

because the datasets that we used as examples had no ties. However, in the

dataset that we use in this chapter, the Sundarbans data, tied rankings of two

or more objects are allowed. Tied objects, which are defined to have equal pref-

erence/severity, are assigned the same number, and any subsequently ranked

objects pick up the numbering accounting for ties. For example, suppose there

are four objects, A, B, C, and D, and that C is chosen to be the first, with A

and B tied for second, and D the least preferred. We assign A, B, C, and D

ordinal rank values of 2, 2, 1, and 4, respectively.

The likelihood for a tied ranking can be constructed by summing over

all orderings that are compatible with the tied ranking. From the previous

example, A � B and B � A are mutually exclusive events then

P ((A � B) or (B � A)) = P (A � B) + P (B � A).

Assuming a PL model, the likelihood becomes

L(µ; ρ1) =
µC

µC + µA + µB + µD
×
[(

µA
µA + µB + µD

)(
µB

µB + µD

)
+
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(
µB

µB + µA + µD

)(
µA

µA + µD

)]
× µD
µD

.

It is easy to write down the likelihood in this way when the number of ties is

small. However, it is difficult when the number of ties increases e.g. if we have

4 ties then there are 4! possible orderings.

Since it is problematic to find the likelihood, simplified approximations

are introduced. The simplest approach to allowing for ties in the PL model

is to randomly break the tied rankings. For example, since A and B are

ranked second we use a random method to separate them, so that A and B

are ranked respectively either second and third or third and second, with equal

probability. Then, the log-likelihood function for the PL model remains the

same.

Another approximation is suggested by Breslow and Crowley (1974), in

which the log-likelihood function is modified as follows

`(µ) =
n∑
i=1

∑
k∈Oi

log(µk)− log

 pi∑
m=O′i,k

µρim

 , (6.1)

where Oi is a set of items that ranker i ranked and O′i,k is a rank of item

k from ranker i. We cannot cancel the last term because the summation of

the second term changes in order to handle the tied rankings. For example,

suppose O = {A, B, C, D} and O′ = {1, 2, 3, 3} then the log-likelihood for

this ranker is

` = (log(µA)− log(µA + µB + µC + µD)) +

(log(µB)− log(µB + µC + µD)) +

(log(µC)− log(µC + µD)) +

(log(µD)− log(µC + µD)) .

Thus, the last term cannot drop out.
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6.3 Number of Answers for each Ranker (pi)

In an open-ended questionnaire, the number of objects listed varies between

individuals. One possible distribution for the number of choices comes from

Poisson-Binomial distribution. This distribution arises if we assume that all

individuals have a potential long list of K objects and would report the kth

object in the list with probk.

Suppose T1, . . . , TK are independent distributed Bernoulli variables. If the

probability of success is not the same for each variable then S = T1 + · · · +

TK follows a Poisson-Binomial distribution with not-all-equal probabilities of

successes, probk where k = 1, . . . , K. As a special case, S becomes a Binomial

random variable when all success probabilities are equal.

Let the kth ranked object be reported with probability probk. We model

these probabilities through a simple logistic regression model as follows

log

(
probk

1− probk

)
= α + βk, k = 1, . . . , K

where β is negative to give decreasing probabilities as the rankings move down.

The α̂ and β̂ are used to estimate p̂robk then we can use these probabilities

to generate number of objects listed from the Poisson-Binomial distribution

without any information of the actual number of objects listed. The results
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Figure 6.1: Estimated probabilities from the α̂ and β̂
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from fitting the logistic regression model are α̂ = 1.776 and β̂ = −0.549.

The SEs for α̂ and the β̂ are 0.300 and 0.068, respectively. We calculate

probabilities based on α̂ and β̂. The p̂robk is shown in Figure 6.1. Figure

6.1 shows how the probability decreases when the kth ranked objects increase.

Only the top three objects have probability greater than 0.5.

The truncdist package is considered in order to generate the random

number from the Poisson-Binomial distribution by setting spec = poibin.

We use truncdist package because we want to generate with specific interval.

We use the probabilities from the logistic regression to generate the distribu-

tion of the number of objects listed by using this package. The result is shown

in Figure 6.2. Figure 6.2 shows that the estimates from the logistic regression

0

50

100

1 2 3 4 5 6 7
Number of Objects Listed

F
re

qu
en

cy

Estimate True

Figure 6.2: Estimated number of objects listed from the logistic regression and
the true values from the Sundarbans dataset

can estimate the number of objects well. It has approximately the same shape.

6.4 Selection Preference Model

Instead of using the PL model from Chapter 3, we propose a new model, the

probability of the ranking ρi is

P (ρi;π) =
πρi1
1
× πρi2

1− πρi1
× πρi3

1− (πρi1 + πρi2)

× · · · ×
πρipi−1

1− (πρi1 + · · ·+ πρipi−2
)
×

πρipi
1− (πρi1 + · · ·+ πρipi−1

)
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=
πρi1
1

pi∏
j=2

πρij

1−
∑j−1

m=1 πρim
(6.2)

where π is a vector of preference parameters and π1+· · ·+πK = 1. We call this

model as selection preference (SP) model. This model is different from the PL

model. The SP model gives the probability that for a participant presented

with all K and asked to pick pi of these items in order of preference will

pick ρi1, . . . , ρipi . Therefore, the denominator of the first position is 1 because

the individual picks the first item from K items and removes the picked item

from the possible set of items and so on. This process is the same as the PL

model. However, the PL model is the probability that a participant given

these particular pi items will put them in that order.

6.4.1 Selection Preference Model with Ranker-Specific

Covariate

As for the PL model, we can extend the SP model by including covariates in

the model. In particular, we introduce a ranker-specific covariate, xi, where

xi is a dummy variable, to the SP model. The probability is

P (ρi;πλ,πγ) =
πλ,ρi1 + πγ,ρi1xi

Ci
× πλ,ρi2 + πγ,ρi2xi
Ci − (πρi1 + πγ,ρi1xi)

×

πλ,ρi3 + πγ,ρi3xi
Ci − ((πλ,ρi1 + πγ,ρi1xi) + (πλ,ρi2 + πγ,ρi2xi))

× · · ·×

πλ,ρipi + πγ,ρipixi

Ci −
(
(πλ,ρi1 + πγ,ρi1xi) + · · ·+ (πλ,ρipi−1

+ πγ,ρipi−1
xi)
)

=
πλ,ρi1 + πγ,ρi1xi

Ci

pi∏
j=2

πλ,ρij + πγ,ρijxi

Ci −
∑j−1

m=1(πλ,ρim + πγ,ρimxi)
,

where Ci =
∑K

k=1(πλ,k + πγ,kxi) and where we impose the constraint

K∑
k=1

(πλ,k + πγ,k) = 1.
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6.5 Application to Sundarbans Dataset

We use the Sundarbans dataset throughout this section in order to investigate

the results from fitting various models. This dataset contains ties; therefore, we

compare the results from the PL model, the PL model with random ties, and

the PL model with Breslow approximation. We also evaluate the PL model

and the SP model. The S and I from the PRM are used to compare the

results from both models. After that the ROL model and the SP model with

one covariate are fitted to the Sundarbans dataset to find the covariates that

affect the villagers’ problems. Models are fitted by using the optim function

in R language. We chose Broyden–Fletcher–Goldfarb–Shanno (BFGS) as the

optimization algorithm, which is the same as in Chapter 5.

6.5.1 Evaluation of the Breslow and Random Approaches

for Tied Dataset

Three models are considered which are the PL model, the PL model with

Breslow approximation, and the PL model with random method for ties. The

●
●●

● ●
●

●● ● ● ● ● ● ●● ●
● ● ● ● ●● ●

●

●

−1

0

1

2

V
et

er
in

ar
y 

C
ar

e

T
hi

ev
es

E
le

ct
ric

ity

R
oa

ds
 &

 T
ra

ns
po

rt

Li
ve

st
oc

k 
F

od
de

r

W
ea

th
er

H
ea

lth
 C

ar
e

P
ira

te
s

O
th

er
 A

ni
m

al
s

W
at

er

H
ou

se
 C

on
st

ru
ct

io
n

La
nd

S
oi

l E
ro

si
on

O
th

er

E
du

ca
tio

n

T
ig

er

La
w

 E
nf

or
ce

m
en

t

A
ge

, H
ea

lth
 &

 In
ju

ry

S
hr

im
p 

Fa
rm

s

E
m

pl
oy

m
en

t

P
ol

iti
ca

l P
ro

bl
em

s 
&

 C
or

ru
pt

io
n

In
co

m
e 

&
 A

ss
et

s

F
is

h

F
oo

d 
C

os
ts

R
es

ou
rc

e 
R

es
tr

ic
tio

ns

Problem

λ̂

Method ● PL PL Breslow PL Random

Figure 6.3: Parameter estimates for the PL model, the PL model with Breslow
approximation, and the PL model with random when fitted to the Sundarbans
dataset

PL model does not have any approximation for ties. It treats the ties as
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if there are no ties by sorting the ties in ascending order according to the

problem ID. The PL model with random method is fitted to the dataset 500

times and the average of the estimates is computed. There are 62 rankings

that contain ties in the Sundarbans dataset. The estimated parameters from

all three methods, where Tiger problem is taken as the reference problem, are

shown in Figure 6.3. The λ̂PL-random are in between the λ̂PL-Breslow and the

λ̂PL. The λ̂PL-Breslow are higher than the others, except for one problem which

is Political and Corruption problem.

Considering computational time, the PL model with Breslow approxima-

tion and with random method are fitted 50 times. The average computational

times for the Breslow approximation and random method are 0.22 and 1.24

seconds. The Breslow approximation is faster than the random.

We use the PL model with the Breslow approximation in later experiments

when there is no covariate because it can incorporate ties.

6.5.2 Evaluation of the PL Model and the SP Model

First, we compare results from the SP model with results from the PL model

with the Breslow approximation as shown in Figure 6.4 where the Tiger prob-

lem is the reference problem. The figure shows that the SP model gives differ-

ent results from the PL model. The Tiger problem receives the highest score

from the SP model while the PL model indicates that Resource Restrictions

problem is the highest. Moreover, there is no obvious pattern in this figure.

Second, we compare results from the PL model and the SP model with the

severity (S) and incidence (I) scores calculated from PRM method. We plot

π̂PL against S and against I in Figure 6.5. Figure 6.5a shows that π̂PL has a

strong relationship with severity score. The π̂PL values capture the same trend

as the severity scores do, however, it is not a linear relationship. Conversely,

the plot comparing π̂PL and incidence does not show any pattern as presented



6. Open Ended Rankings 192

●● ●●

●

●
●

●

●
●●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

−4

−2

0

2

A
ge

, H
ea

lth
 &

 In
ju

ry

E
du

ca
tio

n

E
le

ct
ric

ity

E
m

pl
oy

m
en

t

F
is

h

F
oo

d 
C

os
ts

H
ea

lth
 C

ar
e

H
ou

se
 C

on
st

ru
ct

io
n

In
co

m
e 

&
 A

ss
et

s

La
nd

La
w

 E
nf

or
ce

m
en

t

Li
ve

st
oc

k 
F

od
de

r

O
th

er

O
th

er
 A

ni
m

al
s

P
ira

te
s

P
ol

iti
ca

l P
ro

bl
em

s 
&

 C
or

ru
pt

io
n

R
es

ou
rc

e 
R

es
tr

ic
tio

ns

R
oa

ds
 &

 T
ra

ns
po

rt

S
hr

im
p 

Fa
rm

s

S
oi

l E
ro

si
on

T
hi

ev
es

T
ig

er

V
et

er
in

ar
y 

C
ar

e

W
at

er

W
ea

th
er

Problem

λ̂

Model ● PL Breslow Proposed

Figure 6.4: Parameter estimates for the PL model and the SP model when
fitted to the Sundarbans dataset
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Figure 6.5: Parameter estimates from the PL model against the severity scores
and incidences from the PRM

in Figure 6.5b.

We also plot the π̂Propose against severity and incidence scores. The plots

give different conclusions from Figure 6.5. Figure 6.6a shows that there is

no obvious relationship between the π̂SP and the severity. However, the SP

model can capture the incidence as shown in Figure 6.6b. The π̂Propose have

an approximately linear relationship with the incidence. The line in the figure

is the simple linear regression line.

From the results above, we will use the rank-ordered logit (ROL) model to

find covariates that affect severity scores.
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Figure 6.6: Parameter estimates from the SP model against the severity scores
and incidences from the PRM

6.5.3 Evaluation of the ROL Model

The previous section shows that the estimates from the PL model have a rela-

tionship with the severity scores from the PRM. The ROL model is therefore

fitted to the Sundarbans dataset to find covariates that effect the severity

scores.

The assumption that no item is always ranked first or last is violated

when a ranker-specific covariate is introduced to the ROL model. Mainly the

problems that cause this have incidence less than 2.5% (less than ten partic-

ipants mentioned these problems). Eight problems have incidence less then

2.5% which are Fish, Resource Restrictions, Food Costs, Law Enforcement,

Thieves, Veterinary Care, House Construction, and other. We group these

problems together. Thus, there are 18 problems (K = 18) remaining after

grouping.

However, the household type covariate, Age, Health, and Injury also vio-

lates the assumption. Therefore, we group this problem with Other and then

17 problems are considered for household type. We remove two records from

the dataset because with the new grouping there is more than one problem

classified as Other in the records, then 379 records remain in the dataset.

LR statistics when there is only one ranker-specific covariate in the ROL model

are presented in Table 6.1. Household type is strongly significant.
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Table 6.1: LR statistics for the ROL model with only one covariate when fitted
to the Sundarbans dataset after grouped some problems

Covariate G2 df p-value

Village Location 14.50 17 0.631
Education (years) 17.48 17 0.423
Gender 15.16 17 0.584
Age (years) 19.73 17 0.288
Household (3 categories) 77.78 32 <0.001
Interview Type 11.96 17 0.802

The model allowing for differences in values across the household types.

Our objective is to examine the variations in the severity scores of different

types where Tiger problem is a reference problem. The model with Household

type is log(µρij) = λρij + γ1,ρijx1,1 + γ2,ρijx2,1 where x1 = 1 if Human Attack

and x2 = 1 if Livestock Attack, and 0 if No Conflict. The γ̂1, γ̂2, and their

standard errors are shown in Table 6.2.

Table 6.2: Parameter estimates, according to γ1, when there is only Household
type in the ROL model for the Sundarbans dataset with 17 problems (SE in
brackets)

Problem λ γ1 γ2

Political Problems
-0.841(1.118) 1.864(1.313) 1.393(1.231)

& Corruption
Livestock Fodder -1.618(1.082) 0.810(1.251) 0.913(1.406)
Education -0.449(0.368) 0.406(0.504) 0.945(0.557)
Employment 0.380(0.328) 0.342(0.417) -0.426(0.428)
Other -0.065(0.354) 0.257(0.487) 0.384(0.553)
Health Care -0.875(0.527) 0.121(0.660) 0.696(0.666)
Shrimp Farms 0.092(0.782) 0.084(1.106) 0.749(1.196)
Tiger 0 0 0
Roads & Transport -0.943(0.454) -0.101(0.660) -0.523(0.628)
Income & Assets 0.859(0.267) -0.231(0.387) -1.329(0.419)
Electricity -1.412(1.154) -0.237(1.634) -0.050(1.301)
Soil Erosion 0.685(0.801) -0.241(1.037) -1.927(1.068)
Weather -0.639(0.417) -0.250(0.520) -0.275(0.536)
Other Animals -0.011(0.795) -0.421(0.963) -1.585(1.348)
Pirates -0.244(0.381) -0.656(0.527) -0.322(0.489)
Land 0.221(0.447) -0.670(0.648) -1.328(0.975)
Water 0.579(0.375) -1.181(0.470) -1.084(0.462)
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The γ̂1 and γ̂2 are differences when compared with the households that

have no conflict with tigers. For example, Political Problems & Corruption has

a difference of 1.864 for the human attack household. Then exp(1.864) = 6.44,

this means the odds of more severity of Political Problems & Corruption prob-

lem than Tiger problem is 6.44 times as great for human attack household as

for no conflict household. We plot γ̂1 and γ̂2 for Human Attack and Livestock
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Figure 6.7: Parameter estimates when Household type covariate in the ROL
model for the Sundarbans dataset with 17 problems

Attack household types are illustrated in Figure 6.7. The No Conflict is a ref-

erence household type; therefore, it is always zero. We can see the differences

more easily from this figure. The severity scores for Weather and Electricity

problems do not differ across the household types.

6.5.4 Evaluation of the SP Model with a Ranker-Specific

Covariate

The SP model can present the incidence from the PRM method. We include a

covariate in the SP model to identify the covariates that affect the incidences.

We apply the SP model with one ranker-specific covariate to the Sundarbans

dataset with 18 problems. LR statistics when there is only one covariate
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included in the SP model are presented in Table 6.3. Most of the covariates

are strongly significant at 1% significance level except Age. Age as a continuous

covariate is not significant.

Table 6.3: LR statistics for the SP model when only one covariate in the model

Covariate G2 df p-value

Village Location 63.02 17 <0.001
Education (years) 37.50 17 0.002
Gender 103.08 17 <0.001
Age (years) 13.96 17 0.670
Household (3 categories) 103.08 34 <0.001
Interview Type 45.86 17 <0.001

Village Location is strongly significant in the SP model with xi = 1 if East

and 0 if West. The log-likelihood is -2814.30. We plot π̂East and π̂West against

incidence in east and west villages as shown in Figure 6.8, respectively. Figure
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Figure 6.8: Parameter estimates for the SP model with Village Location co-
variate where Village Location = 1 if East and and 0 if West against the
incidences from the PRM

6.8a shows that results from the SP model do not have a linear relationship

with IEast in the east villages. While in Figure 6.8b, we can observe that the

estimates have approximate linear relationship with IWest.

However, when we swap the reference group then xi = 1 if West and 0

if East, the log-likelihood is -2812.84. Ideally the reference group should not

effect the model but it does in the SP model with a ranker-specific covariate.
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The SP model is not symmetric. Again, we plot π̂East and π̂West against

incidence in east and west villages as shown in Figure 6.9, respectively. Results

●

●

●

●

●

●
●

●

●●

● ●

●

●
●

●

●

●

0.000

0.025

0.050

0.075

0.100

0.125

0.0 0.1 0.2 0.3 0.4
Incidence

π̂ E
as

t

(a) East Villages

●

●
●

●
●

●● ●

●
●

●● ●

●●

●● ●0.000

0.025

0.050

0.075

0.100

0.125

0.0 0.2 0.4 0.6
Incidence

π̂ W
es

t

(b) West Villages

Figure 6.9: Parameter estimates for the SP model with Village Location co-
variate where Village Location = 1 if West and and 0 if East against the
incidences from the PRM

are reversed compared to the previous figures. Figure 6.9a shows that π̂East

from the SP model has an approximate linear relationship with IEast in the

east villages. While, we can observe that the estimates from the west villages

do not have linear relationship with IWest.

We further investigate this case by splitting the original dataset into two

groups which are east villages and west villages, respectively. The SP model

without a covariate is applied to each group. The log-likelihood are -1864.68

and -1114.96 for east and west villages, respectively. The sum of log-likelihood

is -2799.64 which is not equal to the log-likelihood from the SP model with a

ranker-specific covariate. We plot the results against I in Figure 6.10. Figure

6.10 shows that the results from the SP method without covariate have an

approximately linear relationship with the incidences in east and west villages,

respectively.

6.6 Conclusions

In this chapter, we have explored another type of partial ranking data where

individuals are allowed to mention their own choices. Therefore, the number
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Figure 6.10: Parameter estimates for the SP model against the incidences from
the PRM

of choices varies between individuals. We suggest that the numbers of choices

can be modelled using the Poisson-Binomial distribution. This is because the

Poisson-Binomial distribution allows not-all-equal probabilities of successes.

We attempt to estimate the number of choices by using probabilities from the

logistic regression. After that we use these probabilities in order to generate

the numbers of choices. Our result shows that this process can approximate

the numbers of choices.

The Sundarbans dataset includes tied ranking. We consider two approx-

imations which are the Breslow approximation and random tie breaking for

the PL model. The results show that the estimates from the PL model with

the Breslow approximation are higher than for random tie breaking except

for one problem. We follow the idea of severity and incidence scores from the

PRM. We attempt to find models that are able to capture the same trend as

the severity and incidence scores. The estimates from the PL model with the

Breslow approximation are compared with the severity and incidence scores

calculated from the PRM method. The plots of the estimates from the PL

model against severity and incidence scores reveal that the estimates from the

PL model can capture the trend as the severity scores; however, there is no

obvious relationship with the incidence scores.

The SP model is applied to the Sundarbans dataset then the estimates are
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plotted against the severity and incidence scores. This reverses the previous

result. The estimates from the SP model have an approximately linear rela-

tionship with the incidence scores while there is no pattern with the severity

scores. We conclude that the PL model and the SP model can capture the

same trend as the severity and incidence scores, respectively.

Since the PL model can capture the severity scores, the ROL model is

considered in order to find covariates that affect the severity scores. The

result shows that only the Household Type covariate is significant.

We extend the SP model to incorporate a ranker-specific covariate in order

to find covariates that affect the incidence scores. However, analysis shows

that the SP model is not symmetric.



Chapter 7

Discussion

The work presented in this thesis provides a better understanding of modelling

partial ranking data and extending the algorithms for estimation and inference.

In this chapter, we summarize contributions and possible future work.

7.1 Contributions

In the analysis of partial ranking data, the Bradley-Terry (BT) and the Plackett-

Luce (PL) models are considered in Chapter 3. The existing package in R for

fitting the PL model suffers from slow computational time. We provide two

new R algorithms. One, PLem, is translated from Matlab code of Caron and

Doucet (2012). We implemented PLmm algorithm. Both algorithms perform

faster than the existing package. We also implemented the PLinfm algorithm

to calculate the observed information matrix.

We apply rank-breaking methods, which were introduced by Soufiani and

Parkes (2014), to partial rankings to break them into pairwise comparisons.

The BT model with different weightings is fitted to the paired data. We con-

sider BTw weighting which is suggested by Khetan and Oh (2016). We pro-

posed the BTw-Sqrt weighting and it performs better than the BTw weighting

when number of ranker is less than 2500. In other words, the BTw-Sqrt gives
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better performance when the number of rankers is small. In real world appli-

cations, it is unusual to have data that has more than 2500 rankers. Thus, the

BTw-Sqrt weighting is more practical. The rank-breaking method may useful

for researcher who is not similar in statistics area since the BT model is easier

to understand than the PL model.

Chapter 4, we try to find better selection methods than random selection in

order to choose informative subsets. Our proposed methods perform slightly

better than the existing methods, which are the D-optimality, E-optimality,

Wald, and random, in terms of both the Kendall tau correlation and MSE. The

Wald criterion does not perform well in our experiment. In paired comparison

data, which is studied by Aftab et al. (2011) and Pfeiffer et al. (2012), their

methods improve the estimates. However, the Wald criterion, which is based

on the idea of the t-test, does not perform well. One possible reason is that

there are 45 possible pairs when p = 10 and the average effect of 45 pairs is

being used instead of a single pair. The proposed methods are effective to

enable the PL to be fitted to data from fewer rankers than random selection.

We recommend to use one of our proposed methods at the beginning of surveys.

This is because the PL model converges with fewer rankers when using subsets

from the proposed methods.

In Chapter 5, we introduce two extensions of the PL model. In order to

include covariates in the PL model, the rank-ordered logit (ROL) model is

introduced. Our main contribution here is to extend the MM algorithm of

Hunter (2004) to the ROL model and implement ROLmm algorithm. The ROLmm

requires less computational time when compared with the optim function.

Another extension is the Benter model. We follow the work of Gormley and

Murphy (2008) and then implement the BMmm algorithm. The BMmm algorithm

performs slower than the optim function. The ROL model and the Benter

model are applied to the Animal dataset. The LR statistics show that both
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models fit better than the PL model.

We explore the rank-breaking idea from Chapter 3 a little further by in-

cluding a ranker-item-specific covariate, Familiarity, to the ROL model for

paired comparison data with the BTw and BTw-Sqrt weightings. The BTw-

Sqrt weighting performs better than the BTw weighing when compared with

the ROL model.

We propose a new model by combining the ROL model and the Benter

model in order to look for a deeper understanding of human choice preference.

The combined model is also fitted to the Animal dataset. The LR statistics

show that the combined model improves the fits when compared with the ROL

model. The bootstrap goodness-of-fit tests with the Kendall tau distance and

IOS statistics show that the combined model with Familiarity is an appropriate

model to fit the Group I data from the Animal dataset at 1% significance level.

We explore another type of ranking data in Chapter 6. In general, a tech-

nique known as Participatory Risk Mapping (PRM) is used to analyze this

kind of data. We would like to find appropriate models that can be used. We

showed that the results from the PL model are closely related to the severity

scores from the PRM. Furthermore, the ROL model incorporates covariates

but the PRM method cannot include any covariates. Another result from

the PRM method is incidences. We proposed a model, the Selection Prefer-

ence (SP) model, to capture incidences. The estimates from the SP model

have almost a linear relationship with incidence scores. We extend the SP

model by including a ranker-specific covariate. However, the SP model with a

ranker-specific covariate is not symmetric.

7.2 Future Work

In Chapter 2, Miller (1955) suggested that number of objects to be ranked

should be no more than seven. It would be nice if we can examine the effects
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of the different number of objects to be ranked on rankings. In this thesis, we

assume that rankings are ranked from best to worst; however, there are other

kinds of ranking behavior such as worst to best, best and worst etc. Suggested

future work is to find the way to test how the participants ranked the subsets.

In Chapter 3, the BT model with different weightings is fitted to the pair-

wise comparison data from the full rank-breaking method. A ranker-item-

specific covariate is included in this model as a pre-investigation in Chapter

5. The BT model with different weightings should explore further in this is-

sue. It is possible to get good estimates and reduce computational time when

compared with the ROL model.

In Chapter 4, the proposed methods mean that the PL model can be fitted

to the smaller data than random selection; however, they have a limitation that

they can perform only when p2 = K. We can adapt the proposed methods in

order to make them work even when p2 6= K.

In Chapter 5, we propose the ROLmm algorithm to fit the ROL model; how-

ever, the ROLmm algorithm cannot fit a continuous ranker-specific covariate. It

should be possible to extend this algorithm to incorporate a continuous ranker-

specific covariate. Moreover, it is interesting to explore interactions between

covariates. For example, the interaction between the Familiarity and the Start

Position. Another suggestion, the item-specific and ranker-item-specific co-

variates can may combine in the same update since these kids of covariates

use the Newton-Raphson method to estimate parameters. This may reduce

computational time.

Guiver and Snelson (2009) studied the PL model under the Bayesian frame-

work. Suggested future work involves extending a Bayesian approach to the

extensions of the PL model.

The combined model in Chapter 5 cannot incorporate a continuous ranker-

specific covariate. When we fitted the combined model to the Group I data
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from the Animal dataset with Age as continuous covariate, α̂ was close to

zero. The combined model needs to be explored further in order to include a

continuous ranker-specific covariate to the model.

We use the optim function to cross-check with the results from our algo-

rithms. Our algorithms, the BMmm and the CMmm, usually work well; however,

they fail occasionally. This issue needs more investigation.

Another suggested future work is to develop diagnostic techniques to im-

prove the ranking models, especially for the ROL model and the combined

model since they include covariates in the models.

The LR test is not a proper test for testing the Benter model because the

dampening parameter in the model is in the boundary of a parameter space.

This issue has to be explored more in order to find a suitable test for comparing

the PL model with the Benter model and the ROL model with the combined

model.

The rank-breaking method with covariates needs further investigation. The

BT model with weighting can be a good option for analyzing the partial rank-

ing data with covariates. It is interesting because the BT model is less com-

plicated than the ROL model.

The work in Chapter 6 explores another type of ranking data. The SP

model can capture incidences from the PRM method. Our suggestion is to

find a way to introduce covariates into the SP model and the model should

ideally be a symmetric model.
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