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THE INTEGRAL ISOMORPHISM BEHIND ROW REMOVAL

PHENOMENA FOR SCHUR ALGEBRAS

CHRISTOPHER BOWMAN AND EUGENIO GIANNELLI

Abstract. We explain and generalise row and column removal phenomena for
Schur algebras via integral isomorphisms between subquotients of these algebras.
In particular, we prove new reduction formulae for p-Kostka numbers.

1. Introduction

This paper is concerned with the study of the representation theory of the sym-
metric and general linear groups over k a field of characteristic p ≥ 0 or (more
generally) a commutative noetherian ring.

Given a partition λ of n into at most d non-zero parts, we have associated GLd-
modules: L(λ) the simple module of highest weight λ; ∆(λ) (respectively ∇(λ)) the
Weyl (respectively dual Weyl) module of highest weight λ; and I(λ) the injective
cover of L(λ). Applying the Schur functor to these modules, we obtain the simple
modules D(λ) (or zero); the Specht (and dual Specht) modules Sλ (and Sλ); and
the Young modules Y (λ) for the symmetric group Sn.

One of the main open problems in the representation theory of general linear and
symmetric groups is the following.

Problem A: Given λ and µ partitions of n, provide a combinatorial interpretation
of the decomposition numbers, dλµ = [∇(λ) : L(µ)].

It is well-known that Problem A is equivalent to the following (see for instance
[Jam83, Theorem 3.1] and [Erd96]).

Problem B: Given λ and µ partitions of n, provide a combinatorial interpretation
of the p-Kostka numbers, [Symλ(kd) : I(µ)] = Kλµ = [indSn

Sλ
(k) : Y (µ)].

Young modules, and p-Kostka numbers in particular, have been extensively stud-
ied; see for example [Erd93, Erd01, EH02, FHK08, Gil14, Gra85, Hen05, Jam83,
Kl83]. Of similar interest are questions concerning the cohomological structure of
the general linear and symmetric groups.

Problem C: Given λ and µ partitions of n, calculate the homomorphisms and Ext-
groups ExtiGLd

(∆(λ),∆(µ)), ExtiGLd
(∆(λ), L(µ)) and ExtiGLd

(L(λ), L(µ)) for i ≥ 0.

Let λ = (λ1, . . . , λd) and µ = (µ1, . . . , µd) be partitions of n. For any fixed
1 ≤ r ≤ d, we define partitions

λT = (λ1, λ2, . . . , λr), λB = (λr+1, λr+2, . . . , λd).
1
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We say that (λ, µ) admits a horizontal cut (after the rth row) if |λT | = m = |µT |
for some m ∈ N. Vertical column cuts are defined similarly.

Assuming that k is a (often algebraically closed) field, important reduction for-
mulas for Problems A, B, and C exist across the literature. The first result in
this direction, due to James [Jam81], reduced Problem A in the case of a first-row-
removal cut (the r = 1 case of the above). This was later extended to arbitrary
horizontal cuts by Donkin [Don85] and was later graded by Chuang–Miyachi–Tan
[CMT02]. In the case of Problem B, the first-row-removal result was conjectured
in [Hen05] and later proven by Fang–Henke–Koenig [FHK08]. The reduction the-
orem for the homomorphism and extension groups between two Weyl modules (or
between two Specht modules) by Donkin, Fayers–Lyle, Lyle–Mathas, and Parshall–
Scott [Don98, Don07, FL03, LM05, PS08].

The main result of this paper is Theorem 4.13. There we explicitly construct
a family of isomorphisms between products of subquotient algebras of the integral
forms of the Schur algebras of the general linear groups. As this isomorphism is
on the level of the integral forms of these Schur algebras, it allows us to relate the
representation theories of these algebras over any integral domain (this should be of
particular interest over commutative noetherian rings, when the Schur algebras are
quasi-hereditary). For the reader whose primary interest is representation theory
over a field, we remark that our isomorphism explains the fact that Problems A, B,
and C are ‘independent of the characteristic’ of the underlying field.

The isomorphisms of Theorem 4.13 allow us to explain and generalise all the afore-
mentioned horizontal row (and vertical columns) removal phenomena for the general
linear and symmetric groups and to (where relevant) extend them to arbitrary fields.
For example, we obtain new reductions for p-Kostka numbers (generalising the r = 1
case proven in [FHK08]) and for extension groups between Weyl and simple modules.

Corollary 1.1. Let (λ, µ) be a pair of partitions of n that admits a horizontal row
cut. Then we have equalities

Kλµ = KλTµT ·KλBµB dλµ = dλTµT · dλBµB
and isomorphisms between the Ext groups of a Weyl and simple module

Extk
Sk
n,d

(∆(λ), L(µ)) =
⊕
i+j=k

ExtiSk
m,r

(∆(λT ), L(µT ))⊗ Extj
Sk
n−m,d−r

(∆(λB), L(µB))

and similar isomorphisms between the Ext groups of two Weyl modules

Extk
Sk
n,d

(∆(λ),∆(µ)) =
⊕
i+j=k

ExtiSk
m,r

(∆(λT ),∆(µT ))⊗ Extj
Sk
n−m,d−r

(∆(λB),∆(µB)).

and similar results hold for pairs of partitions admitting a vertical column cut.

The paper is structured as follows. In the first two sections we give a review of
the construction of the Schur algebra and tensor space. The exposition here does
not follow the chronological development of the theory, but is cherry-picked to be
as simple and combinatorial as possible. We follow Doty–Giaquinto [DG02] for the
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definition of the Schur algebra via generators and relations. We also recall J. A.
Green’s construction of the co-determinant basis of the Schur algebra and Murphy’s
construction of an analogous basis of tensor space. We stress that Sections 2 and 3
of this paper do not contain any new results — however they do provide a new and
slick presentation to this material which unifies various ideas and approaches taken
in the literature.

In Section 4 we construct explicit isomorphisms between subquotients of the Schur
algebra and tensor space (Theorem 4.13). As a consequence, we prove Corollary 1.1.
In Section 5 we recall standard facts concerning the Schur functor and hence restate
the results of Section 4 in the setting of the symmetric group. Finally for those
in-the-know, we remark that all of our methods and results can be easily quantised
to the q-Schur and Hecke algebras; we have refrained from doing this (although it
is routine) as we believe one of the merits of our approach is its stark simplicity.

Acknowledgements. The authors are grateful for the financial support received
from the Royal Commission for the Exhibition of 1851 and from the ERC Advanced
Grant 291512. The first author also thanks the TU Kaiserslautern for their hos-
pitality during the early stages of this project. We also thank the referee for their
careful reading and helpful comments.

2. The combinatorics of tensor space

We let Λn,d denote the set of compositions of n into at most d non-zero parts.
That is, the set of sequences, λ = (λ1, λ2, . . . , λd), of non-negative integers such that
the sum |λ| = λ1 + λ2 + · · · + λd equals n. We let Λ+

n,d ⊆ Λn,d denote the subset

consisting of the sequences λ = (λ1, λ2, . . . , λd) such that λ1 ≥ λ2 ≥ · · · ≥ λd and
refer to such sequences as partitions. With a partition, λ, is associated its Young
diagram, which is the set of nodes

[λ] =
{

(i, j) ∈ Z2
>0 | j ≤ λi

}
.

We let λ′ denote the conjugate partition obtained by flipping the Young diagram [λ]
through the north-west to south-easterly diagonal. Given λ, µ ∈ Λ+

n,d we say that λ

dominates µ, and write λ D µ if∑
1≤i≤r λi ≥

∑
1≤i≤r µi

for all 1 ≤ r ≤ d. There is a surjective map Λn,d → Λ+
n,d given by rearranging the

rows of a composition to obtain a partition in the obvious fashion (for example if
n = 9 and d = 4, then (5, 0, 1, 3) 7→ (5, 3, 1, 0)). Under the pullback of this map we
obtain the dominance ordering on the set of compositions, Λn,d, and we extend the
notation in the obvious fashion.

Given λ ∈ Λ+
n,d and µ ∈ Λn,d, we define a λ-tableau of weight µ to be a map

T : [λ] → {1, . . . , d} such that µi = |{x ∈ [λ] : T(x) = i}| for i ≥ 1. If T is a λ-
tableau of weight µ, we say that T is semistandard if the rows are weakly increasing
from left to right and the columns are strictly increasing from top to bottom. We
let Tλ denote the unique element of SStd(λ, λ).
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The set of all semistandard tableaux of shape λ and weight µ is denoted SStd(λ, µ)
and we let SStd(λ,−) := ∪µ∈Λn,dSStd(λ, µ). For d ≥ n, we have that ω = (1n, 0d−n)

belongs to Λ+
n,d. We refer to the tableaux of weight ω as the set of standard tableaux;

we let Std(λ) := SStd(λ, ω). We let tλ denote the element of Std(λ) in which the
first row contains the entries 1, 2, . . . , λ1 the second row contains entries λ1 +1, λ1 +
2, . . . , λ2 etc.

2.1. Symmetric groups and tensor space. Let k be an integral domain. Fix a
pair n, d of positive integers and let kd be the k-module of rank d, spanned by the
column vectors, v1, . . . , vd, over k and let T = (kd)⊗n, denote the the nth tensor
power of kd. The module T is called tensor space. Tensor space has a natural basis
given by the elementary tensors of the form

vi1 ⊗ vi2 · · · ⊗ vin ,
for some (i1, i2, . . . , in) ∈ {1, . . . , d}n. We let S{1,2,...,n} (or simply Sn) denote the
symmetric group of permutations of the set {1, 2, . . . , n}. The symmetric group Sn

acts naturally on the right of T. This action is given by the place permutation of
the subscripts of the elementary tensors,

(vi1 ⊗ vi2 · · · ⊗ vin) · s = vis−1(1)
⊗ vis−1(2)

· · · ⊗ vis−1(n)
.

and extending k-linearly.

Given µ ∈ Λn,d and w an elementary tensor in T, we say that the vector w has
weight µ if |{ix | 1 ≤ x ≤ n, ix = j}| = µj , for all j ∈ {1, . . . , d}. We define the
µ-weight space to be the subspace Tµ of T spanned by the set of elementary tensors
of weight µ.

It is clear that the symmetric group acts by transitively permuting the set of
elementary vectors of a given weight, µ ∈ Λn,d. In particular, the elementary tensor

e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
µ1

⊗ e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
µ2

⊗ . . . ⊗ ed ⊗ · · · ⊗ ed︸ ︷︷ ︸
µd

is a generator of the Sn-module Tµ and the stabiliser subgroup, denoted Sµ, is
equal to the subgroup

S{1,2,...,µ1} ×S{µ1+1,µ1+2,...,µ2} × · · · ×S{n−µd+1,n−µd+2,...,n}.

2.2. Murphy’s basis of tensor space. We shall now define Murphy’s basis of
tensor space over several steps

• Let λ ∈ Λ+
n,d and µ ∈ Λn,d. Given S ∈ SStd(λ, µ) we define the row-reading

element eS ∈ T by recording the entries of S, as read from left to right along
successive rows, as the subscripts in the tensor power. For example, if

S =
1 1 3
2 2

then

eS = v1 ⊗ v1 ⊗ v3 ⊗ v2 ⊗ v2.
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• For λ ∈ Λ+
n,d, we have a corresponding Young subgroup Sλ of Sn given by

the stabiliser of eTλ . We let Oλ(eS) denote the orbit sum of vectors conjugate
to eS under the natural right action of Sλ.
• For t ∈ Std(λ) we let dt denote the permutation on n letters such that

(tλ)dt = t.
• Given S ∈ SStd(λ, µ) and t ∈ Std(λ). We define

ρSt = (Oλ(eS))dt

Theorem 2.1 (Murphy [Mur95]). Tensor space T = (kd)⊗n is free as a Z-module
with basis given by

{ρTt | T ∈ SStd(λ, µ), t ∈ Std(λ), λ ∈ Λ+
n,d, µ ∈ Λn,d}.

Example 2.2. Given λ = (3, 2), µ = (2, 2, 1) and S as above, we have that

ρStλ = v1 ⊗ v1 ⊗ v3 ⊗ v2 ⊗ v2 + v1 ⊗ v3 ⊗ v1 ⊗ v2 ⊗ v2 + v3 ⊗ v1 ⊗ v1 ⊗ v2 ⊗ v2.

Example 2.3. Tensor space T = (k2)⊗4 is 16 dimensional. We have that Λ4,2 =
{(2, 2), (3, 1), (1, 3), (4, 0), (0, 4)}. The semistandard tableaux, S, T, and U of weight
(2, 2) are as follows

1 1
2 2

1 1 2
2

1 1 2 2 .

The standard tableaux s1, s2, t1, t2, t3 and u are as follows

1 2
3 4

1 3
2 4

1 2 3
4

1 2 4
3

1 3 4
2

1 2 3 4 .

The space of vectors of weight (2, 2) is 6-dimensional with basis

ρSs1 =v1 ⊗ v1 ⊗ v2 ⊗ v2

ρSs2 =v1 ⊗ v2 ⊗ v1 ⊗ v2

ρTt1 =v1 ⊗ v1 ⊗ v2 ⊗ v2 + v1 ⊗ v2 ⊗ v1 ⊗ v2 + v2 ⊗ v1 ⊗ v1 ⊗ v2

ρTt2 =v1 ⊗ v1 ⊗ v2 ⊗ v2 + v1 ⊗ v2 ⊗ v2 ⊗ v1 + v2 ⊗ v1 ⊗ v2 ⊗ v1

ρTt3 =v1 ⊗ v2 ⊗ v1 ⊗ v2 + v1 ⊗ v2 ⊗ v2 ⊗ v1 + v2 ⊗ v2 ⊗ v1 ⊗ v1

ρUu =v1 ⊗ v1 ⊗ v2 ⊗ v2 + v1 ⊗ v2 ⊗ v1 ⊗ v2 + v1 ⊗ v2 ⊗ v2 ⊗ v1

+ v2 ⊗ v1 ⊗ v1 ⊗ v2 + v2 ⊗ v1 ⊗ v2 ⊗ v1 + v2 ⊗ v2 ⊗ v1 ⊗ v1.

3. The Schur algebra and the co-determinant basis

Let Φ be the root system of type Ad−1: Φ = {εi − εj | 1 ≤ i 6= j ≤ d}. Here the

εis form the standard orthonormal basis of the euclidean space Rd. Let ( , ) denote
the inner product on this space and define αi = εi − εi+1. Then {α1, . . . , αd−1} is a
base of simple roots and Φ+ = {εi − εj | i < j} is the corresponding set of positive
roots.

The following definition of the Schur algebra over Q is due to Doty and Giaquinto
[DG02, Theorem 2.4] and is very much inspired by Lusztig’s modified form of the
quantum universal enveloping algebra.
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Definition 3.1. The Q-algebra SQ
n,d is the associative algebra (with 1) given by

generators 1λ (λ ∈ Λn,d), ei,i+1, fi,i+1 (1 ≤ i ≤ d− 1) subject to the relations

1λ1µ = δλµ1λ,
∑

λ∈Λn,d

1λ = 1(R1)

ei,i+1fj,j+1 − fj,j+1ei,i+1 = δij
∑

λ∈Λn,d

(αi, λ) 1λ(R2)

ei,i+11λ =

{
1λ+αiei,i+1 if λ+ αi ∈ Λn,d

0 otherwise
(R3)

fi,i+11λ =

{
1λ−αifi,i+1 if λ− αi ∈ Λn,d

0 otherwise
(R4)

1λei,i+1 =

{
ei,i+11λ−αi if λ− αi ∈ Λn,d

0 otherwise
(R5)

1λfi,i+1 =

{
fi,i+11λ+αi if λ+ αi ∈ Λn,d

0 otherwise
(R6)

Here, for λ = (λ1, λ2, . . . , λn) ∈ Λn,d we identify λ + αi with the composition
(λ1, λ2, . . . , λi−1, λi + 1, λi+1 − 1, λi+2, . . . , λn).

Remark 3.2. It was pointed out by Rouquier (see [DG, Introduction]) that the
Serre relations (R7) and (R8) as stated in [DG02, Theorem 1.4] follow from (R1) to
(R6) and hence may be omitted.

Definition 3.3. For 1 ≤ i < j ≤ d, we inductively define elements

ei,j = ei,j−1ej−1,j − ej−1,jei,j−1 fi,j = fj−1,jfi,j−1 − fi,j−1fj−1,j .

We define the divided powers

e
[m]
i,j =

emi,j
m!

f
[m]
i,j =

fmi,j
m!

We formally set ei,i = 1 = fi,i. The integral Schur algebra SZ
n,d is the subring of SQ

n,d

generated by all divided powers and the idempotents 1λ for λ ∈ Λn,d.

Moreover, SQ
n,d acts naturally on T as follows,

ei,i+1(vj1 ⊗ . . .⊗ vjn) =
∑

1≤a≤n
ja=i+1

(vj1 ⊗ . . .⊗ vja−1 ⊗ . . . ⊗ . . . vjn)

fi,i+1(vj1 ⊗ . . .⊗ vjn) =
∑

1≤a≤n
ja=i

(vj1 ⊗ . . .⊗ vja+1 ⊗ . . . ⊗ . . . vjn)

1λ(vj1 ⊗ vj2 ⊗ . . . vjn) =

{
(vj1 ⊗ vj2 ⊗ . . . vjn) if the vector is of weight λ

0 otherwise
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The action of the divided powers is easily deduced from the above. Let v ∈ T be
a tensor with p occurrences of the tensorand vj for 1 ≤ j ≤ d. The divided power

e
[m]
i,j sends v to the sum over the

(
p
m

)
vectors obtainable from v by swapping a total

of m of the vj ’s for vi’s. The other divided powers, f
[m]
i,j , act similarly.

Definition 3.4. Given 1 ≤ i, j ≤ d and T ∈ SStd(λ, µ), we let T(i, j) denote the
number of entries equal to j lying in the ith row of T. Since T is semistandard we
have that T(i, j) = 0 for i > j and

∑
1≤i≤d T(i, j) = µj .

Definition 3.5. Given S,T ∈ SStd(λ, µ) we let

ξSλ =

d∏
i=1

 d∏
j=1

f
[S(i,j)]
i,j

 ξλT =

1∏
i=d

 1∏
j=d

e
[T(i,j)]
i,j


(notice the ordering on these products) and we define

ξST = ξSλ1λξλT

Example 3.6. Let λ = (3, 3), µ = (2, 2, 1, 1), and ν = (2, 1, 2, 1). We let S and T
denote the tableaux

1 1 3
2 2 4

1 1 2
3 3 4

,

respectively. We have that S ∈ SStd(λ, µ), T ∈ SStd(λ, ν). We have that S(2, 4) = 1,
S(2, 2) = 2, S(1, 3) = 1, S(1, 1) = 2, and all other S(i, j) are equal to zero. Similarly,
T(1, 2) = 1, T(2, 3) = 2, T(2, 4) = 1 and all other T(i, j) = 0. Therefore,

ξST = f
[1]
1,3f

[1]
2,41λe

[1]
2,4e

[2]
2,3e

[1]
1,2.

We now reconstruct Green’s co-determinant of the Schur algebra [Gre93]. While
the basis itself is well-known, this formulation in terms of Doty and Guiaquinto’s
presentation is new and is necessary for our proof of the main theorem.

Theorem 3.7. The Schur algebra SZ
n,d is free as a Z-module with basis

{ξST | S ∈ SStd(λ, µ),T ∈ SStd(λ, ν) for λ ∈ Λ+
n,d, µ, ν ∈ Λn,d}.

If S ∈ SStd(λ,−), T ∈ SStd(λ,−) for some λ ∈ Λ+
n,d, and a ∈ SZ

n,d then there exist

scalars r(a;S,U) ∈ Z, which do not depend on T, such that

aξST =
∑

U∈SStd(λ,−)

r(a; S,U)ξUT mod (SZ
n,d)

Bλ

where (SZ
n,d)

Bλ is two-sided ideal generated by the idempotent∑
{µ∈Λn,d|µBλ}

1µ.

The ideal (SZ
n,d)

Bλ is spanned by

{ξQR | Q,R ∈ SStd(µ,−), µ ∈ Λ+
n,d, µ B λ}.
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Moreover, the Z-linear map ∗ : SZ
n,d → SZ

n,d determined by (ξST)∗ = ξTS, for all

λ ∈ Λ+
n,d and all S,T ∈ SStd(λ,−), is an anti-isomorphism of SZ

n,d. Therefore the

Schur algebra is a cellular algebra in the sense of [GL96].

Proof. In [DJM98] the authors constructed a cellular basis of EndkSn(T). Having es-
tablished the action of Doty and Guiaquinto’s presentation on tensor space, it is easy
to see that the ξST ∈ Endk(T) defined above coincide precisely with the construc-
tion of the corresponding homomorphisms (denoted by ϕST) defined in [DJM98] as
endomorphisms of tensor space. Thus the statement above is merely a re-imagining
of [DJM98, The semistandard basis theorem]. �

Definition 3.8. Given k a commutative noetherian ring, we define the Schur algebra
to be Sk

n,d := SZ
n,d ⊗ k.

We remark that the algebra Sk
n,d is quasi-hereditary (for k any commutative noe-

therian ring) by [Gre93, Corollary 7.2].

Definition 3.9. Given λ ∈ Λ+
n,d, we define the Weyl module ∆Z(λ) to be the left

SZ
n,d–module with basis

{ξSTλ + (SZ
n,d)

Bλ | S ∈ SStd(λ,−)}

and the dual Weyl module ∇Z(λ) to be the left SZ
n,d–module with basis

{ρStλ + TBλ | S ∈ SStd(λ,−)},
where TBλ is the left SZ

n,d–module of T with basis {ρSt | S ∈ SStd(µ,−), t ∈
Std(µ), µ B λ}. We let ∆k(λ) (respectively ∇k(λ)) denote the module ∆Z(λ) ⊗R k
(respectively ∇Z(λ)⊗R k). When the context is clear, we drop the ring over which
the module is defined.

Definition 3.10. If a module, M , has a filtration of the form

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = M

where each Mi+1/Mi for 1 ≤ i < k is isomorphic to some ∆(λ(i)) (respectively

∇(λ(i))) for some λ(i) ∈ Λ+
n,d, then we say that M has a ∆- (respectively ∇-)

filtration and write M ∈ F(∆) (respectively M ∈ F(∇)).

Definition 3.11. For any λ ∈ Λ+
n,d there exists a unique tilting module T (λ) for

Sk
n,d of highest weight λ with both a ∆- and ∇-filtration.

Given any λ ∈ Λ+
n,d the Weyl module, ∆(λ), is equipped with a bilinear form

〈 , 〉λ determined by
ξUSξTV ≡ 〈ξSTλ , ξTTλ〉λξU,V

modulo Span{ξST | S,T ∈ SStd(µ,−) and µ B λ} for S,T,U,V ∈ SStd(λ,−). We
define L(λ) to be the quotient of the corresponding Weyl module ∆(λ) by the
radical of the bilinear form 〈 , 〉λ. Finally we denote by I(λ) the injective envelope
of L(λ) as an Sk

n,d-module.
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3.1. Generalised symmetric powers. For λ ∈ Λ+
n,d, µ ∈ Λn,d and t ∈ Std(λ)

let µ(t) be the λ-tableau of weight µ obtained from t by replacing each entry i in
t by r if i appears in row r of tµ. Given t ∈ Std(λ), we let [t]µ denote the set
{s ∈ Std(λ) | µ(s) = µ(t)}. If T ∈ SStd(λ, µ), we write t ∈ T if µ(t) = T. On
the other hand, it will be convenient to say that µ(t) = 0, whenever µ(t) is not
semistandard. Finally, for S,T ∈ SStd(λ, µ) we set

ρST :=
∑
t∈T

ρSt.(7)

Remark 3.12. In the case that µ = ω, the map ω : Std(λ) → SStd(λ, ω) is
the bijective map which identifies standard tableaux with semistandard tableaux of
weight ω.

Example 3.13. Let n = 4 and d = 2. Adopting the same notation as in Example
2.3 it is easy to observe that there is a unique element of SStd(λ, (2, 2)) for each
λ ∈ Λ+

4,2. These are the tableaux S, T and U of Example 2.3. The pullback under

Std(λ)→ SStd(λ, (2, 2)) is given by

[s1](2,2) = {s1} [t1](2,2) = {t1, t2} [u](2,2) = {u},
for λ equal to (2, 2), (3, 1) and (4), respectively. Therefore

ρTT =e1 ⊗ e2 ⊗ e1 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2

+ e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e2 ⊗ e1 + 2e1 ⊗ e1 ⊗ e2 ⊗ e2.

Definition 3.14. Given µ ∈ Λn,d, we let

Symµ(kd) = Symµ1(kd)⊗ · · · ⊗ Symµd(kd)
denote the generalised symmetric tensor of the natural Sk

n,d-module, kd.

Proposition 3.15. Let k be a field. The module Symµ(kd) has a basis given by
sums of elements in the Murphy basis of tensor space of Theorem 2.1, as follows

{ρST | S ∈ SStd(λ, ν),T ∈ SStd(λ, µ), λ ∈ Λ+
n,d, ν ∈ Λn,d}.

Proof. For each S ∈ SStd(λ, ν) and T ∈ SStd(λ, µ) we have that Sµ acts transitively

on the set {ρSt | t ∈ T}. Moreover, the stabiliser of any element ρSt is Sµ∩d−1
t Sλdt

(see for example [Mat99, Proposition 4.4]). Therefore the element ρST is fixed by
the action of Sµ. Hence, for every S ∈ SStd(λ, ν) and T ∈ SStd(λ, µ) we have that

ρST ∈ Symµ(kd).
The elements ρSt are linearly independent and the orbits {t | µ(t) = T} for

T ∈ SStd(λ, µ) are disjoint. Therefore the elements ρST are linearly independent
(over any field, as their coefficients in the sum in equation (7) are all 0 or 1). The
result now follows from a dimension count using the formula

dimk(Symµ(kd)) =
∑
λ

[Symµ(kd) : ∇(λ)] dimk(∇(λ)) =
∑
λ

|SStd(λ, µ)||SStd(λ, ν)|

where the second equality is simply Young’s rule [Jam78, Section 14] together with
the cellular basis of Definition 3.9. �
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Proposition 3.16 (Lemma 3.4 [Don93]). Let k be a field. The injective indecom-
posable Sk

n,d-modules, I(λ), are precisely the indecomposable summands of Symµ(kd)
for λ, µ ∈ Λ+

n,d. For µ, λ ∈ Λ+
n,d, we have

[Symµ(kd) : I(λ)] = Kµλ = dim 1λL(µ)

where the coefficients, Kµλ, are known as the p-Kostka numbers. In particular,

[Symµ(kd) : I(λ)] = 1 for λ = µ and 0 unless µ E λ.

4. Isomorphisms between subquotients of integral Schur algebras

In this section, we prove the main results of this paper, culminating in Theorem
4.13 below. In Subsection 4.1 we consider certain subsets, Λ+

n,d(r, c,m) ⊆ Λ+
n,d. We

recall the definition of generalised row cuts on pairs of partitions and show that if
(λ, µ) admit such a cut and λ B µ, then λ and µ both belong to one our subsets
Λ+
n,d(r, c,m). In Subsections 4.2 and 4.3 we construct explicit isomorphisms between

certain subquotients of the Schur algebras corresponding to the sets Λ+
n,d(r, c,m);

all of these isomorphisms are given simply on the level of the tableaux bases.

The subquotients in which we are interested are of the following form.

Definition 4.1. Let P denote a partially ordered set and Q denote a subset of P .
We say that Q is saturated if for any α ∈ Q and β ∈ P with β C α, we have that
β ∈ Q. We say that Q is co-saturated if its complement in P is saturated. If a set
is saturated, co-saturated, or the intersection of a saturated and a co-saturated set,
we shall say that it is closed under the dominance order.

Definition 4.2. Let M be a Sk
n,d-module, and π ⊆ Λ+

n,d denote some closed subset

under the dominance order. We say that M belongs to π if the simple composition
factors of M are labelled by weights from π. We write M ∈ Fπ(∆) (respectively
M ∈ Fπ(∇)) if M has a ∆-filtration (respectively ∇-filtration) in which the ∆
(respectively ∇) factors are labelled by weights from π.

We shall use standard facts about saturated and co-saturated sets in what fol-
lows, referring to [CPS88] (or [Don98, Appendix]) for more details. Much of the
representation theoretic information is preserved under taking such subquotients.
In particular, this allows us to simplify the proof and slightly extend the (unquan-
tised) results of [Jam81, LM05] and [Don98, 4.2(17)]. In Subsection 4.3 we then
deduce that higher extension groups and decomposition numbers are preserved un-
der taking generalised row cuts. In Subsection 4.4, we consider the image of the
generalised symmetric powers under these functors and hence prove Corollary 1.1.

4.1. Combinatorics of partitions and generalised row cuts. We now recall
the combinatorics of generalised row cuts. Given a partition λ ∈ Λn,d and 1 ≤ r ≤ d,
we let

λT = (λ1, λ2, . . . , λr), λB = (λr+1, λr+2, . . . , λd).
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Definition 4.3. Given r, c,m ∈ N, we let Λn,d(r, c,m) ⊆ Λn,d denote the set

{λ ∈ Λn,d | λj ≤ c ≤ λi, for 1 ≤ i ≤ r and r + 1 ≤ j ≤ d, |λT | = m}
and we let

Λ+
n,d(r, c,m) = {λ ∈ Λ+

n,d | λr ≥ c ≥ λr+1, |λT | = m}
in other words, Λ+

n,d(r, c,m) = Λ+
n,d ∩ Λn,d(r, c,m). Extending the above notation

we denote by Λ+
n,d(0, c, 0) the subset of Λ+

n,d consisting of all the partitions λ such

that λ1 ≤ c.

Remark 4.4. The subset Λ+
n,d(r, c,m) ⊆ Λ+

n,d can be thought of diagrammatically
as in Figure 1.

r

c

λT

λB

Figure 1. A partition λ such that λr ≥ c ≥ λr+1.

Proposition 4.5. The map λ 7→ λT × λB is a bijection between Λn,d(r, c,m) and
Λm,r(r, c,m) × Λn−m,d−r(0, c, 0). Moreover, for λ, µ ∈ Λn,d(r, c,m), we have that

λ D µ if and only if λT D µT and λB D µB. This restricts in the obvious way to the
sets of partitions as the subsets of compositions.

Proof. Clear from the definitions. �

Example 4.6. For example, the map in Proposition 4.5 takes the element in Fig-
ure 1 to the pair of elements in Figure 2.

Let r, c,m ∈ N be such that Λ+
n,d(r, c,m) 6= ∅. We note that the set Λ+

n,d(r, c,m)

has a unique maximal and a unique minimal element (under the dominance ordering
on partitions). One can describe these partitions directly, however we use Proposi-
tion 4.5 to make the statements simpler. The unique maximal and minimal elements
of any non-empty Λ+

z,r(0, c, 0) are equal to

α(r, c, z) = (cb
z
c c, z − cb zc c) and ζ(r, c, z) = (rb

z
r c, z − rb zr c)

′

respectively. For r, c ≥ z we have that α(r, c, z) = (z) and ζ(r, c, z) = (1z). Finally,
given two partitions λ, µ ∈ Λ(n, d), we set

λ+ µ = (λ1 + µ1, λ2 + µ2, . . . , λd + µd).
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r

c

λT
0

c

λB

Figure 2. The element of Λ+
m,r(r, c,m)×Λ+

n−m,d−r(0, c, 0) obtained

from the element in Figure 1 under the map in Proposition 4.5.

Proposition 4.7. If Λ+
n,d(r, c,m) 6= ∅, then it has a unique maximal element

σ := σ(r, c,m) = (cr, α(d− r, c, n−m)) + (m− cr)
and a unique minimal element

γ := γ(r, c,m) = (cr, ζ(d− r, c, n−m)) + ζ(r,m− cr,m− cr).

Proof. This follows from Proposition 4.5. �

Having defined the maximal and minimal elements of Λ+
n,d(r, c,m) we now define

Σ+
n,d(r, c,m) ={µ ∈ Λ+

n,d | µ E σ}

Γ+
n,d(r, c,m) ={µ ∈ Λ+

n,d | µ D γ}.

The set Σ+
n,d(r, c,m) (respectively Γ+

n,d(r, c,m)) is clearly a saturated (respectively

co-saturated) subset of Λ+
n,d in the sense of [Don98, Appendix].

We let Γn,d(r, c,m) (respectively Σn,d(r, c,m)) denote the sets of compositions

which can be obtained from a partition in Γ+
n,d(r, c,m) (respectively Σ+

n,d(r, c,m))

by permutation of the rows {1, . . . , r} and the rows {r + 1, . . . , d}. The sets of
minimal and maximal elements of Λn,d(r, c,m) are those which are mapped to γ

and σ respectively under the map Λn,d(r, c,m)→ Λ+
n,d(r, c,m).

Example 4.8. The set Λ+
11,5(3, 2, 9) consists of six elements

(5, 23) (4, 3, 22) (33, 2) (5, 22, 12) (4, 3, 2, 12) (33, 12)

and here we have σ = (5, 23) and γ = (33, 12).

Proposition 4.9. We have that

Λ+
n,d(r, c,m) = Σ+

n,d(r, c,m) ∩ Γ+
n,d(r, c,m)

Proof. It is clear that Λ+
n,d(r, c,m) ⊆ Σ+

n,d(r, c,m)∩ Γ+
n,d(r, c,m). We now prove the

reverse containment. Suppose that µ ∈ Λ+
n,d is such that γ E µ E σ. We have that∑

1≤i≤r γi = m =
∑

1≤i≤r σi and therefore

m ≤
∑

1≤i≤r µi ≤ m.
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Therefore
∑

1≤i≤r µi = m; putting this together with µ E σ and σr ≥ c, we deduce
that µr ≥ c. Similarly, we have that µ E σ and σr+1 ≤ c; therefore µr+1 ≤ c.
Therefore µ ∈ Λ+

n,d(r, c,m), as required. �

Definition 4.10. Given λ, µ ∈ Λn,d and 1 ≤ r ≤ d, we say that λ and µ admit a
horizontal cut after the rth row if∑

1≤i≤r
λi =

∑
1≤i≤r

µi.

Proposition 4.11. Let λ, µ ∈ Λ+
n,d be a pair of partitions that admits a horizontal

cut after the rth row. If λ D µ, then µ ∈ Λ+
n,d(r, λr, |λ

T |). Moreover λ D µ if and

only if λT D µT and λB D µB.

Proof. Let λ, µ ∈ Λ+
n,d and suppose that λ and µ admit a horizontal cut after the

rth row and λ D µ. In which case,

µr+1 ≤ λr+1 ≤ λr ≤ µr
and so µ ∈ Λ+

n,d(r, λr, |λ
T |). The second statement is clear. �

4.2. Subquotient algebras of Schur algebras. Let Ω be any subset of Λn,d. We
denote by 1Ω the idempotent defined by

1Ω =
∑
µ∈Ω

1µ.

Given r, c,m ∈ N, it will be convenient to denote 1Λ+
n,d(r,c,m) by 1n,dr,c,m. Similarly we

will denote by SZ(Λ+
n,d(r, c,m)) the associated subquotient algebra

SZ(Λ+
n,d(r, c,m)) = 1Γ+

n,d(r,c,m)(S
Z
n,d/S

Z
n,d1Λn,d\Σn,d(r,c,m)S

Z
n,d)1Γ+

n,d(r,c,m).

We have a functor hr,c,m : SZ
n,d-mod→ SZ

n,d(Λ
+
n,d(r, c,m))-mod given by

hr,c,m(M) = 1Γ+
n,d(r,c,m)(M/〈1Λn,d\Σn,d(r,c,m)M〉).

We let Sk
n,d(Λ

+
n,d(r, c,m)) = SZ

n,d(Λ
+
n,d(r, c,m))⊗ k.

Proposition 4.12. The algebra SZ
n,d(Λ

+
n,d(r, c,m)) has identity 1n,dr,c,m. The algebra

is free as a Z-module with cellular basis

{ξST | S ∈ SStd(λ, µ),T ∈ SStd(λ, ν) for λ, µ, ν ∈ Λ+
n,d(r, c,m)}.

The algebra Sk
n,d(Λ

+
n,d(r, c,m)) is quasi-hereditary with a full set of non-isomorphic

simple, standard, injective, and tilting Sk
n,d(Λ

+
n,d(r, c,m))-modules given by

hr,c,m(L(λ)) hr,c,m(∆(λ)) hr,c,m(I(λ)) hr,c,m(T (λ))

respectively, for λ ∈ Λ+
n,d(r, c,m). We have that

[∆(λ) : L(µ)]Sk
n,d

= [hr,c,m(∆(λ)) : hr,c,m(L(µ))]Sk(Λ+
n,d(r,c,m)).
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Let N be any module belonging to Σ+
n,d(r, c,m) and let M ∈ FΛ+

n,d(r,c,m)(∆), we have

Extj
Sk
n,d

(M,N) ∼= Extj
Sk(Λ+

n,d(r,c,m))
(hr,c,m(M), hr,c,m(N)).

Proof. Given λ, µ, ν and S ∈ SStd(λ, µ), T ∈ SStd(λ, ν) we have that

ξST = ξSλ1λξλT = 1µξSλξλT = ξSλξλT1ν ,

and so the algebra SZ
n,d(Λ

+
n,d(r, c,m)) has the stated integral cellular basis. We have

Γ+
n,d(r, c,m) and Σ+

n,d(r, c,m) are saturated and co-saturated sets and therefore the

result follows by first applying [Don98, Propositions A3.11 and A3.13] followed by
[Don98, Propositions A3.3 and A3.4]. �

4.3. Isomorphisms between subquotients of integral Schur algebras. We
now construct the isomorphism between the subquotient algebras in which we are
interested. We first extend the combinatorics of cuts to semistandard tableaux.
Given λ, µ ∈ Λ+

n,d(r, c,m), let

ψ : SStd(λ, µ) −→ SStd(λT , µT )× SStd(λB, µB),

be the map defined as follows. For S ∈ SStd(λ, µ), let ψ(S) = ST × SB, where ST

is obtained from S by deleting the (r+ 1)th, (r+ 2)th, . . . rows; and SB is obtained
from S by deleting the first r rows and replacing each entry i with the entry i− r.

We briefly show that ψ is a well defined bijection. Since S is semistandard,
for all j ∈ {1, . . . , r} we have that j appears only in the first r rows of S. Since
|µT | = |λT | = m, we deduce that no number greater than r appears in the first r rows
of S. Hence ST ∈ SStd(λT , µT ). From this it clearly follows that SB ∈ SStd(λB, µB).
Hence ψ is well defined. Let now η be the map from SStd(λT , µT ) × SStd(λB, µB)
to SStd(λ, µ), defined as follows. Let S × T ∈ SStd(λT , µT ) × SStd(λB, µB). We

denote by T̃ the tableau obtained by replacing each entry i of T by i + r. For all
j ∈ {1, 2, . . . , r} let the jth row of η(S × T) coincide with the jth row of S. For
all j ∈ {r + 1, . . . , n} let the jth row of η(S × T) coincide with the (j − r)th row

of T̃. The map η is well defined, since η(S× T) is clearly an element of SStd(λ, µ).
Moreover, ψ · η is the identity map of SStd(λT , µT )× SStd(λB, µB) and η · ψ is the
identity map of SStd(λ, µ). This shows that ψ is a bijection.

Theorem 4.13. The map

ϕ : SZ(Λ+
n,d(r, c,m))→ SZ(Λ+

m,r(r, c,m))× SZ(Λ+
n−m,d−r(0, c, 0))

given by

ϕ(ξST) = ξSTTT × ξSBTB

is an isomorphism of Z-algebras.
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Proof. The map ϕ is an isomorphism of Z-modules by definition. If T ∈ SStd(λ, µ)
and T(i, j) 6= 0, then this implies i, j ∈ {1, . . . , r} or i, j ∈ {r + 1, . . . , d}. Therefore
we can factorise the elements ξλT as follows,

ξλT =

d∏
i=1

d∏
j=1

e
[T(i,j)]
i,j =

 d∏
i=r+1

d∏
j=r+1

e
[T(i,j)]
i,j

×
 r∏
i=1

r∏
j=1

e
[T(i,j)]
i,j

 =: ξλTB × ξλTT

and similarly for the elements ξSλ. We remark that the symbols ξλTB and ξλTT
are naturally defined by the equation above. Therefore given S ∈ SStd(λ, α), T ∈
SStd(λ, β) and U ∈ SStd(µ, γ) and V ∈ SStd(µ, δ) we have that

ξSTξUV = (ξSTλ1λξλTT ξSBλ1λξλTB )(ξUTµ1µξµVT ξUBµ1µξµVB )

= 1α(ξSTλξλTT ξSBλξλTB )(ξUTµξµVT ξUBµξµVB )1δ

= 1α(ξSTλξλTT ξUTµξµVT )(ξSBλξλTBξUBµξµVB )1δ

= 1α

(
r(ST ,TT ,UT ,VT ,WT ,XT )ξWTXT + SZ(Σ+

n,d(r, c,m))
)

×
(
r(SB,TB,UB,VB,WB,XB)ξWBXB + SZ(Σ+

n,d(r, c,m))
)

1δ

where WT ∈ SStd(−, α), XT ∈ SStd(−, β) and WB ∈ SStd(−, γ), XB ∈ SStd(−, δ)
and where r(ST ,TT ,UT ,VT ,WT ,XT ), r(SB,TB,UB,VB,WB,XB) ∈ Z. This is be-
cause the product ξSTλξλTT ξSBλξλTB (respectively ξUTµξµVT ξUBµξµVB ) can be writ-
ten entirely in divided powers of the ei,i+1 and fi,i+1 for 1 ≤ i ≤ r − 1 (respectively
r + 1 ≤ i ≤ d− 1).

Therefore, the map ϕ can be seen to be given by taking the products of generators
on the left-hand side to those of the right-hand side as follows:

ϕ(1λ) =

{
1λT × 1λB if λ ∈ Λn,d(r, c,m)

0 otherwise

ϕ(e
[m]
i,i+1) =

{
e

[m]
i,i+1 × 1n−m,d−r0,c,0 if 1 ≤ i ≤ r − 1

1m,rr,c,m × e[m]
i−r,i−r+1 if r + 1 ≤ i ≤ d

ϕ(f
[m]
i,i+1) =

{
f

[m]
i,i+1 × 1n−m,d−r0,c,0 if 1 ≤ i ≤ r − 1

1m,rr,c,m × f [m]
i−r,i−r+1 if r + 1 ≤ i ≤ d

and the products can easily be seen to agree modulo the respective ideals. �

We immediately obtain a new reduction theorem concerning extension groups be-
tween a Weyl module and a simple module and reprove reduction theorems concern-
ing extension groups between a pair of Weyl modules [LM05] and [Don98, 4.2(17)].

Corollary 4.14. Let k be a commutative noetherian ring. If λ, µ admit a horizontal
cut after the rth row, then we have the following isomorphisms between Ext-groups

Extk
Sk
n,d

(∆(λ), L(µ)) ∼=
⊕
i+j=k

ExtiSk
m,r

(∆(λT ), L(µT ))⊗ Extj
Sk
n−m,d−r

(∆(λB), L(µB)).
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and

Extk
Sk
n,d

(∆(λ),∆(µ)) ∼=
⊕
i+j=k

ExtiSk
m,r

(∆(λT ),∆(µT ))⊗ Extj
Sk
n−m,d−r

(∆(λB),∆(µB)).

Moreover, we have the following equality of decomposition numbers

[∆(λ) : L(µ)] = [∆(λT ) : L(µT )]× [∆(λB) : L(µB)].

Proof. This is immediate from Proposition 4.11 and Theorem 4.13. �

Corollary 4.15. Let k be a commutative noetherian ring. Let T (λ) be a tilting
module whose ∆-factors belong to Λ+

n,d(r, c,m). For µ ∈ Λ+
n,d(r, c,m) we have that

Extk
Sk
n,d

(T (λ), L(µ)) ∼=
⊕
i+j=k

ExtiSk
m,r

(T (λT ), L(µT ))⊗ Extj
Sk
n−m,d−r

(T (λB), L(µB)).

Proof. This is immediate from Proposition 4.11 and Theorem 4.13. �

Remark 4.16 (Removing a single row). We now consider the example of row cuts
for r = 1. In this case, the isomorphisms above (and implications for decomposition
numbers and extension groups) were proven in [FHK08]. In this case, the results
can also be seen to follow by tensoring with the determinant representation and
applying a duality (as noted by Donkin in [FHK08, Appendix]).

4.4. Generalised symmetric powers and p-Kostka numbers. By Proposi-
tion 4.12, we know that injective, standard, and simple modules are all preserved
under the functors hr,c,m and the isomorphism ϕ. It remains to check that the
generalised symmetric powers are also preserved.

Theorem 4.17. Let k be an arbitrary field. Given λ, µ ∈ Λ+
n,d(r, c,m), we have that

hr,c,m(Symµ(kd)) ∼= hr,c,m(SymµT (kr))⊗ h0,c,0(SymµB (kd−r))

and

hr,c,m(I(λ)) ∼= hr,c,m(I(λT ))⊗ h0,c,0(I(λB).

In particular, the p-Kostka numbers are preserved under generalised row cuts.

Proof. First, we note that Kµλ 6= 0 implies λ D µ. The isomorphism of injective
modules is clear from Proposition 4.12 and Theorem 4.13. The result will there-
fore follow once we prove the isomorphism between the images of the generalised
symmetric powers. Recall that the module Symµ(kd) has basis

{ρST | S ∈ SStd(λ, ν),T ∈ SStd(λ, µ), λ ∈ Λ+
n,d, ν ∈ Λn,d}.

Therefore hr,c,m(Symµ(kd)) is the module with basis

{ρST | S ∈ SStd(λ, ν),T ∈ SStd(λ, µ), λ, ν ∈ Λ+
n,d(r, c,m)}

and, of course, one obtains similar bases for both of the modules hr,c,m(SymµT (kr))
and h0,c,0(SymµB (kd−r)).
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Any T ∈ SStd(λ, µ) has the entry s in each of the first c columns of the sth row
for each 1 ≤ s ≤ r. Therefore, any tableau t such that µ(t) 6= 0 must necessarily
have entries 1, . . . ,m in the first r rows and the entries m+1, . . . , n in the final d−r
rows. Therefore, for λ, µ ∈ Λ+

n,d(r, c,m), we have that the set

{s ∈ Std(λ) | µ(s) 6= 0}
is naturally in bijection with the set

{t ∈ Std(λT ) | µT (t) 6= 0} × {u ∈ Std(λB) | µB(u) 6= 0},
via the map ϕ(s) = sT × sB, where

• sT is obtained from s by deleting the (r + 1)th, (r + 2)th, . . . rows;
• sB is obtained from s by deleting the first r rows and replacing each entry i

with the entry entry i−m.

Therefore, the map : T 7→ TT × TB lifts to an isomorphism

ψ : hr,c,m(Symλ(kd)) −→ hr,c,m(SymλT (kr))⊗ h0,c,0(SymλB (kd−r))
given by

ψ (ρST) = ψ

(∑
t∈T

ρSt

)
=

 ∑
tT∈TT

ρST tT

×
 ∑

tB∈TB
ρSBtB

 = ρSTTT × ρSBTB .

To complete the proof, it is enough to observe that if λ does not dominate µ then
either λT does not dominate µT or λB does not dominate µB, by Proposition 4.11.
Hence, by Proposition 3.16, we have that Kµλ = 0 = KµTλT ·KµBλB . �

4.5. Generalised column cuts. Given λ ∈ Λ+
n,d and 1 ≤ c ≤ n, we define parti-

tions

λL = (λ′1, λ
′
2, . . . λ

′
c)
′ λR = (λ′c+1, . . . λ

′
n)′.

We say that a pair of partitions λ and µ admit a generalised column cut after the
cth column if ∑

1≤i≤c
λ′i =

∑
1≤i≤c

µ′i

for some 1 ≤ c ≤ n. One can define similar subsets of Λ+
n,d(r, c,m) and generalise all

the arguments and isomorphisms of the previous sections to cover these reduction
theorems for generalised column cuts. However, it is also easy to deduce these results
in two steps as follows. If c = 1, the isomorphisms are easily deduced by tensoring
with the determinant representation (plus the use of an idempotent truncation if
d < n, see [FHK08] for more details). The result now follows by applying this
isomorphism along with the isomorphisms of Proposition 4.12. These arguments
are standard for such results, see [FL03, Proof of Proposition 2.4]. We go through
this argument more explicitly for p-Kostka numbers below.

Corollary 4.18. The p-Kostka numbers are preserved under generalised column
cuts. In other words, Kλµ = KλLµLKλRµR .
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Proof. Suppose that λ, µ ∈ Λ+
n,d are such that λ D µ and (λ, µ) admits a vertical cut

after the cth column; we let r = λ′c. It is easy to see that (λ, µ) admits a horizontal
cut after the rth row. Therefore,

Kλµ = KλTµTKλBµB

= K(λT1 −c,...λTr −c)(µT1 −c,...µTr −c)
KλBµB

= KλRµRKλBµB

= KλRµRK(cr,λB)(cr,µB)

= KλRµRKλLµL

where the first equality follows from Theorem 4.17; the second (respectively fourth)
equality follows from a total of c applications of first column removal [FHK08,
Corollary 9.1] (respectively r applications of first row addition Theorem 4.17); and
the third and fifth equalities follows by definition and our choice of r = λ′c. �

Remark 4.19. In the case r = 1 or c = 1, the above reduction theorems for
p-Kostka numbers were first proven in [FHK08].

5. The Schur functor

When d ≥ n, the symmetric group acts faithfully on 1ωT and we obtain an iso-
morphic copy of kSn as the idempotent subalgebra 1ωS

k
n,d1ω of Sk

n,d. In this section,

we recall how one can use this idempotent truncation map (the Schur functor) to
the study of the representation theory of kSn.

5.1. The Murphy basis of the symmetric group. Given t ∈ Std(λ), recall that
dt is the element of Sn such that (tλ)dt = t. For λ ∈ Λ+

n,d we denote by xλ the

element of the group algebra of the symmetric group defined by

xλ =
∑
x∈Sλ

x.

Theorem 5.1 (Murphy). The group algebra of the symmetric group is free as a
Z-module with basis

{xst | xst := dsxλd
−1
t , s, t ∈ Std(λ) for λ ∈ Λ+

n,d}.

Recall our bijective map ω : Std(λ) → SStd(λ, ω). Suppose that ω(s) = S and
ω(t) = T. Under this identification we obtain an isomorphism 1ωS

k
n,d1ω

∼= kSn

given by : ξST 7→ xst. Therefore the basis in Theorem 5.1 is a cellular basis (in the
sense of [GL96]) under the inherited cell structure (in other words, it satisfies the
properties detailed in Theorem 3.7). In particular, we have the following.

Definition 5.2. Given λ ∈ Λ+
n,d, we define the Specht module Sλ to be the left

kSn–module with basis

{xstλ + kSBλn | s ∈ Std(λ)}
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where kSBλn is the k-module with basis {xuv | u, v ∈ Std(µ), µ B λ}. Similarly, we
define the dual Specht module Sλ to be the left kSn–module with basis

{ρSTλ + 1ωTBλ | S ∈ SStd(λ, ω)}
where 1ωTBλ is the k-module with basis {ρUv | U ∈ SStd(µ, ω), v ∈ Std(µ), µ B λ}.

Definition 5.3. We say that λ ∈ Λ+
n,d is p-restricted if λi−λi+1 < p for all 1 ≤ i < d.

If λ ∈ Λ+
n,d is not p-restricted, we say that it is p-singular.

Each Specht module Sλ is equipped with the bilinear form 〈 , 〉λ, inherited from
the idempotent truncation. This form is degenerate if and only if λ is p-singular.
Given a p-restricted λ ∈ Λ+

n,d, we define the the simple module D(λ) to be the

quotient of the Specht module Sλ by the radical of the the bilinear form 〈 , 〉λ. By
elementary properties of idempotent truncation functors, we have that

[Sλ : D(µ)] = [∆(λ) : L(µ)]

for all λ ∈ Λ+
n,d and all p-restricted µ ∈ Λ+

n,d. By Corollary 4.14, we have the

following corollary (see also [Don85]).

Corollary 5.4. Let λ denote a partition of n and let µ denote a p-regular partition
of n. If (λ, µ) admit a horizontal cut after the rth row, then

[Sλ : D(µ)] = [Sλ
T

: D(µT )]× [Sλ
B

: D(µB)].

Proof. This follows immediately from Corollary 4.14 and the above. �

5.2. Young permutation modules. Given µ ∈ Λn,d, we let M(µ) denote the
image of the generalised symmetric power under the Schur functor,

M(µ) = 1ω(Symµ(kd)).
We refer to these modules as the Young permutation modules. By definition, the
module M(µ) has basis given by the subset of all the vectors of weight ω in Propo-
sition 3.15 as follows

{ρST | S ∈ SStd(λ, ω),T ∈ SStd(λ, µ), λ ∈ Λ+
n,d}.

Under the identification of SStd(λ, ω) and Std(λ), we recover Murphy’s basis of
these permutation modules [Mur95].

Proposition 5.5 (J. A. Green [Gre80]). For λ, µ ∈ Λ+
n,d, the module M(µ) decom-

poses as a direct sum as follows

M(µ) =
⊕
λ`n

KµλY (λ)

where Y (λ) = 1ω(I(λ)); we refer to the module Y (λ) as the indecomposable Young
module of weight λ.

Corollary 5.6. Let k be a field. If (λ, µ) admit a horizontal cut after the rth row,
then

[M(λ) : Y (µ)] = [M(λT ) : Y (µT )]× [M(λB) : Y (µB)].
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Proof. This follows immediately from Theorem 4.17 and the above. �

5.3. The faithfulness of the Schur functor. The following theorem, first proved
in [KN01, Section 6.4] and [Don07, Proposition 10.5], states the degree to which
cohomological information is preserved under the Schur functor.

Theorem 5.7. Let k denote an algebraically closed field of characteristic p ≥ 3.
The Schur algebra Sk

n,d is a (p − 3)-faithful cover (in the sense of [Rou08]) of the
symmetric group, kSn. That is,

Exti
Sk
n,d

(∆(λ),∆(µ)) ∼= ExtikSn(Sλ, Sµ)

for all λ, µ ∈ Λ+
n,d and all 0 ≤ i ≤ p− 3.

Corollary 5.8. Let k denote an algebraically closed field of characteristic p ≥ 3. If
(λ, µ) admit a horizontal cut after the rth row, then

ExtikSn(Sλ, Sµ) ∼=
⊕
i+j=k

ExtikSm(Sλ
T
, Sµ

T
)⊗ ExtjkSn−m(Sλ

B
, Sµ

B
)

for all λ, µ ∈ Λ+
n,d and all 0 ≤ i ≤ p− 3.

Proof. This follows immediately from Corollary 4.14 and the above. �

Remark 5.9. This result can be partially extended to p = 2 [LM05, Theorem 1.1].

Remark 5.10. These results can be extended to cyclotomic Hecke algebras [FS].
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