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Abstract

When colonising host-niches or non-animated medical devices, individual cells of the fungal pathogen Candida albicans
expand into significant biomasses. Here we show that within such biomasses, fungal metabolically generated CO2 acts as a
communication molecule promoting the switch from yeast to filamentous growth essential for C. albicans pathology. We
find that CO2-mediated intra-colony signalling involves the adenylyl cyclase protein (Cyr1p), a multi-sensor recently found to
coordinate fungal responses to serum and bacterial peptidoglycan. We further identify Lys 1373 as essential for CO2/
bicarbonate regulation of Cyr1p. Disruption of the CO2/bicarbonate receptor-site interferes selectively with C. albicans
filamentation within fungal biomasses. Comparisons between the Drosophila melanogaster infection model and the mouse
model of disseminated candidiasis, suggest that metabolic CO2 sensing may be important for initial colonisation and
epithelial invasion. Our results reveal the existence of a gaseous Candida signalling pathway and its molecular mechanism
and provide insights into an evolutionary conserved CO2-signalling system.
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Introduction

Candida albicans is the predominant fungal pathogen of humans.

In healthy individuals C. albicans resides as a commensal of the

gastrointestinal, oral and vaginal tracts. C. albicans can cause

superficial infections which, although not life threatening, provide

discomfort to the individual and require treatment with antifungals

which is a constant drain on hospitals resources. However, C.

albicans infections are life threatening when the individual’s

immune system becomes compromised as a result of age, cancer,

chemotherapy hospitalisation and AIDS. Under these circum-

stances superficial infections may readily develop into systemic

disease where mortality rates are reported to be up to 40%, which

is higher than those for most bacterial infections [1,2,3]. For

example, oropharyngeal candidiasis is common in patients with

haematological malignancies (up to 60%) and those undergoing

radiotherapy [4,5,6]. Here, a few fungal cells develop into

biomasses measuring several millimetres in diameter that pene-

trate and invade the underlying tissue, eventually leading to

dissemination of Candida into the blood stream and subsequently

systemic infection [7].

Development from superficial infection to invasive disease is

mediated by many well characterised virulence factors including

morphological transition. C. albicans can exist in yeast, pseudohy-

phal and true hyphal growth forms, all of which are important for

the virulence of the organism [8]. Yeast cells are thought to be

essential for growth and dissemination [9], while the hyphal forms

are essential for invading mucosal membranes [9]. This morpho-

logical transition is mediated by host environmental cues including

temperature, pH, serum, O2, and CO2, which the pathogen

encounters during disease progression [5,10,11].

The virulence-associated morphological transitions of C. albicans

are largely controlled through the secondary messenger cAMP. In

C. albicans, cAMP is synthesised by the fungal adenylyl cyclase (AC),

Cyr1p [12], a member of the Class III nucleotidyl cyclase family

[13]. Activity of Cyr1p governs most processes essential to C. albicans

virulence including tissue adhesion followed by the invasion of the

underlying host-barriers, and biofilm formation [14]. C. albicans AC

activity is subject to both positive and negative regulation, with an

increasing number of molecules directly interacting with specific

domains of the protein [10,15,16]. For example, bacterial

peptidoglycan stimulates Cyr1p via the enzyme’s leucine-rich-

region [16], and CO2/HCO3
2 directly activates the Cyr1p C-

terminal catalytic domain [10]. These forms of regulation enable C.

albicans to recognise and respond (via filamentation) to specific host

environmental conditions during disease progression.
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In addition to host environmental cues, the morphological

transition of C. albicans is also regulated by soluble chemical

mediators, termed quorum sensing molecules (QSMs). QSMs are

secreted into the environment by a variety of microorganisms [for

recent reviews see 17,18], and upon reaching threshold

concentrations, impact on microbial behaviour by influencing

expression of virulence determinants [19]. QSMs including the

self-generated sesquiterpene farnesol [20] and 3-oxo-C12

homoserine lactone (HSL) secreted by Pseudomonas aeruginosa

[21] inhibit C. albicans filamentation though cAMP dependent

signalling cascades [22].

Further to soluble chemical mediators, volatile compounds can

also act as signalling molecules. For example, in Saccharomyces

cerevisiae, nutrient limited yeast cells release volatile ammonia,

which when sensed by another colony inhibits its growth in the

direction of the signal [23]. CO2 is a volatile gas that has recently

been described as a predominant regulator of C. albicans virulence

factors and has been shown to effect the virulence of other

microbial species [24,25]. In C. albicans CO2 functions in two

processes key to pathogenicity, one metabolic and the other cell

signalling to promote filamentation [10]. In biological systems

CO2 is maintained in equilibrium with its hydrated form, HCO3
2,

via the actions of carbonic anhydrase. HCO3
2 is required for

metabolism, but when at high concentrations HCO3
2 directly

activates adenylyl cyclase increasing cytosolic cAMP and promot-

ing filamentation [10]. To date, only the effects of high (5%)

exogenous CO2 concentrations have been investigated in

microbial species. However, microbes continuously secrete

metabolically generated CO2 into their immediate microenviron-

ment at levels perceived to be lower than 5%. Here, we investigate

the effects of self generated CO2 on pathogenicity associated traits

of C. albicans. Previously we identified the carbonic anhydrase,

Nce103p, as being essential for growth under CO2 limiting

conditions [10]. Now we explore a new application of the mutant

strain Dnce103 as a CO2 biosensor to report on CO2 concentra-

tions within fungal biomasses. Using our CO2-dependent bio-

sensing strain, we demonstrate that build-up of self-generated,

metabolic CO2 occurs in a fungal population. Furthermore, we

show that CO2 mediates its effects as a hierarchy, with low

concentrations of CO2 functioning to fill metabolic demand, then

once CO2 exceeds a critical threshold, it promotes filamentation

and subsequent surface invasion of the pathogen. We show that

microbial CO2, like environmental CO2, is sensed by the AC

catalytic domain and identify a bicarbonate receptor site in Cyr1p.

Results

C. albicans-generated CO2 accumulates under diffusion-
limiting conditions

CO2 is generated during metabolism and acts as an important

cellular signalling molecule in many organisms. CO2 influences

microbial virulence and organisms behaviours such as mating,

feeding or ventilation [26]. We confirmed that, when grown under

diffusion-limiting conditions (i.e., closed systems), C. albicans

accumulated self-generated CO2 (Figure 1 A, B). Next we asked

whether self-generated CO2 could be utilized by C. albicans to meet

the organism’s growth requirements. In normal atmospheres,

(0.03% CO2) the C. albicans carbonic anhydrase (CA), Nce103p, is

essential for catalyzing the hydration of CO2 to bicarbonate to

meet metabolic demands. Therefore, in ‘open’ systems (i.e., under

the 0.03% CO2 in air), deletion of NCE103 results in a depletion of

bicarbonate levels which inhibits growth. However, at elevated

CO2 concentrations (such as 5% CO2 experienced by C. albicans

when inside an infected mammalian host) there is sufficient CO2

spontaneously hydrated to bicarbonate to meet the metabolic

Author Summary

Pathogenic microorganisms can produce a variety of
secondary metabolites and signalling molecules which
can affect the host, or provide them with a selective
advantage against competing commensal organisms. We
demonstrate that gaseous, metabolically generated CO2

can serve as a signalling molecule to enhance the
organism’s virulence during infection establishment by
using the fungal pathogen Candida albicans as a model.
Furthermore, we identified a CO2 receptor site within the
catalytic domain of the soluble adenylyl cyclase, Cyr1p,
which is critical for CO2 sensing and hence virulence of the
organism. CO2 sensing is conserved in a variety of
pathogenic species, and increased levels have been shown
to suppress the host’s immune system. Thus, CO2 sensing
may represent a mechanism to enhance C. albicans
virulence when the host’s immune system is suppressed.

Figure 1. Closed systems enable CO2 accumulation. 10,000 Wild
type cells were inoculated onto 10 ml DMEM pH7 agar in BacT/ALERT
bottles. Bottles were either incubated as an open system (A) where free
diffusion of metabolically generated gases was permitted or as a closed
system (B) where diffusion was inhibited. CO2 accumulation was
measured for 48 hr at 37uC in BacT/ALERT 3D automated microbial
detection system (bioMerieux). Reflective units depicted on the X-axis
are a direct measurement of the CO2 concentration in the system (see
material and methods for details).
doi:10.1371/journal.ppat.1001193.g001

Fungal Population Signalling and CO2
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requirements restoring growth (Figure 2A). Therefore, the

carbonic anhydrase mutant (TK1; Dnce103) can only grow in

environments with elevated concentrations of CO2 [10], and as a

result, functions as a CO2 bio-indicator. The Dnce103 bio-indicator

strain failed to grow when co-incubated with wild type (SC5314;

WT) cells in an open system, but grew in the presence of WT C.

albicans in a closed system without exogenously supplied CO2

(Figure 2B). Furthermore, incubation of surplus (10,000 CFUs/

plate) Dnce103, on its own, in closed but not open systems also

restored the growth of Dnce103 (Figure S1), suggesting that in

closed systems the elevated CO2 levels are sufficient to

complement the growth of Dnce103.

To confirm that it was volatile CO2 generated by the WT strain

which restored growth to the Dnce103 CO2 bio-indicator strain, we

included hydroxide into the closed system, which specifically traps

CO2 in the form of carbonate [27]. Solid sodium hydroxide

interfered with the growth of the Dnce103 CO2 bio-indicator

strain, but not WT (Figure 2C). The diminished growth in the

presence of sodium hydroxide is most likely caused by CO2

trapping and not oxygen depletion, as oxygen levels are not

influenced by the CO2 trap. Taken together, these results reveal

that metabolically generated CO2 can provide sufficient HCO3
2

to meet the metabolic demands of C. albicans, and that this CO2

can be provided in the form of a volatile signal from neighbouring

colonies.

Consistent with the idea that the CO2 generated by WT C.

albicans is supplying CO2/HCO3
2 to meet the metabolic demand

of the Dnce103 bio-indicator strain, rescue was independent from

the cAMP signalling system, as the Dcyr1-Dnce103 strain (RH12)

was also complemented when incubated at elevated CO2

(Figure 2A). These data suggest that there is sufficient CO2

generated during normal metabolism of WT C. albicans to support

the growth of the Dnce103 bio-indicator strain, as long as diffusion

of the generated CO2 is limited.

CO2 accumulates inside a fungal biomass
We next asked whether CO2 levels sufficient for signalling

would build-up within a fungal biomass. To address this question,

we grew the Dnce103 CO2 bio-indicator strain on its own, or mixed

with equal numbers of DAY286, a Dhis1 strain which is wild type

for carbonic anhydrase and adenylyl cyclase, in an open system to

specifically test whether CO2 accumulation could occur between

cells growing in the same biomass. Using the different auxotrophic

tags (HIS+ and HIS2) to distinguish the two strains after

incubation within mixed biomasses, we were able to directly test

whether metabolically generated CO2 from DAY286 could

complement the growth of Dnce103, while Dnce103 on its own

would be restricted in growth. Co-incubation of Dnce103 with

DAY286 enhanced the recovery of Dnce103 600-fold

(p = .0.0001) when compared to incubation of the CO2 bio-

indicator strain on its own (Figure 3). To exclude that DAY286

was able to fill the metabolic demands of Dnce103 by providing

other metabolic intermediates other than CO2, the Dnce103 strain

was also co-incubated with a surplus (16106 cells) of heat-killed

DAY286 cells. However, co-incubation of Dnce103 and heat-killed

DAY286 did not enhance the recovery of Dnce103 compared to

incubation of the CO2 bio-indicator strain alone (Figure 3,

p = .0.0001), suggesting that within a fungal biomass, even in an

open system, there is an accumulation of metabolic CO2 sufficient

to promote the growth of Dnce103. These data also prove that the

carbonic anhydrase is essential because it ‘captures’ metabolically

generated CO2 as HCO3
2 which is needed to meet metabolic

requirements of cells deep within the colony.

The volatile messenger CO2 affects C. albicans colony
morphology

CO2 is not only required for metabolism, but it also acts as a

signal for cAMP-dependent filamentation of C. albicans. Therefore,

we sought to determine whether metabolically generated CO2

Figure 2. CO2 as a self generated volatile communication molecule. A) Cell dilutions (5 ml) of CAI4-pSM2, Dnce103-pSM2 and Dcyr1-Dnce103-
pSM2 were spotted onto YNB plates and incubated in the presence of 0.03% (air) or 5% CO2 for 48 hours. B) 1000 wild type cells and 200 Dnce103
cells were inoculated onto separate CBA plates and both plates placed together into zip-locked polyvinyl chloride bags, which were sealed (closed
system; top) or left open (open system; bottom) and incubated at 37uC for 48 hours. C) Wild type and Dnce103 cells were incubated in a closed
system, as described in B), in the absence or presence of a NaOH trap.
doi:10.1371/journal.ppat.1001193.g002

Fungal Population Signalling and CO2
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could act within a biomass to modulate morphology. To test

whether C. albicans produces sufficient CO2 to affect filamentation,

we incubated wild type cells under open and closed conditions. In

open systems, no colonies filamented, while under closed

conditions, we observed changes in colony morphology after

48 hours. Plating 500 CFUs produced extensive filamentous

colonies (Figure 4A). Microscopic analysis of resuspended colonies

confirmed that the majority of the cells filamented in the closed

system (forming a highly interwoven mass of cells resistant to

mechanical stress; Figure 4A). As C. albicans hyphal induction is

critically dependent on cAMP signalling cascades [12], we tested a

strain deficient for adenylyl cyclase CR276-CTRL (RH20; Dcyr1)

in our open and closed systems. The Dcyr1 strain did not show any

changes in colony morphology, even when incubation periods

were extended to 72 hours to account for its known reduced

growth rate (Figure 4B). Additionally, altered morphology was

independent of carbonic anhydrase, as Dnce103, but not Dcyr1-

Dnce103, formed filaments in the presence of 5% CO2 (Figure 4C).

Interestingly, the extent of filamentation of the WT strain was

biomass dependent. At 48 hours, plating in the presence of 50

CFUs generated wrinkled colonies (Figure 4D), which were not

fully filamentous.

Addition of the hydroxide trap into the closed system inhibited

the morphological transition observed previously (Figure 4E).

Furthermore, microscopic inspection of WT colonies, after co-

incubation with Dnce103 in closed environments, confirmed that

the colonies were smooth, round, yeast colonies, similar to those

observed in the open system (data not shown). These observations

suggest that the Dnce103 strain acts as a CO2 sink removing the

majority of the gas from the system. Therefore, C. albicans

produces CO2 which affects morphology, and cAMP is essential

for the observed morphological effects.

Fungal CO2/HCO3
2 sensing is mediated by lysine 1373 of

the Cyr1p catalytic domain
Directly testing the in vivo relevance of CO2 chemosensing

would be greatly facilitated by an adenylyl cyclase variant with

specifically diminished CO2 sensitivity. Previously we have shown

that CO2/HCO3
2 activates the catalytic domain of the fungal

adenylyl cyclase, Cyr1p [10], confirming that this Class III AC

belongs to the bicarbonate-responsive soluble AC (sAC) subfamily

[13,28]. Structural studies and in vitro work on mutated bacterial

sAC-family enzymes indicated a mechanism for bicarbonate

regulation, along with a potential bicarbonate binding site

[29,30]. However, it remains to be shown whether the mechanism

of activation and potential binding site generally apply to sAC-like

enzymes, in particular from eukaryotes, and whether they are

responsible for the in vivo effects of CO2 on AC activity.

Using sequence alignments of Class III ACs, we generated a

homology model of Cyr1p and identified the Cyr1p site

corresponding to the proposed bacterial CO2 receptor site

(Figure 5A) [13,29]. A lysine residue [29], Lys1373 in C. albicans

Cyr1p, would be a key interaction partner for bicarbonate in this

receptor site. Class III ACs are dimers with shared active sites – i.e.

residues from both monomers contribute to each active site – so

that only the dimer can display activity. In contrast to

‘heterodimeric’ Class III ACs, which have one active site and a

second, related-but-degenerated, ‘regulatory’ site in their dimer

interface, homodimeric Class III ACs, like Cyr1p, have two

identical catalytic sites in their dimer interface. In these ACs, it is

believed that both sites can act as active or as regulatory sites. The

putative bicarbonate-interacting lysine residue is strictly conserved

in both ‘‘active’ and ‘regulatory’ sites (for example, in mammalian

sAC, Lys334, would be the corresponding residue in the active

site). In active sites, the conserved lysine at this position is essential

for substrate binding [13]. Because Lys1373 of Cyr1p should be

essential for substrate binding in at least one of the two sites

formed at the homodimer interface, we predicted CYR11373 would

be inactive on its own. We integrated full-length Cyr1p with

Lys1373 point mutated to alanine, under the control of the TEF2

promoter, into an adenylyl cyclase null, generating strain CR276-

CYR11373 (RH22; cyr1/cyr1:pTEF2 CYR11373). CR276-CYR11373

was refractory to both CO2 and serum induction of filamentation,

behaving similarly to the vector-control strain CR276-CTRL

(RH20; Figure S2). Thus, CYR11373 homodimers encode a non-

functional AC.

To specifically test the role of this lysine in the bicarbonate

activation of Cyr1p and to generate an AC with a selective defect

in its bicarbonate responsiveness, we generated strains containing

mutant/WT heterodimers. Due to the dimeric architecture of

Class III ACs, one wild type Cyr1p monomer could interact with

one Cyr1p1373 monomer, allowing basal AC activity, but

preventing bicarbonate stimulation due to disruption of the

bicarbonate interacting site in the second ‘regulatory’ centre (as

described above). The point mutated Cyr1p was integrated into a

strain expressing wild type adenylyl cyclase, generating strain

CAI4-CYR11373 (RH25; CYR/CYR1/pTEF2 CYR11373). Consis-

tent with the expected heterodimer formation and with specific

interruption of CO2-induced cAMP formation, CAI4-CYR11373,

but not the control strain CAI4-CYR1 (RH24; CYR1/CYR1/

pTEF2 CYR1), displayed a signal-specific defect to the filamenta-

tion inducing cues (Figure 5B, C), despite the two strains

expressing comparable levels of CYR1, (Figure S3). CAI4-

Figure 3. CO2 signal build-up occurs within fungal populations.
Equal cell numbers (500 CFUs) of DAY286 (represented as green cells in
the diagram) and Dnce103 (represented as blue cells in the diagram),
1000 Dnce103 alone and 1000 Dnce103 with 16106 heat-killed DAY286
(represented as orange cells in the diagram) were spotted onto YPD
agar and incubated for 48 hr at 37uC. Cells were recovered, populations
separated by plating onto selective media and Dnce103 CFUs counted.
Values are the mean and standard deviation from 8 independent
experiments (**** indicates that the P statistic for the represented data
was greater than 0.0001).
doi:10.1371/journal.ppat.1001193.g003

Fungal Population Signalling and CO2
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CYR11373 filamented in response to serum, but much less in

response to CO2, while the control strain expressing wild type AC,

CAI4-CYR1, filamented equally in response to both serum and

CO2. The incomplete suppression of CO2-induced filamentation

in CAI4-CYR11373 is consistent with the statistical formation of

homodimers and heterodimers between the co-expressed wild type

and variant protein, which will also yield fully CO2-sensitive wild

type homodimers.

To confirm that the observed phenotype is specific to the

destruction of the bicarbonate binding site in the CYR11373

heterodimers, rather than a general influence on AC activity, two

additional point mutations, that inactivate Cyr1p stimulus-

independent, were constructed. Asp1334 and Asp1377 (involved

in active site Mg2+ binding) were mutated to Ala and also

expressed under the control of the TEF2 promoter. Integration of

these constructs into the adenylyl cyclase mutant (CR272-

CYR11334; RH26, and CR276-CYR11377; RH27) confirmed that

the proteins were catalytically inactive (Figure S2). However,

expression of these inactive proteins in CAI4 (containing two

genomic copies of CYR1; CAI4-CYR11334; RH28, and CAI4-

CYR11377; RH29) did not perturb hyphal induction in response to

5% serum or elevated CO2, as Lys1373 did (Figure 5B, C). Thus,

CAI4-CYR11373 shows a specific disruption of CO2-induced

filamentation and therefore, the identified lysine, which likely acts

as bicarbonate binding site, serves as physiological CO2 ‘‘switch’’

in Cyr1p and perhaps in all related sAC-type enzymes.

Self-generated CO2 is the volatile signal that accumulates
under diffusion-limiting conditions and induces
filamentation

We next directly tested whether CO2 is the volatile messenger

inducing Candida filamentation by taking advantage of the CO2

insensitive mutant strain CAI4-CYR11373. CAI4-CYR11373

showed an attenuated response in the closed system, with 30%

(69%, P = 0.001) of cells producing smooth colonies indicative of

reduced filamentation, while CAI4-CYR1, CAI4-CYR11334 and

CAI4-CYR11377 were 100% filamentous (Figure 5C). However,

CAI4-CYR11373 cells that were inoculated onto DMEM agar

supplemented with 5% serum always produced 100% filamentous

colonies, confirming that the reduced filamentation was signal-

specific (Figure 5B, C); i.e., CO2-induced differentiation was

diminished while serum-induced differentiation was unaffected.

CO2 activation of Cyr1p may have a role in pathogenicity
The morphological transition of C. albicans is essential to the

organism’s virulence. As CO2 is a potent inducer of hyphal

development we tested whether the identified CO2-recognition-

mechanism regulates C. albicans pathogenicity in an in vivo model.

Initially to test this hypothesis, we selected the Toll-deficient

Drosophila melanogaster infection model to provide a controlled yet

reduced (in respects to filament inducing cues) environment, as

only a subpopulation of the cells were CO2 insensitive. D.

Figure 4. CO2 affects C. albicans colony morphology. A) 500 CFU of wild type SC5314 were seeded onto CBA and incubated under closed and
open conditions at 37uC for 48 hr (cells were resuspended at the required cell density, i.e. 56103 cells/ml, and then 100ml spread plated onto the
plates to obtain single colonies (i.e. 500 colonies/plate; scale bar represents 1 mm). Cells were then resuspended in water and viewed at 2006
magnification (scale bar represents 100 mm). Insert shows yeast cells at 20006magnification (scale bar represents 10 mm). B) 500 CFU of CR276-CTRL
(Dcyr1) were seeded onto CBA and incubated in both closed and open systems at 37uC for 72 hr (scale bar represents 1 mm). Cells were then
resuspended in water and viewed at 2006magnification (scale bar represents 100 mm). Insert shows yeast cells at 20006magnification (scale bar
represents 10 mm). C) CAI4-pSM2, Dcyr1-Dnce103-pSM2 and Dnce103-pSM2 cells were streaked onto DMEM pH7 media and incubated at 37uC for
24 hours supplemented with 5% CO2. Images were taken at 1006magnification (scale bar represents 100 mm). D) SC5314 cells were suspended in
sterile water and seeded onto CBA at an initial cell concentration of 50 CFUs and incubated in both closed and open conditions for 48 hrs 37uC (scale
bar represents 1 mm). E) 500 WT (SC5314) CFUs were incubated on CBA for 48 hr in closed systems either with or without 0.5g of solid NaOH (scale
bar represents 1 mm). Single colonies were resuspended in sterile water and images taken at 2006 magnification (scale bar represents 100 mm).
Insert shows yeast cells at 20006magnification (scale bar represents 10 mm).
doi:10.1371/journal.ppat.1001193.g004

Fungal Population Signalling and CO2
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melanogaster was infected with CAI4-CYR11373 and CAI4-CYR1

and survival assessed over 48 hours. Although the percentage

mortalities of Toll-deficient D. melanogaster infected with either

strain were similar at the end-point of the time-course experiment,

CAI4-CYR11373 killed D. melanogaster at a significantly slower rate

(p = 0.005) compared to CAI4-CYR1 (Figure 6A). The reduced

virulence of CAI4-CYR11373 over CAI4-CYR1 was not attributed

to differences in growth rates or fungal burden, as these were

comparable between the two strains (Figure S4 and Table S1).

To investigate how the point-mutated adenylyl cyclase would

affect the virulence of C. albicans in the mammalian host, the

mouse model of disseminated candidiasis was utilised. CAI4-

CYR1 and CAI4-CYR11373 displayed no significant difference in

their ability to cause system infection after intravenous injection

(Figure 6B). There was, however, a greater degree of variation in

fungal burdens, weight loss and outcome scores compared with

control strain (Table S2), which may be reflective of the different

populations obtained in the CAI4-CYR11373 strain (i.e. 70% CO2

responsive and 30% CO2 non responsive).

As the fly model identified that CYR11373 was delayed in its

ability to cause infection, we also sampled mice at days 1, 2 and 3

days post-infection to determine whether the delayed ability of

CYR11373 to cause infection was also present in the mouse model.

However, there were no statistically significant differences in

kidney burdens, weight changes or outcome scores, but again there

Figure 5. Mechanism of CO2 sensing in C. albicans. A) Homology
model of the Cyr1p homodimer with bound substrate analogue and the
activator bicarbonate. The protein chains are shown in green and cyan,
respectively, and ligands and functional residues mutated in our study
are shown in stick representation and labelled with residue number and
chain A or B. Lys1373 can either bind the substrate base (active site) or
bicarbonate (regulatory site). B) Point-mutated CYR1 (1373, 1334 and
1377 aa), and control plasmids (wt CYR1 and the vector control pSM2)
were integrated into in URA3 locus of CAI4. Colonies were grown on
DMEM pH7 itself, or supplemented with either 5% serum, or 5% CO2.
The colony depicted for CAI4-CYR11373 displaying an attenuated
response to CO2 is representative of approximately 30% of the
population. The differential response to CO2 is hypothesised to result
from the variations in levels of CO2-responsive Cyr1p homodimers,
Cyr1-Cyr11373 heterodimers and non-functional Cyr1p1373 homodimers.
All other colonies are representative of the entire population (scale bar
represents 100 mm). C) Cell suspensions of the desired strains were
inoculated onto DMEM pH7 supplemented with 10% serum or CBA
agar (CBA plates were either incubated in open or closed systems) and
after 48 hours colony morphology assessed. Results are the mean and
standard deviations from 4 replicate experiments (*** indicates that the
P statistic for the represented data is greater than 0.001).
doi:10.1371/journal.ppat.1001193.g005

Figure 6. CAI4-CYR11373 may have implications for virulence.
A) Toll deficient D. melanogaster were infected by injection into the
thorax with C. albicans strains CAI4-CYR1, CAI4-CYR11373 or sterile YDP
(CTRL). Experiments were performed with groups of 15 adult files and
incubated at 30uC for 38 hours. Values represent the mean and
standard deviation from 5 independent experiments. B) CAI4-CYR1,
CAI4-CYR11373 were intravenously injected (2.4–2.56104 CFU/g) into 6
female BALB/c mice (6–8 weeks old) and survival monitored. Mice were
culled when they showed signs of severe illness or their weight had
decreased by more than 20%.
doi:10.1371/journal.ppat.1001193.g006
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was greater variability in the CAI4-CYR11373 data, which was not

observed for the CAI4-CYR1 strain (Table S2). The differences in

outcome between the two infection models may be expected.

Although the CAI4-CYR11373 strain is reduced in its ability to

filament in response to elevated CO2 it is responsive to serum or

elevated temperature, cues absent in the fly model.

Discussion

CO2 is a biologically important molecule and has major

implications for disease progression. As well as host derived CO2,

microorganisms themselves generate and secrete metabolic CO2

into their microenvironment which has the potential to impact on

the organism’s virulence. We observed that fungal derived,

metabolic CO2 accumulated in C. albicans biomasses to sufficient

levels to first provide HCO3
2 as a metabolic intermediate to

promote growth and then subsequently to induce the morpholog-

ical transition crucial for C. albicans pathogenicity through

activation of Cyr1p via lysine residue 1373.

CO2 is produced by multiple metabolic processes and the data

presented here suggest that nutrient availability affects production

rates. For instance, we found that fungal biomasses grown on

nutrient rich media (YPD) were able to support the growth of over

ten times the amount of our bio-indicator strain (Dnce103)

compared to those grown on nutrient limiting media (YNB; data

not shown). This result may reflect the increased flux through

metabolic pathways as the organism utilises the available nutrients.

In accordance with this Ghosh et al. recently proposed that the

catalysis of arginine to urea and urea’s subsequent breakdown to

CO2 produces sufficient CO2 to induce C. albicans germ tube

formation when engulfed by macrophages [31]. Therefore,

arginine biosynthesis maybe a key contributor to CO2 production

in C. albicans.

Accumulation of metabolically generated CO2 in race tubes has

been shown to impact on asexual spore development in Neurospora

crassa [32,33]. Here, simple displacement of the accumulated CO2

(by inverting the tubes) restores conidial banding. These results

suggest that the heavier density of CO2 compared to O2 and N2

allow it to accumulate in a system more freely rather than diffusing

away. In accordance with this, we found that growth of the

Dnce103 strain was enhanced at the bottom of the colony (17-fold,

P = 0.001) where agar invasion was observed to stem from the

centre of the colony, suggesting that the concentration of CO2 is

highest at the lower extremities of the biomass (data not shown).

The ability to accumulate in a system is essential for

communication molecules, with many molecules only having an

impact once a threshold concentration is reached. However,

unlike conventional QSMs, CO2 may not be specifically generated

for the purpose of communication. This is mainly due to the lack

of evidence for a single pathway controlling CO2 output, although

the work of Ghosh et al suggest that arginine biosynthesis may play

a significant role in the production of CO2 in C. albicans [31].

Therefore, it is more likely that the organisms have evolved to

sense and respond to CO2 gradients as a form of diffusion sensing

rather than CO2 being a true quorum sensing molecule.

However, the interplay between CO2 production and other

microbial species maybe relevant. When colonising mucosal

membranes and epithelia C. albicans will be in contact with other

microbes residing in the same niche. For example we found that

under diffusion limiting conditions significantly fewer colony

forming units (10-fold less) of Escherichia coli or Pseudomonas aeruginosa

were required to restore growth of the CO2 bio-indicator strain,

Dnce103, compared to wild type C. albicans (data not shown). Given

that C. albicans is found in mixed microbial biofilms on medical

devices it is interesting to speculate about the role the

metabolically generated CO2 in biofilm establishment and

maintenance.

Signalling molecules normally interact with membrane associ-

ated receptors to initiate intracellular signalling cascades termi-

nating in a transcriptional response which subsequently induces

the desired effect. Unlike most signalling molecules, CO2 enters

the cell by simple diffusion and is maintained in the cell through

hydration to HCO3
2 via the actions of carbonic anhydrase.

Although HCO3
2 is a metabolic intermediate and will feed into

various metabolic processes, a conserved HCO3
2 binding site was

identified in the adenylyl cyclase, Cyr1p, involving lysine residue

1373, which enables CO2/HCO3
2 to bind and directly stimulate

Cyr1p and hence activate cAMP dependent signalling cascades.

Mutation of the HCO3
2 binding site resulted in a subpopulation

of cells that were CO2 non responsive.

Introduction of the CO2 sensing deficient strain (CAI4-

CYR11373) into the Toll-deficient D. melanogaster infection model

highlighted its reduced ability to kill the host. In the mouse model

for disseminated candidiasis this attenuated virulence was not

observed. However, this was hypothesised as the mutated strain

remained fully responsive to other host environmental cues,

including the elevated temperature and presence of serum in

mammals, which are absent in the fly infection model. Taking this

into consideration we hypothesise that the ability to sense and

respond to metabolically generated CO2 gradients is important

during colonisation and initial invasion of mucosal membranes

lining the oral and vaginal tracts during superficial infections

where environmental CO2 conditions are low and not as

important during systemic infection (Figure 7). Here, in an

expanding fungal biomass self produced metabolic CO2 gradually

accumulates and once reaching threshold concentrations directly

activates the soluble adenylyl cyclase, Cyr1p via the catalytic,

bicarbonate receptor site. The resulting increase in cytosolic

cAMP, in conjunction with other epithelial adhesion mechanisms,

functions to induce the morphological switch in C. albicans. Hyphal

formation results in the penetration and invasion of the underlying

epithelial cells, which subsequently enhances the dissemination of

the fungal pathogen. Our data supports this as we routinely found

enhanced levels of Dnce103 cells in the biomass sections that were

invading into the agar, similar to what is observed in oropharyn-

geal candidiasis, suggesting that cells towards the bottom of the

biomass are exposed to higher concentrations of CO2 than cells on

the surface, which would support hyphal development. Therefore,

we hypothesise that during superficial infections that occur in

niches where environmental CO2 concentrations are low (for

example, on the skin and mucosal membranes lining the oral

cavity) C. albicans can use self generated, metabolic CO2 to

enhance adhesion and promote filamentation of the underlining

cells increasing the opportunity for dissemination into the

bloodstream.

In line with CO2 playing an enhancing role in microbial

virulence, hypercapnia (elevated CO2) has recently been shown to

inhibit the production of anti-microbial peptides in Drosophila [34].

Furthermore, elevated CO2 levels suppress the mammalian

inflammatory response [35,36,37]. Therefore, pathogen associat-

ed, metabolically generated CO2 may play multiple roles in the

infection process. One would operate at a local level, suppressing

the host’s immune system in the underlining epithelia and

rendering the host susceptible to infection. Secondly, high CO2

would enhance the microbe’s pathogenicity, providing more

opportunity for host cell invasion.

In conclusion, Cyr1p is a multifunctional sensor that is essential

to fungal pathology. It contains multiple domains that mediate
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signal-specific enzyme activation in C. albicans in response to

diverse filamentation-inducing molecules. We have now identified

the mechanism by which this AC is stimulated in vitro and in vivo by

CO2, supplied by the environment or the fungal biomass itself.

Our results give novel molecular insights into this pathogenicity

mechanism, as well as an evolutionary conserved CO2-chemore-

ception system. Interfering with fungal CO2-sensing may reveal

novel approaches for therapeutic intervention.

Methods

Ethics statement
All animal experimentation was done in accordance with

United Kingdom Home Office regulations and was approved by

both the Home Office and the University of Aberdeen ethical

review committee. All mice were checked and weighed at least

once daily, and if they showed any signs of severe disease and/or

had lost 20% of their original body weight mice were humanely

terminated immediately. Mice sampled at defined time points

were also humanely terminated prior to aseptic removal of kidneys

for burden determination.

Strains and media
C. albicans strains and transforming plasmids used in this study

are listed in Table S3. Columbia blood agar plates (CBA), a

quality-controlled growth medium routinely used in diagnostic

microbiology laboratories, supplemented with 5% defibrinated

horse blood were either purchased premade, or were made from

Columbia blood agar base [38] from Oxoid (2.3% peptone, 0.1%

starch, 0.5% NaCl, 1% agar, pH 7.3). Dulbecco’s Modified Eagle

Medium (DMEM) without bicarbonate and pyruvate was

obtained from GIBCO and used at pH7, (1.34% DMEM,

3.57% HEPES supplemented to a final concentration of 2%

glucose). YNB and YPD were made as described previously [10].

Where supplementation with 5% CO2 was required, plates were

incubated in a CO2 incubator (Infors HT Minitron) enriched with

5% (vol/vol) CO2. Solidified or serum supplemented media

contained 2% agar and 5% horse serum.

Toll transheterozygotes flies were generated by crossing flies

carrying a loss of function allele of Toll (Tl1-RXA; obtained from the

Tübingen Drosophila Stock Collection) and flies carrying a

thermo-sensitive allele of Toll, with a strong phenotype at 29uC
(Tl3; obtained from the Bloomington Stock Center). All stocks

were maintained on standard fly medium at 25uC, except during

infection experiments where flies were incubated at 30uC.

Open and closed systems
For diffusion-permitting (open) systems, plates were incubated

in the standard way with no additional sealing mechanism. To

generate a diffusion-limiting (closed) environment, standard 10 cm

petri dishes containing CBA (20 ml) were sealed with two layers of

laboratory sealing film (Parafilm) followed by three layers of

standard cling-film (low density polyvinyl chloride). To minimise

diffusion the sealing process was repeated twice. When plates were

to be incubated in parallel, standard petri dishes were placed into,

zip-locked polyvinyl chloride bags (15.5623 cm). To ensure that

the bags were air tight they were sealed mechanically with an

additional polyethylene bar making the bags both air and water

tight.

Measurement of CO2 accumulation in diffusion-limiting
conditions

Sodium hydroxide was used as a CO2-trap as described by the

equation below. Plates were incubated in air tight plastic bags

containing a separate vial of 4M NaOH, or 0.5g of solid NaOH

crystals for 48 hrs. To measure CO2 accumulation the BacT/

ALERT system [39] was used with some modifications. The

prefilled bottles were emptied in a sterile environment, media

replaced with 20 ml of solidified DMEM pH7 and the agar surface

seeded with 10,000 SC5314 cells. Bottles for incubation in closed

systems were sealed as described for agar plates. CO2 accumu-

lation was directly measured using a BacT/ALERT 3D

automated microbial detection system (bioMerieux) where micro-

bial CO2 production is assessed by a colorimetric sensor and

detection system (red L.E.D and red-light-absorbing photodiode).

Emitted light is recorded as a voltage signal that is directly

Figure 7. Model for metabolic CO2 signalling in fungal pathogenicity. As the cells proliferate on the epithelial surface, increasing fungal
growth generates pockets of elevated CO2 located at the bottom of the biomass. Cells exposed to the elevated CO2 undergo morphological
switching, promoting hyphal development and hence increasing the adherence of the organism. At the same time, the protruding hyphae would
expose the pathogen to host environmental signals like serum, pH and further increases in CO2 levels, which would further enhance hyphal
development, increasing the opportunity for tissue invasion.
doi:10.1371/journal.ppat.1001193.g007
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proportional to the reflective light and hence the concentration of

CO2 in the bottle.

CO2z2NaOH?Na2CO3zH2O

Heterogeneous populations of CAI4 and Dnce103
Heterogeneous cell suspensions containing equal proportions

(500 cells/ml) of DAY286 and Dnce103 were spotted (1 ml total)

onto individual YPD or YNB plates and incubated at 37uC for

48 hrs. Initially 1 ml of sterile water was used to wash the single

colony from the plate with light agitation of the agar to remove

adhered cells. From the recovered 800 ml, 200 ml was plated onto

YNB, 5% CO2 to promote growth of the strictly CO2-requiring

strain Dnce103 strain only (DAY286 will not grow under these

conditions as it is Dhis1/Dhis1). Stability of the different phenotypic

markers was verified upon replica-plating of colonies. The number

of colonies was counted, and after taking into account the dilution

factor, related back to the initial number of colonies in the cell

suspension. Initial cell suspensions were always replica plated onto

YNB and YPD to obtain the average starting cell concentration for

each strain.

Molecular modelling of a nucleotide and bicarbonate
complex of homodimeric Cyr1p catalytic domain

The amino acid sequence of Cyr1p was duplicated and aligned

with the sequences of two chains of a homodimeric substrate

analogue complex of CyaC from Spirulina platensis (PDB ID 1WC0;

[30]) by using Genedoc (http://www.psc.edu/biomed/genedoc).

A homology model for Cyr1p was generated with this alignment

using Modeller [40], and nucleotide and divalent ions positioned

by superposition with the experimentally determined CyaC

complex structure. Bicarbonate was then positioned manually at

the site proposed for binding in bacterial sAC-like enzymes [13].

The model was visualized using Pymol (DeLano Scientific; http://

www.pymol.org).

Site directed mutagenesis of CYR1
Lys 1373, Asp 1334 and Asp 1377 were point mutated to Ala by

site directed mutagenesis using the following sets of primers

(mutations underlined) 1373F-tggatatgaagtggcgactgaaggtgatg and

Primer 7-ctatttaagttcattaactgttttcatgat, Primer 8-aacttgtttcactcc-

cagca and 1373R-atcaccttcagtcgccacttcatatccac, 1334F-ggttttc-

actgcgatcaaaaactcaac and Primer 7, 1334R-gttgagtttttgatcgcagt-

gaaaacc and Primer 8, 1377F-gactgaaggtgcggcgttcatgg and Primer

7, 1377R-ccatgaacgccgcaccttcagtc and Primer 8. The resulting

PCR fragments were ligated into the SpeI and BamHI restriction

sites of pSM2. The 59 domain of CYR1 together with the TEF2

promoter were subsequently ligated into the pSM2 plasmid using

XbaI and HindIII (site located with C-terminal domain of CYR1)

restriction sites forming pACL1, pACL2, and pACL3. Full-length,

native CYR1 cloned into pFM2 under the control of the TEF2

promoter was subsequently restricted using SacI and BamHI

restriction sites and ligated into pSM2 forming plasmid pSMTC.

Plasmids pACL1, pACL2, pACL3, pSMTC and pSM2 (vector

control) were integrated into the URA3 locus of CR276 and CAI4,

generating strains RH20-25 (Figure 7A) using standard heat-shock

procedures as previously described [41].

Southern blot analysis
Single copy integration of pACL1 was confirmed for five

resulting CAI4 transformants by southern analysis using DIG

High primer DNA labelling and detection (Roche) as per the

manufacturer’s recommendations. DNA probe (1 kb) was PCR

amplified using primer-44 59TTGGTGACATTGAGGCGTTA

and primer-47 59GTTCAATTGTCATTCCGGCAT.

Semi-quantitative RT-PCR
To assess transcript levels of CYR1 total RNA was extracted from

cultures (50 ml YPD) grown to OD600 0.5. Cells were harvested

through centrifugation and immediately frozen in liquid nitrogen.

Samples were disrupted using a Mikro-dismembrator S (Sartouis) at

2000 rpm, 2 minutes and RNA immediately extracted using the

Qiagen RNeasy Kit according to the manufacturer’s recommen-

dations. CYR1 expression levels (native CYR1 and CYR11373) were

analysed by semi quantitative RT-PCR using the BioRad one-step

RT-PCR Kit with Syber Green (primers CYR1-F 59GACGA-

CAACAAACGTGCCAGAACA and CYR1-R 59 AATCACG-

TGCTGAAACATGGTCCC). CYR1 levels were normalised to

ACT1.

Disruption of NCE103
The strain, RH12 (Dnce103 Dcyr1), was constructed in the Dcyr1

background strain, CR276, using the HisG-URA3-HisG cassette to

disrupt the 847 bp NCE103 open reading frame (GenBank

association number EAL03010) from positions +153 to +807 as

described previously [10]. Correct integration of the HisG-URA3-

HisG cassette into the NCE103 locus was confirmed by PCR.

Mouse infection models
Survival experiments. CAI4-CYR1 and CAI4-CYR11373

were grown on YPD plates at 30uC for 16 hrs and cells were

washed off plates with saline, the resulting cell suspensions washed

twice with sterile saline and then resuspended in saline to provide

inocula for infection. For each C. albicans strain 6 female (6–8

weeks old) BALB/c mice (Harlan, UK) were intravenously

challenged with 2.4–2.56104 CFU/g of each strain. Mice were

monitored and weighed at least once daily, with mice culled when

they displayed signs of severe illness, or when their weight

decreased by 20%. When culled, the kidneys were aseptically

removed and burdens determined. Survival data were compared

by the Kaplan-Meier Log-rank statistic.

Outcome scores. For each C. albicans strain 9 mice were

challenged intravenously, as described above, with three mice

sampled on days 1, 2 and 3 post-infection. For each mouse kidney

burdens and percentage weight change were determined, with the

two parameters used to determine infection outcome scores [42].

Kidney burdens, weight change and outcome scores were

compared by the Mann-Whitney U statistic.

Supporting Information

Figure S1 Dnce103 can promote its own growth under diffusion

limiting conditions. 10,000 CFUs of Dnce103 were plated onto

CBA media and incubated in open or closed systems for 48 hr.

Found at: doi:10.1371/journal.ppat.1001193.s001 (0.58 MB TIF)

Figure S2 Mutations in CYR1 affect adenylyl cyclase activity as

homo, but not heterodimers (related to Figure 5). The desired

point mutated adenylyl cyclase genes or control plasmids were

integrated into the URA3 locus of the adenylyl cyclase mutant

(CR276). Resulting transformants were screened on DMEM pH7,

DMEM pH7 supplemented with 5% serum and DMEM pH7

incubated in atmospheres of 5.5% CO2. Plates were incubated at

37uC for 24 hrs. Scale bar represents 100 mm.
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Found at: doi:10.1371/journal.ppat.1001193.s002 (0.58 MB

TIF)

Figure S3 Expression levels of CYR1 constructs (related to

Figure 5 and Figure 6). A) Schematic diagram of the CYR1 locus

and the CAI4 URA3 locus containing the integrated cassette. B)
Strains were checked for single copy integration of plasmids

containing CYR1 and CYR11373. Genomic DNA from the

parental strain CAI4 (Lane 1), CAI4-CYR1, strains (Lanes 2

and 3) and CAI4-CYR11373 strains (Lanes 4–8) was digested with

Hind III and detected using 1Kb probe specific to the 39 CYR1

open reading frame. C) Expression levels of CYR1 in the parental

control strain, CAI4-CYR1 and CAI4-CYR11373 as analysed by

semi quantitative RT-PCR. Values are the mean and standard

deviation from two independent experiments.

Found at: doi:10.1371/journal.ppat.1001193.s003 (0.45 MB TIF)

Figure S4 CAI4-CYR11373, CAI4-CYR1 and CAI4-pSM2 have

the same growth rates (related to Figure 6). Overnight cultures

were diluted to an initial OD600 0.1 in fresh YPD and growth rate

followed at 37uC, 150 rpm for 9 hours. Values represent the mean

and standard deviation from two independent experiments.

Found at: doi:10.1371/journal.ppat.1001193.s004 (0.14 MB TIF)

Table S1 Fungal burden in the D. melanogaster infection model

(related to Figure 6A). Flies were homogenised in sterile water and

CFUs determined on YPD agar supplemented with chloram-

phenicol.

Found at: doi:10.1371/journal.ppat.1001193.s005 (0.05 MB RTF)

Table S2 Mouse infection parameters measured on day 1–3

post-infection (related to Figure 6B). For each C. albicans strain 9

mice were challenged intravenously, with three mice sampled on

days 1, 2 and 3 post-infection.

Found at: doi:10.1371/journal.ppat.1001193.s006 (0.08 MB RTF)

Table S3 Strains used in the study.

Found at: doi:10.1371/journal.ppat.1001193.s007 (0.12 MB RTF)
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