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The circle shown in Fig. 3 shows an area where all three phases have
been identi®ed in different runs. The centre of this circle is in
excellent agreement with the g±b±perovskite+MgO triple point
reported29 at 22.9 GPa and 2,260 K.

The present data strongly support earlier estimates of the phase-
boundary temperature between ringwoodite and perovskite of
about 1,900 K at 24 GPa, the pressure at a depth of 660 km in the
Earth's mantle. The measurements also show that phase relations in
simple systems can be measured more reliably in laser-heated
diamond cells than by using multi-anvil methods; this is because
measurements of pressure and temperature are more accurate, and
the method provides the capability to use an inert and nearly
hydrostatic pressure environment. Moreover, phase boundaries
can be measured over much larger temperature ranges. Additional
constraints on the phase diagram will have to come from calori-
metric and spectroscopic measurementsÐas shown for the MgSiO3

high-pressure polymorphs11. Larger samples and multi-anvil
devices will be required for more complex systems, but pressure
estimates will need to be improved by the systematic investigation of
high-temperature equations of state of inert pressure calibrants
such as gold. These could be provided by synchrotron X-ray
measurements in laser-heated diamond cells. M
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Many animals are regarded as relatively sedentary and specialized
in marginal parts of their geographical distributions1,2. They are
expected to be slow at colonizing new habitats. Despite this, the
cool margins of many species' distributions have expanded
rapidly in association with recent climate warming3±10. We exam-
ined four insect species that have expanded their geographical
ranges in Britain over the past 20 years. Here we report that two
butter¯y species have increased the variety of habitat types that
they can colonize, and that two bush cricket species show
increased fractions of longer-winged (dispersive) individuals in
recently founded populations. Both ecological and evolutionary
processes are probably responsible for these changes. Increased
habitat breadth and dispersal tendencies have resulted in about 3-
to 15-fold increases in expansion rates, allowing these insects to
cross habitat disjunctions that would have represented major or
complete barriers to dispersal before the expansions started. The
emergence of dispersive phenotypes will increase the speed at
which species invade new environments, and probably underlies
the responses of many species to both past11 and future climate
change.

Our ®rst example concerns the silver-spotted skipper butter¯y
Hesperia comma in southern England. Near the coldest edges of
their geographical ranges, ectothermic animals are often restricted
to unusually warm habitats, such as areas of short vegetation on
sheltered, south-facing (in the northern temperate zone) hillsides1,2.
If they are limited by temperature, such populations should respond
to climate warming by expanding into nearby habitats that were
previously too cool. In 1982, H. comma was largely restricted to
south- and south-west facing chalk grassland fragments in south-
east England12. By 2000, however, it had colonized a wider range of
aspects, including east-, west- and north-facing hillsides (Kuiper's
test, n = 82, m = 228, k = 5,478, P , 0.001, where n is the number of
habitat units occupied in 1982, m is the number colonized between
1982 and 2000, and k is the test statistic; Fig. 1a, b). High population
densities were found on all aspects in 2000. Using these and
additional habitat criteria12 (see Methods), we were able to estimate
the distributions of habitat in the eastern half of the South Downs
hills (about 400 km2 of south-east England), corresponding to 1982
and 2000 de®nitions of habitat. We estimated that 105 thermally

² Present address: Luther-UniversitaÈt-Wittenberg, InstituÈt fuÈr Zoologie, Domplatz 4, 060108 Halle,

Germany.

© 2001 Macmillan Magazines Ltd



letters to nature

578 NATURE | VOL 411 | 31 MAY 2001 | www.nature.com

suitable habitat patches (total habitat area 2.00 km2) would be
available with the 1982 de®nition of habitat, compared with 175
patches (3.92 km2) with the 2000 de®nition of the same type of
vegetation on any aspect.

Expansion rates are likely to increase with habitat availability. For
H. comma at its northern limit, there are now more patches to
colonize, shorter distances between them, and more populations
generating emigrants. We used Hanski's spatially realistic incidence
function (metapopulation) model13±15 to simulate expansion away
from the only two patches of habitat occupied by H. comma in the
South Downs in 1982. This simulation was done in two ways, using
patch networks on the basis of the 1982 and 2000 de®nitions of
habitat suitability. Distance expanded was estimated as the mean
distance from the main patch occupied in 1982 to the ten furthest
populations (Fig. 1c; distances to the nearby, extremely small 1982
population were very similar). We ®rst estimated parameters for the
model in a different patch network (Surrey) occupied by H. comma,
elsewhere in southern England, before using these parameter
estimates to make independent predictions of expansion in the
South Downs network. In 18 years (generations), the observed
distribution of H. comma reached 16.37 km (Fig. 1c), corresponding
well to the mean 14.35 km (s.d. 1.79) modelled expansion using the
2000 habitat network (Fig. 1e). In contrast, the observed expansion
fell well outside the 99.9% con®dence limit of simulations using the
1982 network (Fig. 1d; mean 4.98 km, s.d. 0.80). An approximate
doubling of habitat availability led to an approximate trebling in
expansion rate.

The second example considers the brown argus butter¯y (Aricia
agestis), which has also expanded both its habitat and geographical
range over the past 20 years. Between 1970±1982 (ref. 16) and
1995±1999 (ref. 6), this butter¯y increased 1.2-fold in the south of
England, and 4.9-fold further north, in central England (Table 1).
In 1970±1982, the northern part of the butter¯y's distribution
was mainly restricted to the distribution of one host plant
Helianthemum chamaecistus (Cistaceae), a plant itself restricted to
fragmented chalk and limestone grasslands16,17. Further south, there
was a greater tendency for A. agestis populations to use Geranium
and Erodium species (Geraniaceae) (Table 1). These plants are more
widespread than H. chamaecistus and occur in both chalk and non-
chalk habitats17. Between 1970±1982 and 1995±1999, A. agestis

expanded disproportionately into Geraniaceae-containing areasÐ
especially GeraniumÐin the northern half of its distribution
(Table 1; P = 0.0002). H. chamaecistus often grows on sheltered or
southerly facing hillsides that are likely to be warmer than most
Geranium-containing habitats: we propose that most northern
Geranium habitats were too cool to achieve population growth in
the 1960s and 1970s, but warm enough in the 1980s and 1990s.

The disproportionate expansion of habitat breadth in the north-
ern half of the distribution could be explained completely by
ecological processes. However, once habitat range has begun to
expand for ecological reasons, phenotypes able to use either a wide
range of habitats or the commonest type of habitat available in
marginal areas may show relatively fast rates of range expansion. In
A. agestis, expanding and non-expanding marginal populations
differed in choice of host plant, and thereby habitat. We carried
out choice experiments in the ®eld, during which wild butter¯ies
were experimentally exposed to four potential host plant species.
Long-established and non-expanding marginal populations of
A. agestis from limestone and sand dune habitats chose to lay eggs
on host plants appropriate to their natural habitats (Table 2; 92%
of eggs on Geranium molle and Erodium cicutarium at Gwithian
and Mexico Towans sand dunes in Cornwall; 74% of eggs on
H. chamaecistus plants on limestone in the Creuddyn Peninsula,
north Wales). In contrast, females from populations that had been
established recently chose to lay two-thirds of their eggs on G. molle,
irrespective of whether they came from limestone (Barnack,
north Cambridgeshire, colonized in 1994; C. Gardener, personal
communication) or sand dune habitats (Gibraltar Point, Lincoln-
shire, colonized in 1994; K. Wilson, personal communication)
(Table 2). Females in these populations chose to lay eggs on the
most widespread host plant used during range expansion (G. molle),
rather than on the host plant that was used naturally in the
habitats where the populations occurred (H. chamaecistus at
Barnack; E. cicutarium at Gibraltar Point). Nonetheless, both
populations retained the ability to lay on H. chamaecistus (Table 2).

The data are compatible with a genetic contribution to host plant
choice, but breeding experiments are required to con®rm this.
Butter¯ies from the Cornish and North Wales populations that
had been reared in a common environment (laboratory) were
released in a ®eld containing experimental H. chamaecistus and

Table 1 Latitudinal patterns of distribution of A. agestis

Latitudinal band
(OS 10-km grid)

Number of squares occupied by A. agestis Proportion of A. agestis squares within
H. chamaecistus distribution*

Proportion (number) of UK
squares occupied by

H. chamaecistus

1970±1982 1995±1999 1970±1982 1995±1999

...................................................................................................................................................................................................................................................................................................................................................................

1±10 (south) 46 56 0.43 0.41 0.23 (27)
11±20 188 278 0.65 0.59 0.47 (171)
21±30 80 254 0.66 0.39 0.28 (119)
31±40 19 93 0.74 0.41 0.22 (79)
41±50 (north) 0 10 na 0.30 0.33 (68)
...................................................................................................................................................................................................................................................................................................................................................................

* The association between A. agestis and H. chamaecistus distributions (at 10-km grid resolution) becomes weaker between 1970±1982 and 1995±1999, but more so in northern (latitude 21±40N) than in
southern (1±20N) Britain (four-way interaction term of log-linear model: latitude ´ year ´ butter¯y presence ´ H. chamaecistus presence; x2 = 14.01, d.f. = 1, P = 0.0002).

Table 2 Percentage of eggs laid on plants by four A. agestis populations in choice experiments

Population Natural hosts Expansion* Helianthemum
chamaecistus

Geranium molle Geranium dissectum Erodium cicutarium n (eggs)

...................................................................................................................................................................................................................................................................................................................................................................

North Wales H. chamaecistus 40% 74.1 14.8 7.4 3.7 27
Cornwall Geraniaceae 0% 2.0 56.0 6.0 36.0 50
Barnack H. chamaecistus 1,600% 12.9 70.2 14.0 2.9 183
Gibraltar Point E. cicutarium² 250% 14.1 63.7 14.3 7.9 1,360
...................................................................................................................................................................................................................................................................................................................................................................

Schreirer±Ray±Hare tests: overall population ´ host plant interaction: SS/MStotal = 23.0, d.f. = 9, P = 0.006. Population ´ host plant interactions were signi®cant for all pairwise comparisons between
populations except Barnack versus Gibraltar Point (P = 0.688) and Cornwall versus Gibraltar point (P = 0.093). x2 tests: four populations and four host plants, x2 = 143.8, d.f. = 9, P , 0.0001. All pairwise
comparisons between populations were signi®cant at P , 0.0001, except Barnack versus Gibraltar Point (P = 0.042).
* Per cent increase between 1970±1982 and 1995±1999 in 10-km grid squares occupied in 50-km squares centred on each site.
² Some Geranium species may also be used, but this has not yet been observed.
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G. molle plants. The released females differed in choice of host plant
species in the expected direction, consistent with a genetic inter-
pretation (140 eggs from the Cornish butter¯ies on G. molle, 25
on H. chamaecistus; 168 eggs from the north Wales butter¯ies on
G. molle, 189 on H. chamaecistus; x2 = 66.6, degrees of freedom
(d.f.) = 1, P , 0.001). Females reared in the laboratory from the
same populations showed no detectable effects of larval environ-
ment (host plant species or temperature) on subsequent egg-laying
preferences (E.J.B., unpublished observations). Phenotypic carry-
over (maternal) effects could affect these single-generation results,
but could not plausibly explain the results of the choice experiments
at Barnack and Gibraltar Point. Virtually all Barnack butter¯ies
developed as larvae on H. chamaecistus and virtually all Gibraltar
Point butter¯ies developed on E. cicutarium, and must have done so
for the previous 9±10 generations. However, given a choice, both
populations laid eggs disproportionately on G. molle. Similarly,
learning by adults (or conditioning on emergence) could not be
responsible for the observed patterns of host choice. Butter¯ies with
similar adult experiences of habitat and host plants differed strongly

in choice of plants (for example, north Wales and Barnack), whereas
adults exposed to dissimilar habitats and host plants exhibited
similar host choice characteristics (Table 2; Barnack and Gibraltar
Point).

Host choice phenotypes in the expanding region may have arisen
from selection within each population ancestry during range
expansion, or the entire range expansion may have been initiated
from populations that already possessed the host choice character-
istics of Barnack and Gibraltar Point. Whatever the origin, expan-
sion into Geranium-containing habitats in the north enabled the
butter¯y repeatedly to bridge gaps of greater than 14 km in the
fragmented H. chamaecistus distribution6,16,17. This is a distance that
A. agestis18,19 and comparable butter¯ies20,21 would be extremely
unlikely to cross in one step, without the availability of stepping-
stones of other types of habitat.

Range expansion by ¯ying insects may also select for increased
¯ight ability22±24. Our third example concerns two species of bush
crickets that exhibit adult wing polymorphisms. Both species have
been spreading northwards and inland from distributions formerly
con®ned to speci®c habitats in southern, coastal areas (Fig. 2)7±9.
The long-winged cone-head Conocephalus discolor has two forms:
long-winged and extra-long-winged (macropterous). Many popu-
lations established in the past 20 years show higher frequencies of
extra-long-winged individuals, with a low (and fairly constant)
frequency of this form in populations established greater than 20
years ago (Fig. 2c). Roesel's bush cricket Metrioptera roeselii has a
short-winged form that cannot ¯y and a long-winged form that can.
This species also shows increased frequencies of the more dispersive
form in populations that have recently been established (Fig. 2d).

Environmental variables, such as temperature, population den-
sity and photoperiod, are known to affect whether cricket nymphs
will mature to become long- or short-winged adults25. Thus,
increased frequencies of longer wing morphologies in recently
founded populations could represent (1) purely plastic responses
to these new environments; or (2) genetic differences affecting, for
example, the population density or temperature that a nymph must
experience before it will develop into a longer-winged adult. We
have not established the genetic basis for the observed differences
among populations; however, plastic responses to new environ-
ments are unlikely to provide the whole explanation. Sites that have
been colonized recently tend to have relatively low population
densities and would therefore be expected to possess low frequen-
cies of longer-winged forms25, the opposite of the pattern observed.
Variation in temperature (longer-winged morphologies expected in
hotter regions) and latitude (equivalent to photoperiod) are also
unlikely to explain the differences, given comparable results for the
two species that have different spatial patterns of invasion (Fig. 2).
The observed patterns may re¯ect the increasing number of colo-
nization bottlenecks experienced by younger populations, and/or
selection against dispersal in populations once they have been
established. The latter is probable if there is a trade-off between
investment in ¯ight-related and reproductive structures25.

Regardless of the proportional contributions of plastic versus
genetic change to the observed patterns, the implications for range
expansion are profound. If we assume that virtually all long-distance
movements are achieved by the longer-winged morphologies (cer-
tainly the case for M. roeselii), this represents approximately 4-fold
and 14-fold increases in long-distance dispersal for C. discolor and
M. roeselii, respectively (based on fractions of longer-winged indi-
viduals, pooled across populations established less than 10 versus
more than 20 years ago).

Improving environmental conditions at existing margins, in this
instance regional warming at cool margins, are likely to initiate
range extensions purely on the basis of ecological, physiological and
population-dynamic processesÐrequiring no evolutionary change.
Once an expansion is initiated, individuals and populations that
expand most rapidly are likely to be favoured, and expanding range
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habitats in 1982 (a), and colonized habitats between 1983±2000 (b). c, Range of H.

comma in the South Downs in 1982 (red; triangle contains . 95% of 1982 individuals)

and in 2000 (blue and red). Unoccupied habitat (open circles) in 2000 is for the 2000

habitat network. d, Range of H. comma simulated with 1982 habitat network (blue circles,
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large $ 5. Line shows south coast of England; Beachy Head is at the south-eastern point.
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fronts may become characterized by dispersive generalists or by
specialists on habitats common in the area of expansion. Once most
habitats in a region have been colonized, specialists (in different
habitats) and less dispersive forms may be favoured again, especially
if there is a trade-off between dispersal and reproduction25,26.
Evolutionary stasis during range changes has been emphasized27,28,
but transient evolutionary changes in habitat choice, ¯ight behav-
iour and wing morphology require speci®c and detailed studies to
detect. Such changes may be typical of expanding range fronts.
Putative examples include increased frequencies of long-winged
forms of ground beetles invading Canada22, increased thorax sizes
(containing ¯ight muscles) of butter¯y species expanding their
ranges in Europe23,24, biased orientation of Africanized honey bee
swarms invading Mexico29, and the development of increasingly
dispersive seeds during the post-glacial expansion of lodgepole pine
in North America11. These changes may dramatically increase rates
of range expansion.

Our results should not be interpreted as evidence that all species
will be able to change their geographical ranges rapidly in response
to recent and predicted climate change. Extremely large numbers of
relatively sedentary and specialized species may fail to initiate any
expansion across human-modi®ed landscapes, and some expansion
is required before the selective pressures described here can result in
the evolution of increased habitat range and migration rate. M

Methods
Hesperia comma

Hesperia comma adults and eggs (on the grass Festuca ovina) were mapped from July to
September 2000. All habitat type was surveyed within 20 km of the 1982 distribution12, and
within 10±15 km of the 2000 distribution, using accepted patch de®nitions30. Comparison
of aspects is based on sites (sub-sites where aspects varied) in the Chiltern Hills, North
Downs and South Downs. The 1982 network was de®ned as sparse chalk grassland
containing `ideal' F. ovina tufts growing in slight hollows, next to bare ground12 with
aspects 100±3008 (containing greater than 90% 1982 populations in south east England).
The 2000 network had the same vegetation/F. ovina characteristics, but included grassland
fragments of all aspects (the weak bias in Fig. 1b arises principally from the relationship
between vegetation structure and aspect). For this exercise, we assumed that grazing
patterns were the same in 1982 as in 2000.

We applied parameters to Hanski's incidence function model13 using the 2000
distribution of H. comma in Surrey (86 occupied patches; 30 unoccupied). In the model,

extinction probability declines with increasing patch area, and colonization probability
increases with proximity to existing populations. The MCMC method (1,000 function
evaluations in initiation, 4,000 function evaluations in estimation) was used for parameter
estimation15. Set parameters were A0 = 0.02 ha, and B = 0.5; estimated parameters were x =
0.278, y = 7.261, e = 0.337, a = 0.445. A0, e and x scale the relationship between patch area
and extinction, B and a determine migration rates, and y determines the relationship
between migration and colonization probability15. We assumed no colonization from
outside the network and no regional stochasticity15. These independent parameter
estimates were used to run 100 simulations of 18 generations each for both the 1982 and
2000 habitat models in the South Downs. Eight 1982 network simulations went
completely extinct; one had only one surviving population. These were ignored in
calculations of 1982 network expansion distances (including them results in an approxi-
mately 9% reduction in mean distance colonized).

Aricia agestis

Aricia agestis in Cornwall (Ordnance Survey (OS) grid reference SW5740) has been
associated with Erodium and Geranium species for over 100 generations and is greater than
100 km from H. chamaecistus. The north Wales population (SH7683) has an equally long
association with H. chamaecistus, which receives greater than 99% of eggs (Erodium and
Geranium are present in the region but rare in H. chamaecistus habitat)16,19. The new
Barnack population (TF0704) uses H. chamaecistus on limestone (where Geraniaceae are
rare). The new Gibraltar Point population (TF5659) uses E. cicutarium, and perhaps other
Geraniaceae, in sand dunes (H. chamaecistus is absent). Barnack and Gibraltar Point are
separated by 72 km; other inter-population distances are even greater (less than 5%
A. agestis individuals are expected to move over 1 km per generation18,19). Twenty-four
plants each of E. cicutarium, G. molle, Geranium dissectum and H. chamaecistus were sunk
to ground level in pots in each population in August 2000. We counted eggs over the
following month. Numbers of eggs on an individual plant were treated as single
observations, considering the effects of host plant, population and host ´ population
interaction in a two-way Schreirer±Ray±Hare test (equivalent to two-way non-parametric
analysis of variance). Signi®cant interactions reveal differences between populations in
host choice. This test is overly conservative because some plant individuals of each species
might never have been found by searching females, increasing count variation within each
plant species. Therefore, we also used x2 tests, treating each egg laid as an independent
observationÐfemales can choose where to lay each egg independently.

For common environment rearing, eggs were obtained from wild-caught females from
May to June 2000. Larvae from both populations were reared on the same mix of host
plants at 18/6-h light/dark cycle (24 8C light phase; 208C dark phase). Emerging adults
were released in July 2000, into a roughly 0.25-ha ®eld that contained no natural host
plants, into which had been sunk 432 plants each of H. chamaecistus and G. molle. Eggs
could not be identi®ed to population, so Cornish butter¯ies (n = 162 females) were
released 10 days before Welsh butter¯ies (n = 155 females). Eggs were counted (and
removed) just before release of the Welsh butter¯ies, and again at the end of the
experiment. The ®rst count contained only eggs from the Cornish butter¯ies, but a few
Cornish females still survived when Welsh butter¯ies were released, so the Welsh result
underestimates their true bias towards H. chamaecistus.
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Figure 2 Expanding distributions of C. discolor (a) and M. roeselii 7±9 (b). Lines show

national 100-km grid squares. Circles show 10-km records: blue, recorded between

1961±1987; yellow, ®rst recorded between 1988±1996; red, ®rst recorded between

1997±1999. c, d, Proportions of macropterous individuals in populations sampled in

2000, according to date of ®rst record for C. discolor (c) (proportion extra-long-winged;

Spearman correlation r = 0.349, n = 40, P = 0.027), and M. roeselii (d) (proportion long-

winged; Spearman correlation r = 0.698, n = 17, P = 0.002).
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Bush crickets

Bush cricket wing morphologies were recorded (100% accuracy for M. roeselii; 98.25% for
C. discolor, on the basis of detailed morphological measurements of a sample of 286
C. discolor specimens) in the ®eld, from August to October 2000. The sexes did not differ in
morphology frequencies. The year of the ®rst record from each bush cricket population
was obtained from refs 7±9 (also from J. Widgery, personal communication).
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In honeybees, employed foragers recruit unemployed hive mates
to food sources by dances from which a human observer can read
the distance and direction of the food source1. When foragers
collect food in a short, narrow tunnel, they dance as if the food
source were much farther away. Dancers gauge distance by retinal
image ¯ow on the way to their destination. Their visually driven
odometer misreads distance because the close tunnel walls
increase optic ¯ow2. We examined how hive mates interpret
these dances. Here we show that recruited bees search outside
in the direction of the tunnel at exaggerated distances and not
inside the tunnel where the foragers come from. Thus, dances
must convey information about the direction of the food source
and the total amount of image motion en route to the food source,
but they do not convey information about absolute distances. We
also found that perceived distances on various outdoor routes
from the same hive could be considerably different. Navigational
errors are avoided as recruits and dancers tend to ¯y in the same
direction. Reported racial differences in honeybee dances1 could
have arisen merely from differences in the environments in which
these bees ¯ew.

We began by setting up an 8-m tunnel pointing southwards, with
its entrance 3 m from the hive. A fresh set of ten marked bees was
trained to forage from a feeder placed at the far end of the tunnel
(feeder distance 11 m). The mean waggle duration of tunnel dancers
was 358 ms (Table 1). We then determined which distance corre-
sponds to a waggle duration of 358 ms in bees that ¯y outdoors,
outside the tunnel, to a feeder in the southern direction. Ten marked
foragers were trained to ¯y to a feeder positioned successively at
various distances due south, up to a maximum of 450 m. Several
hundred dances of marked individuals returning from the feeder
were videotaped at each position. The calibration curve relating
waggle duration to feeder distance is shown in Fig. 1 (details in
Table 1). According to this calibration, tunnel bees that waggle for
358 ms indicate an outdoor feeder 72 m south of the hive.
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Figure 1 Distance calibration. Variation of waggle duration with feeder distance for an

outdoor feeder positioned at various distances from the hive in the southern (squares) and

northwestern direction (triangles).
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