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Complexity bounds for container functors and comonads

Dominic Orchard

University of Kent

Abstract

The notion of containers, due to Abbott et al., characterises a subset of parametric data types which
can be described by a set of shapes and a set of positions for each shape. This includes common
data types such as tuples, lists, trees, arrays, and graphs. Various useful categorical structures can
be derived for containers that have some additional structure on their shapes and positions. For
example, the notion of a directed container (due to Ahman et al.) gives rise to container comonads.
Containers, and refinements such as directed containers, provide a useful reasoning tool for data
types and an abstraction mechanism for programming, e.g., building libraries parameterised over
containers. This paper studies the performance characteristics of traversal schemes over containers
modelled by additional functor and comonad structure. A cost model for container transformations
is defined from which complexity bounds for the operations of container functors and comonads are
derived. This provides a reasoning principle for the performance of programs structured using these
idioms, suggesting optimisations which follow from the underling mathematical structure. Due to
the abstract interface provided by the syntax of containers and category theory, the complexity
bounds and subsequent optimisations they imply are implementation agnostic (machine free). As
far as we are aware, this is the first such study of the performance characteristics of containers.

1. Introduction

Consider the following two program fragments, written in some imperative language, where A, B,
and C are one-dimensional arrays and f and g are pure functions:

for i = 1..n

for u = 1..n

B(u) = f(A, u)

C(i) = g(B, i)

for i = 1..n

B(i) = f(A, i)

for i = 1..n

C(i) = g(B, i) (1)

The two programs are extensionally equivalent; given the same inputs, they compute the same re-
sult. However, the two programs are not intensionally equivalent; the left-hand program has worse
performance. This inefficiency is revealed by an execution-time analysis. The right program has
execution time ∈ O(n[f]+n[g]) where [f], [g] are the execution times of f and g. The left program
however has execution time ∈ O(n2[f] + n[g]) where the nested loop for f performs redundant
recomputation. Given this computational complexity information, it would be reasonable for an
optimising compiler to transform the left program into the right, since this leads to a potential
asymptotic improvement. If the term n[g] does not dominate (grow faster than) either n2[f] or
n[f] then the transformation from left to right is an improvement from quadratic to linear time in
n. Otherwise, if n[g] is dominant, the optimisation does not make the complexity any worse.

This paper studies a generalisation of the above example and reasoning (and we return to the
above example later, Example 6, p. 15). We consider a general class of parametric data types
known as containers, as characterised by Abbott et al. [1, 2] (which includes arrays, lists, labelled
trees and graphs) and consider functor and comonad structures which model common traversal
schemes over containers akin to map and gather patterns. We give complexity bounds for the



operations of container functors and comonads. From these complexity bounds, the usual axioms
of functors and comonads can be converted to optimising rewrite rules which can be exploited by a
programmer or compiler (or by a library which can specify rules to the compiler, e.g., as provided
by the Glasgow Haskell Compiler’s rewrite rules system [19]).

We study functors since they capture the common programming pattern of an element-wise
traversal of a data structure, e.g., the map function on lists, or transforming every element of
an array [21]. We study comonads since they generalise a functor’s traversal, capturing local
transformations [17, 18, 23] which may depend on an element and its neighbours, (often called a
gather [9]), e.g., convolutions, fluid simulations, and cellular automata such as the Game of Life.
We study containers with additional structure, called directed containers, which induce a comonad
for the container, as introduced by Ahman, Chapman, and Uustalu [3]. The novelty in this work
is the analysis of the complexity of these derived functor and comonad structures on containers.

Our general motivation is to provide a basis for deriving compiler optimisations on container-
based programs. To this end, we consider two varieties of functor/comonad structure throughout:
(1) those derived from (directed) container structures and (2) those that are abstract (non-derived),
where the implementation is unknown (as in an abstract data type). An example abstract situation
may be a piece of code parameterised by a (container) functor, e.g., an overloaded Haskell func-
tion of type f :: (Container c, Functor c) => c a -> ..., where we wish to reason about
complexity of f regardless of the unknown instantiation of the container functor c. In the abstract
case, complexity bounds similar to those for the derived structure can be calculated, but with
some approximation. This provides a kind of implicit-complexity measure, which is made explicit
in the derived structure where the implementation is given. Complexity measures in the abstract
setting enable optimising compilation even in the presence of abstract container parameters, or
as-yet-unknown implementations of containers and their associated structures.

The following section introduces preliminary definitions of containers, container cost analysis,
and notation. Section 3 and Section 4 study container functors and comonads, and their complexity.
Section 5 considers related work and Section 6 concludes with some further discussion.

2. Preliminaries

2.1. Containers

The notion of a container corresponds to parametric data types that contain only strictly positive
occurrences of the parameter type. An alternate characterisation is that containers comprise a set
of shapes and a set of positions for each possible shape [1, 2]. Since we study complexity bounds
on operations over containers, we restrict ourselves to a subset of containers that have finite sets of
positions for every shape (but the number of shapes may be infinite) We introduce here the main
definitions, but more detail can be found in the work of Abbott et al. [1, 2].

Section 4 introduces the additional structure of directed containers.
All definitions are made in some base category C assumed to be Cartesian closed and locally

Cartesian closed. The λ-calculus is therefore used as the internal language of C for convenience.

Definition 1 (Containers). A container comprises a set of shapes S : Set and a shape-indexed
family of positions P : S → Set, often written as the pair S ⊳ P . Shapes can be thought of as
templates for a data structure where positions identify the “holes” that can be filled with data.

For the sake of generality, we can replace Set with C above, situating a container within some
arbitrary (locally) Cartesian closed category. The reader may instantiate C to Set if they wish to
think concretely, and our examples are all within Set.

Example 1 (Lists). A running example will be the data type of lists, defined by the container
N⊳Fin. Shapes are natural numbers, corresponding to the length of a list, and positions are drawn
from finite sets, where for a shape s : N positions are Fin s = {0, . . . , s− 1}.
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Definition 2 (Container data type). From a container S ⊳ P , a parametric data type (object
mapping on C) is defined JS ⊳ P KA = Σs : S.(P s → A) as a dependent sum of a shape s : S and
a valuation from positions in the shape (taken from P s) to values A. These values are called the
elements of the container.

Throughout, a tuple notation (s, v) will be used for inhabitants of the dependent sum of a
container type, with shape s : S and valuation v : P s → A. These tuples (s, v) will be referred to
as container values.

Definition 3 (Finite containers). A container S ⊳P is finite if for every shape s : S its position set
P s is finite. That is, there is a natural transformation sizeA : JS ⊳ P KA → N, defined:

sizeA (s, v) = |P s|

where the size of a container value is the cardinality of the position set for its shape. Finiteness
necessarily implies that the set of positions is discrete.

Lists are finite containers since for every shape s : N (length) the set of positions is the finite set
{0, . . . , s− 1} (see Example 1 above). Note that lists are still finite containers despite there being
an infinite number of shapes. Other common containers in programming (trees, arrays) follow a
similar scheme: for a given shape there are a finite number of positions.

Example 2 (Streams). The stream container has a single shape, denoted ∗, whose positions are
drawn from the natural numbers, i.e., Stream = {∗} ⊳ (const N). Thus, streams are not finite
containers; streams are infinite.

Finite containers relate to Girard’s definition of a normal functor (representable by a power
series) [8], which are equivalent to container functors with a countable set of shapes and finite sets
of positions for each shape [2]. Whilst the above definition of finite containers is not restricted to
countably many shapes, this is sufficient for our purposes since we need not enumerate all shapes.
In any case, all the examples in this paper happen to have countable shapes since this is common
in programming.

For brevity, the word container will refer throughout to finite containers unless explicitly stated
otherwise. We restrict the development to finite containers since there is a clear notion of input
size which give finite bounds on the complexity of whole-structure traversals. We discuss infinite
containers briefly in Section 6, using the stream container example.

Example 3 (Real functions). For completeness sake, an example of an infinite and non-discrete
(continuous) container is the container of multi-dimensional real-valued functions N ⊳ (λn.Rn)
where shapes count the number of dimensions and positions are vectors of real numbers. We do
not consider complexity bounds for such containers since there is no natural measure of input size.

2.2. Cost semantics

A cost model for container values is key to the results of this paper.
For a function f : A → B, its execution time on inputs A of size n will be denoted [f ]n. We

do not necessarily have a model for the execution time of every f in the underlying category, nor
a size function for A values. Therefore, in some cases, this execution time will be left abstract.
However, functions on containers op : JS ⊳ P KA → B will have their execution time [op]n given
concretely by a cost model function [−] which maps container terms to N, where:

[op]n = [op (s, v)] iff ∃(s, v) : JS ⊳ P KA ∧ sizeA(s, v) = n

The costing function [−] is recursively defined over the syntax of terms used to define container
operations op which is a subset of λ-terms (Proposition 1):

Proposition 1. Container operations op (mapping from container values to container values) are
defined in this paper in terms of the following sub-grammar of λ-calculus terms t extended with
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position terms p, shape terms s, and abstract functions f which are either parameters to op or
input valuations v:

t ::= (s, t) | x | (λxp.t) | p | f t | (λxp.t) p (2)

That is op(s, v) = t where terms t are either container values (s, t), variables, λ-terms abstracting
over positions (where position variables are denote xp), position terms, β-redexes on abstract
functions or valuations f , or β-redexes of a λ-term with a position.

Definition 4 (Cost model). The cost function [−] : t → N assigns a cost to container operations.
The cost for input valuations or any (universally quantified) function f that parameterises a

container operation op is kept abstract in terms of [f ]n. This provides a flexible cost semantics
that can be instantiated for particular abstract-machine models via instantiations of [−]n. The
only assumption we place on [−]n is that it is monotonic on its input size. The costing is defined:

[(s, t)] =
∑

∀p:P s[t p]

[x] = 0
[λxp.t] = 0

[p] = 0
[f t] = 1 + [f ]|t| + [t]

[(λxp.t) p] = 1 + [t[p/xp]]

(3)

The first clause gives a cost analysis of a container value (s, t) : Σs : S.(P s → A) which enumerates
every position for the shape s, summing the cost of evaluating the container valuation t at each
position. Therefore, given a container value (s, v) of size n = |P s| (number of positions at the
present shape), if ∀p : P s. [v p] ∈ O(f) it follows that the complexity of evaluating the container
is [(s, v)] ∈ O(nf).

Variables, position terms, and naked λ-terms cost nothing. Thus complexity measures in this
paper do not take into account the different sizes of positions, which are instead uniformly treated
as having a constant unit size |p| = 1.

The application of an abstract function or valuation f to a term t is defined using the parameter
costing [−]n. This connects the concrete costing function to the abstract computation-time, where
the cost of application is [f ]|t| (parameterised by the size of its argument) plus the evaluation cost
of t and plus 1 to mark the computation step involved in the β-reduction of the application. A
similar costing is used by Wadler [25, §3] for strict timing analysis, where the cost of function
application is the cost of the function body plus one, plus the cost of the arguments.

The cost of a β-redex with a position argument has the cost of one plus the cost of the reduced
term (with syntactic substitution [p/xp] of the position p for variable xp). This matches the idea
that positions are of constant size and incur only a constant cost when substituted.

Counting β-reductions is known to be an imprecise cost model for the λ-calculus as the number
of syntactic substitutions required is not constant and the size of substituted terms is not accounted
for (see the discussion in [6]). However, in the above definition, the abstract costing [−]n provides
the main cost and can be instantiated with some more precise abstract machine model. The
counting of β-reductions is not used ubiquitously in the costing, only to account for applications to
position constants or applications of abstract (parameter) functions. The key point of the costing
[−] is to allow the cost of a valuation to be scaled by the number of elements in the container. As
shall be noted throughout, the counting of β-reductions incurred by f t or (λx.t) p ends up being
subsumed by the costs of the abstract functions f being scaled by a function of the input size n.

Definition 5 (Structural sizes). For nested data structures, the notation n[≤m] denotes a container
value of size n whose elements are bounded above by size m. This is similar to the notation of
Skillicorn and Cai who write the size of a nested data structure as a list of elements [n,m] meaning
the outer layer has size n and the inner elements of size at most m [22].

Similarly, n[m≤] denotes a container value of size n whose elements are bounded below by size
m (i.e., at least of size m).
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Proposition 2. Consider an extensional equality f ≡ g between two program fragments f and
g (that is, they have the same output for the same input). If [f ]n ∈ Ω([g]n) (or equivalently
[g]n ∈ O([f ]n)) then the equality can be oriented as a rewrite rule from left to right as f  g
which improves the asymptotic complexity of the program. Thus this rewrite rule may provide a
program optimisation.

Section 3 and Section 4 study functor and comonad structures on containers. In both, we
consider derived instances of this structure, where the definition is given explicitly, and abstract
instances of the structure, where the definition is unknown. For both functors and comonads, we
characterise what it means to be derived and abstract. In the case of abstract container comonads,
we can still reason about complexity based on the axioms of the comonad structure.

3. Functors

We consider containers which have the additional structure of a functor. The morphism mapping
of a container functor captures the common programming pattern of applying a function to every
element in a container data type, generalising the map combinator for lists.

Definition 6 (Derived container functor). Every container S⊳P induces an (endo)functor JS ⊳ P K :
C → C (for some base category C), defined on objects and morphisms respectively by:

• JS ⊳ P KA = Σs : S.(P s → A) (as in Definition 2);

• JS ⊳ P K f (s, v) = (s, f ◦ v) where f : A → B, s : S and v : P s → A.

Thus, the morphism mapping is the post-composition of the morphism f : A → B with the
valuation, giving a container value JS ⊳ P KB of transformed elements.

Note that the composition f ◦ v can be equivalently expressed as λp.f (v p), i.e., a term in the
restricted subset of the λ-calculus used to construct valuations (see Proposition 1).

Theorem 1 (Container functor cost). For a container S ⊳ P , the morphism mapping of its functor
F = JS ⊳ P K has complexity:

[F f ]n[≤m] ∈ O(n[f ]m + nQn)

for all f : A → B and for some cost function Qn of the input size n which characterises the time to
compute valuations at each position (the indexing time). Thus, the execution time of a morphism
mapping is linear in n times the cost of f (the transformation) plus the cost of indexing.

Proof. Following from the definition of container functors (Definition 6) and the cost function
(Definition 4, p. 4), then for some (s, v) : JS ⊳ P KA where n = |P s| and ∀p : Ps. |v p| ≤ m (i.e.,
elements have size of at most m), then:

[F f (s, v)] = [(s, f ◦ v)] = [(s, λp.f (v p))] =
∑

∀p:Ps

([λp.f (v p)])

=
∑

∀p:Ps

([f (v p)]+ 1)

=
∑

∀p:Ps

([f ]|v p| + [v p]+ 2)

{since |p| = 1} =
∑

∀p:Ps

([f ]|v p| + [v]1 + 3)

= n[f ]|v p| + n[v]1 + 3n

{since |v p| ≤ m} ≤ n[f ]m + n[v]1 + 3n

{assuming [f ]m > 0 and [v]1 > 0} ⇒ [F f (s, v)] ∈ O(n[f ]m + n[v]1)

{let Qn > 0 be upper-bound cost of [v]1} ∴ [F f ]n[≤m]] ∈ O(n[f ]m + nQn)
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Note, whilst [v]1 is parameterised by constant input size 1, its cost depends also on the container
value size n since v : P s → A, hence the term Q is parameterised by the input size n.

Remark 1. The cost to reduce the term (λp.(f (v p)) p in the resulting valuation is given as 3n by
our costing function. However, this cost is subsumed by the costs n[f ]m and n[v]1.

Corollary 1. Theorem 1 assumes that the elements of the input container have a well-defined size
which is at most m. If there is no such size defined for the elements, the theorem (and its proof)
still holds but with m = 1, i.e., [F f ]n ∈ O(n[f ]1 + nQn).

The result of Theorem 1 is straightforward from the definition and well-known, at least tacitly,
for concrete instances of containers such as lists, trees, and other inductive types (where Qn is
constant). However, in the context of an optimising compiler, the implementation of a container
functor may be unknown, rather than derived as in Definition 6. Whilst a container functor may
be extensionally equivalent to that of Definition 6, it may differ intensionally. For example, an
inefficient implementation for lists might use a linear-time lookup for each element (based on its
index), rather than the usual recursive definition; or, lists with repeated elements might be stored
more efficiently with a run-length encoding style implementation. However, we can still derive
useful complexity bounds even in this abstract case, with some restriction on what it means to be
an abstract finite container functor.

Definition 7. An endofunctor F : C → C is an abstract finite container functor if there exists
a finite container S ⊳ P such that F ∼= JS ⊳ P K, that is there exists a natural isomorphism, with
αA : FA → JS ⊳ P KA and inverse α−1

A : JS ⊳ P KA → FA.

Remark 2. An abstract finite container value has a definition of size via the isomorphism to some
concrete finite container. That is, size′A : FA → N is given by size′A = sizeA ◦ αA.

We first show a lower bound for such abstract container functors in the worst case.

Proposition 3. Let F be an abstract finite container functor, isomorphic to JS ⊳ P K. Assuming
that the costing [F f ]n is defined, then the morphism mapping of F has worst-case lower-bound
complexity [F f ]n ∈ Ω(n[f ]1), where the input size n is calculated by size′A.

Proof. The isomorphism to a concrete container explains the extensional behaviour of the abstract
container functor; by the isomorphism F ∼= JS ⊳ P K it follows that F f = α−1

B ◦ JS ⊳ P Kf ◦ αA

for some f : A → B. By the definition of the morphism mapping of concrete container functors
JS ⊳ P K f (s, v) = (s, f ◦ v), it follows that Ff extensionally preserves the size of the incoming
container and applies f to every element in a container value. Thus, [F f ]n is bounded below by
n[f ]1 in the worst case.

Remark 3. The above proposition is stated as a worst-case lower bound. This accounts for functor
implementations with a tighter lower bound complexity for some inputs by utilising features of
the underlying elements. For example, a compact representation could be provided for lists with
shared or repeated elements. A worst case scenario for such an implementation would be a list
with no common elements, inducing the linear lower bound.

A lower-bound complexity result is interesting, but not particularly useful for optimisation
purposes: given two extensionally equivalent programs f ≡ g if we only know two lower-bounds
[f ]n ∈ Ω(t(n)) and [g]n ∈ Ω(t′(n)) we cannot determine whether either f  g or g  f provides
any improvement; upper bounds are much more useful. However, in the abstract setting we can
only give an upper bound parameterised by representations of additional unknown costs.

Theorem 2 (Abstract container functor cost). Let F be an abstract finite container functor. Its
morphism mapping has upper-bound complexity, where for all f : A → B

[F f ]n[≤m] ∈ O(n[f ]m + nQn +Rn)
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where Qn is a function of the input size n representing the time to access each element in the
container (the time to evaluate a valuation). The term Rn is a function of n and acts as a catch
all : we cannot rule out that possibility of some pathological implementations with redundant
expensive computation whose complexity far outweighs the (n[f ]m + nQn) term.

If there is no well-defined notion of size for elements A, then m = 1 (see Corollary ??, p. ??).

Proof. This result builds on the lower-bound complexity of F (Proposition 3) which was based on
the extensional behaviour of F via its isomorphism to a concrete container. An upper bound must
be at least as big as the lower bound, hence the first part of complexity bound here is n[f ]m.

In the isomorphic concrete container, accessing an element has constant time but this may not
be the case in F. Instead, the cost of accessing each element is accounted for by the term nQn

(since there must be at least n accesses by the earlier argument). Finally, the factor Rn provides
the opportunity for any additional wasteful computation to dominate the linear-time portion.

Remark 4. The above theorem is quite weak: the Rn factor means we do not have a concrete
upper bound. However, this still provides a bound that can be used to reason about optimisations.
(A similar situation occurs with comonads in the next section). We can analyse two cases: when
Rn is dominant, and when it is not, and show that an optimisation does not get asymptotically
worse even if Rn is dominant.

Optimisation 1 (Functor optimisation). For an abstract or derived container functor F, the axiom
Fid ≡ idF can be oriented as an optimising rewrite rule Fid idF.

Proof. Straightforward for either derived or abstract container functors. Let idF(s, v) = (s, v),
which in our model has cost:

[idF (s, v)] = [(s, v)] =
∑

∀p:Ps

[v p] =
∑

∀p:Ps

(1 + [v]|p| + [p]) =
∑

∀p:Ps

(1 + [v]1) = n+ n[v]1

Thus, let Qn = [v]1 then identity has complexity [idF]n[≤m] ∈ O(nQn) and [Fid]n[≤m] ∈ O(n[f ]m +
nQn + Rn) where Rn = 0 in the case of derived functors. Therefore, regardless of whether Rn

dominates or not, the rewriting Fid  idF is an optimisation since it either reduces asymptotic
complexity (if [f ]m dominates Qn) or maintains it.

Remark 5. One might expect the cost of the identity function to be constant, i.e., (λx.x) ∈ O(1).
However, we make complexity claims relative to our cost model of container operations. The model
essentially includes an evaluation of a container value at every position (in the current shape), thus
identity on a container value is not constant, but requires the resulting container to be evaluated.

The remaining functor axiom F(g ◦ f) = Fg ◦ Ff is exploited in the classic deforestation trans-
formation Fg ◦ Ff  F(g ◦ f) [26]. Performance is improved by eliminating the intermediate
data structure between the two morphism mappings and performing one traversal instead of two.
However, this rewrite is not justified via the results here since the complexity of each term is the
same; asymptotic bounds cannot distinguish n from 2n. To justify this axiom (in a general setting)
requires a more fine-grained (non-asymptotic) costing analysis outside the scope of this paper.

4. Container comonads

The morphism mapping of the functor construction for containers captures the programming pat-
tern of an element-wise traversal, applying a transformation f : A → B to each element. Comonads
generalise this element-wise traversal by allowing a transformation to depend not just on a single
element, but on an element and its neighbours. The following compares the signatures of the
morphism mapping for a functor (left) with the extension operation of a comonad (right):

functor
f : A → B

Ff : FA → FB
comonad

g : FA → B

g† : FA → FB

7



On the left, the functor applies the morphism f pointwise, where f computes a B value from a
single A value. On the right, extension applies the morphism g contextwise, where g computes a
B value from possibly multiple A values from the “context” provided by FA. That is, FA is more
than just a container functor, it is a container functor with a notion of context, such as a pointer to
a particular element. Thus, g can access more than just a single element, and is therefore described
as a context-dependent computation (see [18]). For example, the kernel function of a Gaussian blur
takes the mean of an element at the current context and its immediate neighbours.

Definition 8 (Comonads). For an endofunctor F, a comonad is a triple (F, ε, (−)†) which comprises

• a natural transformation εA : FA → A, called the counit ;

• an extension operation, (uniquely) mapping morphisms f : FA → B to morphisms f† :
FA → FB satisfying the axioms:

[C1] ε†A ≡ idFA [C2] εB ◦ f† ≡ f [C3] g† ◦ f† ≡ (g ◦ f†)†

Extension lifts (or, extends) a morphism f : FA → B which models a computation localised to an
incoming context FA, to a global operation f† : FA → FB by applying f at every possible context
within the incoming FA value. For the Gaussian blur example, extension would apply the kernel
function to the array focussed at every possible index in the array. The counit εA : FA → A defines
the notion of a current context at which an element is located and projected out by ε. This acts
as the identity for extension [C1], [C2]. The third axiom [C3] defines associativity of (−)†.

Example 4 (Non-empty list comonad). Non-empty lists have a comonad structure, where ε takes
the head of the list and extension applies the parameter function f : [A] → B to successive sublists
of the input list, defined:

ε xs = head xs f† xs =

{

[f [x]] xs = [x]

(f xs) : f†(tail xs) otherwise

Thus, the “context” at each element of the list is its suffix, to which extension applies f . The
requirement that the lists are non-empty is such that ε is total.

We focus first on the axiom [C3] g†◦f† ≡ (g◦f†)† which reassociates extension. The nested use
of extension on the right-hand side suggests the possibility of a quadratic difference in complexity
compared with the left, which has no such nesting. This is exactly the situation described in the
introductory example (Section 1). This kind of nesting can easily arise during program construction
and can lead to significant performance issues. Therefore, it is preferable to automatically eliminate
this nesting (by a compiler) given a guarantee that it is always an improvement. We infer the
complexity difference between the two sides of [C3] from the comonad axioms and show that the
rewrite (g ◦ f†)†  (g† ◦ f†) is indeed an optimisation.

Proposition 4 (Shape preservation). The extension operation of a comonad is shape preserv-
ing [18, 16], similarly to the morphism mapping part of a functor. That is, for an abstract notion
of shape given by shapeA : FA → F1 defined as the lifting of the terminal morphism shapeA = F!A
(also used by Jay and Cockett [14]), then for all f : FA → B:

shapeB ◦ f† = shapeA

Thus, the comonadic extension of any morphism f : FA → B preserves the shape of the input
value in its output.

Proof. By [C1] ε†A ≡ idFA, for all f : FA → B then:

shapeB ◦ f† def
≡ F!B ◦ f† ext

≡ (!B ◦ f)†
!A
≡ (!A ◦ εA)

† ext
≡ F!A ◦ ε†A

[C1]
≡ shapeA

8



where the step (ext) follows from Ff ≡ (f ◦ ε)† (proof not shown) and [C2],[C3], and !A is the
universal morphism of terminal objects.

Corollary 2 (Size preservation). For a finite container comonad, the extension operation (−)† is
size preserving, that is:

sizeB ◦ f† = sizeA

Proof. Since shapeA = F!A, by naturality of sizeA it follows that size1 ◦ shapeA = sizeA. Combining
this with Proposition 4 gives size preservation:

sizeB ◦ f† natur.
≡ size1 ◦ shapeB ◦ f† Prop 4

≡ size1 ◦ shapeA
natur.
≡ sizeA

The size preservation of comonadic extension is a useful property for deriving complexity bounds
on extension and has the further corollary about cost:

Corollary 3. For a finite container comonad on F and for any morphisms f : FA → B and
g : B → C then the following property holds for the execution time:

[g ◦ f†]n = [g]n + [f†]n

That is, since f† is size preserving, the output size of f† is the same as the input and therefore the
execution time of the composition can be decomposed with [g] parameterised by size n.

Similarly to functors in the last section, both derived and abstract structures are considered in
this section. Comonads can be derived from containers with some additional structure.

4.1. Directed containers

The subclass of containers known as directed containers has additional structure on shapes and
positions which induces a container comonad [3]. The additional structure describes a system of
subshapes related to each position in a shape.

Definition 9 (Directed containers). A container S ⊳ P is called directed if it has the following
additional operations for manipulating shapes and positions [3, 4]:

• o : Π{s : S}. P s – a root position for every shape (the shape parameter s is given implicitly);1

• ↓: Πs : S. P s → S – computes the subshape at a particular position;

• ⊕ : Π{s : S}.Πp : P s.P (s ↓ p) → P s – given a position p′ in a subshape starting at p, then
p⊕ p′ gives the position of p′ within the parent shape.

These satisfy the following two equations on shapes [S1-2] and three positional equations [P1-3]:

[S1] s ↓ o = s

[S2] s ↓ (p⊕ p′) = (s ↓ p) ↓ p′

[P1] p⊕ o = p

[P2] o⊕ p = p

[P3] (p⊕ p′)⊕ p′′ = p⊕ (p′ ⊕ p′′)

1The implicit parameters of an operation are marked by surrounding them in braces {...}.
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The shape parameters have been kept implicit in the above axioms, but [P3], for example, can be
rendered with its shape arguments explicit as (p⊕{s} p′)⊕{s} p′′ = p⊕{s} (p′ ⊕{s ↓ p} p′′).

Modulo the dependent types, rules [P1-3] are essentially that ⊕ and o form a monoid over
positions, and [S1-2] that ↓ is a right-monoid action with the set of shapes.

Definition 10 (Derived container comonad). Every directed container (S ⊳ P, ↓, o,⊕) induces a
comonad for the functor JS ⊳ P K : C → C with counit and extension:

ε(s, v) = v o{s}

f†(s, v) = (s, λp. f (s ↓ p, λp′. v (p⊕{s} p′)))

The counit operation ε takes the valuation at the root position o. The extension f† on a container
value (s, v) produces a container where at each position p the morphism f : FA → B is applied to
a sub-container of shape s ↓ p whose valuation takes elements at positions offset by p⊕{s}.

Example 5 (Directed list container and its comonad). Example 1 (p. 2) defined the list container
as N ⊳ Fin where shapes are list lengths. Non-empty lists are a container with N>0 ⊳ Fin and a
directed container with s ↓ p = s− p (the subshape is the (length of the) suffix) and o{s} = 0 (the
head element) and p ⊕ p′ = p + p′ (the global position of p′ in the subshape starting at p is its
position in the entire list).

This produces a non-empty list comonad structure which is extensionally equivalent to the
non-empty list comonad given in Example 4.

Theorem 3 (Derived container comonad cost). For a directed container (S⊳P, ↓, o,⊕), the derived
comonad has extension (−)† with the upper-bound complexity:

[f†]n ∈ O(n[f ]m + nmQm)

where m = maxp:P s|P (s ↓ p)| is the largest subshape from s for some input (s, v) : JS ⊳ P KA and
Qm is the cost of applying valuations v (parameterised on the maximum subshape size m).

Therefore the cost of applying f† to a container of size n is bounded above by n times the cost
of f on input size m (the size of largest possible subcontainer that f is applied to), plus nm times
the valuation cost (the cost of retrieving values from the container in each application of f).

Proof. By the derived container comonad definition (Def. 10). Let n = |P s| and Qm = [v]1, then:

[f†(s, v)] =
∑

∀p:Ps

(1 + [f (s ↓ p, λp′.v (p⊕{s} p′))])

=
∑

∀p:Ps

(1 + [f ]|P (s↓p)| +
∑

∀p′:P (s↓p)

(1 + [v (p⊕{s} p′)]))

{since |p| = 1} =
∑

∀p:Ps

(1 + [f ]|P (s↓p)| +
∑

∀p′:P (s↓p)

(2 + [v]1))

= n+ n[f ]|P (s↓p)| + n
∑

∀p′:P (s↓p)

(2 + [v]1)

{m = maxp:P s|P (s ↓ p)|} ≤ n+ n[f ]m + nm(2 + [v]1)

{Qm = [v]1 ∧Qm > 0} ∴ [f†]n ∈ O(n[f ]m + nmQm)

Since positions are of constant size, we treat the cost of ⊕ as constant also in the above proof.

Remark 6. In the above theorem and proof, the maximum size of the subshapes m is ≥ n by the
axiom [C2] ε ◦ f† ≡ f instantiated with f = size giving εN ◦ size

†
A = sizeA i.e., the size of the

subshape at the current context is equal to the size of the original container (this is exposed in the
directed container structure by axiom [S1]). Therefore, as m is the size of the largest subshape,
and the subshape at the root position is the size of n, it follows that m ≥ n.
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The above theorem provides the basis to show that [C3] can be oriented as an optimisation:

Optimisation 2. For a derived container comonad, axiom [C3] can be oriented as (g◦f†)†  g†◦f†

guaranteeing an asymptotic improvement or not making the complexity worse.

Proof. Assume input (s, v). Let n = |P s|, m1 = maxp:P s|P (s ↓ p)| (largest subshape size) and
m2 = maxp:P s,p′:P (s↓p)|P ((s ↓ p) ↓ p′)| (largest sub-subshape size). By Theorem 3 and Corollary 2:

[g† ◦ f†]n = [g†]n + [f†]n

∈ O(n[g]m1
+ nm1Qm1

+ n[f ]m1
+ nm1Qm1

)

[(g ◦ f†)†]n ∈ O(n[g ◦ f†]m1
+ nm1Qm1

)

∈ O(n([g]m1
+m1[f ]m2

+m1m2Qm2
) + nm1Qm1

)

∈ O(n[g]m1
+ nm1Qm1

+ nm1[f ]m2
+ nm1m2Qm2

)

Each bound shares a common summand n[g]m1
+nm1Qm1

and a common factor n on the remaining
terms. It therefore remains to prove ([f ]m1

+m1Qm1
) ∈ O(m1[f ]m2

+m1m2Qm2
) (the remaining

distinct subterms).
This follows from the property that m1 = m2, that is the maximum subshape size is equal to

the maximum sub-subshape size, which follows from the directed container axioms:

1. First, consider a general property on functions: let X and Y be sets and a : X → Y and
b : Y → Z be functions where X and Y are finite and a is surjective.

Then: {b(y) : ∀y ∈ Y } = {b(a(x)) : ∀x ∈ X} since a maps to its entire co-domain Y .

2. From axiom [P1], it follows that ⊕{s} is surjective, mapping to all values in its co-domain
P s. That is, ∀p ∈ (P s) ∃p1 ∈ (P s) and ∃p2 ∈ (P (s ↓ p)) such that p1 ⊕{s} p2 = p, where
p1 = p and p2 = o by axiom [P1] p⊕ o = p.

3. Instantiate the general property (1) with X = Πp : P s.P (s ↓ p) (which is finite due to
our restriction to finite containers and hence finite sets of positions), Y = P s (also finite)
and Z = N, with a = ⊕s (which is surjective (2)) and b p = |P (s ↓ p)| (the cardinality of
positions at subshape s from position p). Thus:

{|P (s ↓ p)| : ∀p ∈ P s} = {|P (s ↓ (p1 ⊕ {s}p2)| : ∀p1 ∈ P s, ∀p2 ∈ P (s ↓ p)}

which are both finite sets by the finiteness of X and Y .

4. From axiom [S2], ∀{s, p1 : Ps, p2 : P (s ↓ p1)} . s ↓ (p1 ⊕ p2) = (s ↓ p1) ↓ p2 it follows that:

{|P (s ↓ p)| : ∀p ∈ P s} = {|P ((s ↓ p1) ↓ p2)| : ∀p1 ∈ P s, ∀p2 ∈ P (s ↓ p)}

5. Let m1 = maxp:P s|(s ↓ p)| and m2 = maxp1:P s,p2:P (s↓p1)|P ((s ↓ p1) ↓ p2)| then from (3) and
(4) it follows that m1 = m2:

m1 = max{|P (s ↓ p)| : ∀p ∈ P s} = max{|P ((s ↓ p1) ↓ p2)| : ∀p1 ∈ P s, ∀p2 ∈ P (s ↓ p)} = m2

Therefore the largest subshape size m1 equals the largest sub-subshape size m2 and therefore
([f ]m1

+m1Qm1
) ∈ O(m1[f ]m1

+m1m1Qm1
). Overall, this gives bounds for either side of [C3]:

[g† ◦ f†]n ∈ O(n[g]m1
+ nm1Qm1

+ n[f ]m1
+ nm1Qm1

)

[(g ◦ f†)†]n ∈ O(n[g]m1
+ nm1Qm1

+ nm1[f ]m1
+ nm2

1Qm1
)

Regardless of whether Q or [f ] dominates then [g†◦f†]n ∈ O[(g ◦ f†)†]n justifying the rewrite.
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4.2. Abstract container comonads

For abstract (non-derived) container comonads, this section shows their complexity is similar to
those of the derived container comonads. But how do we characterise abstract container comonads
in order to have enough structure to derive the complexity bounds?

Definition 11 (Abstract finite container comonad). A comonad structure (F, ε, (−)†) is an abstract
finite container comonad if there exists a finite container S ⊳ P such that F ∼= JS ⊳ P K.

The above definition is essentially that of an abstract finite container functor (Definition 7) but
where F is a comonad. This is all that is needed to derive the following complexity bound; an
isomorphic directed container structure on S ⊳P (and thus a comonad on JS ⊳ P K) is not required,
just that there is an isomorphic container S ⊳ P .

Theorem 4 (Abstract container comonad cost). Let F be an abstract finite container with comonad
structure (F, ε, (−)†) and a container S⊳P such that α : F ∼= JS ⊳ P K. The size of abstract container
values is given by size′A : FA → N = sizeA ◦ αA. The extension (−)† then has the upper bound
(assuming the cost [f†]n is indeed defined):

[f†]n ∈ O(n[f ]m + nmQn +Rn)

with m ≥ n where m represents the size of the largest subcontainer passed to f , Qn represents costs
for constructing subcontainers and valuation cost, and Rn covers pathological implementations.

Proof. The proof resembles that of Theorem 2 for abstract functors with the parameterisation of
the complexity bound by Qn and Rn. In contrast with the complexity bounds of abstract container
functors (Proposition 3, p. 6), this result relies more on the general axioms of the structure on F.

1. By shape preservation of comonads (Proposition 4), the size of a container computed by the
extension f† is the size of the input container, i.e., size′B ◦ f† = size′A by the following diagram
(recall size′A = sizeA ◦ αA), where the unlabelled commuting squares are naturality properties:

FB
αB //

F!B

��

JS ⊳ P KB
sizeB

��
JS⊳P K!B

��
FA

Pr. 4

f†
11

αA //

F!A

// F1
α1

// JS ⊳ P K1
size1

// N

JS ⊳ P KA

JS⊳P K!A

OO

sizeA

HH

2. By the comonad axiom [C2] εN ◦ size′A
†
= size′A, the size of the subcontainer computed for the

current context is the size of the input container (Remark 6, p. 10). Thus the maximum size
m of a subcontainer computed by extension (−)† is at least n, i.e. m ≥ n.

3. The comonad axiom [C1] ε†A = idFA implies that for some input container x : FA and function
f : FA → B then f† x : FB applies f to n subcontainers of x where each subcontainer has
each element of x at its current context.

This follows by a contradiction: assume that f† does not apply f to n subcontainers. Therefore,
to compute an output container of size n (from point (1) above) of element type B, the operation

f† must copy some of the results from applying f . Therefore, applying ε†A to an input container
with distinct elementsA would produce an output container with duplicate elements. Therefore,
ε†A 6= idFA and the initial assumption must be false.

Combined with point (2), the execution time is therefore bounded above by n[f ]m where m is
the maximum size of subcontainers, plus nmQn to account for constructing subcontainers for
each application of f and accessing elements (the valuation cost).
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4. Finally, the term Rn accounts for arbitrary wasteful implementations.

Optimisation 3. For any container comonad, axiom [C3] can be oriented as (g ◦ f†)†  g† ◦ f†

guaranteeing an asymptotic improvement or not making the complexity worse (in the case where
Qn or Rn dominate all other terms).

Proof. Essentially the same as the proof for Optimisation 2 (p. 11), modulo the additional term
Rn which appears in both complexity terms, but with an additional linear factor for the (more
costly) (g ◦ f†)†. Thus, [g† ◦ f†]n ∈ O([(g ◦ f†)†]n).

4.3. Optimisations for counit

The computational cost of the counit operation εA : FA → A has yet to be considered. Its axioms
[C1] ε† ≡ id and [C2] ε ◦ f† ≡ f are clearly amenable to orientation as optimising rewrites. This
is formalised briefly here, using similar approaches to the above.

Remark 7. Not much can be said about the computational complexity of ε as a function of its
input. For a directed container (S ⊳ P, ↓, o,⊕), the derived comonad has counit ε(s, v) = v o{s}.
The execution time of ε is then the time taken to access the root position from the container value,
[ε]n ∈ O(Qn), where Qn = [v]1 is unknown since it depends on the valuation function of the input
container value. The same is true for the abstract case where there is no further information.
However, axioms [C1] and [C2] can still be shown to be optimisations.

Optimisation 4 (Comonad [C1]). For all derived or abstract container comonads, axiom [C1] can
be oriented as a rewrite ε†  id providing an optimisation.

Proof. For derived container comonads [ε†] ∈ O(n[ε]m+nmQn) and for abstract container comon-
ads [ε†] ∈ O(n[ε]m + nmQ′

n + Rn). Since [idF ]n ∈ O(nQn) (see proof of Optimisation 1, p. 7)
this rewrite is guaranteed to preserve asymptotic complexity or improve the complexity (if either
m > 1 or [ε]m has non-constant complexity, or Rn dominates).

Optimisation 5 (Comonad [C2]). For all derived or abstract container comonads, axiom [C2] can
be oriented as a rewrite ε ◦ f†

 f providing an optimisation

Proof. Let (s, v) be an input container value, with n = |P s|.
For derived container comonads [ε ◦ f†]n ∈ O(n[f ]m + nmQn + [ε]n) where m is the size of the

maximum subshape (Theorem 3, p. 10). By [S1] it follows that m ≥ n since the current shape is
a subshape of itself (at the root position) and therefore the maximum subshape size must be at
least n. Thus [f ]n ∈ O(n[f ]m) and therefore [f ]n ∈ O(n[f ]m + nmQn + [ε]n).

For abstract container comonads, [ε◦f†]n ∈ O(n[f ]m+nmQ′
n+Rn+[ε]n) (Theorem 4, p. 12).

By similar reasoning to the derived case, the [S1] axiom corresponds to the general [C2] comonad
axiom ε◦size† = size, (see Remark 6, p. 10) that is, the size of the subshape at the current context is
the size of the input container. Thusm ≥ n and it follows that [f ]n ∈ O(n[f ]m+nmQ′

n+Rn+[ε]n).
Subsequently, in both the derived and abstract cases ε ◦ f†

 f is an optimisation.

4.4. Summary

The results of this section showed complexity bounds for derived and abstract container comonads,
providing the proof that each of the comonad axioms can be oriented to give an optimisation. The
rewrite (g ◦ f†)†  (g† ◦ f†) (Optimisation 2 and 3) corresponds to the flattening transformation
discussed in the introduction (Section 1), moving from a quadratic to linear program. We revisit
this example concretely using the formalism of this paper.
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Example 6 (Arrays). The introductory example of this paper showed two imperative array pro-
grams with the same extensional behaviour, but differing asymptotic behaviours:

for i = 1..n

for u = 1..n

B(u) = f(A, u)

C(i) = g(B, i)

∈ O(n2[f] + n[g])

for i = 1..n

B(i) = f(A, i)

for i = 1..n

C(i) = g(B, i)

∈ O(n[f] + n[g])

where A, B, and C are one-dimensional arrays and f and g are pure functions. This example can be
explained in the framework of this paper because the above traversals are instances of the extension
operation of an array comonad [17] which has a cursor– a position which identifies or focusses on
a particular element in the container (see [4, §4.5]). In the above loops, the iteration variables i
and u act as cursors to the arrays. For example, in the left program, u is used as the cursor for A
and i is used as the cursor for B.

One-dimensional arrays with a cursor are captured by the container:

Array = Σ(l : N)(c : Fin l) ⊳ (λ(l, c).Fin l)

Shapes are a dependent-sum of a length l : N and a cursor position (written as c) drawn from the
finite set Fin l. Positions for shapes with length l are drawn from the finite set Fin l. The generated
container data type2 is then JArrayKA = Σ(l : N, c : Fin l).(Fin l → A), that is, a dependent-sum of
the length l of the array, the cursor c into the array, and the valuation map from positions within
the length to values.

The Array container also has the following directed structure:

o{(l, c)} = c the root position is marked by the cursor
(l, c) ↓ p = (l, p) the subshape at position p has same length, but with cursor p
p⊕ p′ = p′ the offset of position p to p′ is just the cursor p′

Inlining the above definitions, the derived extension operation of the comonad for this directed
container is defined as:

f†((l, c), v) = ((l, c), λp. f ((l, p), v))

That is, extension (−)† produces an array with the same size and cursor as the input array, where
elements of the new array are computed by applying f to arrays ((l, p), v) which are the original
array “refocussed” at each position p by setting p as the cursor. This produces the following
behaviour captured by the imperative code:

for p = 0..(l-1)

B(p) = f(A, p)

where A corresponds to the valuation and p to the position which is used as the cursor within the
array (of length l). The output array B corresponds to the new valuation. Thus, the two array
programs in the introductory example correspond to two comonadic array container computations:
(g ◦ f†)† and g† ◦ f† respectively.3

Applying Theorem 3 on the derived container comonad cost and Corollary 2 on the cost of
post-composing functions after comonadic extension, we recover the complexity results shown in

2Following Definition 2 exactly, the data type is JArrayKA = Σ(s : Σ(l : N)(Fin l))((λ(l, c).Fin l)s → A). The text
provides an (isomorphic) simplification.

3Whilst the elements of Fin l range from 0 to l − 1, it is easy to translate these to match the index space of the
original example (with indices drawn from 1 to n, where l = n here).
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the introduction (with some additional precision). By the above definition of the array comonad,
the size of largest subshape m = maxp:P s|P (s ↓ p)| = |P s| = n since subshaping ↓ just changes the
position of a cursor rather than changing the size of an array. Thus, assuming that the valuation
cost is constant Qn = 1, we derive the complexity bounds:

(g ◦ f†)† ∈ O(n[g ◦ f†]n + n2Qn)

∈ O(n([g]n + n[f]n) + n2Qn) + n2Qn)

∈ O(ngn + n2[f]n + n3Qn + n2Qn)

∈ O(n[g]n + n2[f]n + n3)

g† ◦ f† ∈ O(n[g]n + n2Qn + n[f]n + n2Qn)

∈ O(n[g]n + n[f]n + n2)

On the right, the extension traversals are sequentially composed, whereas on the left the extension
of f is nested within the traversal for the extension of g, leading to the quadratic factor on the cost
of f. Applying Optimisation 3 (p. 13) to this program rewrites (g ◦ f†)† to g† ◦ f†, thus reducing
the asymptotic complexity. The nested array-traversal optimisation discussed in the introduction
is therefore an example of structuring a program via a comonad, and optimising by applying the
[C3] axiom as a rewrite rule.

In a programming, the kind of nesting seen in this example is more likely to occur when com-
posing library functions than when writing straight-line imperative code by hand. Indeed, existing
comonadic libraries sometimes suffer from complexity problems due to overly nested operators, for
example in the comonadic notation for Haskell which dualises do-notation [18] and as noted in the
work of Foner on fixed-points over comonadic extension and comonadic arrays [7]. By adding a
[C3] rewrite rule into the compiler, this situation can be remedied.

5. Related work

Related to the notion of containers (à la Abbott et al.) are shapely datatypes [12, 14], which were
shown to be a subset of containers with finite cardinals [1]. Shapely data types have a shape
morphism sh : FX → F1 (which can be given by F !A) and data morphism data : FX → [X],
mapping to a list of values. A shapely data type (or functor) is then the pullback of these two
morphisms. Size can be determined from the data morphism using the length of the list, e.g.,
size = length ◦ data. Thus, our results for abstract constructions can also be applied also to
shapely functors.

Various works have provided a cost analysis for algorithmic skeletons in the context of parallel
programming e.g. [15, 10, 22, 13], which have similar motivation to this work: reasoning about
performance abstractly to inform program optimisation. Riely and Prins prove that the flattening
transformation (for nested parallelism) provides an improvement in their costing [20]. Size inference
for concrete list data structures has been used for optimising compilation [13].

The work of Hayashi leverages a concrete cost-model for parallel architectures (accounting for
memory model, communication cost) in the context of a vector-based set of algorithmic skele-
tons [10]. There are many possible cost models available (Hayashi’s thesis gives a survey of cost
models and different cost analysis techniques [10]). However, many of these costings are specialised
to particular data structures, e.g., lists or vectors, and focus more on the distribution and com-
munication cost, rather than a general computational complexity. The analysis here is much more
abstract, further divorced from any implementation (sequential or parallel). More abstract ap-
proaches have costed parallel programs over shapely functors [12]. The work of Jay considers map,
fold, and zip constructs in the more abstract setting [13]. The present paper broadens this to the
larger class of containers and studied the comonad pattern, which has not been given a complexity
analysis in the literature.

Skillicorn and Cai provide a cost-model for Bird-Meertens algebra-of-programming style [22].
They define the (sequential) cost of the map operation on lists as t(map f)n = nt(f)n, and of
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concat (i.e., multiplication of the list monad) as t(concat)n = n−1. Thus, the associative axiom of
the list monad t(concat ◦ (map concat))n = n(n− 1) + n− 1 = n2 − 1 versus t(concat ◦ concat)n =
n− 1 + n− 1 = 2(n− 1). This justifies the reassociating transformation of a list monad. Again, a
particular data structure is studied.

6. Discussion and conclusion

Infinite containers. We have considered models of finite, discrete containers in this paper, since
our asymptotic bounds are defined for finite cardinals. Can similar reasoning principles be used to
explain asymptotic behaviour of infinite containers? One potential avenue for infinite but discrete
containers is to define bounds in terms of ordinals.

Example 2 defined the infinite stream container {∗} ⊳ (const N). The asymptotic behaviour
might be reasoned about via ordinals, where ω (linear, infinite) and ω2 (quadratic, infinite) can be
distinguished. This provides a way to explain the overhead incurred when nesting the extension
operation for stream comonads.

Refining bounds. The complexity bounds for comonadic extension appealed to the notion of the
maximum size for the subshapes of a container. Many examples of directed containers however
exhibit the following property:

∀s : S, p : P s . |P (s ↓ p)| ≤ |P s|

That is, for all shapes, the size of each of its subshapes is no larger than the size of its parent shape.
If this property holds for a directed container, the complexity of f† can be refined from [f†]n ∈
O(n[f ]m + nQn) where m = maxp:P s|P (s ↓ p)| (largest subshape size) to [f†]n ∈ O(n[f ]n + nQn)
(note the n subscript rather thanm) thus obviating the additional calculation and reasoning behind
m. It may be possible to prove this result from just the directed container axioms, but a proof has
yet to be found, even though all reasonable examples satisfy it. This is future work.

The abstract term Rn was introduced to capture the cost of any potential wasteful compu-
tation involved in the operations of an abstract container functor or comonad. In a simply- (or
dependently-) typed λ-calculus model, the possibility of this additional wasteful computation can-
not be ruled out from looking at the types and axioms of the structures alone. However, under
a linear typing discipline, such waste is constrained to constant overheads. Exploring linear and
bounded-linear variants of the definitions here to give tighter bounds is further work.

In practice, reasonable container functor and comonad implementations do not have any ad-
ditional cost that is not accounted for by the valuation costing Qn. Thus Rn = 0 in standard,
common cases. Furthermore, the valuation cost Qn is typically bounded above by n, corresponding
to the time to index elements out of a container of size n. The author’s doctoral dissertation pro-
vides a catalogue of different container comonads [16, §3.2], all exhibiting Rn = 0 and Qn ∈ O(n).

Monads. Ahman et al. sketched the additional container structure required to generate container
monads [3], and later gave the full details of the requisite container algebra [? ]. Monads can be
seen as generalising a functor’s traversal in a dual way to comonads, capturing local substitution
of elements for substructures (akin to a scatter [17]). This is a frequent pattern in container
programming. Further work is to derive complexity bounds for container monads following the
scheme of this paper. Initial investigation suggests that deriving the complexity information is
straightforward and leads to related bounds and results. For example, the axiom (g∗ ◦f)∗ = g∗ ◦f∗

for the Kleisli extension of a monad (−)∗ can be oriented left-to-right as an optimising rewrite. This
matches the well-known problem of nested monadic computations, addressed in various approaches
for reifying a computation tree to reassociate monadic computations, e.g., [11, 24].
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Category theory models of complexity. Various works seek to give a category theoretic account
of complexity classes, algorithms, and wastefulness (inefficiency), e.g., [27, 5]. An interesting
future direction would be to consider containers on the category of timed sets, giving a measure
of the execution time of morphisms and complexity measures from within the model, rather than
externally via a cost function as done here. This is further work.

Relatedly, it may be possible that the account of execution cost and complexity for comonads
here (and in the future for monads) could be reduced into more basic structures such as adjunctions,
and studied from a categorical perspective. This is further work.

Concluding remarks. The analysis in the paper provides a foundation for program optimisation for
programs structured in terms of containers, functors, and comonads. These are already common
programming idioms in functional programming. When combined with user-defined rewrite rules,
this provides a powerful technique for suggesting optimisations. Furthermore, by instantiating the
execution time function [−]n the parameterised cost model [−] provides a way to specialise the
results to particular precise, concrete abstract machine models.

It should be pointed out that, whilst these optimisations are proven to not make a program
asymptotically worse, this is still a fairly weak statement. It may be the case that such rewrites
interact poorly with other transformations in a compiler, leading to worse performance. As always
with optimising compilation, care must be taken.

Containers are a useful syntax and abstraction for exploring generic programming interfaces
for common data types. There are still plenty of avenues for further exploration. This paper
demonstrated that container abstractions can be used to reason about efficiency, which has not
appeared before, and for which there is much more work to be done.
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