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1Centro Internacional de Fı́sica de Matéria Condensada, Universidade de Brası́lia, Caixa Postal 04513, 70919-970 Brası́lia, Brazil
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We propose an experiment to obtain the phase diagram of the fermionic Hubbard model, for any
dimensionality, using cold atoms in optical lattices. It is based on measuring the total energy for a
sequence of trap profiles. It combines finite-size scaling with an additional ‘‘finite-curvature scaling’’
necessary to reach the homogeneous limit. We illustrate its viability in the 1D case, simulating
experimental data in the Bethe-ansatz local-density approximation. Including experimental errors, the
filling corresponding to the Mott transition can be determined with better than 3% accuracy.
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Bose-Einstein condensation of trapped atoms [1] has led
to rapid growth of research into such systems. One exciting
suggestion [2] is that they could be used to simulate con-
densed matter, with the atoms playing the role of conduc-
tion electrons, and a periodic potential provided by a laser
standing wave, or ‘‘optical lattice.’’ The advantages of such
a scheme are manifold: the system is highly tunable,
including the effective strength of atom-atom interactions
[3]; there is no naturally occurring disorder in the lattice;
and quantities such as the total energy, which cannot
normally be measured in condensed matter systems, are
accessible [4]. Several familiar phases of matter have al-
ready been seen: the Fermi liquid [5], the Mott insulator
[6], vortex matter [7], and BCS condensates [8]. So far,
however, most observations have been (a) rather qualitative
in nature and (b) of phases that were already well under-
stood. In this Letter, we propose a scheme to answer
quantitatively an outstanding open question of condensed
matter physics: what is the phase diagram of the fermionic
Hubbard model in two or three dimensions?

To answer this question we need to address the fact that
atom traps are inhomogeneous. Because of that, phase
transitions are ‘‘blurred’’ [9]. This is not simply an issue
of finite size: the system is not in a thermodynamic phase at
all, even in the thermodynamic limit (see below). Thus, the
notion of a phase diagram for the atomic gas in the optical
lattice is not rigorous. Nevertheless, by focusing on the
total energy and carrying out a sequence of measurements
for traps of different sizes and shapes the phase diagram of
the model of interest may be deduced, as we shall show.

To achieve this, we need to link quantitatively the energy
of the model system (atoms in an optical lattice) to that of
an infinite d-dimensional Hubbard lattice. One obvious
issue is size: condensed matter systems typically have
N � 1026 conduction electrons, whereas N � 105 is more
typical in the optical lattice case. In computer simulations,

this is dealt with by finite-size scaling [10]: systems of
various sizes are simulated, and the results extrapolated to
the thermodynamic limit. A similar procedure can be
employed in optical lattice experiments, as we describe
below.

Another difference between solid-state and cold-atom
systems is the nature of the confining potential. In the
former, it is usually a hard-wall box; in the latter, it is a
power-law (usually harmonic) potential. The thermody-
namic limit mentioned above is singular [11,12]: even
though it corresponds to vanishing trapping potential, the
results obtained in that limit depend on the shape of the
trap. Thus finite-size scaling alone does not yield the
desired bulk energy, and a second kind of scaling is called
for: an extrapolation from the properties of the power-law-
trapped system to those of the hard-wall-confined one. We
call this finite-curvature scaling.

Thus we consider the family of potentials given by
V�x� � t

Pd
i�1 jxi=Lij

� [12], where Li are characteristic
length scales of the trap, and t is a reference energy scale
(see below). � � 2 corresponds to harmonic trapping,
while the �! 1 limit creates a hard-wall box of volume
2d
Q
iLi. The d � 1 version of this potential is shown in

Fig. 1(a).
In practice, the achievable values of� are likely to be the

even integers, because the true confining potential will
generically be harmonic (�x2) near its minimum. To
change this one will have to superpose two laser beams
to cancel the harmonic terms; for Gaussian beams, the next
term will be quartic (�x4). Additional laser beams could
be used to cancel both the x2 and x4 terms, leaving an x6

potential, and so on. This demands controlling the width of
each Gaussian beam independently of its wavelength,
which is within current experimental capabilities [13,14].
Indeed, the realization of a confining potential with a term
V�x� � x4 has already been reported [15].
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The experiments we propose are realizations of the
following inhomogeneous Hubbard model [2,16]:

 H � �t
X

hiji�

�cyi�cj� � H:c:� �U
X

j

cyj"cj"c
y
j#cj#

�
X

j�

V�xj�c
y
j�cj�; (1)

where cyj� creates a fermionic atom with spin � on site j.
The terms in (1) represent, respectively, the kinetic energy,
the potential energy of atom-atom interactions, and the
potential energy due to the trap. The usual Hubbard model,
whose phase diagram we wish to deduce, is recovered
when V�xj� � 0 everywhere. The atoms must have two
‘‘spin’’ states ( " and # ); in practice these will be two
hyperfine eigenstates.

The model (1) has four dimensionless parameters: U=t,
the strength of the on-site repulsion; �, the trap exponent;
N , the number of sites; and f, the filling. These last two
are somewhat delicate, since in the presence of a power-
law trap the effective number of sites in the lattice becomes
energy-dependent. We thus define N as the number of
sites in the �! 1 limit, i.e., N �

Qd
i�1�2Li=a�, and f as

N=N . The thermodynamic limit is

 N ! 1; N ! 1; with f � const (2)

for given U=t and �, coinciding with the usual definition
for �! 1 and with Ref. [17] for � � 2. In the limit (2),
the trapping potential term in (1) vanishes identically.

To make the case for finite curvature in addition to finite-
size scaling, we consider first the noninteracting situation.
For large enough N , the density of states obeys the scaling
law ���� � N

t G�
�
t�. The derivation ofG�x�, which depends

implicitly on d and �, has been outlined in Refs. [11,12],

and its behavior for x� 1 has been verified experimen-
tally in the 1D case for � � 2 [18]. If we define F��

�
t � �R�=t

�2 dxG�x�x and fix the Lagrange multiplier � by f �
R�=t
�2 dxG�x�, the ground-state energy obeys the scaling law

 E � tN F��f�: (3)

Thus F��f� is the energy per site in the thermodynamic
limit (2) in units of t. This allows its determination from
results for finite-size systems by extrapolation.

Figure 1(b) shows some d � 1 total energy curves. The
energy per site has converged essentially perfectly for
system sizes N � 200 or larger. This makes it possible
to obtain F��x� from experiments on reasonably small
systems. However, the scaling function F��x� itself is not
universal, but depends on the trap exponent, � [see
Fig. 1(b)]. An additional extrapolation in � is therefore
necessary to obtain the �! 1 behavior [see the inset in
Fig. 1(b)].

We now turn to the case of interest,U=t > 0. For�! 1
and in the thermodynamic limit (2), the model (1) is known
to exhibit at least two distinct phases: a metallic one at low
or high filling, and an insulating one at (and perhaps also
around) f � 1. The 1D Hubbard model has been solved
exactly [19]: it is metallic except at precisely f � 1, where
it is insulating for all U > 0. But the behavior of the d > 1
models remains uncertain; for example, it is not clear
whether the insulating phase occupies just the line f � 1,
or some finite region of the phase diagram. Moreover, there
may be additional competing phases, including d-wave
superconductivity, itinerant antiferromagnetism, and
phases with a distorted Fermi surface [20].

Our proposal for investigating this experimentally is as
follows: (a) Obtain experimental values for the total energy
for several values of the filling fraction, trap power-law,
system-size, and interatomic interaction strength. This
builds up data points from the function E�f;U; t; �;N �.
(b) Obtain the values of E in the thermodynamic limit (2)
by extrapolation, aided by the finite-size scaling law (3),
where F��f� now additionally depends on U=t.
(c) Numerically differentiate the curves thus obtained
with respect to the filling f to obtain the chemical potential
��f;U; t; �� � tF0��f;U=t�. (d) Take the �! 1 limit by
a second extrapolation. This is the finite-curvature scaling
and results in a function �=t of f and U=t. (e) By finding
the lines in the f�U=t plane where �=t is discontinuous,
construct the phase diagram.

To demonstrate our method in the one-dimensional case,
where the answer is already known [19], we have used
density-functional theory within the Bethe-ansatz local-
density approximation (BA-LDA) [21] to simulate the
experimental data for step (a). The BA-LDA is known to
predict ground-state energies of spatially inhomogeneous
systems with an accuracy of a few percent. Furthermore, its
accuracy increases as the length scale of the inhomogene-

FIG. 1. (a) The trap potential V�x� for d � 1 and various
values of �. (b) Dependence of total energy on system size for
a d � 1 optical lattice loaded with noninteracting, spin-1=2
fermions. The filling is fixed at f � 1. The trap exponents are
� � 2 (� ), 4 (*), 6 (�), 8 (�), and 1 (� ). Inset: the same
quantity in the thermodynamic limit plotted against 1=�. The
dash-dotted lines mark the thermodynamic limit result for � �
1: Ea=2Lt � ��4=�� sin��f=2�.
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ity increases, making it particularly suitable to study the
approach to the thermodynamic limit (2) [22].

Examples of the resulting total energy curves are shown
in Fig. 2(a) forU=t � 4. Note that a scaling law of the form
(3) is still obeyed; indeed, (3) can be obtained using only
the requirement that, for large N , E is extensive. We find
that to achieve good convergence N � 200 sites suffice
for � 	 8. Experimentally, this would require trap fre-
quencies �10 Hz in the 6Li case, which is in the currently
achievable range. Similarly fast convergence is found for
larger U=t � 6; 8 (not shown).

This rapid convergence has the important effect of ren-
dering the method rather insensitive to experimental error.
For example, we show in Fig. 2(b) the � � 6 curves from
Figs. 1(b) and 2(a), but with random errors of 
5% added
to the values of f and E. Though these data look very noisy,
all points for L=a * 30 are essentially random scatter
around the same value; thus the central limit theorem
applies, and the overall error may be reduced by increasing
the number of measurements. The dashed lines are least-
squares fits to the noisy data for 30 	 L=a 	 100; their
differences from the noise-free values are 0.17% (noninter-
acting case) and 0.61% (interacting case). Thus a serious
error [cumulatively �
 8% or worse, as Fig. 2(b) shows]
in the individual data points becomes a negligible one
( & 0:6%) in the resulting value for the thermodynamic
limit of the energy.

In Fig. 3(a), we plot energy per site as a function of f for
� � 2, 4, 6, 8,1 and system size N � 800 (effectively in
the thermodynamic limit). This must be interpreted as a
plot of the extrapolated values of E vs nominal values of f.
The error discussed above (coming from the uncertainty in
measuring each individual value of E, on the one hand, and

the fact that the actual filling differs from the nominal one
for each particular measurement, on the other) is smaller
than the size of the symbols. The cusp indicating the phase
transition becomes sharper as � is increased and tends
toward its hard-wall position at f � 1 as �! 1, but for
finite � it is not a singularity. Numerically differentiating
these curves with respect to f, shown in Fig. 3(b), makes
the cusp more apparent and shows that there is a single
phase transition at f � 1. The inset demonstrates a simple
method that allows us to obtain the critical value of f
within �3% (or �7% if only the data points with � 	 6
are used). Clearly, the same method can also be applied in
d � 2 and d � 3, where the exact answer is not known.

The implementation of our proposal requires a signifi-
cant degree of automation. However, preparation-to-
measurement times of less than a minute are already
routinely achieved, and complete automation is being de-
veloped for drop-tower-based zero-gravity experiments
[23], so this requirement is not unfeasible. One could
alternatively avoid the finite-curvature issues by creating
a ‘‘flat’’ potential, using the endcap-beam technique [24].
However, Fig. 2(a) shows that the convergence with
system-size is much slower in this case, which would
lead to appreciably larger errors.

In conclusion, we have presented an experimental
scheme to determine the Hubbard model phase diagram
by measuring the total energy of optical lattice systems. It
requires a nontrivial curvature extrapolation in addition to
the usual finite-size one. We have demonstrated its validity
in the d � 1 case by an approximate numerical many-body
calculation to simulate experimental data, including an
analysis of the effects of realistic experimental errors. We
conclude that the fermionic Hubbard model’s phase dia-

FIG. 2. (a) Same as Fig. 1(b), but with interaction strength
U=t � 4, and with L=a � 400 data used for the inset. In this
case the thermodynamic limit result for � � 1 is E �
�0:573 729 37. (b) Solid data points and line: the � � 6 data
from (a) (upper curve) and Fig. 1(b) (lower curve). Open data
points: the same, but with random errors of 
5% added to the
values of E and f. Dashed line: least-squares fit to these ‘‘noisy’’
data. The resulting error in the thermodynamic limit of the
energy is & 0:6%.

FIG. 3. Energy per site (a) and numerical estimate of the
chemical potential (b) vs f for U=t � 4, L=a � 400, � � 2,
4, 6, 8, and 1 (lines with no symbols). In the inset in panel (b),
the filling fmax where ��f� has maximum slope is plotted as a
function of ��1 (circles). The parabola interpolating the points
coming from � � 4, 6, and 8 (dashed line) extrapolates to
fmax�0� � 1:025, indicating that even those relatively small
trap exponents provide a good estimate of the critical filling.
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gram can be determined quantitatively using the experi-
mental procedure that we propose.

We stress that the experimental use of our method would
yield the location of the phase boundaries of the Hubbard
model as functions of interaction strength,U, and filling, f.
This would be a significant step forward in d � 2 and d �
3, where standard computational approaches encounter
serious difficulties and relatively little is known for certain
about the phase diagram. It would not, however, permit the
identification of the phases; for this, further experiments
would be required. An obvious choice would be to probe
correlation functions, e.g., via the dynamical structure
factor S�q; !� using stimulated emission in a two-laser
setup [25] or shot-noise techniques [26]. Alternatively,
one could exploit the fluctuation-dissipation theorem to
derive them from the total energy; we will discuss this
elsewhere.
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