IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018 13

Entropy4Cloud: Using Entropy-Based Complexity to
Optimize Cloud Service Resource Management

Huankai Chen

Abstract—In cloud service resource management system, com-
plexity limits the system’s ability to better satisfy the application’s
quality of service requirements, e.g., cost budget, average response
time, and reliability. Numerousness, diversity, variety, uncertainty,
etc., are some of the complexity factors that lead to the variation
between expected plan and actual running performance of cloud
applications. In this paper, after defining the complexity clearly,
we identify the origin of complexity in cloud service resource man-
agement system through the study of “Local Activity Principle.”
In order to manage complexity, an entropy-based methodology is
presented to use, which covers identifying, measuring, analyzing,
and controlling (avoid and reduce) of complexity. Finally, we
implement such idea in a popular cloud engine, Apache Spark,
for running analysis as a service. Experiments demonstrate that
the new entropy-based resource management approach can
significantly improve the performance of spark applications.
Compare with the fair scheduler in Apache Spark, our proposed
entropy scheduler is able to reduce overall cost by 23%, improve
the average service response time by 15-20%, and minimized the
standard deviation of service response time by 30-45%.

Index Terms—Entropy theory, complexity, cloud services, re-
source management.

1. INTRODUCTION

ESOURCE Management is an NP-complete problem, the
R complexity of which increase substantially when applica-
tions are deployed in the cloud. The complexity of cloud ser-
vice resource management may originate from many factors: the
scale of resource size; the heterogeneity of resource types and
their interdependencies; as well as the variability, dynamicity
and unpredictability of resource run-time performance.
Complexity has many negative effects on satisfying the Qual-
ity of Service (QoS) requirements of Cloud applications such as
cost, performance, availability and reliability. If an application
can not guarantee its QoS, it will be hard to populate its service.
However, the vast majority of research efforts in Cloud service
resource management implicitly assume the Cloud to be sim-
plify and the Cloud resource’s performance is determined and
predictable. The improper assumption may significantly affect

Manuscript received February 28, 2017; revised May 17, 2017 and June
16, 2017; accepted June 27, 2017. Date of current version January 19, 2018.
(Corresponding author: Huankai Chen.)

H. Chen is with the Data Science Group, School of Computing, University of
Kent, Canterbury CT2 7NF, U.K., on leave from Tsinghua University, Beijing
100084, China (e-mail: HC269 @kent.ac.uk).

F.Z. Wang is with the University of Kent, Canterbury CT2 7NF, U.K. (e-mail:
F.Z.Wang@kent.ac.uk).

N. Helian is with University of Hertfordshire, Hatfield AL10 9EU, U.K.
(e-mail: n.helian @herts.ac.uk).

Digital Object Identifier 10.1109/TETCIL.2017.2755691

, Student Member, IEEE, Frank Z. Wang, Senior Member, IEEE, and Na Helian

the QoS of the Cloud application and cause resource manage-
ment strategy to be less robust.

In spite of extensive research of complexity issues in different
fields ranging from computational biology to decision making
in economies, a study of complexity for Cloud service resource
management system is limited. In this paper, we address these
complexity problems in Cloud Service Resource Management
System by introducing Entropy Theory. The main contributions
of this paper are as follows:

1) Complexity in the Cloud Service Resource Manage-
ment System is clearly defined, which origin is identified
through the study of “Local Activity Principle”.

2) Entropy Theory based methodology for resource manage-
ment in cloud service is proposed to use which cover
identifying, measuring, analysing and controlling (reduce
and avoid) of complexity.

3) After figure out the root cause of complexity by using
“Local Activity Principle”, Resource Entropy Based Lo-
cal Activity Ranking is proposed to solves the resource
management problem by controlling the Local Resource
Complexity. Finally, we implement such idea named “En-
tropy Scheduler” in a popular real-world cloud analysis
engine, Apache Spark. Experiments demonstrate that the
new “Entropy Scheduler” outperform the default “Fair
Scheduler” for better quality of service satisfaction.

In this paper, we discuss the complexity measurement base on
Entropy Theory, which can be simply applied in the cloud ser-
vice resource management system. Section II define the related
concept of Complexity in the cloud. Then, Section III introduce
the basic Entropy Theory and describes how Entropy is used to
control the complexity in cloud resource management system.
Finally, Section IV evaluates the real world cloud applications
based on the proposed Entropy based methodology and discuss
the experimental results. Section V describes related work, and
Section VI presents our conclusions and future work.

II. COMPLEXITY IN THE CLOUD

For now, the concept of complexity with respect to the cloud
has not been precisely delineated yet. Despite the fact that the
concept of complexity is somewhat ambiguous and varies from
author to author, there are still several typical properties being
shared by numerous complex systems.

1) Complex systems are made up of several non-linear

components
A cloud resource management system’s resources serve
as the cloud’s basic components. These resources are

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-5353-3319
https://orcid.org/0000-0001-6687-0306

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

non-linear. During run-time, the performance of the
resource is highly dynamic and is influenced by the
running jobs. Non-linearity is a condition that is needed
for chaos. Furthermore, almost every system having
a phase space with three or more dimensions can be
considered chaotic in a certain part of that phase space [1].

2) A complex system’s components are interdependent
The cloud’s resources indirectly interact with each other
via the resource management system. The state of the
resources depends on other resources and is affected by
the state of the other resources as well.

3) A complex system has a structure that spans several scales
For example, let us examine a typical cloud resource man-
agement system:

— Scale 1: resource management; applications; resources;

— Scale 2: resource allocation, job scheduling; jobs, sub-
tasks; hardware, software . ..

— Scale 3: constrains, objects; parameters, functions,
variables, requirements; CPU, operating system, mem-
ory, storage. . .

— More scales : ...

Every scale has a structure. This complex system’s es-

sential and virtually new aspect allows the system to be
capable of handling emerging behaviour.

1) A complex system can handle emerging behaviour
Emergence takes place when the focus of attention is
shifted from one scale to another coarser scale above it.
Observed at a specific scale, a certain behaviour is consid-
ered emergent if one cannot understand it after studying
it separately and one by one. Each of this scale’s com-
ponents may also be a complex system that comprises
finer scale. Therefore, the emerging behaviour is a novel
phenomenon that is special to the scale being studied.
Moreover, it is a result of the global interaction between
that scale’s components [1]. For instance, a computer has
the ability to run a program, which is the highest scale’s
emerging behaviour. If the study is only focused on lower
scale components like the transistor, wire, or power, one
will never get an understanding of how the computer runs
the program.

2) Complexity involves an interaction between chaos and
order
It has been said that many complex systems do not always
display chaos at all times. In other words, they display
chaos for some of the control parameter’s values, but also
display order for others. Furthermore, there is the edge of
chaos, i.e. the control’s precise value when the system’s
state switches between chaos and order.

3) Complexity involves an interaction between competition
and cooperation
Within the cloud, resources work together to complete the
job. However, they also compete for the job’s sub-tasks
according to their states.

Seen from a global view, a cloud service resource manage-
ment system is made up of numerous resources which collabo-
rate either directly or indirectly in order to meet the application
requirements. These resources and the interrelationships among

them are important for the complexity that takes place in that
system. Seen from a local view, the actual resource itself dis-
plays various degrees of complexity as well. These degrees of
complexity come from either internal sources (memory, disk,
CPU, etc.) and/or external sources (jobs running on it).

A. Characteristic of Complexity

The complexity found in cloud resource management systems
has some key characteristics. It is important to understand how
these characteristics affect the occurrence of complexity, either
from the local resources it manages or the global system itself.
Howeyver, these characteristics can act on one another or on
each other. Therefore, explanations of these characteristics do
not only represent the actual characteristic itself. Instead, it also
emphasises the interaction and relationship among themselves.

1) Numerousness refers to the number of cloud resources
that have to be managed by the system. A large number
and a high level of the resources contribute to the system’s
increased complexity. Changes in the number of resources
that are managed by the system under any consideration
directly relate to any changes in the level of complexity.

2) Diversity is related to the cloud’s homogeneity or hetero-
geneity. The resource’s high/low diversity level can lead
to heterogeneous/homogeneity and produces a high/low
degree of complexity.

3) Interdependency refers to the intended or unintended re-
lationship among cloud resource. This may lead to com-
plexity within the management system. For instance, data
required for a specific job can be partitioned or replicated
onto multiple resources. These interdependent resources
will not be able to perform the job without each other or
without being influenced by each other. The increase of
interdependence directly increases and affects complexity.

4) Variability refers to the changeability state, where an event
leads to possible various outcomes in the local resource or
global system. In terms of the global system, the resource
state changes over time (e.g. performance, availability)
and leads to a change in the capacity of the system. Seen
from a local resource point of view, the change in its un-
derlying components’ states (e.g. memory consumption,
CPU utilisation) leads to a change in its performance. In-
creasing the variability leads to a higher complexity level.

5) Variety is related to the state of being various. In mak-
ing management decisions, the states of the system (e.g.
under-provision/over-provision, number of resources, or-
der/edge of chaos/chaos, under-loaded/over-loaded) and
the state of resource (e.g. high/low CPU utilisation, num-
ber of free cores, high/low memory consumption ...)
may have to be considered. This state variety represents
the system or resource’s dynamic behaviour. The more
the states involved during decision making, the more the
complexity that is introduced.

6) Uncertainty refers to all the difficulties experienced dur-
ing the production of a clear picture of the resource or the
system. This is caused by the lack of information. Uncer-
tainty and complexity have a close relationship with one

CHEN et al.: ENTROPY4CLOUD: USING ENTROPY-BASED COMPLEXITY TO OPTIMIZE CLOUD SERVICE RESOURCE MANAGEMENT 15

another. More complexity occurs when there is more un-
certainty within the cloud resource management system.
The complexity characteristics mentioned above can have
close relationships with each other. In other words, one can in-
fluence the others or one can lead to the occurrence of the others.
For instance, variability in the system may be created by a high
level of variety or uncertainty can be caused by high density
of diversity. However, the characteristics do not affect (more or
less) the system with or without any interrelationships or inter-
actions between them. Thus, generally, if these characteristics’
level is reduced, the complexity will be reduced too.

III. ENTROPY-BASED COMPLEXITY FOR CLOUD SERVICE
RESOURCE MANAGEMENT

Being able to manage the increasing complexity within
the cloud service resource management system is needed to
better satisfy the cloud applications’ QoS requirements. In
order to efficiently and effectively manage complexity, it is
recommended that one need to identify, measure, analyse and
control complexity first. Every one of the steps mentioned
above is vital to complexity management. Measuring is the
most important stage since it allows for the other stages to be
performed effectively [2].

A. Identification

Identification is the first step in efficiently and effectively
managing the complexity in cloud service resource management
systems. This step is meant to determine the origin of complexity
as well as the characteristics that are related to it.

1) Local Activity Principle: The local activity principle was
originally from electronic circuits. However, it could be mathe-
matically formulated in an axiomatic manner without having to
mention any circuit models. For a spatially-extended dynamical
system that is made up of more than one identical cell, changes in
the state of the cell are dictated by a specific reaction-diffusion
equation and the kinetic equations related to them. In other
words, changes in the local cell state are influenced by some/all
of the system’s other cell states and by the cell’s local diffu-
sion in some cases. Since the role of the diffusion term in the
reaction-diffusion equations is only a dissipative and stabilising
one, the complex phenomenon observed in the system can only
originate from the cell kinetic equations [3]. It can be proven
rigorously that if there are no locally active cell kinetic equa-
tions, complexity cannot be exhibited by the reaction-diffusion
equation. A cell that possesses a local-active kinetic equation
can display complex dynamics like chaos or limit cycles, even
if the cells are not couple to each other. Therefore, it is no sur-
prise that coupling such cells could lead to an emerging pattern
within the system. Thus, the cell that has a local-active kinetic
equation is indeed the complexity’s origin [4].

Definition of Local Activity: “A cell is considered locally ac-
tive within the cell equilibrium point if, and only if, a continuous
input time function exists in such a way that at some time point,
no net energy is going out of the cell. The cell’s initial energy is
zero”.

Job is finished with
various completion time

Input '

Job with expected
processing time

Determined output

Job is finished as
expected

Energy
Resource Cost

Fig. 1. Resource in the Cloud: locally-active vs. locally-passive.

Local Passivity Definition: “A cell is considered locally pas-
sive within the cell equilibrium point if, and only if, the cell
stays at the initial state and has zero energy for all continuous
input time functions”.

Transistor is an typical example of a locally-active device. For
the transistor, a low-power input signal can be turned into a high-
power output signal. However, it is at the expense of an energy
supply. Televisions, radios, or computers will not be able to
function if they don’t use locally-active devices like transistors.
Moreover, any system that is made up of locally-active devices
is considered locally active too.

The Principle of Local Activity is easily translatable into
other non-electrical heterogeneous/homogeneous media. For
cloud computing, an example of a locally-active device is the
resource. As shown in Fig. 1, a small (estimated task’s running
time) input signal can be turned into a large (actual task’s pro-
cessing time) output signal. This conversion is at the expense of
energy supply (resource cost). By definition, a resource that is
not locally active is locally passive, in the sense that a resource
having a fixed cost is guaranteed to offer a consistent perfor-
mance during run-time. However, the resources of the cloud in
the real world are rarely in the passive mode. In other words,
they always display various degrees of local activity [5]. For
instance, on average, a virtual resource has more less activity
than a physical resource that has the same configuration. More-
over, for the same resource, the degree of activity varies during
runtime.

2) Original of Complexity: Local Active Resource: Being
the complexity’s origin, the local activity resource directly af-
fects the cloud resource management system’s complexity level.
For electronic circuits having homogeneous media, the system
may fall in the “Edge of Chaos” when the locally active cells
are within some parameter regions [6]. Furthermore, this will
increase the probability of turning into completely chaotic. In
the cloud environment, these complexity effects resulting from
locally active resources will tend to take place more frequently.
If the cloud service resource management system is within the
chaotic state, its performance becomes harder to predict and
it becomes degraded. Moreover, it fails to better meet the ap-
plication’s quality of service requirements. However, in most

16 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

past works, majority of the researchers do not consider the
impacts that the resource’s local activity has on the cloud re-
source management system. Instead, when developing a new
management strategy, they assume that the resources are locally
passive. Therefore, their research solution always fails to offer
better QoS when they are run on real world cloud environments.
The following are some of the complexity characteristics that
are related to locally active resources:

1) Heterogeneity: Cloud systems can function like large vir-
tual supercomputer. However, it could still have very
disparate computational resources, ranging from lap-
tops, clusters, desktops, supercomputers, and even smart-
phones that have limited computational power [7]. Current
infrastructures for cloud technology are not very versatile
yet. However, for the cloud system, heterogeneity is one
of the most important features that have to be considered.
With the advent and development of virtualisation tech-
nology, multiple VMs can be hosted on a single physical
machine simultaneously. However, virtualisation can also
lead to new challenges to the cloud’s resource scheduling
because of the fact that multiple VMs can share the physi-
cal machine’s hardware resources (e.g. memory, hard disk,
CPU, network) [8]. In a situation like this, accurately mea-
suring the actual performance of the rented VMs can be
difficult. For instance, in Amazon AWS, resource provi-
sioning to vms has its basis in compute units instead of
being based on fixed performance measures. Various host
machines offer differing amounts of computing power per
provisioned compute unit, leading to a heterogeneity in the
VM performance [9]. This means that in the real world,
the cloud should always be heterogeneous and could never
be homogeneous.

2) Dynamicity: Another vital complexity factor that is in-
herent to the cloud environment is the dynamic changes
within the resource performance during run-time [10].
Within the real world, this resource performance dynamic-
ity can be a result of resource over- or under-provisioning,
software/hardware failures, resource CPU overload, or
even application misbehaviours. Furthermore, the cloud
resource is influenced by the number of running jobs that
are assigned to it as well. These jobs exhibit local activity
and are considered the origin of complexity. Moreover,
when it shares a common underlying hardware infrastruc-
ture with other virtual machines, the resource dynamicity
will be brought up to a higher complex degree.

3) Uncertainty: A large majority of the past works conducted
within the field of cloud resource management works on
the assumption that there is complete knowledge about the
cloud resource’s run-time state. However, for cloud com-
puting, the resource’s computing capacity and ready time
undergo considerable uncertainties during provisioning
[11]. We contend that this uncertainty is the main incon-
venience of the cloud because it brings about additional
challenges that are involved when one has to predict the
completion time of jobs. This is an important aspect of
making scheduling decisions. In a cloud environment, re-
source states can change drastically. It is not possible to

obtain an exact knowledge about the resource most of
the time. It is difficult to accurately estimate the com-
pletion time of tasks, improve prediction using historical
data, correct the prediction, have a prediction fall-back,
etc. This inaccurate prediction execution results into an
associated scheduling performance that is considerably
uncertain.

B. Measurement

After the origin of complexity is identified, it is recommended
that one has to provide a measurement which can dictate the
behaviour of the locally active resource. Therefore, based
on this studys definition of complexity, it is measured using
entropy [12].

1) Entropy Theory: “Entropy is a vital statistical quantity
that measures the degree of disorder and the amount of energy
that is spend during the transformation from one state to another
within the same system” [13]. Originally, the entropy concept
was a thermodynamic construct. However, it has been applied
to many other fields of research as well, including production
planning, information theory, computer modelling and simula-
tion, and resource management [14]—[18]. This measure will be
used to quantify the reliability degree that is associated with the
resource management system while using various strategies. We
first introduce this Entropy measure in a general manner. Con-
sidering a dynamic system A in a finite and mutually exclusive
state variable set a = a1, as,as, ..., a, and having probabili-
ties p1,p2, 3, - .., Pn respectively, entropy H(A) can then be
defined as:

H(A) == p; xlogp;)]

i=1

Given two dynamic systems that are mutually independent X
and Y and that have n and m states, respectively, the probability
ij of the concurrent occurrence of the states X; and Y} is p;q;.
Here, p; represents the probability of state ¢ that takes place
in system X, g; represents the probability of state j that takes
place in system Y, where 1¢n and 1jm. Consequently, the sets
of states X;Y; are allowed to represent another finite system
that can be designated by X'Y. Thus, we can say that:

H(XY)=H(X)+ H(Y))

Where the corresponding entropies are H(XY'), H(X) and
H(Y') are for systems XY, X and Y. Such an expression can
be extended easily for an arbitrary number of finite systems
that are mutually independent. On the other hand, given a sys-
tem S that is made up of s mutually independent sub-systems

S1,89,83,...,Sk, the entropy can be presented as:

H(S)=— Z H(s) 3

Obtaining the average system entropy [18] can be done easily
by:

_—0)

3 “4)

CHEN et al.: ENTROPY4CLOUD: USING ENTROPY-BASED COMPLEXITY TO OPTIMIZE CLOUD SERVICE RESOURCE MANAGEMENT 17

This entropy measure’s other properties, like those for de-
pendent schemes, can also be found, for instance, in Khinchins
paper [19]. For this study, only mutually independent systems
will be considered.

C. Analysis

After measurements are done, the results obtained from the
complexity measures will then have to be analysed. Analysing
the value’s complexity is related to the measurement goals.
Analysing measurements can be done from many perspectives.
For instance, one can implement a complexity measure for:

1) Analysing the resource’s local activity level and making

comparisons, among others.

2) Analysing the global system to determine whether it is in

a state of order or chaos.

1) Degree of Local Activity: The local activity principle is
the reason for breaking symmetry in homogeneous media. This
serves as a rigorous but effective tool in identifying the re-
source’s states. An increment in the local resource’s activity
will result into an increment of the complexity in the global
system. This means that there is a higher chance for the system
to fall into chaos.

Thus, we are introducing entropy as a quantitative measure-
ment that can be used to make comparisons for the degree of
local activity among the cloud resources. The goal of measuring
local activity is to be able to produce a numerical scale that
can be used to compare the activity degree on various cloud
resources. In a practical sense, it is difficult to directly obtain
the degree of local activity during run-time. However, one can
judge a resource’s level of activity by studying its performance
history with respect to CPU utilisation. Generally speaking, if
one observes unstable oscillation (disorder) within the CPU util-
isation history, one can say that is under relatively high activity
and vice versa. Therefore, as a measurement of the system’s
degree of disorder, entropy is utilised to provide a quantitative
measurement for the degree of local activity that is associated
with the resource’s performance.

D. Control

Controlling is an important management step. It is related
to taking control of complexity. Complexity not only has to be
reduced, but it also has to be avoided so that its existence in the
future can be prevented. Therefore, the controlling step is made
up of two parts: reducing and avoiding.

It is not always easy to completely remove complexity from
the system. Thus, it is reduced as much as possible. Reduc-
ing the complexity is a strategy based on cost for realising
cloud service resource management. Improving the sharing of
information between the cloud consumer and provider can help
lessen the high complexity and help reduce costs. However, an
efficient complexity management system aims not only to re-
duce the complexity level by performing corrective actions, but
also to avoid complexity in the future by taking preventive ac-
tions. Hence, the efficient and effective utilisation of resource
analysis methods and monitor tools can help control complexity
in resource management.

Algorithm 1: Calculate Resource Entropy.

1: Require: CUV «— CPU Utilization Vector of resource
2: procedure: CALCULATEENTROPY(CUYV)

3: AV« Vector for changes of CPU Utilization

4: Mean(A.,) « Average Changes of CPU Utilization
5:

6: if A,y > Mean(A.,) then

7 State, «+— Above average state

8: else State, — Below average state

9:

10: P, < Probability of A., in State,
11: P, < Probability of A., in State,
12: Entropy H(A.) = — (P, xloga Py + Py * loga Py)

Increasing the activity on local resources will also increase
the complexity of the global resource management system. This
means that system has greater probability of falling into chaos.
Therefore, we are proposing the following solution in order to
control the complexity, as seen in Fig. 2:

“Allocating tasks to the resources that possess or exhibit
a high degree of local activity should be avoided or tasks
should be allocated to the set of resources having a similar
degree of local activity.”

IV. APPLICATIONS AND EVALUATIONS

Based on the proposed entropy measurement, this section
examines various cloud resource management strategies and
provides a detailed explanation of the experiment results.

A. Resource Entropy-Based Local Activity Ranking

This paper emphasises on entropy value calculation, which
is based on the resource CPU utilisation history. This gives an
estimate as to how efficiently the CPU is used by the resource
during executions of jobs. Since this can be directly related
with the performance of the resource throughout the runtime,
it becomes highly significant in making scheduling decision.
Algorithm 1 is employed to calculate the resource entropy.

The following relationship is signified by the entropy mea-
surement with the degree of resource local activity:

1) Since 0 < P,, P, < 1., entropy can be considered a non-
negative quantity H(A.,) > 0. The resource entropy
value is proportional to the degree of resource local
activity.

2) The maximum value of (H(Acy) =1log2(2) =1) is
achieved by entropy on occurrence of both State, and
State, having the same probability (P, = P, = 1/2).
The performance of resource is determined in the most
unpredictable and uncertain region, which signifies the
maximum degree of activity of local resource.

3) The minimum value H(A.,) = 0 is achieved by entropy
with the occurrence of only one state having probability
1 (P, =1 or B, =1). Thus, the resource performance
can be determined due to complete certainty, resulting in
minimum degree of resource local activity.

18 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

Assumption
Jobs are scheduled on a set of
locally-passive resources

| Job1 | Job2 | Job1

S5885a58

Passive > > > Most Active

Degree of Local Activity

Fig. 2. Complexity control: resource entropy based local activity ranking.
|]
«—— 2004: Mapreduce
10 min. ==
«—— 2009: Hive
10 sec. wm
<«—— 2010: Dremel
«—— 2012: Impala
«—— 2010: Spark
100 ms =
v
Fig. 3. Modern engines can run cloud analysis services with ever lower
latency.

B. Spark Entropy Scheduler: Resource Management by Local
Activity Ranking

As shown in the Fig. 3, engines such as Map Reduce [20],
Hive [21], Impala [22], Dremel [23] and Spark [24] help exe-
cute cloud analysis in short time across thousands of resources.
This is due to the efforts in research and industry alike, which
is driven by the demand for lower-latency distributed data anal-
ysis. 3. Apache Spark, within the Apache Software Foundation,
boasts of speed-ups almost 100x faster than that with Hadoop
MapReduce in-memory, or 10x faster on disk. Powerful new
applications such as Cloud Analysis as A Service [25] have
been developed to bring response times into sub-second range.
Apache Spark employs HTTP web service to provide cloud anal-
ysis query response/requests and support multi-threaded query-
ing as well. A flow chart showing sending of an HTTP request
is presented in Fig. 4. A thread is allocated by Spark Web Server
to route the HTTP request for a specific cloud analysis job. A
long run global Spark is employed for processing context jobs.
The Spark Master allows scheduling to run on the pre-specified
amount of Slayer Workers. In such case, sophisticated parallel

Real World Cloud
Resources with different degree of
local activity during runtime

s858858 &8

. Order

Complexity Reduction & Chaos Conlrol:--:'-‘;
¢ Schedule jobs to resources with similar :
degree of local activity

Job2

Job1

Edge of Chaos | ((Chaosi)

J

States in Complex Cloud Scheduling System

Multi-threaded HTTP Requests
[Web Service API H Spark Analysis Server J

N—

Low Latency HTTP Responses

[http//server/query]

Global Spark Context

Fig. 4. Apache Spark: running Analysis as a Service (AaaS) in the Cloud.

computation, such as highly search personalisations, language
translation, context recommendation and voice reorganisation
can be run by employing user-facing services on a per-query
basis. However, the performance of Spark decreases when faced
with high concurrent of service query. Its performance can be
closely linked with its resource management strategy. In most
cases, increased service query requires deployment of addi-
tional resources, which also increases the underlying system’s
complexity.

1) Resource Management Challenge in Apache Spark:
Multi-threading is supported by the Spark Context and FAIR
and FIFO scheduling options for concurrent queries are also
provided. Typically, multiple parallel jobs can be processed by
the FAIR scheduler simultaneously for reducing overall latency.
The FAIR scheduler allows assigning resources to queries so
that an equal share of resources can be allocated to all queries
over time on average. Fairness decisions are made by the sched-
uler only on the number of computing cores and memory with
default setting. It assigns tasks to the resource by following ran-
dom selection. CPU utilisations of the resource and core speed
are not considered by FAIR scheduler, which cast a significant
impact on the task’s completing time. Thus, guaranteeing QoS
for the on-line query is an uphill task. Popularising the web ser-
vice becomes difficult should the resource management strategy
fail to provide an optimal way for guaranteeing the quality of
service.

It is difficult to schedule low-latency cloud analysis jobs due
to multifaceted problems arising on the heterogeneous cloud.
Even though Spark engines are designed for the Cloud, for

CHEN et al.: ENTROPY4CLOUD: USING ENTROPY-BASED COMPLEXITY TO OPTIMIZE CLOUD SERVICE RESOURCE MANAGEMENT 19

high concurrent tasks running on the heterogeneous cloud en-
vironment, they are unable to address the problem of resource
scheduling. The performance of Spark can be closely linked
with its job scheduler that assumes cloud resources to be ho-
mogeneous. Since the performance of resource does not change
during run-time, these assumptions can be employed to make de-
cisions on allocating jobs to resources. In practice, the resource’s
performance is highly dynamic in nature and assumptions of
homogeneity do not always apply. Although in a homogeneous
environment, the current scheduler works well, we have demon-
strated that severe performance degradation occurs on breaking
its underlying assumptions. Resource’s performance with po-
tentially uncontrollable variance results in server collapse on
dealing with high concurrent requests. Moreover, as organisa-
tions frequently employ multiple generations of hardware to
build their private cloud, we assume heterogeneous environ-
ments to become the common case.

2) Entropy Scheduler: A More Reliable and Efficient Solu-
tion: The following optimised resource management should be
kept in mind:

1) The individual resource’s characteristics and activities

2) The information reliability of the resource

Awareness about resource characteristics is needed for a good
resource management solution. In the heterogeneous cloud, the
performance of the system becomes more sensitive to resources
at hand, and performance degradation can result from poor man-
agement. However, only resource’s static characteristics, such
as number of available cores, are considered by the native Spark
Fair scheduler while overlooking dynamic characteristics such
as CPU core performance. In such cases, unfair scheduling of
jobs on the cores occurs with varied performance. This has a
high impact on the jobs’ completion time as well as predictabil-
ity of system performance. Resource entropy level (REL) and
resource activity vector (RAV) are introduced to capture the
relevant dynamic performance characteristics of CPU core. We
focus on CPU utilisation, the most important part of resource
information, in the current implementation. This shows how
efficiently the CPU is utilised by the operator thread during
job execution. This is significant in making scheduling decision
since it can be directly linked with the performance of the core
during runtime. A resource monitor is run on each worker node
to get RAV values. The CPU utilisation by the worker is captured
by the resource monitor, and every second, RAV is updated with
the CPU utilisation difference. The average change of CPU util-
isation (Avg) is then calculated for each time period, followed
by classification of the resource’s history status into two (below
average and above average). Based on algorithm 1, the REL is
updated on every heartbeat interval. Then the heartbeat from the
worker node is transferred to the master node with the current
entropy level and CPU utilisation value to help in making jobs
scheduling decision.

Spark assumes all resource to be homogeneous in nature
and assigns cores to tasks randomly under Fair Scheduler.
However, resources that have homogeneous setting will al-
ways function under heterogeneous performance throughout
the runtime, even in the homogeneous cloud. In heteroge-
neous cloud, such assumptions lead to poor job completion and

TN

SPARK SORTED BY
RESOURCE LOCAL ACTIVITY RANKING

Worker 3
Ranking = 1.8

Executor 4 Executor 5
(idie) (idie)

=5l

Worker 2
Ranking = 1
[TExecutor 3

(idie)

Worker 1 |

‘Ranking =0.7 /
Excutor 1 |Executor 2| |
licie) | (Running) |

;\\.,_/\
Schedule tasks to run on a pool of executors

with similar Resource Local Activity Ranking

//

Entropy Scheduler: resources allocation and tasks scheduling.

e SR O

Fig. 5.

deliver unreliable cloud performance because of the following
reasons:

1) The finish time of its slowest task determines the job
completion time.

2) The chance of allocating cores with various performance
levels for tasks inside a single job increases with random
cores allocation.

3) The current running job has to be completed to release
cores for scheduling other jobs. The other cores’ comput-
ing power, those that have completed tasks, is wasted due
to waiting by a job for completion of its slowest task.

4) Re-scheduling and monitoring slow tasks (conducting
speculative execution of tasks) is costly.

Algorithm 2: Calculate Resource Local Activity Ranking.

1: Require: R., < Current Resource CPU Utilization
2: Require: R, < Resource Entropy
3: Require: N, < Number of Available CPU cores
4: Require: S, «+ CPU Core Clock Speed
5: procedure: CALCULATERANKING Ry, e, Nepu, Sepu
6 RAN K esource < Resource Local Activity Ranking
7 RANKresource = Ncpu * Scpu * (]- - Rcu)*
(1 - Re)

In our proposed Entropy Scheduler, the resource local activity
ranking of all available workers (Algorithm 2) is calculated first
and the workers are sorted by the ranking thereafter. We assume
that the worker is deployed on a server with same type of CPU
processors. Each worker may contains one or more executors
and an executor is allocated with one CPU core by default.
A typical Spark job may contains more then one tasks and
require one or more executors to run. Unlike the default Spark
Fair Scheduler (Executors are randomly selected and allocated
to a job), Entropy Scheduler pick up executors with similar
Resource Local Activity Ranking to enhanced the reliability
of performance and overall QoS satisfaction. Once a pool of
executors are allocated to a job, the tasks are scheduled to run
on the executors in “Round Robin” fashion, as shown in Fig. 5.

20 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

TABLE I
EXPERIMENTAL PLATFORM:RESOURCE SPECIFICATION

Node 1 Node 2 Node 3
CPU Xeon3Ghzx2 Xeon2.8Ghzx2 Xeon 1.8 Ghz
Cores 8 8 4
RAM 16 GB 12 GB 12 GB
Workers 2 2 1
Executors 8 8 4

Response Time Statistics Results: [min,-sd,mean,+sd,max]

Under different concurrent level of HTTP request
4 000

Fair Scheduler

I Entropy Scheduler T
3 000
=
E
@
E
= 2000
g L
2
=3
a
&
@
(-4
2 -
10 15 20 25
HTTF Request concurrent level
Fig. 6. Experiment 1: Statistics result for service response time.

C. Empirical Evaluation of Entropy Scheduler

Experiments on a private cloud containing 3 physical re-
sources with heterogeneous setting are performed to examine
the proposed Entropy Scheduler. Table I presents Spark con-
figuration and resource specifications. On the server, a simple
Spark application is deployed to allow accepting user query for
7 calculated with a number of concurrent CPU cores that are
predefined. Apache Bench is then employed for load testing the
Spark application within different schedulers (Spark Fair Sched-
uler [26]) and Entropy Scheduler [27]). The load testing results
in producing a number of threads to simultaneously execute the
same query. Each thread is loaded and queries are processed by
all threads until the task is completed. For performance compar-
ison, we use the query response time of every request from all
threads.

1) Experiment 1: Evaluation Under Different Concurrent
Level of HTTP Request Workload: In this experiment, we val-
idate the degree of satisfying of QoS requirement and query
response time with Fair Scheduler and Entropy Scheduler under
various concurrent levels of request workload, where the con-
current level refers to the number of concurrent clients trying to
send the HTTP requests to the server in a given period of time
(second). Figs. 68 show the results.

As seen in Fig. 6, Entropy Scheduler displays a higher degree
of satisfying QoS requirement and better performance. This
results in enhancement of the overall throughput of the server
as well (Fig. 7).

However, the scheduling system faces serious challenges due
to increasing workload concurrency, which also leads to degra-

Spark Analysis Server Throughput Results

Under different concurrent level of HTTP request

@ . 17.7 18
] Fair Scheduler 173 >
3 Il Entropy Scheduler 159 |
-]
3 15 137 141
F
g
= 10.1
9.69
5 10
2
E
3
-4
s 5
[=3
=
)
=3
e
£
B g
10 15 20 25
HTTP Request concurrent level
Fig. 7. Experiment 1: Overall cloud server throughput.
HTTP Request Failure Rate Results
Under different concurrent level of HTTP request
50%
) Fair Scheduler 43.67%
o
.] M Entropy Scheduler
€ 40% Py 37.75%
g
&
o 30.11%
7 30%
(-4
v 2367%
2
K
e 1667%
%
F
g 10.50%
g 1
&
Z 10%
=
E
T 1.33%
0%
0%
10 15 20 25

HTTP Request concurrent level

Fig. 8. Experiment 1: HTTP request failure rate result.

dation of cloud experience performance. Such unstable perfor-
mance can be explained through two reasons:

1) Contention and load interaction amongst concurrently ex-
ecuting queries result in loss in stability and performance
of the cloud. These effects deteriorate with more complex
workloads.

2) The cloud, due to its heterogeneity and parallelism, is a
difficult target to accomplish low-latency service response
as performance penalties is led by poor scheduling and/or
deployments.

Fig. 8 shows same performance bottlenecks inhibiting sub-
second service response time even though a significant amount
of failed requests is reduced by Entropy Scheduler than with
Fair Scheduler. This provides motivation for other optimisation
options in future work.

2) Experiment 2: Load Testing With 100,000 Service Re-
quests at the Concurrent Level of 10: Different aspects of load
testing result compared by each scheduler are presented in Ta-
ble II. Throughout the Evaluation section, our results show that
native Fair Scheduler is outperformed by Entropy Scheduler
in terms of QoS satisfaction. On an average, Entropy Sched-
uler was able to reduce the load testing finish time and average
service response time by almost 23% and standard deviation

CHEN et al.: ENTROPY4CLOUD: USING ENTROPY-BASED COMPLEXITY TO OPTIMIZE CLOUD SERVICE RESOURCE MANAGEMENT 21

TABLE II
EXPERIMENT 2: LOAD TESTING WITH 100,000 SERVICE REQUESTS AT THE
CONCURRENT LEVEL OF 10

Load Testing Result Fair Scheduler Entropy Scheduler

Completion Time (Sec.) 951.52 732.15 (—23%)
Throughput (Queries/Sec.) 10.51 13.66 (+30%)
Number of failed request 75 0

Mean Response Time (ms) 951 732 (—23%)
Standard Deviation 298.9 194.7 (—35%)

Percentage of Query Requests' Response Time Results

Load testing with 100,000 query requests at the concurrent level of 10
o [-
98% 1678 98%
95% 1510 95%
o o o
30% 1172 “ 80%
75% 1112 842 75%
65% 1035 65%
s0% 930 B 50%
2000 1500 1000 500 o 500 1000 1500 2000

Response time (ms)

Fair Scheduler Il Entropy Scheduler

Fig. 9. Experiment 2: Percentage of the service requests served within a
certain time (Million Seconds).

by 35%, in this heterogeneous cloud experiment. The overall
server throughput was found to improve by almost 30% when
compared with native Fair Scheduler.

According to Fig. 9, within 1 second, 90% of queries are com-
pleted under Entropy Scheduler, while under Fair Scheduler, it
was only 50%. Such result supports that Entropy Scheduler is
better in running cloud AaaS and provides web service with
quality of service guarantee.

V. RELATED WORK

Resource Management in the Cloud has been a common area
of research for many communities over the past years. However,
much of the past work in research do not consider the complexity
nature of cloud environment and all the solution in industry treat
the Cloud environment to be simplify.

A. Resource Management in the Cloud

The fundamental kind of resource management found from
existing literature can be mainly categorized into QoS based,
resource based, bargaining based, prediction based, and nature-
inspired/bio-inspired based.

1) QoS (e.g. Budget, Deadline, Reliability) Based: Isard
et al. formulates resource assignment as a graph optimization
problem, accounting for fairness, and placement constraints ap-
plication may have [28]. A formulation that supports a mix of
QoS scenarios with precisely defined objective function, pro-
motes performance, fairness, and CPU utilization is proposed
for static workloads with multiple types of resources by Stillwell

et al. [29]. Byun et al. propose an architecture to automatically
execute large-scale workflow-based applications on dynami-
cally and elastically provisioned cloud resources [30]. Sharma
et al. present a cost-aware resource allocation system that opti-
mize the selection of virtual server configuration to minimizes
the cost [31]. Hwang and Kim propose a cost-effective resource
provisioning methodology for deadline constrained cloud ap-
plications [32]. A approach that operates fine-gained resource
level scaling as well as VM level scaling (CPUs, Memory, I/O)
is proposed to support cost-effective elasticity for cloud services
by Han et al. [33]. Mao and Humphrey present an approach to
ensure all jobs are finished within deadlines at lowest financial
cost, where takes the virtual machine of various sizes/costs as
the basic computing units and which (soft) deadlines of jobs can
be specified according to the performance requirements [34]. A
deadline-driven resource provision mechanism was presented to
support QoS-aware execution of scientific workloads in hetero-
geneous cloud environment by Vecchiola et al. [35]. Malawski
et al. address a resource management problem concerning laaS
project with cost budget and deadline constraints [36]. The prob-
lem of minimizing the cloud operation cost by maximizing its
energy efficiency while ensuring the application’s QoS require-
ments is addresses by Gao et al. later [37]. Yang et al. ap-
ply a dynamic interference sensitivity detection methodology
to preserve the performance of batch-analysis applications for
collocation scenarios [38]. Han et al. try to reduces the costs
incurred by cloud users that using IaaS by utilizing adaptive
scaling algorithms for cloud resources, which enable them to
scale their applications only meets bottleneck [39]. Singh and
Chana categorize the cloud application workload on the basis
of common patterns and then allocating the resource according
to the generalized patterns before actual scheduling [40].

2) Resource Based: A theoretical problem formulation is
developed for allocating multiple heterogeneous types of re-
sources to competing cloud services and the proposed algo-
rithms are compared through simulation experiments based on
the Google Cluster Workload [41]. Xiao, Song and Chen intro-
duce a new concept, “Skewness”, to measure the unevenness
in the multi-dimensional cloud resource utilization [42]. They
proposed a system to combine different types of workloads and
improve the overall cloud resource utilization by minimizing the
Skewness [43]. Klein et al. introduce Brownout that using a self-
adaptation programming paradigm based on Control Theory to
develop applications that can robustly withstand unpredictable
resource performance without over-provisioning [44].

3) Bargaining Based: Lai et al. develop a cloud resource
allocation system based on bargaining, which allows appli-
cations to differentiate the values of its jobs [45]. While An
et al. propose an alternative approach where applications are
allowed to automatically negotiate resource leasing contracts
with cloud providers [46]. Similarly, Dastjerdi and Buyya pro-
pose a solution to automate the negotiation process in cloud
environment [47]. Zhang, Zhu and Boutaba try to address the
question how to best match applications QoS requirement in
order to maximize cloud provider revenue and cloud users
satisfactions while minimizing energy cost in a single cloud
provider scenario [48]. Zaman and Grosu attempt to formulate

22 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

the problem of resource allocation in clouds as a on-line auction
problem [49].

4) Prediction Based: A resource allocation methodology is
presented by Gmach et al., which relies on the ability to predict
the cloud application’s behaviour a priori [50] while Gong, Gu
and Wilkes propose an alternative schema based on predictions
of dynamic cloud resource run-time performance [51]. Watson
et al. study the probabilistic relationships between resource and
application and apply basic laws of probability to their proposed
model to investigate whether and how CPU utilization affects
application performance [52]. Shen et al. use on-line workload
demand prediction without a priori assumptions on application
behaviour to identifies the application’s resource requirement,
which attempt to avoid over-provisioning or over-loading of
cloud resources [53]. An algorithm is proposed by Li et al. to
adjust the number of resource allocated to applications based
on the updated information of their actual task executions [54].
Islam er al. present a new resource measurement and provi-
sioning solution based on prediction using Neural Network
and Linear Regression to meet future workload demands [55]
while Vasic et al. serves a similar goal by classifying workload
and reuses previous resource allocations decisions to minimize
reallocation overheads [56]. In Jiang ef al. work, they attempt to
make a trade-off between resource demand and service latency
by automatically predict the number of application query
requests [57].

5) Nature-Inspired/Bio-Inspired Based: Hegazy use the Ge-
netic Algorithms (GAs) technique to search for near-optimum
solution by taking both resource allocation and leveling heuris-
tics into consideration [58] [59]. Hua, Zheng and Hu proposed an
Ant Colony Optimization (ACO) based resource allocation algo-
rithm to satisfy the property of cloud computing [60]. A novel
parallel Q-learning approach is presented by Barrett, Howley
and Duggan to reduce the overhead introduced by determine
optimal policies while learning on-line [61]. Recently, a self-
tuning fuzzy control (STFC) approach is extended to enable
qualitative specification of elasticity rules for applications run-
ning on the cloud [62].

B. Summary

To make optimal resource management, we need to take the
complex cloud resources into account. However, the lack of
information regarding the dynamic cloud resources makes this
problem more challenging. Nowadays, the challenges of re-
source management like complexity of resources (e.g. hetero-
geneity, dynamicity and uncertainty) are not resolved with tradi-
tional ways in cloud environment. Thus, there is a need to make
cloud applications efficient by taking care of these properties of
the cloud environment.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

The complexity is an important issue that affects QoS satisfac-
tion bringing additional challenges to Cloud Service Resource
Management System problem. In this paper the negative impact
of complexity was used to motivate the new resource manage-
ment strategy development based on Entropy Theory. With the

results in this paper, we provide both a concrete solution for a
class of complex systems, as well as a number of ideas valuable
for conventional engines running on the cloud.

Complexity research is involved in a main part of 21st cen-
tury science according to several prominent authors, including
Stephen Hawking. However, research on Complexity has just
emerged in the area of cloud resource management. The un-
derstanding of the origin of complexity (Locally-active cloud
resource) and the impact of complexity (Performance degrada-
tion, QoS guarantees violation and potential Chaotic behaviour)
would offer useful information to find the limitation of cur-
rent resource management solutions and motivate new strategy
development under complex cloud environment.

Since the approach of introducing Degree of Local Activity
measured by resource entropy to control the complexity in the
cloud in this paper is the first attempt in the related literature.
Many problems may arise, and many issues remain open. A list
of the most important ones is given in the following.

1) New Experimentation: The proposed ideas have to be
more extensively validated in order to determine the ex-
tent to which it can improve the robust of resource man-
agement in the cloud. The validation of the ideas includes
two dimensions of new experimentations:

1) It has to be applied to more complex applications
running on the cloud in order to analysis its scope
and usability.

2) It has to be applied to more complex cloud envi-
ronment by involving larger amount of resources in
order to analyse its scalability.

Such experimentation is of worth interest because the final
purpose is to integrate the framework in the daily practices
of the resource management for cloud applications.

3) Further Implementation: Although the new Entropy
Scheduler reduces significant amount of failure jobs com-
pare to the native Spark Fair Scheduler, its jobs failure rate
is still far from satisfaction. This problem may cause by its
centralize management feature. In the future, we would
like to learn the idea from other resource management
systems, e.g. Apache Mesos [63], Omega [64], Sparrow
[65] ... and then transform the current solution from cen-
tralized to decentralized to solve the bottleneck problem
bring by high concurrent workloads.

4) Potential Improvement: We assume that the resource
management model only takes into account the CPU fac-
tor may usually influence by other factors as well, e.g.
Memory, Disk I/O, Network ... The model may be ex-
tended to consider these factors for potential improve-
ment. And the current model focuses on the complexity
raising from resource. In the future, complexity originated
in other media (etc. links between resources, workload,
outer environment) are also need to be studied.

5) Extended Analysis: In the current complexity manage-
ment, we focus on reducing/avoiding the complexity to
minimize the negative effect in the cloud resource man-
agement system. However, both positive and negative ef-
fects exist along with the increasing of complexity. There
exists a completely new application of Local Activity

CHEN et al.: ENTROPY4CLOUD: USING ENTROPY-BASED COMPLEXITY TO OPTIMIZE CLOUD SERVICE RESOURCE MANAGEMENT

6)

[1]
[2]

[3]
[4]
[5]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Principle so-called Edge of Chaos where most complex
phenomena merge. The region of Edge of Chaos can math-
ematically rigorously be proven and confirmed with other
applications in reality, which worth of extended analy-
sis to draw on the advantages and avoid disadvantage of
increasing complexity.

Cross-Disciplinary Research: Since the concept of En-
tropy Theory and Local Activity Principle are really fun-
damental in science. The concept of “Degree of Local Ac-
tivity measured by Entropy” introduced in this paper may
inspire future applications in other domains of computer
science. For example, in intrusion detention system, De-
gree of Local Activity can be identified as the behaviour
pattern of a user and the emerging complexity pattern
generated by those locally active users may be detected
as instruction. Such idea can be easily extended to other
disciplinary as well, such as Weather Prediction, Road
Traffic Scheduling, Calling Centre Routing. We believed
our work is a step toward many fruitful research topics in
the future.

REFERENCES

M. Baranger, “Chaos, complexity, and entropy,” New England Complex
Systems Institute, Cambridge, MA, USA, 2000.

F. Isik, Complexity in Supply Chains: A New Approach to Quantitative
Measurement of the Supply-Chain-Complexity. Rijeka, Croatia: InTech,
2011.

L. O. Chua, “Passivity and complexity,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 46, no. 1, pp. 71-82, Jan. 1999.

L. O. Chua, “Local activity is the origin of complexity,” Int. J. Bifurcation
Chaos, vol. 15, no. 11, pp. 3435-3456, 2005.

H. Chen, F. Wang, M. Migliavacca, L. O. Chua, and N. Helian, “Com-
plexity reduction: Local activity ranking by resource entropy for QoS-
aware cloud scheduling,” in Proc. IEEE Int. Conf. Serv. Comput., 2016,
pp. 585-592.

L. O. Chua, Memristor, Hodgkin-Huxley, and Edge of Chaos. New York,
NY, USA: Springer, 2014.

J. Xie, Y. Deng, G. Min, and Y. Zhou, “An incrementally scalable and cost-
efficient interconnection structure for data centers,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 6, pp. 1578-1592, Jun. 2017.

Y. Deng, “What is the future of disk drives, death or rebirth?,” ACM
Comput. Surveys., vol. 43, no. 3, 2011, Art. no. 23.

A. Tosup, N. Yigitbasi, and D. Epema, “On the performance variability of
production cloud services,” in Proc. 11th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput, 2011, pp. 104-113.

J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: Observing, analyzing, and reducing variance,” Proc. VLDB
Endowment, vol. 3, no. 1/2, pp. 460—471, 2010.

W. Herroelen and R. Leus, “Project scheduling under uncertainty: Survey
and research potentials,” Eur. J. Oper. Res., vol. 165, no. 2, pp. 289-306,
2005.

H. Chen, F. Wang, and N. Helian, “A cost-efficient and reliable resource
allocation model based on cellular automaton entropy for cloud project
scheduling,” System, vol. 4, no. 4, pp. 7-14, 2013.

L. Boltzmann, “The second law of thermodynamics,” in Theoretical
Physics and Philosophical Problems. New York, NY, USA: Springer,
1974, pp. 13-32.

S. Christodoulou, G. Ellinas, and P. Aslani, “Entropy-based schedul-
ing of resource-constrained construction projects,” Autom. Construction,
vol. 18, no. 7, pp. 919-928, 2009.

F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy:
A consolidation manager for clusters,” in Proc. ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environ., 2009, pp. 41-50.

H.-S. Gan and A. Wirth, “Comparing deterministic, robust and on-
line scheduling using entropy,” Int. J. Prod. Res., vol. 43, no. 10,
pp. 2113-2134, 2005.

[17]

(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33

[t

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

23

J. Liu, H. Tu, H. Zhang, F. Xia, and D. Yu, “Research on measurement
entropy-based of equipment management complexity and its application
in production planning,” in Intelligent Robotics and Applications. New
York, NY, USA: Springer, 2008, pp. 604—611.

C. G. Langton, “Computation at the edge of chaos: Phase transitions
and emergent computation,” Phys. D, Nonlinear Phenom., vol. 42, no. 1,
pp. 12-37, 1990.

R. A. Silverman and M. D. Friedman, Mathematical Foundations of In-

formation Theory. New York, NY, USA: Dover, 1957, vol. 434.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

A. Thusoo et al., “Hive: A warehousing solution over a map-reduce
framework,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1626—-1629, 2009.
M. Kornacker et al., “Impala: A modern, open-source SQL engine for
Hadoop,” in presented at the 7th Biennial Conf. Innov. Data Syst. Res.,
Asilomar, CA, USA, Jan. 4-7, 2015.

S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”
Proc. VLDB Endowment, vol. 3, no. 1/2, pp. 330-339, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” HotCloud, vol. 10,
pp- 10-10, 2010.

D. Xu, D. Wu, X. Xu, L. Zhu, and L. Bass, “Making real time data
analytics available as a service,” in Proc. 11th Int. ACM SIGSOFT Conf.
Qual. Softw. Archit., 2015, pp. 73-82.

M. Zaharia, “Job scheduling with the fair and capacity schedulers,” in
Proc. Hadoop Summit, 2009, vol. 9.

H. Chen and F. Z. Wang, “Spark on entropy: A reliable & efficient sched-
uler for low-latency parallel jobs in heterogeneous cloud,” in Proc. IEEE
40th Local Comput. Netw. Conf. Workshops, 2015, pp. 708-713.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,” in
Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009, pp. 261-276.
M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, ‘“Resource
allocation algorithms for virtualized service hosting platforms,” J. Parallel
Distrib. Comput., vol. 70, no. 9, pp. 962-974, 2010.

E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized pro-
visioning of elastic resources for application workflows,” Future Gener.
Comput. Syst., vol. 27, no. 8, pp. 1011-1026, 2011.

U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elastic-
ity provisioning system for the cloud,” in Proc. 31st Int. Conf. Distrib.
Comput. Syst., 2011, pp. 559-570.

E. Hwang and K. H. Kim, “Minimizing cost of virtual machines for
deadline-constrained mapreduce applications in the cloud,” in Proc.
ACMY/IEEE 13th Int. Conf. Grid Comput., 2012, pp. 130-138.

R.Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scaling
for cloud applications,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud
Grid Comput., 2012, pp. 644-651.

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, Art. no. 49.

C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya,
“Deadline-driven provisioning of resources for scientific applications in
hybrid clouds with Aneka,” Future Gener. Comput. Syst., vol. 28, no. 1,
pp. 58-65, 2012.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and deadline-
constrained provisioning for scientific workflow ensembles in IaaS
clouds,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2012, Art. no. 22.

Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram, “An energy and deadline
aware resource provisioning, scheduling and optimization framework for
cloud systems,” in Proc. 9th IEEE/ACM/IFIP Int. Conf. Hardware/Softw.
Codesign Syst. Synthesis, 2013, Art. no. 31.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
QoS management for increased utilization in warehouse scale comput-
ers,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 607-618,
2013.

R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, “Enabling
cost-aware and adaptive elasticity of multi-tier cloud applications,” Future
Gener. Comput. Syst., vol. 32, pp. 82-98, 2014.

S. Singh and I. Chana, “Q-aware: Quality of service based cloud resource
provisioning,” Comput. Elect. Eng, vol. 47, pp. 138-160, 2015.

M. Stillwell, F. Vivien, and H. Casanova, “Virtual machine resource al-
location for service hosting on heterogeneous distributed platforms,” in
Proc. IEEE 26th Int. Parallel Distrib. Process. Symp., 2012, pp. 786-797.

24

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

J. Mars and L. Tang, “Whare-map: Heterogeneity in homogeneous
warehouse-scale computers,” ACM SIGARCH Comput. Archit. News,
vol. 41, no. 3, pp. 619-630, 2013.

Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using
virtual machines for cloud computing environment,” I[EEE Trans. Parallel
Distrib. Syst., vol. 24, no. 6, pp. 1107-1117, Jun. 2013.

C. Klein, M. Maggio, K.-E. Arzén, and F. Hernandez-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 700-711.

K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman, “Tycoon:
An implementation of a distributed, market-based resource allocation sys-
tem,” Multiagent Grid Syst., vol. 1, no. 3, pp. 169-182, 2005.

B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with
decommitment for dynamic resource allocation in cloud computing,” in
Proc. 9th Int. Conf. Autonomous Agents Multiagent Syst., 2010, vol. 1,
pp. 981-988.

A. V. Dastjerdi and R. Buyya, “An autonomous reliability-aware negotia-
tion strategy for cloud computing environments,” in Proc. 12th IEEE/ACM
Int. Symp. Cluster, Cloud Grid Comput., 2012, pp. 284-291.

Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for spot
markets in cloud computing environments,” in Proc. 4th IEEE Int. Conf.
Utility Cloud Comput., 2011, pp. 178-185.

S.Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual
machine instances in clouds,” J. Parallel Distrib. Comput., vol. 73, no. 4,
pp. 495-508, 2013.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis
and demand prediction of enterprise data center applications,” in Proc.
1IEEE 10th Int. Symp. Workload Characterization, 2007, pp. 171-180.

Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scal-
ing for cloud systems,” in Proc. Int. Conf. Netw. Serv. Manage., 2010,
pp. 9-16.

B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang,
“Probabilistic performance modeling of virtualized resource allocation,”
in Proc. 7th Int. Conf. Autonomic Comput., 2010, pp. 99-108.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011, Art. no. 5.

J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online optimiza-
tion for scheduling preemptable tasks on IaaS cloud systems,” J. Parallel
Distrib. Comput., vol. 72, no. 5, pp. 666-677, 2012.

S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Gener. Comput. Syst.,
vol. 28, no. 1, pp. 155-162, 2012.

N. Vasic, D. Novakovic, D. Kostic, S. Miucin, and R. Bianchini, “Ac-
celerating resource allocation in virtualized environments using workload
classes and/or workload signatures,” U.S. Patent 13/411 491, Mar. 2,
2012.

J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource auto-
scaling for web applications,” in Proc. 13th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., 2013, pp. 58-65.

T. Hegazy, “Optimization of resource allocation and leveling using genetic
algorithms,” J. Construction Eng. Manage., vol. 125, no. 3, pp. 167-175,
1999.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. 24th IEEE Int. Conf. Adv. Inf.
Netw. Appl., 2010, pp. 400-407.

X.-y. Hua, J. Zheng, and W.-x. Hu, “Ant colony optimization algorithm for
computing resource allocation based on cloud computing environment,”
J. East China Normal Univ., vol. 1, no. 1, pp. 127-134, 2010.

E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning
towards automating resource allocation and application scalability in the
cloud,” Concurrency Comput., Pract. Exp., vol. 25,no. 12, pp. 1656-1674,
2013.

[62] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “QoS guarantees and service
differentiation for dynamic cloud applications,” IEEE Trans. Netw. Serv.
Manage., vol. 10, no. 1, pp. 43-55, Mar. 2013.

B. Hindman er al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. 8th USENIX Conf. Netw. syst. Des. Implemen-
tation, 2011, vol. 11, pp. 22-22.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in Proc.
8th ACM Eur. Conf. Comput. Syst., 2013, pp. 351-364.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proc. 24th ACM Symp. Oper. Syst.
Princ., 2013, pp. 69-84.

[63]

[64]

[65]

Huankai Chen (S’13) received the M.Sc. degree in
computer science from the University of Hertford-
shire, Hatfield, U.K., in 2009, and the PGDip degree
in actuarial science from the University of Southamp-
ton, Southampton, U.K., in 2011. He is currently
working toward the Ph.D. degree in computer sci-
ence at the University of Kent, Canterbury, U.K. His
research interests include cloud computing, big data,
and intelligent information processing.

Frank Z. Wang received the Ph.D. degree in U.K.
in 1999. He is a Professor in the Future Computing
of School of Computing, University of Kent, Canter-
bury, U.K. He was the Head of School of Computing
at University of Kent for six years. He has been in-
vited to deliver keynote speeches and invited talks to
report his research worldwide, for example, at Prince-
ton University, Carnegie Mellon University, CERN,
University of Technology Sydney, Hong Kong Uni-
versity of Science and Technology, Tsinghua Univer-
sity (Taiwan), Jawaharlal Nehru University, Aristotle
University, and University of Johannesburg. In 1996, he designed and devel-
oped spin-tunneling random access memory at Tohoku University, Japan, which
was the first of its kind worldwide. In 2004, he was appointed as the Chair &
Professor, the Director of Centre for Grid Computing at Cambridge-Cranfield
High Performance Computing Facility (CCHPCF). CCHPCEF is a collaborative
research facility in the Universities of Cambridge and Cranfield (with an in-
vestment size of 40 million). His research interests include memristor for future
computing, neuromorphic architecture, brain-like computer, chaotic behavior
of cloud computing, big data, bioinspired computing, and green computing.
He and his team have developed grid-oriented storage with the sponsorship of
EPSRC/DTI and received the ACM/IEEE Super Computing Finalist Award. He
is the Chairman (UK & Republic of Ireland Chapter) of the IEEE Computer
Society and a Fellow of the British Computer Society. He has served the UK
Government EPSRC e-Science Panel and the Irish Government High End Com-
puting Panel for Science Foundation Ireland.

3

Na Helian received the Ph.D. degree in computer
science from the Huazhong University of Science and
Technology, Wuhan, China, in 1993. She has various
working experiences in Japan, Singapore, and U.K.
She is currently a Principal Lecturer in the School
of Computer Science, University of Hertfordshire,
Hatfield, U.K. Her research interests include clouding
computing and data mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

