
1

Fully Reflective Execution Environments
Virtual Machines for More Flexible Software

Guido Chari, Diego Garbervetsky, Stefan Marr, and Stéphane Ducasse

Abstract—VMs are complex pieces of software that implement programming language semantics in an efficient, portable, and secure
way. Unfortunately, mainstream VMs provide applications with few mechanisms to alter execution semantics or memory management at
run time. We argue that this limits the evolvability and maintainability of running systems for both, the application domain, e.g., to support
unforeseen requirements, and the VM domain, e.g., to modify the organization of objects in memory.
This work explores the idea of incorporating reflective capabilities into the VM domain and analyzes its impact in the context of software
adaptation tasks. We characterize the notion of a fully reflective VM, a kind of VM that provides means for its own observability and
modifiability at run time. This enables programming languages to adapt the underlying VM to changing requirements. We propose a
reference architecture for such VMs and present TruffleMATE as a prototype for this architecture. We evaluate the mechanisms
TruffleMATE provides to deal with unanticipated dynamic adaptation scenarios for security, optimization, and profiling aspects. In contrast
to existing alternatives, we observe that TruffleMATE is able to handle all scenarios, using less than 50 lines of code for each, and without
interfering with the application’s logic.

Index Terms—Reflection, Virtual machines, Metaobject protocols, Dynamic adaptation

F

1 INTRODUCTION

Most software systems evolve during their lifetime [1]. In
many cases, the required modifications must be performed
without interrupting their execution [2]. For this kind of
applications, the boundary between development-time and
run-time blurs [3]. Consequently, it is beneficial to extend
the run-time adaptability from the applications also to the
system that executes them, i.e., the virtual machine itself.

Managed languages such as Java, Python, and JavaScript
run on top of highly complex software artifacts known
as virtual machines (VMs). VMs perform various tasks
such as implementing the language’s semantics, providing
dynamic compilation, adaptive optimizations, automatic
memory management and enforcing application’s security.
To cope with demanding performance requirements, the
majority of today’s industrial-strength VMs are written in
low-level languages such as C and C++. After compilation,
these VMs limit the ability of applications to observe and
adapt them at run time. Even research VMs do not enable
significant observability and interactivity with themselves at
run-time [4], [5], [6], [7].

Because VMs execute application code, they must be
aware of the inner aspects of application entities such
as objects, methods, and statements. But this relation is
unidirectional: applications have only limited control over
how the VM manages them. In general, applications are
designed to be unaware of the existence of the VM. We
advocate that a new generation of VMs should promote
a bidirectional communication between themselves and the

• Chari and Garbervetsky are with the Departamento de Computación,
FCEyN, UBA, and ICC CONICET, Argentina.
E-mail: {gchari,diegog}@dc.uba.ar

• Marr is with the University of Kent, United Kingdom.
E-mail: s.marr@kent.ac.uk

• Ducasse - RMoD project team, Inria Lille - Nord Europe, France.
E-mail: stephane.ducasse@inria.fr

applications they execute. Our hypothesis is that opening VMs
to applications makes software more flexible and adaptable.1

To test our hypothesis, we propose the idea of fully reflec-
tive virtual machines: VMs exposing their whole structure
and behavior to the applications at run time. A fully reflective
VM allows developers to observe and adapt the VM on-the-
fly enabling modifications from simple adaptations to fine-
grained tuning of applications. This provides application
developers with novel capabilities to adapt running applica-
tions. In addition to modifying the application logic, with a
fully reflective VM, developers can adapt the application by
modifying the behavior of the VM supporting its execution.

As an example for the potential of such VMs, consider
a server application that has to run without interruption.
In case a security issue is found, one might want to use a
custom security analysis to determine its impact with respect
to application and user data. Since the system is live, for
safety reasons the analysis must not modify any data, i.e., the
security analysis must be side-effects free.

In this paper, we show that a fully reflective VM provides
the mechanisms to enforce the read-only guarantee of
the aforementioned analysis, as well as support for other
adaptation scenarios, at the language level in a simple and
unanticipated manner (cf. Section 7). We start by discussing
the main characteristics of a fully reflective VM and we
suggest a reference architecture. The architecture defines a
metaobject protocol (MOP) [9] to operate programmatically
on the structure and behavior of the VM. The MOP ensures
that VM and application communicate in a controlled fashion
via a predefined API. The architecture is implemented in
TruffleMATE, a reflective VM implemented on top of the
Truffle framework [10]. TruffleMATE provides extensive
reflective capabilities at the VM level.

1. This hypothesis was partially outlined in a previous paper [8] that
this journal version extends.

2

To validate our hypothesis and assess TruffleMATE’s
novel capabilities we analyze how it handles unanticipated
adaptation scenarios. These scenarios require adaptations to
both, an application and its VM. Our experiments provide
empirical evidence about the feasibility and usefulness of a
fully reflective VM as an appealing alternative for supporting
on-the-fly software adaptation. While not the focus of this
paper, we also present preliminary indications suggesting
that reflective VMs can run efficiently.

The contributions of this paper are:

• The proposal of a new approach for building VMs
promoting a bidirectional communication between a
VM and applications running on top.

• A reference architecture for building reflective VMs
featuring a MOP for handling VM-level reflection
from the application level.

• TruffleMATE,2 a reflective virtual machine imple-
mented using the Truffle framework and supporting
the Smalltalk programming language.

• An empirical validation with case studies on one of
the most challenging instances of software adaptation:
handling unanticipated adaptation scenarios on-the-
fly. The results show that our approach can handle
unanticipated adaptations in a reasonably simple and
homogeneous manner compared to other approaches.

2 MOTIVATION

In this section we motivate the need for fully reflective VMs.
We start by describing an adaptation case study that is then
used throughout the rest of the paper. Then we discuss
different aspects of why existing approaches are not suitable
to properly handle each scenario.

2.1 Running Example

Unanticipated adaptations include all possible changes to
a system that were not identified at design time. This
paper focuses on applying such changes at run time. As
motivation, let us consider an application that needs to
be keep running to avoid affecting customers. However,
at some point customers complain about long response
times. Consequently, a developer profiles the application
to understand what is going on. She finds that a likely root
cause is high memory usage of the application. Thus, she
wants to reduce memory consumption and improve the
overall system performance.

From this example, we distill the following adaptations
scenarios:

Read-only Protection. Immutability in software refers
to the ability to turn parts of the program state accessible
only for reading. Immutability has been proven useful
for software development & testing, optimizations, and
verification among other tasks [11], [12]. In OO languages,
immutability has been applied at the object level, i.e., for
protecting individual objects, or at the reference level, i.e.,
for protecting any object (transitively) accessed through a
particular reference.

2. https://github.com/charig/truffleMate/tree/papers/TSE2017

In our example, the analysis scripts must not modify
any data to protect its integrity. That is, data should be
only accessible for reading. To achieve this goal without
interrupting the whole system, the references from the
analysis scripts to the application must have a read-only
behavior.

Application Profiling. Application profiling has been
shown to be useful for software development tasks such
as program comprehension [13], debugging [14], and op-
timizing [15]. These tasks typically benefit from calling
context information, for instance, to improve the speed and
correctness of software maintenance tasks [16] or decide
whether a method requires further optimization [17]. In our
example, in addition to tracking activated methods and the
context of their activations, the profiled information should
also include method arguments, return values, and accesses
to local variables.

Efficient Field Access. Most VMs organize their objects
in memory as a continuous block of cells. Using this or-
ganization, reading an object field implies that the whole
cache-line including the field is loaded into the processor
cache. Therefore, iterating over a large amount of objects
and accessing only few of their fields, potentially spanning
multiple cache-lines, can result in sub-optimal performance
because of frequent cache misses.

It was identified that this is in part slowing down the
example application. The application aggregates statistics for
a large number of objects based on a single field. Compared
to realizing the same behavior using an optimized relational
database, this code is suboptimal since the involved objects
are large. Hence, the object memory representation should
be improved to increase performance.

Efficient Field Storage. Dynamic languages usually
enable the addition and removal of object fields at run
time. To optimize the representation of such a dynamic
structure of unknown size and shape, the notions of maps [18]
and object shapes [19] have been proposed. Essentially, they
keep track and cache object structures and field types at
run time. Exploiting this information using speculative
type specializations enables a record-like representation
in memory where field accesses can be mapped to direct
memory accesses.

Due to the nature of the application, many of its classes
have a large number of fields to represent customer data.
However, many fields for a large number of objects are never
used. Since the language is class-based, and the shape of
these classes keep track of all the fields, memory usage is
suboptimal. Therefore, the data representation should be
more compact to free up memory.

2.2 Direct and Indirect Adaptations
Our running example includes requirements similar to
adaptations discussed in literature [12], [20], [16], [21], [22].
Generally, unanticipated scenarios involve adaptations of
low-level structures such as the object representation in
memory as well as behavioral features, e.g., to profile
execution. Furthermore, they may require the adaption of
fine-grained entities including individual objects.

We identified two different ways for approaching these
adaptation requirements:

3

• Direct adaptation is the redefinition of the semantics
of exactly the required operations for the necessary
scope. As such, there is an ontological correspondence
between the requirement and the adaptation.

• Indirect adaptation is the redefinition of semantics
by wrapping around (intercepting) the required oper-
ations and redirecting the execution flow. When the
adaptation scope exceeds the requirement, it is also
considered to be indirect.

From our experience [23], indirect adaptation leads to
a number of issues: 1) the set of operations intercepted is
usually an over-approximation of the points in the program
that need adaptation; 2) maintainability is reduced because
any application change can require a corresponding update
to any interception point; 3) debugging is cumbersome
because the application’s methods could become polluted
with instrumentation features; 4) composing adaptations can
require complex run-time tests at each interception point
reducing performance; 5) if an operation is not interceptable
(i.e., built-in operations) it can not be adapted.

To illustrate direct adaptations, below we sketch how
to approach the scenario from the running example in a
direct way. In sections 7.2.2, 7.2.3, 7.3.1, and 7.3.2 we provide
detailed implementations.

Immutable References. To handle the read-only protec-
tion requirement one option would be to make all objects im-
mutable. However, this option is infeasible if the application
was designed to perform computations by mutating objects.
To avoid this issue, another option is to forbid mutations
made only by the analysis script. This can be achieved by
using read-only references [12], which enforce that objects
accessed through them cannot be mutated. Unfortunately,
dynamic languages rarely reify the concept of references.

Arnaud et al. proposed Handles as a reification of read-
only references [20]. Handles are proxies to objects that dele-
gate every operation to their targets but prevent mutation.
Handles must be transparent, i.e., it should be impossible to
distinguish whether an object is accessed directly or through
a handle. Moreover, every object accessed through a handle is
wrapped into another handle to ensure immutability through
the complete chain of accessed objects.

Handles can be used for handling the read-only scenario
in dynamic languages in a direct way but require VM support
for customization of the method activation, method lookup,
and read operations.

Profiling Using Calling Context Trees. An approach for
capturing the context of the method activations, needed by
the profiling requirement, is to represent the information
using calling context trees (CCT), a data structure that
compactly represents method executions grouped by calling
contexts [24]. In a CCT, each tree node represents the
execution of a method and its ancestor nodes represent its
callers, i.e., the methods that would be found in the call stack.
A direct way of gathering this information is to redefine how
the language activates methods (only for the required objects)
so that before a method is activated the required information
is logged in the corresponding CCT node.

Fast Aggregation with Columnar Objects. In relational
databases, the overhead in data intensive applications is
avoided by organizing the data in columns instead of

rows [25], [26]. A direct adaptation approach for the scenario
requiring fast field access is to organize the fields (of the class
denoting the relational table) in a columnar manner, so that
they are stored in subsequent memory cells [21].

Efficient Representation of Sparse Objects. Shapes are
responsible of the mapping between each field and its
actual position in memory. Consequently, a direct adaptation
approach at run time to reduce the memory consumption
caused by unused fields is to introduce shapes that only
assign space for used fields.

2.3 Approaching the Adaptive Scenarios
Reflection in programming languages is a mechanism for
programs to express computations about themselves, en-
abling the observation (introspection) and/or modification
(intercession) of their structure and behavior [27].

Reflective systems are a suitable approach for adapting
software directly as they enable an interaction with program
elements without resorting to intermediaries. This is in
contrast to alternatives such as aspect-oriented program-
ming [28] and context-oriented programming [29], which
usually enable only indirect adaptations (cf. section 9.3).

We now analyze the reflective capabilities that state-of-the
art solutions promote to deal with these scenarios.

2.3.1 Contemporary Reflective Systems
Conceptually, reflective systems are able to approach any
adaptive scenario directly. However, even the approaches
with most extensive reflective capabilities found in literature
suffer from a common limitation: their reifications cover
only a limited subset of low-level entities [30], [31]. As a
consequence, they fail to handle direct adaptations requiring
changes to VM-related aspects such as those suggested for
our four scenarios.

2.3.2 Reflective Capabilities in Virtual Machines
A common characteristic of VMs is that they are made of
several intertwined components each coping with complex
responsibilities [32]. However, performance is usually the
most critical aspect for VM developers, because a VM’s
performance affects the throughput of the programs it exe-
cutes. Consequently, mainstream VMs are usually designed
prioritizing performance rather than other aspects such as
modularity or adaptability. This makes them complex arti-
facts, difficult to observe and adapt at run time. For example,
most mainstream VMs do not allow to experiment with an
alternative algorithm for the method lookup mechanism or
to dynamically introduce immutability for a predetermined
set of objects. Instead, such changes require developers to
implement the new behavior, recompile the VM, and restart
the application.

Some research projects do however provide interaction
mechanisms at run time (cf. section 9). For example, Pinoc-
chio [33] is, to the best of our knowledge, the most complete
solution in terms of reflective capabilities. Pinocchio is a
first-class interpreter extensible from the language level
implementing Smith’s tower of interpreters [27]. Since it
provides reflective capabilities only for the operational
semantics of the language (interpreter), Pinocchio does not
support the direct approaches suggested for the optimization

4

scenarios as it cannot adapt structural entities such as the
layout of objects.

2.4 Problem Statement and Hypothesis of Work

Existing reflective systems cannot properly handle fine-
grained unanticipated adaptations in a direct fashion. Es-
pecially when these adaptations involve VM concepts such
as object layouts, operational semantics, etc.

Based on these observations, we hypothesize that to handle
unanticipated adaptations directly at the language-level, a VM
should provide abstractions to mold the semantics of the whole
system at the application and the VM level.

3 BACKGROUND

This section introduces concepts required throughout the
paper.

3.1 Execution Environments

We define an Execution Environment (EE) as a set of software
components in charge of executing programs written in a
specific programming language. For instance, an EE for an
object-oriented (OO) language is responsible for executing
statements, managing how objects are represented in mem-
ory, and collecting the objects that are no longer used. EEs
are also known as VMs or managed runtimes. Hereinafter,
we refer to them mainly as VMs.

3.2 Reflective Architectures

A programming language has a reflective architecture if it
provides tools for reflective computations [34]. For instance,
reflective architectures for object-oriented programming
languages usually rely on metaobjects [35] that describe the
structure and behavior of language-level concepts such as
objects and methods. The set of metaobjects that represents
a particular object constitutes the object’s meta level. The
metaobjects describing all base-level objects in an application
constitute the application’s meta-level. In reflective languages
and architectures, metaobjects and their corresponding base-
level objects must be causally connected: changes in me-
taobjects must lead to a corresponding effect upon their
associated base-level objects [34].

Metaobject protocols (MOPs) [9] are APIs that give users
the ability to modify the language’s behavior and implemen-
tation by using metaobjects. They are an elegant solution
for handling non-functional aspects of applications [36],
[37], [38]. Iguana/J [30], object-centric debugging [39], and
Albedo [40] adopt MOPs to deal with low-level concerns.

To improve distribution, deployment, and general pur-
pose metaprogramming of reflective architectures, Bracha
and Ungar [41] proposed the Mirror design principles: i)
Encapsulation: MOPs should not expose implementation
details ii) Stratification: MOPs should enforce a separation
between the application behavior and the reflective code iii)
Ontological correspondence: the meta-level reifications3 must
map one-to-one to concepts of the base-level domain.

3. To reify: to model as a first class entity.

3.2.1 Reflective Dimensions
To the best of our knowledge, there is no metric for assessing
the degree of reflective capabilities supported by a system.
Thus, we propose the following reflective dimensions:

• Domain-breadth measures both, how many entities
of a domain (inter-entity) are reified, or how many
features are included in the reification of each entity
(intra-entity).

• Domain-depth measures the number of meta-levels
reified for each entity.

For instance, when considering the reification of features
from classes such as instance or class variables, methods, and
inheritance relationships, we measure intra-entity domain-
breadth. On the other hand, domain-depth considers the
levels of metaclasses available for a programmatic interaction.
For instance, in a language such as Smalltalk, developers
can inspect the metalevel of the metalevel, e.g., the metaclass
of a metaclass. The term full reflection refers to the complete
reflective coverage of both the domain-breadth and domain-
depth dimensions of reflection.

3.2.2 Application-level vs. VM-level Reflection
Commonly, reflective computations are distinguished based
on whether they are used for introspection or intercession, as
well as whether they affect behavioral or structural elements.
However, this distinction does not consider abstraction levels.
For example, adding fields to an object and modifying
its memory location are both characterized as structural
intercession, even though both operations deal with different
levels of abstraction. The first refers to object fields, an
application-level concept, while the latter refers to memory
(VM level). It is common in reflective languages, such as
Smalltalk and JavaScript, to support the addition of fields
at run time, without providing support for customizing the
memory locations of fields. Since the distinction is relevant
for our work, we introduce the following categories:

• Application-level reflection refers to metaprograms that
work with objects, classes, methods, or object fields
of the application’s domain model.

• VM-level reflection refers to metaprograms that re-
gard operational semantics, execution stack, method
lookup, memory management, or any reification of
low-level aspects handled by the VM.

3.2.3 Reflective Challenges
To enable the customization of any VM-level behavior
an intercession handler is added to delegate its execution
to the corresponding language-level entity (the metalevel)
where it can be customized [42]. This handler enforces the
causal connection, but has a performance cost. Furthermore,
whenever a shift to the metalevel occurs the VM must take
care of translating its data representations and those of the
language back and forth. As a consequence, completeness
and performance are in tension: incorporating more reflection
into a system, i.e., making it more complete, increases the
flexibility at the cost of affecting its performance.

When designing a reflective system, this tension must be
resolved. Fortunately, just-in-time compilers can significantly
reduce the overhead of intercession handlers whenever the

5

usage of the reflective capabilities are moderate or exhibit
stable usage patterns [43], [44].

4 FULLY REFLECTIVE EXECUTION ENVIRON-
MENTS

This section defines three maxims that a VM must follow to
be considered a fully reflective execution environment and
proposes a reference architecture.

4.1 Main Characteristics
Maxim 1. Universal Reflective Capabilities: VMs must
provide intercession and introspection capabilities for every entity
at both, the application and the VM level.

VMs usually impose a rigid boundary with the applica-
tions. This is beneficial in terms of security, portability, and
performance, but restricts the possibility of the applications
to affect the VM behavior at run time. To overcome this limi-
tation, we advocate for VMs exposing reflective capabilities
at the VM level.

Maxim 2. Uniform Reflective Abstractions: VMs must
provide the same language tools for interacting with both, the
application and the VM levels.

Ideally, developers that work in different domains should
be able to focus on a single tool for dealing with reflective
computations at different levels. Since uniform abstractions
help to improve the understandability and evolvability of the
programming environment [45], [46], we argue that VM-level
reflection must use the same application-level mechanisms to
avoid increasing the complexity. For instance, if the language
provides reflection via a MOP, VM-level reflection must also
be supported by a MOP.

Maxim 3. Separation of Application and VM: An
application should not need to be designed explicitly to support
observability and adaptability. Instead, the VM should provide the
necessary capabilities.

To separate concerns, an application must focus on
the problem domain, while orthogonal concerns should be
handled separately. For example, similar to aspect-oriented
programming, a cross-cutting low-level adaptation such as
logging must not affect the application’s domain model.
Hence, it is important that the abstraction for dealing with
reflection enables a clear separation between the application
and the VM domains. However, this is rarely the case and
concerns such as logging or more efficient data representa-
tions have to be realized at the application level.

4.2 Mate: A Reference Architecture
Figure 1 presents Mate, the high-level architecture we pro-
pose for fully reflective VMs. It is divided into the application
and the VM layers with arrows representing different kinds
of interactions between components. To represent a wide
range of object-oriented languages, Mate relies only on the
notions of objects and methods as its core elements.

The bottom layer comprises only essential VM-level
entities for executing expressions, realizing objects, and
managing memory in OO languages. Further refinements
may extend those, for instance, by incorporating entities such

Application Level

MethodObject

Bind to

Language
MOP

Sent to

Execution Environment Level

Executor

Layout Ex. Context

Message

Memory

VM
MOP

Interacts with Semantics from

Fig. 1: High-Level reference architecture of a fully reflective
environment for an object-oriented generic programming
language.

as threads, I/O, and execution traces. To realize universal re-
flection (maxim 1), all of these entities must provide reflective
capabilities, possibly using a MOP that is complementary
to an application-level MOP. This honors the uniformity
required by maxim 2 and complies with the separation of
domains required by maxim 3.

The main responsibilities of each VM-level entity are:

• Executor is responsible for interpreting and possi-
bly optimizing methods. It defines the operational
semantics of the language.

• Execution context manages the stack and the
information that the executor uses for executing a
method including the given receiver and arguments.

• Message is responsible for the binding of messages
to methods (method lookup) and the corresponding
method activation that creates the execution context
in which the method will be executed.

• Layouts describe the concrete organization of the
internal data of objects.

• Memory realizes in combination with Layouts the
memory representation of objects. This includes defin-
ing read/write accesses as well as memory allocation
and garbage collection.

5 A VM-LEVEL MOP

Execution
Message

Lookup
Activate

Organization
Executor

Read Global
Write Global
Read Local
Write Local
Read Arg
Read Literal
Return

Layout
Read Field
Write Field
Initialize Field
Count of Fields
Create Layout
Customize Layout

Context
Receiver
Arguments
Return Frame
Stack

Memory

Not
Implemented in
this version of

the MOP

Fig. 2: Our Metaobject Protocol is designed to enable unfore-
seen software adaptations by providing access for inspecting
and modifying the VM level. The operations highlighted
in italics represent behavioral aspects, while the others
represent structural aspects of the VM.

6

This section presents the design of a VM-level MOP for
the Mate architecture. Instead of devising a design for all
aspects of each component, we focus on a MOP capable
of handling unanticipated dynamic adaptations such as
those presented in section 2: read-only protection, profiling,
performance optimizations, and space optimizations on-the-
fly. Figure 2 presents a sketch of the resulting MOP. The
metaclasses are grouped into two clusters: one for concepts
of execution and the other for the organization of data.
Compared to the Mate architecture, the resulting MOP only
leaves out the memory metaclass, which we do not need for
the adaptive scenarios (evaluated in section 7). The domain-
breadth reflective capabilities per metaclass are:

• Message: Allows developers to specialize the method
lookup algorithm and the method activation mech-
anism. In section 7.2.2 we show examples of its
application for handling adaptation scenarios.

• Executor: Allows developers to redefine the behav-
ior of each operation giving semantics to language
constructs. For instance, in a bytecode-based imple-
mentation it allows the redefinition of each individual
bytecode. The scenario of section 7.2.3 illustrates the
usage of most of them.

• Execution Context: Makes it possible to observe
the receiver, the arguments, the caller’s context, and
the stack values for each executing method. We show
an example of its usage in section 7.2.2.

• Layout: Provides means to modify the behavior of
operations interacting with object’s fields. Specifically,
the reading, writing, and initialization of fields. It
also allows the introspection and intercession of the
memory organization of objects. Usage examples can
be found in section 7.3.

5.1 How to Use the MOP
There are two different ways of using the MOP depending on
whether one wants to interact with behavioral or structural
aspects. For structural aspects, such as number of object fields
or the current values on the execution stack, reflection is han-
dled by observing or altering the corresponding metaobject
directly. For instance, a layout describing the structure of
each object is accessible for observation and modification.
Furthermore, an execution context is accessible for every
method invocation describing the contextual values.

For customizing the behavioral operations of the MOP
(highlighted using italic letters in figure 2), users should
describe the new behaviors. To do so, the metaclasses of
the MOP (Message, Executor, and Layout) can be sub-
classed to override the methods defining the corresponding
language’s behaviors. ExecutionContext is not included
because its operations are accessors for structural aspects
only.

Finally, the customized metaclasses must be attached to
an auxiliary metaclass called Environment. Environments
merely aggregate metaobjects into one single object, which
minimizes memory usage, because each entity only needs
a single pointer to an environment to customize its whole
VM-level semantics.

Example. To illustrate how to specialize these metaclasses
consider a simplification of the read-only protection scenario

in section 2.1. Let us assume that the analyzed module is not
used in the meantime. Thereby, we can avoid introducing
read-only references and implement object immutability. To
do that we only need to customize the Write field operation
from Executor to make it throw an exception whenever the
system tries to change the value of a field.

The left part of figure 3 shows a configuration of metaob-
jects implementing the scenario. For readability, the figure
distinguishes between metaclasses and metaobjects. Im-
mutable, which extends Executor, implements the read-
only semantics by specializing the writeField method. To
use it, an environment object is created (aReadonlySeman-
tics) and the customization is attached to its Executor field.
Now aReadonlySemantics can be attach to objects to make
them immutable. This configuration is generated by:

1) Subclassing Executor with Immutable and spe-
cializing the writeField operation.

2) Instantiating Immutable. The metaobject is named
aImmutable.

3) Instantiating Environment. The object is named
aReadonlySemantics.

4) Assigning aImmutable to the Executor field of aRead-
onlySemantics.

The middle part of figure 3 shows a configuration to sup-
port the sparse objects scenario presented in 2.1. The goal is to
reduce memory consumption by compressing objects contain-
ing uninitialized fields. This is done by using a customized
layout that implements a dictionary-like object layout, using
only space for fields that are used. To this end, Compactable
customizes the semantics of read field, write field, and field
count from Layout. Analogous to the immutable case, an
instance of Compactable (aCompactable) is attached to an
instance of Environment (aCompactEnvironment) but this
time to the Layout field. Objects that want to use a sparse
layout must then be linked to (aCompactEnvironment).

Finally, the right side of the figure shows how to com-
bine customizations from different metaclasses in a single
Environment (aCompactReadonlyEnvironment).

5.2 Characteristics of MATE’s MOP
Below, we discuss the most relevant design characteristics of
our MOP.

Composability/Modularity. MOPs adhering to the ontolog-
ical correspondence principle isolate the reflective capabili-
ties into separate objects that correspond to domain-level
structures. This promotes composability [47]. Honoring the
principle, each VM-level entity is a separate metaclass.

Scoping. The Environment metaclass links base-level
entities with the VM metalevel. For fine-grained scoping,
every base-level object has a link to an environment metaobject
which describes how the VM must operate on itself. In
addition, method activations can also link to an environment
to redefine the semantics of all the operations executed within
the method. Finally, environments can be set globally as well.
To avoid ambiguity, the environment applied to a more specific
context precedes the others.

Activation/deactivation. The explicit separation between
the VM-level and application-level MOPs comply with the
Mirror’s principle of stratification. Bracha and Ungar claim

7

Metaobjects

Metaclasses
Executor

writeField
Immutable

aReadonly
Environment
 Layout
 Executor
 Message

aImmutable

Environment

 Metaobjects

Metaclasses

aCompact
Environment
 Layout
 Executor
 Message

aCompactable

Environment

Metaobjects

Layout

readField
writeField
fieldsCount

Compactable

aCompact
Readonly

Environment
 Layout
 Executor
 Message

aCompactable

aImmutable

Subclass

 Instance of
 Reference

a. Read-only b. Space Optimization c. Read-only + Optimization

Fig. 3: Configuration of metaobjects for the adaptation scenarios. In the left (a.) there is a configuration of metaobjects
for realizing the read-only scenario. In the middle (b) for the space optimization scenario. The right-hand of the figure
shows how to combine the previous configurations in an environment for realizing both, read-only and space optimization
adaptations at the same time.

that adhering to this principle helps to avoid overheads
when VM-level reflection is not needed [41]. In our case, for
activating/deactivating VM-level behavior redefinitions, it is
only needed to add/remove the environment metaobject from
the corresponding base-level entity.

5.3 VM-level Behavioral Reflection

To realize the causal connection for behavioral reflection,
Mate uses intercession handling [42]. Concretely, before exe-
cuting any VM-level operation included in the MOP such
as invoking a method, or accessing a local variable, the VM
tests whether there is a metaobject redefining it. If not, the
standard VM-level operation executes. In case the operation
is redefined, the VM delegates the responsibility to the corre-
sponding language-level method. The following algorithm
defines the concrete intercession handling for our MOP:
1 def IH(frame, operation) {
2 result = NOMETAOBJECT;
3 if (level is Meta) return result;
4 metaobject = getReceiver().getMetaobject();
5 if (metaobject != NOMETAOBJECT)
6 result = metaobject.activateFor(operation);
7 if (metaobject == NOMETAOBJECT or result == null) {
8 metaobject = frame.getMetaobject();
9 if (metaobject != NOMETAOBJECT)

10 result = metaobject.activateFor(operation);
11 }
12 if (metaobject == NOMETAOBJECT or result == null) {
13 metaobject = getGlobalMetaobject(operation);
14 if (metaobject != null)
15 result = metaobject.activateFor(operation);
16 }
17 return result;
18 }

Listing 1: Algorithm describing the intercession handling
process.

The first two lines of the algorithm show how the
metaregression problem is solved by Mate. Metaregression
is an endless recursion caused by a metaobject calling
a base-level behavior that is also redefined by the same

metaobject [48]. A general solution to this problem is making
reflective architectures context-aware by reifying the execution
level [49]. This provides an extra parameter for defining the
semantics of the operations. We use a simplification of meta-
contexts by providing only two different levels of execution:
meta and base. Every time the VM delegates the execution to
the metalevel, the depth level is set to meta and no further
delegations are possible until the operation returns.

Starting with line 4, the intercession handling checks for
the existence of a metaobject associated with the subject of
the current VM operation (e.g., in a variable read operation,
the concrete object owning the variable). In case there is
one, the intercession handling activates the language-level
redefinition of the current operation in the metaobject. In
case there is none, or it does not redefine the VM operation
being executed (returns null), the intercession handling
looks for a metaobject associated with the current frame
of execution. Again, if there is no metaobject or it does not
redefined the operation, the intercession handling checks
for a global metaobject redefining the current operation. If
the operation is not redefined at any level, the intercession
handling returns the NOMETAOBJECT constant and the VM
executes the default behavior.

Completeness. The domain-depth completeness of the
behavioral part of our MOP is limited to two levels, meta
and base, as a simple solution to avoid metaregression. The
main reason for this solution is that none of the considered
adaptation scenarios required a higher domain-depth. The
domain-breadth completeness was already discussed for
each metaclass of the MOP in the introduction to this section.

Note that our approach does not support adding new
intercession handling points at run time, i.e., the behavioral
reflective capabilities of the VM cannot be increased on-the-
fly. This means the MOP is fixed at compile time.

5.3.1 VM-level Structural Reflection

We reify the structure of base-level entities using the fields
of metaobjects. To guarantee the causal connection, the be-
havior of base-level entities is defined by the corresponding

8

metaobject. Consequently, this mechanism enables a program
to observe and change the value of metaobject fields with
instantaneous effects on the base-level entity.

Completeness. Analogous to the behavioral case, structural
reflective capabilities of the MOP cannot be increased at run
time. Concretely, no new reification of structural VM level
entities, for instance the trace of method activations, can be
realized after compiling the VM. Considering the domain-
depth dimension, we faced a metaregression issue, analogous
to the one discussed for intercession handlers, but with
layouts. Since layout metaobjects are also first-class objects
their layout is defined by another layout metaobject. Since
our adaptation scenarios do not require further capabilities,
we provide non-redefinable layouts for metaobjects limiting
the domain-depth to two levels.

6 TRUFFLEMATE

In previous work [8], we presented a Smalltalk interpreter
to investigate a subset of the ideas discussed in this paper.
The interpreter was a naive prototype which suffered from
performance overheads of 2 to 3 orders of magnitude
in comparison to an optimized VM. To perform a more
comprehensive validation, we developed TruffleMATE, a
reflective VM implemented on top of the Truffle language
implementation framework.

TruffleMATE allows us to validate our MOP for more
realistic scenarios. However, building an industrial-strength
VM is a highly resource demanding task and not our aim.
Instead, our goal is to provide a platform to validate the
fundamental aspects behind reflective VMs. This section
presents TruffleMATE and the required technical background
on Truffle and the Graal compiler.

6.1 Truffle and Graal

The Truffle framework allows developers to build program-
ming languages by expressing their semantics as abstract
syntax trees (ASTs). To realize self-optimizing AST interpre-
ters [10], Truffle comes with a DSL to specify specializations.
Specializations express execution patterns for the cases when
a more optimized version of an operation can be used. For
instance, performing a simple addition when both arguments
are integers instead of relying on a general method that
would handle arbitrary types for each argument.

In combination with the Graal just-in-time (JIT) com-
piler [50], languages implemented in Truffle can reach the
peak performance of today’s industrial-strength VMs [51],
[52]. For instance, Graal.js, a JavaScript on top of Truffle
reaches on average the same peak performance as V8 [53],
[52] for a specific set of benchmarks. Truffle languages
reach an average performance of about 2x slower than Java
on HotSpot. Furthermore, Truffle-based implementations
of Ruby and R outperform the best performing existing
implementations, JRuby and GNU R correspondingly. To
reach this performance, Truffle applies partial evaluation on
the specialized ASTs. Graal compiles the result to native code
applying optimizations such as inlining and escape analysis.

6.2 SOM and TruffleSOM

The Simple Object Machine (SOM) [54] is a Smalltalk im-
plementation designed to avoid inessential complexity. It
includes fundamental language concepts such as objects,
classes, closures, and non-local returns. Following the
Smalltalk tradition, control structures such as if or while
are defined as polymorphic methods on objects and rely on
closures and non-local returns for realizing their behavior.
TruffleSOM [43], [51] is a SOM implementation using Truffle.

6.3 From TruffleSOM to TruffleMATE

TruffleMATE extends TruffleSOM with two goals: 1) turn it
into a reflective VM and 2) become a full-fledged Smalltalk
VM. For the first, it implements the VM-level MOP presented
in section 5 completely. For the latter, we include support for
additional primitive type optimizations, literal arrays, cas-
cade message sends, support for file access, exceptions, and
Smalltalk’s streams [46]. As a result, TruffleMate is able to run
programs developed for two compatible open-source Small-
talk implementations, Squeak [55] and Pharo [56], provided
they do not use graphical user interfaces or concurrency.
Below, we provide a brief overview of the most significant
differences between TruffleMATE and TruffleSOM.

Environments. In TruffleMATE, the semantics of each
behavioral VM operation can be redefined at three different
scoping levels: individual objects, the whole execution of a
method, or globally (cf. section 5.2). To support the former,
we add a field to every object referring to an environment. To
support the second, we modified the calling convention so
that every method receives an extra implicit parameter with
an environment. This environment governs the semantics of
all operations executed within this method no matter the
subjects. For the global scope we introduced a global variable
also referring to an environment.

Intercession Handling. We modified the VM’s behavioral
operations included in the MOP (indicated with italics in
figure 2) so that they execute the corresponding intercession
handling introduced in section 5.3. Recall that the inter-
cession handling checks for the existence of a metaobject
that applies to any of the possible scopes and delegate the
execution to the corresponding application-level method or
the standard VM operation.

Objects. TruffleSOM provides its own object model. To
enable custom object representations using the MOP, we
provide a new object model based on the Truffle Object
Storage Model (OSM) [19] and expose layouts to the applica-
tion (shapes in OSM jargon) via primitive operations. This
enables to reflectively inspect, create, and customize layouts
of individual objects at run time. In addition, TruffleMATE
incorporates support for basic Smalltalk object types such as
characters and bytes.

Execution Stack. In Smalltalk, the execution context (frame)
of the current method is reflectively accessible via the
thisContext keyword. Concretely, Smalltalk natively im-
plements the Context metaclass of the MOP. TruffleSOM
does not support this behavior. We support it in TruffleMATE.

9

7 EVALUATION OF TRUFFLEMATE’S ADAPTATION
CAPABILITIES

This section assesses how TruffleMATE handles unanticipated
fine-grained adaptations at run time. For each scenario from
section 2.1 we discuss a direct adaptation using TruffleMATE
and compare it with existing alternatives. Furthermore,
we detail how TruffleMATE subsumes partial behavioral
reflection [42], which we consider to be the most complete
adaptation framework at the language level. We conclude
with a basic performance evaluation of our prototype.4

7.1 Evaluation Criteria
For the evaluation, we compare a set of quality attributes
between TruffleMATE and the best language-level solution
judging our reflective VM as either better, the same, or worse.
The attributes are:

• Succinctness: the number of lines of code (#LOCs)
needed for the adaptation. This includes dependen-
cies on software artifacts such as instrumentation
frameworks. It does not include the code that is part
of the runtime itself. Consequently, TruffleMATE’s
intercession handling code is not included. Neverthe-
less, its overhead is less than 20 LOC.

• Forward compatibility: whether an adaptation persists
during the evolution of the application. For instance,
if the adaptation monitors some entities and a new
piece of code is added, it is desirable that the new
code automatically includes the monitoring behavior.

• Scoping: whether the approach provides explicit ways
to apply changes at different levels of granularity.

• Modularity: indicates whether it is possible to imple-
ment the adaptation without polluting the applica-
tion’s logic.

7.2 Extending Language Features
This section describes direct adaptations in TruffleMATE for
the first two scenarios requiring new language features to
be added to the application at run time: object and reference
immutability as well as low-level profiling capabilities.

7.2.1 Per-Object Immutability
Recall the read-only scenario from section 2.1. It requires
the implementation of reference immutability on the fly
to protect the system against unintended modifications.
We start by describing and analyzing a direct way of
implementing classic per-object immutability in TruffleMATE.
In the following section, we extend this adaptation to achieve
the required reference immutability semantics.

Object Immutability in TruffleMATE. As the following code
snippet shows, we simply install a metaobject in the target
object to redefine the write operation:

1 class Immutable extends Layout {
2 def writeField(aNumber, anObject) {
3 throw new InvalidWriteException();
4 }
5 }

4. Instructions for reproducing all the experiments can be found at
http://github.com/charig/truffleMate/tree/papers/TSE2017.

6
7 immutableLayout = new Immutable();
8 immutableEnvironment = new Environment();
9 immutableEnvironment.setLayout(immutableLayout);

10 obj = new Object();
11 obj.setEnvironment(immutableEnvironment);

On lines 1-5, we subclass Layout and overload the write-
Field operation to signal an exception instead of changing
the field. From line 6 on, the code creates the environment
and links the immutable layout metaobject to it. The last
line installs the environment in a new object. To deacti-
vate immutability, we can simply unset the environment:
obj.setEnvironment(NOMETAOBJECT).

Comparison to other approaches. Zibin et al.’s [11] approach
enforce immutability by relying on static typing. It requires
modifications of the application-level code to include type
annotations and recompilation to recheck the annotations.
In TruffleMATE object immutability can instead be applied
to a dynamically-typed environment. Therefore, it is more
succinct since it does not require modifications of the type
system. It is also more modular since instead of using type
annotations within method bodies, the adaptation logic is
isolated in metaobjects. There is no significant difference in
any of the other criteria.

An alternative for implementing object immutability in
dynamic environments is to instrument every method in the
system that may eventually modify the state of immutable
objects. This has negative impact on succinctness, activation,
and forward compatibility compared to TruffleMATE. One
way to mitigate these issues is to change the granularity
of the immutability property from objects to classes. This
means that all instances of a class are mutable or immutable.
However, this might be prohibitively restrictive. It makes
the alternative worse than TruffleMATE in terms of scoping
without resolving the problems in the other criteria. In the
next section, we discuss an alternative, immutability based
on dynamic proxies.

Finally, VisualWorks Smalltalk5 and some Ruby versions
use a mutability flag in each instance to support per-object
immutability. Every time an object is to be changed, the VM
first checks this flag and raises an error if mutation is forbid-
den. These solutions do not suffer from the aforementioned
limitations and should be better than TruffleMATE in terms
of activation impact since the adaptation is hardwired at the
VM level. On the other hand, they require dedicated VM
support and thus cannot be considered as solutions for an
unanticipated adaptation.

7.2.2 Reference Immutability
To provide reference immutability, we extend TruffleMATE at
run time with Arnaud’s handles [20]. Recall from Section 2.2
that handles are like proxies to objects that delegate every
operation to their targets, except for mutating operations.
Handles must be transparent: a user should not be able to
distinguish whether an object is accessed directly or through
a handle. Moreover, any object accessed through a handle
is wrapped into another handle, propagating immutability
through the chain of accesses from a handle.

Reference Immutability in TruffleMATE. The code below
implements handles using our MOP:

5. http://www.cincomsmalltalk.com

http://github.com/charig/truffleMate/tree/papers/TSE2017.

10

1 class ImmutableMessage extends Message (
2 def lookup(subject, aMethodName) {
3 return super.lookup(subject.getTarget(), aMethodName);
4 }
5
6 def activateWithArgs(subject, aMethod, args) {
7 if (aMethod.name().equals("=="))
8 args["receiver"] = subject.getTarget();
9 }

10)
11
12 class ImmutableLayout extends Layout (
13 def read(subject, anIndex) {
14 return new Handle(subject.instanceVarAt(anIndex));
15 }
16
17 def write(subject, anIndex, aValue) {
18 InvalidWriteException signal
19 }
20 }
21
22 class Handle extends Object = (
23 fields: target;
24 static fields: semantics;
25 semantics = new Environment(
26 new ImmutableSemantics(),
27 new ImmutableLayout());
28
29 Constructor Handle(anObject) {
30 target = anObject;
31 this.installEnvironment(Handle.getSemantics());
32 }
33
34 def getTarget() {
35 return target;
36 }
37
38 def static getSemantics() {
39 return semantics;
40 }
41)
42
43 class Object = (
44 def readonly() {
45 return Handle(this);
46 }
47)

Our implementation encapsulates the semantics of the
immutability, the transparency, and the propagation prop-
erties of handles in four methods within two metaclasses:
ImmutableMessage and ImmutableLayout. Below, the
description for each of these properties:

• Immutability: We reuse the write method from the
previous example, which signals an exception.

• Propagation: We redefine the read operation (Lines 13-
15) to enforce that every access to a field of an object
referenced by a handle returns a handle wrapping the
corresponding field value. In addition, in Line 3 we
delegate the lookup to the superclass but customize
the first parameter. This ensures that the method is
looked up in the class of the original subject (the
target) and not in the handle. In combination, these
two methods ensure that messages sent to a handle
execute the method from the target and that side-
effects are disabled in the chain of activations.

• Transparency: The activation ensures that the identity
of read-only references is preserved by overloading
the receiver when activating the equality test in
Lines 7-8. Therefore, handles are transparent and all
operations appear to be performed directly on the
target object.

Comparison to other dynamic approaches. Arnaud’s imple-
mentation of handles [20] duplicates classes. Every class that
needs to support immutability has a corresponding shadow
class. Shadow classes wrap all methods that change state to
forbid the modification. To maintain forward compatibility, this
mechanism requires changes in the compiler to synchronize
shadows every time a method of the original class changes. In
addition, it has a significant activation impact since it requires
to instrument the whole system. Furthermore, the approach
requires to adapt the method lookup so that the transparency
property can be enforced. More recently, an approach based
on dynamic proxies relaxed the transparency guarantees
and modeled handles without requiring modifications to the
VM [57]. Nevertheless, maintaining these proxies requires
code generation very similar to that for hidden classes.
Consequently, forward compatibility and the activation impact
are still costly.

We showed that in TruffleMATE both, per-object and per-
reference immutability, can be activated at run time even if
it was not anticipated. In contrast to some of the aforemen-
tioned approaches, ad-hoc support, such as shadow classes or
method duplications, is not needed. Finally, the adaptations
do not affect application logic and are transparent. For
instance, they are not observable when application methods
are debugged. Accordingly, forward compatibility is automatic,
i.e., eventual modifications to the application would not
affect immutability because the adaptation semantics are
encapsulated in the corresponding metaobjects.

7.2.3 Profiling Applications Using Calling Context Trees
As discussed in section 2.2, we want to adapt TruffleMATE to
collect profiling information to identify performance issues.
Specifically, we want to build a calling context tree collecting
for each calling context the number of activations, activation
arguments, return values, and local variable accesses.

Profiling in TruffleMATE. To construct a CCT, we need
to gather contextual and low-level information at run time.
This can be done with TruffleMATE’s reflective capabilities:

1 CCT extends object (
2 static fields: instance; // Singleton
3 fields: root, current;
4
5 static def getInstance() {
6 return instance;
7 }
8
9 def logActivation(aMethod, arguments) {

10 /* Look or create a node hanging from current targeted
11 to aMethod. Then update current to the corresponding
12 node and log the arguments to current.*/
13 }
14)
15
16 CCTActivation extends Message (
17 def activateWithArguments(aMethod, arguments) {

11

18 CCT.getInstance().logActivation(aMethod, arguments);
19 return aMethod.activateWithSemantics(this);
20 }
21)
22
23 CCTOperations extends Executor (
24 def returnValue(aValue) {
25 if (thisContex.getMethod().isConstructor())
26 CCT.getInstance().returnCreatedObject(aValue);
27 else
28 CCT.getInstance().returnValue(aValue);
29 return aValue;
30 }
31)
32
33 def main(args) {
34 profilingEnv = new Environment();
35 profilingEnv.setMessage(new CCTActivation());
36 profilingEnv.setExecutor(new CCTOperations());
37 thisContext.installEnvironment(profilingEnv);
38 // Below would follow the original main code
39 }

For developing the CCT data structure we followed the
algorithm described in literature. We refrain from describing
it here to focus on the usage of the MOP. To profile all
the required information we introduce a single metaobject
redefining only the method activation from the Message
metaclass and the return operation from the Executor. Note
that this metaobject was designed to work at a method
activation granularity, i.e., the semantics of whole method
executions are governed by the corresponding environment.

Lines 1-14 sketches the essential adaptations of our
CCT implementation. Lines 16-21 show how to redefine
the method activation so that it informs the current CCT
which method is activated and what the actual arguments
are. To ensure the whole application is profiled, in line 19
the metaobject installs itself in the frame of the method to be
activated. Lines 23-31 redefine the return operation so that
the CCT receives the return value. In case the value is the
result of an instantiation, the CCT records also the number
of allocated bytes based on the type of the object.

Finally, lines 33-39 adapt the entry point of the application
to activate the profiling semantics. We create an environment
containing both aforementioned metaobjects and install it in
the current activation frame, accessed in TruffleMATE with
the thisContext keyword.

Comparison to other approaches. The profiling information
can be gathered using aspect-oriented programming (AOP)
or instrumentation frameworks [58], [59], [60], [61], [62], [63].
For instance Senseo provides information about running
applications to IDEs and collects information similar to
our requirements [16]. The information is also collected
using CCTs and includes number of invocations along with
receiver and argument types, return types, number of object
allocations, and allocated bytes.

Senseo relies on Major [60], an AOP-based profiler. The
advantages of this approach is its high accuracy, portability,
flexibility, and extensibility. Recent AOP implementations
even promise only moderate overheads. However to guar-
antee forward compatibility, the instrumentation and aspect
weaving might need to be reapplied when new methods are
added to the system. Depending on the specific approach,
succinctness might be affected because of the dependency

on a heavy-weight framework, and it might exhibit a high
activation impact.

Using TruffleMATE, the same information can be gath-
ered by combining two metaobjects (with a few lines of
code each) that automatically propagate through the chain
of activations during profiling. Furthermore, the evolution
of the application does not affect the profiling behavior.
Therefore, TruffleMATE does not suffer from the main
drawbacks the other approaches suffer.

An alternative technique, sampling profiling [64], [65], [66],
produces partial execution information. We refrain here from
a comparison because we are interested in producing the
same information as Senseo, which requires precise profiling.

7.3 Extending Data Representation

This section presents two case studies requiring structural
adaptations of objects at run time. Consequently, they assess
the structural reflective capabilities of the MOP.

7.3.1 Fast Aggregation with Columnar Objects

Recall from section 2.2 that organizing data in columns
instead of rows [25], [26] can improve the performance of
analytical algorithms.

Columnar Objects in TruffleMATE. We implement a
columnar organization of object fields [21], at run time, using
the MOP. The code below shows ColumnarData, the main
auxiliary class we need to implement columnar classes in
TruffleMATE. It stores each of the fields of the class in a
separate array with one fixed position for each instance of
the class. Then objects become proxies storing the object class
and the column position. Mattis et al. [21] demonstrate that
within loops traversing such collections, these proxies can be
optimized out. An escape analysis can optimize them to the
integers representing the column numbers.

1 class ColumnarData (
2 static fields: columnarInstanceEnv;
3 fields: columnarData, lastPosition;
4
5
6 Constructor ColumnarData(aClass, initialSize) = (
7 columnarData = new Array(aClass.instVars().length());
8 lastPosition = 0.
9 for (i = 1; columnarData.length(); i++) {

10 columnarData[i] = new Array(initialSize);
11 }
12 }
13
14 def getData(aProxy, anIndex) {
15 return columnarData[anIndex][aProxy.getIndex()];
16 }
17
18 def setData(aProxy, anIndex, aValue) {
19 columnarData[anIndex][aProxy.getIndex()] = aValue;
20 }
21
22 def newInstance() {
23 lastPosition = lastPosition + 1;
24 proxy = new ColumnarProxy(lastPosition);
25 proxy.installEnvironment(columnarInstanceEnv);
26 return proxy;
27 }
28)

12

Our code above also defines the logic for accessing
(Lines 13-15) and storing (Lines 17-19) object fields in the
corresponding array and at the proper index. Accordingly,
instances of a columnar class read and store to their corre-
sponding index in the array representation.

ColumnarData is also responsible for creating the new
instances of classes featuring a columnar representation
(Lines 21-26). At object creation time, we select a new index
for the class arrays storing the data and create a kind of
proxy storing only this index. This proxy represents the new
object. Similar to the handles in the immutability scenario, it
is desirable for this in-memory organization to be transparent.
To do so without changing the code of the getters and setters
of the class, line 24 installs the following metaobject:

1 class ColumnarFieldSemantics extends LayoutMO (
2 static fields: columnarClasses;
3 columnarClasses = new Hash();
4
5 def read(anIndex) {
6 return columnarDataFor(this).getData(this, anIndex);
7 }
8
9 def write(anIndex, aValue) {

10 columnarDataFor(this).setData(this, anIndex, aValue);
11 }
12
13 def static columnarDataFor(aProxy) {
14 return ColumnarClasses.at(aProxy.class());
15 }
16)

The ColumnarFieldSemantics metaobject defines a static asso-
ciation between each columnar class and its ColumnarData
organization. Furthermore, it redefines the read and write
operations so that they access the data in the ColumnarData
arrays at the corresponding index.

Comparison to other approaches. Our approach only re-
quires to install a metaobject redefining the reading and
writing of fields. The same behavior could be achieved
by removing the fields from the classes and changing the
getter/setter for every field so they access their index in the
data arrays. However, using this alternative direct accesses
to fields must be forbidden, i.e., by enforcing the usage of
accessor methods. Furthermore, it is not modular because
it modifies the application classes, and it has a significant
activation impact. Using both, our approach and the alterna-
tive, forward compatibility is not provided automatically: if the
object’s layout changes, for instance because a field is added,
the columnar adaptation must be updated too. However,
since the objects already have a metaobject installed in
TruffleMATE it is only required to create the columnar array
for the new field. The alternative requires to adapt all its
accesses in addition to creating the array.

Avoiding most of these problems, Mattis et al. [21] present
a Python library, which introduces annotations for classes
so that their fields are organized in a columnar layout. They
show that tracing compilers are able to optimize operations
such as selection, filtering, and mapping on large amounts
of data if the objects are organized in a columnar layout in
memory. Developers must annotate the classes that should
use a columnar layout, but the algorithms and the code
of the application for field accessing remains the same.
The approach relies on implementing proxies ensuring the

interception and redirection of every access to any columnar
field. However, there remain limitations concerning object
identity (transparency of proxies) without a dedicated VM.

7.3.2 Efficient Representation of Sparse Objects
In our running example we described the need to use a more
efficient memory representation for sparse objects to avoid
allocating memory that is not going to be used.

To make the scenario more concrete, let us consider a
Person class with 20 fields for the attributes on an individual.
Since Smalltalk uses a record-like representation for every
instance, if most of the fields are not used, a significant
amount of allocated memory remains unused.

Dictionary-based Layouts using TruffleMATE. To implement
a dictionary-like representation in TruffleMATE and reduce
the memory consumption at run time we can dynamically
assign a layout to sparse objects that: 1) stores fewer fields
per instance and 2) provide a metaobject for realizing a
dictionary-like behavior for this layout.

For instance, consider a layout storing ten fields. Hence,
Person’s instances filling the individual information with
less than five fields could use this layout. The reason why
the layout has ten fields instead of five is that our dictionary
representation needs two fields for representing each original
field: the first stores the data and the second the index
(or name) of the original field. Below, the customization
of Layout for implementing the dictionary behavior:

1 class DictionaryBasedLayout extends Layout {
2 def read(anIndex) {
3 index = this.getIndexForField(anIndex);
4 if (index.isNull())
5 return null; // field has not been written
6 else
7 return this.instVarAt(index);
8 }
9

10 def writeField(anIndex, anObject) {
11 index = this.getIndexForField(anIndex);
12 if (index.isNull())
13 throw new NoMoreSpaceException();
14 else {
15 this.instVarAtPut(index, anObject);
16 this.instVarAtPut(index + 1, aNumber);
17 }
18 }
19
20 def fieldsCount() {
21 this.class().instanceVariables().size();
22 }
23 }

The DictionaryBasedLayout metaclass adapts the
reading and writing of fields. For both operations we first
obtain the index for the field, and then perform the operation.
To ensure consistency and transparency, we also redefine the
method that returns the number of fields of an object. This
dictionary-based representation saves space when less than
half of the fields are used.

Comparison to other approaches. Another approach to
reduce memory usage could be to migrate sparse instances to
new classes. This would however require to change both, the
application code and the instantiation points, thus affecting
modularity. Depending on the application, this may also
require significant code changes and potentially the use

13

of a large DSU frameworks for migrating objects at run
time [67]. These issues reduces succinctness. Furthermore,
since this alternative requires adaptation of the target classes,
it has a significant activation/deactivation impact. Finally, the
adaptation is scattered through the application code, which
reduces modularity and forward compatibility. In contrast, a
reflective VM does not depend on how the application is
implemented and does not suffer from the aforementioned
drawbacks. The application code remains the same. It only
requires to copy fields from one representation to the other
for sparse objects.

Similar to MATE, Verwaest et al. [22] reify layouts at the
language level. However, since the VM is not aware of them,
these layouts can be bypassed by primitive operations that do
not recognize those constructs. On the other hand, dynamic
languages such as JavaScript or PHP represent properties of
objects with hashed-based dictionaries. Without aggressive
optimization, this is inefficient when most of the fields are
used. Using optimizations such as maps or shapes [19], which
do not allocate memory for unused fields, this is not an issue.
Unfortunately, these solutions are provided at the VM level
and are thus not an option for unanticipated adaptation.

In contrast to other VM-level solutions, with a reflective
VM one can easily switch between dictionary-based and
array-based representations at the granularity of objects. One
could even replicate other shape-based approaches at the
language level, which could further optimize memory usage.

7.4 Partial Behavioral Reflection with TruffleMate
Unanticipated Partial Behavioral Reflection (UPBR) [31]
provides the most complete set of reflective capabilities for
unanticipated adaptations that we are aware of. UPBR is
an extension of partial behavioral reflection (PBR) [42], a
language-level framework for realizing reflective computa-
tions efficiently. Reflex is the first tool implementing PBR
and its main limitation is that it instruments Java bytecodes
at load time, and thus, adaptations have to be anticipated.
UPBR is an implementation for Smalltalk, based on run-time
instrumentation, that supports the realization of adaptations
at run time.

We now describe how TruffleMATE supports all capabili-
ties of UPBR [42]. The reverse does however not hold. With
UPBR, object layouts can not be adapted. Figure 4, taken
from the original PBR paper, illustrates its main concepts and
their relationships:

Fig. 4: Partial Behavioral Reflection main concepts. Taken
from [42].

• Hooksets are sets of operation’s execution points
(hooks). For each adaptation, hooksets denote all

execution points in the system that may need to
delegate their execution to the metalevel.

• Links bind metaobjects with hooksets and establish
the protocol between the base and metalevels. They
specify the information passed to the metaobject and
for instance the control given to the corresponding
metaobject, i.e., acting before, after, or around the
intercepted operation.

• For each association between a link and hook, an
activation condition is executed to test whether to
delegate to the metalevel.

To illustrate these concepts let us consider an ad-hoc
profiling scenario: we need to log the activation of every
method with more than one argument. In this case the
hookset would denote all method activations in the appli-
cation. The link binds every operation of the hookset with
a metaobject responsible of doing the actual logging. The
activation condition checks whether the activated method
contains more than one argument.

Hooksets, Links, and Conditions in TruffleMATE. The UPBR
concepts can be modeled in a straightforward manner using
the MOP:

• Hooksets are sets of execution points. The operations
reified by Executor and Message metaclasses cap-
ture all of these points. Furthermore, TruffleMATE
enables us to scope the selection of these operations
to single instances.

• The link connects the base and meta level by bind-
ing hooksets to language-level methods defined in
metaobjects. Environment metaobjects play the same
role. In general, TruffleMATE supports an even finer-
grained control of these bindings, because it allows us
to redefine the language semantics even for a single
operation and on a single object.

• Since in TruffleMATE the intercession handling’s
activation conditions are fixed, the link activation
condition must be expressed inside the methods of
the metaobject.

Comparing the approaches. We showed how TruffleMATE
can model PBR concepts. The inverse however does not hold:
PBR can not express the structural scenarios presented in the
previous section. Moreover, PBR implementations presented
in literature depend on instrumentation frameworks. This
makes TruffleMATE more succinct. In cases such as the
aforementioned profiling of method activations, PBR must
instrument all methods of an application making the activa-
tion/deactivation impact significant. Forward compatibility is also
more complex than with TruffleMATE, because PBR must
reexecute the instrumentation after updating any method.

7.5 Performance
Until this point, the evaluation focused on our main goal: to
show that reflective capabilities at the VM level are useful
for handling unanticipated software adaptation. However, in
many cases applications need to run efficiently to be usable.

A major concern about reflective VMs is that they may not
run efficiently due to the overheads incurred by the interces-
sion handling and the dispatching to language-level methods
instead of realizing the VM behavior natively. In previous

14

●● ●

Pharo

SOM

Node

Mate

5 10 15

Fig. 5: Overhead factor of different dynamic programming
language implementations normalized to Java. Benchmarks
were selected from Marr et al. in [52]. The suite was designed
for cross-comparing language implementations.

TABLE 1: Overall Baseline Results

Runtime OF CI-95% Sd. Min Max Median

Mate 2.64 ±0.94 1.62 0.66 6.07 1.99
Node 2.95 ±1.35 2.34 0.84 9.91 2.32
SOM 3.35 ±1.03 1.78 0.84 6.14 3.22
Pharo 8.74 ±2.3 3.80 2.64 14.75 8.25

work [44], we investigated optimizations and found pre-
liminary indications that a reflective VMs like TruffleMATE
can reach performance comparable with mainstream VMs.
Specifically, for scenarios with low meta-level variability,
we were able to combine speculative optimizations such as
dispatch chains [43] and branch speculation to mitigate the
overheads introduced by intercession handling.

To complement our qualitative evaluation and show
indications that fully reflective VMs have the potential to
be competitive, we report here on some of the performance
results obtained in [44]. Specifically, we use the latest version
of TruffleMATE to rerun two of the experiments presented
in that work: i) a performance analysis of the VM when
no metaobject is activated and ii) the performance of the
immutable references scenario.

7.5.1 Experimental Setup

Most dynamic systems achieve their peak performance after
a warmup phase in which the hot code is optimized. Since we
are interested in the overheads a reflective VM incurs on its
peak performance, we measure the run time of 50 iterations
after the systems warmed up. We determined the end of the
warmup phase manually by inspecting the run-time series
plots for each configuration (benchmark + VM).

The reported values are run-time factors between Truf-
fleMATE and a predefined baseline. To determine them, we
take the mean run time for a specific iteration and use it as
baseline. Our methodology is based on Kalibera et al. [68].
Note that they refer to this factor as the speed-up factor. Since
we are measuring overheads instead of speed-ups we call it
overhead factor (OF).

The benchmarking machine is a quad-core Intel Core
i7-3770, 3.40 GHz with 16GB RAM and running the Linux
kernel 4.2. For TruffleMATE we are using the precompiled
binaries of Graal VM version 0.29

TABLE 2: Overall Results for the Read-only Benchmarks

Benchmark OF Confidence Sd Median Min Max

Proxies 4.26 ±0.25 0.62 4.07 4.02 7.40
MOP 1.98 ±0.15 0.46 1.82 1.80 4.19

7.5.2 Inherent Performance

To analyze the inherent overhead we use a set of VM
benchmarks designed for comparing different language im-
plementations [52]. Since these benchmarks were originally
designed for being run by a standard VM, this experiment
measures the overhead of supporting reflective capabilities
on the VM even if they are not used. The suite includes
micro and macro benchmarks measuring different language
abstractions usually found on dynamic languages such as
classical control flow operations, field reading/writing, and
method dispatching.

To assess the inherent overhead we ran the benchmarks in
TruffleSOM and TruffleMATE. To see how fast TruffleMATE
is, we also ran the same benchmarks on two other industrial-
strength VMs for dynamic languages: the CogVM version
6 for Pharo Smalltalk and Node.js version 8.9.1 using the
Crankshaft compiler for JavaScript. We use as baseline the
performance of the Java VM OpenJDK 1.8.0_91 with 64-Bit
Server VM (25.91-b14).

Figure 5 presents boxplots of the overhead factors of each
benchmark while Table 1 shows mean, median, confidence
interval, and other statistical variables. Although Truffle-
MATE is a research prototype, it significantly outperforms
Pharo. TruffleMATE also already performs similar to Node.js
running on top of Google’s optimized V8 VM. Finally, for
this set of benchmarks, not using any behavior from the MOP,
the overheads of using TruffleMATE instead of TruffleSOM
are negligible.

The numbers indicate that TruffleMATE is slightly faster
than TruffleSOM. This may be influenced by two main factors.
First, the compilation and optimization of the benchmarks
in TruffleMATE (including the intercession handling) results
in different memory layouts. This could affect the cache-
line hit rate. Moreover, languages implemented on top of
Truffle/Graal are very sensitive to its inlining heuristics. The
extra code of the intercession handling can result in different
inline decisions potentially exposing additional optimization
opportunities.

7.5.3 Immutable References

To assess the performance impact in applications using
reflective capabilities, we took the read-only protection
experiment from [44] which resembles the scenario presented
in section 7.2.2. The benchmark essentially traverses a
linked list, attempting to write some of its elements. The
experiment compares two alternative approaches for read-
only references: i) handles implemented using the reflective
VM capabilities, and ii) delegation proxies [57] relying only
on application-level reflection. The baseline uses a standard
mutable reference.

It is worth noting that in both read-only cases, as the
benchmark traverses each list element, it needs to wrap the
reference to the next element of the list with either a handle or

15

a proxy. As a consequence, the read-only versions instantiate
considerably more objects than the baseline.

Table 2 shows that the peak performance overhead
of using the MOP is approximately 2x in comparison to
the baseline. Notice that the MOP version is faster than
the delegation proxies version which depends only on
application-level reflective operations.

8 DISCUSSION

TruffleMATE is an open-source reflective VM following the
MATE architecture. As such, it demonstrates that it is feasible
to implement a VM with advanced reflective capabilities.
While more research is needed to assess advantages and
drawbacks of reflection at the VM level, with our validation
we argue that VMs supporting bidirectional communication
between themselves and the applications are a suitable
alternative for developing flexible software. Furthermore,
the performance results indicates that it can be possible to
remove most performance overheads of reflective VMs.

Regarding the adaptive scenarios, we compared Truffle-
MATE’s approach with other language-level solutions and
showed benefits in terms of our quality-based evaluation
criteria. In all cases TruffleMATE dealt with the adaptation
scenario by installing small metaobjects (about 20-45 LOC
each) without changing the methods with application logic.
It also usually ranked equal or better when considering most
of our quality criteria. Finally, TruffleMATE handled all the
cases while alternatives, such as AOP implementations or
instrumentation frameworks, are only applicable to a subset.

A potential threat to the validity of our results is the set
of quality attributes we selected. Furthermore, the coarse-
grained values we defined could be considered fuzzy. To
provide a more precise analysis, we would need to conduct
user studies. This is challenging because it would require
the availability of stable tools for each of the alternative
approaches, which is not the case. Furthermore, the tools
use various different conceptual abstractions. The lack of
experts for all these abstractions and tools makes it even
more challenging to perform a fair and consistent study.
Another way to mitigate this threat would be to find proper
quantitative metrics such as time or number of lines of code
to apply the adaptations.

We are also aware that our empirical results may not
generalize to every adaptation scenario. To mitigate this
threat we have carefully selected examples of adaptation
scenarios from existing literature. Moreover, we covered
behavioral and structural adaptations at different abstraction
levels. We compared our solution using TruffleMATE with
other language-level approaches such as handles, AOP tools,
and PBR. It is worth noticing that there exist few approaches
able to address low-level adaptive scenarios at run time, and
to the best of our knowledge, none is able to handle our
whole set of experiments.

Finally, TruffleMate still lacks means for controlling the
installation of metaobjects, leading to potential security
issues. For instance, in the read-only protection case it would
be desirable to allow only a privileged object to remove the
metaobject of a handle. A capability-based layer on top of
the VM-level reflective model could be used to provide such
security guarantees.

9 RELATED WORK

In this section we describe solutions from different domains
that are related with the work presented in this paper.

9.1 Reflective Solutions

Pinocchio first class interpreter [33] is a practical implemen-
tation, in the context of an OO language, of Smith’s tower of
interpreters [27]. The interpreter is first-class and extensible
from language level. In contrast to TruffleMATE, Pinocchio
does not impose a fixed number of metalevels for dealing
with metaregressions. It adapts to different levels on demand.
On the other hand, Pinocchio is a reflective interpreter while
TruffleMATE covers more VM-level entities. For instance,
Pinocchio is not able to deal with the structural case studies
of section 7.3, because it does not reify object layouts. Similar
to Pinocchio, Asai [69] proposes a first-class interpreter but in
the context of a functional language. It shares with Pinocchio
the same fundamental differences with TruffleMATE.

CLOS [9] is an object-oriented layer for LISP that
implements an advanced MOP, regarded as one of the
most complete in terms of introspection and intercession
reflective capabilities. CLOS reifies Slots, a language level
representation of instance variables (fields). It also provides
means to customize methods with generic functions, method
combinators, and before/after methods. Since CLOS’ main
goal is enabling language customizations rather than being
a reflective VM, it does not support extensive reflective
capabilities for low-level functionalities such as the complete
operational semantics of the language. Based on our under-
standing, using CLOS it may not be possible to handle the
immutable references scenario of section 7.2.2 transparently
because of its limitations for interceding the method lookup
and activation on individual objects.

CodA proposes a metamodel that decomposes execution
concepts into different roles. This decomposition is inde-
pendent of the concrete programming language [47]. It is
richer than the current TruffleMATE’s MOP considering only
the message metaobject because it reifies the receiver and
sender roles separately and the synchronization of message
activations. On the other hand, CodA reifications are similar
to those of CLOS, more related to language-level concepts
than to the VM perspective. For instance, CodA does not
reify object layouts nor execution aspects such as method
return values, or even the execution stack.

Flexible Object Layouts [22] reifies the internal structure
of objects. Its main reification is the Slot, similar to slots
in CLOS. Slots can be extended at run time by redefining
four main operations: read, write, initialize and migrate. We
followed a similar approach for implementing the Layout
metaclass in TruffleMATE, just leaving out the migration
operation which was not needed in our case studies.

9.2 Virtual Machines

Several self-hosted approaches for VM construction support
some forms of VM-level reflection. Klein [6] for Self has
similar goals to ours but its support for modifying VM-
level entities at run time is not explained in the literature.
The paper only mentions support for advanced mirror-
based debugging tools to inspect and modify a remote VM.

16

Tachyon [7] translates the VM sources written in JavaScript to
native code. Then, it uses special bridges for interacting with
low-level entities of the VM. However, bridges are low-level
mechanisms that only allow to call remote functions. Tachyon
uses them to initialize a new VM during the bootstrap
process. In contrast to a reflective VM, Tachyon was not
designed with VM-level reflection as a goal and it does
not provide advanced run-time adaptation capabilities of
VM-level entities. Maxine [5] for Java, uses abstract and high-
level representations of VM-level concepts and consistently
exposes them throughout the development process. While
debugging, the Maxine inspector provides a high degree of
interactivity with the running VM at multiple abstraction
levels. However, Maxine only allows to inspect but not to
modify the VM at run time. Similarly, in the JikesRVM [4]
components can be inspected but not modified at run
time. Reflection on VM components is mainly used for the
bootstrapping of the system. In contrast, a reflective VM
focuses on providing interactivity during run time.

9.3 Dynamic Adaptations

To the best of our knowledge, Partial Behavioral Reflection
(PBR) [42] is the most complete reflective solution for sup-
porting unanticipated adaptations. PBR relies on bytecode in-
strumentation. Hence, it is restricted to adapting operational
semantics. In addition, instrumentation techniques modify
the application code and, from the VM perspective, the
original code is not distinguishable from the instrumented
code. In contrast, TruffleMATE fulfills the adaptations by
using reified VM-level components and does not modify
the application code. Concretely, TruffleMATE focuses on
VM-level reflection while PBR depends on application-level
reflection for (simulating) the low-level adaptations.

The Iguana/J environment [30] has capabilities similar
to PBR. However, it provides these capabilities with a MOP
similar to ours in terms of behavioral adaptive capabilities.
Similar to CLOS, Iguana/J provides intercession handlers
for method interceptions, reading, and writing of fields.
TruffleMATE allows to intercept a broader set of operations
such as the complete operational semantics of the system
and provides structural VM-level reflective capabilities.

Aspect-oriented programming [28] (AOP) is used to
introduce changes into software systems with focus on
crosscutting concerns rather than on reflecting on the system.
Most AOP implementations provide a domain specific
language (DSL) to specify a set of points in the program (join
points) at which a feature orthogonal to the application logic
such as logging, caching, and persistence must be executed.
An aspect weaver embeds the so-called cross-cutting concerns
(advices) at the corresponding joinpoints either statically or at
run time into the program.

Context-oriented programming (COP) is a paradigm
specially designed for applications with behavioral variations
depending on contextual information [29]. In COP terms,
context means any computationally accessible information.
Consequently, COP provides abstractions for expressing
contextual conditions. In the absence of such constructs,
application logic would become tangled with the needed
adaptations. COP could be considered as a specialized form
of AOP introducing context-aware aspects.

To handle scenarios such as those included in our run-
ning examples, AOP and COP frequently required indirect
mechanisms of adaptation. The reason is mainly that they
were not conceived as general solutions for unanticipated
software adaptation. As a consequence, they do not generally
provide means to directly customize low-level features. In
contrast, they promote mechanisms (e.g., pointcut languages,
layers) for supporting their original goals, and thus, biased
the user to think in terms of intercepting execution points and
redirecting their execution flow. While AOP can approach
the profiling scenario directly, it can neither express direct
adaptations for the read-only protection scenario nor the two
structural adaptation cases.

To support run-time adaptation and fine-grained scoping,
AOP implementations use dynamic weaving. To do so
efficiently they utilize dedicated VM support [61], [62], [63].
Concretely, the VM must provide some kind of intercession
handling. For instance Steamloom [61] does so by providing
a dedicated compiler for instrumenting bytecodes. This
enables Steamloom to install intercession handlers, at run
time, only in the locations that actually need the adaption.
From this perspective, the ubiquitous intercession handling
of a reflective VM generalizes AOP’s intercession handling.
Nevertheless, the preliminary evaluation suggests that our
more general approach could also result in negligible over-
heads (see Section 7.5).

Cazzola et al. [70] recently proposed to move the evolu-
tion from the application level to the programming language
level to support direct dynamic adaptations. They use Never-
lang [71], a micro-language framework for modular language
development. Their goals are similar to ours: separation of
concerns, maintainability, and reuse of adaptations. However,
in contrast to a reflective VM their adaptation abstractions are
at the programming language and not the VM level. On the
one hand, the approach enables adaptations that a reflective
VM does not provide. This includes the direct customization
of arithmetic operations or control flow operators, such as
loop, even for single instances. On the other hand, it does
not enable developers to directly customize object layouts,
execution stack, memory organization, or other VM-level
aspect. Consequently, the approaches are complementary.
Moreover, since Neverlang is based on micro operations
described using grammars, grammars are also the means to
provide the adaptations. In contrast, a reflective VM is based
on MOPs and stays within the application’s programming
language syntax and semantics.

10 CONCLUSIONS

In this paper we introduce the concept of fully reflective
execution environments and discuss the main properties
they should fulfill.

In order to validate the feasibility and to understand
the overall potential of a fully reflective execution environ-
ment, we designed and implemented TruffleMATE: a fully
functional Smalltalk VM featuring a dynamic compiler and
advanced reflective capabilities at the VM level. TruffleMATE
enables the introspection and intercession of behavioral and
structural VM concepts at run time. The degree of reflection
reached by TruffleMATE is a good indicator for the feasibility
of VMs with extensive reflective capabilities.

17

Moreover, our empirical evaluation assessed the poten-
tial of TruffleMATE for handling a series of unanticipated
fine-grained adaptation scenarios on the fly. We compared
solutions based on TruffleMATE against alternative solutions
considering a wide range of qualitative aspects. The results
showed that TruffleMATE can handle a series of heteroge-
neous scenarios covering structural and behavioral low-level
adaptive requirements by using run-time reflection. In all
the cases, the solution in TruffleMATE consisted of few lines
of code (between 20-45) and presented benefits over the
existing alternatives. Furthermore, we are not aware of any
other platform capable of dealing with all scenarios.

In addition to its potential for dealing with concrete
software problems, we think that the provided evidence
suggests that reflective VMs open new avenues for software
development that needs to deal with evolution at run time.
Moreover, the first performance indications are encouraging,
but more work is needed to further improve the performance
when the full power of reflective VMs is used.

Future Work. TruffleMATE does not reify the Memory
component and, thus, we can neither directly adapt the
memory management nor the garbage collector. We plan to
explore the impact of providing reflective capabilities to this
component. We also plan to provide more extensive reflective
capabilities to the Executor, e.g., to support a trace-based
execution schema that could provide history-aware semantics
to the applications.

In general, fundamental limits of VM-level reflection, both
in terms of feasibility and performance impacts, still need to
be explored further. Questions that need to be addressed are,
for instance, what the minimal core of a reflective VM is that
cannot be reified, or more practically, what the consequences
of reifying specific VM components and operations are.
With incorporating more reflective capabilities, we expect to
encounter new challenges like stronger causal connections
or different performance issues. Some of them may require
modeling reflection in new or different ways. For instance,
the ideas implemented in high-level low-level programming
frameworks such as Benzo [72] and org.vmmagic [73] may be
suitable for supporting reflective capabilities for the memory
component.

To assess the impact of reflective VMs in more detail, a
set of quantitative metrics is needed to precisely distinguish
the reflectivity of different solutions incorporating VM-level
reflection. Classical models of reflection like Smith’s et al. [27]
and the denotational semantics presented by Wand and
Friedman [74] do not distinguish reflective capabilities at
a fine-grained level. Thus, a novel formalization model to
fulfill our requirements is needed. User studies to investigate
how developers manage to handle the case studies with the
different approaches could provide further insights into the
utility of reflective VMs and whether they live up to the high
expectations we have in them.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers, as well
as Laurence Tratt, for their constructive feedback which
contributed to significantly improve this paper. This work
was partially supported by the projects, ANPCYT PICT 2013-
2341, ANPCYT PICT 2014-1656, ANPCYT PICT 2015-1718,

UBA-CYT 384, CONICET PIP 2014/16 No11220130100688CO,
CONICET PIP 2015/17 No11220150100931CO. Stefan Marr
was partially funded by a grant of the Austrian Science
Fund (FWF), project number I2491-N31 while working at the
Johannes Kepler University Linz, Austria.

REFERENCES

[1] T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[2] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, and M. Mattone,
“Virtualization support for dynamic core library update,” in
Onward! 2015, 2015. [Online]. Available: http://rmod.inria.fr/
archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf

[3] L. Baresi and C. Ghezzi, “The disappearing boundary
between development-time and run-time,” in Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. ACM, 2010, pp. 17–22. [Online]. Available:
http://doi.acm.org/10.1145/1882362.1882367

[4] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar, “The Jikes
Research Virtual Machine Project: Building an Open-source
Research Community,” IBM Syst. J., vol. 44, no. 2, pp. 399–417, Jan.
2005. [Online]. Available: http://dx.doi.org/10.1147/sj.442.0399

[5] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan,
L. Daynès, and D. Simon, “Maxine: An approachable virtual
machine for, and in, Java,” ACM Trans. Archit. Code Optim.,
vol. 9, no. 4, pp. 30:1–30:24, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2400682.2400689

[6] D. Ungar, A. Spitz, and A. Ausch, “Constructing a metacircular
virtual machine in an exploratory programming environment,”
in Companion to the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’05. ACM, 2005, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/1094855.1094865

[7] M. Chevalier-Boisvert, E. Lavoie, M. Feeley, and B. Dufour,
“Bootstrapping a Self-hosted Research Virtual Machine for
JavaScript: An Experience Report,” in Proceedings of the 7th
Symposium on Dynamic Languages, ser. DLS ’11. ACM, 2011, pp.
61–72. [Online]. Available: http://doi.acm.org/10.1145/2047849.
2047858

[8] G. Chari, D. Garbervetsky, S. Marr, and S. Ducasse, “Towards
fully reflective environments,” in 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!), ser. Onward! 2015. New
York, NY, USA: ACM, 2015, pp. 240–253. [Online]. Available:
http://doi.acm.org/10.1145/2814228.2814241

[9] G. Kiczales and J. D. Rivieres, The Art of the Metaobject Protocol.
MIT Press, 1991.

[10] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer, “Self-optimizing ast interpreters,” in DLS. ACM,
2012, pp. 73–82. [Online]. Available: http://doi.acm.org/10.1145/
2384577.2384587

[11] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kie, un, and
M. D. Ernst, “Object and Reference Immutability Using Java
Generics,” in Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ser.
ESEC-FSE ’07. ACM, 2007, pp. 75–84. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287637

[12] M. S. Tschantz and M. D. Ernst, “Javari: Adding Reference
Immutability to Java,” in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’05. ACM, 2005, pp.
211–230. [Online]. Available: http://doi.acm.org/10.1145/1094811.
1094828

[13] D. Holten, B. Cornelissen, and J. J. van Wijk, “Trace visualization
using hierarchical edge bundles and massive sequence views,” 2013
First IEEE Working Conference on Software Visualization (VISSOFT),
vol. 0, pp. 47–54, 2007.

[14] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making
software failures reproducible by preserving object states,”
in Proceedings of the 22Nd European Conference on Object-
Oriented Programming, ser. ECOOP ’08. Berlin, Heidelberg:

http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://doi.acm.org/10.1145/1882362.1882367
http://dx.doi.org/10.1147/sj.442.0399
http://doi.acm.org/10.1145/2400682.2400689
http://doi.acm.org/10.1145/1094855.1094865
http://doi.acm.org/10.1145/2047849.2047858
http://doi.acm.org/10.1145/2047849.2047858
http://doi.acm.org/10.1145/2814228.2814241
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/1287624.1287637
http://doi.acm.org/10.1145/1094811.1094828
http://doi.acm.org/10.1145/1094811.1094828

18

Springer-Verlag, 2008, pp. 542–565. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-70592-5_23

[15] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic
Metrics for Java,” in Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing, Systems,
Languages, and Applications, ser. OOPSLA ’03. New York,
NY, USA: ACM, 2003, pp. 149–168. [Online]. Available:
http://doi.acm.org/10.1145/949305.949320

[16] D. Rothlisberger, M. Harry, W. Binder, P. Moret, D. Ansaloni,
A. Villazon, and O. Nierstrasz, “Exploiting Dynamic Information
in IDEs Improves Speed and Correctness of Software Maintenance
Tasks,” IEEE Trans. Softw. Eng., vol. 38, no. 3, pp. 579–591, May
2012. [Online]. Available: http://dx.doi.org/10.1109/TSE.2011.42

[17] J. Whaley, “A Portable Sampling-based Profiler for Java Virtual
Machines,” in Proceedings of the ACM 2000 Conference on Java
Grande, ser. JAVA ’00. New York, NY, USA: ACM, 2000, pp. 78–87.
[Online]. Available: http://doi.acm.org/10.1145/337449.337483

[18] C. Chambers, D. Ungar, and E. Lee, “An Efficient Implementation
of SELF a Dynamically-Typed Object-Oriented Language Based on
Prototypes,” in OOPSLA. ACM, October 1989, pp. 49–70.

[19] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and H. Mössen-
böck, “An object storage model for the truffle language implemen-
tation framework,” in PPPJ. ACM, 2014, pp. 133–144.

[20] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel, and
M. Suen, “Read-only execution for dynamic languages,” in
Proceedings of the 48th International Conference on Objects, Models,
Components, Patterns, ser. TOOLS’10. Springer-Verlag, 2010, pp.
117–136. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1894386.1894393

[21] T. Mattis, J. Henning, P. Rein, R. Hirschfeld, and M. Appeltauer,
“Columnar objects: Improving the performance of analytical
applications,” in 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!), ser. Onward! 2015. New York, NY,
USA: ACM, 2015, pp. 197–210. [Online]. Available: http:
//doi.acm.org/10.1145/2814228.2814230

[22] T. Verwaest, C. Bruni, M. Lungu, and O. Nierstrasz, “Flexible
object layouts: Enabling lightweight language extensions by
intercepting slot access,” in Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and
applications, ser. OOPSLA ’11. ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2048066.2048138

[23] G. Chari, D. Garbervetsky, and S. Marr, “Fully-reflective VMs for
Ruling Software Adaptation,” in Proceedings of the 39th International
Conference on Software Engineering Companion, ser. ICSE-C ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 229–231. [Online].
Available: https://doi.org/10.1109/ICSE-C.2017.144

[24] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
in Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, ser. PLDI ’97. New
York, NY, USA: ACM, 1997, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/258915.258924

[25] H. Plattner, “A common database approach for oltp and olap
using an in-memory column database,” in Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’09. New York, NY, USA: ACM, 2009, pp. 1–2. [Online].
Available: http://doi.acm.org/10.1145/1559845.1559846

[26] ——, A Course in In-Memory Data Management: The Inner Mechanics of
In-Memory Databases. Springer Publishing Company, Incorporated,
2013.

[27] B. C. Smith, “Reflection and Semantics in LISP,” in Proceedings
of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ser. POPL ’84. ACM, 1984, pp. 23–35.
[Online]. Available: http://doi.acm.org/10.1145/800017.800513

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, Aspect-oriented programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–242. [Online].
Available: https://doi.org/10.1007/BFb0053381

[29] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented
programming,” Journal of Object Technology, vol. 7, no. 3, 2008.

[30] B. Redmond and V. Cahill, “Supporting unanticipated dynamic
adaptation of application behaviour,” in Proceedings of the 16th
European Conference on Object-Oriented Programming, ser. ECOOP
’02. Springer-Verlag, 2002, pp. 205–230. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646159.680029

[31] D. Röthlisberger, M. Denker, and E. Tanter, “Unanticipated partial
behavioral reflection: Adapting applications at runtime,” Comput.
Lang. Syst. Struct., vol. 34, no. 2-3, pp. 46–65, Jul. 2008. [Online].
Available: http://dx.doi.org/10.1016/j.cl.2007.05.001

[32] M. Haupt, C. Gibbs, B. Adams, S. Timbermont, Y. Coady, and
R. Hirschfeld, “Disentangling virtual machine architecture,” Soft-
ware, IET, June 2009.

[33] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and O. Niestrasz,
“Pinocchio: Bringing reflection to life with first-class interpreters,”
in Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’10. ACM, 2010, pp. 774–789. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869522

[34] P. Maes, “Concepts and experiments in computational reflection,”
in Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, ser. OOPSLA ’87. ACM, 1987, pp. 147–
155. [Online]. Available: http://doi.acm.org/10.1145/38765.38821

[35] E. Tanter, “Reflection and open implementations,” DCC,
University of Chile, Tech. Rep., 2009. [Online]. Available:
http://www.dcc.uchile.cl/TR/2009/TR_DCC-20091123-013.pdf

[36] J.-P. Briot and P. Cointe, “Programming with Explicit Metaclasses
in Smalltalk-80,” in Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications, ser. OOPSLA ’89.
New York, NY, USA: ACM, 1989, pp. 419–431. [Online]. Available:
http://doi.acm.org/10.1145/74877.74921

[37] G. Attardi, C. Bonini, M. R. Boscotrecase, T. Flagella, and M. Gas-
pari, “Metalevel Programming in CLOS.” in ECOOP, vol. 89, 1989,
pp. 243–256.

[38] P. Cointe, “Metaclasses Are First Class: The ObjVlisp Model,”
in Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, ser. OOPSLA ’87. New York,
NY, USA: ACM, 1987, pp. 156–162. [Online]. Available:
http://doi.acm.org/10.1145/38765.38822

[39] J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE Press, 2012, pp. 485–495. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337280

[40] J. Ressia, L. Renggli, T. Gîrba, and O. Nierstrasz, “O.: Run-time
evolution through explicit meta-objects,” in In: Proceedings of the
5th Workshop on Models@run.time at the ACM/IEEE 13th International
Conference on Model Driven Engineering Languages and Systems
(MODELS, 2010, pp. 37–48.

[41] G. Bracha and D. Ungar, “Mirrors: Design principles for
meta-level facilities of object-oriented programming languages,”
in Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’04. ACM, 2004, pp. 331–344. [Online]. Available:
http://doi.acm.org/10.1145/1028976.1029004

[42] E. Tanter, J. Noyé, D. Caromel, and P. Cointe, “Partial behavioral
reflection: Spatial and temporal selection of reification,” in
Proceedings of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programing, Systems, Languages, and Applications,
ser. OOPSLA ’03. ACM, 2003, pp. 27–46. [Online]. Available:
http://doi.acm.org/10.1145/949305.949309

[43] S. Marr, C. Seaton, and S. Ducasse, “Zero-overhead
metaprogramming: Reflection and metaobject protocols fast
and without compromises,” in Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2015. ACM, 2015, pp. 545–554. [Online].
Available: http://doi.acm.org/10.1145/2737924.2737963

[44] G. Chari, D. Garbervetsky, and S. Marr, “Building efficient and
highly run-time adaptable virtual machines,” in Proceedings of
the 12th Symposium on Dynamic Languages, ser. DLS 2016. New
York, NY, USA: ACM, 2016, pp. 60–71. [Online]. Available:
http://doi.acm.org/10.1145/2989225.2989234

[45] B. Meyer, Object-oriented Software Construction. Prentice-Hall, Inc.,
1997.

[46] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its
Implementation. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1983.

[47] J. McAffer, “Meta-level Programming with CodA,” in Proceedings
of the 9th European Conference on Object-Oriented Programming,
ser. ECOOP ’95. London, UK, UK: Springer-Verlag, 1995, pp.
190–214. [Online]. Available: http://dl.acm.org/citation.cfm?id=
646153.679534

[48] S. Chiba, G. Kiczales, and J. Lamping, “Avoiding confusion in
metacircularity: The Meta-Helix,” in Proceedings of the Second JSSST

http://dx.doi.org/10.1007/978-3-540-70592-5_23
http://dx.doi.org/10.1007/978-3-540-70592-5_23
http://doi.acm.org/10.1145/949305.949320
http://dx.doi.org/10.1109/TSE.2011.42
http://doi.acm.org/10.1145/337449.337483
http://dl.acm.org/citation.cfm?id=1894386.1894393
http://dl.acm.org/citation.cfm?id=1894386.1894393
http://doi.acm.org/10.1145/2814228.2814230
http://doi.acm.org/10.1145/2814228.2814230
http://doi.acm.org/10.1145/2048066.2048138
https://doi.org/10.1109/ICSE-C.2017.144
http://doi.acm.org/10.1145/258915.258924
http://doi.acm.org/10.1145/1559845.1559846
http://doi.acm.org/10.1145/800017.800513
https://doi.org/10.1007/BFb0053381
http://dl.acm.org/citation.cfm?id=646159.680029
http://dx.doi.org/10.1016/j.cl.2007.05.001
http://doi.acm.org/10.1145/1869459.1869522
http://doi.acm.org/10.1145/38765.38821
http://www.dcc.uchile.cl/TR/2009/TR_DCC-20091123-013.pdf
http://doi.acm.org/10.1145/74877.74921
http://doi.acm.org/10.1145/38765.38822
http://dl.acm.org/citation.cfm?id=2337223.2337280
http://doi.acm.org/10.1145/1028976.1029004
http://doi.acm.org/10.1145/949305.949309
http://doi.acm.org/10.1145/2737924.2737963
http://doi.acm.org/10.1145/2989225.2989234
http://dl.acm.org/citation.cfm?id=646153.679534
http://dl.acm.org/citation.cfm?id=646153.679534

19

International Symposium on Object Technologies for Advanced Software,
ser. ISOTAS ’96. Springer-Verlag, 1996, pp. 157–172. [Online].
Available: http://portal.acm.org/citation.cfm?id=646898.756984

[49] M. Denker, M. Suen, and S. Ducasse, The Meta in Meta-object
Architectures. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 218–237. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-69824-1_13

[50] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko, “One VM
to Rule Them All,” in Onward! ACM, 2013, pp. 187–204.

[51] S. Marr and S. Ducasse, “Tracing vs. partial evaluation: Comparing
meta-compilation approaches for self-optimizing interpreters,” in
OOPSLA. ACM, 2015, pp. 821–839.

[52] S. Marr, B. Daloze, and H. Mössenböck, “Cross-Language Compiler
Benchmarking—Are We Fast Yet?” in Proceedings of the 12th
Symposium on Dynamic Languages, ser. DLS’16. ACM, 2016.

[53] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, and M. Grimmer, “Practical partial
evaluation for high-performance dynamic language runtimes,” in
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2017. New
York, NY, USA: ACM, 2017, pp. 662–676. [Online]. Available:
http://doi.acm.org/10.1145/3062341.3062381

[54] M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr,
A. Bergmann, A. Heise, M. Kleine, and R. Krahn, “The
SOM Family: Virtual Machines for Teaching and Research,”
in ITiCSE. ACM, 2010, pp. 18–22. [Online]. Available: http:
//www.hpi.uni-potsdam.de/hirschfeld/publications/media/
HauptHirschfeldPapeGabrysiakMarrBergmannHeiseKleineKrahn_
2010_TheSomFamily_AcmDL.pdf

[55] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back
to the Future: The Story of Squeak, a Practical Smalltalk Written
in Itself,” in Proceedings of the 12th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’97. ACM, 1997, pp. 318–326. [Online]. Available:
http://doi.acm.org/10.1145/263698.263754

[56] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker, Pharo by Example. Square Bracket Associates, 2009.
[Online]. Available: http://pharobyexample.org

[57] E. Wernli, O. Nierstrasz, C. Teruel, and S. Ducasse, “Delegation
proxies: The power of propagation,” in Proceedings of the 13th
International Conference on Modularity, ser. MODULARITY ’14.
ACM, 2014, pp. 1–12. [Online]. Available: http://doi.acm.org/10.
1145/2577080.2577081

[58] M. Dmitriev, “Design of JFluid: A Profiling Technology and Tool
Based on Dynamic Bytecode Instrumentation,” Mountain View,
CA, USA, Tech. Rep., 2003.

[59] A. Bergel, F. Bañados, R. Robbes, and D. Röthlisberger, “Spy:
A flexible code profiling framework,” Comput. Lang. Syst.
Struct., vol. 38, no. 1, pp. 16–28, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.cl.2011.10.002

[60] A. Villazón, W. Binder, P. Moret, and D. Ansaloni, “Comprehensive
Aspect Weaving for Java,” Sci. Comput. Program., vol. 76,
no. 11, pp. 1015–1036, Nov. 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.scico.2010.04.007

[61] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann, “Virtual
Machine Support for Dynamic Join Points,” in Proceedings of the 3rd
International Conference on Aspect-oriented Software Development, ser.
AOSD ’04. New York, NY, USA: ACM, 2004, pp. 83–92. [Online].
Available: http://doi.acm.org/10.1145/976270.976282

[62] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, An Overview
of CaesarJ. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
135–173. [Online]. Available: https://doi.org/10.1007/11687061_5

[63] R. Dyer and H. Rajan, “Nu: A Dynamic Aspect-oriented
Intermediate Language Model and Virtual Machine for Flexible
Runtime Adaptation,” in Proceedings of the 7th International
Conference on Aspect-oriented Software Development, ser. AOSD ’08.
New York, NY, USA: ACM, 2008, pp. 191–202. [Online]. Available:
http://doi.acm.org/10.1145/1353482.1353505

[64] B. Dufour, L. Hendren, and C. Verbrugge, “*J: A Tool for
Dynamic Analysis of Java Programs,” in Companion of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’03. New
York, NY, USA: ACM, 2003, pp. 306–307. [Online]. Available:
http://doi.acm.org/10.1145/949344.949425

[65] M. Arnold and D. Grove, “Collecting and exploiting high-accuracy
call graph profiles in virtual machines,” in Proceedings of the

International Symposium on Code Generation and Optimization, ser.
CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
51–62. [Online]. Available: http://dx.doi.org/10.1109/CGO.2005.9

[66] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi,
“Accurate, efficient, and adaptive calling context profiling,” in
Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’06. New
York, NY, USA: ACM, 2006, pp. 263–271. [Online]. Available:
http://doi.acm.org/10.1145/1133981.1134012

[67] M. Hicks and S. Nettles, “Dynamic software updating,” ACM
Trans. Program. Lang. Syst., vol. 27, no. 6, pp. 1049–1096, Nov. 2005.
[Online]. Available: http://doi.acm.org/10.1145/1108970.1108971

[68] T. Kalibera and R. Jones, “Rigorous benchmarking in
reasonable time,” in Proceedings of the 2013 International
Symposium on Memory Management, ser. ISMM ’13. New
York, NY, USA: ACM, 2013, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/2464157.2464160

[69] K. Asai, “Reflection in direct style,” in Proceedings of the 10th ACM
International Conference on Generative Programming and Component
Engineering, ser. GPCE ’11. ACM, 2011, pp. 97–106. [Online].
Available: http://doi.acm.org/10.1145/2047862.2047882

[70] W. Cazzola, R. Chitchyan, A. Rashid, and A. Shaqiri, “µ-DSU: A
Micro-Language Based Approach to Dynamic Software Updating,”
Computer Languages, Systems & Structures, 2017.

[71] E. Vacchi and W. Cazzola, “Neverlang: A framework for
feature-oriented language development,” Computer Languages,
Systems & Structures, vol. 43, pp. 1–40, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.cl.2015.02.001

[72] C. Bruni, S. Ducasse, I. Stasenko, and G. Chari, “Benzo:
Reflective Glue for Low-level Programming,” in International
Workshop on Smalltalk Technologies, Aug. 2014. [Online]. Available:
https://hal.inria.fr/hal-01060551

[73] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove,
J. E. B. Moss, and S. I. Salishev, “Demystifying magic: High-level
low-level programming,” in Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’09. ACM, 2009, pp. 81–90. [Online].
Available: http://doi.acm.org/10.1145/1508293.1508305

[74] M. Wand and D. P. Friedman, “The mystery of the tower revealed:
A non-reflective description of the reflective tower,” in Proceedings
of the 1986 ACM Conference on LISP and Functional Programming,
ser. LFP ’86. ACM, 1986, pp. 298–307. [Online]. Available:
http://doi.acm.org/10.1145/319838.319871

Guido Chari is a doctoral candidate in computer
science at the Department of Computing, FCEyN,
Universidad de Buenos Aires, where he is also a
teaching assistant. His research interests include
programming languages design and implemen-
tation. In particular, providing tools and methods
to facilitate program development, evolution, and
maintenance.

Diego Garbervetsky holds a Professorship at
the Department of Computing, FCEyN, Univer-
sidad de Buenos Aires and he is a CONICET
researcher working in the area of Software Engi-
neering. His research interests are program anal-
ysis and optimization, focused on the inference
of quantitative and qualitative properties of pro-
grams. He has participated in several European
projects and also been awarded by Microsoft
Research and IBM Eclipse Innovation program.

http://portal.acm.org/citation.cfm?id=646898.756984
http://dx.doi.org/10.1007/978-3-540-69824-1_13
http://dx.doi.org/10.1007/978-3-540-69824-1_13
http://doi.acm.org/10.1145/3062341.3062381
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/HauptHirschfeldPapeGabrysiakMarrBergmannHeiseKleineKrahn_2010_TheSomFamily_AcmDL.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/HauptHirschfeldPapeGabrysiakMarrBergmannHeiseKleineKrahn_2010_TheSomFamily_AcmDL.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/HauptHirschfeldPapeGabrysiakMarrBergmannHeiseKleineKrahn_2010_TheSomFamily_AcmDL.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/HauptHirschfeldPapeGabrysiakMarrBergmannHeiseKleineKrahn_2010_TheSomFamily_AcmDL.pdf
http://doi.acm.org/10.1145/263698.263754
http://pharobyexample.org
http://doi.acm.org/10.1145/2577080.2577081
http://doi.acm.org/10.1145/2577080.2577081
http://dx.doi.org/10.1016/j.cl.2011.10.002
http://dx.doi.org/10.1016/j.scico.2010.04.007
http://dx.doi.org/10.1016/j.scico.2010.04.007
http://doi.acm.org/10.1145/976270.976282
https://doi.org/10.1007/11687061_5
http://doi.acm.org/10.1145/1353482.1353505
http://doi.acm.org/10.1145/949344.949425
http://dx.doi.org/10.1109/CGO.2005.9
http://doi.acm.org/10.1145/1133981.1134012
http://doi.acm.org/10.1145/1108970.1108971
http://doi.acm.org/10.1145/2464157.2464160
http://doi.acm.org/10.1145/2047862.2047882
http://dx.doi.org/10.1016/j.cl.2015.02.001
https://hal.inria.fr/hal-01060551
http://doi.acm.org/10.1145/1508293.1508305
http://doi.acm.org/10.1145/319838.319871

20

Stefan Marr is a lecturer at the University of Kent.
He investigates how to safely combine concur-
rency models and how to implement complex
language semantics efficiently. In his PhD thesis,
he proposed an ownership-based metaobject
protocol as a unifying substrate for concurrency
support in multi-language VMs.

Stéphane Ducasse is a research director at
INRIA Lille leading the RMoD Team. During 10
years, he co-directed with Oscar Nierstrasz the
Software Composition Group. He is also pres-
ident of ESUG and co-founded Synectique, a
company that offers specific tools for Software
analysis.

	1 Introduction
	2 Motivation
	2.1 Running Example
	2.2 Direct and Indirect Adaptations
	2.3 Approaching the Adaptive Scenarios
	2.3.1 Contemporary Reflective Systems
	2.3.2 Reflective Capabilities in Virtual Machines

	2.4 Problem Statement and Hypothesis of Work

	3 Background
	3.1 Execution Environments
	3.2 Reflective Architectures
	3.2.1 Reflective Dimensions
	3.2.2 Application-level vs. VM-level Reflection
	3.2.3 Reflective Challenges

	4 Fully Reflective Execution Environments
	4.1 Main Characteristics
	4.2 Mate: A Reference Architecture

	5 A VM-Level MOP
	5.1 How to Use the MOP
	5.2 Characteristics of MATE's MOP
	5.3 VM-level Behavioral Reflection
	5.3.1 VM-level Structural Reflection

	6 TruffleMATE
	6.1 Truffle and Graal
	6.2 SOM and TruffleSOM
	6.3 From TruffleSOM to TruffleMATE

	7 Evaluation of TruffleMATE's Adaptation Capabilities
	7.1 Evaluation Criteria
	7.2 Extending Language Features
	7.2.1 Per-Object Immutability
	7.2.2 Reference Immutability
	7.2.3 Profiling Applications Using Calling Context Trees

	7.3 Extending Data Representation
	7.3.1 Fast Aggregation with Columnar Objects
	7.3.2 Efficient Representation of Sparse Objects

	7.4 Partial Behavioral Reflection with TruffleMate
	7.5 Performance
	7.5.1 Experimental Setup
	7.5.2 Inherent Performance
	7.5.3 Immutable References

	8 Discussion
	9 Related Work
	9.1 Reflective Solutions
	9.2 Virtual Machines
	9.3 Dynamic Adaptations

	10 Conclusions
	References
	Biographies
	Guido Chari
	Diego Garbervetsky
	Stefan Marr
	Stéphane Ducasse

