
Campo, Vivaldo L, Quintanilla, Jorge and Hooley, Chris (2009) Possible 
critical behavior driven by the confining potential in optical lattices with 
ultra-cold fermions.  Physica B: Condensed Matter, 404 (19). pp. 3328-3331. 
ISSN 0921-4526. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/25603/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.physb.2009.07.089

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/25603/
https://doi.org/10.1016/j.physb.2009.07.089
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


ARTICLE IN PRESS

Physica B 404 (2009) 3328–3331
Contents lists available at ScienceDirect
Physica B
0921-45

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/physb
Possible critical behavior driven by the confining potential in optical lattices
with ultra-cold fermions
V.L. Campo Jr.a,�, J. Quintanilla b, C. Hooley c

a Departamento de F́ısica, Universidade Federal de S~ao Carlos, 13590-905 S ~ao Carlos, SP, Brazil
b ISIS Spallation Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
c Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
a r t i c l e i n f o

PACS:

71.10.Fd

71.27.+a

37.10.Jk

Keywords:

Hubbard model

Critical behavior

Confining potential

Ultra-cold fermions
26/$ - see front matter & 2009 Elsevier B.V. A

016/j.physb.2009.07.089

esponding author.

ail address: vivaldo.leiria@gmail.com (V.L. Ca
a b s t r a c t

A recent paper [V.L. Campo, et al., Phys. Rev. Lett. 99 (2007) 240403] has proposed a two-parameter

scaling method to determine the phase diagram of the fermionic Hubbard model from optical lattice

experiments. Motivated by this proposal, we investigate in more detail the behavior of the ground-state

energy per site as a function of trap size (L) and confining potential (VðxÞ ¼ tðx=LÞa) in the one-

dimensional case. Using the BALDA–DFT method, we find signatures of critical behavior as a-1.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Hubbard model was proposed in the 1960s as a simplified
model of a system of correlated fermions, capturing the competi-
tion between localisation due to strong interparticle repulsion and
itinerant behavior due to intersite hopping. It remains a model of
central importance in condensed matter physics; but despite this
fact, and decades of investigative effort, the model in dimensions
d41 remains unsolved, and its phase diagram is still a subject of
controversy.

Recently, a new line of attack has been proposed [1]: to
determine the phase diagram of the Hubbard model not using
theory, but using cold-atom experiments which—unlike tradi-
tional condensed matter systems—should be essentially perfectly
described by the Hubbard Hamiltonian. This is for two reasons.
Firstly, the lattice in the cold-atom case is provided by a laser
standing wave (or ‘optical lattice’), which can be made almost
perfectly periodic and sinusoidal. Secondly, the interaction
between the neutral atoms should be well described by a contact
interaction of the Hubbard form [2,3]. Other advantages of such
experiments include the following: the inter-atomic interaction
strength and hopping amplitude in these systems can be tuned
over a wide range; the achievable particle numbers are much
greater than those available in current computer-based simula-
tions of fermionic systems; and the total energy (for example) is
an easily measurable quantity.
ll rights reserved.

mpo Jr.).
However, a major difference between the solid-state and cold-
atom realisations of the Hubbard model is the nature of the
particles’ confinement. In the solid-state case, it is of the ‘hard-
wall’ type, where the system is homogeneous except for a very
high potential step at its edges; in the cold-atom case, the
confining potential arises from an external electromagnetic field,
and is almost always harmonic, leaving no residue of translational
invariance. How to extract the phase diagram of the homogeneous
model from these inhomogeneous systems is discussed in Ref. [4],
where a two-parameter scaling method is proposed, with the two
parameters L and a representing respectively the size and shape of
the confining potential. The method involves considering different
such shapes (i.e. different values of a), and determining for each of
them a thermodynamic (L-1) limit of some intensive quantity
such as the energy per site. Then one analyzes the dependence of
that quantity on the shape of the confining potential and
extrapolates (in a) to the homogeneous (‘hard-wall’) limit.

It has been empirically observed [4], at least in the one-
dimensional case, that the rate of convergence to the thermodynamic
limit is dependent on the shape of the confining potential. Here, we
address that question in more detail. In the course of so doing, we find
that the behavior during the second extrapolation, i.e. the extrapola-
tion in the shape of the potential towards the homogeneous limit,
displays signatures of critical behavior.

2. Model, and previously published results

We consider the following inhomogeneous one-dimensional
Hubbard model:

www.elsevier.com/locate/physb
dx.doi.org/10.1016/j.physb.2009.07.089
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Fig. 2. Dependence of total energy on system size for different trap exponents,

a ¼ 2 (þ), 4 (�), 6 (&), 8 (’) and 1 (�). The filling is fixed at f ¼ 1. We show

results for non-interacting fermions (U ¼ 0) on the left and for interacting

fermions (U ¼ 4t) on the right. Notice that for finite values of a the thermodynamic

limit is attained with smaller system sizes than in the a ¼ 1 case. Insets: the same

quantity in the thermodynamic limit plotted against a�1. Figure reproduced from

Ref. [4].
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j;s creates a fermion with z-component of spin s at site j, t

measures the hopping integral between neighboring sites, U is the
strength of the local interaction between two fermions of opposite
spins, n̂j;s ¼ ĉ

y

j;sĉ j;s is the number operator for spin s at site j, and
VðxÞ is the external potential rendering the model inhomoge-
neous. The position of the site j is xj ¼ ja, where a is the lattice
parameter of the chain, and j takes any integer value. The external
potential assumes the general form

VðxÞ ¼ t
x

L

��� ���a; ð2Þ

with a40, and therefore confines the fermions to a region of size
�2L, or more precisely, makes the probability of finding a fermion
at x with jxjbL negligible. Accordingly, we refer to 2L as the
system size, and 2L=a as the number of sites, irrespective of the
value of a. This allows us to define an intensive quantity as the
corresponding extensive quantity divided by 2L=a. In particular,
we will be concerned here with the energy per site, Ea=2L, and
with the filling f ¼ Na=2L, where N is the number of fermions.

The above Hubbard model, and its higher dimensional
versions, can be realised with trapped ultra-cold fermionic atoms
in the presence of an optical lattice with suitable laser intensity
and wavelength (see Fig. 1). The atoms are confined by an
additional external potential whose exponent a is usually equal to
2. In optical traps with Gaussian laser beams, a suitable
superposition of two laser beams could eliminate the harmonic
part of the potential, leaving a quartic one. Such trap has already
been reported [5]. Similarly, superposing three or more laser
beams, one could generate trap potentials with exponents of 6, 8,
and so on. Despite the increasing experimental difficulties
involved in making traps with higher exponents, the two-
parameter scaling method relies on this possibility. For
applications to solid-state systems, one would be interested in
the thermodynamic limit (L-1) of the above model with a ¼ 1
(a square well potential of width 2L).

As Fig. 2 illustrates, given a finite exponent in the confining
potential, simply increasing the size of the trap, L, is not enough to
recover the homogeneous results. Traps with different exponents
a have different thermodynamic limits of energy per site, and the
same must happen with other properties. The unavoidable
confining potential with a finite exponent poses, therefore, an
intrinsic obstacle to the extraction of the homogeneous model’s
Fig. 1. Optical lattice and different confining potentials. The optical lattice with a

high amplitude defines the sites and makes it possible to describe the system by

means of a Hubbard model, which is however inhomogeneous due to the confining

potential (thick lines). As the exponent a in (2) tends to1, the confining potential

approaches the square well shape with width 2L.
phase diagram from such experiments. To overcome it, one must
make a sequence of experiments [4] with different exponents and
then extrapolate the results to get the limit a-1.
3. Method, and new results

In order to achieve a better understanding of the role the trap
exponent a plays in the dependence of the energy per site on the
system size, we investigate both non-interacting (U ¼ 0) and
interacting (Ua0) systems. While the former require only the
diagonalization of a tridiagonal matrix, the latter require methods
which can deal with the strong correlations coming from the
interactions. We choose an approach based on density-functional
theory (DFT) [6], which has been specially developed to treat the
one-dimensional inhomogeneous Hubbard model [7,8]. Its energy
functional is constructed by means of the local density approx-
imation based on the exact Bethe Ansatz solution for the
homogeneous model: this approximation is termed BALDA.
Comparisons between BALDA and quantum Monte Carlo (QMC)
results demonstrate that BALDA gives ground-state energies with
an accuracy of a few percent [8].

Our numerical simulations show that as the system size, 2L,
goes to infinity, the system’s ground-state energy per site
approaches its thermodynamic limit according to

eðLÞ ¼ a

2L
EðLÞ ¼ e1 þ

2L

x

� ��g
; ð3Þ

where e1, x, and g all depend on the trap exponent a in a way
which resembles critical behavior, with the hard-wall case
(a ¼ 1) corresponding to the critical point.

In Fig. 3, we show that the energy per site follows Eq. (3) for
both non-interacting and interacting systems. Through the fitting
we can extract the dependence of its three parameters on the trap
exponent (Fig. 4). Although Fig. 3 only displays results for filling
f ¼ 0:5, we have found similar behavior for different fillings (f ¼ 1
and 1:5) and different interaction strengths (U ¼ 4t and 8t).

Fig. 4 displays the dependence of the thermodynamic limit of
energy per site e1, the finite-size scaling exponent g, and the
length x on the trap exponent a. These graphs are reminiscent of
critical behavior, with a�1 ¼ 0 (i.e. the square-well trap) as the
critical point. While the thermodynamic-limit energy e1 is a
continuous function of a�1, the exponent g seems to be
discontinuous at a�1 ¼ 0, and the length x seems to diverge as
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Fig. 3. Dependence of De ¼ E=2L� e1 on the system size for (a) non-interacting

fermions (U ¼ 0) and (b) interacting fermions (U ¼ 2t). In both cases, numerical

data from systems with filling f ¼ 0:5 were used. For each value of the trap

exponent, a, Eq. (3) fits the data very well even for quite small systems. Similar

behavior is found for fillings f ¼ 1:0 and 1:5 and also interaction strengths U ¼ 4t

and 8t.

Fig. 4. Dependence of the thermodynamic limit of energy per site, e1 , of the finite-

size scaling exponent, g, and of the correlation length, x, on the trap exponent, a,

for non-interacting ((a)–(c)) and interacting ((d)–(f)) fermions. In the non-

interacting case, we show results for fillings f ¼ 0:5 (�) and 1:0 (3); in the

interacting (U ¼ 2t) case, we show in addition results for f ¼ 1:5 (&).
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a�1-0—lending support to our use of the term ‘correlation
length’.

Note that, in the interacting case, the finite-size scaling
exponent g is a-dependent, and furthermore seems to tend to
the non-interacting value g ¼ 2 as a�1-0. Also, in all finite-a
cases we have g41. This accords with our earlier observation that
the thermodynamic limit is more easily achieved for finite trap
exponents. The reason for this is likely to be that for finite a the
wave functions can extend beyond jxj ¼ L. Thus the system does
not end abruptly, which in turn avoids strongly perturbing the
fermionic fluid.

The apparent discontinuity in gðaÞ at a�1 ¼ 0, however,
remains surprising. In the non-interacting case, we have
performed calculations for a as large as 200. Looking carefully at
Fig. 3a, one can see that in the case a ¼ 200, the points
corresponding to smaller systems seem to follow a line whose g
is equal to 1; but as the system size becomes larger, the energy
starts to follow the line with g ¼ 2. We can, therefore, identify a
transition length, LT , and we expect LT to become larger and larger
as the trap exponent is increased, diverging when a�1-0. This
implies a relation between LT and the correlation length x, though
additional computations with larger systems are necessary to
determine its nature.

The dependence on filling fraction, f, is also instructive. The
finite-size scaling exponent g and the correlation length x do
depend on f; however, the plots indicate that this dependence
disappears as we approach the critical point a�1 ¼ 0. This is
exactly what we would expect in a critical scenario: the critical
point would be described only by its universality class, which
would be independent of a parameter like the filling fraction. In
particular, the slopes in Figs. 4c and f are essentially the same for
the different fillings and give us directly the critical exponent n
associated to the correlation length. We obtain n�0:51 for non-
interacting fermions and n�0:70 for interacting fermions. We
must emphasise, however, that this latter is a rough estimate only.
Computations with larger systems will be necessary to determine
the true behavior of interacting fermions near the critical point,
even if the BALDA method is reliable in such extreme cases.
4. Conclusions

In conclusion, we have considered the inhomogeneous one-
dimensional Hubbard model, studying the evolution of the
ground-state energy per site towards its thermodynamic limit as
the system size is increased. Looking at the role played by the trap
exponent, we have found an apparently critical behavior, which
still needs more detailed characterization. While the results for
non-interacting fermions are exact, the results for interacting
fermions were obtained within the BALDA approximation.

Since the observed critical behavior has a geometrical origin,
we expect that such behavior must happen independently of the
interaction strength. Our treatment using BALDA can be inter-
preted as a mean field calculation, which is able to capture the
critical behavior but gives inaccurate results for critical exponents,
for example. To overcome this methodological limitation, one
should adopt more accurate computational methods, such as QMC
[9] or density matrix renormalization group (DMRG) [10]. These
are, however, much more computationally intensive than a DFT
calculation.

From the analytical point of view, even the non-interacting
case deserves further exploration. In particular, in the absence of
interactions it should be easier to find a renormalization group
approach with a convenient decimation scheme to extract the
critical behavior accurately. Once such scheme has been found,
given the similarity between the interacting and non-interacting
results, such an approach could be tentatively generalized to the
interacting case.
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[10] U. Schollwöck, Rev. Modern Phys. 77 (2005) 259.


