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Abstract
We study the global topology and geometry of the horofunction compactification
of classes of symmetric spaces under Finsler distances in three settings: bounded
symmetric domains of the form B = B1 × · · · × Br , where Bi is an open Euclidean
ball in C

ni , with the Kobayashi distance, symmetric cones with the Hilbert distance,
and Euclidean Jordan algebras with the spectral norm. For these spaces we show, that
the horofunction compactification is naturally homeomorphic to the closed unit ball of
the dual norm of the Finsler metric in the tangent space at the basepoint. In each case
we give an explicit homeomorphism. For finite dimensional normed spaces the link
between the geometry of the horofunction compactification and the dual unit ball was
suggested by Kapovich and Leeb, which we confirm for Euclidean Jordan algebras
with the spectral norm. Our results also show that this duality phenomenon not only
occurs in normed spaces, but also in a variety of noncompact type symmetric spaces
with invariant Finsler metrics.
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1 Introduction

Compactifications of symmetric spaces is a rich subject which has been studied exten-
sively [9, 27]. Recently it was shown that various compactifications of noncompact
type symmetric spaces X = G/K can be realised as horofunction compactifications
with respect to G-invariant Finsler metrics. For the generalised Satake compactifica-
tions this was shown byHaettel et al. [28], and for theMartin compactification this was
established by Schilling [53]. The realisation of the maximal Satake compactification
as a horofunction compactification was given by Kapovich and Leeb [34].

For symmetric spaces with nonpositive sectional curvature it is well-known that the
horofunction compactification with respect to the Riemannian distance is homeomor-
phic to a Euclidean ball, see [12, 16, 17]. For various finite dimensional normed spaces
it was observed that the horofunction compactification is naturally related to the closed
dual unit ball. As a matter of fact, Kapovich and Leeb [34, Question 6.18] asked if for
finite dimensional normed spaces the horofunction compactification (with its natural
stratification) is homeomorphic to the closed unit ball of the dual normed space. This
was confirmed by Ji and Schilling [32, 33] for normed spaces with a polyhedral unit
ball.

In an analogous manner one can ask for noncompact type symmetric spaces if the
horofunction compactification with respect to an invariant Finsler metric is naturally
homeomorphic to the closed dual unit ball of the Finsler metric in the tangent space
at the basepoint.

Themain goal of this paper is to confirm this duality phenomenon for two classes of
noncompact type symmetric spaces and a class of normed spaces. More specifically,
we will consider bounded symmetric domains of the form B1 × · · · × Br , where Bi
is an open Euclidean ball in C

ni , with the Kobayashi distance, symmetric cones with
the Hilbert distance, and Euclidean Jordan algebras with the spectral norm, i.e., finite
dimensional JB-algebras.

The bounded symmetric domains B = B1 × · · · × Br with the Kobayashi distance
are prime examples of noncompact type symmetric spaces with invariant Finsler met-
ric. In this case the open unit ball of the Finsler metric in the tangent space at the
origin coincides with B. We will show that the horofunction compactification of B
is homeomorphic to the dual unit ball, i.e., the polar of B. In fact, we shall work in
a slightly more general domains D = D1 × · · · × Dr , where Di is the open unit
ball of a norm with a strongly convex C3-boundary, even though these domains no
longer correspond to symmetric spaces. The horofunction compactification of these
spaces was studied in [40]. It should be noted that for general bounded convex domains
D ⊂ C

n , with the Kobayashi distance, various smoothness conditions on D are known
that imply that the identity map extends as a homeomorphism from the horofunction
compactification of D onto the norm closure of D, see [5, Theorem 1.2] and [7, 10,
11, 59]. In our setting, however, the domains are not smooth, and the identity does not
extend as a homeomorphism.

Symmetric cones with the Hilbert distance are another interesting class of sym-
metric spaces with invariant Finsler metric. A prime example is the symmetric space
SL(n, C)/SU(n), which corresponds to the projective symmetric cone consisting of
positive definite n × n Hermitian matrices. More precisely, one can realise this space
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as {A ∈ Herm(n, C) : A is positive definite with trace n}. In our analysis we use the
cone version of the Hilbert distance, see [42], which provides a convenient way to
analyse its Finsler structure [48] and the dual unit ball. The horofunction compactifi-
cation of symmetric cones with the Hilbert distance was determined in [44, Theorem
5.6] and is naturally described in terms of the Euclidean Jordan algebra associated to
the symmetric cone, which will be exploited.

Euclidean Jordan algebras V with the spectral norm, i.e., finite dimensional JB-
algebras [4], are an important class of real normed vector spaces. A prime example
is the real vector space Herm(n, C) consisting of n × n Hermitian matrices with
the spectral norm, ‖A‖ = max{|λ| : λ eigenvalue of A}. We use the Jordan algebra
structure to give a complete description of the horofunctions for these spaces and
provide an explicit homeomorphism between the horofunction compactification and
the closed dual unit ball. These normed spaces are related to an invariant metric on
symmetric cones coming from theThompsondistance.More precisely, for a symmetric
cone C in a Euclidean Jordan algebra V , the Finsler metric of the Thompson distance
in the tangent space V at the unit is the spectral norm, see [48].

In a sequel [41] to this paper the first author has shown for the Hilbert distance and
Thompson distance on symmetric cones that the exponential map at the unit extends as
a homeomorphism between the horofunction compactification of the normed space at
the unitwith theFinslermetric, and the horofunction compactificationof the symmetric
cone with the Finsler distance. It would be interesting to know if this holds more
generally for noncompact type symmetric spaces with invariant Finsler distances.

The origins of the horofunction compactification go back to Gromov [6, 21] who
associated a boundary at infinity to any locally compact geodesic metric space. It has
found numerous applications in diverse areas of mathematics including, geometric
group theory [12], noncommutative geometry [51], complex analysis [1, 5, 7, 10, 11,
59], Teichmüller theory [15, 20, 36, 46, 56], dynamical systems and ergodic theory
[8, 19, 35, 44] and in the study of compactifications of noncompact type symmetric
spaces [28, 34, 53]. A general set up for metric spaces was discussed by Rieffel [51]. It
should, however, be noted that if themetric space is not proper, then the embedding into
its horofunction compactification need not be a homeomorphism. So, in that case, the
horofunction compactification would not be a compactfication in the usual topological
sense.

The horofunction compactification is a particularly powerful tool to study isometry
groups of metric spaces and isometric embeddings between metric spaces, see [40,
43, 57, 58]. Especially useful in this context are the so-called Busemann points in
the horofunction compactification, which are limits of almost geodesics. They were
introduced by Rieffel [51], who asked whether every horofunction is a Busemann
point in a finite dimensional normed space. Walsh [54] showed that in general this
is not the case and found necessary and sufficient conditions for a finite dimensional
normed space to have the property that all its horofunctions are Busemann points.

For the metric spaces considered in this paper, we show that all horofunctions are
Busemann points. As a consequence we get that the horofunction boundary has a
partition coming from the detour distance. Indeed, on the set of Busemann points
the detour distance [2, 43] is a metric, where two Busemann points can lie at infinite
distance from each other. This yields a partition of the set of Busemann points into
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so-called parts where two Busemann points lie in the same part if the detour distance
between them is finite. As all horofunctions are Busemann points for our spaces, it
follows from [57, Proposition 4.5] that this partition coincides with the partition of the
horofunction boundary into subsets, where two horofunctions h and g lie in the same
subset if supx |h(x) − g(x)| is bounded.

On the other hand, the closed dual unit ball B∗
1 is the disjoint union of the relative

interiors of its nonempty faces, see [52, Theorem 18.2]. In each of our settings we will
give an explicit homeomorphism that maps the metric space onto the interior of B∗

1 ,
and each part in the horofunction boundary onto the relative interior of a boundary
face of B∗

1 . It is this property of the homeomorphism that ’naturally’ connects the
geometry of the horofunction compactification to the closed dual unit ball for our
spaces. The homeomorphisms we use are modifications of the maps used by Ji and
Schilling [32] in the setting of polyhedral normed spaces. As pointed out there, the
homeomorphisms resemble moment maps from symplectic geometry and Lie group
actions, but the exact connection is not well understood at present. Similar maps were
also used in the study of Satake compactifications of symmetric spaces in [31, 39].

The results are consistent with what is known for the horofunction compactification
of the symmetric spaces with nonpositive sectional curvature under the Riemannian
distance. In that case all horofunctions areBusemannpoints and eachpart is a singleton,
which reflects the fact that eachpoint in the boundaryof theEuclideanball is a relatively
open face, as it is an extreme point.

In general it is difficult to determine the horofunction compactification of a metric
space explicitly and only in relatively few spaces has this been done. For CAT(0)
spaces the horofunction compactification is well understood, see [12, Chap. II.8] and
coincides with the visual boundary. Gutièrrez [22–24] computed the horofunction
compactification of several classes of L p-spaces. It has also been identified for finite
dimensional polyhedral normed spaces, see [13, 28, 33, 37]. For arbitrary (possibly
infinite dimensional) normed spaces the Busemann points in the horofunction bound-
ary have been characterised by Walsh [58]. For Hilbert metric spaces there exists a
characterisation of the Busemann points [55]. For the Hilbert distance on a symmetric
cone in a Euclidean Jordan algebra, the horofunction compactification was obtained
in [44], the cone in a (possibly infinite dimensional) spin factor was discussed in [14],
and results for the p-metrics, with 1 ≤ p < ∞, on the symmetric cone in Hermn(C)

were obtained in [26].

2 Metric Geometry Preliminaries

We start by recalling the construction of the horofunction compactification and the
detour distance.

Let (M, d) be a metric space and let R
M be the space of all real functions on M

equipped with the topology of pointwise convergence. Fix b ∈ M , which is called the
basepoint, and let Lipcb(M) denote the set of all functions h ∈ R

M such that h(b) = 0
and h is c-Lipschitz, i.e., |h(x) − h(y)| ≤ cd(x, y) for all x, y ∈ M .

Then Lipcb(M) is a compact subset of R
M . Indeed, the complement of Lipcb(M)

is open, so Lipcb(M) is closed subset of R
M . Moreover, as |h(x)| = |h(x) −
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h(b)| ≤ cd(x, b) for all h ∈ Lipcb(M) and x ∈ M , we get that Lipcb(M) ⊆
[−cd(x, b), cd(x, b)]M , which is compact by Tychonoff’s theorem.

For y ∈ M define the real valued function,

hy(z) = d(z, y) − d(b, y) with z ∈ M . (2.1)

Then hy(b) = 0 and |hy(z) − hy(w)| = |d(z, y) − d(w, y)| ≤ d(z, w). Thus,
hy ∈ Lip1b(M) for all y ∈ M . Using the previous observation one now defines the
horofunction compactification of (M, d) to be the closure of {hy : y ∈ M} in R

M ,

which is a compact subset of Lip1b(M) and is denoted by M
h
. Its elements are called

metric functionals, and the boundary ∂M
h = M

h\{hy : y ∈ M} is called the horo-

function boundary. The metric functionals in ∂M
h
are called horofunctions, and all

other metric functionals are said to be internal points.
The topology of pointwise convergence on Lip1b(M) coincides with the topology

of uniform convergence on compact sets, see [47, Sect. 46]. In general the topology
of pointwise convergence on Lip1b(M) is not metrisable, and hence horofunctions are
limits of nets rather than sequences. If, however, the metric space is separable, then
the pointwise convergence topology on Lip1b(M) is metrizable and each horofunction
is the limit of a sequence. It should be noted that the embedding ι : M → Lip1b(M),
where ι(y) = hy , may not have a continuous inverse on ι(M), and hence the metric
compactification is not always a compactification in the strict topological sense. If,
however, (M, d) is proper (i.e. closed balls are compact) and geodesic, then ι is a
homeomorphism fromM onto ι(M). Recall that a map γ from a (possibly unbounded)
interval I ⊆ R into a metric space (M, d) is called a geodesic path if

d(γ (s), γ (t)) = |s − t | for all s, t ∈ I .

The image, γ (I ), is called a geodesic, and a metric space (M, d) is said to be geodesic
if for each x, y ∈ M there exists a geodesic path γ : [a, b] → M connecting x and y,
i.e, γ (a) = x and γ (b) = y. We call a geodesic γ ([0,∞)) a geodesic ray.

The following fact, which is slightly weaker than [51, Theorem 4.7], will be useful
in the sequel.

Lemma 2.1 If (M, d) is a proper geodesic metric space, then h ∈ ∂M
h
if and only if

there exists a sequence (xn) in M with d(b, xn) → ∞ such that (hxn ) converges to

h ∈ M
h
as n → ∞.

A sequence (xn) in (M, d) is called an almost geodesic sequence if for all ε > 0
there exists a N ≥ 0 such that

d(xn, xm) + d(xm, x0) − d(xn, x0) < ε for all n ≥ m ≥ N .

The notion of an almost geodesic sequence goes back to Rieffel [51] and was further
developed by Walsh and co-workers in [2, 40, 43, 58]. In particular, every unbounded
almost geodesic sequence yields a horofunction in a proper geodesic metric space
[58].
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Lemma 2.2 Let (M, d) be a proper geodesic metric space. If (xn) is an unbounded
almost geodesic sequence in M, then

h(z) = lim
n

d(z, xn) − d(b, xn)

exists for all z ∈ M and h ∈ ∂M
h
.

Given a proper geodesic metric space (M, d), a horofunction h ∈ M
h
is called

a Busemann point if there exists an almost geodesic sequence (xn) in M such that
h(z) = limn d(z, xn) − d(b, xn) for all z ∈ M . We denote the collection of all
Busemann points by BM .

Suppose that h, h′ ∈ ∂M
h
be horofunctions and (M, d) is a proper geodesic metric

space. Let Wh be the collection of neighbourhoods of h in M
h
. The detour cost is

given by

H(h, h′) = sup
W∈Wh

(
inf

x : ι(x)∈W d(b, x) + h′(x)
)

.

The detour distance is given by

δ(h, h′) = H(h, h′) + H(h′, h). (2.2)

It is known [58] that if (xn) is an almost geodesic sequence converging to a horo-
function h, then

H(h, h′) = lim
n

d(b, xn) + h′(xn) (2.3)

for all horofunctions h′. Moreover, on the set of Busemann points BM the detour
distance is a metric where points can be at infinite distance from each other, see [58].
The detour distance yields a partition of BM into equivalence classes, called parts,
where h and h′ are equivalent if δ(h, h′) < ∞. The equivalence class of h is denoted
by Ph . So (Ph, δ) is a metric space, and BM is the disjoint union of metric spaces
under the detour distance.

It is known [57, Proposition 4.5] that two Busemann points h and g in the horo-
function boundary are in the same part if and only if supx∈M |h(x) − g(x)| < ∞.
Furthermore, any isometry on M extends as an isometry to the set of Busemann points
under the detour distance, see [43].

For symmetric spaces with nonpositive sectional curvature, all horofunctions with
respect to the Riemannian metric are Busemann points and each part is a singleton.
For the spaces under consideration in this paper we show that all horofunctions are
Busemann points, but the parts can be nontrivial.
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3 Bounded Symmetric Domains

In this section we analyse the geometry and topology of the horofunction compact-
ification of bounded symmetric domains of the form B = B1 × · · · × Br , where
Bi = {z ∈ C

ni : |z1|2 + · · · + |zni |2 < 1}, under the Kobayashi distance. In fact,
we shall consider slightly more general product domains where each Bi is the open
unit ball of a norm on C

ni with a strongly convex C3-boundary. Even though these
domains no longer correspond to noncompact type symmetric spaces we shall see that
there still exists a homeomorphism between the horofunction compactification and
the closed dual unit ball of the Finsler metric at the origin. We will start by recalling
some basic concepts.

3.1 Product Domains and Kobayashi Distance

On a convex domain D ⊆ C
n the Kobayashi distance is given by

kD(z, w) = inf{ρ(ζ, η) : ∃ f : � → D holomorphic with f (ζ ) = z and f (η) = w}

for all z, w ∈ D, where

ρ(z, w) = log
1 +

∣∣∣ w−z
1−z̄w

∣∣∣
1 −

∣∣∣ w−z
1−z̄w

∣∣∣ = 2 tanh−1
(
1 − (1 − |w|2)(1 − |z|2)

|1 − wz̄|2
)1/2

is the hyperbolic distance on the open disc � = {z ∈ C : |z| < 1}.
It is known, see [1, Proposition 2.3.10], that if D ⊂ C

n is bounded convex domain,
then (D, kD) is a proper metric space, whose topology coincides with the usual topol-
ogy on C

n . Moreover, (D, kD) is a geodesic metric space containing geodesic rays,
see [1, Theorem 2.6.19] or [38, Theorem 4.8.6].

For the Euclidean ball Bn = {(z1, . . . , zn) ∈ C
n : ‖z‖2 < 1}, where ‖z‖2 =∑

i |zi |2, the Kobayashi distance satisfies

kBn (z, w) = 2 tanh−1
(
1 − (1 − ‖w‖2)(1 − ‖z‖2)

|1 − 〈z, w〉|2
)1/2

for all z, w ∈ Bn , see [1, Chaps. 2.2 and 2.3].
In our setting we will consider product domains B = ∏r

i−1 Bi , where each Bi is
an open unit ball of a norm in C

ni , and we will use the product property of kB , which
says that

kB(z, w) = max
i=1,...,r

ki (zi , wi ),
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where ki is the Kobayashi distance on Bi , see [38, Theorem 3.1.9]. So for the polydisc
�r = {(z1, . . . , zr ) ∈ C

r : maxi |zi | < 1}, the Kobayashi distance satisfies

k�r (z, w) = max
i

ρ(zi , wi ) for allw = (w1, . . . , wr ), z = (z1, . . . , zr ) ∈ �r .

For the Euclidean ball, Bn , it is well known that the horofunctions of (Bn, kBn ),
with basepoint b = 0, are given by

hξ (z) = log
|1 − 〈z, ξ 〉|2
1 − ‖z‖2 for all z ∈ Bn, (3.1)

where ξ ∈ ∂Bn . Moreover, each horofunction hξ is a Busemann point, as it is the limit

induced by the geodesic ray t �→ et−1
et+1ξ , for 0 ≤ t < ∞.

Moreover, if B is a product of Euclidean balls, then the horofunctions are known,
see [1, Proposition 2.4.12] and [40, Corollary 3.2]. Indeed, for a product of Euclidean
balls Bn1 × · · ·× Bnr the Kobayashi distance horofunctions with basepoint b = 0 are
precisely the functions of the form

h(z) = max
j∈J

(
hξ j (z j ) − α j

)
,

where J ⊆ {1, . . . , r} nonempty, ξ j ∈ ∂Bn j for j ∈ J , andmin j∈J α j = 0.Moreover,
each horofunction is a Busemann point.

The form of the horofunctions of the product of Euclidean balls is essentially due
to the product property of the Kobayashi distance and the smoothness and convexity
properties of the balls. Indeed, more generally, the following result holds, see [40,
Sect. 2 and Lemma 3.3].

Theorem 3.1 If Di ⊂ C
ni is a bounded strongly convex domain with C3-boundary,

then for each ξi ∈ ∂Di there exists a unique horofunction hξi which is the limit of a
geodesic γ from the basepoint bi ∈ Di to ξi . Moreover, these are all the horofunctions.
If D = ∏r

i=1 Di , where each Di is a bounded strongly convex domain with C3-
boundary, then each horofunction h of (D, kD) with respect to the basepoint b =
(b1, . . . , br ) is of the form

h(z) = max
j∈J

(
hξ j (z j ) − α j

)
, (3.2)

where J ⊆ {1, . . . , r} nonempty, ξ j ∈ ∂Dj for j ∈ J , and min j∈J α j = 0. Further-
more, each horofunction is a Busemann point, and the part of h, where h is given by
(3.2), consists of those horofunctions h′ of the form,

h′(z) = max
j∈J

(
hξ j (z j ) − β j

)
,

with min j∈J β j = 0.
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Now let D = ∏r
i=1 Di , where each Di is a bounded strongly convex domain with

C3-boundary. Given J ⊆ {1, . . . , r} nonempty, ξ j ∈ ∂Dj for j ∈ J , and α j ≥ 0 for
j ∈ J with min j∈J α j = 0, we can find geodesic paths γ j : [0,∞) → Dj from b j to
ξ j , and form the path γ : [0,∞) → D, where

γ (t) j =
[

γ j (t − α j ) for all j ∈ J and t ≥ α j

b j otherwise.
(3.3)

Lemma 3.2 The path γ : [0,∞) → D in (3.3) is a geodesic path, and hγ (t) → h
where h is given by (3.2).

Proof Let ki denote the Kobayashi distance on Di . By the product property we have
that

kD(γ (s), γ (t)) = max
i

ki (γ (s)i , γ (t)i )

for all s ≥ t ≥ 0. By construction ki (γ (s)i , γ (t)i ) ≤ ki (γi (s), γi (t)) = s − t for
all i and s ≥ t ≥ 0. For j ∈ J with α j = 0 we have that k j (γ (s) j , γ (t) j ) =
k j (γ j (s), γ j (t)) = s − t for all s ≥ t ≥ 0, and hence

kD(γ (s), γ (t)) = max
i

ki (γ (s)i , γ (t)i ) = s − t

for all s ≥ t ≥ 0.
Note that for z ∈ D we have

lim
t→∞ hγ (t)(z) = lim

t→∞ kD(z, γ (t)) − kD(γ (t), b)

= lim
t→∞max

i
(ki (zi , γ (t)i ) − t)

= lim
t→∞max

j∈J
(k j (z j , γ (t) j ) − t)

= lim
t→∞max

j∈J
(k j (z j , γ j (t − α j )) − k j (γ j (t − α j ), b j ) − α j )

= max
j∈J

(
hξ j (z j ) − α j

)
,

which shows that hγ (t) → h. ��

Consider B = ∏r
i=1 Bi ⊆ C

n , where each Bi is an open unit ball of a norm in C
ni .

Then B is the open unit ball of the norm ‖ · ‖B on C
n . In fact,

‖w‖B = max
i=1,...,r

‖wi‖Bi ,

where ‖ · ‖Bi is the norm on C
ni with open unit ball Bi .
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To analyse the dual norm of ‖ · ‖B we identify the dual space of C
n1 × · · · × C

nr

with itself using the standard inner-product

〈x, y〉 =
r∑

i=1

〈xi , yi 〉 for x = (x1, . . . , xr ), y = (y1, . . . , yr ) ∈ C
n1 × · · · × C

nr .

So, y ∈ C
n1 × · · · × C

nr �→ 〈·, y〉 ∈ (Cn1 × · · · × C
nr )∗. Note that the dual norm

‖ · ‖∗
B satisfies

‖y‖∗
B = sup

‖x‖B=1
Re〈x, y〉 = sup

‖x‖B=1

r∑
i=1

Re〈xi , yi 〉

=
r∑

i=1

‖yi‖∗
Bi for y = (y1, . . . , yr ) ∈ C

n1 × · · · × C
nr ,

as ‖x‖B = maxi ‖xi‖Bi . So we see that the closed dual unit ball is given by

B∗
1 = {y ∈ C

n1 × · · · × C
nr : Re〈x, y〉 ≤ 1 for all x ∈ B}

= {y ∈ C
n1 × · · · × C

nr :
r∑

i=1

‖yi‖∗
Bi ≤ 1}.

Now suppose that each Bi is strictly convex and smooth. The closed ball B∗
1 has

extreme points p(ξ∗
i ) = (0, . . . , 0, ξ∗

i , 0, . . . , 0), where ξ∗
i ∈ C

ni is the unique sup-
porting functional at ξi ∈ ∂Bi , i.e., Re〈ξi , ξ∗

i 〉 = 1 and Re〈wi , ξ
∗
i 〉 < 1 for wi ∈ Bi

with wi �= ξi .
The relatively open faces of B∗

1 are the sets of the form

F({ξ j ∈ ∂Bj : j ∈ J }) =
⎧⎨
⎩

∑
j∈J

λ j p(ξ
∗
j ) :

∑
j∈J

λ j = 1 and λ j > 0 for all j ∈ J

⎫⎬
⎭ ,

where J ⊆ {1, . . . , r} is nonempty and ξ j ∈ ∂Bj for j ∈ J are fixed. Here the relative
topology is taken with respect to the affine span of {p(ξ∗

j ) : j ∈ J }.
On B the Kobayashi distance has a Finsler structure in terms of the infinitesimal

Kobayashi metric, see e.g., [1, Chap. 2.3]. Indeed, we have that

kB(z, w) = inf
γ

L(γ ),

where the infimum is taken over all piecewise C1-smooth paths γ : [0, 1] → B with
γ (0) = z and γ (1) = w, and

L(γ ) =
∫ 1

0
κB(γ (t), γ ′(t))dt,
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with

κB(u, v) = inf{|ξ | : ∃ϕ ∈ Hol(�, B) such that ϕ(0) = u and (Dϕ)0(ξ) = v}.

Proposition 3.3 [1, Proposition 2.3.24] If B is the open unit ball of a norm on C
n,

then

κB(0, v) = ‖v‖B for all v ∈ C
n .

For z ∈ B and i = 1, . . . , r , if zi �= 0, then we let z′i = ‖zi‖−1
Bi
zi ∈ ∂Bi and we

write p(z∗i ) = (0, . . . , 0, z∗i , 0, . . . , 0), where z∗i is the unique supporting functional
at z′i ∈ ∂Bi . If zi = 0, we set p(z∗i ) = 0.

We now define a map ϕB : Bh → B∗
1 and show in the remainder of this section that

it is a homeomorphism. For z ∈ B = B1 × · · · × Br let

ϕB(z) = 1∑r
i=1 e

ki (zi ,0) + e−ki (zi ,0)

(
r∑

i=1

(eki (zi ,0) − e−ki (zi ,0))p(z∗i )
)

,

where ki is the Kobayashi distance on Bi . For a horofunction h given by (3.2) we
define

ϕB(h) = 1∑
j∈J e

−α j

⎛
⎝∑

j∈J

e−α j p(ξ∗
j )

⎞
⎠ .

More precisely we prove the following theorem.

Theorem 3.4 If B = ∏r
i=1 Bi , where each Bi is the open unit ball of a norm on C

ni

which is strongly convex and has a C3-boundary, then ϕB : Bh → B∗
1 is a homeomor-

phism, which maps each part of ∂B
h
onto the relative interior of a boundary face of

B∗
1 .

3.2 TheMap'B: Injectivity and Surjectivity

Throughout the remainder of this section we assume that B = ∏r
i=1 Bi and each Bi is

the open unit ball of a norm on C
ni , which is strongly convex and has a C3-boundary.

So for each ξi ∈ ∂Bi there exists a unique ξ∗
i ∈ C

ni such that

Re〈ξi , ξ∗
i 〉 = 1 and Re〈wi , ξ

∗
i 〉 < 1 for all wi ∈ Bi with wi �= ξi ,

as Bi is strictly convex and smooth.
We start with the following basic observation.

Lemma 3.5 For each z ∈ B we have that ϕB(z) ∈ int B∗
1 , and ϕB(h) ∈ ∂B∗

1 for all

h ∈ ∂B
h
.
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Proof Note that for z ∈ B and w ∈ B we have that

Re〈w, ϕB(z)〉 = 1∑r
i=1 e

ki (zi ,0) + e−ki (zi ,0)

(
r∑

i=1

(eki (zi ,0) − e−ki (zi ,0))Re〈wi , z
∗
i 〉

)

≤ 1∑r
i=1 e

ki (zi ,0) + e−ki (zi ,0)

(
r∑

i=1

eki (zi ,0) − e−ki (zi ,0)

)

< 1 − δ

for some 0 < δ < 1, which is independent of w. Thus, supw∈B Re〈w, ϕB(z)〉 <

1 − δ < 1, hence ϕB(z) ∈ int B∗
1 .

To see that ϕB(h) ∈ ∂B∗
1 , note that for w = ∑

j∈J p(ξ j ) ∈ B, where p(ξ j ) =
(0, . . . , 0, ξ j , 0, . . . , 0), we have that Re〈w, ϕB(h)〉 = 1. ��

To show that ϕB is injective on B, we need the following basic calculus fact, which
can be found in [32, Sect. 4].

Lemma 3.6 If μ : R
r → R is given by μ(x1, . . . , xr ) = ∑r

i=1 e
xi + e−xi , then x �→

∇ logμ(x) is injective on R
r .

Note that

(∇ logμ(x)) j = ex j − e−x j∑r
i=1 e

xi + e−xi
for all j .

Lemma 3.7 The map ϕB is a continuous bijection from B onto int B∗
1 .

Proof Cleary ϕB is continuous on B and ϕB(z) = 0 if and only if z = 0. Suppose that
z, w ∈ B \ {0} are such that ϕB(z) = ϕB(w). For simplicity write

α j = ek j (z j ,0) − e−k j (z j ,0)∑r
i=1 e

ki (zi ,0) + e−ki (zi ,0)
≥ 0 and β j = ek j (w j ,0) − e−k j (w j ,0)∑r

i=1 e
ki (wi ,0) + e−ki (wi ,0)

≥ 0.

Note that α j p(z∗j ) = 0 if and only if z j = 0, and β j p(w∗
j ) = 0 if and only if w j = 0.

Thus, z j = 0 if and only if w j = 0. Now suppose that z j �= 0, so w j �= 0. Then
〈p(v j ), ϕB(z)〉 = 〈p(v j ), ϕB(w)〉 for each v j ∈ Bj . This implies that

α j 〈v j , z
∗
j 〉 = β j 〈v j , w

∗
j 〉 for all v j ∈ Bj ,

hence α j z∗j = β jw
∗
j . It follows that α j = β j and z∗j = w∗

j . Thus z j = μ jw j for
some μ j > 0. As αi = βi for all i ∈ {1, . . . , r}, we know by Lemma 3.6 that
k j (z j , 0) = k j (w j , 0), hence z j = w j by [1, Proposition 2.3.5]. So z = w, which
shows that ϕB is injective.

As ϕB is injective and continuous on B, it follows from Brouwer’s domain invari-
ance theorem that ϕB(B) is an open subset of int B∗

1 by Lemma 3.5. Suppose, by
way of contradiction, that ϕB(B) �= int B∗

1 . Then ∂ϕB(B) ∩ int B∗
1 is nonempty, as

otherwise ϕB(B) is closed and open in int B∗
1 , which would imply that int B∗

1 is the
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disjoint union of the nonempty open sets ϕB(B) and its complement contradicting the
connectedness of int B∗

1 . So let w ∈ ∂ϕB(B) ∩ int B∗
1 and (zn) be a sequence in B

such that ϕB(zn) → w. As ϕB is continuous on B, we have that kB(zn, 0) → ∞.
Using the product property, kB(zn, 0) = maxi ki (zni , 0),wemayassumeafter taking

subsequences that αn
i = kB(zn, 0) − ki (zni , 0) → αi ∈ [0,∞] and zni → ζi ∈ Bi for

all i . Let I = {i : αi < ∞}, and note that for each i ∈ I , ζi ∈ ∂Bi , as ki (zni , 0) → ∞.
Then

ϕB(zn) = 1∑r
i=1 e

ki (zni ,0) + e−ki (zni ,0)

⎛
⎝ r∑
i=1

(eki (z
n
i ,0) − e−ki (zni ,0))p((zni )∗)

⎞
⎠

= 1∑r
i=1 e

−αn
i + e−kB (zn ,0)−ki (zni ,0)

⎛
⎝ r∑
i=1

(e−αn
i − e−kB (zn ,0)−ki (zni ,0))p((zni )∗)

⎞
⎠ .

Letting n → ∞, the righthand side converges to

1∑
i∈I e−αi

(∑
i∈I

e−αi p(ζ ∗
i )

)
= w.

But this implies thatw ∈ ∂B∗
1 , as Re〈

∑
i∈I p(ζi ), w〉 = 1 and

∑
i∈I p(ζi ) ∈ B, where

p(ζi ) = (0, . . . , 0, ζi , 0, . . . , 0). This is impossible and hence ϕB(B) = int B∗
1 . ��

We now analyse ϕB on ∂B
h
.

Lemma 3.8 Themap ϕB maps ∂B
h
bijectively onto ∂B∗

1 . Moreover, the partPh, where
h is given by (3.2), is mapped onto the relative open boundary face

F({ξ j ∈ ∂Bj : j ∈ J }) =
⎧⎨
⎩

∑
j∈J

λ j p(ξ
∗
j ) :

∑
j∈J

λ j = 1 and λ j > 0 for all j ∈ J

⎫⎬
⎭ .

Proof We know from Lemma 3.5 that ϕB maps ∂B
h
into ∂B∗

1 . To show that it is onto
we letw ∈ ∂B∗

1 . As B
∗
1 is the disjoint union of its relative open faces (see [52, Theorem

18.2]), there exist J ⊆ {1, . . . , r}, extreme points p(ξ∗
j ) of B

∗
1 , and 0 < λ j ≤ 1 for

j ∈ J with
∑

j∈J λ j = 1 such that w = ∑
j∈J λ j p(ξ∗

j ). Let μ j = − log λ j and
μ∗ = min j∈J μ j . Now set α j = μ j − μ∗ for j ∈ J . Then α j ≥ 0 for j ∈ J and
min j∈J α j = 0.

Let h ∈ ∂B
h
be given by h(z) = max j∈J (hξ j (z j ) − α j ). Then

ϕB(h) =
∑

j∈J e
−α j p(ξ∗

j )∑
j∈J e

−α j
=

∑
j∈J e

−μ j p(ξ∗
j )∑

j∈J e
−μ j

=
∑

j∈J λ j p(ξ∗
j )∑

j∈J λ j
= w.
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To prove injectivity let h, h′ ∈ ∂B
h
, where h is as in (3.2) and

h′(z) = max
j∈J ′ (hη j (z j ) − β j ) (3.4)

for z ∈ B. Suppose that ϕB(h) = ϕB(h′), so

ϕB(h) =
∑

j∈J e
−α j p(ξ∗

j )∑
j∈J e

−α j
=

∑
j∈J ′ e−β j p(η∗

j )∑
j∈J ′ e−β j

= ϕB(h′).

We have that J = J ′. Indeed, if k ∈ J and k /∈ J ′, then

0 = Re〈p(ξk), ϕB(h′)〉 = Re〈p(ξk), ϕB(h)〉 > 0,

which is impossible. For the other case a contradiction can be derived in the same way.
Now suppose there exists k ∈ J such that ξk �= ηk . If

e−αk∑
j∈J e

−α j
≤ e−βk∑

j∈J e
−β j

,

then

Re〈p(ηk), ϕB(h)〉 = e−αk∑
j∈J e

−α j
Re〈ηk, ξ∗

k 〉 <
e−αk∑
j∈J e

−α j

≤ e−βk∑
j∈J e

−β j
= Re〈p(ηk), ϕB(h′)〉,

as Bk is smooth and strictly convex, which contradicts ϕB(h) = ϕB(h′). The other
case goes in the same way. Thus, J = J ′ and ξ j = η j for all j ∈ J .

It follows that

e−αk∑
j∈J e

−α j
= Re〈p(ξk), ϕB(h)〉 = Re〈p(ηk), ϕB(h′)〉 = e−βk∑

j∈J e
−β j

for all k ∈ J . To show that αk = βk for all k ∈ J let ν : R
J → R be given by

ν(x) = ∑
j∈J e

−x j . Then for x, y ∈ R
J and 0 < t < 1 we have that

ν(t x + (1 − t)y) ≤ ν(x)tν(y)1−t ,

and we have equality if and only if there exists a constant c such that xk = yk + c for
all k ∈ J . So, if x �= y + (c, . . . , c) for all c, then −∇ log ν(x) �= −∇ log ν(y).

As min j∈J α j = 0 = min j∈J β j , we can conclude that αk = βk for all k ∈ J . This

shows that h = h′ and hence ϕB is injective on ∂B
h
.
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To complete the proof, note that ϕB(h) is in the relative open boundary face F({ξ j ∈
∂Bj : j ∈ J }) of B∗

1 . Moreover, h′ given by (3.4) is in the same part as h if, and only
if, J = J ′ and ξ j = η j for all j ∈ J by [40, Propositions 2.8 and 2.9]. So, ϕB(h′) lies
in F({ξ j ∈ ∂Bj : j ∈ J }) if and only if h′ lies in the same part as h. ��

3.3 Continuity and the Proof of Theorem 3.4

We now show that ϕB is continuous on B
h
.

Proposition 3.9 The map ϕB : Bh → B∗
1 is continuous.

Proof Clearly ϕB is continuous on B. Suppose that (zn) is sequence in B converging

to h ∈ ∂B
h
, where h is given by (3.2). To show that ϕB(zn) → ϕB(h) we show

that every subsequence of (ϕB(zn)) has a subsequence converging to ϕB(h). So, let
(ϕB(znk )) be a subsequence. We can take a further subsequence (znk,m ) such that

(1)

βm
j = kB(znk,m , 0) − k j (z

nk,m
j , 0) → β j ∈ [0,∞] for all j ∈ {1, . . . , r}.

(2) There exists j0 such that βm
j0

= 0 for all m ≥ 1.

(3) (z
nk,m
j ) converges to η j ∈ Bj and h

z
nk,m
j

→ hη j for all j ∈ {1, . . . , r}.
Let J ′ = { j : β j < ∞}. Then hznk,m → h′, where h′(z) = max j∈J ′(hη j (z j ) − β j )

for z ∈ B, as

lim
m→∞ kB(z, znk,m ) − kB(znk,m , 0)

= lim
m→∞max

j
(k j (z j , z

nk,m
j ) − k j (z

nk,m
j , 0) − βm

j ) = max
j∈J ′ (hη j (z j ) − β j ),

by the product property of kB .
As h = h′, we know by [40, Propositions 2.8 and 2.9] that J = J ′, ξ j = η j and

α j = β j for all j ∈ J . We also know by Lemma 2.1 that kB(znk,m , 0) → ∞, as h is a
horofunction. So,

ϕB(znk,m ) =
∑r

i=1(e
−βm

i − e−kB (znk,m ,0)−ki (z
nk,m
i ,0))p((z

nk,m
i )∗)∑r

i=1 e
−βm

i − e−kB (znk,m ,0)−ki (z
nk,m
i ,0)

→
∑

j∈J e
−β j p(η∗

j )∑
j∈J e

−β j
= ϕB(h),

which shows that ϕB(zn) → ϕB(h).

We know from Lemma 3.5 that ϕB(B) ⊆ int B∗
1 and ϕB(∂B

h
) ⊆ ∂B∗

1 . So, to

complete the proof it remains to show that if (hn) in ∂B
h
converges to h ∈ ∂B

h
,

where h is as in (3.2), then ϕB(hn) → ϕB(h). For n ≥ 1 let hn be given by
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hn(z) = max
j∈Jn

(hηnj
(z j ) − βn

j ) for z ∈ B.

Again we show that every subsequence of (ϕB(hn)) has a convergent subsequence
with limit ϕB(h).

Let (ϕB(hnk )) be a subsequence. Taking a further subsequence we may assume that

(1) There exists J0 ⊆ {1, . . . , r} such that Jnk = J0 for all k.
(2) There exists j0 ∈ J0 such that βnk

j0
= 0 for all k.

(3) β
nk
j → β j ∈ [0,∞] for all j ∈ J0.

(4) η
nk
j → η j for all j ∈ J0.

Note that for each j ∈ J0 we have that hη
nk
j

→ hη j in B
h
j , as the identity map on Bj ,

that is ξ j ∈ Bj → hξ j ∈ B
h
j , is a homeomorphism by [5, Theorem 1.2].

Let J ′ = { j ∈ J0 : β j < ∞} and note that j0 ∈ J ′. Then for each z ∈ B we have
that

lim
m→∞ hnk (z) = lim

k→∞max
j∈J0

(h
η
nk
j

(z j ) − β
nk
j ) = lim

k→∞max
j∈J ′ (hη

nk
j

(z j ) − β
nk
j )

= max
j∈J ′ (hη j (z j ) − β j ).

So, if we let h′(z) = max j∈J ′(hη j (z j ) − β j ) for z ∈ B, then h′ is a horofunction by

Theorem 3.1 and hnk → h′ in B
h
. As hn → h, we conclude that h′ = h. This implies

that J ′ = J and η j = ξ j and β j = α j for all j ∈ J , as otherwise δ(h, h′) �= 0 by [40,

Proposition 2.9 and Lemma 3.3]. This implies that β
km
j → α j and η

km
j → ξ j for all

j ∈ J ′. Moreover, by definition β
nk
j → ∞ for all j ∈ J0\J ′. Thus,

ϕB(hnk ) =
∑

j∈J0 e
−β

nk
j p((ηnkj )∗)

∑
j∈J0 e

−β
nk
j

→
∑

j∈J e
−α j p(ξ∗

j )∑
j∈J e

−α j
= ϕB(h),

which completes the proof. ��

The proof of Theorem 3.4 is now straightforward.

Proof of Theorem 3.4 It follows from Lemmas 3.7 and 3.8 and Proposition 3.9 that

ϕB : Bh → B∗
1 is a continuous bijection. As B

h
is compact and B∗

1 is Hausdorff, we

conclude that ϕB is a homeomorphism. Moreover, ϕB maps each part of ∂B
h
onto the

relative interior of a boundary face of B∗
1 by Lemma 3.8. ��
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4 Euclidean Jordan Algebras with Spectral Norm

Every finite dimensional normed space (V , ‖ · ‖) has a Finsler structure. Indeed, if we
let

L(γ ) =
∫ 1

0
‖γ ′(t)‖dt

be the length of a piecewise C1-smooth path γ : [0, 1] → V , then

‖x − y‖ = inf
γ

L(γ ),

where the infimum is taken over all C1-smooth paths γ : [0, 1] → V with γ (0) = x
and γ (1) = y. So, for normed spaces V the unit ball in the tangent space TbV is the
same for all b ∈ V .

In this section we analyse the problem posed by Kapovich and Leeb [34, Question
6.18] concerning the existence of a natural homeomorphism between the horofunction
compactification of a finite dimensional normed space V and the closed dual unit ball
of V in the setting of Euclidean Jordan algebras equipped with the spectral norm.
So we consider the Euclidean Jordan algebra not as inner-product space, but as an
order-unit space, which makes it a finite dimensional (formally real) JB-algebra, see
[4, Theorem 1.11]. We will give an explicit description of the horofunctions of these
normed spaces and identify the parts and the detour distance. In our analysis we make
frequent use of the theory of Jordan algebras and order-unit spaces. For the reader’s
convenience we will recall some of the basic concepts. Throughout the paper we will
follow the terminology used in [3, 4, 25].

4.1 Preliminaries

Order-unit spaces A cone V+ in a real vector space V is a convex subset of V with
λV+ ⊆ V+ for all λ ≥ 0 and V+ ∩−V+ = {0}. The cone V+ induces a partial ordering
≤ on V by x ≤ y if y − x ∈ V+. We write x < y if x ≤ y and x �= y. The cone V+
is said to be Archimedean if for each x ∈ V and y ∈ V+ with nx ≤ y for all n ≥ 1
we have that x ≤ 0. An element u of V+ is called an order-unit if for each x ∈ V
there exists λ ≥ 0 such that −λu ≤ x ≤ λu. The triple (V , V+, u), where V+ is an
Archimedean cone and u is an order-unit, is called an order-unit space. An order-unit
space admits a norm

‖x‖u = inf{λ ≥ 0 : − λu ≤ x ≤ λu},

which is called the order-unit norm, and we have that −‖x‖uu ≤ x ≤ ‖x‖uu for all
x ∈ V . The cone V+ is closed under the order-unit norm and u ∈ int V+.

A linear functional ϕ on an order-unit space is said to be positive if ϕ(x) ≥ 0 for
all x ∈ V+. It is called a state if it is positive and ϕ(u) = 1. The set of all states is
denoted by S(V ) and is called the state space, which is a convex set. In our case, the
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order-unit space is finite dimensional, hence S(V ) is compact. The extreme points of
S(V ) are called the pure states.

The dual space V ∗ of an order-unit space V is a base norm space, see [3, Theorem
1.19]. More specifically, V ∗ is an ordered normed vector space with cone V ∗+ = {ϕ ∈
V ∗ : ϕ is positive}, V ∗+ − V ∗+ = V ∗, and the unit ball of the norm of V ∗ is given by

B∗
1 = conv(S(V ) ∪ −S(V )).

Jordan algebras Important examples of order-unit spaces come from Jordan alge-
bras. A Jordan algebra (over R) is a real vector space V equipped with a commutative
bilinear product • that satisfies the identity

x2 • (y • x) = (x2 • y) • x for all x, y ∈ V .

A basic example is the space Herm(n, C) consisting of n×n Hermitian matrices with
Jordan product A • B = (AB + BA)/2.

Throughout the paper we will assume that V has a unit, denoted u. For x ∈ V we
let Lx be the linear map on V given by Lx y = x • y. A finite dimensional Jordan
algebra is said to be Euclidean if there exists an inner-product (·|·) on V such that

(Lx y|z) = (y|Lx z) for all x, y, z ∈ V .

A Euclidean Jordan algebra has a cone V+ = {x2 : x ∈ V }. The interior of V+ is a
symmetric cone, i.e., it is self-dual and Aut(V+) = {A ∈ GL(V ) : A(V+) = V+} acts
transitively on the interior of V+. In fact, the Euclidean Jordan algebras are in one-to-
one correspondence with the symmetric cones by the Koecher-Vinberg theorem, see
for example [25].

The algebraic unit u of a Euclidean Jordan algebra is an order-unit for the cone
V+, so the triple (V , V+, u) is an order-unit space. We will consider the Euclidean
Jordan algebras as an order-unit space equipped with the order-unit norm. These are
precisely the finite dimensional formally real JB-algebras, see [4, Theorem 1.11]. In
the analysis, however, the inner-product structure on V will be exploited to identify
V ∗ with V .

Throughout we will fix the rank of the Euclidean Jordan algebra V to be r . In a
Euclidean Jordan algebra each x can be written in a unique way as x = x+ − x−,
where x+ and x− are orthogonal element x+ and x− in V+, see [4, Proposition 1.28].
This is called the orthogonal decomposition of x .

Given x in a Euclidean Jordan algebra V , the spectrum of x is given by σ(x) =
{λ ∈ R : λu − x is not invertible}, and we have that V+ = {x ∈ V : σ(x) ⊂ [0,∞)}.
We write �(x) = inf{λ : x ≤ λu} and note that �(x) = max{λ : λ ∈ σ(x)}, so that

‖x‖u = max{�(x),�(−x)} = max{|λ| : λ ∈ σ(x)}

for all x ∈ V . We also note that

�(x + μu) = �(x) + μ
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for all x ∈ V and μ ∈ R. Moreover, if x ≤ y, then �(x) ≤ �(y).
Recall that p ∈ V is an idempotent if p2 = p. If, in addition, p is non-zero and

cannot be written as the sum of two non-zero idempotents, then it is said to be a
primitive idempotent. The set of all primitive idempotent is denoted J1(V ) and is
known to be a compact set [30]. Two idempotents p and q are said to be orthogonal if
p • q = 0, which is equivalent to (p|q) = 0. According to the spectral theorem [25,
Theorem III.1.2], each x has a spectral decomposition, x = ∑r

i=1 λi pi , where each pi
is a primitive idempotent, the λi ’s are the eigenvalues of x (including multiplicities),
and p1, . . . , pr is a Jordan frame, i.e., the pi ’s are mutually orthogonal and p1 +· · ·+
pr = u.

Throughout the paper we will fix the inner-product on V to be

(x |y) = tr(x • y),

where tr(x) = ∑r
i=1 λi and x = ∑r

i=1 λi pi is the spectral decomposition of x .
For x ∈ V we denote the quadratic representation by Ux : V → V , which is the

linear map,

Ux y = 2x • (x • y) − x2 • y = 2Lx (Lx y) − Lx2 y.

In case of a Euclidean Jordan algebra Ux is self-adjoint, i.e. (Ux y|z) = (y|Uxz).
We identify V ∗ with V using the inner-product. So, S(V ) = {w ∈ V+ : (u|w) = 1},

which is a compact convex set, as V is finite dimensional.Moreover, the extreme points
of S(V ) are the primitive idempotents, see [25, Proposition IV.3.2]. The dual space
(V , ‖ · ‖∗

u) is a base norm space with norm,

‖z‖∗
u = sup{(x |z) : x ∈ V with ‖x‖u = 1}.

If V is a Euclidean Jordan algebra, it is known that the (closed) boundary faces of the
dual ball B∗

1 = conv(S(V ) ∪ −S(V )) are precisely the sets of the form,

conv ((Up(V ) ∩ S(V )) ∪ (Uq(V ) ∩ −S(V ))), (4.1)

where p and q are orthogonal idempotents not both zero, see [18, Theorem 4.4].

4.2 Summary of Results

To conveniently describe the horofunction compactification V
h
of (V , ‖ · ‖u), where

V is a Euclidean Jordan algebra, we need some additional notation. Throughout this
section we will fix the basepoint b ∈ V to be 0.

Let p1, . . . , pr be a Jordan frame in V . Given I ⊆ {1, . . . , r} nonempty, we write
pI = ∑

i∈I pi and we let V (pI ) = UpI (V ). For convenience we set p∅ = 0, so
V (p∅) = U0(V ) = {0}.

Recall that V (pI ) is the Peirce 1-space of the idempotent pI :

V (pI ) = {x ∈ V : pI • x = x},
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which is a subalgebra, see [25, Theorem IV.1.1]. Given z ∈ V (pI ), wewrite�V (pI )(z)
to denote the maximal eigenvalue of z in the subalgebra V (pI ).

The following theorem characterises the horofunctions in V
h
.

Theorem 4.1 Let p1, . . . , pr be a Jordan frame, I , J ⊆ {1, . . . , r}, with I ∩ J = ∅
and I ∪ J nonempty, and α ∈ R

I∪J such that min{αi : i ∈ I ∪ J } = 0. The function
h : V → R, given by

h(x) = max

⎧⎨
⎩�V (pI )

(
−UpI x −

∑
i∈I

αi pi

)
,�V (pJ )

⎛
⎝UpJ x −

∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭ for x ∈ V ,

(4.2)

is a horofunction,wherewe use the convention that if I or J is empty, the corresponding

term is omitted from the maximum. Each horofunction in V
h
is of the form (4.2) and

a Busemann point.

To conveniently describe the parts and the detour distance (2.2) we introduce the
following notation. Given orthogonal idempotents pI and pJ we let V (pI , pJ ) =
V (pI ) + V (pJ ), which is a subalgebra of V with unit pI J = pI + pJ . The subspace
V (pI , pJ ) can be equipped with the variation norm,

‖x‖var = �V (pI ,pJ )(x) + �V (pI ,pJ )(−x) = diam σV (pI ,pJ )(x),

which is a semi-norm on V (pI , pJ ). The variation norm is, however, a norm on the
quotient space V (pI , pJ )/RpI J .

Theorem 4.2 Given horofunctions h and h′, where

h(x) = max

⎧⎨
⎩�V (pI )

(
−UpI x −

∑
i∈I

αi pi

)
,�V (pJ )

⎛
⎝UpJ x −

∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭
(4.3)

and

h′(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭ ,

(4.4)

we have that

(i) h and h′ are in the same part if and only if pI = qI ′ and pJ = qJ ′ .
(ii) If h and h′ are in the same part, then δ(h, h′) = ‖a − b‖var, where a =∑

i∈I αi pi + ∑
j∈J α j p j and b = ∑

i∈I ′ βi qi + ∑
j∈J ′ β j q j in V (pI , pJ ).
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(iii) The part (Ph, δ) is isometric to (V (pI , pJ )/RpI J , ‖ · ‖var).
Remark 4.3 A basic example is (Rn, ‖ · ‖∞), where ‖z‖∞ = maxi |zi |, which is an
associative Euclidean Jordan algebra. In that case every horofunction is a Busemann
points and of the form

h(x) = max{max
i∈I (−xi − αi ),max

j∈J
(x j − αi )},

where I , J ⊆ {1, . . . , n} are disjoint, I ∪ J is nonempty and α ∈ R
I∪J with

mink∈I∪J αk = 0, (see [22, Theorem 5.2] and [40]). Moreover, (Ph, δ) is isomet-
ric to (RI∪J /R1, ‖ · ‖var), where 1 = (1, . . . , 1) ∈ R

I∪J .

We will show that the following map is a homeomorphism from V
h
onto B∗

1 . Let

ϕ : V h → B∗
1 be given by

ϕ(x) = ex − e−x

(ex + e−x |u)
= 1∑r

i=1 e
λi + e−λi

(
r∑

i=1

(eλi − e−λi )pi

)
(4.5)

for x = ∑r
i=1 λi pi ∈ V , and

ϕ(h) = 1∑
i∈I e−αi + ∑

j∈J e
−α j

⎛
⎝∑

i∈I
e−αi pi −

∑
j∈J

e−α j p j

⎞
⎠ (4.6)

for h ∈ ∂V
h
given by (4.2).

We should note that ϕ is well defined. To verify this assume that the horofunction
h given by (4.2) is represented as

h(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭

for x ∈ V . Then it follows from Theorem 4.2 that pI = qI ′ and pJ = qJ ′ . More-
over, as δ(h, h) = 0, we have that a = ∑

i∈I αi pi + ∑
j∈J α j p j = ∑

i∈I ′ βi qi +∑
j∈J ′ β j q j = b, as min{αi : I ∪ J } = 0 = min{βi : I ∪ J }. This implies that

UpI a = UqI ′b and UpJ a = UqJ ′b, so that

∑
i∈I

αi pi =
∑
i∈I ′

βi qi and
∑
j∈J

α j p j =
∑
j∈J ′

β j q j .

Using the map v ∈ V �→ e−v we deduce that
∑

i∈I e−αi pi + (u − pI ) =∑
i∈I ′ e−βi qi + (u − qI ′), and hence

∑
i∈I e−αi pi = ∑

i∈I ′ e−βi qi . Likewise∑
j∈J e

−α j p j = ∑
j∈J ′ e−β j q j . We also find that
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∑
i∈I

e−αi +
∑
j∈J

e−α j =
⎛
⎝∑

i∈I
e−αi pi +

∑
j∈J

e−α j p j

∣∣∣∣∣∣ u
⎞
⎠

=
⎛
⎝∑

i∈I ′
e−βi qi +

∑
j∈J ′

e−β j q j

∣∣∣∣∣∣ u
⎞
⎠ =

∑
i∈I ′

e−βi +
∑
j∈J ′

e−β j ,

so ϕ(h) is well defined.
We will also show that ϕ maps each part of the horofunction boundary onto the

relative interior of a boundary face of the dual unit ball. Recall that the relative interior
of a face F of B∗

1 is the interior of F as a subset of the affine span of F .

Theorem 4.4 Given a Euclidean Jordan algebra (V , ‖ · ‖u), the map ϕ : V h → B∗
1 is

a homeomorphism. Moreover, the part Ph, with h given by (4.2), is mapped onto the
relative interior of the closed boundary face

conv (UpI (V ) ∩ S(V )) ∪ (UpJ (V ) ∩ −S(V ))).

4.3 Horofunctions

In this subsection we will prove Theorem 4.1. We first make some preliminary obser-
vations. Note that x ≤ λu if and only if 0 ≤ λu − x , which by the Hahn–Banach
separation theorem is equivalent to (λu − x |w) ≥ 0 for all w ∈ S(V ). As the state
space is compact, we have for each x ∈ V that

�(x) = max
w∈S(V )

(x |w). (4.7)

As ‖ · ‖u is the JB-algebra norm, ‖x • y‖u ≤ ‖x‖u‖y‖u , see [4, Theorem 1.11]. It
follows that if xn → x and yn → y in (V , ‖ · ‖u), then xn • yn → x • y. Thus, we
have the following lemma.

Lemma 4.5 If xn → x and yn → y in (V , ‖ · ‖u), then Uxn yn → Ux y.

We will also use the following technical lemma several times.

Lemma 4.6 For n ≥ 1, let pn1 , . . . , p
n
r be a Jordan frame in V and I ⊆ {1, . . . , r}

nonempty. Suppose that

(i) pni → pi for all i ∈ I .
(ii) xn ∈ V (pnI ) with xn → x ∈ V (pI ).
(iii) βn

i ≥ 0 with βn
i → βi ∈ [0,∞] for all i ∈ I .

If I ′ = {i ∈ I : βi < ∞} is nonempty, then

lim
n→∞ �V (pnI )

(
xn −

∑
i∈I

βn
i p

n
i

)
= �V (pI ′ )

(
UpI ′ x −

∑
i∈I ′

βi pi

)
.
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Proof Wewill show that every subsequence of (�V (pnI )
(xn −∑

i∈I βn
i p

n
i )) has a con-

vergent subsequence with limit �V (pI ′ )(UpI ′ x − ∑
i∈I ′ βi pi ). So let (�V (p

nk
I )

(xnk −∑
i∈I β

nk
i pnki )) be a subsequence. By (4.7) there exists dnk ∈ S(V (pnkI )) with

�V (p
nk
I )

(
xnk −

∑
i∈I

β
nk
i pnki

)
=

(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣ dnk
)

.

By taking subsequences we may assume that dnk → d ∈ S(V (pI )).
Using the Peirce decomposition with respect to the Jordan frame pnki , i ∈ I , in

V (pnkI ), we can write

dnk =
∑
i∈I

μ
nk
i pnki +

∑
i< j∈I

dnki j .

Note that as dnk ≥ 0, we have that μnk
i = (dnk |pnki ) ≥ 0 for all i ∈ I .

We claim that for each i ∈ I \ I ′ we have that μnk
i → 0. Indeed, as I ′ is nonempty,

there exist l ∈ I ′ and a constant C > 0 such that

(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣ dnk
)

≥
(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣pnkl
)

= (
xnk

∣∣ pnkl ) − β
nk
l ≥ −‖xnk‖u − β

nk
l > −C

for all k, since (xnk |pnkl ) ≤ ‖xnk‖u . Moreover,

(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣dnk
)

= (
xnk |dmk

) −
∑
i∈I

β
nk
i μ

nk
i

≤ ‖xnk‖u −
∑
i∈I ′

β
nk
i μ

nk
i −

∑
i∈I\I ′

β
nk
i μ

nk
i .

As β
nk
i , μ

nk
i ≥ 0 for all i ∈ I and β

nk
i → ∞ for all i ∈ I\I ′, we conclude from the

previous two inequalities that μnk
i → 0 for all i ∈ I \ I ′.

Using the Peirce decomposition with respect to the Jordan frame pi , i ∈ I , we
write

d =
∑
i∈I

μi pi +
∑

i< j∈I
di j .

We now show that

d =
∑
i∈I ′

μi pi +
∑

i< j∈I ′
di j , (4.8)
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and hence d ∈ V (pI ′). Note that

μi − μ
nk
i = (d|pi ) − (dnk |pnki ) = (d − dnk |pi ) + (dnk |pi − pnki ) → 0.

Weconclude thatμnk
i → μi for all i ∈ I , and hence (d|p j ) = μ j = 0 for all j ∈ I\I ′.

This implies by [25, III, Exercise 3] that d • p j = 0 for all j ∈ I\I ′. So,

0 = d • p j = 1

2

⎛
⎝∑

l< j

dl j +
∑
j<m

d jm

⎞
⎠ ,

which shows that dl j = 0 = d jm for all l < j < m, as they are all orthogonal. This
gives (4.8).

Next we show that limk→∞ �V (p
nk
I )

(xnk − ∑
i∈I β

nk
i pnki ) = (UpI ′ x − ∑

i∈I ′
βi pi |d). First note that

�
V

(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)
=

(
xnk −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ dnk
)

−
∑
i∈I\I ′

(
β
nk
i pnki |dnk )

=
(
xnk −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ dnk
)

−
∑
i∈I\I ′

β
nk
i μ

nk
i

≤
(
xnk −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ dnk
)

as β
nk
i , μ

nk
i ≥ 0 for all i and k. This implies that

lim sup
k→∞

�
V

(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)
≤ lim

k→∞

(
xnk −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ dnk
)

=
(
x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

As UpI ′d = d and UpI ′ is self-adjoint, we find that

(
x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

=
(
x −

∑
i∈I ′

βi pi

∣∣∣∣∣UpI ′d

)
=

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

,

so that

lim sup
k→∞

�
V

(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)
≤

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

. (4.9)
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Now let pnkI ′ = ∑
i∈I ′ p

nk
i . As pnkI ′ → pI ′ , it follows from Lemma 4.5 that Up

nk
I ′
d →

UpI ′d = d. This implies that

(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣Up
nk
I ′
d

) (
Up

nk
I ′
d|pnkI

)−1 ≤ �
V

(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)

for all k large, as (Up
nk
I ′
d|pnkI ) → (UpI ′d|pI ) = (d|UpI ′ pI ) = (d|pI ′) = (d|pI ) = 1.

Moreover,

lim
k→∞

(
xnk −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣Up
nk
I ′
d

) (
Up

nk
I ′
d|pnkI

)−1

= lim
k→∞

(
Up

nk
I ′
xnk −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ d
) (

Up
nk
I ′
d|pnkI

)−1

=
(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

.

This shows that (UpI ′ x−∑
i∈I ′ βi pi |d) ≤ lim infk→∞ �V (p

nk
I )

(xnk −∑
i∈I β

nk
i pnki ).

From (4.9) we conclude that

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

= lim
k→∞ �

V
(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)
. (4.10)

To complete the proof we show that

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

= �V (pI ′)

(
UpI ′ x −

∑
i∈I ′

βi pi

)
. (4.11)

As (d|pI ′) = (d|pI ) = 1, we know that d ∈ S(VpI ′ ). So, we get from (4.7) that

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ d
)

≤ sup
z∈S(V (pI ′))

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ z
)

= �V (pI ′)

(
UpI ′ x −

∑
i∈I ′

βi pi

)
.

On the other hand, if w ∈ S(V (pI ′)) is such that
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(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣w
)

= sup
z∈S(V (pI ′))

(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣ z
)

= �V (pI ′)

(
UpI ′ x −

∑
i∈I ′

βi pi

)
,

then by definition of dnk we get for all k large that

(
x −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣ dnk
)

≥
(
x −

∑
i∈I

β
nk
i pnki

∣∣∣∣∣Up
nk
I ′

w

)(
Up

nk
I ′

w

∣∣∣ pnkI
)−1

=
(
Up

nk
I ′
x −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣∣ w
)(

Up
nk
I ′

w

∣∣∣∣pnkI
)−1

,

as (Up
nk
I ′

w|pnkI ) → (UpI ′ w|pI ) = (w|pI ′) = 1. This implies that

lim
k→∞ �

V
(
p
nk
I

)
(
xnk −

∑
i∈I

β
nk
i pnki

)

≥ lim
k→∞

(
Up

nk
I ′
x −

∑
i∈I ′

β
nk
i pnki

∣∣∣∣w
)(

Up
nk
I ′

w

∣∣∣∣pnkI
)−1

=
(
UpI ′ x −

∑
i∈I ′

βi pi

∣∣∣∣∣w
)

,

and hence (4.11) holds by (4.10). ��
To prove that all horofunctions in V

h
are of the form (4.2), we first establish the

following proposition using the previous lemma.

Proposition 4.7 Let (yn) be a sequence in V , with yn = ∑r
i=1 λni p

n
i . Suppose that

hyn → h ∈ ∂V
h
and (yn) satisfies the following properties:

(1) There exists 1 ≤ s ≤ r such that |λns | = rn for all n, where rn = ‖yn‖u.
(2) pnk → pk for all 1 ≤ k ≤ r .
(3) There exist I , J ⊆ {1, . . . , r} disjoint with I ∪ J nonempty, and α ∈ R

I∪J with
min{αi : i ∈ I ∪ J } = 0 such that rn − λni → αi for all i ∈ I , rn + λnj → α j

for all j ∈ J , and rn − |λnk | → ∞ for all k /∈ I ∪ J .

Then h satisfies (4.2).

Proof Take x ∈ V fixed. Note that for all n ≥ 1,

‖x − yn‖u − ‖yn‖u = max{�(x − yn),�(−x + yn)} − rn

= max{�(x − yn − rnu),�(−x + yn − rnu)}.

As h is a horofunction, ‖yn‖u = rn → ∞ by Lemma 2.1. Thus, λni → ∞ for
all i ∈ I and λnj → −∞ for all j ∈ J . Now suppose that J is nonempty. Then
rn + λnk ≥ rn − |λnk | → ∞ for all k /∈ J . As
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�(x − yn − rnu) = �(x −
∑
j∈J

(rn + λnj )p
n
j −

∑
k /∈J

(rn + λnk )p
n
k ),

it follows that

lim
n→∞ �(x − yn − rnu) = �V (pJ )(UpJ x −

∑
j∈J

α j p j )

by Lemma 4.6. Likewise, if I is nonempty, then

lim
n→∞ �(−x + yn − rnu) = �V (pI )(−UpI x −

∑
i∈I

αi pi )

by Lemma 4.6. We conclude that if I and J are both nonempty, then

h(x) = lim
n→∞ ‖x − yn‖u − ‖yn‖u

= lim
n→∞max{�(−x + yn − rnu),�(x − yn − rnu)}

= max{�V (pI )(−UpI x −
∑
i∈I

αi pi ),�V (pJ )(UpJ x −
∑
j∈J

α j p j )}.

To complete the proof it remains to show that limn→∞ ‖x − yn‖u − ‖yn‖u =
limn→∞ �(−x + yn − rnu) if J is empty, and limn→∞ ‖x − yn‖u − ‖yn‖u =
limn→∞ �(x − yn − rnu) if I is empty. Suppose that I is empty, so J is nonempty.
Then for each i ∈ {1, . . . , r} we have that rn − λni → ∞. Note that

−x + yn − rnu = −x −
∑
i

(rn − λni )p
n
i ≤ −x − min

i
(rn − λni )u

≤ (‖x‖u − min
i

(rn − λni ))u.

Thus, �(−x + yn − rnu) ≤ �((‖x‖u − mini (rn − λni ))u) = ‖x‖u − mini (rn − λni )

for all n, hence �(−x + yn − rnu) → −∞. As

max{�(x − yn − rnu),�(−x + yn − rnu)} = ∥∥x − yn
∥∥
u − ∥∥yn∥∥u ≥ −‖x‖u ,

we conclude that ‖x − yn‖u − |yn‖u = �(x − yn − rnu) for all n sufficiently large,
hence

h(x) = lim
n→∞ �(x − yn − rnu) = �V (pJ )(UpJ x −

∑
j∈J

α j p j ).

The argument for the case where J is empty goes in the same way. ��
The following corollary shows that each horofunction is of the form (4.2).
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Corollary 4.8 If h is a horofunction in V
h
, then there exist a Jordan frame p1, . . . , pr

in V , disjoint subsets I , J ⊆ {1, . . . , r}, with I ∪ J nonempty, and α ∈ R
I∪J with

min{αi : i ∈ I ∪ J } = 0, such that h : V → R satisfies (4.2) for all x ∈ V .

Proof Suppose that (yn) is a sequence in V with hyn → h in V
h
. Then for each x ∈ V

we have that

lim
n→∞ ‖x − yn‖u − ‖yn‖u = h(x)

and ‖yn‖u → ∞ by Lemma 2.1.
To show that the limit is equal to (4.2) it suffices to show that we can take a

subsequences of (yn) that satisfies the conditions in Proposition 4.7. First we note that
by the spectral theorem [25, Theorem III.1.2], there exist for each n ≥ 1 a Jordan
frame pn1 , . . . , p

n
r in V and λn1, . . . , λ

n
r ∈ R such that

yn = λn1 p
n
1 + · · · + λnr p

n
r ,

where r is the rank of V . Denote rn = ‖yn‖u = maxi |λni |.
Now by taking subsequences we may assume that there exist I+ ⊆ {1, . . . , r} and

1 ≤ s ≤ r such that for each n ≥ 1 we have rn = |λns | and

λni > 0 for all i ∈ I+ and λni ≤ 0 for all i /∈ I+.

Now for each i ∈ {1, . . . , r} and n ≥ 1 define

αn
i =

[
rn − λni for i ∈ I+
rn + λni for i /∈ I+.

Note that αn
i ∈ [0,∞) for all i . Again by taking subsequences we may assume that

αn
i → αi ∈ [0,∞] as n → ∞, for all i . Recall that αn

s = 0 for all n, so αs = 0.
Furthermore, we may assume that pni → pi in J1(V ) for all i , as it is a compact set
[30]. Note that p1, . . . , pr is a Jordan frame in V .

Now let

I = {i : αi < ∞ and i ∈ I+} and J = { j : α j < ∞ and j /∈ I+}.

So, I ∩ J is empty, s ∈ I ∪ J and min{αi : i ∈ I ∪ J } = αs = 0. Then the subsequence
of (yn) satisfies the conditions in Proposition 4.7, hence h is a horofunction of the
form (4.2). ��

The next proposition shows that each function of the form (4.2) can be realised as
a horofunction, and is a Busemann point.
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Proposition 4.9 Let p1, . . . , pr be a Jordan frame in V . Suppose that I , J ⊆
{1, . . . , r} with I ∩ J = ∅ and I ∪ J nonempty, and α ∈ R

I∪J with min{αi : i ∈
I ∪ J } = 0. If for n ≥ 1 we let yn = λn1 p1 + · · · + λnr pr , where

λni =
⎡
⎣ n − αi if i ∈ I

−n + αi if i ∈ J
0 otherwise,

then (yn) is an almost geodesic sequence and hyn → h, where h satisfies (4.2) for all

x ∈ V . In particular, h is a Busemann point in V
h
.

Proof Let k ≥ max{αi : i ∈ I ∪ J } and note that for n ≥ k we have that rn =
‖yn‖u = n, as min{αi : i ∈ I ∪ J } = 0. The sequence (yn), where n ≥ k, satisfies
the conditions in Proposition 4.7. Indeed, for n ≥ k we have that rn − λni = αi for all
i ∈ I , rn + λni = αi for all i ∈ J , and rn − λni = n otherwise. Also for s with αs = 0,
we have that |λns | = n = ‖yn‖u .

Finally to see that (hyn ) converges, we note that if we define z = ∑
i∈I −αi pi +∑

j∈J α j p j and w = ∑
i∈I pi − ∑

j∈J p j , then yn = nw + z, which lies on the
straight-line t �→ tw + z. Hence (yn) is an almost geodesic sequence, so

h(x) = lim
n→∞ ‖x − yn‖u − ‖yn‖u

exists for all x ∈ V . Thus, we can apply Proposition 4.7 and conclude that h satisfies
(4.2), and h is a Busemann point in the horofunction boundary. ��

Combining the results so far we now prove Theorem 4.1.

Proof of Theorem 4.1 Corollary 4.8 shows that each horofunction in V
h
is of the form

(4.2). It follows from Proposition 4.9 that any function of the form (4.2) is a horo-
function and by the second part of that proposition each horofunction is a Busemann
point. ��

4.4 Parts and the Detour Metric

In this subsection we will identify the parts in the horofunction boundary of V
h
, derive

a formula for the detour distance (2.2), and establish Theorem4.2.Webegin by proving
the following proposition.

Proposition 4.10 If

h(x) = max

⎧⎨
⎩�V (pI )

(
−UpI x −

∑
i∈I

αi pi

)
,�V (pJ )

⎛
⎝UpJ x −

∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭ ,

(4.12)
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and

h′(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭
(4.13)

are horofunctions with pI = qI ′ and pJ = qJ ′ , then h and h′ are in the same part
and

δ(h, h′) = ‖a − b‖var = �V (pI ,pJ )(a − b) + �V (pI ,pJ )(b − a),

where a = ∑
i∈I αi pi + ∑

j∈J α j p j and b = ∑
i∈I ′ βi qi + ∑

j∈J ′ β j q j in
V (pI , pJ ) = V (pI ) + V (pJ ).

Proof As in Proposition 4.9, for n ≥ 1 let yn = λn1 p1 + · · · + λnr pr , where

λni =
⎡
⎣ n − αi if i ∈ I

−n + αi if i ∈ J
0 otherwise,

and let wn = μn
1q1 + · · · + μn

r qr , where

μn
i =

⎡
⎣ n − βi if i ∈ I ′

−n + βi if i ∈ J ′
0 otherwise.

By Proposition 4.9 we know that (yn) and (wn) are almost geodesic sequences with
hyn → h and hwn → h′. Note that

UpI w
m = UqI ′ w

m =
∑
i∈I ′

μm
i UqI ′qi =

∑
i∈I ′

μm
i qi

for all m, so

�V (pI )

(
−UpI w

m −
∑
i∈I

αi pi + ‖wm‖u pI
)

= �V (pI )

(
−UqI ′ w

m −
∑
i∈I

αi pi + ‖wm‖uqI ′

)

= �V (pI )

(∑
i∈I ′

(‖wm‖u − μm
i

)
qi −

∑
i∈I

αi pi

)
.
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Thus,

lim
m→∞ �V (pI )

(
−UpI w

m −
∑
i∈I

αi pi + ‖wm‖u pI
)

= lim
m→∞ �V (pI )

(∑
i∈I ′

(‖wm‖u − μm
i

)
qi −

∑
i∈I

αi pi

)

= �V (pI )

(∑
i∈I ′

βi qi −
∑
i∈I

αi pi

)

= �V (pI ) (b − a) .

In the same way it can be shown that

lim
m→∞ �V (pJ )

⎛
⎝UpJ w

m −
∑
j∈J

α j pi + ‖wm‖u pJ
⎞
⎠

= �V (pJ )

⎛
⎝∑

j∈J ′
β j q j −

∑
j∈J

α j p j

⎞
⎠ = �V (pJ ) (b − a) .

So, it follows from (2.3) that

H
(
h, h′) = lim

m→∞ ‖wm‖u

+max

⎧⎨
⎩�V (pI )

⎛
⎝−UpI w

m −
∑
i∈I

αi pi

⎞
⎠ , �V (pJ )

⎛
⎝UpJ w

m −
∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭

= lim
m→∞max

⎧⎨
⎩�V (pI )

⎛
⎝−UpI w

m −
∑
i∈I

αi pi + ‖wm‖u pI
⎞
⎠ , �V (pJ )

(
UpJ w

m

−
∑
j∈J

α j p j + ‖wm‖u pJ
⎞
⎠

⎫⎬
⎭

= max

⎧⎨
⎩�V (pI )

⎛
⎝∑
i∈I ′

βi qi −
∑
i∈I

αi pi

⎞
⎠ , �V (pJ )

⎛
⎝ ∑

j∈J ′
β j q j −

∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭

= �V (pI ,pJ ) (b − a) .

Interchanging the roles of h and h′ gives H(h′, h) = �V (pI ,pJ )(a − b), hence
δ(h, h′) = ‖a − b‖var. ��

To show that h and h′ are in different part if pI �= qI ′ or pJ �= qJ ′ , we need the
following lemma.
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Lemma 4.11 If p and q are idempotents in V with p � q, then Upq < p.

Proof We have that Upq ≤ Upu = p. In fact, Upq < p. Indeed, if Upq = p, then

p = Upu = Up(u − q) +Upq = Up(u − q) + p,

and hence Up(u − q) = 0. This implies that p + (u − q) ≤ u by [29, Lemma 4.2.2],
so that p ≤ q. This is impossible, as p � q, and hence Upq < p. ��
Proposition 4.12 If h and h′ are horofunctions given by (4.12) and (4.13), respectively,
and pI �= qI ′ or pJ �= qJ ′ , then

δ(h, h′) = ∞.

Proof Suppose that pI �= qI ′ . Then pI � qI ′ or qI ′ � pI . Without loss of generality
assume that pI � qI ′ . Let (yn) in V (pI ) and (wn) in V (qI ′) be as in Proposition 4.9,
so hyn → h and hwm → h′. To prove the statement in this case, we use (2.3) and show
that

H(h′, h) = lim
m→∞ ‖wm‖u + h(wm) = ∞. (4.14)

Note that

‖wm‖u + h
(
wm) ≥ ‖wm‖u + �V (pI )

(
−UpI w

m −
∑
i∈I

αi pi

)

= �V (pI )

(
−UpI w

m −
∑
i∈I

αi pi + ‖wm‖u pI
)

.

As wm ≤ ‖wm‖uqI ′ for all m, we have thatUpI w
m ≤ ‖wm‖uUpI qI ′ for all m. Thus,

−UpI w
m −

∑
i∈I

αi pi + ‖wm‖u pI ≥ −‖wm‖uUpI qI ′ −
∑
i∈I

αi pi + ‖wm‖u pI

= ‖wm‖u(pI −UpI qI ′) −
∑
i∈I

αi pi

for all m.
We know from Lemma 4.11 that pI − UpI qI ′ > 0. As pI − UpI qI ′ ∈ V (pI ) we

also have that pI − UpI qI ′ = ∑s
j=1 γ j r j , where γ j > 0 for all j and the r j ’s are

orthogonal idempotents in V (pI ). It now follows that for all m,

�V (pI )

(
−UpI w

m −
∑
i∈I

αi pi + ‖wm‖u pI
)

≥
⎛
⎝‖wm‖u

s∑
j=1

γ j r j −
∑
i∈I

αi pi

∣∣∣∣r1
⎞
⎠ (pI | r1)−1
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=
(

‖wm‖uγ1 −
(∑

i∈I
αi pi

∣∣∣∣r1
))

(pI | r1)−1 .

The right-hand side goes to ∞ as m → ∞, and hence (4.14) holds.
For the case pJ �= qJ ′ a similar argument can be used. ��
We now prove Theorem 4.2.

Proof Parts (i) and (ii) follow directly from Propositions 4.10 and 4.12. Clearly the
map ρ : Ph → V (pI , pJ )/RpI J given by ρ(h′) = [b], where

h′(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭ ,

and b = ∑
i∈I ′ βi qi +∑

j∈J ′ β j q j ∈ V (pI , pJ )with mini∈I∪J βi = 0, is a bijection.
So, by Proposition 4.10,ρ is an isometry from (Ph, δ) onto (V (pI , pJ )/RpI J , ‖·‖var).

��

4.5 The Homeomorphism onto the Dual Unit Ball

In this subsection we prove Theorem 4.4. To start we prove a lemma that will be useful
in the sequel.

Lemma 4.13 If q ≤ p are idempotents in V and z ∈ V (p), then �V (q)(Uqz) ≤
�V (p)(z).

Proof If λ = �V (p)(z), then 0 ≤ λp − z, so that 0 ≤ λUq p − Uqz. As q =
Uqq ≤ Uq p ≤ Uqu = q2 = q, we find that 0 ≤ λUq p − Uqz = λq − Uqz, hence
�V (q)(Uqz) ≤ λ. ��

We will show that ϕ given by (4.5) and (4.6) is a continuous bijection from V
h

onto B∗
1 . As V

h
is compact and B∗

1 is Hausdorff, we can then conclude that ϕ is a
homeomorphism. We begin by showing that ϕ maps V into the interior of B∗

1 .

Lemma 4.14 For each x ∈ V we have that ϕ(x) ∈ int B∗
1 .

Proof For x ∈ V there exists y ∈ V with ‖y‖u = 1, such that

‖ϕ(x)‖∗
u = sup

w∈V : ‖w‖u≤1
|(w|ϕ(x))| = (y|ϕ(x)),

where (v|w) = tr(v • w). So, if x has spectral decomposition x = ∑r
i=1 λi pi , then

we can consider the Peirce decomposition of y,

y =
r∑

i=1

μi pi +
∑
i< j

yi j ,
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to find that

‖ϕ (x) ‖∗
u = (ϕ (x) |y) = 1∑r

i=1 e
λi + e−λi

(
r∑

i=1

(
eλi − e−λi

)
pi

∣∣∣∣∣ y
)

≤
∑r

i=1

(
eλi − e−λi

) |μi |∑r
i=1 e

λi + e−λi
< 1,

as μi = (y|pi ) ≤ (u|pi ) = 1 and μi = (y|pi ) ≥ (−u|pi ) = −1. ��
Lemma 4.15 The map ϕ is injective on V .

Proof Suppose that x, y ∈ V with x = ∑r
i=1 σi pi and y = ∑r

i=1 τi qi , where σ1 ≤
. . . ≤ σr and τ1 ≤ . . . ≤ τr , satisfy ϕ(x) = ϕ(y). Then ϕ(x) = ∑r

i=1 αi pi =∑r
i=1 βi qi = ϕ(y). where

α j = eσ j − e−σ j∑r
i=1 e

σi + e−σi
and β j = eτ j − e−τ j∑r

i=1 e
τi + e−τi

for all j .

As α1 ≤ . . . ≤ αr and β1 ≤ . . . ≤ βr , it follows from the spectral theorem (version
2) [25, Theorem III.1.2] that α j = β j for all j . Lemma 3.6 now implies that σ =
(σ1, . . . , σr ) = (τ1, . . . , τr ) = τ , as

(α1, . . . , αr ) = ∇ logμ(σ) and (β1, . . . , βr ) = ∇ logμ(τ).

Note that αi = α j if and only if σi = σ j , and βi = β j if and only if τi = τ j ,
as ∇ logμ(x) is injective. It now follows from the spectral theorem (version 1) [25,
Theorem III.1.1] that x = y. ��
Lemma 4.16 The map ϕ maps V onto int B∗

1 .

Proof As ϕ is continuous on V and ϕ(V ) ⊆ int B∗
1 , it follows from Brouwer’s domain

invariance theorem that ϕ(V ) is open in int B∗
1 . Suppose, for the sake of contradiction,

that ϕ(V ) �= int B∗
1 . So, we can find a z ∈ ∂ϕ(V ) ∩ int B∗

1 . Let (y
n) in V be such that

ϕ(yn) → z and write yn = ∑r
i=1 λni p

n
i . As ϕ is continuous on V , we may assume

that rn = ‖yn‖u → ∞. Furthermore, after taking a subsequence, we may assume that
(yn) satisfies the conditions in Proposition 4.7. So, using the notation as in Proposition
4.7, we get that

ϕ(yn) =
∑r

i=1(e
λni − e−λni )pni∑r

i=1 e
λni + e−λni

=
∑r

i=1(e
−rn+λni − e−rn−λni )pni∑r

i=1 e
−rn+λni + e−rn−λni

.

The right-hand side converges to

1∑
i∈I e−αi + ∑

j∈J e
−α j

⎛
⎝∑

i∈I
e−αi pi −

∑
j∈J

e−α j p j

⎞
⎠ = z.
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But this implies that z ∈ ∂B∗
1 , which is impossible. Indeed, if we let pI = ∑

i∈I pi
and pJ = ∑

j∈J p j , then 1 ≥ ‖z‖∗
u ≥ (z|pI − pJ ) = 1, as −u ≤ pI − pJ ≤ u. ��

For simplicity we denote the (closed) boundary faces of B∗
1 by

Fp,q = conv ((Up(V ) ∩ S(V )) ∪ (Uq(V ) ∩ −S(V )))

where p and q are orthogonal idempotents in V not both zero, see [18, Theorem 4.4].

Lemma 4.17 If h is a horofunction given by (4.2), then ϕ maps Ph into relint FpI ,pJ .

Proof Clearly, ϕ(h) ∈ FpI ,pJ if h is given by (4.2). So, ϕ maps Ph into FpI ,pJ by
Theorem 4.2(i). To show that ϕ maps Ph into relint FpI ,pJ , it suffices to show that
ϕ(h) ∈ relint FpI ,pJ .

To do this we first consider w = (|I | + |J |)−1(pI − pJ ) ∈ FpI ,qJ and show that
w ∈ relintFpi ,qJ . Let c ∈ FpI ,pJ be arbitrary. Note that we canwrite c = ∑

i∈I ′ λi qi −∑
j∈J ′ λ j q j , where

∑
i∈I ′ qi = pI ,

∑
j∈J ′ q j = pJ , and

∑
i∈I ′ λi + ∑

j∈J ′ λ j = 1
with 0 ≤ λi , λ j ≤ 1 for all i and j .We see thatw+ε(w−c) = (1+ε)w−εc ∈ FpI ,pJ
for all ε > 0 small, so w ∈ relint FpI ,pJ by [52, Theorem 6.4].

To complete the proof we argue by contradiction. So suppose that ϕ(h) /∈
relintFpI ,pJ . Then ϕ(h) is in the (relative) boundary of FpI ,pJ , hence

zε = (1 + ε)ϕ(h) − εw /∈ FpI ,pJ

for all ε > 0, as w ∈ relintFpI ,pJ and FpI ,pJ is convex. However, for each i ∈ I we
have that the coefficient of pi in zε,

(1 + ε)e−αi∑
i∈I e−αi + ∑

j∈J e
−α j

− ε

|I | + |J | ,

is strictly positive for all ε > 0 sufficiently small. Likewise, for each j ∈ J we have
that the coefficient of −p j in zε,

(1 + ε)e−α j∑
i∈I e−αi + ∑

j∈J e
−α j

− ε

|I | + |J | ,

is strictly positive for all ε > 0 sufficiently small. This implies that zε ∈ FpI ,pJ for
all ε > 0 small, which is impossible. This completes the proof. ��

Using the previous results we now show that ϕ is injective on V
h
.

Corollary 4.18 The map ϕ : V h → B∗
1 is injective.

Proof We already saw in Lemmas 4.14 and 4.15 that ϕ maps V into int B∗
1 and is

injective on V . So by the previous lemma, it suffices to show that if ϕ(h) = ϕ(h′)
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for horofunctions h ∼ h′, then h = h′. Let h be given by (4.2) and suppose that h′ is
given by

h′(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭ .

Then

∑
i∈I e−αi pi − ∑

j∈J e
−α j p j∑

i∈I e−αi + ∑
j∈J e

−α j
=

∑
i∈I ′ e−βi qi − ∑

j∈J ′ e−β j q j∑
i∈I ′ e−βi + ∑

j∈J ′ e−β j
.

As mink αk = 0 = mink βk , it follows from the spectral theorem [25, Theorem
III.1.2] that

1∑
i∈I e−αi + ∑

j∈J e
−α j

= ‖ϕ(h)‖u = ‖ϕ(h′)‖u = 1∑
i∈I ′ e−βi + ∑

j∈J ′ e−β j
,

so that

∑
i∈I

e−αi pi −
∑
j∈J

e−α j pi =
∑
i∈I ′

e−βi qi −
∑
j∈J ′

e−β j q j .

As each x ∈ V can be written in a unique way as x = x+ − x−, where x+ and
x− are orthogonal element x+ and x− in V+, see [4, Proposition 1.28], we find that∑

i∈I e−αi pi = ∑
i∈I ′ e−βi qi and

∑
j∈J e

−α j pi = ∑
j∈J ′ e−β j q j . This implies that

∑
i∈I

αi pi = − log

(∑
i∈I

e−αi pi + (u − pI )

)
= − log

(∑
i∈I ′

e−βi qi + (u − qI ′)

)

=
∑
i∈I ′

βi qi

and

∑
j∈J

α j p j = − log

⎛
⎝∑

j∈J

e−α j pi + (u − pJ )

⎞
⎠ = − log

⎛
⎝∑

j∈J ′
e−β j q j + (u − qJ ′)

⎞
⎠

=
∑
j∈J ′

β j q j ,

and hence h = h′. ��
The next result shows that ϕ is continuous on ∂V

h
.

Theorem 4.19 The map ϕ : V h → B∗
1 is continuous.
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Proof Clearly ϕ is continuous on V . Suppose (yn) is a sequence in V with hyn →
h ∈ ∂V

h
. We wish to show that ϕ(yn) → ϕ(h). Let (ϕ(ynk )) be a subsequence. We

will show that it has a subsequence which converges to ϕ(h).
As h is a horofunction, we know that rn = ‖ynk‖u → ∞ by Lemma 2.1. For each

k there exists a Jordan frame qnk1 , . . . , qnkr in V and λ
nk
1 , . . . , λ

nk
r ∈ R such that

ynk =
r∑

i=1

λ
nk
i qnki .

By taking a subsequence we may assume that there exist I+ ⊆ {1, . . . , r} and 1 ≤
s ≤ r such that for each k, rnk = ‖ynk‖u = |λnks |, and λ

nk
i > 0 if and only if i ∈ I+.

For each k, let βnk
i = rnk −λ

nk
i for i ∈ I+, and β

nk
i = rnk +λ

nk
i for i /∈ I+. Note that

βnk ≥ 0 for all i and k, and β
nk
s = 0 for all k. By taking a further subsequence we may

assume that β
nk
i → βi ∈ [0,∞] and qnki → qi for all i . Let I ′ = {i ∈ I+ : βi < ∞}

and J ′ = { j /∈ I+ : β j < ∞}. Note that s ∈ I ′ ∪ J ′ and we can apply Proposition 4.7
to conclude that hynk → h′ ∈ ∂V

h
, where

h′ (x) = max

⎧⎨
⎩�V (qI ′)

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′)

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭ .

As hynk → h, we know that h = h′ and hence δ(h, h′) = 0. This implies that pI = qI ′
and pJ = qJ ′ by Theorem 4.2. Moreover,

∑
i∈I

αi pi +
∑
j∈J

α j p j =
∑
i∈I ′

βi qi +
∑
j∈J ′

β j q j .

It follows that

∑
i∈I

αi pi = UpI

⎛
⎝∑

i∈I
αi pi +

∑
j∈J

α j p j

⎞
⎠ = UqI ′

⎛
⎝∑

i∈I ′
βi qi +

∑
j∈J ′

β j q j

⎞
⎠

=
∑
i∈I ′

βi qi

and

∑
j∈J

α j p j = UpJ

⎛
⎝∑

i∈I
αi pi +

∑
j∈J

α j p j

⎞
⎠ = UqJ ′

⎛
⎝∑
i∈I ′

βi qi +
∑
j∈J ′

β j q j

⎞
⎠ =

∑
j∈J ′

β j q j ,
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so that
∑

i∈I eαi pi = ∑
i∈I ′ eβi qi and

∑
j∈J e

α j p j = ∑
j∈J ′ eβ j q j . We conclude

that

lim
k→∞ ϕ

(
ynk

) = lim
k→∞

∑r
i=1

(
e−rnk+λ

nk
i − e−rnk−λ

nk
i

)
qnki∑r

i=1

(
e−rnk+λ

nk
i + e−rnk−λ

nk
i

)

=
∑

i∈I ′ e−βi qi − ∑
j∈J ′ e−β j q j∑

i∈I ′ e−βi + ∑
j∈J ′ e−β j

= ϕ (h) .

From Lemmas 4.14 and 4.17 we know that ϕ maps V into int B∗
1 and ∂V

h
into ∂B∗

1 .

So to complete the proof it remains to show that if (hn) in ∂V
h
converges to h ∈ ∂V

h
,

then ϕ(hn) → ϕ(h). Suppose h is given by (4.2) and for each n the horofunction hn
is given by

hn(x) = max

⎧⎨
⎩�V (qnIn )

⎛
⎝−UqnIn

x −
∑
i∈In

βn
i q

n
i

⎞
⎠ ,�V (qnJn )

⎛
⎝UqnJn

x −
∑
j∈Jn

βn
j q

n
j

⎞
⎠

⎫⎬
⎭

for x ∈ V , (4.15)

where In, Jn ⊆ {1, . . . , r} are disjoint, In ∪ Jn is nonempty, and min{βn
k : k ∈ In ∪

Jn} = 0.
To prove the assertion we show that each subsequence of (ϕ(hn)) has a convergent

subsequence with limit ϕ(h). Let (ϕ(hnk )) be a subsequence. By taking subsequences
we may assume that

(1) There exist I0, J0 ⊆ {1, . . . , r} disjointwith I0∪J0 nonempty, such that Ink = I0
and Jnk = J0 for all k.

(2) β
nk
i → βi ∈ [0,∞] and qnki → qi for all i ∈ I0 ∪ J0.

(3) There exists i∗ ∈ I0 ∪ J0 such that βnk
i∗ = 0 for all k.

Let I ′ = {i ∈ I0 : βi < ∞} and J ′ = { j ∈ J0 : β j < ∞}, and note that i∗ ∈ I ′ ∪ J ′.
Using Lemma 4.6 we now show that hnk → h′, where

h′(x) = max

⎧⎨
⎩�V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,�V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠

⎫⎬
⎭ .

(4.16)

Note that if I ′ is nonempty, then by Lemma 4.6 we have that

lim
k→∞ �V (q

nk
I0

)

⎛
⎝−Uq

nk
I0
x −

∑
i∈I0

β
nk
i qnki

⎞
⎠ = �V (qI ′ )

(
−UqI ′ x −

∑
i∈I ′

βi qi

)
,
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asUq
nk
I0
x → UqI0

x by Lemma 4.5 andUqI ′ (UqI0
x) = UqI ′ x by [4, Proposition 2.26].

Likewise if J ′ is nonempty, we have that

lim
k→∞ �V (q

nk
J0

)

⎛
⎝Uq

nk
J0
x −

∑
j∈J0

β
nk
j qnkj

⎞
⎠ = �V (qJ ′ )

⎛
⎝UqJ ′ x −

∑
j∈J ′

β j q j

⎞
⎠ .

Thus, if I ′ and J ′ are both nonempty (4.16) holds.
Now suppose that I ′ is empty, so J ′ is nonempty. As −x ≤ ‖x‖uu, we get that

−Uq
nk
I0
x ≤ ‖x‖uUq

nk
I0
u = ‖x‖uqnkI0 .

This implies that −Uq
nk
I0
x − ∑

i∈I0 β
nk
i qnki ≤ ∑

i∈I0(‖x‖u − β
nk
i )qnki , hence

�V (q
nk
I0

)

⎛
⎝−Uq

nk
I0
x −

∑
i∈I0

β
nk
i qnki

⎞
⎠ ≤ max

i∈I0
(‖x‖u − β

nk
i ) → −∞.

On the other hand, hnk (x) ≥ −‖x‖u for all k. Thus, for all k sufficiently large, we
have that

hnk (x) = �V (q
nk
J0

)

⎛
⎝Uq

nk
J0
x −

∑
j∈J0

β
nk
j qnkj

⎞
⎠ ,

which implies that (4.16) holds if I ′ is empty. In the same way it can be shown that
(4.16) holds if J ′ is empty.

As hn → h, we know that h′ = h, so δ(h, h′) = 0. It follows from Theorem 4.2
that pI = qI ′ , pJ = qJ ′ , and

∑
i∈I αi pi + ∑

j∈J α j p j = ∑
i∈I ′ βi qi + ∑

j∈J ′ β j q j .
This implies that

∑
i∈I

αi pi =
∑
i∈I ′

βi qi and
∑
j∈J

α j p j =
∑
j∈J ′

β j q j ,

so that
∑

i∈I e−αi pi = ∑
i∈I ′ e−βi qi and

∑
j∈J e

−α j p j = ∑
j∈J ′ e−β j q j . Thus,

lim
k→∞ ϕ(hnk ) = lim

k→∞

∑
i∈I0 e

−β
nk
i qnki − ∑

j∈J0 e
−β

nk
j qnkj∑

i∈I0 e
−β

nk
i + ∑

j∈J0 e
−β

nk
j

=
∑

i∈I ′ e−βi qi − ∑
j∈J ′ e−β j q j∑

i∈I ′ e−βi + ∑
j∈J ′ e−β j

= ϕ(h),

which completes the proof. ��
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Theorem 4.20 The map ϕ : V h → B∗
1 is onto.

Proof From Lemma 4.16 we know that ϕ(V ) = int B∗
1 . Let z ∈ ∂B∗

1 . As B∗
1 is the

disjoint union of the relative interiors of its faces, see [52, Theorem 18.2], we know
that there exist orthogonal idempotents pI and pJ such that z ∈ relintFpI ,pJ . Thus,
we can write

z =
∑
i∈I

λi pi −
∑
j∈J

λ j p j ,

where pI = ∑
i∈I pi , qJ = ∑

j∈J q j , 0 < λk ≤ 1 for all k ∈ I∪ J , and
∑

k∈I∪J λk =
1.

Define μk = − log λk for k ∈ I ∪ J . So, μk ≥ 0. Let μ∗ = min{μk : k ∈ I ∪ J }
and set αk = μk − μ∗ ≥ 0. Note that min{αk : k ∈ I ∪ J } = 0.

Then h, given by

h(x) = max

⎧⎨
⎩�V (pI )

(
−UpI x −

∑
i∈I

αi pi

)
,�V (pJ )

⎛
⎝UpJ x −

∑
j∈J

α j p j

⎞
⎠

⎫⎬
⎭

for x ∈ V , is a horofunction by Proposition 4.9. Moreover,

1∑
i∈I e−μi + ∑

j∈J e
−μ j

⎛
⎝∑

i∈I
e−μi pi −

∑
j∈J

e−μ j p j

⎞
⎠

= 1∑
i∈I λi + ∑

j∈J λ j

⎛
⎝∑

i∈I
λi pi −

∑
j∈J

λ j p j

⎞
⎠ ,

hence ϕ(h) = z, which completes the proof. ��
The proof of Theorem 4.4 is now straightforward.

Proof of Theorem 4.4 It follows from Theorems 4.19 and 4.20 and Corollary 4.18 that

ϕ : V h → B∗
1 is a continuous bijection. As V

h
is compact and B∗

1 is Hausdorff, we
conclude that ϕ is a homeomorphism. It follows from Lemma 4.17 that ϕ maps each
part onto the relative interior of a boundary face of B∗

1 . ��
Remark 4.21 It is interesting to note that a similar idea can be used to show that the
horofunction compactification of a finite dimensional normed space (V , ‖ · ‖) with a
smooth and strictly convex norm is homeomorphic to the closed dual unit ball. Indeed,
in that case the horofunctions are given by h : z �→ −x∗(z), where x∗ ∈ V ∗ has norm
1, see for example [23, Lemma 5.3]. Moreover, for (yn) in V we have that hyn → h
if and only if yn/‖yn‖ → x and ‖yn‖ → ∞.

In this case we define a map ψ : V h → B∗
1 as follows. For x ∈ V with x �= 0, let

ψ(x) = −
(
e‖x‖ − e−‖x‖

e‖x‖ + e−‖x‖

)
x∗,
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where x∗ ∈ V ∗ is the unique functional with x∗(x) = ‖x‖ and ‖x∗‖ = 1, and let

ψ(0) = 0. For h ∈ ∂V
h
with h : z �→ −x∗(z) let

ψ(h) = −x∗.

It is straightforward to check thatψ is a bijection from V
h
onto B∗

1 , andψ is continuous

on int B∗
1 . To show continuity on ∂V

h
, we assume, by way of contradiction, that (hn)

is a sequence of horofunctions with hn → h and hn(z) = −x∗
n (z) for all z ∈ V ,

and there exists a neighbourhood U of ψ(h) in B∗
1 such that ψ(hn) /∈ U for all n.

Then, for each z∗ ∈ ∂B∗
1 with z∗ /∈ U we have that z∗(x) < 1. So, by compactness,

δ = max{1 − z∗(x) : z∗ ∈ ∂B∗
1\U } > 0. It now follows that

hn(x) − h(x) = −x∗
n (x) + x∗(x) = 1 − x∗

n (x) ≥ δ > 0

for all n, which contradicts hn → h. This shows that ψ is a continuous bijection, and

hence a homeomorphism, as V
h
is compact and B∗

1 is Hausdorff.
More generally, one can consider product spaces V = ∏r

i=1 Vi with norm ‖x‖V =
maxri=1 ‖vi‖i , where each (Vi , ‖ · ‖i ) is a finite dimensional normed space with a
smooth and strictly convex norm. In that case we have by [40, Theorem 2.10] that the
horofunctions of V are given by

h(v) = max
j∈J

(hξ∗
j
(v j ) − α j ), (4.17)

where J ⊆ {1, . . . , r} nonempty, min j∈J α j = 0, ξ∗
j ∈ V ∗

j with ‖ξ∗
j ‖ = 1, and

hξ∗
j
(v j ) = −ξ∗

j (v j ). One can use similar ideas as the ones in Sect. 3 to show that
the horofunction compactification is homeomorphic to the closed unit dual ball of V .

Indeed, one can define a map ϕV : V h → B∗
1 by

ϕV (v) = 1∑r
i=1 e

‖vi‖i + e−‖vi‖i

(
r∑

i=1

(e‖vi‖i − e−‖vi‖i )p(v∗
i )

)
for v ∈ V \ {0}

and ϕV (0) = 0. Here p(v∗
i ) = (0, . . . , 0, v∗

i , 0, . . . , 0) and v∗
i is the unique functional

such that v∗
i (vi ) = ‖vi‖i and ‖v∗

i ‖i = 1 if vi �= 0, and we set p(v∗
i ) = 0, if vi = 0.

For a horofunction h given by (4.17) we define

ϕV (h) = 1∑
j∈J e

−α j

⎛
⎝∑

j∈J

e−α j p(ξ∗
j )

⎞
⎠ .

Following the same line of reasoning as in Sect. 3 one can prove that ϕV is a homeo-
morphism.

Remark 4.22 The connection between the geometry of the horofunction compactifi-
cation and the dual unit ball seems hard to establish for general finite dimensional
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normed spaces, and might not even hold. For the normed spaces discussed in this
paper and in [32, 33] all horofunctions are Busemann points, but there are normed
spaces with horofunctions that are not Busemann, see [54]. It could well be the case
that the horofunction compactification of these spaces is not naturally homeomorphic
to the closed dual unit ball, but no counter example is known at present.

5 Symmetric Cones with the Hilbert Distance

In this section we study the global topology and geometry of the horofunction com-
pactification of symmetric cones under the Hilbert distance. Recall that the Hilbert
distance is defined as follows. Let A be a real finite dimensional affine space. Consider
a bounded, open, convex set � ⊆ A. For x, y ∈ �, let �xy be the straight-line through
x and y in A, and denote the points of intersection of �xy and ∂� by x ′ and y′, where
x is between x ′ and y, and y is between x and y′. On � the Hilbert distance is then
defined by

ρH (x, y) = log
( |x ′ − y|
|x ′ − x |

|y′ − x |
|y′ − y|

)
(5.1)

for all x �= y in �, and ρH (x, x) = 0 for all x ∈ �. The metric space (�, ρH ) is
called the Hilbert geometry on �.

Thesemetric spaces generaliseKlein’smodel of hyperbolic space and have a Finsler
structure, see [48, 49]. In our analysis we will work with Birkhoff’s version of the
Hilbert metric, which is defined on a cone in an order-unit space in terms of its partial
ordering. This provides a convenient way to work with the Hilbert distance and its
Finsler structure. In the next subsection we will recall the basic concepts involved in
our analysis. Throughout we will follow the terminology used in [42, Chap. 2], which
contains a detailed discussion of Hilbert geometries and some of their applications.
We refer the reader to [49] for a comprehensive account of the theory of Hilbert
geometries.

5.1 Preliminaries and Finsler Structure

Let (V , V+, u) be a finite dimensional order-unit space. So, V+ is a closed cone in V
with u ∈ int V+. Recall that the cone V+ induces a partial ordering on V by x ≤ y if
y − x ∈ V+, see Sect. 4.1. For x ∈ V and y ∈ V+, we say that y dominates x if there
exist α, β ∈ R such that αy ≤ x ≤ β y. In that case, we write

M(x/y) = inf{β ∈ R : x ≤ β y} and m(x/y) = sup{α ∈ R : αy ≤ x}.

By the Hahn–Banach theorem, x ≤ y if and only ifψ(x) ≤ ψ(y) for allψ ∈ V ∗+ =
{ϕ ∈ V ∗ : ϕ positive}, which is equivalent to ψ(x) ≤ ψ(y) for all ψ ∈ S(V ). Using
this fact we see that for each x ∈ V and y ∈ int V+,
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M(x/y) = sup
ψ∈S(V )

ψ(x)

ψ(y)
and m(x/y) = inf

ψ∈S(V )

ψ(x)

ψ(y)
.

We also note that if A ∈ GL(V ) is a linear automorphism of V+, i.e., A(V+) = V+,
then x ≤ β y if, and only if, Ax ≤ βAy. It follows that M(Ax/Ay) = M(x/y) and
m(x/y) = m(Ax/Ay).

If w ∈ int V+, then w dominates each x ∈ V , and we define

|x |w = M(x/w) − m(x/w).

One can verify that | · |w is a semi-norm on V , see [42, Lemma A.1.1], and a genuine
norm on the quotient space V /Rw, as |x |w = 0 if and only if x = λw for some λ ∈ R.

Clearly, if x, y ∈ V are such that y = 0 and y dominates x , then x = 0, as V+ is a
cone. On the other hand, if y ∈ V+\{0}, and y dominates x , then M(x/y) ≥ m(x/y).
The domination relation yields an equivalence relation onV+ by x ∼ y if y dominates x
and x dominates y. The equivalence classes are called the parts of V+. As V+ is closed,
one can check that {0} and int V+ are parts of V+. The parts of a finite dimensional
cone are closely related to its faces. Indeed, if V+ is the cone of a finite dimensional
order-unit space, then it can be shown that the parts correspond to the relative interiors
of the faces of V+, see [42, Lemma 1.2.2]. Recall that a face of a convex set S ⊆ V is
a subset F of S with the property that if x, y ∈ S and λx + (1 − λ)y ∈ F for some
0 < λ < 1, then x, y ∈ F .

It is easy to verify that if x, y ∈ V+\{0}, then x ∼ y if, and only if, there exist
0 < α ≤ β such that αy ≤ x ≤ β y. Furthermore, if x ∼ y, then

m(x/y) = sup{α > 0 : y ≤ α−1x} = M(y/x)−1. (5.2)

Birkhoff’s version of the Hilbert distance on V+ is defined as follows:

dH (x, y) = log
(M(x/y)

m(x/y)

)
= logM(x/y) + logM(y/x) (5.3)

for all x ∼ y with y �= 0, dH (0, 0) = 0, and dH (x, y) = ∞ otherwise.
Note that dH (λx, μy) = dH (x, y) for all x, y ∈ V+ and λ,μ > 0, so dH is not a

distance on V+. It is, however, a distance between pairs of rays in each part of V+. In
particular, if ϕ : V → R is a linear functional such that ϕ(x) > 0 for all x ∈ V+\{0},
then dH is a distance on

�V = {x ∈ int V+ : ϕ(x) = 1},

which is a (relatively) open, bounded, convex set, see [42, Lemma 1.2.4]. Moreover,
the following holds, see [42, Proposition 2.1.1 and Theorem 2.1.2].

Theorem 5.1 (�V , dH ) is a metric space and dH = ρH on �V .

It is worth noting that any Hilbert geometry can be realised as (�V , dH ) for some
order-unit space V and strictly positive linear functional ϕ.
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AHilbert geometry (�V , dH ) has a Finsler structure, see [48]. Indeed, if one defines
the length of a piecewise C1-smooth path γ : [0, 1] → �V by

L(γ ) =
∫ 1

0
|γ ′(t)|γ (t)dt,

then dH (x, y) = infγ L(γ ), where the infimum is taken over all piecewiseC1-smooth
paths in �V with γ (0) = x and γ (1) = y.

It should be noted that in the case of Hilbert geometries the unit ball {x ∈
V /Rw : |x |w ≤ 1} in the tangent space at w ∈ �V may have a different facial
structure for different w. This phenomenon appears frequently in the case where �V

is a polytope, but does not appear in the Hilbert geometries considered here.
Let (V , V+, u) be an order-unit space, where V is a Euclidean Jordan algebra of

rank r , V+ is the cone of squares, and u is the algebraic unit. So, int V+ is a symmetric
cone and Isom(�V ) acts transitively on �V .

Throughout we will take ϕ : V → R with ϕ(x) = 1
r tr(x), which is a state, and

�V = {x ∈ int V+ : ϕ(x) = 1} = {x ∈ int V+ : tr(x) = r}.

We shall call (�V , dH ) a symmetric Hilbert geometry. A prime example is

�V = {A ∈ Herm(n, C) : tr(A) = n and A positive definite}.

These spaces are important examples of noncompact type symmetric spaces with an
invariant Finsler metric, see [50]. In particular, the example above corresponds to the
symmetric space SL(n, C)/SU(n).

In a symmetric Hilbert geometry the distance can be expressed in terms of the
spectrum. Indeed, we know that for x ∈ V invertible, the quadratic representation
Ux : V → V is a linear automorphism of V+, see [25, Proposition III.2.2]. Moreover,
U−1
x = Ux−1 and Ux−1/2x = u. Furthermore, for x ∈ V we have that

M(x/u) = inf{λ : x ≤ λu} = max σ(x) and m(x/u) = sup{λ : λu ≤ x} = min σ(x),

so that |x |u = max σ(x) − min σ(x). Also for x, y ∈ int V+ we have that

logM(x/y) = max σ(logUy−1/2x) and logM(y/x) = −min σ(logUy−1/2x).

It follows that

dH (x, y) = logM(x/y) + logM(y/x) = | logUy−1/2x |u
= diam σ(logUy−1/2x) for all x, y ∈ int V+.

Moreover, for each w ∈ �V we have that
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|x |w = M(x/w) − m(x/w) = M(Uw−1/2x/u) − m(Uw−1/2x/u)

= |Uw−1/2x |u for all x ∈ V ,

which shows that the facial structure of the unit ball in each tangent space is identical,
as Uw−1/2 is an invertible linear map.

5.2 Horofunctions of Symmetric Hilbert Geometries

The main objective is to show for symmetric Hilbert geometries (�V , dH ) that there

exists a natural homeomorphismbetween�
h
V and the closeddual unit ball of theFinsler

metric | · |u in the tangent space V /Ru at the unit u. To describe the homeomorphism,
we recall the description of the horofunction compactification of symmetric Hilbert
geometries given in [44, Theorem 5.6].

Theorem 5.2 The horofunctions of a symmetric Hilbert geometry (�V , dH ) are pre-
cisely the functions h : �V → R of the form

h(x) = logM(y/x) + logM(z/x−1) for x ∈ �V , (5.4)

where y, z ∈ ∂V+ are such that ‖y‖u = ‖z‖u = 1 and (y|z) = 0.

It follows from the proof of [44, Theorem 5.6] that all horofunctions are in fact Buse-
mann points. Indeed, if y and z have spectral decompositions

y =
∑
i∈I

λi pi and z =
∑
j∈J

μ j p j ,

where I , J ⊂ {1, . . . , r} are nonempty and disjoint, and p1, . . . , pr is a Jordan frame,
then the sequence (yn) ∈ int V+ given by

yn =
∑
i∈I

λi pi +
∑
j∈J

1

n2μ j
p j +

∑
k /∈I∪J

1

n
pk

has the property that yn → y, y−1
n /‖y−1

n ‖u → z and hyn → h, where h is as in (5.4).
Note that if we let vn = yn/ϕ(yn) ∈ �V , then hvn (z) = hyn (z) for all z ∈ �V , so
hvn → h.

Also note that for n,m ≥ 1,

U
y−1/2
n

ym =
∑
i∈I

pi +
∑
j∈J

n2

m2 p j +
∑

k /∈I∪J

n

m
pk .

This implies that for each n ≥ m ≥ 1,

M(ym/yn) = M(U
y−1/2
n

ym/u) = ‖U
y−1/2
n

ym‖u = n2/m2,
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so that logM(ym/yn) = 2 log n − 2 logm. Moreover, logM(yn/ym) = log 1 = 0 for
all n ≥ m ≥ 1. It follows that

dH (vn, vm) + dH (vm, v1) = dH (yn, ym) + dH (ym, y1) = dH (yn, y1) = dH (vn, v1)

for all n ≥ m ≥ 1. Thus, (vn) is an almost geodesic sequence in �V , and hence each

horofunction in �
h
V is a Busemann point.

To identify the parts and describe the detour distance (2.2) we need the following
general lemma.

Lemma 5.3 Let (V , V+, u) be a finite dimensional order-unit space. If v ∈ ∂V+\{0}
and wn ∈ int V+ with wn+1 ≤ wn for all n ≥ 1 and wn → w ∈ ∂V+\{0}, then

lim
n→∞ M(v/wn) =

[
M(v/w) if w dominates v

∞ otherwise.

Proof Set λn = M(v/wn) for n ≥ 1. Then for n ≥ m ≥ 1 we have that 0 ≤
λnwn − v ≤ λnwm − v. This implies that λm ≤ λn for all m ≤ n, hence (λn) is
monotonically increasing.

Now suppose that λ = M(v/w) < ∞, i.e., w dominates v. Then 0 ≤ λw − v ≤
λwn−v, henceλn ≤ λ for alln. This implies thatλn → λ∗ ≤ λ < ∞.As 0 ≤ λnwn−v

for all n and V+ is closed, we know that limn→∞ λnwn − v = λ∗w − v ∈ V+. So
λ∗ ≥ λ, hence λ∗ = λ. We conclude that if w dominates v, then limn→∞ M(v/wn) =
M(v/w).

On the other hand, if w does not dominate v, then

λw − v /∈ V+ for all λ ≥ 0. (5.5)

Assume, by way of contradiction, that (λn) is bounded. Then λn → λ∗ < ∞, since
(λn) is increasing, and λnwn − v → λ∗w − v ∈ V+, as V+ is closed. This contradicts
(5.5), and hence λn = M(v/wn) → ∞, if w does not dominate v. ��

Before we identify the parts in ∂�
h
V and the detour distance, it is useful to recall

the following fact:

M(x/y) = M(y−1/x−1) for all x, y ∈ int V+,

if int V+ is a symmetric cone, see [45, Sect. 2.4].

Proposition 5.4 Let (�V , dH ) be a symmetric Hilbert geometry and h, h′ ∈ ∂�
h
V with

h(x) = logM(y/x) + logM(z/x−1) and h′(x) = logM(y′/x) + logM(z′/x−1)

for x ∈ �V . The following assertions hold:

(i) h and h′ are in the same part if and only if y ∼ y′ and z ∼ z′.
(ii) If h and h′ are in the same part, then δ(h, h′) = dH (y, y′) + dH (z, z′).
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Proof Consider the spectral decompositions: y = ∑
i∈I λi pi , z = ∑

j∈J μ j p j , y′ =∑
i∈I ′ αi qi , and z′ = ∑

j∈J ′ β j q j . Set

yn =
∑
i∈I

λi pi +
∑
j∈J

1

n2μ j
p j +

∑
k /∈I∪J

1

n
pk and

wn =
∑
i∈I ′

αi qi +
∑
j∈J ′

1

n2β j
q j +

∑
k /∈I ′∪J ′

1

n
qk .

Then hyn → h and hwn → h′ by the proof of [44, Theorem 5.6].
For all n ≥ 1 large we have that ‖wn‖u = ‖y′‖u = 1, so that

dH (wn, u) = logM(wn/u) + logM(u/wn) = log ‖wn‖u + logM(w−1
n /u) = log ‖w−1

n ‖u .

Now set vn = w−1
n /‖w−1

n ‖u and note that by (2.3),

H(h′, h) = lim
n→∞ dH (wn, u) + h(wn)

= lim
n→∞ log ‖w−1

n ‖u + logM(y/wn) + logM(z/w−1
n )

= lim
n→∞ logM(y/wn) + logM(z/v−1

n ).

Clearly wn+1 ≤ wn and wn → y′. Also,

w−1
n =

∑
i∈I ′

α−1
i qi +

∑
j∈J ′

n2β j q j +
∑

k /∈I ′∪J ′
nqk .

So, for all n ≥ 1 large, we have that ‖w−1
n ‖u = n2, as max j∈J β j = ‖z′‖u = 1. It

follows that

vn =
∑
i∈I ′

1

n2αi
qi +

∑
j∈J ′

β j q j +
∑

k /∈I ′∪J ′

1

n
qk

for all n ≥ 1 large. So, vn+1 ≤ vn for all n ≥ 1 large and vn → z′. It now follows from
Lemma 5.3 that H(h′, h) = ∞ if y′ does not dominate y, or, z′ does not dominate
z. Moreover, if y′ dominates y, and, z′ dominates z, then H(h′, h) = logM(y/y′) +
logM(z/z′).

Interchanging the roles between h and h′ we find that H(h, h′) = ∞ if y does not
dominate y′, or, z does not dominate z′, and H(h, h′) = logM(y′/y) + logM(z′/z),
otherwise. Thus, δ(h, h′) = dH (y, y′) + dH (z, z′) if and only if y ∼ y′ and z ∼ z′,
and δ(h, h′) = ∞ otherwise. ��
The characterisation of the parts and the detour distance is a more explicit description
of the general one one given in [43, Theorem 4.9] in the case of symmetric Hilbert
geometries.
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5.3 The Homeomorphism

Let us now define a map ϕH : �
h
V → B∗

1 , where B∗
1 is the unit ball of the dual norm

of | · |u on V /Ru. For x ∈ �V let

ϕH (x) = x

tr(x)
− x−1

tr(x−1)
,

and for h ∈ ∂�
h
V given by (5.4) let

ϕH (h) = y

tr(y)
− z

tr(z)
.

We note that ϕH (h) is well-defined by Proposition 5.4.
We will prove the following theorem in the sequel.

Theorem 5.5 If (�V , dH ) is a symmetric Hilbert geometry, then the map ϕH : �
h
V →

B∗
1 is a homeomorphism which maps each part of ∂�

h
V onto the relative interior of a

boundary face of B∗
1 .

We first analyse the dual unit ball B∗
1 of | · |u and its facial structure. The following

fact, which can be found in [45, Sect. 2.2], will be useful.

Lemma 5.6 Given an order-unit space (V , V+, u), the norm | · |u on V /Ru coincides
with the quotient norm of 2‖ · ‖u on V /Ru.

Recall that in a Euclidean Jordan algebra V each x has a unique orthogonal decom-
position x = x+ − x−, where x+ and x− are orthogonal elements in V+, see [4,
Proposition 1.28]. Let

Ru⊥ = {x ∈ V : (u|x) = 0} = {x ∈ V : tr(x+) = tr(x−)}.

It follows from Lemma 5.6 that

(V /Ru, | · |u)∗ = (Ru⊥,
1

2
‖ · ‖∗

u).

So the dual unit ball B∗
1 in Ru⊥ is given by

B∗
1 = 2conv(S(V ) ∪ −S(V )) ∩ Ru⊥,

see [3, Theorem 1.19], and its (closed) boundary faces are precisely the nonempty sets
of the form

Ap,q = 2conv ((Up(V ) ∩ S(V )) ∪ (Uq(V ) ∩ −S(V ))) ∩ Ru⊥,

where p and q are orthogonal idempotents, see [18, Theorem 4.4].
To prove Theorem 5.5 we collect a number of preliminary results.
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Lemma 5.7 For each x ∈ �V we have that ϕH (x) ∈ int B∗
1 , and for each h ∈ ∂�

h
V

we have that ϕH (h) ∈ ∂B∗
1 .

Proof Let x = ∑r
i=1 λi pi ∈ �V , so λi > 0 for all i . Note that (u|ϕH (x)) = 1−1 = 0

and hence ϕH (x) ∈ Ru⊥. Given −u ≤ z ≤ u, we have the Peirce decomposition of z
with respect to the frame p1, . . . , pr ,

z =
r∑

i=1

σi pi +
∑
i< j

zi j ,

with −1 = −(u|pi ) ≤ σi = (z|pi ) ≤ (u|pi ) = 1. As this is an orthogonal decompo-
sition we have that

(z|ϕH (x)) =
r∑

i=1

σi

(
λi∑r
j=1 λ j

− λ−1
i∑r

j=1 λ−1
j

)
<

r∑
i=1

(
λi∑r
j=1 λ j

)

+
r∑

i=1

(
λ−1
i∑r

j=1 λ−1
j

)
= 2.

This implies that 1
2‖ϕH (x)‖∗

u = 1
2 sup−u≤z≤u(z|ϕH (x)) < 1, hence ϕH (x) ∈ int B∗

1 .
To prove the second assertion let h be a horofunction given by h(x) = logM(y/x)+

logM(z/x−1), where ‖y‖u = ‖z‖u = 1 and (y|z) = 0.Write y = ∑
i∈I αi qi and z =∑

j∈J β j q j . If we now let qI = ∑
i∈I qi and qJ = ∑

j∈J q j , then −u ≤ qI −qJ ≤ u
and

‖ϕH (h)‖∗
u ≥ 1

2
(qI − qJ |ϕH (h)) = (1 + 1)/2 = 1.

Moreover, for each −u ≤ w ≤ u we have that

|(w|ϕH (h))| ≤ |(w|y/tr(y))| + |(w|z/tr(z))| ≤ (u|y/tr(y)) + (u|z/tr(z)) = 2.

Combining the inequalities shows that ϕH (h) ∈ ∂B∗
1 . ��

To prove injectivity of ϕH on �V we need the following lemma, which has a proof
similar to the one of Lemma 3.6 given in [32, Sect. 4].

Lemma 5.8 Let μi : R
r → R, for i = 1, 2, be given by μ1(x) = ∑r

i=1 e
xi and

μ2(x) = ∑r
i=1 e

−xi for x ∈ R
r , and let g : x �→ logμ1(x) + logμ2(x). If x, y ∈ R

r

are such that y �= x + c(1, . . . , 1) for all c ∈ R, then ∇g(x) �= ∇g(y).

Lemma 5.9 The map ϕH is injective on �V .

Proof Suppose that ϕH (x) = ϕH (y), where x = ∑r
i=1 λi pi and y = ∑r

i=1 μi qi in
�V . Note that 0 < λi , μi for all i and (x |u) = tr(x) = r = tr(y) = (y|u). After
possibly relabelling we can write
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ϕH (x) =
r∑

i=1

(
λi∑r
j=1 λ j

− λ−1
i∑r

j=1 λ−1
j

)
pi =

r∑
i=1

αi pi

and

ϕH (y) =
r∑

i=1

(
μi∑r
j=1 μ j

− μ−1
i∑r

j=1 μ−1
j

)
qi =

r∑
i=1

βi qi ,

where α1 ≤ . . . ≤ αr and β1 ≤ . . . ≤ βr . By the spectral theorem (version 2) [25] we
conclude that αi = βi for all i .

Consider the injective map Log : intRr+ → R
r given by Log(γ ) = (log γ1, . . . ,

log γr ). Let � = {γ ∈ intRr+ : ∑r
i=1 γi = r}. The map (∇g) ◦ Log is injective on �

by Lemma 5.8 and

∇g(Log(γ )) =
(

γ1∑r
i=1 γi

− γ −1
1∑r

i=1 γ −1
i

, . . . ,
γr∑r
i=1 γi

− γ −1
r∑r

i=1 γ −1
i

)
.

Writing λ = (λ1, . . . , λr ) and μ = (μ1, . . . , μr ), we have that λ,μ ∈ � and

∇g(Log(λ)) = (α1, . . . , αr ) = (β1, . . . , βr ) = ∇g(Log(μ)),

so that λ = μ.
As (∇g) ◦ Log is injective on �, we also know that αk = αk+1 if and only if

λk = λk+1. Likewise, βk = βk+1 if and only if μk = μk+1. From the spectral
theorem (version 1) [25] we now conclude that x = y. ��

In the next couple of lemmas we show that ϕH is onto.

Lemma 5.10 The map ϕH maps �V onto int B∗
1 .

Proof Note that �V is an open set of the affine space {x ∈ V : tr(x) = r}, which
has dimension dim V − 1. Also B∗

1 ⊂ Ru⊥ has dimension dim V − 1. As ϕH is
a continuous injection from �V into int B∗

1 by Lemmas 5.7 and 5.9, we know that
ϕH (�V ) is a open subset of int B∗

1 by Brouwer’s invariance of domain theorem. We
now argue by contradiction. So, suppose that ϕV (�V ) �= int B∗

1 . There then exists a
w ∈ ∂ϕH (�V ) ∩ int B∗

1 . Let (vn) in �V be such that ϕH (vn) → w.
As ϕH is continuous on �V , we may assume that dH (vn, u) → ∞. After taking

a subsequence, we may also assume that vn → v ∈ ∂�V . Now let yn = vn/‖vn‖u
and set y = v/‖v‖u . Furthermore, let zn = y−1

n /‖y−1
n ‖u . After taking subsequences

we may assume that zn → z ∈ ∂V+ and yn → y ∈ ∂V+, so ‖y‖u = ‖z‖u = 1. As
yn • zn = u/‖y−1

n ‖u → 0, we find that y • z = 0, which implies that (y|z) = 0.
Using the spectral decomposition we write yn = ∑r

i=1 λni p
n
i and y = ∑

i∈I λi pi ,
where λi > 0 for all i ∈ I . Likewise, we let zn = ∑r

i=1 μn
i p

n
i and z = ∑

j∈J μ j p j

with μ j > 0 for all j ∈ J . Note that μn
i = (λni )

−1/‖y−1
n ‖u .
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Then

ϕh(vn) =
∑r

i=1 λni p
n
i∑r

k=1 λnk
−

∑r
i=1(λ

n
i )−1 pni∑r

k=1(λ
n
k )

−1 =
∑r

i=1 λni p
n
i∑r

k=1 λnk
−

∑r
i=1 μn

i p
n
i∑r

k=1 μn
k

→
∑

i∈I λi pi∑
k∈I λk

−
∑

j∈J μ j p j∑
k∈J μ j

= w.

Now let w∗ = ∑
i∈I pi − ∑

j∈J p j and note that −u ≤ w∗ ≤ u, as (y|z) = 0. We
find that

1

2
‖w‖∗

u ≥ 1

2
(w|w∗) = (1 + 1)/2 = 1,

hence w ∈ ∂B∗
1 , which is a contradiction. ��

Lemma 5.11 The map ϕH maps ∂�
h
V onto ∂B∗

1 .

Proof We know from Lemma 5.7 that ϕH maps ∂�
h
V into ∂B∗

1 . To prove that it is onto
let w ∈ ∂B∗

1 . Then there exists a face, say

Ap,q = 2conv ((Up(V ) ∩ S(V )) ∪ (Uq(V ) ∩ −S(V ))) ∩ Ru⊥

where p and q are orthogonal idempotents, such that w is in the relative interior of
Ap,q , as B∗

1 is the disjoint union of the relative interiors of its faces [52, Theorem
18.2]. So,

w =
∑
i∈I

αi pi −
∑
j∈J

β j q j ,

where αi > 0 for all i ∈ I , β j > 0 for all j ∈ J , and
∑

i∈I αi + ∑
j∈J β j = 2.

Moreover,
∑

i∈I pi = p and
∑

j∈J q j = q.

As w ∈ Ru⊥, we have that 0 = (u|w) = ∑
i∈I αi − ∑

j∈J β j , hence
∑

i∈I αi =∑
j∈J β j = 1.
Put α∗ = maxi∈I αi and β∗ = max j∈J β j . Furthermore, for i ∈ I set λi = αi/α

∗
and for j ∈ J set μ j = β j/β

∗. Then

w =
(∑

i∈I αi pi∑
k∈I αk

)
−

(∑
j∈J β j q j∑
k∈J βk

)
=

(∑
i∈I λi pi∑
k∈I λk

)
−

(∑
j∈J μ j q j∑
k∈J μk

)
.

Note that 0 < λi ≤ 1 for all i ∈ I and maxi∈I λi = 1. Likewise, 0 < μ j ≤ 1 for all
j ∈ J and max j∈J β j = 1.
Now let y = ∑

i∈I λi pi and z = ∑
j∈J μ j q j . Then ‖y‖u = ‖z‖u = 1 and

(y|z) = 0. Furthermore, if we let h : �V → R be given by

h(x) = logM(y/x) + logM(z/x−1)
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for x ∈ �V , then h is a horofunction byTheorem5.2 andϕH (h) = w, which completes
the proof. ��

We already saw in Lemma 5.10 that ϕH is injective on �V . The next lemma shows

that ϕH is injective on �
h
V .

Lemma 5.12 The map ϕH : �
h
V → B∗

1 is injective.

Proof We know from Lemma 5.10 that ϕH is injective on �V . So, it remains to show

that if h, h′ ∈ ∂�
h
V and ϕH (h) = ϕH (h′), then h = h′.

Suppose h(x) = logM(y/x) + logM(z/x−1) and h′(x) = logM(y′/x) +
logM(z′/x−1) for all x ∈ �V . Then

ϕH (h) = y

tr(y)
− z

tr(z)
= y′

tr(y′)
− z′

tr(z′)
= ϕH (h′).

Using the fact that the orthogonal decomposition of an element in V is unique, see [4,
Proposition 1.26], we conclude that

y

tr(y)
= y′

tr(y′)
and

z

tr(z)
= z′

tr(z′)
.

As ‖y‖u = ‖y′‖u = 1, we get that tr(y) = tr(y′), and hence y = y′. Likewise,
‖z‖u = ‖z′‖u = 1 implies that z = z′, hence h = h′. ��

5.4 Proof of Theorem 5.5

Before we prove Theorem 5.5, we recall a fact from Jordan theory. For x, z ∈ V let
[x, z] = {y ∈ V : x ≤ y ≤ z} be the order-interval. Given y ∈ V+ we write

face(y) = {x ∈ V+ : x ≤ λy for some λ ≥ 0}.

In a Euclidean Jordan algebra V every idempotent p satisfies

face(p) ∩ [0, u] = [0, p],

see [4, Lemma 1.39]. Also note that y ∼ y′ if and only if face(y) = face(y′).

Proof of Theorem 5.5 We know from the results in the previous subsection that

ϕH : �
h
V → B∗

1 is a bijection, which is continuous on �V .

To prove continuity of ϕH on the whole of �
h
V we first show that if (vn) in �V

is such that hvn → h ∈ ∂�
h
V , then ϕH (vn) → ϕH (h). Let h(x) = logM(y/x) +

logM(z/x−1) for x ∈ �V , where ‖y‖u = ‖z‖u = 1 and (y|z) = 0. For n ≥ 1 let
yn = vn/‖vn‖u and note that ϕH (vn) = ϕH (yn) for all n. Let wk = ϕH (vnk ), k ≥ 1
be a subsequence of (ϕH (vn)). We need to show that (wk) has a subsequence that
converges to ϕH (h).
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As h is a horofunction and (�V , dH ) is a proper metric space, dH (vn, u) =
dH (yn, u) → ∞ by Lemma 2.1. It follows that (ynk ) has a subsequence (ykm ) with
ykm → y′ ∈ ∂V+ and zkm = y−1

km
/‖y−1

km
‖u → z′ ∈ V+. Note that as y ∈ ∂V+, we

have that ‖y−1
km

‖u → ∞. This implies that

y′ • z′ = lim
m→∞ ykm • y−1

km

‖y−1
km

‖u
= lim

m→∞
u

‖y−1
km

‖u
= 0,

hence (y′|z′) = 0 (see [25, III, Exercise 3.3]) and z′ ∈ ∂V+. For x ∈ �V ,

lim
m→∞ hykm (x) = lim

m→∞ logM(ykm /x) + logM(x/ykm ) − logM(ykm /u) − logM(u/ykm )

= lim
m→∞ logM(ykm /x) + logM(y−1

km
/x−1) − log ‖y−1

km
‖u

= lim
m→∞ logM(ykm /x) + logM(zkm /x−1)

= logM(y′/x) + logM(z′/x−1).

So, if we let h′(x) = logM(y′/x) + logM(z′/x−1), then h′ is a horofunction by
Theorem 5.2 and hykm → h′. As h = h′, we know that δ(h, h′) = dH (y, y′) +
dH (z, z′) = 0, hence y = y′ and z = z′. It follows that

ϕH (vkm ) = ϕH (ykm ) = ykm
tr(ykm )

− y−1
km

tr(y−1
km

)
→ y

tr(y)
− z

tr(z)
= ϕH (h).

Recall that ϕH maps �V into int B∗
1 and ϕH maps ∂�

h
V into ∂B∗

1 by Lemma 5.7.

So, to prove the continuity of ϕH it remains to show that if (hn) is a sequence in ∂�
h
V

converging to h ∈ ∂�
h
V , then ϕH (hn) → ϕH (h).

Let (ϕH (hnk )) be a subsequence of (ϕH (hn)). We show that it has a subsequence
(ϕH (hkm )) converging to ϕH (h). We know there exists vm, wm ∈ ∂V+, with ‖vm‖u =
‖wm‖u = 1 and (vm |wm) = 0 such that

hkm (x) = logM(vm/x) + logM(wm/x−1)

for x ∈ �V . By taking a further subsequence we may assume that vm → v ∈ ∂V+
and wm → w ∈ ∂V+. Then ‖v‖u = ‖w‖u = 1 and (v|w) = 0. Moreover,

logM(vm/x) → logM(v/x) and logM(wm/x−1) → logM(w/x−1)

for each x ∈ �V , as y �→ M(y/x) is continuous on V , see [44, Lemma 2.2]. Thus,

hkm → h∗ ∈ ∂�
h
V , where

h∗(x) = logM(v/x) + logM(w/x−1),

123



  154 Page 54 of 57 B. Lemmens, K. Power

by Theorem 5.2. As hn → h, we have that h = h∗. This implies that y = v and z = w

by Proposition 5.4. Thus, vm → y and wm → z, hence

ϕH (hkm ) = vm

tr(vm)
− wm

tr(wm)
→ y

tr(y)
− z

tr(z)
= ϕH (h).

This completes the proof of the continuity of ϕH .

As ϕH : �
h
V → B∗

1 is a continuous bijection, �
h
V is compact, and B∗

1 is Hausdorff,
we conclude that ϕH is a homeomorphism.

To prove the second assertion let h(x) = logM(y/x) + logM(z/x−1) be a horo-
function, where y = ∑

i∈I λi pi and z = ∑
j∈J μ j p j with λi , μ j > 0 for all i ∈ I

and j ∈ J . Let pI = ∑
i∈I pi and pJ = ∑

j∈J p j . As ϕH is surjective, it suffices to
show that ϕH maps Ph into the relative interior of

ApI ,pJ = 2conv ((UpI (V ) ∩ S(V )) ∪ (UpJ (V ) ∩ −S(V ))) ∩ Ru⊥.

So, let h′ ∈ Ph where h′(x) = logM(y′/x)+ logM(z′/x−1) for x ∈ �V . Then pI ∼
y ∼ y′ and pJ ∼ z ∼ z′. Using the spectral decomposition write y′ = ∑

i∈I ′ αi qi
and z′ = ∑

j∈J ′ β j q j , where αi > 0 for all i ∈ I ′ and β j > 0 for all j ∈ J ′. Now
let qI ′ = ∑

i∈I ′ qi and qJ ′ = ∑
j∈J ′ q j . It follows that pI ∼ qI ′ and pJ ∼ qJ ′ . So,

face(pI ) = face(qI ′) and face(pJ ) = face(qJ ′). As face(pI ) ∩ [0, u] = [0, pI ] and
face(qI ′) ∩ [0, u] = [0, qI ′ ] by [4, Lemma 1.39], we conclude that pI = qI ′ . In the
same way we get that pJ = qJ ′ . As αi > 0 for all i ∈ I ′ and β j > 0 for all j ∈ J ′,
we have that

ϕH (h′) = y′

tr(y′)
− z′

tr(z′)

is in the relative interior of AqI ′ ,qJ ′ = ApI ,pJ . ��

6 Final Remarks

Besides the problem posed byKapovich and Leeb [34, Question 6.18] for finite dimen-
sional normed spaces the results in this paper show that there should be milage in
analysing the following problem.

Problem 6.1 Suppose X = G/K is a noncompact type symmetric space with a
G-invariant Finsler metric. When does there exist a homeomorphism between the
horofunction compactification of X with basepoint b under the Finsler distance, and
the closed dual unit ball B∗

1 of the Finsler metric in the tangent space at b, which maps
each part in the horofunction boundary onto the relative interior of a boundary face
of B∗

1?

In a sequel to this paper [41] thefirst author has shown for various classes of noncom-
pact type symmetric spaces X with invariant Finsler distances coming from symmetric
cones that the exponential map expb from the tangent space Tb at the basepoint b onto
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X extends as a homeomorphism between the horofunction compactification of Tb as
a normed space under the Finsler metric and the horofunction compactification of X
under the Finsler distance. Moreover, the extension of the exponential map preserves
the parts in the horofunction boundaries. In particular, this is true for symmetricHilbert
geometries (�V , dH ) and the normed spaces (V /Ru, | · |u). It would be interesting to
know if this is true for all noncompact type symmetric spaces with invariant Finsler
metrics.
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