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Abstract: Cardiovascular diseases, which include all heart and circulatory diseases, are among
the major death-causing diseases in women. Cardiovascular diseases are not subject to screening
programs, and early detection can reduce their mortal effect. Recent studies have shown a strong
association between severe Breast Arterial Calcifications and cardiovascular diseases. The aim of
this study is to use the screening programs for breast cancer to detect the high severity of BACs and
therefore to obtain indirect information about coronary diseases. Previous attempts in the literature on
the detection of BACs from digital mammograms still need improvements to be used as a standalone
technique. In this study, a dataset of mammograms with BACs is divided into 4 grades of severity,
and this study aims to improve their classification through a transfer learning approach to overcome
the need for a large dataset of training. The performances achieved in this study by using pre-trained
models to detect four Breast Arterial Calcifications severity grades reached an accuracy of 94% during
testing. Therefore, it is possible to benefit from the advantage of Deep Learning models to define a
rapid marker of BACs along Brest Cancer screening programs.

Keywords: breast arterial calcifications; cardiovascular diseases; coronary artery disease; deep
learning; transfer learning

1. Introduction

Coronary Artery Disease (CAD) is among women’s major reasons of death. The ratio
of death due to this disease is more in women, and it is around 1 out of 7 in the U.S alone [1].
The obstruction of arteries that are the source of blood to the heart (called coronary arteries)
and other body parts is the main reason for CAD [2]. These channels (arteries) are right on
top of the heart muscle. This blockage is caused by the build-up of plaque, which is the
deposition of cholesterol, calcium, fats, fibrin, and other substances along the arteries that
narrow down the path. When these arteries are narrowed down heart does not get enough
blood to function properly [3]. Presently, the disease is not detected until it is very late, so
early detection of CAD among women is very important.

Breast Arterial Calcification (BAC) is a calcium deposition on the peripheral arterioles,
which is known as Monckeberg medial calcific sclerosis [4]. Monckeberg’s arteriosclerosis
is a type of vessel hardening, where calcium deposits are found in the muscular middle
layer of the walls of arteries [5]. BACs detection does not require any additional X-ray
procedure besides the traditional mammography, which is taken by the majority of women
older than 40–45 years, reducing health care costs and the body radiation rate in patients [6].
An estimate shows that approximately 40,000,000 mammography exams are executed per
annum within the US [6]. BACs are a common finding that shows up as white areas in
breast arteries on mammograms. They can appear in varying shapes and sizes, usually
appearing as parallel or tabular tracks on mammograms [7]. Figure 1 shows BACs on a
mammogram. It can be caused by several factors including normal aging, past trauma,
inflammation, etc. [8].
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Deep learning is employed successfully for medical image analysis, and some contri-
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has not yet been explored for the problem of BACs detection. Transfer learning tech-
niques, as proposed in this study, can offer a real-time solution and strong performances, 
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Figure 1. A digital mammogram. The yellow arrows are showing examples of Breast Arterial
Calcifications (BACs).

By taking advantage of mammograms, which are used in breast cancer screening
programs, we can detect BACs. At present, the final mammogram reports do not include
BACs findings as they are considered irrelevant [9] and treated as false positives for
the detection of breast cancer. However, rather than discarding this information from
mammograms, it can be used to automatically detect BACs.

Mostafavi et al. (2015) [10] identified the relationship between mammographic breast
arterial calcifications and coronary artery disease based on coronary computed tomography
angiography results (CTA). The study analyzed 100 women who took both mammography
and coronary CTA. The degree of BACs was extracted from the mammogram exams, being
graded based on their length, extent, and severity. A large proportion of 83% of females
diagnosed with moderate or advanced BACs on mammography was diagnosed by the
coronary CTA with moderate to severe CAD.

Several studies succeeded in showing a positive association between CAD and the
severity of BACs [10–12], and they proved that Breast Arterial Calcifications (BACs) identi-
fied on mammograms can be a beneficial risk indicator to show the existence of coronary
artery disease [7,13–15]. With technological advancements and with getting more aware
of the significance of Breast Arterial Calcifications, the automatic detection of BACs is
becoming essential [16,17] Rather than having invasive and expensive approaches, it is
possible to use routine mammography for this detection [6,16]. Hence, several studies are
focusing on developing techniques that can be used for the automatic detection of BACs.

Deep learning is employed successfully for medical image analysis, and some contri-
butions are exploring its potential in this domain [13,16–18]. Transfer learning is a branch
of deep learning that has proved efficient in other medical image analyses [4,18,19] but has
not yet been explored for the problem of BACs detection. Transfer learning techniques,
as proposed in this study, can offer a real-time solution and strong performances, using a
small dataset of training.

The research work in this paper attempts to detect the severity of BACs on mammo-
grams as it is considered a valuable risk marker to identify CAD. The technical contribution
of this work is related to the feasibility evaluation of pre-trained deep learning models
in this emerging medical domain; the goal is the achievement of high performances, in
comparison with the literature, with the constraint of a relatively small dataset of training
and a more detailed description of the BACs severity.
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The article is structured in this way: In Section 2 the most relevant articles on the topic
are considered; in Section 3 the transfer learning methods and the dataset used in this paper
are presented; in Section 4 the results of pre-trained models are shown with a comparison
with the literature; and finally, in Section 5 the conclusions are summarized.

2. Literature Review
2.1. Previous Approaches

Some previous studies tried to show how BACs and CAD risk factors are re-
lated to one another to determine how well we can use BACs to determine CAD.
Mostafavi et al.(2015) [10] attempted to evaluate Logistic regression for predicting CAD
in patients. In the studied population, the prevalence of BACs was 12% and CAD was
29%. The results showed that 10 of 12 patients with BACs had CAD. Similar to this study,
one other study [20] conducted performed a meta-analysis and systematic literature re-
view showing a positive relation between BACs and cardiovascular events. Authors [11]
also showed a confirmatory association between Coronary Artery Calcifications and
BACs. Almost all the research depicts a relation between CAD and the presence of BACs,
be it severe or mild.

Breast Arterial Calcifications appear in different shapes and sizes [7]; they can appear
as elongated paths or short and inconsistent paths but can vary considerably. There
have been many attempts to find an accurate method to quantify and detect BACs from
mammograms; some methods can be used as an initial tool but due to these varying
shapes and sizes of BACs, the detection becomes even more difficult. One study in this
direction is presented [21]; this study started with image preparation by removing the
black region around the breast, image resolution was also reduced, and then images were
passed through a Gaussian filter and line Strength Algorithm to make images more clear
and smooth. The images were then analyzed by region growing algorithm, and the white
levels were used to decide the grade and presence of calcification. The highest accuracy
(81%) was achieved for determining whether the calcification was mild or severe. Another
study [22] in this direction used a two-step procedure. The first step was edge detection,
and the second step was image segmentation. It used the line strength algorithm and region
growing algorithm to make vessels more clear and highlight them. The results [22] showed
that this method can accurately quantify BACs. Authors in [23] used a learning-based
method for the segmentation of vessels. To capture variation in vessel patterns, it created a
pool for several features that included local features along with Gabor, and Haar features
that were taken from mammograms. This resulted in a very high-dimensional feature
space. To handle a huge number of training data and high dimensional feature space, it
applied forest along with boosting and tree for segmentation of vessels.

As the interest grew in this direction, numerous other algorithms were also presented
in the literature for the detection of BACs. References. [24–26] proposed a process by seeing
together both the vessel-ness clues and calcifications. The process had two steps; the first
step generated several sampling paths by using an uncertainty system, and the second step
grouped BAC paths to BACs using another assembling and connecting algorithm.

2.2. Previous Approaches Using Deep Learning

Article [18] was the first step to detecting BACs from mammograms using deep
learning. A 12-layer CNN architecture was considered, pixel-wise, and a patch-based
approach was used to detect BACs. The tissue region was determined as the biggest
region that was connected having an intensity value more than the average intensity of the
complete image. To detect BAC, thresholding and morphology operations are applied and
the resultant BAC is identified as an overlapping region from the latter two approaches.
The results showed an accuracy of 62.61%.

Several studies used U-Net with numerous alternations to detect different diseases.
Xiaomeng Li [27] suggested an H-Dense U-Net that contracted the path of a U-Net with
dense connections as a 2-dimensional Dense U-Net followed by a 3-dimensional Dense
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U-Net for liver and tumor segmentation, Guan et al. [28] joined U-Net with Dense Net to
eradicate the pieces of images. In the meantime, Chen et al. [29] proposed a method using
dense connection blocks to extend the U-Net architecture for biomedical segmentation.

Inspired by results from many U-Net models in numerous segmentations and Dense
Net in semantic segmentation, a study [17] used the U-Net model with dense connectivity
for the automatic detection of BACs in mammograms. This method combines both short
and long skip connections. The short skip connections were used to stop the model from
learning unwanted features and increase the flow of information, whereas the long skip
connections recover the information that was lost during encoding. It used a summation
operation at the terminating point of the long skip connections. The results from this
method were quite accurate, giving an accuracy of 91.47%.

Another deep learning approach [13] for the similar purpose of segmenting and
quantifying Breast Arterial Calcifications was used. The study used a method for the seg-
mentation of vessels called Simple Context U-Net (SCU-Net). The images were very
large due to which they were divided into patches and then stitched back to obtain
the final output. The study used five quantifiable metrics to determine the develop-
ment of BACs. The results show around 95% correlation between the predicted mask of
SCU-Net in comparison to the ground truth and measurement of breast calcifications on
computed tomography.

Despite all these approaches, the accurate detection of BACs from mammograms is
still an unresolved problem. There were issues in the deep learning model detection like the
detection of small vessels. Severity detection in this research domain is currently an open
area. Besides giving an excellent performance, the algorithms lagged in a few areas. The
narrow and varied appearance of BACs makes it much more challenging. Some using the
pixel-wise approach [18] limited the data used, some models proposed had very complex
architecture [27], and some required large data sets. Moreover, some may produce wrong
results when BACs are non-continuous [17]. There are no large, annotated datasets of
BACs available, and the use of large images makes the processing significantly difficult.
Furthermore, the training of deep learning models from scratch with such limitations makes
the problem challenging to resolve.

The research work presented in this paper with respect to previously cited studies
works on mammograms from screening programs without the need for additional input
parameters to improve the performances. This study employs transfer learning where the
models are already trained on a huge dataset, which reduces the time and resources required
for model training, building a much lighter and more accurate model. Furthermore, it
addresses the problem of the exact grade of calcifications, considered in [10,21], that can be
used to define an automatic index associated with the severity of BACs.

3. Methodology

Transfer learning is an effective deep learning technique. Its main focus is to use the
knowledge gained from one problem to solve other problems, it uses pre-trained models
as a starting point for new tasks [30]. It is sometimes also used to overcome problems or
constraints of traditional machine learning like the time required for training from scratch,
or computational costs, or requiring a large amount of data [31].

Deep learning models have layered architectures; initial layers are used to learn generic
features, whereas final layers are used to learn higher-order features or features related
to a specific task. This layered architecture allows using pre-trained models without their
final layers to extract features from other tasks [32]. Another approach is to freeze certain
layers and retrain some other layers that help achieve better performance [32]. Most of the
pre-trained models are trained on a large dataset (Image-Net dataset).

This research used pre-trained models and shows a comparison between different
pre-trained models to define which model performs better in the classification of the grade
of severity of BACs and can be used as a potential marker.
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As for the implementation details, this study used Google Colaboratory (Google
Research) as it provides free online GPU service and python with Keras, Tensor flow,
and several python libraries (e.g., Augmentor). Pre-trained models were imported from
Keras. Google Colab hosts Jupyter notebook services including GPU. The GPU provides
the distribution of training processes that enables significant machine-learning operations.

3.1. Pre-Trained Models

In this research, the pre-trained models that were used on the pre-processed data are
as follows:

3.1.1. VGG-19

VGG stands for Visual Geometry Group. The architecture of VGG is described in
detail by Kaushik [33]. The architecture used in this model consisted of 19 layers. All the
layers are sequentially arranged. Convolutional layers use a kernel of 3 × 3 with a stride
size of 1 pixel, max pooling is applied over a 2 × 2 window with stride 2 for downsampling,
and Rectified linear Unit (ReLu) is used to introduce nonlinearity. 4096 neurons exist in the
fully connected layers and the final layer is a SoftMax function.

3.1.2. ResNet50

ResNet stands for Residual Networks. The architecture is explained in detail by
Kaushik [34]. It is a CNN model consisting of 50 layers [35]. It makes use of skip connections.
The reason for adding skip connections is to avoid a vanishing gradient. The architecture
contains 48 convolutional layers, an average pool layer, and a max pool. After every
convolutional layer, a batch normalization layer is attached.

3.1.3. DenseNet121

DenseNet121 stands for densely connected convolutional network. In this network,
each layer is linked to every other upcoming layer. The architecture of DenseNet can
be seen in [36]. DenseNet121 ensures that maximum information flows from input to
output by a feed-forward network that joins the output of each layer to the next after
applying composite operations. The architecture prevents redundant learning and provides
feature reuse. After each dense block, transition layers are applied including convolutional
operations, batch normalization, and activation function.

3.1.4. InceptionV3

The model comprises two portions. The first part extracts features using CNN and the
second is the classification part using fully connected and softmax layers. The architecture
for InceptionV3 is 48 layers deep with an input of 299 × 299. The main focus of Inception V3
was to use less computational power and prevent the number of parameters from growing
too large when the network goes deep.

The architecture of Inception V3 shown by [37] uses factorized convolutional layers
to reduce the parameters required for the network, smaller convolutions that result in
faster training, and an auxiliary classifier to improve convergence and deal with vanishing
gradient problems so it acts as a regularizer.

3.1.5. Mobile Net

Mobile Net [38] is an efficient and lightweight model. It is aimed at devices having
limited computing power and memory by having a small network without compromising
the speed of the model and is primarily built from depth-wise separable convolutions
in place of convolutional layers. Each of these layers consists of depth-wise convolution
and pointwise convolution. The model uses two new global parameters. The first one
is the width parameter that helps in constructing smaller and computationally cheap
models. The second is the resolution multiplier that helps to decrease the resolution of the
input image.
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3.2. Dataset

To date, there is no official benchmark per BACs classification. Large annotated
datasets of mammograms used for breast cancer have only the region of interest related
to tumors without details related to BACs. The images used in this study are originally
provided by Peninsula Radiology Academy in Plymouth, UK, and have already been used
in [21]. The data set consisted of a total of 104 mammograms from 26 female patients. For
each patient, the dataset has a set of four mammograms from different projections, two for
the right breast and two for the left breast. The dataset is unbiased and in equilibrium. The
26 patients were split into four groups based on the grade of calcification proposed in [10].
As shown in Figure 2, each grade represents a different level of severity. Grade 1 represents
the lowest severity (no BACs) and Grade 4 represents the highest severity of calcification.
Besides Grade 4, all other grades consist of data from seven patients, whereas grade 4
contains data from five patients. In this paper, we use the term 2-class classification for
determining the severity of BACs (mild and severe) and 4-class classification is used when
the classification refers to determining the actual grade of calcification (Grade 1, Grade 2,
Grade 3, Grade 4).
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Figure 2. In the picture there are BAC examples from grade 1 until grade 4.

The dataset consisted of two sizes of images. Some images were of size 2082 × 2800 pixels,
whereas the other images were of size 2800 × 3518 pixels. So, the images needed to be standard-
ized before going any further. A set of images was separated from training and validation data
to be used only for blind testing. For 4-class classification a total of 200 augmented images were
used in the training set, however, the original images were divided into 58 and 46 for validation
and test set, respectively. However, for 2-class classification the original images i.e., a total of
104 images were used for validation, whereas augmented images were divided as 200 and 50 for
training and test sets, respectively.

3.3. Methods

While exploring the dataset, it was seen that each mammogram had an extra black
area as a part of it, which does not contribute to the detection of calcifications, and it
increases the size of the image unnecessarily. These black backgrounds were removed from
all images, cropping out this area for each image.

The images in each grade folder consisted of a pair of right and left breasts. The
study aimed to accurately detect the severity of Breast Arterial Calcifications and not be
concerned about the left and right breast, so all images were flipped in one direction to
improve similarity between images.

In addition, it was found that the dataset had images of two different dimensions. To
deal with these issues, the data set was resized and the training was done with different
image dimension datasets to see which dimensions produced the best results. The images
of size 300 × 400 pixels were selected for final processing.

3.4. Data Augmentation Settings

The next step was to make sure that there was enough data to do the processing so that
the model can be trained efficiently. Data augmentation increases the data set artificially by
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several techniques like flipping, rotating, zooming, shearing, etc. [39]. For this purpose,
a separate python library was used called Augmentor. This library took a folder for each
grade of images and output a specified number of augmented images. Some of the results
from augmented images are shown in Figure 3. The data augmentation technique is a
very useful tool in avoiding over-fitting and it can be applied to both the training and the
validation datasets. However, it is not indicated to use the data generator on the testing
dataset as the model must be tested on real images. For images of size 300 × 400 pixels,
50 augmented images were generated for each grade only for the training set, whereas for
testing and validation sets the original resized images were divided.
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Figure 3. These images show augmented images extracted from a patient with a BAC of grade 1.

For this study, the following data augmentation operations were applied.
Rotation—As the name suggests it rotates the images to a certain degree specified.
Shearing—It changes the orientation of images.
Zooming—As the name suggests it either zooms in or out.
Shift range—This function shifts the image in either width or height.
The table below (Table 1) summarizes the augmentation parameters provided for the

training data.

Table 1. Augmentation parameters set for the generating images.

Parameters Values

Rescale 1/255

Height shift 0.2

Width shift 0.2

Zoom 0.2

Shear 0.2

Rotation 40

Horizontal flip True

3.5. Transfer Learning Optimizations

Transfer learning allows building a model on top of what is already there by changing
some of the layers of existing models and freezing a few layers [32]. For this study, pre-
trained models were used for feature extraction and the output of the model was then used
as input to the new classifier. So, the pre-trained model is integrated with a few extra layers
so the weights of the pre-trained model are frozen.

When loading, model parameters are adjusted to load the model from the last con-
volution layer or pooling layer directly and prevent the loading of fully connected layers.
The shape of the images is also specified before loading the model. The multi-dimensional
output is flattened to linear output and then fed to dense layers to generate the output.
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For this research purpose, the sequential model was used. The sequential model
allows building the model layer by layer [40]. The pre-trained model is integrated into this
sequential model on top of which a flattened layer and two dense layers are added.

3.6. Training of All Models

After defining the model, the next step is to set hyper-parameters that are required to
get the best results and also match the processing capability. Batch size denotes the number
of samples that are taken at a time in a single epoch [41]. For this research, a batch size of
32 was used.

The second important parameter that had a major impact on the results was the
optimizer. It helps to reduce the overall loss and improve accuracy [42]. ADAGrad was
used as it produced the best results; one possible reason for ADAgrad performing well was
that it uses different learning rates depending on the parameters [43]. Figure 4 attached
shows the results with Adagrad (Figure 4). Figure 5 shows the performance of the Adagrad
optimizer using a confusion matrix during the validation of Inception V3 on determining
the severity of BAC.
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Epochs are the number of rounds for which we pass over the entire dataset. For this
study 400 to 600 epochs were used to make results stable and to avoid overfitting [44].

Another parameter adjusted is the loss function. Categorical cross-entropy was em-
ployed in this research. Categorical cross-entropy is used for multi-class classification. This
cross-entropy assumes that among different classes, only one class is true and the remaining
are false. Below is the table (Table 2) to summarize the hyper-parameters adjusted for
the study.

Table 2. Hyper-parameters set for this model.

Hyper-Parameters Values

Batch size 16

Epochs 400/600

Optimizer Adagrad

Learning rate Default (0.001)

Loss function Categorical Cross-entropy

4. Results and Discussion

This section evaluates the performance of the pre-trained model in classifying BACs
from mammograms in the considered dataset.

4.1. Results of Model

This section shows the result of the test data set. Tables 3 and 4 show the best results
that were obtained after the adjustments of all hyper-parameters for the pre-trained models.
The confusion matrices for the Tables 3 and 4 are placed below them as Figures 6 and 7
respectively. As it can be seen from both tables, the results for determining the severity are
better than for determining the exact grade for calcification; this can be due to an increased
dataset in the case of 2-class classification. However, looking at them individually, the
performance is good in both cases of 2-class classification and 4-class classification.

The study not only evaluates the accuracy but other important indexes on the test set
that are needed to determine the reliability of a model for medical use. For this study, the
results are excellent for all the pre-trained models and some of them achieve over 94% in
all indexes for Tables 3 and 4, which proves their reliability on this application.

The Comparison of accuracies for the training, validation, and blind testing is also
shown in Figures 8 and 9. The majority of the images in the test set are correctly classified,
which shows that the pre-trained models learned well and are capable of classifying
new data.

Table 3. Comparison of pre-trained models for 2 Class Classification.

VGG-19 ResNet50 Mobile Net DenseNet-121 Inception V3

Training time (avg.)
ms/epoch 9.733 8.673 7.533 8.631 7.640

Val. Accuracy (%) 100 93.75 95.83 95.83 97.92

Val. loss 1.88 11.92 22.41 13.07 2.42

Test Accuracy 96.15 97.11 97.11 98.07 97.08

Test Sensitivity (Recall) 100 100 100 100 98

Test Specificity 93 95 95 96 95

Test Precision 92 94 94 96 94

Figure No. 6 7 8 9 10
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Table 4. Comparison of pre-trained models for 4 Class Classification.

Model VGG-19 ResNet50 Mobile Net DenseNet-121 Inception V3

Training time (avg.)
ms/epoch 9.733 8.676 6.523 7.598 7.588

Val. Accuracy (%) 90.62 93.75 84.38 93.75 96.88

Val. loss 42.05 7.45 58.84 43.20 13.49

Test Accuracy 90 92 94 92 93

Test Sensitivity 89 93 94 93 94

Test Precision 90 93 94 93 94
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4.2. Verification of Results on Large Population

To verify the model and the adjustments that were done to the algorithm and the
images, the Stratified K fold method was used to divide data into three parts and in each
loop used one part for validating and two parts for training. After going through the three
loops, the resultant model was then tested with the test data set that was kept separate and
did not become a part of training or validation. To estimate the accuracy of the pre-trained
methods over a large population, starting from the sample of the 104 images in our dataset,
a 95% confidence interval was evaluated using the Wilson method [45]. Such prediction
of accuracy on the proposed models, excluding DenseNet121, can be considered between
87.13–100% in all cases, whether it uses 2-class classification or 4-class classification, which
shows that the pre-trained model can be a good method of classifying the Breast Arterial
Calcifications accurately.

Furthermore, the results produced by this study can be compared with the previous
studies that are summarized below in Table 5.

Comparing our proposed model to the previous studies shown in Table 5, it can be seen
that the results from our pre-trained models are more accurate than most of the previous
studies. Along with accuracies on the severity of BACs, the pre-trained models also provide
the exact grade of calcifications. Furthermore, this study employs transfer learning where
the models are already trained on a huge dataset, which reduces the time and resources
required for model training, building a model that is much lighter and more accurate.
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Table 5. Summary of the quantitative recent approaches in the literature.

Reference Objective Classification Type Method Year Accuracy %

[17] Detect BACs in real time
using mammograms 2 class Simple context U-net

(SCU-Net) 2021 95

[46]

Compute the quantity of
BACs and also determine
vessel calcification in the
breast as a detector

4 class
Remove the extra black space
from the mammograms and
apply different algorithms.

2019 81.8

[13]
Determine the performance
of deep learning for
vascular extraction

2 class
A retrospective analysis was
used to determine the
performance of the 2 classes

2020 98

[18]
Detect the presence
and severity of BACs
from mammograms

2 class CNN 2017 62.61

[21]
Detect the presence and
severity of 2 class BACs
from mammograms

2 class A handcrafted method with
medical imaging technique 2019 82

5. Conclusions

To summarize, in this research paper, the use of transfer learning for the detection of
BACs on mammograms was examined, which is considered a useful risk marker for the
detection of CAD. This work tested the results on the given dataset and has also shown a
comparison between different pre-trained models to see which model performs well. In
this case, most of the pre-trained models we used, i.e., DenseNet, InceptionV3, and Mobile
Net, perform very well in terms of accuracy, specificity, and sensitivity. Mobile Net with
around 97% of accuracy in 2-class classification and 94% of accuracy in 4-class classification
shows that the performance of pre-trained models is, in general, better than previous
studies in literature, and they optimize the time and resources required for model training.
Furthermore, the performances are robust also considering a 95% confidence interval for
the sample of the images considered, having predicted accuracy on large populations
between 87.13–100%.

The results direct that this approach can be evolved further to be used as an automatic
mechanism to identify the severity of BACs (along with the exact grade of BACs), integrated
in a Computer Aided Detection System for Breast Cancer. Such a system can be used along
breast cancer screening programs to provide an indirect screening of Coronary Artery
Disease for the same target population.
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