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ABSTRACT 

 

Supervised deep neural networks need datasets for training, in which the data need to be 

annotated before use. For developing a reliable deep neural network, the datasets should 

meet some criteria including high-quality annotation, diversity, and abundance of data. 

Generation of such datasets is costly and time-consuming, especially in the case of image 

datasets. This is due to reasons including inaccessibility to large-scale and diverse images, 

as well as the laborious process of image annotation. These problems are exacerbated in 

the medical domain since medical image collection is more expensive, and their 

annotation requires in-depth domain knowledge. Thus, big data and high-quality 

annotation are two of the most difficult challenges in annotation of medical images, not to 

mention ethical considerations.. The computer vision community has put forward a lot of 

effort to tackle these challenges, e.g., by using computer techniques for synthetically 

generating low-cost (economically, time-wise, etc) images or using computer techniques 

to facilitate the annotation process. Despite intensive efforts, many aspects of the domain 

and solutions remain understudied. For example, in crowdsourcing, which is a common 

way of generating rapid and cost-effective annotation, there is the risk of having low-

skilled annotators, which degrades the annotation quality. Moreover, the tedious nature 

of some annotation tasks can detrimentally affect annotators’ quality in the prolonged 

annotation processes (even for the skilled workers). Thus, in this Ph.D. thesis, some of 

these challenges were comprehensively explored and some solutions, focusing on three 

studies outlined as follows were proposed to bridge these gaps. 

First, as the prerequisite of this Ph.D. thesis, a web-based annotation platform was 

developed for image datasets annotations, powered by a crowdsourcing tool that has been 

utilized for the forthcoming studies. This platform is now available online at www.ai-

console.com. Furthermore, a dataset of microbiological images of three different 

parasite groups were collected and annotated by the biologist research partners. 

In the first study, we compared the performance of an AI-based assistive tool to help 

annotators (also known as crowd workers or crowd annotators in crowdsourcing context) 

with microbiological image annotation with that of manual annotation. To accomplish 

this, the web-based annotation platform was integrated with a novel assistive tool (based 

on a weakly trained object detection model), and a two-day experiment (i.e. with using and 

not using assisitive tool, respectivly) with crowd workers was conducted in two modes: i) 

http://www.ai-console.com/
http://www.ai-console.com/
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AI-based assistive annotation and ii) manual annotation. A set of quantitative evaluations 

were conducted in order to assess the annotators' behaviour and the assistive tool's 

performance. Overall, the results showed how this assistive tool based on a weakly trained 

object detection model can decrease the annotation cost (measured by time and number 

of clicks). Derived from the findings of this study, some recommendations on how future 

platforms with the same assistive tool can be designed to more engage the annotators to 

the task for a better performance are provided. Due to the lack of more conclusive results 

related to annotators' behaviour, and fatigues effect on annotators' performance, the 

platform was upgraded with additional tools to address other research questions in the 

next study. 

The second study, aimed to answer three research questions. i) How crowd workers' 

performance changes over time when involved in a prolonged task ii) feasibility of 

assessing annotators’ fatigue and performance via annotation-based and mouse-based 

features iii) assessing a new aggregation technique to combine crowd workers annotations 

with respect to their annotations’ estimated quality. In this study, we found an increase 

and decrease in annotators’ performance (as measured by the Dice Similarity Coefficient; 

DSC) as a function of learning and fatigue effects whereas workers in the learing region 

gained experience resulting in better performance, while in the fatigue region their 

performance detoriated. A set of extracted annotation-related and mouse-related features 

demonstrated a strong correlation with the workers' quality and fatigue level, which 

motivated the creation of regression models for estimating workers' performance. 

Additionally, we proposed a new Weighted Majority Voting (WMV) method for 

aggregating annotations that takes into account the estimated quality of each individual 

annotation. In comparison with the benchmark aggregation techniques (conventional 

majority voting and STAPLE), the new aggregation method showed a relative 

improvement in the mean and variance of DSCs. 

The third study, tackled the lack of diversity in microbiology image datasets by developing 

a GAN-based image-to-image translation model (BioGAN) for converting microbiology 

images, taken in the lab into images with the visual characteristics of images taken in the 

field. This study was motivated by the fact that collecting microbiological images in the 

field is not as simple and affordable as lab-based image collection.  By adding a Perceptual 

loss (including two elements of Content reconstruction loss and Style reconstruction loss) 

to the Adversarial loss of a classical GAN network, the difference between high-level 
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(texture) features of the synthetic image and a real-world field image has been penalised.  

Then, the proposed BioGAN model was tested on its ability to translate laboratory-taken 

images of Prototheca into field-like images, using experts’ qualitative evaluation and 

quantitative evaluation by the Mask R-CNN object detection framework. 

We found that the generated images helped to boost diversity as well as the volume of the 

dataset. In synthetically generated images, the spatial characteristics remain the same (i.e., 

the cells remain in the same position with the same dimension), which means that the 

annotations for the lab-taken images are valid and usable for synthetic field images, which 

reduces the cost of annotation. 

These findings and developed models extended theoretical and practical knowledge in the 

area of medical image annotation, creating a low-cost but high-quality image dataset for 

supervised computer vision models based on neural networks.  Specifically, the 

contribution lies in i) providing AI-based tools for computer vision practitioners and 

researchers to generate cost-effective yet high-quality annotations on image 

datasets, ii) developing a set of guidelines to help developers design better crowdsourcing 

platforms, iii) understanding users' behaviour and interactions in crowdsourcing 

environments, iv) aggregating annotations from crowdsourcing workers more 

effectively, v) the potential use of a GAN model for enhancing the diversity of image 

datasets. Also, as one of the major practical contributions of this PhD, the crowdsourcing 

image annotation platform, and the codes for the image translation model have been 

published for use by practitioners.    

 

 

Keywords: Computational biology, Image segmentation, Crowdsourcing, User 

behaviour, Image translation, GAN network  
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DEFINITIONS AND TERMINOLOGY 

 

In this thesis there are some technical terms and abbreviations used. Although some of 

them have been briefly explained throughout the thesis in the technical chapters, in this 

section we listed and provided a comprehensive explanation of them. 

Crowdsourcing: The process of outperforming a task among a group of other peoples. 

Annotation: The process of labelling content of datasets for training supervised machine 

learning algorithms. 

Supervised algorithms: A group of machine learning models that require labels or 

controlled guidance from humans to learn a task. 

 Unsupervised algorithms: A group of machine learning models with no requirement 

to any labels or controlled guidance to learn a specific task. 

I2IT: Image-to-Image-Translation (I2IT) refers to the task of transferring one image from 

one domain to another. 

GAN: Generative Adversarial Networks 

cGAN: Conditional Generative Adversarial Networks 

Advarsiarial loss: Probability of error in GAN networks 

mAP: Mean Average Precision 

Tp: True positive 

Fp: False positive 

Tn: True negative 

Fn: False Negative 

MRCNN: Mask Regional Convolutional Neural Network 

FCN: Fully Convolutional Network 

CNN: Convolutional Neural Networks 

API: Application Programming Interface 

IOU: Intersection of Union 

DSC: Dice Similarity Cofficient 
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1.1 Background and Problems 

 

Images are critical tools for capturing and visualizing information. Their applications 

range from everyday photographs that preserve memories, to medical images that capture 

and visualize important information about a person's health. In recent years, computers 

have become increasingly popular tools for storing and analyzing images, which has 

resulted in a proliferation of techniques in the fields of computer vision and digital image 

processing. Computer vision is a field of artificial intelligence that processes an input 

image to enable machines to make visual recognition or to visually modify images  [1] for 

different applications (i.e., enhancing the quality of low-resolution images, finding some 

objects within the images, etc.). Today, it is primarily NN (Neural Networks) that 

constitute the basis of these algorithms [2]. Due to their ability to learn nonlinear problems 

with high levels of predictive strength, NNs have gained significant attention [3], [4] in 

this area. The neural networks are based on the principles of the human brain, which 

consists of different layers of neurons to replicate the decision-making function of the 

human brain.  

Supervised learning refers to a category of neural network techniques that aim to find a 

mapping function between input and output, via a set of paired inputs-outputs. For 

example, a dataset containing the input image and its corresponding category (e.g., cat or 

dog) is required for an image classification model (i.e., the corresponding outputs are also 

known as annotation). In spite of the success and prevalence of these networks in solving 

complex problems, the challenges of training them cannot be underestimated. The two 

main challenges of training supervised neural networks are the demand for abundance of 

data and the need for high quality annotations [5]. Big data consists of both an abundance 

of data for training the model properly as well as the diversity of data for maximizing its 

generalization abilities [6]. The research community has focused on developing a range of 

solutions to tackle this issue, such as more efficient models (i.e., with the ability to be 

trained with a smaller dataset) [7], transfer learning (i.e., tuning a pre-trained model with 

big data to be used with a small dataset) [8], and data augmentation [9] (i.e., generation 

of synthetic data for data increment), among others. 

In addition to the requirements for big data, supervised neural networks must also 

overcome the requirement for high-quality annotations. Generation of the proper output 

(also known as annotation) to be paired with the corresponding inputs can be difficult 
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(e.g., expensive, time-consuming, labour-intensive, etc.) to obtain, especially for image 

data. Generally, annotations are done by humans, which can make their quality subjective 

and noisy. Hence, in response to this challenge, the research community has been working 

on solutions that facilitate the generation of quick, cost-effective, and high-quality 

annotation. Computer-assisted tools, crowdsourcing (outsourcing the annotation task to 

several individuals), strategies to overcome the physical/mental strain of the workload, 

etc., are some approaches researchers have explored. Because crowdsourcing has shown 

promising results in different domains, it has gained momentum in the generation and 

annotation of image datasets. Crowdsourcing is a technique that involves a large group of 

participants contributing to the collection and annotation of data. However, the 

crowdsourcing technique is also associated with some challenges including the existence 

of cognitively demanding annotation tasks, the presence of spammers and low-skilled 

workers (i.e. annotators in crowdsourcing are also known as workers), etc. Therefore, the 

current thesis examines the topic further and proposes novel solutions of using 

crowdsourcing and data augmentation techniques for the generation of a robust and cost-

effective annotated dataset for computer vision models. 

1.2 Aim and Research Questions 

 

An in-depth review of existing techniques for the generation of suitable datasets for 

training supervised computer vision models has revealed that both aspects of a good 

dataset, including the abundance of data, and the quality of annotations, have been 

extensively explored. Crowdsourcing and data augmentation are among the most common 

techniques applied to improve the quality of dataset annotation, reduce the associated 

costs, and increase the diversity of data.  The following section examines both approaches 

to identifying gaps and hence research questions.   

In crowdsourcing setups, one can generate cost-effective datasets relatively quickly by 

outsourcing the work among a group of people, however, annotation of the distributed task 

among a large group of people can still be tedious for each individual annotator. The 

annotation process is tedious and labor intensive due to the fact that the annotators are 

required to go through all of the data (in this case, the images) and analyze it one by 

one. Therefore, considering the tedious nature of annotations, some computer techniques 

have been proposed for assisting workers (by automating portions of the process), or 

maintaining workers' motivation (e.g., gamification). Moreover, crowdsourcing setups are 
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susceptible to gathering very noisy annotations due to factors such as workers' subjective 

annotations based on their differing skill levels, fatigue levels, experiences, 

etc. Considering the noise of the annotations that occur in crowdsourcing environments, 

combining the annotators' annotations to produce the ground-truth annotation presents 

another challenge of crowdsourcing platforms. The process of combining annotations, 

known as aggregation, has remained the focus of much literature. Researchers are still 

trying to identify novel and effective aggregation strategies for eliminating incorrect 

answers (annotations) towards a high-quality output annotation [10]. 

On the other hand, data augmentations are popular tools for enhancing the diversity and 

volume of datasets, especially for image datasets. Classic image enhancement techniques 

have become an integral part of computer vision models, and several standard libraries12 

are increasingly being adopted to enlarge dataset diversity and size for training the neural 

networks. Rotating images, changing their brightness, contrast, size, etc, are examples of 

classical image augmentation techniques to increase the diversity of data. The classical 

augmentation techniques are conceptually blind, as they impose fixed changes to the 

whole image without considering the content into account. 

Considering all the discussion above, this thesis aims to propose a set of solutions for 

generating low-cost, high-quality image annotated (segmentation) datasets for 

computerized microbiology. Nevertheless, tackling such a substantial problem fully is 

beyond the scope of a Ph.D. thesis. Hence this Ph.D. thesis mainly seeks to address some 

significant gaps in the literature and research questions, outlined as follows: 

1- How can an assistive tool facilitate annotations (segmentation) of 

microbiological images by non-experts in crowdsourcing context? 

In computer vision, segmentation refers to the process of finding an object in an image 

at the pixel level. This implies that the computer vision models will draw the borders of 

objects, however, in order to train these models, it is necessary to have a dataset that 

includes all objects that are already segmented. Most often, in order to prepare training 

datasets, the process of drawing the boundary lines around objects is performed by 

humans (annotators), via a process known as segmentation annotation. Since 

segmentation annotation is labour-intensive, especially for non-experts in a technical 

                                                           
1 https://imgaug.readthedocs.io/en/latest/- Last modified: September-2020 
2 https://github.com/albumentations-team/albumentations - Last modified: 2020 

https://imgaug.readthedocs.io/en/latest/-
https://github.com/albumentations-team/albumentations
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domain, the first research question looks at how a new assistive tool might help non-

experts to perform accurate and fast microbiological image segmentation. By providing 

the preliminary annotations (through the use of a weakly trained object detection model) 

on the input images, the proposed model acts as an assistive tool for annotators. This pre-

annotation stage can theoretically be of use to speed up the annotation process, remove 

the burden of intensive work from the annotators, and therefore improve the quality and 

speed of annotations. Since there is no consensus on how it improves quality and costs 

(e.g., annotation time and cost), and how it impacts annotators, the first research question 

was addressed in chapter 4 by demonstrating an experiment on microbiological image 

segmentation. We evaluated the performance of a group of recruited annotators who 

conducted image segmentation using the assistive tool versus without assistance and 

analysed different aspects of their performance. In addition, we analysed annotators' 

performance using the assistive tool vs non-assistive tool, to establish a set of design 

guidelines that can be used to mitigate potential limitations of similar platforms in the 

future. 

2- How do annotators behave in crowdsourcing setups, when involved in 

a prolonged annotation task? 

Generally, carrying out a task for a considerable period of time can have both positive 

and negative effects on the quality of the work, due to the learning and fatigue effects. 

However, it is not fully understood how fatigue and learning effects can affect the 

performance of workers in crowdsourcing setups. This question was addressed in section 

4.5.1, in which workers' behaviour (annotation quality, time, interactions, etc.) as a 

function of learning and fatigue is examined through an experiment of microbiological 

cell segmentation by non-expert without the aid of any assistive tool. During the 

experiment, the fatigue level of the workers was self-reported. The Pearson correlation 

analysis was used to find the potential association between workers’ fatigue level with the 

quality metrics including DSC, Recall (R), Precision (P), and F1-scores. Additionally, the 

analysed of the speed of workers during the experiment suggests some guidelines for 

designing platforms in the future that will be more engaging for the crowd annotators. 

3- Are annotators' behavioural patterns (such as the mouse dynamic and 

annotation related features) correlated to their fatigue level and work 

quality? 
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This research question, addressed in section 5.3.2, aims to identify possible 

correlations between workers' quality and underlying patterns of interacting with the 

annotation environment. While some studies assert that determining how much time 

workers spend on annotation tasks can be a valid indicator of their performance (quality), 

others reject this notion. Therefore, we analysed the relationship between underlying 

patterns of interaction (as recorded by mouse-based and annotation-based features) and 

workers' performance, to determine the most discriminative features. we examined the 

correlation between features and workers performance at two levels, i) object level and ii) 

image level, where object level pertains to the features derived from individual cells and 

image level pertains to the features extracted from the entire image. These results have 

opened new avenues for using these behavioural features in regression models for 

estimating annotation quality. By addressing this research question, the research 

community can develop more intelligent ways to pay the workers’ wages or aggregate 

annotations based on the quality of annotations. 

4- Are we able to identify when workers are performing at their best, 

during the annotation process? 

Several studies have shown that the performance of new workers is likely to improve 

due to the learning effect, but then decrease due to fatigue. Also our findings revealed that 

the annotation quality and cost (i.e., measured by annotation time) is subject to change 

over time. Thus, it raises the question of when workers perform their best work during 

annotation. Section 5.4.1 addressed this question by visualising the performance of the 

workers over time to see how it is affected by the learning and fatigue effect. A new metric 

so-called Cost-Quality was also defined in which the balance between the annotation 

quality (i.e., which is subject to change over time) and the cost (i.e., as measured by 

annotation time) was measured. In this metric, the efficiency of workers (measured by 

Cost-Quality) is at its highest and is limited by a lower and upper band. Intuitively, 

crowdsourcing platforms should encourage workers to remain to this area. Detailed 

information about this research question and its findings can be found in section 5.4.1. 

5- Can estimation of the workers' quality in crowdsourcing be 

incorporated into a Weighted Majority Voting aggregation process in 

order to reliably combine their annotations? 
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An effective combination (or aggregation) of worker annotations in crowdsourcing 

platforms is the subject of numerous studies. The combination of annotations, also known 

as aggression, is important since workers may have diverse levels of expertise, resulting in 

different quality annotations. There have been a variety of aggregation techniques 

examined in prior studies, of which Majority Voting [11] has been identified as one of the 

first and most successful ones. Simply put, MV works based on the majority agreement, in 

that the pixels that are selected by the majority of workers will be selected as the true 

pixels. In conventional MV, each worker's annotation is considered equally important; 

however, it is theoretically possible that prioritizing high-quality annotations could lead to 

more accurate aggregate results. Therefore, given the findings of the previous research 

question, that states annotation-based and mouse-based features are proportional to 

annotations’ quality, we examined the possibility of incorporating annotators' quality 

estimates into the process of aggregating workers’ annotations. In addition, based on the 

literature review, it was evident that many existing techniques focus on aggregation 

problems at the image level, meaning the accumulated annotation for each image per 

worker is aggregated together; however, this research question examines how aggregation 

at the image level differs from aggregation at the object (i.e., cell) level. This research 

question is addressed in section 5.4 by analysing the crowd workers data, collected through 

the experiment of microbiological cell segmentation, presented in section 5.3. 

6- Can AI-based image-to-image translation models be applied to 

microbiological images taken in laboratories to increase dataset 

diversity at a low cost? 

Considering the importance of diverse datasets for improving the generalizability of 

computer vision models, and the recurrent challenges associated with collecting 

microbiological images in the field, the use of a new paradigm of neural networks (i.e., 

GANs) for the generation of synthetic field-like microbiological images from images taken 

in the laboratory was investigated. In order to examine the performance of the proposed 

network, two sets of microbiological images of Prototheca bovis were collected in the lab 

and field. Essentially, the proposed GAN network is designed to penalize the difference 

between the visual appearance (texture) of the synthetic images and those taken in the 

field, while maintaining the spatial characteristics (location and size of the cells remain 

constant). Due to the fact that the spatial features remain constant, it may be possible to 

avoid having to re-annotate the synthetic images since the annotation of the laboratory 
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images is still valid. A quantitative and qualitative analysis of the similarities between the 

syntactically generated images has been performed, which has shown the success of the 

proposed model in producing field-like images. In chapter 6, a detailed discussion of this 

research question is presented. 

1-3 Scope 

 

In this thesis, we extend the research knowledge related to the generation of useful image 

datasets for computer vision models, with the overarching aim of designing a platform that 

integrates the proposed technologies. In designing a user-friendly UI (User Interface) for 

crowd workers, this platform was inspired by the existing commercially available ones 

such as Labelme3, Amazon Mechanical Turk4, Labelbox5. Of note that this platform is 

primarily developed as a research tool that enables us to address the research questions, 

not to compete with the commercial annotation platforms like AMT. Therefore, some steps 

like optimization for the search engines (SEO), optimization of the platform for mobile 

phones, etc are not considered. 

To conduct the research studies in Chapters 4 and 5, crowd annotators are recruited from 

outside of the platform (not from the crowd workers pool described in section 3.5). In other 

words, workers are recruited in a controlled manner from a group of known individuals 

(mostly university students). In spite of the potential negative effects on the ecological 

validity of the technology, this thesis is not intended to provide a mature technology at a 

high technology readiness level, but rather to demonstrate the proof of concepts.  

Furthermore, this thesis focuses on the annotation of microbiological images, since their 

annotation is more challenging than the everyday objects’ images as a result of the need 

for specific field knowledge. Due to the above reason and the limitations of ethical policies 

regarding the collection of human specimens, we only used microbiological images of 

animal-related parasites that are cultured in a laboratory lab environment. Due to time 

constraints, this thesis is primarily focused on microbiological images and validation of 

the presented technologies on other medical image modalities (e.g., radiography images 

                                                           
3 http://labelme.csail.mit.edu 
 
4 https://www.mturk.com / Last modified: November-2022 
 
5 https://labelbox.com / Last modified: November-2022 
 

http://labelme.csail.mit.edu/
http://labelme.csail.mit.edu/
https://www.mturk.com/
https://labelbox.com/
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like CT or MRI) are not considered. However, we believe that the developed platform has 

great potential to be adopted to other medical imaging modalities in future researches. 

1-4 Contribution and Publications 

 

The overall contribution of this thesis can be summarised as below: 

1. Demonstrating the use of an assistive tool to assist crowd workers with 

segmentation tasks. 

2. Extending the understanding of annotators' behaviour when engaged in a long-

term microbiological image annotation task. 

3. Demonstrating the feasibility of using crowd annotators' behavioural patterns (as 

captured by mouse dynamics and annotation-related features) to assess the quality 

of their work and identify the time when their performance (i.e. balance between 

time and quality) is at its peak (also known as effective zone). 

4. Demonstration of the effectiveness of adding worker quality estimates to 

aggregation techniques in producing high-quality output. 

5. Developing an image translation model based on GANs to convert lab-taken 

microscopic images into field images in order to enhance image dataset diversity at 

a low cost.  

6. Introducing a web-based image annotation platform for the benefit of research 

community. 

During this Ph.D., we collaborated with the biosciences school of the University of Kent 

to collect microbiology images, as well as with the Kyoto Institute of Technology (Japan) 

to run the experiment described in Chapter 6. The results of the studies, relating to this 

Ph.D. thesis, have been submitted for publication to several journals to expand the existing 

knowledge which can help with the generation of reliable image datasets for the 

community. Table 1.1 presents publications that are directly related to this thesis. 

TABLE 1.1 PUBLICATION’S LIST ARISING DIRECTLY FROM THIS PH.D. THESIS 
 

CHAPTER JOURNAL TITLE STATUS CITATION 

4 Computers in Biology and 
Medicine 

A crowdsourcing semi-auto image 
segmentation platform for cell biology 

Published [Bafti. et 
al. 2021] 



24 
 

  

Further, the table below shows studies that had been completed during the Ph.D. that 

were not directly related to this thesis, but instead used some of the technologies (e.g., 

Gaze Parser for feature extraction, or using the developed platform for annotation of their 

data) of this thesis or vice versa. 

TABLE 1.2 PUBLICATION’S LIST OF COLLABORATIONS USED IN THIS PHD THESIS BUT NOT DIRECTLY 

EMERGED FROM IT 
 

CHAPTER JOURNAL TITLE STATUS CITATION 

3 IEEE Access Cross-Domain Multitask M-RCNN Model for 
Object Detection and Attribute Estimation 

Published [Bafti. et al. 
2022] 

5 Proceedings of the ACM on 
Interactive, Mobile, Wearable 
and Ubiquitous Technologies 

Understanding Emotional Elicitation in VR 
Through EyeGaze Behaviour. VR Eyes: 

Emotions Dataset (VREED) 

Published [Tabbaa. et 
al. 2021] 

 

1-5 Thesis Structure 

 

The structure of this thesis is laid out as follows: 

●  Chapter 2 of this thesis presents a literature review related to the topic of this 

thesis. It begins with a brief overview of the history of image processing and its 

applications in various areas. A discussion of state-of-the-art image processing 

algorithms based on neural networks is presented in this section. Next, existing 

annotation platforms for image annotations are reviewed, as well as assistive tools 

to ease the workload of image annotations. This is followed by a review of 

crowdsourcing for the generation of big data and the key topics relating to it. The 

application of computer vision models to image-to-image translation is discussed 

at the end of this chapter. 

 

● Chapter 3 discusses the various components of the platform, the various 

technologies implemented, the architecture, and the interconnection between 

components of the system. An important contribution of the platform is a Worker 

Selection Mechanism (WSM) that is explored next. Using this WSM system, the 



25 
 

project manager can recruit, train, and select qualified workers. It is done by 

designing a training course to train the workers, followed by an eligibility test, used 

to filter qualified crowd workers. Chapter 3 is concluded by a discussion over the 

different features of the platform for project managers and crowd workers. 

 

● Chapter 4 presents the results of the first research study on an AI assistive tool to 

assist non-expert workers in the segmentation of microbiological images. First, we 

defined the purpose and objectives of the study, then the methodology section 

describes the assistive tool. This is followed by the experiment protocols, data 

collection, and image annotation experiment using crowd workers. The next section 

of the chapter discusses the results of annotation experiments, with AI-assisted and 

manual annotations. This chapter concludes with a summary of key findings and 

insights of the study, followed by a comprehensive discussion. 

 

● Chapter 5 presents the experiment addressing research questions 2, 3, and 4. 

Presented in this chapter is an extension to the understanding of workers' 

behaviour, and the correlation between workers' interaction patterns and 

annotation quality. First, the background, research questions, and existing 

solutions are discussed. The experiment of long-term image segmentation by crowd 

workers is then discussed, as well as the protocols corresponding to it. An analysis 

of the data, including workers' behaviour patterns and feature correlation analysis, 

follows. Afterward, the results of the trained regression models used to estimate 

workers' annotation quality are discussed as well as a discussion over a proposed 

L2-weighted aggregation model for reliably aggregating workers' annotations. The 

key findings of the study are presented at the end of this chapter. 

 

● Chapter 6 describes a quantitative and qualitative evaluation of a neural network-

based image-to-image translation model designed to translate microbiological 

images that are captured in the laboratory into images that are representative of 

field conditions. Following a brief introduction to the problem and research 

questions, this chapter discusses the architecture of the proposed model, training 

process and related topics. Afterward, the results of a quantitative and qualitative 

evaluation of the synthetically generated images are presented. A discussion of the 

findings and contributions concludes this chapter. 



26 
 

 

● Chapter 7 provides an overall discussion and conclusion to the present thesis where 

the research contributions and implications, drawn from the studies, are presented. 

The theoretical and practical contributions of this thesis for the generation of a 

useful high-quality annotated dataset are provided in this chapter. Lastly, this 

chapter discusses the limitations of the thesis, as well as possible directions for 

future research resulting from this thesis. 
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2.1 Introduction 

Given the aim of the thesis to expand the knowledge and understanding regarding the 

generation of reliable image datasets for computer vision models in microbiology, this 

chapter offers an in-depth review of the key relevant topics as outlined in Fig 2.1.  

 

 

 

Fig. 2.1 Overview of the literature review structure. Indicates four main sections: Image Processing in 
Healthcare & Biomedicine, Image Annotation and Assistive Tools, Crowdsourcing for Big Data Generation, 

and Image to Image Translation Models. 

 

This chapter begins with Section 2.1 that provides a brief historical review of image 

processing models and their general and medical applications, followed by a concise 

overview of the classical image processing techniques (section 2.1.1). Section 2.1.2 

discusses the application of neural networks to image classification and the standard 

neural networks that are widely used in this field. There is then a discussion of the state-

of-the-art object detection and segmentation models in subsection 2.1.3. Lastly, section 

2.1.4 concludes with a discussion of Regional Convolutional Neural Networks (R-CNN), 

which form the basis of the assistive tool discussed in Chapter 4. 
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Next, this chapter (section 2.2.1 and section 2.2.2) describes various annotation 

platforms and their user interfaces to allow crowd workers to easily annotate. Due to the 

limitations of using traditional annotation platforms (i.e. their time and labour-intensive 

nature), existing AI-based annotation assistance tools (section 2.2.3) and motivational 

strategies used to motivate workers (section 2.2.4) are then reviewed. Additionally, within 

section 2.3, crowdsourcing services for the annotation of general and medical images 

(section 2.3.1) are discussed. An examination of the potential limitations of current 

crowdsourcing systems, including the adverse effects of low-skilled workers in 

crowdsourcing (section 2.3.2), was followed by a look at the existing solutions, quality 

control mechanisms (section 2.3.3) to reliable aggregation techniques to make the most of 

noisy crowds' annotations (section 2.3.4). 

The final section of this chapter reviews a new paradigm of neural networks, namely 

GANs (Generative Adversarial Network), which can be employed to overcome the 

challeges of generating diversified image datasets by applying a technique called image 

translation (translating the visual characteristics of an image from one domain to another). 

The review begins with an examination of conventional image translation models (section 

2.4.1) and then proceeded on to introduce GAN networks (section 2.4.2), and their 

application in image translations and quality enhancements (section 2.4.3). Style transfer 

is another paradigm of neural networks which is discussed in section 2.4.4 due to their 

potential in transferring the style from one image to another. Finally, the use of image 

transltion models in medical images are discussed in section 2.4.5. Hence, the literature 

review contains four technical sections, followed by a conclusion section in which the 

research gaps have been identified.  

2.1 Image Processing in Healthcare and Biomedicine 

 

Digital image processing involves the use of computer algorithms and 

mathematical/statistical techniques to analyse an image for a specific purpose. Digital 

image processing has a variety of applications, although classification, object detection and 

segmentation are three of the most widely used ones (see Fig. 2.2). Classification of an 

image refers to assigning the image to a specific category (e.g., to categorize it as cat or 

dog), and object detection refers to locating a specific object within an image. Object 

detection is the task of drawing a rectangle around the object of interest by image 
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processing models. An extension of object detection is object segmentation, which 

identifies detected objects at the pixel level. Given the fact that medical images serve as a 

valuable tool for clinicians [12], the field of medical image processing has gained 

considerable momentum [3]. There are many applications of image processing in 

healthcare, from image classification (e.g., healthy versus unhealthy) to abnormality 

detection (e.g., detecting a broken bone in a radiographic image).  

 

Fig. 2.2. Three common applications of image processing 

 

The implementation of image processing for medical image interpretation has 

contributed to overcoming some of the challenges experienced by clinicians in the 

interpretation of images [13]. These challenges include i) Subjective interpretation ii) 

Sensitivity to the images’ quality iii) Slow performance. 

As an example, when interpreting mammogram images, the detection of abnormalities 

in the image is highly correlated with the level of expertise of the radiologists [13]. Some 

other studies have also noted that the interpretation of X-ray images may vary depending 

on the image quality and the level of experience of the radiologists [14]. In the field of 

medical images, histological slides are frequently used by pathologists to assess the 

tumour growth rate, which is generally accurate, but can be slow and subject to error due 

to fatigue [15]. Similarly, counting cells to quantitatively analyse microscopic images [16] 

by pharmacists is a time-consuming process that is also prone to errors due to fatigued 

clinicians. In regard to the challenges outlined above, image processing algorithms based 

on neural networks have shown promising potential in providing various solutions to 

assist experts in providing faster, non-subjective, and sometimes more accurate 

interpretations [17]. However, the implementation of an effective image processing 

technique requires a solid understanding of neural networks and their applications which 

are discussed in the following subsections. 
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2.1.1 Classical Image Processing Techniques 

 

Previously, computerized image processing problems were often addressed through the 

use of traditional methods [18], in which a combination of manually extracted features and 

regression models were brought together to solve various problems like classification. A 

variety of methods were used to extract features, including Scale Invariant Feature 

Transform [19], Hough Transform Estimator [20], etc. to solve various problems, such as 

image classification. Due to the requirement of extracting features from images, these 

techniques are also referred to as feature-based techniques. For medical images, these 

features are predominantly used to describe the shape, colour, and texture of the images 

[21]. Although such classic techniques are not the focus of this Ph.D., a brief overview of 

the various techniques is provided below in order to assist the readers with less knowledge 

of the field. 

Viola-Jones was among the first models introduced for object detection problems [22]. 

Though it was originally developed to address the problem of human face recognition, it 

has shown promising results for use in other areas such as organ detection in CT images 

[23], or detection of Carotid Artery in ultrasound images [24]. Three steps are involved in 

this technique: i) Feature extraction (Haar-like features) ii) feature selection iii) 

classification. Briefly speaking, in this technique, a window with the size of 24 × 24 would 

be sliding over the input image, where the Haar features would be computed for each 

window. Three sets of Haar-like features are computed for each slide based on a two-

rectangle (Horizontal and vertical), three-rectangle, and four-rectangle feature window 

(see Fig 2.3 for more information) [22]. 

 

Fig. 2.3. Haar-like feature sets. The features are computing the differences between the summation pixels 
value within black and white regions as a Two-rectangle window computes the difference between the 
left/top and right/down rectangles. A Three-rectangle window computes the differences between outer 

rectangles and the inner one, and a four-rectangular window computes the difference between diagonal 
pairs of four-rectangles. [22] 
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Haar-like features convey meaningful information that aids the algorithm in 

understanding the image. A statistical technique called Adaboost is used to select the most 

significant features which are describing the different elements in an image. As a final step, 

a set of cascade classifiers are being trained to learn the various elements of an image (e.g. 

eyebrow and nose in face detection problems as shown in Fig. 2.4) 

 

 

Fig. 2.4. An example of two-rectangle and three-rectangle Haar-like features, describing nose and 
eyebrow 6 

 

Considering the good results of Viola-Jones models in face detection, it has been applied 

to other domains, including healthcare. Viola-Jones models have been relatively 

successful, but the limitations of this model should not be overlooked. A major drawback 

of this algorithm is that it is sensitive to the orientation of the objects [25], which can result 

in a low detection rate. 

In addition to the Haar-like features, several other descriptors (techniques to extract 

visual characteristics of images) have been proposed, such as Canny Edge Detector [26],  

SIFT (Scale Invariant and Feature Transform) [19], and HOG (Histogram of Oriented 

Gradient) [27] for describing the elements of the image which can be used to train a 

classifier. These techniques focus primarily on the structure and shape of the object within 

the image, which partially alleviates the drawback of Haar-like features. However, these 

classical feature descriptors, still face two main challenges: i) being problem-specific (e.g., 

                                                           
6 https://towardsdatascience.com/the-intuition-behind-facial-detection-the-viola-jones-algorithm-
29d9106b6999 / Last Modified: August-2019 
 

https://towardsdatascience.com/the-intuition-behind-facial-detection-the-viola-jones-algorithm-29d9106b6999%20/
https://towardsdatascience.com/the-intuition-behind-facial-detection-the-viola-jones-algorithm-29d9106b6999%20/
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only detecting a small number of features such as edges for a specific problem) and ii) 

being sensitive to image properties (i.e., contrast, white balance) [21], [28]. 

As opposed to the classical techniques which require a feature extraction step in order to 

extract meaningful features, we have neural networks which have demonstrated great 

potential in automatic extraction of meaningful features. During the training process, 

convolutional neural networks have the ability to autonomously determine the meaningful 

features relating to the problem. This characteristic of neural networks addresses the 

limitations of classical feature descriptions, noted above. Next section provides a gentle 

introduction to neural networks, with particular emphasis on convolutional neural 

networks (CNN), before discussing the standard CNN feature descriptor and their 

applications in classifying images and detecting objects. 

2.1.2 CNN-based Feature Extraction and Image Classification 

 

It was argued in the previous section that the fundamental difference between classical 

and modern image processing methods based on neural networks resides in the way they 

extract features from the input image. Neural networks are networks composed of artificial 

neurons or nodes that attempt to mimic the functionality of the human brain. As a part of 

the broader family of neural networks (NN), convolutional neural networks (CNNs) have 

gained momentum in automatic feature extraction and image processing [29]. The 

capability of CNNs in extracting features automatically from image data has elevated them 

to the status of being the backbone of several image processing approaches, including 

image classification and object segmentation [30]–[32]. The CNNs are not described in 

detail here as it is beyond the scope of this thesis, but their perofrmcne is briefly described 

as follows. CNN uses a kernel to extract features from an image and adjusts the kernel 

based on a propagation in the network. This kernel is then convolved over (known as 

convolutional layer) the entire image to produce what is known as a feature map. Fig. 2.5 

depicts an example convolution layer. By adding different convolutional layers, a 

convolutional neural network is formed. 



34 
 

 

Fig. 2.5. An overview of convolutional Neural Network (CNN) workflow 

 

The feature map presents different visual characteristics of the image. In the past, 

different architecture, depth, and complexity of CNN networks have been designed, where 

deeper models have demonstrated better performance in extracting more detailed features 

from input images [33]. For example, Fig. 2.6 shows different layers of features extracted 

from an input image for a car images classification problem. 

 

 

Fig. 2.6. Feature map in a convlountional Neural Network [34] 

 

Due to this success, in the past decade, many endeavours have been made to develop 

CNN-based feature descriptors for different problems with varying levels of difficulty. 

Within the next two subsections, some of the standard feature extraction models and their 

applications are discussed. 
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2.1.2.1 Standard Feature Descriptors  

 

CNN networks are inherently data-hungry, meaning that they require large datasets for 

training, in order to be able to extract meaningful features [35]. Due to this challenge, some 

big companies have created and trained different CNN-based feature extractor models 

with big data (i.e. up to 14 million in some cases). The trained model is then made available 

for public use (known as standard feature descriptors). In view of the fact that many 

features such as edges, corners, etc are useful for describing components of different 

images (i.e, medical images can also benefit from features extracted from everyday 

objects), these trained CNN models can be useful. It is useful as it allows the developer to 

implement the standard feature descriptors in their computer vision models and fine-tune 

them with their own data if their dataset is small. Using this technique, which is also known 

as Transfer Learning [8], not only assists to address the lack of data challenge, but 

also reduces the training time since the construction of neural networks from scratch is 

computationally expensive [29]. To date, many standard feature descriptors have been 

introduced, including SqueezNet [36], VGG [33], Resnet [37], etc., which have been 

trained and tested on large datasets, such as ImageNet [32], Pascal VOC [38], COCO [39]. 

In the remainder of this section, two well-known standard feature descriptors of Resnet 

and VGG16, which are used in the models in Chapters 4 and 6 are introduced.  

● ResNet  

Earlier, it was stated that the deeper feature extractors are capable of extracting more 

detailed features. ResNet is a state-of-the-art and deep feature descriptor that has 

demonstrated remarkable results in the field of computer vision. It consists of some 

residual blocks, which are two sets of conventional networks, connected one after the 

other, along with a skip link that directly feeds the input to the output (i.e. bypassing the 

conventional layers). As well as demonstrating promising results regarding the extraction 

of meaningful features, ResNet has also shown that it is capable of overcoming the 

limitations of very deep CNN networks, namely Vanishing Gradient (Vanishing Gradient 

is an undesirable phenomenon that prevents the deep CNN models from being trained 

further). ResNet's skipping links have proved to be effective in reducing the vanishing 

gradient problem. As a result, ResNets are developed very deeply (up to 100 layers) 

allowing the community to extract very detailed features.  However, it is important to note 
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that the deep architecture of ResNet models makes them computationally expensive to 

run. Fig. 2.7 depicts a sample residual block with a skipping link. 

 

      

Fig. 2.7. A sample residual block with skipping link 

 

The ResNet models are developed in two main architectures of ResNet-50 and 

ResNet101, which contain 50 and 101 layers, respectively. ResNet models are trained using 

the ImageNet [32] dataset, a collection of more than 14 million annotated images, which 

enables the model to have perfect learning detaile features. Due to its success, ResNet has 

become widely used for a variety of general [31], [40] and medical [41], [42] image 

processing applications. As an example of the use of Resnet in medical images, [42] have 

used Resnet descriptors to classify knee radiographic images in order to distinguish 

between those that contain arthroplasty and those that do not.  

● VGG 

VGG is another standard feature descriptor, developed and trained on the public 

ImageNet dataset [32]. VGG was introduced for the first time in 2014 when the model 

came in second place in the ILSVRC 2014 challenge7. Despite the simple architecture of 

the VGG, it has succeeded in producing state-of-the-art results (i.e. the first neural network 

to achieve error under 10%). Today, many different variations of VGG descriptors such as 

VGG11, VGG13, VGG16, and VGG19, which differ in the number of layers and architecture 

are available. The VGG network, however, differs in depth and architecture, yet they all 

follow the same workflow. They get a fixed-size input image and pass it through some 

convolutional layers for extraction of the features. The last convolutional layer is followed 

by two fully connected layers (two with a length of 4069 and one with the length of 

                                                           
7 https://www.image-net.org/challenges/LSVRC/ Last Modified: 2020 

https://www.image-net.org/challenges/LSVRC/
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1000). Fully connected layers are flattened (vectorized) convolutional layers.  Fig. 2.8 

provides an overview of the existing VGG16 networks.  

 

Fig. 2.8. The architecture of a VGG16 network [43] 

 

However, VGG has been trained on the ImageNet dataset that mainly contains the 

everyday images, it has been widely used in medical images for different tasks including 

classification or object detection. As an example of classification, [44], [45] have used the 

VGG16 network [33] for the classification of oral diseases in X-ray images, where the VGG 

descriptor in conjunction with a header network is fine-tuned for performing the 

classification task. [46] has also integrated a VGG16 network with another member of 

neural network family (U-Net [47]) for detection of brain tumours in MRI images. 

2.1.2.2 Image Classification 

 

Image classification refers to the process of categorizing images into different groups 

based on their properties. Previously, this chapter presented two state-of-the-art (VGG 

and ResNet) models for extracting meaningful features from everyday images that have 

gained momentum in the application of image classification. Generally, for the 

classification of images, the descriptor comes with another network that receives the 

output neurons from the final layer of the feature descriptor (like the classical image 

classification techniques, described in section 2.1.1). Upon passing through another 

network in which some mathematical functions are employed to shrink the size of the 

neurons (Dropout and Dense layers), the final number of neurons are reached (i.e. two 

neurons in binary classification problems) as shown in Fig. 2.9. 
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Fig. 2.9. Pipleline of an image classification via VGG16 discriptor 

 

Despite the fact that these descriptors were trained primarily for general images, as 

demonstrated in some examples, they have also found widespread application in medical 

image classification problems [48]. Also, it is important to point out that feature 

descriptors are not limited to solving classification problems. In recent years, they have 

also been widely formed the foundation of object detection models. The following 

subsection discusses the application of these feature descriptor models to object detection 

and segmentation models. 

2.1.3 Object Detection and Segmentation in Biomedical Images 

 

Although image classification is an effective tool in medical imaging, some issues require 

more advanced processing than categorizing images into one or more groups. Healthcare 

professionals may need to localize a specific object within an image in some cases. This is 

where object detection models (known as object localization in some studies) come into 

play. In medical images, object detection enables specialist for a more advanced image 

interpretation, which cannot be accomplished by image classification. For instance, Fig 

2.10 shows a dental X-ray image that has been processed by a computerized object 

detection algorithm to detect and localize endodontic treatments (white bounding boxes) 

and implants (green bounding boxes). As an example of another application of object 

detection in medical imaging, [49] discussed the application of object detection in CT 

images for the detection of abnormalities that can assist in cancer diagnosis and 

prognosis. In addition, object detection has been extensively used to expedite the medical 

images’ interpretation process. Numerous studies have incorporated object detection to 
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detect, and count the number of cells within microscopic images, thus reducing the need 

for manual counting by clinicians and bioscientists [15], [50]. 

 

Fig. 2.10. Endodontic treatments and implants detection in dental X-ray image 8 

 

In some medical image processing, we need to locate the objects at the pixel level, which 

goes beyond just locating the objects. In the field of computer vision, detection of objects 

at the pixel level is referred to as segmentation, which allows clinicians and specialists to 

study the morphology of objects, especially in radiography images. For instance, Fig. 2.11 

illustrates how object segmentation can be used to differentiate different regions of a tooth 

(e.g. pulp, crown, dentin, caries, etc.) which can be useful in speeding up and improving 

treatment process.  

 

 

Fig. 2.11. Original and segmented dental x-ray image to highlight the different regions (e.g. pulp, crown) of 
a tooth [16] 

 

There are many possible applications of segmentation in medical images, including 

diagnosis-related issues, such as examining the presence of tumours, or examining 

anatomical structure [51]. Fig. 2.12 depicts an example of a bone segmentation in an 

orthopaedic setting. 

                                                           
8 https://clemkoa.github.io/dental/2018/06/10/deep-learning-dental-x-ray.html/Last modified: June, 
2018 

https://clemkoa.github.io/dental/2018/06/10/deep-learning-dental-x-ray.html/
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Fig. 2.12. Bone segmentation in shoulder CT (Computed Tomography) image 9 

 

As object segmentation is an extension of object detection, as it detects the object first 

and then draws the border of the object, it is intuitive to say that object segmentation 

algorithms can still be regarded as an object detection model. A variety of cutting-edge 

algorithms has recently been developed in response to the importance of object 

segmentation and its diverse applications. In some cases, they have been developed 

specifically for segmenting medical images (e.g., V-Net [52], UNet++ [53], FocusNet [54]), 

whereas in other cases they have been proposed as general segmentation techniques (M-

RCNN [31], FCN [55]). Please note that most of these models rely on the descriptors 

discussed in subsection 2.1.2.1 to extract meaningful features. Mask regional 

convolutional neural networks (Mask R-CNN) is a well-known object detection algorithm 

with state-of-the-art performance. Even though Mask R-CNN was originally developed for 

general functions, its state-of-the-art performance has inspired researchers to apply it to 

medical images as well [56]. The next section (2.1.4) discusses the Mask R-CNN algorithm, 

which forms the foundation of the assistive tool described in chapter 4 and the object 

detection framework in chapter 6. 

2.1.4 Regional Convolutional Neural Networks 

 

The Regional Convolutional Neural Network (R-CNN) [57] is a well-known object 

detection framework among the computer vision community. Originally, the network was 

developed to solve object detection problems. There have however been several updates to 

the framework over the past few years, either to improve performance or to add new 

                                                           
9 https://www.rsipvision.com/ct-segmentation-orthopedic-surgery/ Last modified: Novemer-2022 

https://www.rsipvision.com/ct-segmentation-orthopedic-surgery/
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features to it. These algorithms include R-CNN (the first version) [57], Fast R-CNN [58], 

Faster R-CNN [40], Mask R-CNN [31], Mesh R-CNN [59].  

Prior to talking about the R-CNN models and different versions of it, let's discuss some 

concepts that form the basis of this discussion. In the ever first generation of object 

detection algorithms, a sliding window technique was used, where a window of a specific 

size was automatically moved over an input image [60]. Each frame's features were then 

computed using a feature descriptor. A machine learning classification model (e.g, Support 

Vector Machine) was then used to determine whether the slides are objects or non-objects. 

 

 

Fig. 2.13. Pipeline of object detection via sliding window10 

 

This technique was computationally costly due to the large number of windows that 

required analysis for feature extraction. In order to overcome this problem, the Selective 

Search technique (SS) was implemneted. SS is a Region Proposal Network (RPN) that 

identifies prospective objects (also known as ROI; Region of Interest) within images. ROIs 

are coordinates of some rectangles (called bounding boxes) that likely contain an object. 

Thus, instead of computing features for every window, just the ROIs would be processed 

to the next step (feature extraction and classification). Using a graph-based segmentation 

method [61], SS begins by pre-segmenting the input image based on pixels' intensities. The 

segmented regions are then subjected to another level of processing to group them based 

on colour, texture, shape, and size for the generation of final proposals (see [62] for more 

information). Fig. 2.14 depicts the workflow of the SS algorithm. 

                                                           
10 https://medium.com/temp08050309-devpblog/cv-9-object-detection-with-sliding-window-and-
feature-extraction-hog-cf1820c86b46 / Last modified: December-2020 
 

https://medium.com/temp08050309-devpblog/cv-9-object-detection-with-sliding-window-and-feature-extraction-hog-cf1820c86b46%20/
https://medium.com/temp08050309-devpblog/cv-9-object-detection-with-sliding-window-and-feature-extraction-hog-cf1820c86b46%20/


42 
 

 

Fig. 2.14. Workflow of Selective Search in proposing Regions of Interest based on the pixel intensity, 

colour, etc. 

 

The extracted ROIs from the SS would be then fed into the classifiers (SVM) to identify 

the type of the object within the proposed ROI. Due to the limited number of ROI in this 

case, the computational cost can be greatly reduced. 

Following the success of the SS algorithms, in the first generation of R-CNN [57], a 

Selective Search [62] model was implemented that proposed 2000 ROIs. After being 

resized to standard square size, a CNN network extracts and classifies the ROIs. In the 

classifier, the ROIs are classified into one of the N+1 classes, where N denotes the number 

of objects' categories (number of objects’ class the model can detect), and 1 represents the 

background (in the case if there is no object within the ROI). In R-CNN the bounding box 

coordinates of the detections are the ones proposed by SS. Fig. 2.15 shows the architecture 

of R-CNN network. 

 

Fig. 2.15. R-CNN object detection overview [37] 
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Despite the success of the R-CNN model, it did suffer from slow performance due to the 

high number of computations required throughout the CNN model to extract the features 

for each ROI. As a result, the second generation of R-CNNs, called Fast R-CNN [58], which 

was introduced in 2015, used a global feature extraction technique rather than extracting 

features for each ROI separately.  In this version, the input image is fed into a CNN network 

for feature extraction (also called a feature map). The ROIs on the feature map is then 

converted to fixed-size vector features (with the size of 4069) via a technique called 

ROIPooling. The resulting feature vectors then fed into two separate CNN networks for 

classification and estimation of bounding box. As the image feature is only extracted once 

in this technique, it is significantly faster than previous version. 

Due to the fact that R-CNN and Fast R-CNN both used SS for extraction of RPNs, and 

since SS is a slow algorithm, Shaoqing et.al. [40] proposed Faster R-CNN that utilised a 

novel RPN model for faster performance. The proposed RPN network can be viewed as a 

standalone CNN network that was trained for performing a preliminary detection on the 

input image. For training the RPN, a window with different sizes would be sliding over the 

image with certain stride (sliding steps). For each step, three different windows (called 

anchors in [40]) with three different aspect ratios (9 anchors in total) would be created. 

For instance, if for the window stride of one, for an image with the dimension of 𝑤 × ℎ, the 

model generates 𝑤 × ℎ × 9 anchors. The anchors with an IOU (Intersection of Union) 

greater than 50% with the ground truth would be flagged as positive windows, while the 

anchors with an IOU below 50% would be flagged as negative windows. Of note, IOU is a 

metric that measures the overlap between two masks/windows in computer vision models. 

Afterward, using the extracted features from the positive and negative windows, a classifier 

was trained to differentiate between the positive and negative windows. Fig. 2.16 shows an 

overview of the Faster R-CNN network. 



44 
 

 

Fig. 2.16. Overview of Faster RCNN [40] 

Mask R-CNN [31] is considered to be one of the most successful versions of this family. 

The Mask R-CNN forms the basis for the assistive tool and the object detection framework 

used in the study of chapter 4 and chapter 6. This model was released in 2018 and its 

architecture is very similar to that of Faster RCNN. On top of Faster R-CNN, this version 

includes a FCN (Fully Convolutional Networks) header for segmenting objects [55]. For 

this reason, the global loss function of this model, as described in Equation 2.1, has an 

element, 𝐿𝑚𝑎𝑠𝑘, which is meant to penalise the difference between the segmentation 

generated by the FCN and ground truth. 

𝐿𝐺𝑙𝑜𝑏𝑎𝑙 = 𝐿𝑐𝑙𝑠 + 𝐿𝐵𝐵 + 𝐿𝑚𝑎𝑠𝑘        (2.1) 

 

In Equation 2.1 global loss, 𝐿𝐺𝑙𝑜𝑏𝑎𝑙, constitute of classifier (𝐿𝑐𝑙𝑠), bounding box regression 

(𝐿𝐵𝐵) and mask generation (𝐿𝑚𝑎𝑠𝑘) loss functions. Fig. 2.17 shows a general overview of the 

Mask RCNN model. 

 

Fig. 2.17. Overview of Mask R-CNN [31] 
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2.2. Annotation Platforms and Assistive Technologies 

 

It has been discussed previously that high quality image datasets are essential for training 

a Neural Network-based computer vision model. For supervised computer vision models, 

the quality of annotation is critical since noisy, low-quality annotation can lead to 

uderfitting the model during training. Given that the annotation is usually performed by 

humans, the process can be time-consuming, and the quality can be subjective. Providing 

easy-to-use and assistive tools for annotation have been a research direction in which the 

research community has been working to increase the reliability and efficiency of dataset 

annotation. This section outlines existing annotations and assistive tools for image 

datasets. 

2.2.1. Image Annotation’s Tools and Platforms 

 

Image annotation is the task of labelling images in order to train a machine learning 

model. Labels may be of different types and formats, depending on the dataset's 

application. As an example, the type of annotation required for a dataset for object 

detection model training is different from that of an image classification problem. 

Consequently, three common types of annotation tools in image data can be categorized 

as follows: 

● Classification. The classification entails assigning the whole of an image to a 

specific category. In classification annotation, there will be two or more categories; 

however, each image will not be assigned to more than one category (two-category 

annotations are known as binary classifications). Typically, images for classification 

problems contain one object per image (e.g., either a dog or a cat), and the 

annotator selects one of the predefined categories for each image. Fig. 2.18 presents 

an example of an image classification annotation. 
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Fig. 2.18. An example of Dog and Cat image dataset annotation 

 

● Object detection. Object detection is the process of locating an object in an image 

(also called object localization). The location of the object is determined by a 

rectangular or square window (bounding box) around the object, which is usually 

quantized as 𝑥, 𝑦, ℎ, 𝑎𝑛𝑑 𝑤 where 𝑥, and 𝑦 refers to the coordinates of the top-left 

corner of the bounding box and ℎ, 𝑎𝑛𝑑 𝑤 refers to the height and width of the 

bounding box. Today, dragging a window by left clicking is the most common 

method of creating bounding boxes by annotators in computer softwares. Fig. 2.19 

below shows an example of bounding box annotation.  

 

 

Fig. 2.19. Example of bounding box annotation for object detection models 

 

● Object Segmentation. Segmentation refers to the task of detecting objects at 

pixel level, which means all of the pixels that belong to the object should be 

indicated. The use of such a technique typically requires drawing a close contour 

that considers all pixels within the contour to be the pixels of the object. Using 

polygons [63] seems to be the most common tool for drawing contours. Fig. 2.20 

illustrates an example segmented image using the polygon operator. 
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Fig. 2.20. Instance segmentation via polygon 

 

Amazon Mechanical Turk11 (AMT) has become one of the most popular commercial 

platforms for image segmentation, particularly in researches [64]–[68]. In 2005, AMT was 

developed to crowdsource different tasks including surveys. Subsequently, it was extended 

to include extra functions for a wider range of applications, such as computer vision, 

natural language processing, etc. In terms of image segmentation, [63] implemented one 

of the most notable methods for object segmentation: the polygon operator, which is also 

used in AMT. Polygon operators allow annotators to draw the border of objects by clicking 

on the border of the object. The polygon operator connects the previous point to the new 

one after each click until the contour around the object becomes complete (see section 3.5). 

Many other platforms with different level of success have utilized this polygon operator in 

their system where among them the commericalized LabelBox12, V7Lab13, 

SuperAnnotate14, and HastyAi15 can be named as the most popular ones. Each one of them 

has distinct features, such as the ability to support multiple file formats such as DICOM (a 

standard format used to store medical images), video files (for annotating videos), or the 

availability of assistive tools, etc. Table 2.1 compares and presents the features of this 

platform.  

 

 

 

                                                           
11 https://www.mturk.com/mturk/welcome/ Last access: Novemer-2022 
12 https://labelbox.com/ Last access: Novemer-2022 
13 https://www.v7labs.com/ Last access: Novemer-2022 
14 https://www.superannotate.com/ Last access: Novemer-2022 
15 https://hasty.ai/ Last access: Novemer-2022 

https://www.mturk.com/mturk/welcome/
https://labelbox.com/
https://www.v7labs.com/
https://www.superannotate.com/
https://hasty.ai/
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Table 2.1. A comparison between the existing image annotation platforms 

 AMT LABELBOX SUPERANNOTATE HASTYAI V7LAB LABELME 

Free       

DICOM Support       

Video Support       

Model Training       

Assistive Tool       

Quality Control       

 

Each of these annotation platforms has its own advantages and disadvantages, as shown 

in Table 2.1. 

2.2.2 Human Computer Interfaces of Annotation Platforms 

 

The use of a well-designed interface tool with the computer for performing the 

annotation task can result in a higher completion rate and fewer errors. It can be argued 

that easier-to-use tools are helpful in maintaining annotators' motivation (e.g. an interface 

that is less cognitively and physically demanding may be more engaging and interesting 

for annotators). In addition, a good user interface can reduce the burden of tedious work 

on annotators, which can lead to better annotations [69].  Although the mouse is still 

considered the most effective and intuitive interaction device, there have been some 

emerging studies that investigate eye movement as a method to interact with computers. 

For example, [70] has developed a novel technique (known as EEL) that uses eye-tracking 

to compute pixel-level probabilities of object presence. The purpose of this technique is to 

train a machine learning model in order to predict pixels related to the object of interest, 

based on the observed and unobserved pixels. Each pixel in the image would be assigned 

a probability of belonging to the object of interest. Similarly, [71] investigated the 

possibility of using eye-gaze to segment objects in an image. Based on regression models, 

eye gaze has also been used for bounding box annotation [72], where researchers have 

developed an eye-tracking system to follow eye movements in order to define a bounding 



49 
 

box for an object. After training an SVR (Support Vector Regression) machine learning 

model based on the user eye gaze coordinates, the bounding box estimate is calculated.   

 

Fig. 2.21. An example image of performance of object detection with [70] and other baselines 

 

From Fig. 2.21, it can be seen that the quality of mask produced by the gaze-based 

annotation interfaces is not yet comparable with that of the ground truth, which is drawn 

by a mouse. Therefore, despite the promising success of the gaze-based interfacing tools 

for image annotation, the final examination of these annotations revealed that the 

technology still needs to gain more maturity for performing more accurate annotations. 

2.2.3 Annotation Assistive Tools 

 

For assisting workers in any workplace with labour intensive tasks, it may become 

necessary to implement some strategies to reduce their workload. Annotation assistive 

tools are some of the strategies used in crowdsourcing setups to automate a portion of the 

annotation process. Doing so will allow us to reduce costs too, as workers will perform 

more efficiently and make fewer errors. The following of this section examines the state-

of-the-art assistive technologies for object detection and segmentation annotation. 

2.2.3.1 Assistive Tool for Bounding Box  

 

Several efforts have been made to assist human annotators in object detection (i.e. 

bounding box) annotation. One method is to perform a preliminary annotation of the data 

with a weakly trained neural network [73] that is trained on a small dataset. Using this 

approach, a pre-trained algorithm would perform the first round of annotations on the 

data, which would then be shown to human annotators for confirmation and revision.  As 

one of the first studies that used the same technique in the annotation of objects in videos 

(i.e. converting the video frames to images and treating each frame as an individual image), 

[74] created an interactive platform called iVAT (Interactive Video Annotation Tool) that 
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allows users to annotate their data in a semi-automatic or automatic manner. In iVAT, the 

researcher has integrated their platform with supervised object detection learning 

techniques that allows computers' preliminary annotations to be given to 𝑛 annotators for 

confirmation or revision.  

In regard to object detection annotation, there has also been some other work on assistive 

tools that reduce the workload on human annotators. For instance, [75] has demonstrated 

the concept of vision-language models for object detection (just bounding boxes). It was 

initially developed for the detection of new categories of objects with a trained object 

detection model where the categories of objects were unseen by the model. With this 

technique, an image accompanied by a caption is fed into a novel vision-language model 

that is already trained on a limited set of object categories. In this way, annotators may not 

have to annotate all the object categories, rather let the model do so with the aid of a large-

scale image captioned dataset. Fig. 2.22 shows an example of the generated annotation by 

this model. Please see [75] for more information about vision-language models. 

 

 

Fig. 2.22. Visualization of the generated bounding boxes via vision-language model [75] 

 

2.2.3.2. Segmentation Assistive Tools 

 

Clearly, tracing the outline of an object by clicking along its border could be tedious, 

especially for large images with many objects. Several studies have been conducted in this 

direction by computer vision researchers in order to speed up the process of generating 

datasets for segmentation problems. According to my review of existing techniques, there 
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are two primary categories of solutions for this challenge: Iterative and Non-Iterative 

approaches. The most recent work in each category is described below. 

 Iterative Approaches 

 Some of the most advanced AI tools for segmentation annotation are developed in an 

iterative manner. The iterative approach refers to the process of generating an object’s 

polygon based on annotators' previous interactions [76], [77]. This approach involves the 

user selecting the bounding box of the object to be segmented, and then letting the 

segmentation algorithm, which has already been trained, propose a segmentation for the 

object of interest within the bounding box. In this technique, similar to the assistive 

annotation tools discussed in the previous section (2.2.3.1), annotators' intervention is 

necessary for confirmation/revision of the segmentation proposals. As part of the iterative 

approach, the contours will be refined by the algorithm following each revision by 

annotators. [76] proposed an iterative technique known as Polygon-RNN that makes use 

of VGG16 [33] descriptors to extract different levels of an image's features (high and low 

level). The extracted feature map is then followed by a two-layer convolutional LSTM 

(Long Short-Term Memory) model and the skipping link from the previous two steps to 

predict the spatial coordinates of the new vertex of the contour. As an extension of [76], 

[77] presented a new derivation of the Polygon-RNN that uses a similar methodology to 

assist annotators in an iterative manner. In order to overcome the drawback of the original 

model, namely its low-resolution contour output, the author has used a Gated Graph 

Neural Network (GGNN) [78], [79] to refine the contours. A Graph Neural Network 

(GGNN) is a class of deep learning methods designed to perform inferences on graph 

data. Therefore, in [77], the proposed graph (polygon) by the modified version of the 

CNN+RNN would be refined by a GGNN, considering the input polygon as well as the 

extracted features from the input image. Fig. 2.23 shows an example of a polygon proposed 

by the RNN network and refined by a GGNN network. 

 

Fig. 2.23. Generated polygon by RNN model and refined by GGNN [77] 
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 Non-iterative approaches  

As discussed earlier, iterative approaches are capable of updating the polygon points 

according to the annotator's revisions. In contrast, we have non-iterative approaches 

which propose the annotation only once, without refining them. Here are some examples 

of non-iterative approaches. Some studies, such as [80], have developed a web-based 

annotation system based on a novel method for estimating the objects' contours with the 

aid of a bounding boxes and some points around them (generated by annotators). In this 

technique, called Click'n'Cut, annotators perform right and left clicks on the foreground 

and background of the object, respectively. The foreground and background clicks would 

be mapped to a set of object candidates generated by saliency detection algorithms [81] 

and analyzed using a pre-trained classifier to extract the foreground's segmentation. A 

screenshot of annotation via Click'n'Cut is shown in Fig. 2.24. 

 

 

Fig. 2.24. A screenshot of the Click’n’Cut annotation environment [101] 

As another non-iterative approach,  [82] demonstrates another technique that does not 

rely on points (i.e., polygon points) for segmenting the object, rather relies on freehand 

traces acquired from the annotators. Through a Region Growing Refinement [83] 

method, a set of freehand traces drawn on the foreground and background would be 

transformed into segmentation of the foreground as shown in Figure 2. 25. The Region 

Growing Refinement technique is an unsupervised technique that uses a mathematical 

method for segmenting images. It analyzes pixels based on their spatial and color 

proximity. 
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Fig. 2.25. Generated segmentation via FreeLable model, by annotators drawn freehand traces on 

foreground (green) and background (black) [104] 

There are some other non-iterative approaches available, such as [84], that use old-

fashioned techniques like edge detection to extract object segmentations within images, 

where high quality detected instances would be presented to annotators. Rather than 

having to annotate everything from scratch, this allowed the annotator to save time by 

refining the proposed annotations. 

2.2.4 Retaining Annotators' Motivation 

 

Irrespective of the difficulty of annotation tasks, doing them for a long period can lead to 

the loss of motivation, concentration, and fatigue of the workers [69], [85]. In addition to 

the assistive tools described in the previous sections, some strategies must also be 

implemented to keep workers motivated. Several approaches have been explored to 

address the problem of annotators’ motivation, including minimizing the cognitive load of 

the workers. This section discusses two main strategies for preserving the motivation of 

annotators and keeping the process more engaging. Although these motivation retention 

strategies are not included in the developed platform for this PhD thesis, their review can 

be beneficial to understand how they might be applied in future. 

 

2.2.4.1 Gamification 

 

Incorporating the annotation into a game could be a reasonable solution for making the 

task more engaging for workers. GWAP (Game with a Purpose) refers to the process of 

adding game elements to an interface to motivate the annotators to complete the task at 

hand [82].  As one of the first attempts to gamify image annotation (classification 
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annotation), [86] has developed a web-based16 game for the classification of images by 

using the internet users as players. A pair of players play this game in which an image 

containing an object is shown to them, and they must type what is in the image. The 

caption will be assigned to the images once both players have typed the same caption, and 

the players would then be directed to the next image. Gamification techniques such as this 

have also been used in the medical field to detect malaria in blood smears [87], [88] as a 

classification annotation by crowd annotators; Positive and Negative. For instance, [87] 

presented an online game, called MalariaSpot, for the detection of malaria in tick blood 

smear images. The objective of the game for the players (annotators) is to select as many 

infected red blood cells as possible within one minute. A decision algorithm is then used 

to combine the responses of crowd annotators (players) in order to generate a collective 

detection with a higher level of accuracy. 

Furthermore, some other efforts have been made to apply the GWAP to object 

localization annotation. Peekaboom is an example of gamified object localization, 

introduced in [89]. Like [86], this game is run by a pair of online players known as Peek 

and Boom. The objective of the game is for one player (Boom) to receive an image and a 

keyword associated with it and reveal a portion of the image to their partner (peek), in 

order to guess the correct word related to the image (see Fig. 2.26). To make the game 

more entertaining, it is integrated with some awarding features as well.  

 

 

Fig. 2.26. Overview of the PeekaBoom game [89] 

 

                                                           
16http://www.espgame.org/ Last access: April-2022 

http://www.espgame.org/
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2.2.4.2. Micro-Task 

 

An alternative solution to overcoming the lengthy annotation process challenges is to 

break the task into smaller micro-tasks and have a short break between them. The use of 

this technique has been proved to be effective in making tasks easier for workers to handle.  

Therefore, solutions based on this have been investigated extensively. [90] investigated 

the efficiency of having breaks during the image classification in a crowdsourcing setup. 

The breaks in this study were called micro-diversions which are a set of entertainment 

activities. The researcher has implemented several entertainment activities, such as a dice 

game, listening to audiobooks, identifying scenic places or buildings in images, etc., where 

the results showed a significant increase in annotator retention rate when compared to the 

no micro-diversion mode. Fig. 2.27 depicts a screenshot of an example of a micro-

diversion. 

 

 

Fig. 2.27. Screenshot of the Dice game, integrated into image classification [90] 

 

Other studies like [91] have also reinforced the effectiveness of micro-breaks in reducing 

annotator fatigue, as well as maintaining their motivation. 

2.3. Crowdsourcing for Big Data Generation 

 

Crowdsourcing annotation is also another way to remove the burden of the work from 

annotators and collect accurate data from a wide group of workers. A crowdsourcing 

system is distributing the annotation tasks among a group of participants who can be 

located in any geographical locations [92]. The individuals who collaborate to perform the 
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task are known as workers or annotators, who are either experts or non-experts in the 

domain. It not only applies to collecting big data from workers, but also to obtaining high-

quality annotations for the image datasets. Some studies have explored the application of 

crowdsourcing for classification annotation [93], and for object localization [68] in the 

general domain. Yet, due to the promising results of crowdsourcing in general domains, 

researchers have also applied them to medical images. These sections are intended to 

explain crowdsourcing platforms, their application to medical images, and the challenges 

they face. 

2.3.1 Crowdsourcing in Medical Image Annotation 

 

In consideration of the wide range of medical imaging modalities, many neural network 

algorithms for processing medical images have been developed [47], [53], [94] (see section 

2.1) which still require big, annotated training datasets. Fortunately, crowdsourcing in 

medical image annotation has demonstrated great promise for generating high-quality, 

cost-effective datasets and annotations [95], [96]. 

Crowdsourcing in medical imaging is defined as giving the task of collecting and 

annotating data to experts (researchers, biologists, and labs) or even to non-expert 

annotators [97], [98]. The annotations range from classification (classification to 

healthy/unhealthy images classification) to instance/semantic segmentation of organs. 

ImagesCLEF17 and Visceral18 are two data annotation campaigns that have led to the 

development of crowdsourcing-based classification platforms by others. As a point of note, 

the platforms used for medical image annotation are not different from those used for 

general-purpose annotation. Many studies have, however, examined the feasibility and 

performance of using these platforms to annotate medical images. As an example, 

Crowdflower19 is one of the most widely used image classification platforms that has been 

used in crowdsourcing medical image classifications [93].  

As part of a pilot project of medical image annotation using crowdsourcing, [66] 

introduced a new crowdsoutcing setups for identifying lung nodules using the non-expert 

crowd. This study demonstrated a sensitivity of 90% for the detection of 178 lung nodules 

based on the CT images of 20 patients.  It has attempted to use non-expert annotators in 

                                                           
17 http://imageclef.org/ Last modified: November-2022 
18 http://www.visceral.eu/ Last modified: Jun-2017 
19 http://www.crowdflower.com/ Last access: April-2022 

http://imageclef.org/
http://www.visceral.eu/
http://www.crowdflower.com/
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the crowdsourcing platform for image segmentation, due to the fact that annotation by 

non-experts would be cheaper. Accordingly, [99] evaluated the feasibility of using non-

expert annotators for the segmentation of hip joints in MRI images, whereas [100] 

examined the performance of non-experts in a segmentation experiment of endoscopic 

images. Many other studies have used crowdsourcing for the classification of medical 

images, such as retinal fundus classification [67], segmentation in lung CT scans [101], or 

classification of medical pictograms [102], etc. 

A comprehaensive reviewed of crowdsourcing in medical images studies by [96] showed 

that 42% of crowdsourcing in medical images approaches have been used for classification 

in medical images. About 38% of papers deal with segmentation, and 13% with 

classification and object detection (determining the class an image belongs to as well as 

drawing the ROI if applicable). Approximately 7% of users request a unique task, such as 

finding the most similar image to a reference image from a group of images. 

Up to this point, the application of crowdsourcing to medical images has been outlined, 

however, there are several challenges to consider that could prevent its implementation. 

In the following sections of this chapter, the challenges associated with the crowdsourcing 

platforms and potential solutions are discussed.  

2.3.2 Annotators’ Malicious Behaviour in Crowdsourcing Platforms 

 

The harmful effects of malicious behavior by workers in a work environment like 

crowdsourcing platforms where there is no control over their performance, must be taken 

seriously. This malicious behaviour in crowdsourcing annotation can lead to poor 

annotation quality. However, not all of this misbehaviour may be related to non-

committed or malicious workers. Rather, it may be related to feeling fatigued or bored due 

to mental fatigue or other factors [69], [85]. Numerous studies have investigated the 

effects of such problems in the workplace, including crowdsourcing setups [103]–[107]. 

[105] examined the effect of fatigue on the performance of workers on a mobile 

crowdsourcing system. The participants in this study were asked to watch a video and 

answer some questions, such as: how many times was the video suspended?  Or how 

many times was there noise in the video? Based on their findings, workers' performance 

(measured as F1-score) decreased by 37% when they felt fatigued during the process.  
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Despite this, several studies have found that the performance of crowd annotators in a 

longitudinal annotation task is stable [103], [107]. For instance, [103] demonstrated that 

annotators feel fatigued when performing repetitive tasks, but work productivity also 

improved despite the fatigue, likely due to factors including increased familiarity, skill, etc. 

In the same way, [107] stated that annotation quality was stable throughout the entire 

period. Therefore, it can be concluded that doing longitudinal tasks in crowdsourcing 

platforms, and subsequently the impact of fatigue on performance is still debated. 

2.3.3 Quality control and Scammer Detection in Crowdsourcing Setups 

 

Due to the heterogeneous performance of workers in crowdsourcing platforms (e.g., 

becoming bored of the process), as discussed in the previous section (2.3.2), an adequate 

quality control mechanism in crowdsourcing platforms needs to be implemented. In 

addition to this, paid crowdsourcing platforms are often vulnerable to scams; therefore, 

an examination of annotators' performance, as well as techniques to detect low-quality 

annotations, fatigued annotators, scammers, etc. is critical. Researchers have proposed 

two approaches to address this challenge: 1) estimation of workers' fatigue and 2) 

estimation of workers'annotation quality. 

2.3.3.1 Fatigue Estimation 

 

In addition to the detrimental effect fatigue can have on the quality of the annotators' 

work, it can also have a negative impact on their wellbeing. This could result in digestive 

disorders, headaches, or heart palpitations [85]. This has led researchers to examining the 

possibility of assessing workers' fatigue levels based on a variety of features. In fact, certain 

behavioural/biometric features of workers have been shown to be useful in estimating 

fatigue level. For example, [108] showed that eye blink related features such as the number 

of blinks per minute, the ratio of closed to open eyes, etc. can predict fatigued users with 

an accuracy of 92.7%. Additionally, [85] utilized a set of physiological and behavioural 

features to estimate driver fatigue, which results in sleepiness. To assess fatigue and 

sleepiness of drivers in different settings, they utilized physiological (EEG, heart rate, etc.) 

and behavioral measures. A machine learning model trained on these features achieved an 

accuracy of 94 ± 5  and 95 ± 4  for the classification of sleepy and drowsy drivers. 

In a more general context, some approaches have examined the relationship between the 

fatigue of computer users and the usage patterns of the keyboard and mouse. The results 
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reported in [109], [110] demonstrated that the following key features of the keyboard and 

mouse correlate with the users' fatigue: Key down Time, Time between keys, Mouse 

acceleration, Mouse velocity, Time between clicks, Error per key (pressing 

incorrectly). Other studies have confirmed these findings where the Time between keys, 

Key down time, Mouse Acceleration, Mouse Velocity, Distance Between Clicks, Click 

Durations, and Errors per key are demonstrated as the most important factors in fatigue 

estimation in computer users [111]. An important finding of this study is the significant 

positive correlation between fatigue and Key down time and the negative correlation 

between fatigue and mouse velocity. 

2.3.3.2 Quality Estimation and Scammer Detection in Crowdsourcing 

Platform 

 

Some studies have explored the possibility of assessing workers’ quality directly through 

some interventions, including the use of tipping points, where a question is posed to the 

annotators periodically (e.g., especially in the case of surveys) and the answer will convey 

the level of awareness of the workers [104]. In the case of crowdsourcing segmentation, 

[112] incorporated a Canny edge detection system [26] to perform a preliminary detection 

of the objects within the images. Candy Edge is a computer vision algorithm that detects 

the edges of objects within images. Then, based on the overlap between the detected edges 

(processed and converted to contours) and the annotation, a score of annotations' quality 

would be calculated. In other studies, the use of behavioural (mostly recorded by observing 

interaction patterns with the keyboard and mouse) and annotation-based (i.e. annotation 

features, such as spending time, clicking, etc.) features in assessing the quality of 

annotated documents has been shown to be effective [64], [113]. 

To measure the quality of the annotation in their crowdsourcing platform (CrowdScape), 

Rzeszotarski et al. [114], [115] employed behavioural features such as mouse movements, 

clicks, scrolls, keystrokes, and zooming in and out. Similarly, [113] introduced two types 

of behavioural-based and performance-based quality control mechanisms. The 

behavioural-based mechanisms are based on patterns detected throughout worker 

annotations, such as mouse and keyboard actions, and the performance-based 

mechanisms rely on the annotators' historical performance annottaors’ historical 

performance includes the quality of the workers’ annotation in the past. Specifically, the 

researchers in this study proposed a regression model for estimating the quality of 

annotators in a crowdsourcing text annotation problem (i.e., for natural language 
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processing models). Precision (P), Recall (R), and F1-scores were considered dependent 

variables, and variables such as annotation time, pausing time, number of scrolls, number 

of clicks, etc were considered independent variables for training the regression model. 

One of the most comprehensive attempts to estimate the quality of segmentation in 

crowdsourcing setups has been made by [116], where they examined the mouse dynamics' 

features to determine if there is any association between them and the quality of the 

workers’ annotation. A set of features were extracted in this study, including the number 

of zooms, the number of single clicks, the number of double clicks, the elapsed time, the 

distance travelled by the mouse movement, the length of the contour segmentation, and 

the direction of the contour segmentation. Using the extracted features from workers, a 

random forest regression model was trained and used for estimating the DSC (Dice 

Similarity Coefficient) of unseen data. The author used 100 images with varying degrees 

of difficulty from the Pascal VOC dataset [38]. Considering the features proposed in this 

study, a value of 𝑅2 of 0.71 was achieved for the Decision Tree regression model. Using the 

estimated qualities, the study applied a weighted aggregation technique, as discussed in 

section 2.3.4. In conclusion, the most prevalent features for estimating the quality of 

segmentation annotation in prior research are summarised as follows i) the number of 

points drawn [117] ii) the annotation time [64], [118], [119]. 

 

2.3.4. Data Aggregation in Crowdsourcing Setups 

 

Despite various techniques discussed in sections 2.2.3, 2.2.4, and 2.3.3, developed to 

ensure high quality annotation from crowd workers, there will still inevitably be low-

quality annotations among them. Using an aggregation process for annotations from 

different workers can produce high-quality annotations while eliminating incorrect 

annotations (see Fig. 2.28). In previous studies, different aggregation techniques were 

investigated [11], [120]–[122], which could help to reduce the negative impact of low-

quality annotations. This section examines the existing techniques for aggregation, 

focusing on segmentation aggregation. 
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Fig. 2.28. Workflow of an example aggregation technique 

 

2.3.4.1 Majority Voting 

 

In general, Majority Voting is the most employed method for aggregating all types of 

annotations ranging from classification to segmentation and even audio data [120], [121], 

[123]. Choosing the most provided annotation is the traditional method of selecting the 

correct annotation (ground truth) from a group of annotations, as shown in Fig 2.28. [11] 

introduced one of the first majority voting techniques in which, among the repeated 

annotations of a crowd, the votes (annotations) above the threshold are considered correct 

annotation. There are primarily two types of majority voting: i) hard voting and ii) soft 

voting. 

 

● Hard Voting 

In Hard Voting, all votes cast by the voters (i.e. crowd annotators in our case) are given 

the same priority [11].  For instance, in the case of binary image classification (e.g. either 

an image is a cat or not), the final weight of the image, j, would be as follows: 

 

∆𝐼𝑗 = ∑ 1 .  𝑃𝑖,𝑗
𝑁
𝑖=0                                                              (2.2) 

 

where 𝑃𝑖,𝑗  ∈ [0,1] is the vote for annotator 𝑖 for 𝑗𝑡ℎ image (i.e., true, or false). As a result of 

the final weight (votes), ∆𝐼 , derived from N annotators, the ground truth (correct answer) 

would be defined as follows: 
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𝐼𝑚𝑎𝑔𝑒𝑗 =   {
𝑇𝑟𝑢𝑒     𝑖𝑓 ∆𝐼𝑗 > 𝜓

 𝐹𝑎𝑙𝑠𝑒      𝑒𝑙𝑠𝑒         
                                             (2.3) 

 

, let’s 𝜓 be the threshold at which the images with the votes more than threshold are 

considered True, while those with fewer votes are considered False. It should be noted that 

although the threshold value is an adjustable parameter, in most cases, 1/2 of the total 

votes (i.e., N/2) is considered the classical threshold [ss11]. 

● Soft Voting 

Soft voting, also known as Weighted Majority Voting (WMV), is another approach that 

has received attention due to its high efficiency. Instead of considering one vote per 

annotator, soft voting techniques incorporate the score (i.e.score can be a measure of the 

annotators’ experience or quality esimate) of each annotator into account. In other words, 

soft voting prioritizes the votes. Therefore, the weights of the images are calculated as 

follows: 

 

∆𝐼𝑗 = ∑ 1 .  𝐸𝑖,𝑗
𝑁
𝑖=0      (2.4) 

 

where 𝐸𝑖,𝑗 denotes the score of 𝑗𝑡ℎ image from 𝑖𝑡ℎannotator. Then the ground truth for the 

image would be: 

𝐼𝑚𝑎𝑔𝑒𝑗 =   {
𝑇𝑟𝑢𝑒     𝑖𝑓 ∆𝐼𝑗 > 𝜓

 𝐹𝑎𝑙𝑠𝑒      𝑒𝑙𝑠𝑒         
                                       (2.5) 

 

The score in Soft Voting can be derived from an estimation of the annotators' quality, or 

from a comparison of their past performance (how well they have behaved in the past; see 

section 2.3.3.2 for details). Consequently, the soft computing approach prioritizes 

annotations that are most likely to be accurate. The soft voting technique has been widely 

used for different applications including data aggregation in crowdsourcing setups or 

ensemble learning models [116], [124]. 
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2.3.4.2 Simultaneous Truth and Performance Level Estimation (STAPLE) 

 

Majority voting, discussed in section 2.3.4.1, is a general approach that was first tested 

on image classification problems, and subsequently applied to other applications, such as 

segmentation aggregation [116]. In contrast, other methods, such as STAPLE 

(Simultaneous Truth and Performance Level Estimation), were developed specifically to 

address segmentation problems [122] in medial images. In [122], Simon et al. developed 

STAPLE primarily to characterize the quality of a set of image segmentations (the 

segmentations might have been made by human annotators or computer vision 

algorithms) and then aggregate them to generate the true segmentation annotation. A 

STAPLE is a weighted aggregation technique which operates as follows. In the first step, 

STAPLE gathers information on crowd segmentation and computes a probabilistic 

estimation of the real segmentation (the estimated segmentation is known as the test 

segmentation) using the Expectation-Maximization algorithm [125]. EM (Expectation-

Maximization) is a statistical approach to calculating the maximum likelihood of 

parameters in a statistical model. After this, it rates the score of each segmentation in 

relation to the test segmentation (similarity between the test segmentation and crowd 

segmentation). Following this, a weighted majority voting aggregation was performed on 

the crowd annotations. Fig. 2.29 presents an example of a STAPLE that aggregates 

annotations from three radiologists. STAPLE has been evaluated for many different 

applications in healthcare, including tumours [126], cavities or abnormalities in MRI 

images [127], [128]. 

 

Fig. 2.29. Example of using STAPLE to combine 3 pancreas segmentations, generated by 3 raters into a 
single ground truth 20 

                                                           
20 https://towardsdatascience.com/how-to-use-the-staple-algorithm-to-combine-multiple-image-

segmentations-ce91ebeb451e / Last modified: August-2021 
 

https://towardsdatascience.com/how-to-use-the-staple-algorithm-to-combine-multiple-image-segmentations-ce91ebeb451e%20/
https://towardsdatascience.com/how-to-use-the-staple-algorithm-to-combine-multiple-image-segmentations-ce91ebeb451e%20/
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2.4 Image to Image Translation  

 

Previous sections examined relevant studies concerning the challenge of generating high-

quality annotations for image datasets. However, there is another aspect of generating 

reliable dataset for supervised computer vision models, namely diversity. The purpose of 

this section is to review a category of image processing techniques that may be useful for 

diversifying image datasets. Recently, a class of the image processing models, Image to 

Image Translation (I2IT) are designed to generate a synthetic version of a given image 

with specific adjustments (see Fig. 2.30), such as converting a summer landscape into a 

winter scene or improving the resolution of images (i.e., super resolution). There has been 

widespread use of I2ITs in general [129]–[133] and technical domains such as medical 

images [134]–[137]. 

 

Fig. 2.30. An example of image-to-image translation. Translating sketch to photorealistic image [138] 

 

In literature, I2IT frameworks can be classified as either structured or unstructured 

approaches, in which unstructured approaches deal with each pixel in the image 

independently (classical techniques), while structured approaches penalize the 

discrepancy between images at a higher level, as is the case with Generative Adversarial 

Networks (GANs) [138] (more details in section 2.4.2). I2IT techniques have been 

developed for a variety of applications, which can be broadly classified into i) quality 

enhancement; to improve the resolution or clearness of input image (e.g., improve the 

resolution of computed tomography slices [137]) ii) image synthesizing, to generate 

photorealistic images and iii) content translation, to translate the content of images (e.g., 

daytime to night-time, or zebra to horse [138], [139]). 

The following sections provide a brief overview of classic I2IT models (section 2.4.1), 

followed by a gentle introduction to GAN networks (section 2.4.2) and GAN-based I2IT 
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models (section 2.4.3). This chapter concludes with two sections that describe a new 

paradigm of image translation, namely style transfer, as well as the application of I2IT to 

medical imaging (section 2.4.5).   

2.4.1 Classical Image Translation Models 

 

Despite the fact that classical models were not used in this Ph.D, they should be 

examined. This enables us to gain a better understanding of the problem and its history. 

In the classical I2IT approaches (called unstructured approaches in some research) each 

pixel is treated independently. Before the development of GANs, various unstructured 

approaches that employed machine learning techniques had been developed in order to 

solve various image translation problems, such as colorization, de-noising, etc. The 

following subsections presents some of the classical image translation techniques and their 

applications.  

In order to colorize grayscale images, Iizuka et al. [140] used a CNN network containing 

two consecutive layers of downsampling (convolutional layers) and upsampling 

(deconvolutional layers). In this network, the downsampling layers extracted features first, 

and the extracted features were then sent to the upsampling layers for colorization. 

Through backpropagation, the optimizer penalizes the difference between the colored 

image (ground truth) and its grayscale counterpart. In a similar manner, Larsson et al. 

[129], presented a method of automatically colorizing images with CNNs in which the 

difference between the ground truth image and the generated image is penalized at the 

pixel level.  

In medical imaging, classical image translation techniques are also used. Due to the 

importance of Computed Tomography (CT) in diagnosis and radiotherapy treatment, as 

well as radiation effects on the body during the imaging process, computer vision can be 

used to convert MRI images to CT images. Huynh et al. [134] developed a classical image 

translation model that incorporates a novel derivation of random forest (structural 

random forest) along with an auto-context [141] model to translate MRI to CTs as shown 

in Fig. 2.31. This is due to the fact that for cancer diagnosis by doctors, CT images provide 

meaningful information and are easier to interpret  [142]. 
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Fig. 2.31. Ground truth and translated images via Huynh et al. [134] model. From left to right: MRI image, 
ground truth CT image, and generated CT images. 

 

All the aforementioned techniques used a pixel-by-pixel loss function that compares the 

output image to the target image at the pixel level (by minimizing the Euclidean distance 

between the generated and ground truth images), which is associated with some 

challenges (e.g. blurry image) that are discussed in section 2.4.3. 

 

2.4.2 GAN Networks 

 

GANs (Generative Adversarial Networks), have revolutionized the domain of image 

translation. Therefore, it is important to briefly review the GAN networks and their 

architecture before presenting the GAN-based image to image translation models. Since 

being introduced by Ian Goodfellow in 2014 [143], the Generative Adversarial Network 

(GAN) has gained in popularity. The GAN framework consists of two neural networks, the 

Generator and the Discriminator. The generator is responsible for generating the output 

image, while the discriminator is responsible for identifying the generated image from the 

original. As in a zero-sum game, the gains of one model (generator or discriminator) are 

the losses of the other. In other words, the generator is rendering an image in an attempt 

to fool the discriminator, and the discriminator also pushes the generator to create more 

realistic images by identifying the synthesized images from the real ones. In some 

instances, an image generator generates an image based on the input of a picture (called 

conditional GAN) or a set of random noises. Fig. 2.32 shows an overview of a typical GAN 

network. 
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Fig. 2.32. An overview of GAN network21 

 

Following is a brief description of the performance of a GAN network. The generator of 

the GAN, G, is a neural network that is trained to find the mapping function 𝐺: 𝑧 → 𝑦′ 

where 𝑧 represents a random noise vector, and 𝑦′ is the synthetic image generated by 

generator G. On the other hand, Discriminator, D, is a classifier that is responsible for 

differentiating between the fake image, 𝑦′, and the real image 𝑦. As part of the training 

process, generator G provides the loss for training D and vice versa. Accordingly, the loss 

function of the GAN is defined as follows: 

 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) =  𝐸𝑦 [𝐿𝑜𝑔(𝐷(𝑦))] + 𝐸𝑧[𝐿𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))]          (2.6) 

 

where the training objective is: 

𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
𝐿𝑎𝑑𝑣(𝐺, 𝐷) 

 

A key attribute of GAN networks is the absence of pixel-wise loss, i.e., there will be no 

Euclidean distance minimization between the generated and target images, which can 

results in blurred synthetic images [130], [131], [138]. As an alternative, GANs analyse the 

image at a higher level to distinguish between synthetic and real-life images. In recent 

years, several models based on GANs for image-to-image translation such as conditional 

                                                           
21https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-
gans-7a2264a81394/ Last modified: Jan-2018 
 

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
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GANs [138], [144], Cycle-GAN [139], and MedGAN [135] have been developed and tested. 

The next section discusses GAN-based I2IT models.  

2.4.3 GAN-based Image Translation Models 

 

GANs have revolutionized the computer vision domain since they can find the mapping 

function between input and output images rather than minimizing Euclidean distance at 

pixel level. In this manner a clearer synthetic image can be obtained [130], [131]. With the 

progress of GAN networks in synthesizing images, Isola et al. [138] presented a new 

derivation of GAN networks, namely conditional GAN (cGAN), which has gained 

momentum in the field of image translation. According to [138], not only does cGAN learn 

the mapping function between input and output, but it also learns a loss function to train 

the mapping function. To put it another way, a normal GAN aims to find the mapping 

function between the random noise z to the desired output image y, while a cGAN aims to 

find the mapping function between the random noise z and the input image x, to the 

desired output image y. Adding the image as a condition (for example, when generating 

synthetic faces, the condition can be whether we want male or female representations) to 

the generator, made the cGANs an excellent solution for image-to-image translation 

models. This is due to the fact that the cGAN automatically adapts to a condition, whereas 

the GAN networks would need to condition their output to the input by using different loss 

formulations. Moreover, cGAN networks are more capable of accelerating the convergence 

of the model during the training process [139]. The adversarial loss in the cGANs is very 

similar to the conventional GANs apart from the condition, z, as defined below: 

 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) =  𝐸𝑥,𝑦 [𝐿𝑜𝑔(𝐷(𝑥,𝑦))] + 𝐸𝑥,𝑧[𝐿𝑜𝑔( 1 − 𝐷(𝑥 , 𝐺(𝑥,𝑧))]              (2.7) 

 

Several challenges have been addressed by cGAN networks, including photorealistic 

image generation from semantic segmentation [132], domain transfer in fashion images 

(e.g., changing the subject's dress in the input image) [145], the prediction of lost frames 

in a video stream (e.g., to increase framerate) [146], and style transferring (e.g., adapting 

the texture of one image to another) [147], among others. Fig. 2.33 depicts some examples 

of image-to-image translation using cGANs. 



69 
 

 

 

Fig. 2.33. Examples of image translation via cGAN [138] 

 

● Unpaired Image Translation 

While cGANs have achieved impressive results, they suffer from a limitation: a 

requirement for paired datasets (input images and their corresponding output images) 

when training the model. In this context, paired data refers to paired input-output images 

with the same spatial features but different visual appearance (see Fig. 2.33), while 

unpaired data refers to images from different domains that have different spatial features 

(refer to Fig. 2.34). To overcome this problem, the idea of using cycle-consistency loss to 

train GAN-based image translators on unpaired datasets has been proposed by Zhu et al. 

[139]. 

 

Fig. 2.34. Example of paired and unpaired images 
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For models based on the Cycle-consistency, there are two generators and consequently 

two mapping functions: 𝐺: 𝑥 → 𝑦′, and 𝐹: 𝑦 → 𝑥′ where x and y are the unpaired input 

images and x′ and y′ are the synthetically generated images. The cycle-consistency loss is 

made up of two forward and backward consistency objectives, in which F(G(x)) = x is the 

forward consistency objective, and 𝐺(𝐹(𝑦)) = 𝑦 is the backward consistency objective. In 

the forward consistency, the input image x is translated to the synthetic image y′ using 

mapping function G. After that, the synthetic image y′ is translated back to the input image 

x, where the objective of the model during training is to have the original, and the back 

translated images identical (F(G(x)) = x). It follows the same process for the backward 

consistency to reach ((𝑦)). [120] incorporated two discriminators Dx and Dy which are 

responsible for discriminating between synthetic and real images (𝐷 (𝑥, F(y)) and 𝐷 (y, 

G(x)). Fig. 2.35 illustrates the concept of Cycle-Consistency.  

 

Fig. 2.35. Cycle-Consistency working flow. a) Two mapping functions (G and F) and discriminators (Dx 
and Dy) to interchangeably translate unpaired images X and Y b) Forward consistency where the objective 

is to achieve x = x′ c) Backward consistency where the objective is to achieve y = y′ 

 

The promising success of cycle consistency loss in translation of unpaired images has led 

to the development of several new architectures [130], [133], [139], [148]–[152] that has 

been used widely in the medical domains as well. 

2.4.4 Style Transfer 

 

In the area of image processing, another well-known method is known as style transfer, 

which aims to achieve style composition. Style transfer models apply the high-level 

features (styles) of a given image to another image. Fig. 2.36 illustrates a great example of 

high-level feature adaptation in a style transfer model, in which the style of van Gogh's 

painting is adapted to another image. 
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Fig. 2.36. Style transfer from Van Gogh's painting style to another image [153] 

 

The concept of style transfer was first introduced by Gatys et al.  [153] for the 

composition of images' texture. Gatys et al proposed a CNN for minimizing the 

discrepancy between the texture of a target image and that of the input image. Here is a 

summary of the architecture of the model as follows. For the generation of the synthetic 

image, the input image is passed through a CNN network (can be both ResNet and U-Net) 

which is called transformer model. For training the transformer model, a pre-trained 

VGG16 [33] feature descriptor is implemented to form two elements of content loss and 

style loss. The two loss elements (also called perceptual loss) are then used to train the 

transformer model in a backpropagation manner. 
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Fig. 2.37. Style and content reconstruction via different layers of VGG16 in fast style transfer model [153] 

 

In the training process, the model attempts to penalise the perceptual loss which 

contained two elements of content and style loss as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑙𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝜆𝑙𝑠𝑡𝑦𝑙𝑒 

where 𝑙𝑠𝑡𝑦𝑙𝑒 defines as: 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑ 𝜔𝑙. 𝐸𝑙
𝐿
𝑙=0                                                  (2.8) 

 

In this equation, 𝜔𝑙 denoted the weight that represents the contribution of layer 𝑙, and 𝐸𝑙 

represents the inner product of layer 𝑙 that mathematically defined as: 

 

𝐸𝑙 =
1

4𝑁𝑙
2𝑀𝑙

2 ∑ (𝐺𝑖,𝑗
𝑙 − �̂�𝑖,𝑗

𝑙 )2
𝑖,𝑗                                             (2.9) 
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where 𝐺𝑙 and �̂�𝑙 are representing the Gram-Matrix of the target and input image in layer 𝑙 

as computed by vectorised feature maps i and j as: 

 

𝐺𝑖,𝑗
𝑙 = ∑ 𝐹𝑖,𝑘

𝑙 𝐹𝑗,𝑘
𝑙 .𝑘                                                 (2.10) 

 

The content loss was also defined as follows. 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑ 𝜆𝑐𝑗
1

ℎ𝑗𝑤𝑗𝑑𝑗
|| 𝐹𝑗(𝐺(𝑦)) −  𝐹𝑗(𝑥) ||𝐹

2𝐵
𝑗=1                      (2.11) 

 

where h, w, and d denote the hight, width, and the depth of 𝑙𝑡ℎ convolutional block. 

Regarding the fast style transfer models, it is important to note that it is not a GAN-based 

model, and it only requires one target image (target style) for training. 

2.4.5 Medical Images Translation and Quality Enhancement 

 

Given the success of GAN-based image translation models, it is conceivable that these 

techniques could have an implication on medical imaging domain. There are a number of 

scenarios why image translation techniques may be useful in medicine, e.g., considering 

that different forms of radiographic imaging, such as CT and MRI, may offer more detailed 

information to clinicians about disease diagnosis (e.g., cancer), researchers investigated 

the possibility of cross-modality image translation [142]. 

In response to the wide application of I2IT (Image-to-Image Translation) models in 

medical images, Karim et al. [135] have developed a novel variation of cGAN (MedGAN) 

networks for a multi-purpose medical image translation, which has been validated in 

various applications. The application of MedGAN has been tested on three domains of PET 

(Positron Emission Tomography) to CT translation, correction of MR motion artefacts, 

and PET image denoising. In this model, in order to minimize the high-level feature 

discrepancies between input and output images, and to highlight more meaningful 

features for clinicians, Karim et al. utilised a generator (three-stage U-Net [47]) for 

creation of the synthetic image and a discriminator to differentiate between synthetic and 

real images. In this work, two elements of adversarial (i.e., error probability) and 

perceptual loss were considered. The adversarial loss was derived from the confidence 
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score of the discriminator, while the perceptual loss was derived from the perceptual loss 

network, discussed in section 2.4.4. Architecture of MedGAN is presented in Fig. 2.38. 

 

Fig. 2.38. Architecture of MedGAN. The synthetic image generated via three-stage U-net. Adversarial and 
perceptual loss are incorporated to minimise the discrepancy between the high-level feature of synthetic 

image x′ and x. 

 

Another study [136] proposed a new GAN network (known as MIGAN) to generate 

synthetic retinal images based on random noise vectors to enlarge and diversify image 

datasets. Bailo et al. [154] developed a novel GAN network for synthetically enhancing the 

abundance of red blood cell image dataset. They trained two cascaded generators, where 

the first one generated random masks, while the second converted the random masks into 

synthesized red blood cells. The syntetic red blood cells are helpful to enlarge the size and 

diversity of image datasets. In summary, to date the application of GAN models to medical 

and microbiological images is still in its infancy, but now showing some promise. 

2.5 Summary 

 

Chapter 2 provided an overview of the existing techniques and methods in 

crowdsourcing, quality control, annotation aggregation, and image data augmentation. In 

particular, in this chapter we discussed the topics related to the generation of high-quality 

annotations based on crowdsourcing setups, as well as the image processing models that 

can be used to enhance image diversity. In addition to the case studies and research 

articles, the commercialized and publicised solutions were reviewed. In spite of the 

widespread use of crowdsourcing in image annotation generation, limitations such as the 



75 
 

presence of low-skill annotators, the boring and tedious nature of many annotation tasks, 

the deterioration of annotation quality over time as well as the high cost involved in 

diversifying image datasets have been pointed out by different scholars. Researchers have 

investigated different approaches to address this problem, including assisting annotators 

by computer algorithms, controlling the quality of annotations, and enhancing dataset 

diversity by using synthetic images.  

A review of the existing literature has identified a number of potential gaps in the field, 

which are briefly summarized as follow: i) Almost no studies have examined the 

performance of assistive tools for crowdsourcing microbiological image annotation by 

non-experts; ii) although the literature review showed that controlling the quality of 

annotation by means of behavioural features is a feasible solution, the most appropriate 

features are still debated among researchers; iii)  The weighted aggregation of data for 

ensemble learning models and classification problems have been well-explored. However, 

the possibility of using weighted majority voting in conjunction with the annotations 

estimated quality for segmentation aggregation is understudied; iv) lastly, the literature 

review showed that image translation models have been mainly developed for translating 

images from one domain to another, but the application of such models in improving the 

diversification of the image datasets for training a well-generalized computer vision model 

needs further exploration. 

The next chapter (Chapter 3) discusses the design and implementation of a 

crowdsourcing platform that forms the foundation for the studies presented in the next 

chapters. Then in the Chapters 4, 5, and 6, we discussed the undertaken studies, which 

were conducted in order to address the limitations outlined above and asddress the 

research questions.  

 

 

 

 

 

 

 



76 
 

 

 

 

 

 

 

 

CHAPTER 3:  
 
 
 

PLATFORM DESIGN AND 

IMPLEMENTATION 
 

 

 

 

 

 

 

 

 

 

 

 



77 
 

3.1 Introduction 

 

In the previous chapters (Chapters 1 and 2), the importance of reliable annotation 

platforms was discussed and some examples for annotation platforms in section 2.2.1 were 

presented. As one of the primary practical contributions of this thesis, we have developed 

a new annotation platform, which then served as a framework for the forthcoming studies, 

discussed in sections 4 and 5. Given the limitations of the existing platfroms, which are 

illustrated in Table 2.1, (most notably, the lack of quality control mechanisms, assistive 

tools, and data augmentation in a platform), we have developed this platform by leveraging 

different features such as the assisitive tools, quality control mechanism, etc. The 

developed platform is hosting two groups of users; i) project managers who wish to 

generate an annotated dataset (i.e., the project managers are known as requesters in AMT 

(Amazon Mechanical Turk)), ii) annotators who wish to participate in the projects (also 

known as workers in crowdsourcing setups). The platform aims to lower the barrier of 

dataset generation for project managers by providing a user-friendly environment for data 

management, data annotation, recruitment of crowd annotators, annotation quality 

control. Also, the platform hosts a community of crowd annotators, who can be recruited 

by project managers to participate in the annotation projects. The developed platform, its 

architecture, and associated technologies are discussed in this chapter. Section 3.2 

discusses the Web-app technologies which is the foundation of the developed platform, 

followed by section 3.3 that explores the various elements of the platform. Section 3.4 

discusses the platform's tools for project managers and annotators. Lastly, in Chapter 3.5, 

the annotation environment and user interface of the platform are discussed. 

3.2 Web-Apps 

 

In the world dominated by the Internet, websites have become ubiquitous and helpful 

tools that have attracted a great deal of attention. Websites that were originally created as 

means of presenting information or products before the development of Web2.0 

technologies gained momentum. With the advent of Web2.0 technologies, websites are 

now more interactive, and the internet user is able to interact with the website to input 

data [155]. This interactivity has given rise to the idea of web apps, which are applications 

that run on web technologies. Accessibility is one of the factors that make web applications 
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appealing. Web apps are cross platforms that enables users to run them on any device (i.e. 

tablet, smartphones, etc). Fig. 3.1 below shows the overall architecture of a web app. 

 

Fig. 3.1. Overview of a sample Web-App22 

As shown in Fig. 3.1, web applications are divided into two subsets: client (also known as 

front-end) which represents the application's presentation, and server (i.e. back-end) 

which refers to the part of the system that hosts and processes the data. The interaction 

with the Web-apps is classified into three steps as follows [156]: 

● Request. Using webpages in the browser, the user submits a request to the server. 

● Processing. The server would process the request once it is received. 

● Answer. Once processed, the result of the request will be redirected to the 

frontend. 

It is important to note that designing an efficient web application depends on three main 

factors including i) reliable and fast architecture ii) optimised front-end and back-end iii) 

user friendly UI (User interface). 

                                                           
22https://www.mindinventory.com/blog/web-application-architecture/ Last modified: Jan-2022 

https://www.mindinventory.com/blog/web-application-architecture/
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Due to the importance of these parameters in the development of web apps, the following 

sections will discuss the platform's architecture, structural components, and user 

interface. 

 3.3 Platform Architecture 

 

According to an analysis of existing web applications, the community of computer 

scientists has developed three types of topologies for web apps: i) one server, one database, 

ii) multiple servers, one database, and iii) multiple servers, multiple databases. The 

multiple server one database architecture was chosen for this platform.  The platform 

consists of a Python server to host the AI scripts and a web server to host the web app 

content. In order to create a well-structured user interface, the front end was formatted 

using HTML to display tools and data, such as texts, graphs, tables, etc. To interact with 

the servers, the queries/requests from the front end would be directed to either web server 

(for data retrieval), or to python server (for data processing) via an HTTP post request. 

Back end contains three main elements of i) Hosting Server ii) python Server iii) 

Database. The interconnection between the different elements of our platform is shown 

in Fig. 3.2 below. 

 

 

Fig. 3.2. Overview of the developed platform architecture 

 

The following subsections discuss three blocks of the back-end separately. 
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3.3.1. Web Hosting Service 

 

The web hosting service provides an environment in which the scripts are stored.The 

servers of the web hosting, store the contents of a web app, such as Javascript, HTML, CSS 

scripts. The scripts on the web host are responsible for: 

● Responding to the user's request to display the contents 

● Processing the interactions (mouse/keyboard) for generation of annotations 

● Processing the queries and redirecting them to the Python server or Firebase 

database (if needed). 

● Retrieving the results from Firebase or Python server and redirecting them to the 

front-end for the user. 

This platform was deployed on a public hosting service that was linked to www.ai-

console.com in the Domain Name Service (DNS). It means all the queries for the 

aforementioned URL on the internet will be redirected to the developed platfrom. The 

platform's back-end was written in Javascript. To generate the annotations, JavaScript 

would process the mouse and keyboard input in the annotation environment. All other 

platform functions, such as user sign-in/sign-up, data management, etc. are handled by 

the scripts hosted on the web server. 

3.3.2. Python Server 

 

Python is an object-oriented and extensible programming language that comes with 

many powerful libraries for machine learning and artificial intelligence (such as 

Tensorflow, Keras). In order to integrate AI models (the assistive tools and the annotators' 

marking mechanism in chapters 4 and 5), which were written in Python, we used a Python 

server to execute Python scripts. At the time of writing this thesis, the scripts for chapter 

6 (I2IT) have not yet been deployed on the Python server. The workflow of the Python 

server would be as follows. A request from the front-end would be received by the web 

hosting service, and then the request would be forwarded to the Python server through a 

Django gateway (deployed in URL.py in Fig 3.2). Django is a python-based web framework 

for rapidly developing secure and maintainable websites. The requests would be sent to 

the Django via a Get Request. Get Request is a method of communicating between a client 

and a server that was originaly developed in order to facilitate communication between the 

two. The Get Request, received at the python server's side, contains a header that specifies 
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the type of request as well as some complementary information for each type. There are 

two types of requests that may be directed to the Python server: i) Requests for assistance 

in the annotation process (see section 4.3.1); ii) Requests to mark workers' annotations for 

the purpose of checking worker qualification before recruitment (see section 3.4.2). Here 

is an example of a get request sent to the server: 

https://pythonanywhere.com/[ User ID] /? [Marking]/[UserID] 

Upon receiving the request, the server calls the python scripts, stored in the AI scripts 

block (see Fig. 3.2). Using Firebase's APIs, the Python server is also able to directly 

communicate with Firebase to retrieve data or write on it. 

3.3.3 Database 

 

This project has used Google's Firebase service to store data. Firebase is deployed to host 

i) Users’ credentials, ii) raw images, iii) annotations. Both the Python server and the web 

hosting service can communicate with Firebase. Firebase is connected to the web hosting 

service through a secure, encrypted API (Application Programming Interface) for: 

● Registration of new users or authentication of existing users 

● Create, modify, and remove projects and datasets upon user request 

● The storage of annotations generated by JavaScript 

● Retrieving the public projects and annotators pool (see section 3.4.2) 

 

Likewise, the Python server communicates with the database for storing the results for 

assistance requests, as well as the scores of crowd annotators when they are asked to 

complete a qualification exam by the project manager. 

3.4 Users’ Dashboard 

 

At the time of designing this platform, simplicity and intuitiveness of the interface were 

among the primary factors. It was my objective to design the platform environment in such 

a manner that new users would be able to use all the features and tools of the platform 

without any training. The Imperial bootstrap23 was used as the theme of the platform. It is 

an open-source HTML template that was used as the foundation and style of the platform. 

                                                           
23 https://bootstrapmade.com/imperial-free-onepage-bootstrap-theme/ Last modified: October-2022 

https://bootstrapmade.com/imperial-free-onepage-bootstrap-theme/
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The menus, buttons, and content were then customized and modified. Fig. 3.3 provides a 

general overview of the main dashboard.  Users of this platform are divided into two 

groups; project managers and crowd annotators, each of whom should specify their 

category when registering on the platform. Generally, project managers are those users 

who wish to generate a dataset (they are known as requesters in AMT (Amazon Mechanical 

Turk)), and crowd annotators are those users participating alongside project managers. 

This dashboard provides an overview of existing projects, datasets, and progress statistics. 

Users can also communicate via a secure and easy-to-use messaging system. 

 

 

Fig. 3.3. A screenshot of the platform dashboard 

 

The following subsections are presenting the available tools for the project managers 

(section 3.4.1) and for crowd annotators (section 3.4.2). 

3.4.1 Project Manager 

 

Project manager is the person who is creating a project for either a self or crowd 

annotation. In this platform, a quick-start guide will assist the project manager in 

completing the steps below in order to prepare the dataset for annotation either by 

themselves or by crowd annotators: 



83 
 

1- Create the project, including its name, description, and status (public or private). 

2- Declare the objects of interest along with a description 

3- Create a new dataset, including its name, description, etc. 

4- Importing the images to the created dataset and bind the dataset to the project 

 

A project manager has two options at this point: annotate the data themselves or 

outsource it to crowd annotators. Annotators may be selected from the pool (the member 

who checked the collaborator checkbox during registration would appear in the pool) or 

they may be directly added to the project by their ID. Invited annotators to the project will 

receive an invitation in their message box, giving them the opportunity to accept or reject 

the invitation. Upon accepting the invitation, the annotators should go through the WSM 

(Worker Selecrtion Mechanism). WSM is one of the most important practical contribution 

of this platform to reduce the risk of recruitment of potential scammers or low-skilled 

annotators. The WSM is discussed below. 

 

 WSM for Project Managers 

 

WSM (Worker Selection Mechanism) is comprised of three steps which need to be 

configured by project managers. There are three steps that all annotators must pass in 

order to receive the qualification flag to be able to proceed to the annotation task. These 

three phases are as: 

 

Phase 1. Before taking part in the annotation process, the invited annotators 

should be trained for the task. As the first step, annotators will be shown a 

description of the project that was written by the project manager. The project 

manager must also upload an instructional video that will be shown to the 

annotators in order to familiarize them with the task. 

 

Phase 2. As part of phase 2, the project manager will annotate one image from the 

dataset that will serve as a guideline for the crowd annotators. This annotated image 

will be presented to the annotators as an example. 
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Phase 3. In this phase, the project manager selects one or more images. These 

images will be given to the workers for annotation, and their performance will be 

automatically calculated by the platform. Platforms calculate the mAP (mean 

average precision) and IOU (intersection of union) of workers, and those with 

scores above the threshold (set by project manager) will be considered eligible for 

participation. 

 

3.4.2 Crowd Annotators 

 

By checking the ‘crowd annotator’ box when registering, users are considered crowd 

annotators and their names will appear in the pool to be invited by the project managers. 

Note that, like project managers, the crowd annotators can also create their own projects 

and datasets if they wish. After receiving an invitation to join a project, the crowd 

annotators have two options of accepting or rejecting it. Once a project has been accepted, 

the annotator needs to go through the WSM, as discussed below. 

 

 

Fig. 3.4. A screen shot of the WSM (Annotator Selection Mechanisms) steps. A) description of the project 
B) objects of interest C) a tutorial video, prepared by project manager 
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 WSM for Crowd Annotators 

 

In the same manner as project managers, crowd workers are required to follow three 

phases in WSM. Upon accepting the project manager's invitation, the annotators will be 

directed to these phases. The platform will not allow them to begin annotating until these 

phases have been completed successfully. 

Phase 1. In this phase, first, a brief discription of the project will be shown to the 

annotators (Fig. 3.4.A). It is followed by a description of the objects of interest that 

should be annotated within the images (Fig. 3.4.B). The annotators will also be 

shown a short video that provides further information about the project (Fig. 3.4.C). 

Phase 2. During this phase, the annotators will be directed to an image that has 

already been annotated by the project manager. The raw image and the annotated 

objects will be displayed to the annotators to study. 

Phase 3. After studying the annotated image in the previous phase, the annotators 

will be asked to complete a qualification test. This is to ensure that they have 

mastered the task and possess the necessary skills. Annotators will be shown a raw 

image to be annotated. As soon as the task is completed, the platform will compute 

their performance (see project manager in section 3.4.1). 

Phase 3 calculates two metrics, mAP (mean average precision) and IOU (intersection of 

union). The annotators who scored higher than a threshold (adjustable by the project 

manager) will be identified as qualified and those who failed the exam can go through all 

three phases again and retake the test until they pass. 

3.5. Annotation Tool and Generated File 

 

An extensive discussion of the annotation tools and user interfaces were presented in 

sections 2.2.1 and 2.2.2. With the platform developed in this Ph.D., the user can primarily 

interact with the annotation environment using keyboard and mouse. The mouse right and 

left clicks can be used to draw contours and move the image. Moreover, the mouse scroll is 

utilized to zoom in and out of the images. Shortcuts for cancelling an incomplete contour, 

switching to View mode (displaying the raw image without annotations), and resetting the 

zoom level can also be accessed via keyboard. Fig. 3.5 illustrates some of the functions of 

the mouse/keyboard keys. 
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Fig. 3.5. Mouse and keyboards operational keys and their function 

 

Inspired by similar platforms such as LabelBox24 and Amazon Mechanical Turk25, and 

considering the success of the polygon operator [118] in object segmentation, a similar 

method for delineating the borders of objects was implemented on the platform. 

Annotators move the mouse across the border of an object in order to place the polygon 

vertices (points) using the mouse left clicks. Whenever a new point is placed, it would be 

connected to the previous vertex to form a new segment of the polygon, until a close 

contour is obtained. As soon as a contour is closed, the platform assigns a new object ID 

and adds the object to the annotation file. Fig. 3.6 shows the annotation environment of 

the platform, a completed and incomplete contour, and the tools available for annotation. 

 

 

Fig. 3.6. Overview of the annotation environment and tools. 

                                                           
24 https://labelbox.com/ Last access: November-2022 
25 https://www.mturk.com/ Last access: November-2022 

https://labelbox.com/
https://www.mturk.com/
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Once the annotation process has been completed, the user can request the generation of 

a JSON (JavaScript Object Notation) file that is structured in COCO format [39]. This file 

will automatically be downloaded in the browser. It should be noted that this option is only 

available for the self-annotation mode (when the project manager annotates the data by 

themselves). In crowdsourcing mode (using crowd workers for annotation), as one can 

imagine, some techniques for data fusion are required to combine workers' annotations. 

This is where the role of aggregation in crowdsourcing platforms comes into play (see 

chapters 2.3.4 for more information). This platform is powered by a new aggregatrion 

technique (known as weighted aggregation technique) that is discussed in Chapter 5.4.4. 

3.6 Conclusion 

 

This chapter described the process of developing and deploying the annotation web-app 

platform, intended for carrying out experiments in chapters 4 and 5. The architecture of 

the platform, the interactions between the various layers of the system, and the 

implemented technologies are described in detail. There are two web hosting servers and 

a Python server that were used to process both the normal front-end queries as well as AI-

related requests. The Firebase dataset was used to store the databases, annotations, and 

users’ credentials. 

Using the platform developed and deployed here, project managers can create image 

segmentation projects and outsource them to others who are interested in contributing. 

When the annotation process has been completed by annotators, a JSON file will be 

generated that contains the annotation information of the images in COCO format [39]. 

This file is common file that has been used for training object setection model that 

contsaind some meta-data including the location of the objects along with their class 

within the images. The generated JSON file can then be used to train object detection 

models (e.g. M-RCNN in section 2.1.4). 

With a new worker selection mechanism (WSM), implemented into this platform, project 

managers are able to train their annotators and select those who are qualified to do the 

job. This platform which is now publicly available at www.ai-console.com for free, 

encompasses more advanced features which are described in chapters 4, 5 and 6.  

 

 

http://www.ai-console.com/
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4.1 Introduction 

 

The importance of object detection models and their wide applications in medical 

images for diagnosis and prognosis of diseases were discussed in section 2.1.3. Moreover, 

chapter 1 of this thesis discussed the challenges of generating the required dataset for 

training these object detection models, which are mainly based on deep neural networks 

[40], [55], [58], [157], [158]. These challenges were summarised as being time-consuming 

and costly, in addition to the labor-intensive nature of dataset annotation. 

To escape the burden of workload for the generation of the image dataset annotation, 

two solutions were discussed in section 2.2 and section2.3; i) crowdsourcing the 

annotation process and ii) providing assistive tools to the annotators [159]. Crowdsourcing 

is used to reduce costs and increase the speed of annotation by outsourcing the task to a 

group of experts or non-experts (see section 2.3 for detailed information). 

Moreover, the importance of efficient user interface and asstive tools for the generation 

of faster, yet high quality annotation by human annotators were discussed in section 2.2. 

Review of the prior work showed that polygon operator is the most prevalent tools for 

segmentation annotation, while the use of assistive tools in conjunction with polygon 

operator to support annotators, e.g., to correct drawn polygons or to propose new polygons 

[74], [160], [161], is still an area of development. 

Given that crowdsourcing frameworks and assistive tools have been used mainly in 

isolation, in this study, we examined the use of a proposed assistive tool and crowdsourcing 

for supporting non-experts in annotating microbiological images of gut parasites which are 

very prevelant among animals. In this study which aimed to answer the first research 

question which is the investigation of how an AI-aasitve tool can helps non-experts in 

biology to annotate micriocopic images in crowdsourcing setups.  The results showed that 

the proposed assistive tools enabled non-expert annotators to perform their task 

accurately and more quickly. Furthermore, this study examined non-expert annotators' 

behavior under different levels of microscopic images’ complexity. Finally, based on the 

findings of this study, some design guidelines for the development of state-of-the-art 

annotation platforms in the future have been proposed. The results of this study were 

published in the Elsevier journal of Computers in Biology and Medicine (Bafti. et al., 

2019). 
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4.2 Related Works and Research Question 

 

Literature review in sections 2.2 and 2.3 intensively explored the efforts that have been 

put forward to facilitate the image annotation process. This section summarizes relevant 

literature on i) crowdsourcing of medical or biological images and ii) assistive user 

interfaces.  

Following the success in everyday objects images [68], [95], crowdsourcing has been 

increasingly adopted for medical image annotation by both experts and non-experts [66], 

[162]. Although, lack of expertise for such specialized images among non-expert crowd 

workers is a potential obstacle [96]. Among the efforts to crowdsource the annotation of 

medical images by non-expert crowd workers, [67] has used crowd workers’ votes for 

classification of abnormal fundus images of the rear of eyes, where they achived the 

sensivity of 98%. Furthermore, [88] reported the performance of a group of non-experts 

in annotating Malaria infected RBCs’ (Red Blood Cell) images (i.e. dataset of ~7000 

images, with 1600 of them are infected by malaria) throughout a crowdsourcing game 

between 27 gamers. The researcher demonstrated that the public's participation in 

detecting positive samples of infected RBCs with a game can result in an accuracy rate of 

up to 99%. Along with crowdsourcing the annotations for classification problems, studies 

have also explored the performance of the crowd workers in medical images segmentation. 

The application of crowdsourcing in medical image segmentation ranges from hip 

segmentation in MR (Magnetic Resonance) to the segmentation of nuldoles in lung CT 

images [99], [101], [163], but its application in microscopic images remains understudied. 

Collectively, these studies have demonstrated promising results of outsourcing medical-

images annotation tasks to the public (see section 2.3.1 for more info). 

Despite the relative success of crowdsourcing in medical images, it is important not to 

underestimate the importance of assistive tools that can help workers through the tedious 

process of image annotation. Introducing an assistive tool in annotation platforms is an 

important research direction to make the annotation process simple and engaging, hence 

resulting in a higher completion rate and fewer errors. Despite extensive development and 

testing of assistive annotation tools in the general domains, such as bounding box 

annotation [160] or segmentation annotation [74], [77], [84], as discussed in section 2.2.3, 

their application to medical images is relatively new. As one of the few efforts to develop 

assisted tools to annotate medical images, [88] introduced an automated classification 
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approach that produces a preliminary classification on unlabeled images to be confirmed 

by a non-expert crowd using a computer game.  

So, with the overarching aim of addressing the first research question, the three 

objectives of this study are defined as follows: i) exploring the performance of non-expert 

annotators in instance segmentation of cell biology images; ii) studying the performance 

of the same non-expert annotators when assisted by assistive tools; and iii) studying 

annotator's behavior to provide insights regarding future platforms. 

4.3 Methodology 

 

A developed crowdsourcing platform was introduced in chapter 3 that allows us to 

distribute the image segmentation tasks among a group of annotators from diverse 

geographic locations. A polygon operator was implemented to allow annotators to draw 

the boundary of the objects of interest. To assist the crowd workers in the annotation 

process, a non-iterative mask proposal network that performs a preliminary detection on 

the input images was developed. The platform allows the crowd workers to save time and 

energy by not having to annotate everything from scratch. The following subsections 

explain the mask proposal network (section 4.3.1 and section 4.3.4), implmentaion of the 

mask proposal network on the platform (section 4.3.2), and the data collection process 

(section 4.3.3). Finally, the section 4.3.5 explains the protocols of the image annotation 

experiment. 

4.3.1 Mask Proposal Network 

 

Given the fact that application of the Weakly Supervised Object Localization (WSOL) as 

an segmentstion assistive tool has not been explored before, in this work, we have 

implemented a mask proposal network based on the WSOL idea [73], which is trained 

before use. This approach is different from studies such as [76], [77], which utilized a 

recurrent neural network algorithm for auto-annotation that iteratively updates and 

proposes new masks. The WSOL technique has been applied (e.g., in [164]) for object 

detection with weakly annotated data or a subset of the entire data in some cases. In this 

study, instead, a WSOL network only as a mask proposal network has been utilized. The 

backbone of the proposed platform, which is a cutting-edge object detection algorithm 

(i.e., MRCNN), is trained with 20% of the total images (annotated by an expert). To 

facilitate the annotation of the remaining images, the weakly trained model generates 
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proposal masks (the contours in segmentation annotation also known as mask) to help the 

non-experts. Proposed masks, which are initially generated in binary format, are 

converted into a tuple of polygon points using the RDP (Ramer-Douglas-Peucker) 

algorithm [165]. The proposed masks are provided to non-expert annotators who have the 

option to accept, reject or modify them. Fig. 4.1, shows an overview of the workflow of the 

assistive mask proposal network. 

 

 

Fig. 4.1. The workflow of the assistive mask proposal network. The supervised object detection algorithm 
(MRCNN), trained with expert annotated data (gold standard), performs a preliminary detection on newly 

coming data and proposes masks which are accepted/ modified by the annotator. 

 

4.3.2 Implementation of Mask Proposal Network 

 

In order to run this study, the platform (see chapter 3) was upgraded and integrated 

with the mask proposal network, discussed in section 4.3.1. A simplified overview of the 

platform is presented in Fig. 4.2 in which the images and annotations are stored in the 

Firebase (see section 3.3 for more information about the platform). 

 

Fig. 4.2. Overview of the interconnection of the platform’s layers 

 



93 
 

 The block, Model, reported in Fig. 4.2, hosts the mask proposal network that is 

responsible for generating proposed polygons.  It is important to note that the block 

‘Model’ here corresponds to the block ‘AI scripts’ in Fig. 3.2. The block is triggered by an 

HTTP request from the front-end layer (web-browser). The block, View.py, represents the 

auxiliary functions for refining/converting proposal masks and outputting them as 

polygons; the View.py block also stores results in the database and informs the front-end 

about the completion of the process. 

4.3.3 Collection, Sorting and Use of Images 

 

The dataset used in this study consists of bright-field microscopic images from three 

groups of microbial parasites, which requires domain-specific knowledge for annotation. 

In total, 150 microscopic images from three different groups of microbial parasites, 

Entamoeba, Giardia and Prototheca, were collected (50 images in each group). These 

three parasites were chosen specifically due to their distinct visual characteristics: shape, 

color, size, and texture (see section 4.7.1 for more information). In addition, these parasites 

are maintained axenically in culture (no other organism is present), avoiding any 

interference with the imaging process. All images were captured by an iPhone 8 

smartphone, attached on top of a VWR IT 404 Inverted microscope’s ocular lens 

(magnification of 400X) with a resolution of 4032 (H) × 3024 (V) pixels. All collected 

images have been directly uploaded and annotated by a postgraduate student biologist 

(expert) and verified by a senior academic biologist. The annotated images are then used 

as ground truth (GT) for training the model and testing the annotators’ performances. Fig. 

4.3, shows examples of annotated images from each group of parasites. 

 

 

Fig. 4.3. Sample images of the training dataset (annotated by biologist); (a) raw Entamoeba image, (b) 
annotated Entamoeba image, (c) raw Giardia image, (d) annotated Giardia image, (e) raw Prototheca 

image, (f) annotated Prototheca image 
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In object detection, it is generally accepted that images which contain dense objects 

(“Crowded” images) are cognitively more demanding for human annotators than “non-

crowded” images. There is not a commonly accepted definition of “Crowded” and “non-

crowded” images, although in some studies (e.g. [39]) images with more than 10 objects 

are considered as crowded, while in some other sources26 images with more than one 

object are considered crowded. In our study, we sorted the images in ascending order 

according to the number of objects in them. The first half of the images were considered 

non-crowded while the second half was considered crowded (see section 4.7.1 with 

histograms of the number of objects in the images). Note that the platform is a 

crowdsourcing platform, and in some literature the annotators might be called “Crowd”. 

So, to avoid any confusion, we call the crowded and non-crowd images as HD (high 

density) and LD (low density) images, respectively. Fig. 4.4 shows examples of HD and LD 

images. 

 

 

Fig. 4.4. Raw images for each group of parasites; (a) LD Entamoeba, (b) LD Giardia, (c) LD Prototheca, 
(d) HD Entamoeba, (e) HD Giardia, (f) HD Prototheca. 

 

To train the mask proposal network, 20% of the total images (i.e., 10 images from each 

group of parasites) has been used, and the rest has been used by non-expert annotators to 

test the platform. Specifically, 20 HD images and 20 LD images for each parasite were 

used by the annotators to test the platform. Fig. 4.5 shows how the images were used in 

the workflow for training and testing the platform. 

                                                           
26 https://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch/ Last 
Modified: Jan-2019 

https://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch/
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Fig. 4.5. Use of images in the workflow for training and testing the platform. 

 

4.3.4 Assistive Mask Proposal Network Training 

 

The proposed assistive mask proposal network is trained with 10 images (i.e., 20%) for 

each parasite where the training Entamoeba images contain 149 objects and the Giardia 

and Prototheca images contain 135 and 665 objects, respectively. The purpose of this 

training is to generate proposal masks for annotators by the weakly trained model (see 

section 4.3.1). The model is trained with the following hyper parameters: learning rate = 

0.0001, step per epoch = 2000, epoch =10, ROIS (region of interest) per image = 200, 

and image size = 1024 (h) ×1024 (v). Along with the training dataset, a sequential 

horizontal flipping, vertical flipping, horizontal and vertical rescaling, and ±90º rotating 

augmenter have been applied on all images to increase the volume of training dataset and 

model’s generalization. The backbone of the MRCNN model is based on Resnet-101 (see 

section 2.1.4 for detailed information about Resnet). The trained model and the core of the 

mask proposal network are then deployed on a python server (section 4.3.2). 

4.3.5 Annotation Procedure 

 

Four non-expert annotators were recruited to take part in this study. The annotators 

were from different geographic locations, and they all have been screened to make sure no 

one has a background in biology. The annotators agreed to take part in this study by 

signing the voluntary consent form. The annotation process starts with the tutorial and 

assessment steps, which are followed by the actual annotation task as shown in Fig. 4.6. 
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In this section, the annotator’s tutorial and assessment, and the annotation task are 

discussed. 

 

 

Fig. 4.6. Overview of user selection and annotation process 

 

 Annotator Tutorial and Assessment  

 

In order to increase the annotation quality and user’s understanding of the task, a short 

tutorial has been created to train the annotators. The tutorial contains written instructions 

that explain the process of annotation, followed by a short video that presents the 

annotation tools. In the last step of the tutorial the platform interface shows the annotators 

the three annotated images (one from each group of parasites), in which the objects of 

interest are identified with polygons. Afterwards, the annotators undergo an assessment 

step, in which they have to annotate a small set of images. Annotators who reached a mAP 

(mean average precision) higher than 80% can then proceed to the annotation task. 

 

 Annotation Task  

 

Four trained annotators start the annotation process right after they have successfully 

passed the assessment. We have created two different modes (project), “manual” (without 

assistive tool) and “semi-auto” (with assistive tool) in our platform and the four annotators 

were added to both modes. Images were imported in both modes and equally distributed 

among the annotators; each annotator was given 5 HD and 5 LD images per parasite 

(Entamoeba, Giardia, and Prototheca, respectively), i.e. 6×5=30 images in total. To avoid 

biased results due to learning effect and annotator’s fatigue, the annotators have been 

asked to first complete the semi-auto task and the day after to complete the manual task. 

They had to use a laptop or a desktop, with a mouse for annotation and sit behind a desk. 

The annotators could remove and redraw the proposed masks in the semi-auto task if they 

thought it was necessary. The annotation task’s results are reported and analyzed in the 

next section. 
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4.4 Results  

 

In this section, the performance of non-expert annotators in both manual and semi-auto 

modes is analyzed. Specifically, this section presents the analyses of the annotators’ 

performance in terms of time, clicks and annotation quality. The annotators’ ability to 

distinguish between true and false parasites has been measured as accuracy, recall, and 

F1-Score (as defined by Equation 4.1), where their effort has been quantified by three 

metrics i) Tp, true positive, ii) Fp, the number of falsely identified objects, and iii) Fn, the 

number of missed (un-identified) objects by annotators.  

 

                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                       (4.1)     

           𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
  

        𝐹1 =
2×𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    

 

The annotators’ performance in terms of parasites’ border delineation has been 

measured with IOU (intersection of union) as shown in Equation 4.2, since it is the most 

common segmentation evaluation metric [47], [77], [118], [159]. 

 

 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎𝑜𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎𝑜𝑓𝑢𝑛𝑖𝑜𝑛
 =                            (4.2) 

     

 

In the following subsection time, clicks, and annotation quality are discussed in detail.  

 

    4.4.1 Time Analysis 

 

Time is an important factor in the annotation process which can affect the annotator’s 

motivation and performance. In this study, we measured the time-cost as defined by the 

amount of time that annotators have spent on manual or semi-auto mode, respectively. 

Specifically, as gross-time the total time spent by the annotators to complete their task, 
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from turning on the interface to the end of the task (i.e. including image loading time, time 

to choose the different tools in the interface, time to move from one image to the next, 

drawing parasites, etc.) was measured. Furthermore, we defined as net-time the time spent 

just for annotation, which was measured automatically by the platform (i.e., time spent to 

draw polygons around objects plus the time to modify polygons, which are indicated as 

Drawing-time and Modifying-time, respectively). Finally, we defined as observation-time 

the difference between gross-time and net-time that represent the time spent to observe 

images, choosing tools, moving images, etc. Fig. 4.7 shows the gross-time spent by four 

annotators on the three groups of parasites. Fig. 4.7 reports also the observation-time and 

the net-time. 

 

 

Fig. 4.7. Gross-time for each group of parasites, calculated as the sum of the gross-times (net-time + 
observation-time) of each annotator. Blue bars refer to manual mode, red bars refer to semi-auto mode. 

Light color (blue and red) represents the observation-time 

As Fig. 4.7 shows, for the first two parasite groups (Entamoeba and Giardia) the gross-

time in the semi-auto mode is 16% and 25% lower than the manual mode respectively; the 

gross-time for the Prototheca is 74.4% lower in the semi-auto mode. In comparison with 

the other two groups of parasites, Prototheca shows a much larger reduction in gross-

time. From Fig. 4.7 a consistent trend emerges: the gross-time in semi-auto mode is 

shorter than in the manual mode’s one. Importantly, Fig. 4.7 shows that in the manual 

mode, most of the time is spent on drawing and modifying polygons (i.e. net-time), while 

in the semi-auto mode, most of the time is spent to observe the images (i.e. observation 

time). This is because the annotators spent more time studying the polygons proposed by 

the mask proposal network to decide if they are real parasites and if they need to correct 

any mistakes (see section 4.7.2 for more detailed information).  

Fig. 4.8 reports the mean net-time for annotation of a single object (i.e., a parasite cell) 

over all four annotators (for each parasite group, and for HD and LD images, respectively). 
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To calculate the mean net-time reported in Fig. 4.8, we calculated firstly the mean net-

time per image, by each annotator: 

 

            𝑛𝑒𝑡_𝑡𝑖𝑚𝑒𝑗,𝑚 =
1

𝑁𝑗,𝑚
∑ 𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒𝑖,𝑗,𝑚

+ 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖,𝑗,𝑚
𝑁𝑗,𝑚

𝑖=1
                 (4.3)    

    

Where i is the index for the object in image j, and m represents the index for the 

annotator. 𝑁𝑗,𝑚 is the number of objects (parasites) within image j, which have been 

identified by annotator m. Therefore, the mean net-time of an object (for each parasite 

group, and for HD and LD images, respectively) reported in Fig. 4.8 is calculated according 

to Equation (4.4): 

 

𝑚𝑒𝑎𝑛_𝑛𝑒𝑡_𝑡𝑖𝑚𝑒 =
1

𝑁
∑ ∑ 𝑛𝑒𝑡_𝑡𝑖𝑚𝑒𝑗,𝑚

𝑣
𝑗=1

𝑤
𝑚=1               (4.4) 

  

where the image-index, j, goes from 1 to v, i.e., the number of images given to each 

annotator (v=5), and the annotator-index, m, goes from 1 to w, i.e., the number of 

annotators (w=4). In Equation 4.2, N is the total number of images annotated by four 

annotators in each group (in this case, N= 4×5=20). See section 4.7.2 for more 

information. 

 

 

Fig. 4.8. Mean net-time for each group and for high-dense and low-dense images. Blue bars for manual 
mode, red bars for semi-auto mode. Error bars represent the standard deviation calculated 

over 𝑛𝑒𝑡 − 𝑡𝑖𝑚𝑒𝑗,𝑚. 

To evaluate the significance of the mean net-time on groups, a statistical Wilcoxon test 

has been carried out on the mean net-times. According to the test, the mean net-time in 

semi-auto mode is significantly shorter than manual mode (P < .001). Fig. 4.7 and the 

Wilcoxon test confirm the trend from Fig 4.8, where the net-time in the semi-auto mode 
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is shorter than the net-time in the manual mode. In the case of Prototheca (both HD and 

LD), the semi-auto mode’s net-time is noticeably smaller than the manual mode’s net-time 

(87.31% smaller for HD and 78.44% smaller for LD, respectively). Looking at the results 

for Prototheca, the densest group of parasites (see Fig. 4.15), the comparison of mean net-

time between HD and LD images in the manual and semi-auto modes shows that the net-

time reduction from manual to semi-auto mode in the HD images is more pronounced 

than in the LD images. we believe this could be because the annotators became more 

fatigued and less motivated with the HD images. Therefore, when they annotated HD 

images in the semi-auto mode, they tended to trust the proposed polygons by machine 

more often. To explore the impact of this over-trusting of the proposed mask on quality 

and other aspects of the annotation process, a click and quality analyses in following 

sections are carried out. 

4.4.2 Clicks Analysis 

 

Clicks are also another factor that can affect the annotation cost, annotator’s motivation, 

and thus the annotation quality. In this study, further quantitative analysis is carried out 

by computing the number of clicks in the annotation task; we define as Drawing-clicks the 

number of clicks required by the annotator to draw a new polygon around an object (in 

both manual and semi-auto modes), and as Modifying-clicks the number of clicks 

required for correcting machine-proposed polygons (only in semi-auto mode) or user-

drawn polygons (in both manual and semi-auto modes). Fig. 4.9 shows a consistent trend 

in that the total number of clicks in the semi-auto mode is considerably smaller than the 

clicks in manual mode; this is the case in particular for Prototheca images (both HD and 

LD). With respect to this finding and given that the Prototheca is the densest group of 

images in comparison with the two other groups (See section 4.7.2), we believe that 

annotators were less motivated when they annotated high dense images, therefore in the 

semi-auto they tended to do less clicks and trust the proposed polygons by machine. 
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Fig. 4.9. Number of clicks for each group of images, calculated as the sum of the drawing and modifying 
clicks of each annotator. Blue bars refer to manual mode and red bars refers to the semi-auto mode. Light 

colors (blue and red) represent drawing-clicks while dark colors represent modifying-clicks.  

 

Fig. 4.10 reports the mean number of clicks for each object, calculated over all the 

objects identified by all four annotators (for each parasite group and for HD images and 

LD images, respectively). In order to calculate the mean number of clicks, reported in Fig. 

4.9, the mean clicks per image, by each annotator is calculated as: 

 

𝑛𝑢𝑚_𝑐𝑙𝑖𝑐𝑘𝑠𝑗,𝑚 =
1

𝐿𝑗,𝑚
∑ 𝐷𝑟𝑎𝑤𝑖𝑛𝑔_𝑐𝑙𝑖𝑐𝑘𝑠𝑖,𝑗,𝑚 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑙𝑖𝑐𝑘𝑠𝑖,𝑗,𝑚

𝐿𝑗,𝑚

𝑖=1
               (4.5)    

 

where i is the index for the object in image j, and m represents the index for the annotator. 

𝐿𝑗,𝑚  is the number of objects (parasites) within image j, which have been identified by 

annotator m. Therefore, the mean number of clicks (for each group and for high-dense and 

low-dense images, respectively) reported in Fig. 4.9 is calculated according to Equation  

4.6:  

𝑀𝑒𝑎𝑛_𝑛𝑢𝑚_𝑐𝑙𝑖𝑐𝑘𝑠 =
1

𝐿
∑ ∑ 𝑛𝑢𝑚_𝑐𝑙𝑖𝑐𝑘𝑠𝑗,𝑚

𝑣
𝑗=1

𝑤
𝑚=1                              (4.6)   

 
 

Where the image-index j, goes from 1 to v, i.e., the number of images given to each 

annotator (v=5), and the annotator-index, m, goes from 1 to w, i.e., the number of 

annotators (w=4). Here, L is the total number of images annotated by the four annotators 

in each group (in this case, N= 4×5=20). See appendix B. 
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Fig. 4.10. Mean number of clicks per object, for each group and for HD and LD images. Blue bars for 
manual mode, red bars for semi-auto mode. Error-bars represent the standard deviation calculated 

over 𝑛𝑢𝑚_𝑐𝑙𝑖𝑐𝑘𝑠𝑗,𝑚. 

 

Fig. 4.10 shows that the number of clicks in semi-auto mode is smaller than in the 

manuals’ one, especially for the case of Prototheca which is the densest group (see Fig. **) 

of images (88.8% smaller for HD and 85.4% smaller for LD images). This seems to 

reinforce what emerged from the time analysis. A statistical Wilcoxon test has also been 

carried out on the mean number of clicks in all groups. According to the test, the mean 

number of clicks in semi-auto mode is significantly lower than manual mode (P < .001). 

4.4.3 Annotation quality analysis 

 

As it is common in object detection [39], we computed a range of evaluation metrics to 

explore annotations' quality, including Precision, Recall, IOU (intersection of union, also 

known as Jaccard index in some literature) and Acceptance Ratio. These parameters are 

explained in more detail, later in this section. Here we indicate with Tp (true positive) the 

number of truly identified objects, with Fp, the number of falsely identified objects, and 

with Fn, the number of missed (un-identified) objects by annotators. Following the 

literature, we set the IOU threshold to 50% for the calculation of Tp, Fp, and Fn, i.e. those 

objects, identified with an overlap higher than 50% with GT objects, are considered 

positive. Tp, Fp, and Fn are calculated according to Equation 4.5. In Equation 4.7, image-

index, j, goes from 1 to v, i.e. the number of images given to each annotator (v=5), and the 

annotator-index, m, goes from 1 to w, i.e. the number of annotators (w=4). 

 

𝑇𝑝 = ∑ ∑ 𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗,𝑚
𝑣
𝑗=1

𝑤
𝑚=1                                                                  (4.7) 

 

𝐹𝑝 = ∑ ∑ 𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗,𝑚
𝑣
𝑗=1

𝑤
𝑚=1   
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𝐹𝑛 = ∑ ∑ 𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗,𝑚
𝑣
𝑗=1

𝑤
𝑚=1   

                            
 

Fig. 4.11 shows that the number of identified objects (both Tp and Fp) in the semi-auto 

mode is higher than the identified objects in manual mode for all groups of images, 

although, in some cases, the number of Fp in semi-auto mode is higher than the manual 

mode (see section 4.73 for more detailed information). 

 

 

Fig. 4.11. True positive, Tp (dark color), false positive, Fp (light color), and total number of objects (black) 

in each group of images, with 50% IOU threshold. Blue-bars manual mode, red-bars semi-auto mode. 

 

Fig. 4.12 shows the average Precision, Recall and F1 score in both manual and semi-auto 

mode for each group of images. The comparison between manual and semi-auto mode in 

Fig. 4.12 shows that, unlike Precision, Recall is considerably increased in the semi-auto 

mode, which means that the semi-auto mode helped to reduce the number of Fn more than 

for the number of Fp (see appendix section C for detailed information).  
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Fig. 4.12. Average Precision for each group of images, (b) Average Recall for each group of images, (c) 
Average F1-score for each group of images. 

Fig. 4.13 shows an example image annotated in two modes: manual and semi-auto. As 

shown in the figure, semi-auto mode annotation results in fewer missed objects (Fn) and 

more wrong objects (Fp), resulting in lower precision and higher recall. 

Fig. 4.13. (a) An un-annotated Prothoteca image. (b) Annotated image in manual mode (c) Annotated 

image in semi-auto mode; red arrow shows Fp and green arrow shows Tp which are missed in maual mode. 

 

IOU is a well-known metric that has been widely used in instance segmentation studies 

[47], [76], [77], [118], [159], [166]–[170] as a measure of the annotators’ accuracy in 

drawing objects’ borders. IOU is a measure of the overlap between a drawn polygon (by 

non-experts in this case) and the ground truth polygon (by experts) as defined in Equation 

4.2.     

Note that, the mean IOU is only calculated on Tp (true positive) objects. We first 

calculate the summation of the entire objects’ IOU within each image, then calculate 

Mean_IOU as shown in Equation 4.8, where m, j, and i are the index of annotator, image, 

and object, respectively. Here, L is the total number of objects annotate by the four 

annotators in each group of images, and z refers to the number of objects within the image 

 

𝑇𝑜𝑡𝑎𝑙_𝐼𝑂𝑈 = ∑ 𝐼𝑂𝑈𝑖
𝑧
𝑖=1                                                                                (4.8) 

𝑀𝑒𝑎𝑛_𝐼𝑂𝑈 =
1

𝐿
∑ ∑ 𝑇𝑜𝑡𝑎𝑙_𝐼𝑂𝑈𝑗

𝑤
𝑗=1

𝑣
𝑚=1   
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Fig. 4.14 indicates that the IOUs (for Entamoeba and Prototheca, HD and LD) in 

manual and semi-auto mode do not show a significant difference. The IOU for Giardia 

images is 7% higher in semi-auto mode for HD images, and 10% higher in semi-auto mode 

for LD images (see appendix section D for more information). Note that, unlike 

Entamoeba and Prototheca, which have a round shape (see Fig. 4.4), Giardia has a more 

complex shape, including sharp edges. We believe that our assistive tool is more effective 

(in terms of IOU) for challenging objects than for simpler objects.  

 

 

Fig. 4.13. Mean IOU for each group of images. 

Fig. 4.15 presents a selection of samples of Entamoeba, Giardia, and Prototheca 

parasites, annotated by the expert vs. annotators (non-experts) in manual and semi-auto 

modes. As expected, the drawn mask in manual mode is coarser than the semi-auto mode, 

while it cost a smaller number of points. 

 

Fig. 4.14. Samples of raw images, of annotated images by expert and by non-expert annotators in manual 
mode and in semi-auto mode. “Drawn points” shows the points drawn with the polygon operator, and 

“Masks” shows the final generated mask. 
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We undertook further analysis by calculating the acceptance ratio of machine-proposed 

polygons by the four annotators in the semi-auto mode. Given a machine proposed 

polygons, the annotators are faced with three options: i) fully accept proposals without any 

modification, ii) accept with some modifications iii) reject (delete) proposals. Therefore, 

we define three parameters: Fully_acceptance_ratio, Partially_acceptance_ratio, and 

Rejection_ratio (calculated from all annotators) as in Equation 4.9. Here the 

Fully_acceptance_ratio, represents the number of accepted proposed polygons without 

any modification, while the Partially_acceptance_ratio refers to those proposed polygons 

which are accepted whether with or without modification. 

 

𝐹𝑢𝑙𝑙𝑦_𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚.𝑜𝑓𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠(𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

𝑁𝑢𝑚.𝑜𝑓𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠
× 100%                              (4.9) 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦_𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚.𝑜𝑓𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠(𝑊𝑖𝑡ℎ/𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

𝑁𝑢𝑚.𝑜𝑓𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠
× 100%  

𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑖𝑜 = 100% − 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 

 
 

TABLE. 4.1. ACCEPTANCE RATIO OF PROPOSED POLYGONS FOR EACH GROUP OF IMAGES. 
PARTIALLY_ACCEPTANCE_RATIO 

 

 ENTAMOEBA GIARDIA PROTOTHECA 

HD LD HD LD HD LD 

PARTIALLY ACCEPTANCE RATIO (%) 83.84 85 73.42 58.57 95 87.6 

FULLY ACCEPTANCE RATIO (%) 41.1 32.6 40.3 39 85.8 77 

REJECTION RATIO (%) 16.16 15 26.58 41.43 5 12.4 

 

Table 4.1 shows that in HD images, the annotators tend to accept proposals more often 

than LD images, which reinforces what emerged from the time and clicks analyses (for 

detailed information see appendix section E). Based on Tables 4.11 and 4.12, despite the 

fact that the annotators spend a significant amount of time for refining proposed masks, 

the final IOU of accepted/refined proposals by annotators does not show a noticeable 

improvement over the proposed masks. 

4.5 Discussion 

 

In this study, non-expert annotators' behavior on a specialized domain (cell biology), 

using a bespoke segmentation annotation platform powered by a user-assistive tool was 

investigated. The annotators were asked to perform segmentation tasks in two modes: 

manual and semi-auto (assisted with a mask proposal network). The results showed that 
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like the segmentation of everyday objects (e.g. using Cityscapes or COCO dataset), 

outsourcing the specialized annotation task in cell biology to non-experts can result in a 

decrease in the annotation cost, i.e. time spent, number of clicks, when supported by the 

assistive tool (see Figs. 4.8 and 4.10). Importantly, the overall IOU performance of non-

expert annotations was higher with the assistive tool. Furthermore, our results show that 

semi-auto annotation resulted in consistently higher recall (which means that fewer 

objects/cells in the image were missed by the annotator). We have also investigated the 

behavioral patterns of annotators in both modes and identified some key directions for the 

design of future platforms.  

Firstly, the analysis of data revealed that performing more clicks and spending more 

time on the segmentation of each object does not lead to significantly better annotation 

quality (see Tables 4.4, Table 4.8, and Table 4.10). An explanation for this can be that, 

spending more time and more clicks on the task eventually lead to mental fatigue, which 

may result in poor quality annotation. This implies that the design of such platforms 

should focus not just on helping users to make accurate annotations, but also efficient ones 

with fewer clicks, hence less time. Conventional reward mechanisms of some 

crowdsourcing platforms calculate users’ wages based on the time spent, which may have 

a perverse incentive to produce lower quality work. Hence, we suggest that wage 

calculations could take into account the efficiency of the annotator’s work as well, in order 

to set the right motivation. Another way to improve user motivation may involve a system 

with non-monetary reward (e.g., gamification scoring system), nudging annotators toward 

more efficient annotations whilst maintaining the quality of the results. This reward 

system can be implemented in the tutorial phase or embedded seamlessly throughout the 

annotation task to train annotators to do the task more efficiently.  

Secondly, contrary to expectations, the results showed that in the semi-auto mode, 

despite annotators spending a lot of time refining the proposed masks, the mean IOU of 

refined masks was not always improved. In cases where there was an improvement, it was 

only marginal (see Table 4.11 and Table 4.12).  Furthermore, the results showed that 

although the annotators tended to spend a lot of time refining a proposed mask, they did 

not pay sufficient attention to verify if a proposed mask contained a real parasite object, 

i.e. many false proposed masks were confirmed by the annotator and only a few ones were 

rejected (see Tables 4.9 and Table 4.13). Consequently, it resulted in a high number of Fp 

(False-positive) and low precision (see Fig. 4.11). The implication of this observation is 
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noteworthy: the annotators seemed to have trusted the machine in identifying the object 

but did not trust as much the segmentation that was done by the machine. 

Consequently, the design of future platforms, especially for the tutorial phase, could 

emphasize the need to verify machine-proposed masks prior to refining them. 

Furthermore, the behavior we observed suggests the need to optimize the confidence 

threshold of the mask proposal network (set at 30% in our work). Setting a higher 

threshold, in fact, will force the machine to propose a mask only when it is really confident 

about it, to avoid the problem of over-trusting of the annotators. However, a higher 

threshold will mean fewer masks are proposed by the machines, potentially resulting in 

more time spent to segment objects from scratch. Alternatively, future platforms could 

present individually the generated masks to annotators, rather than in bulk within each 

image. We propose the exploration of these solutions as the topic for future research. We 

also found that on average, the annotators spent 0.49±0.16 seconds per click when 

creating a new mask from scratch (for detailed information see Table 4.7), while the 

modification of a point took 1.5±0.9 seconds on average, in a mask either proposed by the 

machine or generated by themselves. This means that the modification of a few points is 

more efficient than creating a mask from scratch by the annotator. However, if the quality 

of machine-proposed mask is low, resulting in the need of modifying many points, it may 

be more efficient for annotators to generate a mask from scratch. From these results, we 

recommend that in a machine-proposed mask, if the number of points which requires 

modification is more than 30% of all total points, it may be more efficient to reject this 

proposed mask and create the mask from scratch by the annotator. 

 

4.6 Summary 

 

 The first research question of this Ph.D. was addressed in this study which also sheds 

some light onto important behavioral features of non-expert annotators in performing 

segmentation tasks in the specialized domain of microbiology, when assisted by a 

supervised object detection algorithm. These insights can help inform the design of future 

systems, taking into account the performance trade-off due to human-machine 

interactions (e.g. human’s perceived trust on machine), the complexity of images, and 

human factors (e.g. fatigue and motivation). However, we acknowledge that the present 

results are based on only four annotators (although they performed a total of 1842 and 
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2209 segmentations in manual and semi-auto mode, respectively, yielding a large number 

of activities for analysis), and are drawn from images from three parasite cells produced 

using a single microscope. Different cells may present different challenges for the 

annotation task, especially to non-experts. More specifically, different life stages of the 

parasites (i.e. cysts, spores, gametes), environmental stresses (that change the morphology 

of the parasite) and other objects could be present in the images, making the annotation 

task more challenging. Furthermore, it is not clear how annotators’ behavior may change 

over a longer period of time, and if the system needs to be more adaptive to respond to this 

possible change. This calls for future studies to broaden the scope of the investigation, 

involving more participants and diverse microscopic images over a longer period. 

Crucially, a collective effort is needed to generate a public dataset for microbiology, similar 

to Cityscape or COCO datasets for everyday objects. Future work should also focus on how 

human annotators perceive machine recommendations, and how user interfaces can be 

designed to facilitate efficient, trusting and transparent human-machine interaction. 

Based on the lack of conclusive results from this study, in the next chapter (Chapter 5) we 

ran and discussed another study in order to further analysis annotators’ behaviour in 

crowdsourcing setups. 
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5.1 Introduction 

 

In view of some of the findings in the previous study, it is fair to conclude that annotation 

of microbiological images is a tedious and boring task. These findings include the high 

number of FNs in the images annotated manually (especially in HD (High-Density) 

images), the intention of annotators to accept the annotation by machine (when using the 

assistive tool), as well as the lower number of clicks in HD images in comparison to that of 

LD images. It is intuitive to assume that the tedious nature of annotation task caused 

frustration and fatigue among annottaors, which ultimately led to a high number of Fn, 

lower click, etc. This suggests that fatigued annotators are more likely to produce low-

quality and noisy annotations, which we intend to validate within this chapter. 

Reviews of the previous studies has suggested that scammers (i.e. those who use 

crowdsourcing platforms for financial gain without performing the tasks faithfully), fatigued, and 

demotivated workers are among the main reasons for noisy annotation in crowdsourcing 

setups [107][91]. In some work domains (e.g. computer users) the deleterious effect of 

fatigued workers on the quality of their work has been intensively explored [107], [111] and 

it has been shown that fatigue can cause serious issues such as thinking difficulties, 

confusion, insomnia, etc., which can leads to poor work performance. Not only this, but in 

prolonged cases it can also lead to computer vision syndrome or chronic fatigue syndrome 

(CFS) which is cuase extreme fatigue that can last for several months [85], [110], [171], 

[172]. In the context of crowdsourcing, the contributions of fatigued workers in performing 

low-quality work are also explored by some studies [107][103], [104] where the deleterious 

effect of fatigue on workers' performance is confirmed (see section 2.3.2). 

The literature suggests a number of solutions to tackle the challenge of noisy data in 

crowdsourcing setups, which were discussed in section 2.2.4 (retaining annotators’ 

motivation), section 2.3.3 (quality control), and section 2.3.4 (data aggregation). Below 

the three main solutions explored by research community is summarised. First, to keep 

workers motivated; various studies have proposed a range of solutions to make the 

annotation tasks more interesting or manageable, which include inserting micro-breaks 

[91], gamification [173], answering queries [174], team competition [175], micro-diversion 

[90], etc. The second approach is to monitor workers' performance and to estimate 

workers’ quality [113], [116], [176]–[178], and fatigue using biometrical (e.g., eye 

movement) [108], [172] and performance features [110], [111], [171], [179]. Such 

quality/fatigue estimations can help to remove low-skill annotators (such as scammers), 
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and to identify opportune moments for micro-breaks for fatigued workers. The last 

approach is implementation of a reliable and intelligent aggregation technique to combine 

the annotators’ answers that is useful to enhance the quality of final annotation [122], 

[128], [162], [180]; For example, by intelligently filtering out outputs estimated to be of 

low quality or using some kind of voting mechanism to select high quality outputs. 

Taking into consideration the findings of the previous chapter and the approaches 

discussed above, the objectives of this study are twofold; 1) to investigate how workers' 

fatigue correlates with their performance, when performing prolonged tasks in segmenting 

microbiological cells; and 2) to produce high quality outputs by implementing a new 

object-centric aggregation method coupled with the estimated quality. A detailed 

description of the methodology and experiments of the study can be found in sections 5.2, 

while the findings of the study can be found in section 5.3.  

5.2 Methodology 

 

For running the experiment of this study, the platform developed in chapter 3 was used. 

The platform was upgraded to allow recording of complementary information, including 

mouse dynamic, crowd workers' fatigue level (self-reported), etc. A diagram of the 

upgraded platform’s workflow is shown in Fig. 5.1.  

 

 

Fig. 5.1. Workflow of our platform. The project, the images and the training course are created by the 
project manager (stage 1). Invited crowd workers are requested to complete the training course and 

assessments (stage 2).  Qualified workers are assigned to the main task, and the quality of their 
annotation is measured by our regression models (stage 3).  
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The upgraded platform was equipped with a mouse pattern logger to analyse the 

workers' behavioural pattern. The annotations from the workers and the recorded logs 

from the mouse pattern were analysed to extract meaningful features. The features were 

used for quality estimation and the proposed L2-Weighted MV (Majority Voting) data 

aggregation technique that are discussed in section 5.3. The upgraded platform also 

includes a fatigue level reporting feature that allows us to record the fatigue level of crowd 

workers. Fig. 5.2 illustrates a screenshot of the annotation environment of the upgraded 

platform.  

 

 

Fig. 5.2. Annotation environment of the new version of the platform. 1) Fatigue level slider 2) Object (cell) 
selection tool 3) Image setting 4) Drawn mask with polygon operator 5) Modifying points 

 

5.2.1 Feature Extraction 

 

Prior research has proposed a wide range of features to assess the quality of performance 

of annotators. For instance [117] used features from the image itself, such as image 

gradient and edges in comparisons to the workers’ annotations, in order to estimate the 

quality.  Other studies have measured features from tasks and annotations (e.g., spent 

time, drawn point, etc.) to assess the quality of workers’ performance [117], [176], [181], 

[182]. In addition, some studies used workers’ behavioral features (e.g., mouse dynamic, 

eye movement, etc.) to evaluate their performance [69], [85], [116], [171], [183], [184]. 

In this study, we recorded information related to the annotation process (e.g., number 

of drawn points, contours’ area, spent time, etc.) along with the mouse-pattern logs (e.g., 
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mouse movements, clicks, scrolls, etc.). These two feature categories are discussed in the 

following two subsections: 

 

 Annotation-based Features 

The annotation-based extracted features from the annotated images themselves are 

defined below (statistical measures, e.g. summation, mean, standard deviation, skewness, 

and coefficient of variation are also recorded): 

Contours’ area: for each drawn contour (polygon), its area is computed as the number 

of pixels in it. 

Cells drawing and modifying time: the total time spent for drawing a contour 

(starting from the first drawn point and ending with the last contour’s point) as well as the 

spent time for modifying the contour are calculated. Statistical measures are also 

computed for these features. 

Number of drawn and modified points: The number of drawn and modified points 

per each cells’ contour. These features show how many time a worker presed the left key 

to draw a countour and modify it. 

Indices distances: The distances between every two drawn points at pixel level and their 

statistical measures are also computed. In the other word, this metric measures how apart 

to cosequetive drawn points are. 

Time intervals: 𝑇𝑖𝑛𝑡, denoting the time interval between two successful clicks, is also 

calculated, and utilized as a feature. This metric, measuers the time gaps between one click 

and the next one. 

 Fluency (Drawing vs studying ratio): The ratio between the time spent to draw one 

contour and the time spent to start the next one was computed as Fluency. We introduce 

this feature (fluency) as mathematically defined below: 

      𝑓 =
𝐷𝑡

∆(𝑇𝑗+1−𝑇𝑗)
                                                   (5.1) 

where 𝐷𝑡 stands for the drawing time of the 𝑗𝑡ℎcell and 𝑇𝑗 represent the timestamp of the 

first drawing event of 𝑗𝑡ℎcell. The time gap between the end of the previous contour and 
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the start of the next one could be spent either on observing the image for finding the next 

object or having a short rest. 

 Mouse-based features 

The mouse-based features are extracted from mouse dynamic logs (x and y coordinates 

at 30 milliseconds sample rate), and from mouse clicks and scrolling (scrolling is used to 

zoom in/out in our platform). All events are recorded in chronological order using the 

event index. In addition, we made use of GazeParser27 (a parser for eye tracking data) to 

extract further features from our mouse movement data, due to the similarity between eye 

movement and mouse movement features. 

Zoom (scrolling): for easier annotation, the platform enabled workers to zoom into the 

images. Thus, in the mouse dynamic logs, the zoom level is also recorded (varying from -

50x to +50x). 

Number of fixations + fixation time:  mouse fixations refer to the fixation of the 

mouse cursor in the same region for a certain time. The number of mouse fixations 

whenever the mouse movement was less than 10 pixels for more than 100 milliseconds 

was measured as number of fixation.  We also computed the fixations’ time and their 

statistical measures. 

Mouse movement features: the number of mouse movements between two successful 

fixations as well as the movement distance were also extracted. Between two fixations, the 

travelling distance was required to be greater than 10 pixels and longer than 100 

milliseconds in order to be considered as a movement. These numbers are originated from 

the convention we knew from the eye feature extraction techniques. For each movement, 

the movement time duration in conjunction with its statistical measures was calculated. 

Travelling trajectory distance: Given that the movement trajectory length between 

two fixations is not necessarily the same as the mouse movement distance, the trajectory 

length for drawn and modified objects was computed as another mouse-based feature. 

Micro-movement features: Not all mouse movements are classified as traveling, as 

they are characterized by some limitations such as minimum amplitude, velocity, etc. In 

                                                           
27 https://Gazeparser.sourceforge.net   Last modified: March-2021 

https://gazeparser.sourceforge.net/
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this case, we categorized the small mouse movements around the fixation points as micro-

movement features. Statistical measures of micro-movements were also added to the 

feature list. 

Clicks time: The times between every mouse down and up event, while drawing or 

modifying existing cells, were used as a feature. 

5.2.2 Quality Metrics 

One of the main contributions of this study is to propose a quality control technique 

that can be incorporated into a weighted MV (majority voting) to reliably aggregate 

crowds’ segmentation at object level. For this, we estimate the DSC of drawn objects (cell) 

for each user. A weighted aggregation technique to combine the annotations of crowd 

annotators based on the estimated quality of the annotations. Were used. A set of 

evaluation metrics including Dice Similarity Coefficient (DSC), Precision, and Recall, to 

train the quality estimation model (on DSC) and also assess the workers’ performance 

(based on DSC, Precision, and Recall) are used. The DSC is a measure of the quality of the 

contours that compute the similarity of the drawn contours by the crowd to the reference 

(ground truth) as: 

𝐷𝑆𝐶 =  
2 (V∩U)

V+U
                                                                  (5.2) 

where U is the workers’ segmentation and V is the reference segmentation that has been 

performed by biologist experts. For further analysis, we also used two other evaluation 

metrics, Precision, Recall, and F1-Score that has been defined in previous chapter (see 

Equation 4.1). This is useful to investigate how these metrics are getting affected in the 

long-term segmentation process. Generally, Precision is known as an evaluation metric 

that measures the ability of a machine/human to distinguish between real and fake objects 

(microbiological cells in this case), while Recall measures the ability to find all objects in 

the images and F1-score measures the balance between Precision and Recall. 

5.2.3 Fatigue in Crowdsourcing setups 

The literature review presented in section 2.3.2 indicates that fatigued workers are 

likely to perform substandard work. This deleterious effect of fatigue on workers has also 

been studied in crowdsourcing context [69], [107]. In this study, during the annotation 

experiment the platform recorded worker’s fatigue to investigate how it affects 
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annotations’ performance in intensive microbiological image segmentation tasks over long 

periods. During the annotation process, the fatigue level of crowd workers was recorded 

in a self-report manner, whereby the workers were asked to rate their fatigue level in a 

pop-up slider bar (see Fig. 5.2) every 20 completed annotations. The slider bar ranges from 

0 to 100, where 0 means “no fatigue at all” and 100 refers to “highest level of fatigue”. 

Except for the first self-report, the slider default value is set to the previously entered value, 

thus the workers can increase/decrease it if they feel more/less tired than the previous 

report. The reported fatigue level is logged every time the mouse dynamic sample is 

recorded. 

5.3 Experiment 

 

Using the new version of the platform, an image segmentation experiment by non-

expert crowd workers has been conducted. Ten participants (i.e. 9 male and 1 female, non-

expert in biology, with experience of working with computers) from a group of university 

students were recruited. The images of parasites collected in section 4.3.3 were used for 

this study; 20 images of Prototheca (40 ± 8 cells per image) and 20 images of Enthomaba 

(13 ± 4 cells per image) were uploaded into two different projects, and the recruited 

workers were added to both. The workers agreed to take part in the study by signing a 

voluntary consent form. Workers were asked to undertake the Prototheca project first (this 

is because of the reason that protheteca is the densest group, so we could gather more 

information, while minimizing the impact of transfer learning from previous experience), 

while the Enthomaba project on the following day after. For the segmentation process, all 

participants used desktop computers with the same specifications and users were asked to 

sit behind a desk with a standard chair, monitor size, and height. 

Before running the study, all the participants called for going through the WSM 

(Worker Selection Mechanism) which is a three-stage training and qualification test 

process (see section 3.4 for detailed information). In this worker selection mechanism, 

workers were shown a short video of the task, followed by an annotated image to learn the 

task and objects of interest. In order to make sure the workers have properly learnt the 

task, they needed to pass a test at the end of the training; this also helps to filter out 

potential scammers. During the test, workers were shown a raw image and were asked to 

annotate the objects in it (just a few cells). Their annotations of the cells were then assessed 
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by the platform with respect to the ground truth annotation (i.e., done by an experienced 

biologist and supervised by a senior academic biologist). Workers with a mAP and IOU 

higher than 80% were allowed to start the annotation task. See section 3.4.2 for more 

information about the WSM. 

5.3.1 Quality Estimation Models 

 

An SVR (Support Vector Regression) model was trained to estimate the quality of 

annotations (DSC). We investigated how the object-level quality estimation differs from 

the image-level quality estimation, by extracting both object-level and image-level 

features for training and estimating workers’ performance. At object-level, the 

corresponding mouse-based and annotation-based features are derived for every 

individual cell and used as the independent variables for training the model. The DSCs of 

each cell, instead, are used as the dependent variables in the regressors. Similar analysis 

is conducted for the annotation-/mouse-based features and DSCs at image-level, in which 

the features are derived from the beginning to the end of the annotation process within 

each image.  

We also investigated how features from a batch of cells (batch-level) can be used for 

workers' quality estimation. In this regard, [107] showed that a batch of five tasks can be 

used to predict the workers’ performance; therefore, we extracted the features from a batch 

of five cells. Note that the batch-level features are used solely for the quality estimation 

analysis, while they are not taken into account for data aggregation (Section 5.3.4). For 

more information about the training and testing process, please refer to section 5.4.2. 

5.4 Results 

 

The data collected from the experiments are preprocessed and analyzed as discussed 

in the following subsections. In section 5.4.1, we first investigated how the workers' 

performance has changed over time. This is followed by section 5.4.2 which reports the 

results of the quality estimation models. Section 5.4.3 presents the results of a correlation 

analysis which provides a better understanding of the relationship between workers’ 

fatigue and their behavioural features. The results of the weighted aggregation technique, 

as well as the findings of its generalization capability, are reported in section 5.4.4 and 

5.4.5.  
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5.4.1 Workers’ Performance over Time 

Understanding how the annotation quality in crowdsourcing platforms changes over 

time can help to design intelligent platforms for more engaging, still high-quality 

annotation experience. While there are studies on effects of fatigue in crowdsourcing 

platforms, its effect has not been characterized fully; for example, [185] claimed that 

workers’ fatigue leads to low-quality outputs, while [107] claimed that workers’ 

performance in a prolonged annotation task, remains stable. For this purpose, we used the 

four metrics of DSC, Precision, Recall, and F1-score of annotation quality over time. Fig. 

5.3, shows the mean and variance (across all workers) of Precision, Recall, and F1-score 

per each image that was annotated in chronological order. 

 

Fig. 5.3. Precision, Recall and F1-score per image, where the image index represents the chronological 
order, the images are annotated 

As it can be seen in Fig. 5.3, there is no noticeable difference in Precision values from 

the first image to the last one. Despite the reported monotonic increase in the workers 

fatigue level (see section 5.4.3), the Precision graph in Fig. 5.3 seems to indicate that 

fatigue did not cause an increase in wrongly annotated cells (see Equation 5.3). Fig. 5.3 

also shows that the workers annotated fewer true objects (leading to a lower Recall and 

F1-score values) as the times passed by. Webelieve that the increase in the number of 

missed objects is due to fatigue of workers and this hypothesis has been further 

investigated in the correlation analysis section. 

It is plausible to assume that sticking to a task for a while (especially for new workers) 

can improve workers’ performances due to a learning-effect, as workers become better at 
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the task [107]. However, the learning-effect in crowdsourcing settings and how it affects 

workers’ performance is understudied. To investigate this, Fig. 5.4.A plotted the DSC 

averaged across all the workers per one cell only; the cells are those that each worker has 

segmented in chronological order. Fig. 5.4.A confirms the existence of a learning effect in 

cell-image segmentation shown by a steady increase of the mean DSCs (until around the 

first 100 cells). After that point, the mean DSCs decreases, which may be due to the fatigue 

experienced by the workers. There is a local performance improvement in both Fig. 5.4.A 

and Fig.5.4.B. After further investigation, it was revealed that, despite the fact that all 

images were screened to have the same number of objects, images 10-13 appears to have 

fewer objects than the average (i.e. 10%), which may have increased the motivation to 

perform more precise annotations. A similar conclusion was drawn from the study 

reported in Chapter 4, where it was found that workers were more motivated to annotate 

fewer objects. 

 

Fig. 5.4. A) Mean DSC per segmented cell B) Mean DSC per image. Object/image index represents the 
chronological order the objects/images are annotated. The means are calculated across all the workers 

 

The analysis of annotation cost (measured by normalized drawing time) also showed 

that the learning-effect caused an increase in the workers’ speed. We compute the 

normalized drawing time, 𝐷,̂  for 𝐽𝑡ℎ cell with the cell drawing time of 𝐷𝑗, and the area of 

𝐴𝑟𝑒𝑎𝑗 as: 

𝐷�̂� =
𝐷𝑗

𝐴𝑟𝑒𝑎𝑗
                                                                     (5.5) 
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The plot of 𝐷�̂� also presents an increase and decrease in workers’ speed as a function of 

learning and fatigue-effect respectively (Fig. 5.5.A). Further analysis of workers’ 

performance showed that clicks time intervals (the time between two successful 

clicks), 𝑇𝑖𝑛𝑡, also followed the same pattern. As shown in Fig. 5.5.B, 𝑇𝑖𝑛𝑡 decreased steadily 

from the start of the annotation until around the first 200 cells. After that point the clicks 

time intervals decreased as a function of fatigue.   

 

Fig. 5.5. A) Normalized drawing time per pixel over time B) Time interval between clicks over time C) Cost-
Quality plot D) User’s fluency (Equation 5.1) 

Here to measure the balance between annotations’ cost and quality which have shown 

the potential to be affected over time, we introduced a cost-quality metric. It measures the 

balance between the annotation cost and quality by multiplication of normalized drawing 

time’s inversion, 𝐷�̂�
−1

, to DSC as plotted in Fig. 5.5.C. The highlighted green band in Fig. 

5.5.C shows the efficient bandwidth (limited by 𝛼1 and 𝛼2) where the balance between 

quality and time is at its optimum range. According to Fig. 5.5.C, the 𝛼2 point could be an 

appropriate time for crowdsourcing platforms to ask crowd annotators for a break. We 

believe that in future crowdsourcing segmentation designs, implementation (e.g., micro-

breaks) of techniques to keep the workers in the efficient bandwidth should be considered. 
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We also introduced a fluency metric as described by Equation 5.1 which measures the 

speed of annotators in starting the annotation of next cell after finishing the previous one. 

As shown in Fig. 5.5.D, fluency, shows a constant increase since the beginning of the 

process until the end which shows that by passing the time, annotators tend to start the 

next cell with less delay. This delay can be a microbreak or observing the image to find the 

next cell. We think that a possible explanation for this increase in fluency could be the 

frustration of workers and their tendency to finish the task sooner. 

5.4.2   Quality Estimation 

 

It has been commonly believed that spending less time on a task leads to lower-quality 

outputs, therefore, measuring the time spent on a task is the classical technique for the 

detection of low-quality annotations [118], [119], [161]. On the other hand, some literature, 

including the results from the previous chapter (chapter 4) has shown that there is not 

always a straightforward or strong correlation between the time spent on a annotation task 

and the quality of the output [176], as the time spent can be affected by some other factors 

including workers' expertise, confidence, fatigue, objects complexity, etc. In this study, we 

trained the regression model (discussed in section 5.3.1) on all the extracted mouse-based 

and annotation-based features (see section 5.2.1) to estimate the quality of the workers’ 

annotation. Given the large number of objects (i.e. cells) in microbiological images, this 

study aims to estimate quality at the object-level, unlike other studies in the literature that 

tried to estimate the quality of the annotations at image-level [49, 262, 82, 84]. To explore 

the feasibility of object-level quality estimation and how it would be different from image-

level quality estimation, the models were trained and tested in three different modes of 1) 

object-level 2) Batch-level 3) Image-level (see section 5.3.1 for more info). Before training 

the regression models, We computed the normalized DSCs, 𝐷𝑆�̂�, for the 𝐽𝑡ℎ cell with the 

minimum and maximum DSC values of 𝐷𝑆𝐶𝑚𝑎𝑥  𝑎𝑛𝑑 𝐷𝑆𝐶𝑚𝑖𝑛 (30% and 100% in this case; 

any cell with a DSC below 30% assigned as Fp) and the real DSC, 𝐷𝑆𝐶𝑗, as: 

𝐷𝑆�̂�𝑗 =  
𝐷𝑆𝐶𝑗−𝐷𝑆𝐶𝑚𝑖𝑛

𝐷𝑆𝐶𝑚𝑎𝑥−𝐷𝑆𝐶𝑚𝑖𝑛
     (5.5) 

The normalized DSCs, 𝐷𝑆�̂�, are then used as the dependent variable for training the 

regression models. For training, we used Leave-One-Out, in which for each training 

iteration we took out the data from each worker from the training dataset; the model then 

being tested on unseen data from unseen annotators. The Support Vector Regressor’s 
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(SVR) being optimized on Coefficient of determination (R2). The final tuned models 

achieved the R2 score of 0.31, 0.41, and 0.56 for object-level, batch-level, and image-level 

estimation of DSC. The performance of the quality estimation model is evaluated based on 

Mean Absolute Error with the estimated value of 𝐸 and ground truth of 𝐺𝑇 as: 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝐺𝑇𝑖 − 𝐸𝑖|

𝑁
𝑖=1                           (5.6) 

The boxplot and quantified performance evaluations of the trained quality estimation 

models for the three levels are shown in Fig. 5.6 and Table 5.1. 

 

Fig. 5.6. Mean absolute error of DSC estimation by SVR regression, of the three models (trained and 
tested on Prototheca cells): 1) Object-level (blue) 2) Batch-level (red) 3) Image-level (green) 

 

Results from Table 5.1 indicate that using the extracted features from the entire image 

(i.e., more observations), and a batch of five objects are contributing to more accurate, and 

less scattered DSC estimations when compared to that of a single cell.  

TABLE 5.1. QUALITY ESITMATION RESULTS WITH THREE SETS OF FEATURES, OBTAINED FROM OBJECT-LEVEL, 
BATCH-LEVEL, AND IMAGE-LEVEL. 

  
OBJECT LEVEL BATCH LEVEL IMAGE LEVEL 

MAE SD MAE SD MAE SD 

SVR Model 9.4 8.9 7.1 5.9 4.9 3.6 

 

The selection of the most relevant features those are corrolated to annotations’ quality 

has been the subject of numerous research studies in the past couple of years [113], [116], 

[176]–[178], [186]. In light of this topic and the results from table 5.1, we have conducted 

further analysis in order to identify the most correlated features at each level as described 

below. 
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● Correlation Analysis 

To gain a better insight into the most relevant features to assess workers’ quality, we 

further analyzed our extracted features. For this, we computed the Pearson correlation 

score between each feature and corresponding DSCs for the three levels that were 

introduced earlier (i.e., object-level, batch-level, and image-level). The Pearson 

correlation score aims to find the collinear correlation between two sets of 𝑥 𝑎𝑛𝑑 𝑦 data 

with respect to their mean values (�̅�, �̅�) by rating the covariance of two sets as:  

𝑟 =  
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√∑(𝑥𝑖−�̅�)2 ∑(𝑦𝑖−�̅�)2
     (5.7) 

Table 5.2 shows some of the features with the highest correlation score for each level. 

From Table 5.2, the Cell Drawing Time seems to be a good proxy of quality at object-level, 

however, at image-level mean spent time per cell doesn’t seem to be well correlated to the 

quality. On the other hand, the results show that the mouse movements/micro-

movements features have a noticeable correlation to workers’ quality at image-level, while 

they don’t seem to be very useful for object-level quality estimation. This could be due to 

the fact that mouse activities derived from image-level, representing a wider range of 

activities that results in a stronger correlation at the image-level, and consequenly more 

accurate estimation at image-level (see Table 5.1). 

 

TABLE 5.2. PEARSON CORRELATION SCORE OF ANNOTTAIONS’ DSC SCORE AT THREE LEVELS. FIVE TOP SCORES OF 

EACH LEVEL ARE HIGHLIGHTED. 
 

FEATURE DSC CORRELATION SCORES 

OBJECT BATCH IMAGE 

Cell Drawing Time 0.380 0.514 -0.04 
# of Drawn Points 0.403 0.546 0.754 

Zoom 0.280 0.395 0.516 
Cells Area 0.274 0.185 0.694 

Button Pressed Mean Time (Drawing) -0.261 -0386 -0.436 
# of Mouse Fixation 0.210 0.362 0.540 

# of Mouse Movement 0.201 0.360 0.540 
Mouse Movement Mean Amplitude -0.214 -0.330 -0.706 

Mouse Movement SD Amplitude -0.192 -0.325 -0.768 
Mean Mouse Movement Trajectory Path -0.220 -0.348 -0.633 

SD Mouse Movement Trajectory Path -0.149 -0.303 -0.659 
Mouse Micro Movement Mean Velocity -0.173 -0.358 -0.651 

Mouse Micro Movement Mean Amplitude -0.171 -0.345 -0.702 
Mouse Micro Movement SD Amplitude -0.106 -0.283 -0.730 

Mean Clicks Distance -0.306 -0.508 -0.641 
# of Modified Objects N/A N/A 0.533 
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5.4.3 Fatigue in Crowdsourcing Platform 

It is widely believed that workers’ fatigue in workspace can result in degraded 

performance quality. Indeed, findings from other researchs [90], [103], [104], [113], show 

that getting tired is one of the main reasons for workers’ demotivation that contributes to 

the degradation of their performance. To investigate this further, during the data collection 

process the workers’ fatigue level were recorded in a self-report manner (see section 5.2.3). 

Workers reported a monotonic increase in their tiredness level as they were going through 

the tasks. To obtain a better understanding of the effect of workers’ fatigue on their 

performance, we carried out a correlation analysis on extracted mouse-based and 

annotation-based features and fatigue level. Table 5.3 shows that the distance interval 

between two successive clicks and the number of drawn points are the feature most 

correlated with the workers fatigue at all levels. Specifically, it means the more fatigued 

workers are, the farther apart the clicks are. According to previous studies, mouse 

movement velocity is negatively related to fatigue among computer users [111], [171]. 

However, there is no log of mouse movement velocity  in this study, Table 5.3 shows that 

the mouse micro-movement velocity and amplitude have a significant positive correlation, 

particularly at the image-level. It seems logical that these movements could have been 

initiated by fatigued workers' hands. 

 

TABLE 5.3. PEARSON CORRELATION SCORE OF ANNOTTATORS’ FATIGUE AT THREE LEVELS. FIVE TOP SCORES OF 

EACH LEVEL ARE HIGHLIGHTED 
 

FEATURE NAME DSC CORRELATION SCORES 

OBJECT BATCH IMAGE 

# of Drawn Points -0.398 -0.471 -0.739 
Zoom -0.471 -0.482 -0.501 

Mouse Movement Mean Amplitude 0.236 0.288 0.498 
Mouse Movement SD Amplitude 0.266 0.369 0.596 

Mean Mouse Movement Trajectory Path 0.202 0.234 0.410 
SD Mouse Movement Trajectory Path 0.210 0.283 0.447 
Mouse Micro Movement Mean Velocity 0.313 0.444 0.606 
Mouse Micro Movement SD Velocity 0.135 0.323 0.541 

Mouse Micro Movement Mean Amplitude 0.298 0.449 0.619 
Mouse Micro Movement SD Amplitude 0.150 0.391 0.637 

Mean of Clicks Distance 0.475 0.472 0.624 

# of TP N/A N/A -0.608 
# of FN N/A N/A 0.602 
# of FP N/A N/A -0.229 

DSC -0.206 -0.314 -0.605 
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Furthermore, from Table 5.3, it is observed that there is a tight correlation between 

DSCs and workers’ fatigue in all object-level, batch-level, and image-level, as measured by 

Pearson correlation score of, -0.206, -0.314, and -0.605, respectively. The high negative 

correlation score of images’ Recall, and F1-score to workers’ fatigue (-0.661, and -0.626 

respectively) also reveal the detrimental effect of fatigued workers on the quality, which 

reinforced the finding from Fig. 5.4 (i.e., adverse effect of fatigued worker on DSC). 

5.4.4 Aggregation in Crowdsourcing  

The detrimental effect of noisy annotation from crowd workers has been intensively 

studied in literature [187], [188]. Consequently, a reliable aggregating method for 

combining the noisy annotations from crowd annotators becomes crucial. In segmentation 

crowdsourcing problems, some aggregation techniques such as conventional MV (majority 

voting) [11], STAPLE [122], Confidence-weighted majority voting [116], or CNN-based 

techniques [162], have been proposed by the research community. Here, to study the 

performance of the quality estimation models and see how it can help to improve the 

annotation quality, we proposed a new MV (majority voting) aggregation technique (L2-

weighted MV).  The aggregation technique works alongside the quality estimation models 

(discussed in section 5.3.2) to highlight the annotation of workers showing higher quality. 

We then compared the aggregated annotations via the proposed technique with two well-

known baselines of Conventional MV  [11] and STAPLE [122]. 

A conventional majority voting technique is based on the agreement between the 

annotators. In the domain of segmentation problems, conventional majority voting 

techniques consider one vote per pixel per voter (annotator), thus pixels that contain the 

majority of votes (i.e., fifty percent of the possible maximum vote) are considered true 

pixels belonging to the object. Additionally, STAPLE is another state-of-the-art 

aggregation technique which generates the final annotation using some statistical 

techniques from the crowd-sourced annotations (see section 2.3.4.2).  

On the other hand, weighted majority voting [116] is another form of MV that aims to 

alter the effectiveness of votes for each pixel according to its level of estimated quality; the 

higher the quality, the higher the vote for the pixels. This technique thus prioritizes high-

quality workers’ annotation more than the low-quality ones. As an example of this, in [49], 
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Heim et al. has first estimated the quality of crowd annotations by some machine learning 

technique. Then he dropped out the annotations with the assessed quality, 𝐸, below the 

threshold 𝜖𝑡 ∈ [0,1]. It then computes the normalized quality estimation score, �̂�, as: 

 

�̂� =
𝐸− 𝜖𝑡

1−𝜖𝑡
       (5.8) 

Given that the regression models for the estimation of the quality are probabilistic with 

uncertainty, ignoring any annotation with the scores below the threshold can lead to the 

removal of some false low-quality annotations that still can benefit the aggregation result. 

Thus, unlike [116], we did not take out the low scored annotations. Rather, the effect of low 

quality and increase the effect of high-quality scores were dampened with a L2-

regularization. In addition, it is important to mention that unlike the previous studies 

which estimated the qualities per image, in this approach, we compute the workers’ quality 

at the object-level. This means there is an individual score per cell, rather than having a 

score for the whole image. Thus, the L2-regularization is applied on the cells’ estimated 

quality as: 

�̂� = {

1

‖𝐸𝑇−𝐸𝑖‖2  , 𝑖𝑓 (𝐸𝑇 − 𝐸𝑖) ! = 0

 𝑒3      ,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (5.9) 

 
 

where 𝐸𝑇 denotes the upper threshold (1.0 in this case) and 𝐸𝑖 presents the estimated 

quality for 𝑖𝑡ℎ cell. Then the accumulated annotations for  𝑖𝑡ℎ cell in the 𝑗𝑡ℎ image, ∆𝐶𝑖,𝑗, 

and the corresponding threshold, 𝜓𝑖,𝑗, from N annotators is defined as: 

                ∆𝐶𝑖,𝑗 = ∑ �̂�𝑖,𝑗
𝑛𝑁

𝑛=0                                     (5.10) 

𝜓𝑖,𝑗 =
∆𝐶𝑖,𝑗

2
 

let’s �̂�𝑖,𝑗
𝑛  denotes the regularized estimated quality for 𝑖𝑡ℎ cell in the 𝑗𝑡ℎ image, and 𝜓𝑖,𝑗 

present the threshold. In order to pick the cells that have at least 50% of votes, the 

thereshhold is devided by two as show in Equation 5.10.  The final annotation of the cell, 𝐶𝑖, 

is then computed as: 
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                    𝐶𝑒𝑙𝑙𝑖 = {
  1  ,    𝑖𝑓   ∆𝐶𝑖,𝑗 > 𝜓𝑖,𝑗

0  ,          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (5.11) 

Therefore, we compute the final annotation from crowd annotations via the L2-wighted 

MV aggregation technique, as discussed above. The aggregated annotation for each cell, 

by two other baselines (conventional MV and STAPLE) are also computed. Fig. 5.7.A 

shows the DSCs of cells, aggregated by the proposed aggregation technique and two other 

baselines.  The quantified performance of three techniques is also presented in Table 5.5. 

As shown in Table. 5, our object-centric aggregation approach resulted in a final mean DSC 

of 84.3%, representing a 6.6% and a 25.8% improvement over STAPLE and conventional 

majority voting methods, respectively.   

 

Fig. 5.7. A) Mean DSC of Prototheca images aggregated by conventional majority voting, STAPLE, and 
out technique. B) A sample Prototheca cell, annotated by crowd workers and aggregated by three 

techniques 

 

Table 5.4 also shows a noticeable improvement in median and IQR (inter quartile 

range) when compared to two other baselines. An example of a cell that has been annotated 

by ten annotators and aggregated using three techniques is presented in Fig. 5.7.B.  

TABLE 5.4. QUALITY MEASURES OD PROTHOTECA CELLS ANNOTATION, AGGREGATED WITH THREE DISFFEERNT 

TECHNIQUES  
Conv. MV STAPLE OUR 

Mean 67 79.3 84.3 
SD 16.9 10.4 10.3 

Median 72.5 81.7 87.2 
IQR 28.9 11.5 8.1 

 

 

The statisical Wilcoxon test was run on the mean DSCs, on two sets of data; DSCs of 

aggregated cells by the proposed model versus the aggregated cells by STAPLE, where I 

achieved a significance value of p < 0.0001. 
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● Object Level vs Image Level Aggregation 

A large body of the existing aggregation techniques focus on image-level aggregation 

[116], [122], which can be viewed as an approach that looks at all instances in the image as 

a whole; while the proposed object-centric technique, instead, treats each object (cell) 

independently. We applied the L2-weighted MV aggregation technique at the image level 

to investigate how it performs differently in comparison with the object-level aggregation. 

For this, we first combined all the drawn cells by annotator n, to generate a single mask, 

𝑋𝑛
𝑗
,  that represents all the cells within the image, j, as: 

𝑋𝑛
𝑗

=  ∑ 𝐶𝑖,𝑗
𝐼
𝑖=0                                                   (5.12) 

 

here 𝐶𝑖,𝑗 represents the 𝑖𝑡ℎ cell in the 𝑗𝑡ℎ image for annotator n. The accumulated masks 

for the image j, ∆𝑋𝑗, from all crowd annotations is then computed as: 

∆𝑋𝑗 = ∑ 𝑋𝑛
𝑗𝑁

𝑛=0 . 𝜅�̂�                           (5.13) 

Let �̂� be the regularized estimate of quality of the image j for annotator n. In this case, 

the estimated quality for regularization were derived from the regression model trained 

with all the mouse and annotation-based features that were recorded throughout the 

annotation of 𝑗𝑡ℎ image. In the regression models, the mean DSCs of images are considered 

as the dependent and features as independent variables. Lastly, the final annotation for 

the image j is then computed as: 

𝑋𝑗
𝑖𝑚𝑔

= {
1  ,    𝑖𝑓   ∆𝑋𝑗 > 𝜑𝑗

 0  ,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (5.14) 

where 𝜑𝑗 is the threshold as defined as: 

𝜑𝑗 =
∆𝑋𝑗

2
 

On the other hand, for the object-centric approach, the final mask of the image is 

computed as: 

𝑋𝑗
𝑐𝑒𝑙𝑙 = ∑ 𝐶𝑒𝑙𝑙𝑖

𝐼
𝑖=0          (5.15) 

We then evaluated the quality of object-level aggregated images, 𝑋𝑐𝑒𝑙𝑙, and image-level 

aggregated image, 𝑋𝑖𝑚𝑎𝑔𝑒. Fig. 5.8 illustrates an example image aggregated at both modes. 
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This figure shows that the aggregated annotation at object-level is contributing to a more 

precise cells segmentation in comparison with image level one (Fig. 5.8.B). 

 

Fig. 5.8. A) Example of object-level vs image-level aggregated image segmentation. B) Close-up of a 
prothoteca cell with its ground truth, Object-level aggregated mask and image-level aggregated mask 

 

A quantitative evaluation of the aggregated annotation achieved the mean DSC of 

84.4% and 80.3% for object-level and image-level aggregation, respectively. A statisical 

Wilcoxon test yielded p value of 0.002 that shows the statistical significance between 

image-level versus object-level aggregations’ mean DSC values. Both qualitative and 

quantitative evaluation of object-level cell aggregation yielded a better performance when 

compared to that of image-level aggregation. 

5.4.5 Generalisation Capability 

 

Using Entamoeba microbiological images, the generalization capabilities of the 

proposed L2-weighted MV aggregation technique were examined. Entamoeba was chosen 

because it has different visual characteristics such as size, shape, and color. For the 

generalization test, the same features from the Entamoeba cells experiment as we did for 

the Prothoteca experiment (see section 5.3) were extracted. The quality estimation 

regression model with the features obtained from Prothoteca was then tested on 

Entamoeba. At this stage, we assured that neither the same worker nor the same cells’ 

features were used for training in each iteration (i.e., model tested on the unseen user, 

unseen cells). The training-test workflow is depicted in Fig. 5. 9.A. 
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Fig. 5.9. Generalization test. A) Training and testing workflow of quality estimation mode B) Infra-class 
aggregation quality via our technique and two other baselines 

 

The regression models yielded an MAE of  15.6 ± 13.1 . The quality scores were then 

applied to the proposed L2-weighted MV aggregation technique for aggregating 

Entamoeba cells and the results compared to two other baselines. Fig. 5.9.B displays a bar 

plot of the qualities of the aggregated cells obtained by the proposed technique and two 

baselines. Furthermore, Table 5.7 presents the quantified results of the evaluation of the 

aggregation techniques. The proposed L2-weighted MV aggregation technique contributes 

to an average DSC of 88.7%, indicating an improvement of 3.4% over the STAPLE 

technique. 

 

TABLE 5.5. DSC OF AGGREGATED ENTAMOEBA CELLS VIA THREE AGRREGATION TECHNIQUES 
  

CONV. MV STAPLE OUR 

Mean 61.89 85.76 88.7 
SD 17.42 8.29 9.5 

Median 58.66 87.9 91.5 
IQR 28.15 10.5 5.5 

 

Fig. 5.10 illustrates an example of a cell that was annotated by all workers and its final 

aggregated annotation by the proposed, Majority Voting, and STAPLE techniques.  
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Fig. 5.10. An example of Inter-class aggregation via our technique 

 

5.5 Discussion and Summary 

 

As discussed in section 2.3, crowdsourcing solutions have been found to be an effective 

method for generating fast and low-cost annotations on images. However, certain aspects 

of the field remain understudied. These gaps can be summarized as i) a lack of 

understanding of workers' performance in crowdsourcing platforms when involved into a 

prolonged annotation task ii) the best behavioral features relating to workers’ quality iii) 

reliable aggregation of worker annotations as they pertain to quality. To address the 

research questions (2, 3, and 4), in this study, the crowd workers' behavior through the 

demonstration of a long-term (2±0.75 hours) microbiological image segmentation task 

were comprehensivly explored. The result showed that workers' quality started increasing 

from the beginning of the process until a certain point where the learning-effect became 

saturated (i.e., the learning process stops). Analysis showed how workers' performance 

(measured as DSC) started decreasing after the saturation point as a function of fatigue. 

On the other hand, the learning-effect has also shown to have lowered the annotation cost 

(as measured by the clicks time interval and spent time per pixel). Since cost and quality 

are at odds and subject to change during the annotation process (due to learning and 

fatigue effects), we introduced a new metric (cost-quality) that measures the balance 

between cost and quality. The plot of the cost-quality metric revealed an efficient-

bandwidth where the tradeoff is at its optimum point (see Fig. 5.5.C).  
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We further investigated workers' performance by their mouse-based features in 

conjunction with the annotation-based features. We computed and analyzed workers' 

performance at three levels of 1) cell level 2) batch of five cells and 3) image level (see Table 

5.2). Then the correlation analysis was used to determine the most correlated features with 

annotators' performance. The result showed that the number of drawn points and 

Drawing time are the most correlated features to user quality at the object-level which 

reinforce the finding of [118][119][161], Nevertheless, we did not find a strong correlation 

between the aforementioned features and the quality of the images. On the other hand, 

mouse-based features (especially the movement amplitude) show a tight correlation to 

workers’ quality at the image-level. In light of these results and considering that 

experiments conducted by [118], [161] are conducted using the public dataset of MSRC and 

LabelMe, which often contains only a few objects per image, we proposed a possible 

hypothesis. If there are few objects in an image, the number of drawn points and the 

drawing time may be good indicators of the image's quality, whereas mouse-based 

features may be a better indicator if there are many objects in the image. Hence, we 

recommend that for assessing the quality of images that contain multiple objects, either 

monitor the elapsed time of individual objects or utilize mouse-based features to assess 

the quality of the whole image. 

To create high-quality annotation from crowd workers, we proposed and implemented 

a L2-Wighted MV (Majority Voting) algorithm that aggregates workers annotations with 

respect to their estimated quality. Inspired by other quality control techniques which have 

used different behavioral and annotation features for workers quality estimation [85], 

[108], [110], [113], [116], [189], [190], in this study the extracted features from the mouse’s 

dynamic in conjunction with annotation-based features were used for training an SVR 

regression model to estimate workers’ quality. The regression models achieved the MAE 

of 9.4±8.9 at object level (estimation of individual cells quality) and 4.9±3.6 at image level. 

The proposed L2 regularization step helped to highlight high quality annotation and water 

down the low-quality ones in our weighted majority voting aggregation technique. The L2-

weighted MV technique results in the mean, Median, and IQR of 88.7%, 91.5% and 5.5 

respectively. This reflects a 3.4%, 4% and 47.6% improvement when compared to the state-

of-the-art STAPLE aggregation technique [122]. 

 To the best of our knowledge, for the first time, an object-centric L2-weighted MV on 

microbiological images in crowdsourcing setups were proposed in this study. Unlike the 
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previous studies, it treated each cell/object individually. During the object-level 

aggregation, the segmentation of each cell was aggregated with the segmentation of the 

corresponding cell from all other workers. Afterwards, the result of the cell aggregation 

was added to the result of the other cells' aggregation to form the final annotation of the 

image.  In contrast, at the image-level, the annotations for each image (including all the 

cells that were segmented) were aggregated with the annotation for the coresponding 

images from other workers. A comparison of the object-centric versus image-centric 

aggregation (i.e. both aggregated via our L2-Wighted MV technique) showed an 

improvement in the mean DSC of annotated images from 80.3% to 84.4%. Visual 

investigation of the result also reinforced the finding that the object-centric aggregation 

leads to a more precise cell segmentation (see Fig. 5.8.A). 

As an extra note, it is important to mention that, although these results revealed the 

detrimental effect of a fatigued worker in annotations’ quality and cost, no encouraging 

policies in this platform to keep the workers in the efficient band (Fig. 5.5.C) was 

considered, as it is proposed in other studies [87], [91], [175]. In addition, we call for future 

studies to explore the learning effect, if it is going to be an iterative pattern that occurs 

after each short/long term break or not. The generalization capability of the used 

annotation-based and mouse-based features on quality estimation on the cross-domain 

images (i.e., aggregation on everyday objects or other medical image modalities) is also 

still unknown that could be a topic of forthcoming studies. Lastly, we offer more validation 

tests of the new hypothesis that says annotation-based features (number of drawn points, 

drawing time) may represent annotators’ quality at the object-level, whilst the mouse-

based features may be more suitable for image-level quality assessments. 

 

 

 

 

 

 

 

 

 



135 
 

 

 

 

 

 

 

 

CHAPTER 6: 
 
 

BIOGAN: A GAN-BASED UNPAIRED 

IMAGE-TO-IMAGE TRANSLATION 

MODEL FOR CELL BIOLOGY 
 

 

 

 

 

 

 

 

 

 

 

 

 



136 
 

6.1 Introduction 

 

The two last chapters (Chapters 4 and 5) examined the limitations and potential 

solutions associated with an important aspect of a proper image dataset - high-quality 

annotation. As a possible method for the creation of efficient annotations, crowdsourcing 

was proposed, however, it was associated with certain limitations like noisy 

annotations. Chapters 4 and 5 examined some solutions to the problem of noisy 

annotation in crowdsourcing, including annotation aggregation, quality control, assistive 

tools, etc. In light of the discussion over the requirements of a proper image dataset in 

chapter 1, a proper image dataset should also contain a wide range of images with different 

visual characteristics in addition to high-quality annotation. In this chapter, the 

practicality of using image processing techniques to improve the diversity of image 

datasets with a particular focus on microbiological images was examined. 

Computer vision models can be useful tools for processing microbiology images; 

consequently, these models have received considerable attention from researchers due to 

thier potential use in various applications, including cell counting [94] and disease 

diagnosis [173], [191]. Since most of the computer vision models developed for processing 

microbiology images use CNNs as the basis, these models are still hampered by the 

requirement for a diversified dataset. Some prior studies have used the images collected 

in the field (i.e. in real growing media including water, stool, etc.) to train their models, in 

order to analyze biological images in real conditions; these studies have had varying 

degrees of success [192], [193]. However, as one can imagine, collecting a large, diverse 

dataset can be expensive, tedious, and in some cases impossible. 

Although bio-scientists are increasingly sharing data online (e.g., any bio data archive), 

due to the inherent challenges of collecting field data, most datasets consist of laboratory-

taken data. Image-to-image translation (I2IT) refers to techniques that map (transform) 

an input image, 𝑥, to a target output image, 𝑦, (𝑦 = (𝑥)) [117]. Such techniques have been 

widely implemented to tackle challenges in different domains, e.g. translation of aerial 

images of natural landscape into city-street maps or translation of daytime images into 

nighttime images, or translation of young faces into aged faces [149], [150], [194]. Prior to 

the development of GANs [143], various traditional techniques based on machine learning 

approaches have been developed to tackle different challenges including colorization, de-

noising, etc. Following the progress of GAN networks, conditional GANs (cGan) [144] (i.e., 

adding the condition as an input to both generator and discriminator) has gained 
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momentum in the field of image translation. cGANs are a new generation of GANs that 

help for a faster convergence in the training process and generate more controllable 

synthetic images [194] (see section 2.4 for detailed information). 

 Conditional GAN networks have tackled various challenges including photorealistic 

image generation from semantic segmentation [132], domain transfer in fashion image 

(e.g., Generation or changing the subject’s dress in input image) [145], prediction of lost 

frames in a video stream (i.e., in order to increase framerate) [146], style transferring (e.g. 

Adopting the texture of one image to another) [147], to name a few. Despite the impressive 

success of these studies, requirements of a paired dataset (i.e. input images and their 

corresponding output images) to train the model is a deterring barrier for training and 

utilizing them. To overcome this, the idea of using cycle-consistency loss to train cGAN-

based image translators with unpaired data has been proposed by [120], and was 

intensively explored in section 2.4.3. 

To the best of my knowledge, there are only a few studies which have applied GAN I2IT 

on microbiological images. Bailo et al., [154], implemented a novel GAN network for red 

blood cell image augmentation, in which they have trained two cascaded generators, where 

the first one generates random instance masks while the second generator translates the 

instance masks into synthesized blood cells. As another application of I2IT models in 

microscopy images, [195] proposed an I2IT model based on the idea of Cycle Consistency 

[139], to artificially staining histological images, or transforming dead phytoplankton cells 

to living cells [196].  

Our findings showed that application of I2IT models in microbiology is still very limited. 

One such possible application is the translation of laboratory-taken to field-taken images 

that may be useful for increasing the diversity of images at a low cost. As shown in Fig. 6.1, 

the visual characteristics of microbiological images (of the Prototheca bovis parasite) 

taken in the laboratory are significantly different from field images, due to different 

reasons, including different photography conditions, image acquisition devices, and most 

critically the growing media such as water, stool, soil, etc., which can even affect cells’ 

morphology. Considering the significant difference in cell morphology between 

laboratory-taken and field-taken microscopic images (i.e. Fig. 6.1), the effort to develop 

object detection (parasite) algorithms for microscopic images is hampered by the limited 

access to field images.  

Thus, in this study, a new unpaired GAN-based image-to-image translation design for 

microbiological image translation, inspired by previous works including [139] and [30] 
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was proposed. More specifically, in this study we aim to demonstrate a novel method of 

using I2IT, which translates laboratory-taken images into synthetic field images to 

overcome the challenge of accessing field images to train object detection algorithms, 

which can be useful in parasitic disease detection. 

 

 

Fig. 6.1. Example images of Prototheca bovis that are taken in the laboratory (A) and field environment 
(B). Moving from laboratory image to field image, both background texture (orange box) and target objects 
texture (yellow box) change. 
 

 

This study contributes to expanding the knowledge of the existing researchs, and all 

codes are publicly available on my GitHub page at 

https://github.com/Kahroba2000/BioGAN for use by researchers. 

 

6.2 Method 

 

The backbone of the proposed model in this study is based on a GAN network with a 

new loss function, as shown in Fig. 6.2. Following this chapter, we discussed the 

architecture of the proposed model (BioGAN) in section 6.2.1 and the implemented loss 

function at section 6.2.2. The training process of the model, as well as the results are also 

discussed in section 6.2.3 and section 6.2.4, respectivly. 

6.2.1. Model Architecture 

 

Image-to-image translation can be viewed as a function to map an input image to an 

output image that carries most or parts of spatial features with different appearance. 

Fortunately, this mapping function is very similar to what has been done in GAN [143]. 

Thus, inspired by [30], [139], [197], we utilized a GAN network with a generator and 

discriminator as discussed as follows. In the proposed approach, a new sort of Adversarial 

plus Perceptual loss has been implemented to encourage the generator to learn to create 
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more realistic synthetic images from unpaired data. Furthermore, the backbone of the 

script including the generator and discriminator has been adopted from [139] and [198]. 

 

 

Fig. 6.2. Overview of the proposed model. 
 

 Generator  

 

To map two high-resolution images from one domain to another, a variety of 

transformers based on neural networks have been developed. Encoder-decoder 

architectures [199] and residual networks [129] are two networks widely used in previous 

studies where the input image should be passed through all layers to reach the end layer. 

Due to the fact that in I2IT a big portion of the low-level structural features are shared 

between input and output images, it would be desirable to directly pass these features to 

the output to avoid any possible distortion. For this purpose, U-Net [47] with skip 

connections to bypass bottleneck layers is a common technique that has been utilized in 

studies such as [138] and [135]. 

 

 

 

 

 

 

 

We implemented two separate generator architectures based on the Resnet and U-Net. 

The implemented Resnet contains three convolutional layers followed by nine residual 

blocks, further two convolutional layers and another deconvolution layer (see fig. 6.3.A). 

Fig. 6.3. Generators with two different architectures: Resnet (A) and U-Net (B) 
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Apart from the last convolution layer, all previous Conv/Deconv layers are followed by a 

RELU activation function and batch normalization (i.e. the last convolutional layer is 

followed by a Tanh activation function). For the U-Net, eight down-sampling, and eight 

up-sampling layers were implemented as shown in Fig. 6.3.B. We compared qualitatively 

Resnet against U-Nets by visually evaluating the output images. As shown in Fig. 6.4, the 

generated synthetic images with U-Net seems to have resembled more precise and sharper 

contents’ objects in comparison with the Res-Net that has passed the input image through 

all layers. 

 

 

Fig. 6.4. Generated images via Res-Net (A) vs U-Net (B). Due to passing the spatial features through the 
skipping link in the U-Net, it produces sharper content. 

 

Although the U-Net generator has shown more capability in transferring meaningful 

spatial features (see yellow boxes in Fig. 6.4), my observation shows that it fails to translate 

low frequency background which is very common in the laboratory microbiological images 

(see pixelated background in Fig. 6.4.B). This is due to the implementation of U-Net with 

the kernel size of 4 and stride of 2 on convolutional layers, leading to a pixellation in low-

frequency background regions as depicted in Fig. 6.5.A. To resolve this issue along with 

keeping the advantage of the U-Net generator over Resnet, a modified version of the 

generator with kernel size of 3 and stride of 1 was implemented. Results show that using 

convoluted kernels with smaller stride gaps leads to a better reconstruction as shown in 

Fig. 6.5.B. Smaller strides lead to a more consistent kernel travel across the image and, 

consequently, to a more precise reconstruction. 
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Fig. 6.5. Examples of the U-net generated image with stride of 2 (A) and 1 (B). 
 

 

 Discriminator  

 

Discriminator is a binary classifier that is responsible for differentiating between 

synthetic 𝑥′, and target image, 𝑦. Conventional L2 and L1 loss functions in classical 

discriminators lead to blurry images and fail to encourage generating high-frequency 

crispness [138]. To model the high frequency sections of the input image, [138] suggested 

focusing on the structure of patches in each image, instead of looking at the entire image 

as a whole. Unlike full-image discriminators that pass a fix-sized input image through a 

fully convolutional network, PatchGANs discriminator gets an arbitrary sized input image 

and encourages the generator to penalize the structure at the patch scale. Because of that, 

PatchGANs discriminator can be understood as another level of style/texture loss function 

on top of the style loss function. Thus following [138], [150], [194], [200], a 70 × 70 

PatchGANs to classify synthetic and target (i.e. real field-taken) images was used. 

 

6.2.2 Loss Functions 

 

One of the main objectives in microscopic I2IT is to transfer the texture of the entire 

input image to the target image, similar to what has been done in [30], [153], [197], [201]. 

Perceptual loss [153] has shown impressive success in encouraging convolutional neural 

networks to transfer high level features of an input image to others. However, in the 

context of parasite segmentation, apart from the image texture, higher-level features 

including the appearance of the individual cells in microbiological images are also 

important. Thus, the proposed model aims to transfer the texture of the field-taken images 

to laboratory-taken images, along with the appearance of the parasites. The structural 
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features (i.e. cell’s outline) of the input image should remain constant. In the following two 

subsections two elements of our global loss function will be discussed in detail: 

Adversarial loss and Perceptual loss. 

 

  Adversarial Loss 

 

The key loss function of GANs is Adversarial loss, which represents the probability of 

error of an image, i.e. whether it is real or synthetic. However, conditioning adversarial 

loss function with some extra information (the conditions you want the synthetic image to 

meet) helps to minimize the difference between the synthetic image generated by the 

generator and the target image [6] as follows: 

 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) =  𝐸𝑥,𝑦 [𝐿𝑜𝑔(𝐷(𝑥,𝑦))] + 𝐸𝑥,𝑧[𝐿𝑜𝑔( 1 − 𝐷(𝑥 , 𝐺(𝑥,𝑧))]           (6.1) 

 

where x and y are input and target images, z represents the conditional variant, and the 

training objective is: 

 
𝑚𝑖𝑛

𝐺
𝑚𝑎𝑥

𝐷
𝐿𝑎𝑑𝑣(𝐺, 𝐷)                      

 

Unlike classical I2IT models which aim to penalize the Euclidean distance between the 

input and target images’ pixels, conditional adversarial loss looks at the similarity of two 

images from a higher level as a whole. However, for faster convergence, and for 

encouraging the model to generate a less blurry image, a combination of the adversarial 

loss with traditional loss function (including L2 or L1,  𝐿1(𝐺) = 𝐸𝑥,𝑦,𝑧 [‖𝑦 − 𝐺(𝑥)‖]) [6,12], 

can be used, although paired data is required for this objective. Therefore, for faster 

convergence, and to avoid blurry/low contrast images, a pre-trained VGG16 network to 

create style reconstruction and content reconstruction loss [153] was implemented as 

explained below. 

 
 

  Perceptual Loss 

 

To transfer the texture of a single image to others without using GANs, [30] introduced 

a new Perceptual loss function. The Perceptual loss function is used to compare two 

images from a higher level, for example focusing on the discrepancy between the textures 

of the images. Thus, it can be used to transfer high level features while preserving their 
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spatial features including main contents and boundaries. In BioGAN due to the absence of 

paired data, encouraging the generator to generate a decent un-blurred output without 

pixel-wise optimization is challenging. In this work, in order to compensate for the absence 

of loss in pixel level and for faster convergence of the generative G’s loss, we used 

Perceptual loss [30] to map the style of the target image and the content of the input image. 

Perceptual loss looks at the discrepancy of style and content of images from a higher level, 

which is different from pixel-level loss. To transfer meaningful features from the style of 

the target images 𝑦 to the input image 𝑥, the global perceptual loss from the combination 

of Style Reconstruction loss and Content Reconstruction loss has been utilized, and they 

are discussed below. 

 

Style reconstruction loss. Comparing laboratory-taken microscopic images with field-

taken images, the high-level characteristics (e.g. style/texture) of the images can be 

significantly different, due to the nature of the media that cells have been grown in. To 

minimize the style discrepancy between the target image and synthesized image, we use a 

pre-trained VGG16 image descriptor, containing five convolutional blocks including two 

to four layers, similarly to [30], which reconstructs the output image’s styles with respect 

to the target image. The style is reconstructed from different combinations of different 

layers of convolutional blocks, including ‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’, and 

‘Relu5_1’ as shown in Fig. 6.6. These features correlations are represented by Gram matrix 

𝐺𝑟𝑗 for each convolutional block with dimensions of ℎ  × 𝑤 × 𝑑, as: 

 

𝐺𝑟𝑗 =
1

ℎ𝑗𝑤𝑗𝑑𝑗
∑ ∑ 𝑉𝑗(𝑥)ℎ,𝑤𝑉𝑗(𝑥)ℎ,𝑤

𝑤𝑗

𝑤=1

ℎ𝑗

ℎ=1       (6.2)  

 
 

where the 𝑉𝑗 is the vectorized feature map of the 𝑗𝑡ℎ convolutional block. The style loss then 

minimizes the Frobenius squared norm distance between the Gram matrix of input and 

style images. Lets 𝐺𝑟𝑗(𝑥, 𝑦) and  𝐺𝑟𝑗(𝑦) be the Gram matrix of generated and target image) 

as: 

 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑ 𝜆𝑠𝑗
1

4𝑑𝑗
2  ||𝐺𝑟𝑗(𝐺(𝑥, 𝑧)) −  𝐺𝑟𝑗(𝑦) ||𝐹

2𝐵
𝑗=1     (6.3) 

  

where B is the number of convolutional blocks, and 𝜆𝑠𝑗 is the weight of contribution of 𝑗𝑡ℎ 

block in global loss. As shown in Fig. 6.6, the reconstructed style from high level layers 
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(e.g. starting from Relu1-1 from Fig. 6) results in smaller-scale structure reconstruction. 

We have utilized five layers (‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’, and ‘Relu5_1’) for 

style reconstruction loss, as they produced the most visually consistent style. 

 

 
 

Fig. 6.6. Perceptual loss network to measure two elements: style reconstruction and content 
reconstruction. Style reconstruction, from different layers of the pre-trained feature extractor model of 
VGG16, has been done via a) ‘Relu1_1’ b) ‘Relu1_1’, ‘Relu2_1’ c) ‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’ d) 

‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’ e) ‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’, and ‘Relu5_1’ 
layers. Style reconstruction from higher level conveys larger-scale style structure. Content reconstruction 

has been done via f) ‘Relu4_2’. 

 

Content reconstruction loss. Due to the absence of paired images for pixel 

reconstruction loss (i.e. reconstruction of content at pixel level), and due to the importance 

of transferring meaningful spatial features from the content of the input image to the 

output image, Content loss aims to minimize the content discrepancies between input and 

synthetic images. Content loss is represented by Equation 6.4: 

 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑ 𝜆𝑐𝑗
1

ℎ𝑗𝑤𝑗𝑑𝑗
|| 𝑉𝑗(𝐺(𝑦, 𝑧)) −   𝑉𝑗(𝑥) ||𝐹

2𝐵
𝑗=1   (6.4) 

 

where B is the number of convolutional blocks (i.e. in this case one) and 𝜆𝑐𝑗 is the weight 

of the block contribution. Content reconstruction from lower layers of the feature extractor 

preserves the main content with original properties, while deeper reconstruction would 

slightly disturb the high-level features of the contents (i.e. colour, shape, texture, etc.) 
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[129], [138], [140]. In this study, we have reconstructed the content from layer Relu 4-2 as 

[198]. 

6.2.3 Training 

 

To train BioGAN, the collected field images were used as target images, and laboratory-

taken images as input ones. BioGAN was trained end-to-end via a min-max optimization 

task upon the following global loss function: 

 

𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  𝜆𝐴𝐿𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 +  𝜆𝑆𝐿𝑆𝑡𝑦𝑙𝑒 + 𝜆𝐶𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡   (6.5) 

 

All lost elements in Equation 6.5 are weighted by 𝜆 in order to tune the influence of each 

of them on global loss, 𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. The parameters, 𝜆𝐴, 𝜆𝑆, and 𝜆𝐶, are chosen to be 104, 1.0, 

and 0.4, respectively, after more than 50 trials. Table 1 shows the training pipeline of the 

model. 

 

TABLE 6.1. TRAINING PIPELINE OF OUR MODEL 
 

Require: Unpaired training datasets {(𝑥𝑗, 𝑦𝑗)}
𝑗=1

𝑇
 

Require: A selected target style image from target images Y 

Require: Training with #𝑒𝑝𝑜𝑐ℎ = 100, 𝜆𝐴 = 10𝑒3, 𝜆𝑆 = 1.0 , 𝜆𝐶 = 0.4 

Require: Pre-trained model of VGG16 

 

1: For n=0, 1, …. #𝑒𝑝𝑜𝑐ℎ do: 

2:     For m=0,1, T do: 

3:          For k=0, 1, #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do: 

4:               𝐿𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙  ← − 𝐿𝑜𝑔(𝐷(𝐺(x,𝑧), 𝑥)) 

5:               𝐿𝑆𝑡𝑦𝑙𝑒  ←  ∑ 𝜆𝑠𝑙. 𝐸𝑙
𝐿
𝑙=0  

6:               𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡  ←  
𝜆𝑐𝑙

2
∑ (𝐺𝑟𝑗,𝑖

𝑙 − 𝑃𝑗,𝑖
𝑙 )

2

𝑖,𝑗  

7:               𝜃𝐺 ←+ 𝜆𝐴𝐿𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 + 𝜆𝑆𝐿𝑆𝑡𝑦𝑙𝑒 + 𝜆𝐶𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡 

8:          End  

9:          𝐿𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟  ←  𝐿𝑜𝑔(𝐷(𝐺(x,𝑧), 𝑦)) + 𝐿𝑜𝑔 (1 − 𝐷(𝐺(x,𝑧), x)) 

10:        𝜃𝐷 ←+ 𝐿𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

11:    End 

12: End 

 

Generally, when an image is generated by adapting the content from one image and the 

style from another, it is unusual to generate an image that completely matches both criteria 

[30]. Therefore, the use of weights (𝜆𝐶 , 𝜆𝑆, and 𝜆𝐴) becomes very important to achieve a 

balance between the required style and content reconstruction. According to our 
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observation, the higher the value of 𝜆𝑆 the closer the style of the generated image to the 

reference image, while the higher 𝜆𝐶 the closer the content of the generated image to the 

input image. Due to the fact that adversarial loss weight, 𝜆𝐴, looks at an image from a 

higher level and compares how similar the synthetic images are to the field-taken images, 

we gave the most weight to adversarial loss weight. Fig. 6.7 presents some synthetic images 

generated with different combinations of 𝜆 weights. 

 

 

 

Fig. 6.7. Synthetically generate images with different 𝜆 value combinations. 

 

BioGAN was trained with 20 laboratory and 20 field images of Prototheca bovis for 100 

epochs. Due to the memory constraint, all input and output images were set to the fixed 

size of 1024 × 768 for training. Fig. 6.8 shows samples of synthetic field images generated 

by BioGAN and two other baselines (see Results section for more details). The training 

time is highly dependent on the image size and the generator architecture. In the case of 

the proposed generator architecture, each iteration of each epoch took around 192 seconds 

for the U-Net (stride of 1 on convolutional layers), and 13 seconds for the Resnet generator 

on a Cuda enabled NVIDIA GT730 GPU. 

6.3 Results 

 

In this section we first introduce the images have been used to train and evaluate the 

performance of our model. Specifically, to evaluate the fitness of the synthetic images 

produced by the proposed model, we compare the results of BioGAN algorithm with two 

other baselines, which have been used for unpaired image translation [139], and for 

transferring images’ styles [30]. Given that the first baseline (CycleGAN) uses Cycle-

Consistency loss (i.e. Adversarial loss in conjunction with pixel-level loss), and that the 

second baseline (Fast-style-transfer) uses Perceptual loss, while BioGAN uses both, the 
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comparison of the three models can help us to discriminate the contribution of each loss 

in generating microbiology field-like images. The results of a qualitative and quantitative 

comparison are presented in section 6.3.2. 

    6.3.1 Data Collection and Preparation 

 

A dataset of bright-field microscopic laboratory images of Prototheca bovis, as well as 

field images of the same parasite were collected by the biologist research partners. As it 

can be seen in Fig. 6.8, Prototheca’s visual characteristics change significantly when grown 

in the laboratory or in the field, thus introducing additional challenges for I2IT. Laboratory 

samples are clean parasites that were grown in a laboratory environment, while field 

samples were produced by growing parasites in pig stool. The process of data collection 

was run and supervised by experienced biologists. In this study, 40 laboratory-taken 

images and 40 field images of Prototheca bovis were captured with a VWR IT 404 Inverted 

microscope’s ocular lens (optical magnification of 400X and resolution of 4032 

H×3024V). 

 

 
 

Fig. 6.8. Example images of Prototheca bovis parasites. Top row: laboratory samples. Bottom row: field 
samples 

 

In total, 80 images were collected, 40 laboratory images with 1358 parasites, and 40 

field images with 2899 parasites. These images were then annotated in COCO format [39] 

that enables us to train the object detection algorithms as explained in the following 

section. 

    6.3.2 Performance Evaluation 

 

Following the training step explained in section 6.2.3 for the proposed model, 40 

laboratory-taken images were fed to the model for generating synthetic images. Similar 

procedures were applied for the two baseline models to generate synthetic images. We 
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used both qualitative and quantitative approaches to evaluate the synthetic images 

generated by our model and by the two baselines.  

Qualitative evaluations involve asking human raters to assess the realism of the 

generated images, [138], [194], as explained in subsection 6.3.2.1. Because of the nature 

unpaired I2IT nature of BioGAN and the absence of reference images, we had to quantify 

the quality of the synthetic images via a supervised object detection algorithm as explained 

in subsection 6.3.2.2. 

6.3.2.1 Qualitative Evaluation 

 

Fig. 6.9 shows three original laboratory images and the corresponding synthetic images 

(generated by our model, CycleGAN, and Fast Style Transfer), which are supposed to look 

like target images (field images, one reported in Fig. 6.9 for comparison). 

 

 
 

Fig. 6.9.  Example of laboratory-taken images with their corresponding translation under the three models 
a) CycleGAN b) Fast-Style-Transfer [30] c) BioGAN [139]  

 

Fig. 6.10 reports close-ups of synthetic images from the three models. Figs. 6.8 and 6.9 

reveal the difference in the background structures of the synthetic images generated by 

BioGAN, Fast Style Transfer, and CycleGAN, respectively: the images generated via the 

Fast Style Transfer model seem to have a smoother structure with less scattered debris 

when compared with images from the other two models. Still, visual inspection shows that 

the background of CycleGAN and BioGAN synthetic images is more similar to the 

background of target images. Furthermore, the contents’ contrast/gamma of Fast Style 
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Transfer and BioGAN images seem to be more similar to the target images, when 

compared with CycleGAN images; this is arguably due to the application of Perceptual 

loss. In addition, in is noticeable that all three images generated by CycleGAN, Fast Style 

Transfer, and BioGAN highlight the artifacts within the lab images. 

 

 

Fig. 6.10. A laboratory-taken image translated to a field-like image via three models. 

 

Some studies, such as [194], used Amazon Mechanical Turk for qualitative evaluation, 

with a public participant pool rating the synthetic images. For this study, using a public 

participant pool would not have been achievable because of the need for domain 

knowledge, due to the nature of parasite images; this motivated the use of two experienced 

biologists for the qualitative evaluation, reported Table 6.2. 

 

TABLE 6.2. QUALITATIVE EVALUATION OF SYNTHETIC IMAGES FROM THE THREE MODELS OF BIOGAN, FAST STYLE 

TRANSFER, AND CYCLEGAN; RATINGS BY TWO EXPERT BIOLOGISTS, FROM ZERO TO TEN, WHERE ZERO MEANS 

LOWEST SIMILARITY BETWEEN SYNTHETIC AND TARGET IMAGE, AND TEN MEANS HIGHEST SIMILARITY. MEANS AND 

STANDARD DEVIATIONS BASED ON RATINGS OF 40 SYNTHETIC IMAGES 
 

 CycleGAN Fast Style Transfer BioGAN 

Mean score 7.2 ± 1.9 7.6 ± 1.6 8.3 ± 1.3 

 

    Biologists were shown 40 groups of 3 randomly sorted synthetic images, each image 

generated by one of the three models.  The biologist was asked to rate the similarity with 

target images of each image from zero to ten. Table 6.2 reports the means and standard 

deviations of the ratings for each model. Table 6.2 suggests that Fast Style Transfer and 

BioGAN score better than CycleGAN. A statistical Wilcoxon test has been carried out to 

evaluate the significance of the similarity values on two pairs of synthetic image groups; 

i.e. BioGAN vs CycleGAN (p <0.001), and BioGAN vs Fast Style Transfer (p <0.001). 
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6.3.2.2 Qualitative Evaluation 

 

To quantify the similarity of the synthetic images generated by BioGAN to the target 

images as compared to the synthetic images generated by the baselines, we used MRCNN 

object detection framework, [157]. Specifically, we trained four MRCNN frameworks 

separately on laboratory images and three groups of synthetic images generated by the 

three models, and the four MRCNN frameworks on parasite detection tasks were tested 

with field images. The four MRCNN frameworks were trained with no augmentation and 

under the same conditions, i.e. with the same hyper-parameters and tested on the 40 field 

images (see section 6.2.3). The four frameworks were trained with two epochs including 

500 iterations. For the object detection task global Precision, Recall, F1-score and mAP 

were used to verify the performance of the three frameworks (see Eq 4.1). The higher the 

Precision, the more confident the model is about its detection, and the higher the Recall, 

the more objects the model has correctly detected. Due to the inherent trade-off between 

Precision and Recall, we calculated the F1-Score which a metric that measures the balance 

of Precision and Recall. 

mAP (Mean Average precision) is another important evaluation metric that has been 

widely used in world-class object detection challenges, including Pascal VOC [185] or 

COCO [39]. The mAP represents the area under the Precision-Recall curve for each class 

(i.e. in this case we have just one class) at a certain value of IoU (intersection of union).  

The detection tasks were run with the constant detection_minimum_confidence 

parameter of 70% (i.e. any detection with the confidence score above 70% would be 

considered positive) for all tests. Table 6.3 shows, Precision, Recall, F1-score and mAP 

(@IOU=70) of the four MRCNN frameworks trained separately on the laboratory images 

and the synthetic images generated by the three models. 

 

TABLE 6.3. QUANTITATIVE EVALUATION OF THE FOUR MRCNN FRAMEWORKS TRAINED SEPARATELY ON THE 

LABORATORY-TAKEN IMAGES AND SYNTHETIC IMAGES GENERATED BY THE THREE MODELS. 
 

METRIC LABORATORY 

IMAGES (%) 
CYCLEGAN SYNTHETIC 

IMAGES (%) 
FST SYNTHETIC 

IMAGES (%) 
BIOGAN SYNTHETIC 

IMAGES (%) 

PRECISION 78.2 76.3 79.9 69.9 

RECALL 10.3 9.9 14.4 17.6 

F1 SCORE 18.2 17.5 24.4 28.1 

MAP 8.1 7.6 11.5 12.3 
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Due to many undetected parasites, the Recall values for any framework are low. This is 

because of the significant difference in morphology between parasites grown in the 

laboratory and in the field. However, the use of BioGAN synthetic images results in the 

highest Recall value (17.6%). On the other hand, the Precision value, which represents the 

number of truly detected parasites, is lowest for BioGAN. F1-scores and mAPs are better 

metrics for the model’s performance as they measure the balance between precision and 

recall. The BioGAN trained framework shows an improvement, as compared to the 

laboratory trained framework, of +54.4% for F1-score, and +51.8% for mAP, respectively. 

Fast Style Transfer trained framework shows improvements of +34% (F1-score) and 

+41.9% (mAP), while CycleGAN trained framework shows lower values of F1-score and 

mAP. 

We also tested whether training the frameworks with laboratory-taken images and 

synthetic images could increase the Precision, and consequently F1-score and mAP.  For 

this purpose, three MRCNN frameworks were re-trained with laboratory and synthetic 

images. The evaluation results are reported in Table 6.4. 

 

TABLE 6.4. QUANTITATIVE EVALUATION OF THE OBJECT DETECTION FRAMEWORKS, TRAINED ON A BATCH OF 

LABORATORY AND SYNTHETIC DATA. 
 

METRIC LABORATORY 

IMAGES (%) 
CYCLEGAN SYNTHETIC + 

LABORATORY IMAGES (%) 
FST SYNTHETIC + 

LABORATORY IMAGES (%) 
BIOGAN SYNTHETIC + 

LABORATORY IMAGES (%) 

PRECISION 78.2 80.8 73 72.6 

RECALL 10.3 10.6 16.2 19.4 

F1 SCORE 18.2 18.7 26.5 30.6 

MAP 8.1 8.6 11.9 14.2 

 
 

The frameworks trained with laboratory and synthetic data show an improvement in 

Precision in the case of CycleGAN+ laboratory and BioGAN+ laboratory. The BioGAN+ 

laboratory trained framework has achieved a relative improvement of 68.1% (F1-score) 

and 75.3% (mAP) as compared to laboratory trained framework.  

6.4 Discussion and Summary 

 

Research question 5 was addressed in this chapter. In this chapter the performance of a 

novel GAN network for diversification of microbiological images at low-cost was 

investigated. Image translation architectures like [30], [194] have been implemented in 

some literature for staining or translating microscopy images [135], [195], [196], [202], 
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[203], in this study, we developed a new GAN-based model (called BioGAN) to translate 

laboratory-taken microbiological images into field-like images. Due to the nature of 

microscopic image translation, which is an unpaired image translation problem, we 

utilized a Perceptual loss in conjunction with the Adversarial loss, to compensate for the 

absence of pixel-level loss in unpaired data problems. The contribution of Adversarial and 

Perceptual loss in generating realistic-like synthetic images have been studied in this work 

by comparing our BioGAN model with CycleGAN, which uses Adversarial loss, and with 

Fast Style Transfer, which uses Perceptual loss standalone. The results have shown that 

Perceptual loss is able to transfer a fixed-style texture through the entire image, which 

helps translate the background of the laboratory images into field-like images. We have 

also shown that the Adversarial loss can encourage the generator in the GAN network to 

create a more realistic cell morphology, which is found in field images (see Fig. 6.9). The 

proposed BioGAN model has shown the ability to transfer from the laboratory images 

meaningful spatial features, such as object’s boundaries, along with meaningful style 

features (i.e. texture) from the field images. 

Quantitative evaluation has shown that an object detection framework trained on the 

synthetic images generated by BioGAN results in a slight reduction in Precision and in an 

improved Recall, as compared to a framework trained on laboratory images only. An 

increase in the Recall means there are fewer parasite cells missed by the object detector; 

this can be viewed as evidence that by BioGAN synthetic images are more similar to field 

images when compared with [138, 216]. However, a lower Precision means that the 

framework is detecting spurious objects as parasites. BioGAN's synthetic images, also, 

resulted in an improvement of 54.3% and 51.8%, for F1-Score and mAP, respectively, when 

compared to a framework trained on laboratory images only. This improvement increases 

when the framework is trained on BioGAN synthetic images and laboratory images 

simultaneously.  

In conclusion, the proposed BioGAN model was tested on its ability to translate 

laboratory-taken images of Prototheca bovis into field-like images, using experts’ 

qualitative evaluation and qualitative evaluation by the MRCNN object detection 

framework. This work showed that the proposed model generates synthetic images which 

are more similar to the target images as compared to laboratory images, but important 

challenges remain. Real field images contain random objects (i.e. unprocessed foods in 

stool samples, or contamination in water samples), which cannot be synthesized by the 

proposed image translation model, because it can just synthesize texture and cell 
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morphology. Results have shown that the presence of random objects deteriorates the 

performance of object detection frameworks with field images. In order to have a model 

that is able to transfer these random objects we might require a more content-aware 

functionality that can intelligently generate and harmonize the random objects into the 

synthetic image.  
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A good dataset for supervised computer vision relies on two key criteria: high-quality 

annotations and abundance of data.  A reliable annotation refers to the presence of 

accurate human-generated labels (also known as annotations) for the data, whereas data 

abundance refers to the presence of diverse and large data sets as the basis for training a 

well-generalised and properly trained model. Given the importance of a proper dataset, 

extensive research has been conducted to address these two key challenges. For instance, 

data augmentation techniques can be used as a tool to increase the volume and diversity 

of datasets. The researchers have also proposed crowdsourcing as a method of obtaining 

cost-effective, high-quality annotations by using crowd workers (groups of experts and 

non-experts) to annotate the dataset. Three studies presented in this thesis explored 

different aspects of these two problems. Two studies that examined the usage of non-

expert workers in microbiological image annotation, examining their underlying 

behavioral pattern and topics related to aggregating their annotations, were discussed in 

Chapters 4 and 5. In the third study, discussed in chapter 6, a model of image-to-image 

translation (I2IT) was used to create synthetic field images from microbiological images 

captured in the laboratory, resulting in improved data abundance and diversity.  

This chapter is composed of three sections to present some closing thoughts on the key 

findings discussed in the preceding chapters: the first section presents a summary of the 

findings of the three studies and discusses the research questions these studies addressed. 

The second section describes the key contributions and implications of the PhD research. 

Finally, the last section discusses the limitations of the current work, possible future 

directions, and the technology readiness level of the solutions developed. 

 

7.1 Research Questions Addressed 

 

1- How can an assistive tool facilitate annotations of microbiological 

images by non-experts in crowdsourcing context? 

In chapter 4, this research question, which aims to investigate the performance of a 

novel assistive tool to help non-experts in segmenting microbiological images, was 

addressed. In brief, the proposed assistive tool perform a preliminary annotation on the 

input images (segmentation) and presented them to the annotators. The annotators then 

had three options: accept the proposals, reject them, or accept and revise them. In order 

to address this research question, the proposed assistive tool was quantitatively examined 
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in microbiological image segmentation experiments, involving non-experts annotators in 

two modes: using the assistive tool and not using it (fully manual annotation). An analysis 

of the results of the annotation using the assistive tool was conducted and compared to the 

results of manual annotation in terms of both quality (IOU, Precision, and Recall) and 

efficiency (time and clicks spent). 

Unsurprisingly, results indicated that using the proposed assistive tool to provide a 

preliminary annotation to annotators resulted in a decrease in annotation costs, i.e., time 

spent and number of clicks. Results also showed that the assistive tool resulted in 

consistently higher Recall (which means that fewer objects/cells in the image were missed 

by the annotator) whilst causing lower Precision due to the higher number of Fp (False-

positive). This observation carries important implications: the annotators seemed to have 

trusted the machine in identifying the object even if it is not correct. The results of this 

study have shown the efficiency of the proposed assistive tool for microscopic images 

segmentation by non-experts.   

Derived from the finding of this study, some recommendations on how future platforms 

with the similar assistive strategy should be designed to mitigate the current limitations 

(e.g. tenancy of annotators to accept the Fp annotations as proposed by the machine), were 

provided in section 4.5. The results and the lessons learned at the study, discussed in 

chapter 4, prompted us to further develop the platform in order to study in more depth 

annotators’ behaviour, fatigue effect, etc. The upgraded version of the platform was then 

used to run another study (chapter 5) to address other research questions, which are 

discussed as follows (research question 2, 3, and 4). 

2- How do workers behave in crowdsourcing setups, when involved in a 

prolonged annotation task? 

It was worth exploring in depth the question on how long-term annotation tasks affect 

workers' fatigue and performance. In Chapter 5, an experiment of microscopic image 

segmentation by crowd annotators was presented that addressed this research question. 

Analysis of the results revealed that despite monotonic incremental fatigue (self-reported), 

workers' performances (as measured by DSC) increased up to a certain point, at which the 

mean DSC began to decrease. A possible explanation for this could be the existence of both 

the learning and fatigue effect at different points of the prolonged annotation task, which 

caused this initial increase and subsequent decrease pattern. 
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Furthermore, the plot of Precision and Recall of annotated images (Fig. 5.3), annotated 

chronologically, indicates that fatigue did not result in more incorrectly annotated cells 

(Fp); rather, workers tended to annotate fewer true cells (Tp) over time. Using Pearson 

correlation analysis on the workers' fatigue level and Recall yielded the correlation score 

of -0.661 which confirms the strong correlation between fatigue level and the number of 

un-annotated cells. This observation has important implications: fatigued workers were 

more likely to decline the annotation of more cells, indicating that the cell annotation 

process was cognitively demanding, which reinforced the finding from the previous study. 

Following this analysis, we performed further examinations to answer a follow-up 

question: “What is the impact of prolonged annotation tasks on annotation costs 

(measured by time)?”. An examination of normalised annotation time (ratio of time spent 

per cell over the area of the cell) revealed a similar pattern to that of annotations DSC, but 

inverted. In other words, the speed of annotation decreased from the start of the task until 

a certain point, at which the workers began experiencing an increase in their time spent 

annotating.  

 

3- Are annotators' behavioural patterns (such as the mouse dynamic and 

annotation related features) correlated to their fatigue level and work 

quality? 

This question was addressed through the finding from the experiment in chapter 5. The 

upgraded platform for running the experiment in chapter 5 had been integrated with tools 

for recording more behavioural/annotation features (derived from mouse interactions and 

annotations), which allowed us to examine the most relevant features of annotation to 

workers’ quality and fatigue. The features were collected at three levels; i) corresponding 

to every individual cell (cell-level), ii) corresponding to the batch of five cells (batch-level), 

and iii) corresponding to the entire image (image-level). Using Pearson correlation 

analysis, the correlations between three levels of features and workers' performance were 

examined. In particular, a strong correlation between annotation quality, and mouse 

movements/micromovements at all three levels of features was found. 

The finding of the correlation analysis between workers’ fatigue and 

behavioural/annotation features suggested that the distance between two successive clicks 

is the feature most correlated with the workers’ fatigue at both cell and image-level, 

meaning that the more fatigued workers are, the farther apart the clicks are. One possible 
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explanation for this could be the reason that fatigued workers tend to do fewer clicks, 

which may lead to longer distances between clicks; this assumption is backed up by the 

high Pearson correlation score (negative correlation) between annotators' fatigue level 

and the number of clicks. Also, the mouse movement/micromovement amplitude, and 

mouse micromovement velocity were identified with a high positive correlation with the 

annotators’ fatigue level. Micromovements refer to small movements of the mouse around 

a fixation point (less than 10 pixels in movement). It would seem reasonable to say that 

these movements originated intuitively from tired workers' hands.  

4- Are we able to identify when workers are performing at their best, 

during the annotation process? 

This research question was addressed in section 5.4.1. The finding from the previous 

research question revealed the affect of learning and fatigue on the workers performance. 

The reverse patterns of annotation time (i.e. time spent per pixel) and DSC indicated a 

trade-off between cost and quality, which prompted the introduction of a new metric, 

namely cost-quality. Cost-quality measures the balance between costs (time spent) and 

quality. On the plot of the cost-quality metric (Fig. 5.5.C), it appeared that there is a region 

where the cost-quality is optimal, and it is ideally desirable to retain workers in this area. It 

is reasonable to suggest that the future platforms should consider strategies (e.g., gamification) to 

keep the workers within the efficient bandwidth and is the ideal time for workers to take a 

microbreak. In section 5.3.1, some strategies for retaining workers in this region as well as a 

comprehensive report on workers' performance were presented. 

 

5- Can estimation of the workers' quality in crowdsourcing be 

incorporated into a Weighted Majority Voting aggregation process in 

order to reliably combine their annotations? 

It was worthwhile to investigate if we can estimate the annotation qualities via 

regression models and whether the estimated quality could be used for weighted 

aggregation based on the extracted features in the previous study. Aggregation is the 

process of combining annotations provided by crowd workers in order to generate the final 

annotation (ground truth). In chapter 5, this critical research question was addressed.  

Based on mouse-based and annotation-based features, a trained SVR (Support Vector 

Regression) model was developed to estimate the quality of annotations. Using unseen 
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annotations from unseen data (leaving-one-annotator-out) for evaluation, the trained 

model achieved MAE (Mean Absolute Error) of 9.4±8.9 at the cell-level and MAE of 

4.9±3.6 for image-level quality estimation.  

The next step was to assess the performance of the proposed weighted majority voting 

technique that incorporates the estimated quality. The proposed aggregation technique 

prioritised high-quality annotations by combining a majority voting (MV) aggregation 

technique with quality scores. Using an L2-regularisation highlighted the impact of 

annotations with high-quality scores and reduced the impact of those with low quality 

estimates. The regularised scores from all workers were then accumulated, and the regions 

(pixels) with more votes than 50% of the maximum were selected as correct annotations. 

Compared to the state-of-the-art STAPLE aggregation technique, the final DSC achieved 

via L2-Weighted MV technique yielded an improvement of 6.3%. In addition, results 

demonstrated the generalisation ability of mouse-/annotation-based features in 

estimating annotation qualities for different groups of cells. For this, the SVR model was 

trained based on the features extracted from the Prothoteca cells experiment and tested it 

on the Entamoeba cells. 

6- Can AI-based image-to-image translation models be applied to 

microbiological images taken in laboratories to increase dataset 

diversity at a low cost? 

This research question was addressed in chapter 6, where we discussed and evaluated a 

new paradigm of artificial intelligence networks (known as GANs; Generative Adversarial 

Loss) that would be capable of addressing the problem of diversifying a dataset that 

contains both laboratory and field images. In this study, a proposed GAN network and its 

ability to transfer high-level (texture) features of field images to lab images, which are 

cheaper and easier to collect, were quantitatively and qualitatively evaluated. The 

proposed model architecture, the loss functions (Adversarial loss and Perceptual loss), 

and the influence of the hyperparameters of the model on synthetically generated images 

(both in terms of texture reconstruction and content reconstruction) were examined. 

A qualitative evaluation of the synthetic image's fitness, generated by the proposed 

model was undertaken by two experienced biologists, who evaluated the similarity of the 

images to the field images. Compared with two other baselines, the results showed a 

noticeable improvement (see Table 6.2). An object detection framework (Mask R-CNN) 

was also used to quantitatively evaluate the fitness of the generated images. To do this, the 
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object detection framework was trained with four sets of data; synthetically generated data 

by the proposed model, synthetically generated images by two baselines (Cycle-GAN and 

Fast Style Transfer), and the images taken in the lab. The models were then tested for their 

ability to detect cells within field images. 

The results demonstrated the practicality of the proposed models in generating 

synthetic images that can be used to enhance the generalisation ability of the object 

detection models. Therefore, the object detection model, when trained with synthetic 

images and the combination of synthetic images and lab images, experienced an 

improvement in F1-score (by 54.4% and 68.1%, respectively) in comparison to the model 

trained with the lab images only. 

 

7.2 Contributions 

 

This thesis presents some contributions to the fields of computer vision, pattern 

recognition, and computational microbiology. Two groups of contributions are outlined in 

this thesis: theoretical and practical. This PhD contributes to expanding the theoretical 

knowledge of dataset annotation aggregation, worker behavioural pattern analysis, 

annotation via crowdsourcing platforms, and other related topics. It also offers practical 

contributions that focus on designing and developing robust tools for creating reliable 

annotated image datasets. The practical contributions concentrate on providing assistive 

tools to facilitate the generation of high quality annotation for image datasets and tools for 

the generation of low-cost diverse datasets. Having evaluated the developed platform on 

microbiological images, as well as using it for dataset generation for other domains (side 

projects in robotic assistive and rehabilitation technology) with great degree of success, we 

believe that the platform will be useful to a wide range of communities. Finally, the thesis 

also provides some recommendations to future crowdsourcing platform designers to 

optimise the effectiveness of the platform from workers' and project managers' points of 

view which are presented within the practical contribution section. 

 

7.2.1. Theoretical Contributions 
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7.2.1.1. Provide an understanding of workers' behavioural patterns and how 

they are associated with their performance in crowdsourcing settings. 

 

Considering the second and third research questions, the study presented in chapter 5 

offers useful results and insights into the behaviour of crowd workers in a prolonged 

annotation task and how they are related to their performance.  The analysis of worker 

behaviour presented in this thesis differs from prior studies in that they primarily 

examined the effect of fatigue on annotator performance, while we examined both the 

effect of fatigue and learning on various aspects of workers’ performance. It is important 

to gain a deeper understanding of this topic, given the fact that both learning and fatigue 

effects have been shown to affect the performance of workers. Therefore, the results of the 

studies expand the knowledge of research in this area and shed some lights in the domain. 

Results from chapter 5 provided a clear view of the annotators’ quality, which illustrated 

how quality changes over time when crowd annotators involved in a prolonged 

microbiological images annotation process. Findings confirmed the existence of a 

sequential increase and decrease in annotations’ quality as a function of learning and 

fatigue which were barely studied in the existing literature. The analysis of learning- and 

fatigue-effects also provided a better understanding of how workers' speed and proficiency 

were affected as time passed by. Considering that quality and speed of annotation are 

subject to change over time as a result of fatigue and learning effects, a significant 

contribution of this research has been the definition of a new performance metric called 

the cost-quality metric that measures the balance between both costs (time) and quality. 

Particularly, this metric has contributed to the development of a new concept, the Efficient 

Band, which refers to the region in which the cost-quality is at its optimum region. 

Motivating strategies such as gamification and microbreaks (section 2.2.3) are generally 

applied blindly (without receiving feedback regarding fatigue and efficiency of workers), 

so these findings may help researchers to identify when to apply their strategies (e.g. 

asking the workers for a break) to keep workers in the Efficient Band. 

In accordance with the third research question, section 5.3.2 provided a deep 

understanding of how mouse-based and annotation-based features are correlated with the 

worker's fatigue and annotation quality. In particular the most discriminative features to 

workers quality were found. The findings demonstrate the tight correlation of the spent 

time for drawing a cell and its quality, which reinforced the prior findings [118], [119], 

[161]. However, an important contribution to the literature is another insight that arose 

from the result; the time spent on annotating an object provides a useful indication of the 
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annotation quality only at the object level. However, mouse-based features may provide a 

more accurate assessment of annotations’ quality at the image level. By providing a 

detailed account of what features are most discriminative to the quality of annotation 

performed by crowd workers, this study contributes to the existing literature. 

Furthermore, the results of this study expand the field of knowledge in the area of human-

computer interaction and cyberpsychology in order to identify the most discriminating 

features of fatigue levels in computer users.  

7.2.1.2. Demonstrate how crowdsourced image segmentations can be 

combined to produce a high-quality ground truth. 

 

In addressing research questions 3 and 4, discussed in chapter 5, this thesis presents 

some key findings to the areas of crowdsourced image segmentation and related areas such 

as data aggregation. These findings have contributed to expanding the knowledge of 

research concerning the process of aggregating annotation derived from crowd workers. 

These contributions are outlined as below: 

 

● In light of the findings from research question 3, some machine learning regression 

models were utilised to estimate the quality of crowd workers’ annotation with 

respect to the features extracted from the mouse and annotations. These results 

demonstrate that the features derived from the entirety of an image (called image-

level features in this thesis) led to a more accurate estimation of the quality, 

compared to regression models trained on the features derived from a single cell in 

order to determine the quality of that cell’s annotation.  To the best of my 

knowledge, this was the first study to assess the quality of annotations at the object 

level (cell) which could be used for weighted aggregation techniques. Due to the fact 

that wages in crowdsourcing platforms are often based on time, these findings also 

contribute to existing research in order to determine a better measure for wage 

payment. 

 

● A new aggregation technique for combining the crowd annotations with respect to 

their estimated quality was suggested (L2-weighted MV aggregation). Aggregation 

of annotation of crowd workers is not a new topic [11], [116], [122], [162], however, 

aggregation techniques for segmentation problems are limited compared to other 

types of annotation. Thus, the work presented in 5.5.4 contributes to existing 
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research by introducing a new segmentation aggregation method that can lead to 

an accurate aggregation. These findings also extended the knowledge of research 

through the formulation and examination of a new aggregation technique for 

accurate segmentation aggregation which has been evaluated on microbiological 

images and could potentially be applied to a broader range of applications. In the 

proposed technique, for aggregation the crowd segmentations, their 

correspondding estimated quality is taken into account to highlight the 

contribution of high-quality segmentations. An L2-regularisation of the estimated 

qualities was used to highlight the contributions made by high-quality workers and 

tone down the contributions made by low-quality workers. The results show that 

the aggregated cells via this teachiques led to a higher mean and median DSCs, as 

well as smaller IQR when compared to those of state-of-the-art STAPLE technique 

[122]. The mean DSCs of the aggregated cells by L2-weighted MV demonstrate a 

5.1% improvement. 

 

● The way that aggregation of annotations at the cell level differs from aggregation at 

the image level was investigated. As many of the previous aggregation studies have 

focused on aggregating the segmentation at the image level [116], [162] this thesis 

contributes to the existing research by revealing how treating cell level aggregation 

can increase the quality of final annotations. In evaluating the aggregated images 

(using L2-weighted MV) at the cell level, it has been found that the DSC has 

improved by 3.4% when compared to the image level aggregation. Furthermore, 

visual inspections of the segmentations of cells, aggregated at the cell and image 

level, revealed that the image level annotations are coarser, while the cell level 

annotations are smoother (rounded shapes are better generated). 

 

7.2.2. Practical Contributions 

 

A number of practical contributions and implications also arise from this PhD thesis, 

which are likely to be of interest to practitioners in computer vision, parasitology, and 

healthcare communities. This thesis contributes in part to the development of a 

comprehensive web application to generate high-quality, diverse image datasets that are 

of interest to many communities, ranging from robotic assistive technologies to 

computational biology (see Table 1.1). There are several challenges and limitations 
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associated with creating such datasets, which are discussed in section 2.5. Specifically, the 

primary challenge for the generation of high-quality annotation is the labour intensity 

involved in the annotation process, and the main limitation to a naturally diverse image 

dataset is the inaccessibility and high cost of photography under diverse circumstances 

(e.g. microscopic images taken in the field). This PhD thesis contributes to identifying 

some possible solutions and tools for dealing with these challenges. 

 

● Although there has been some relative success in applying assistive technologies to 

the annotation of images in general domains, the use of an assistive tool for 

annotation of highly specialised images by public crowd workers were barely 

explored by existing literature. As described in chapter 4, a proposed AI-based 

assistive tool results in a noticeable reduction in the annotation cost associated with 

the segmentation of microbiological images (number of clicks and time spent). With 

preliminary annotations provided to the crowd annotators and requests for 

acceptance, revision, or rejection, non-experts were able to successfully collaborate 

on the segmentation of knowledge-based images such as microbiological images. 

Specifically, the study of such an assistive tool provided a set of guidelines and 

insights for designing future platforms in order to lessen the burden on crowd 

annotators (see section 4.6). The assistive tool contributed to reducing the time 

spent on annotation and the number of clicks by 74.4% and 88%, respectively.  

 

 A GAN-based image-to-image translation model was proposed in section 6. The 

image translation models presented in this thesis differ from previous ones in 

several respects. Prior GANs for translation of medical images have been used 

primarily to improve the quality of the images for more accurate interpretation by 

clinicians rather than to increase the diversity of datasets for computer vision 

models. Furthermore, the inclusion of perceptual loss in the proposed GAN 

networks removed the necessity to pair datasets, which is common in existing 

networks. As a result, we were able to train the model with random images from the 

lab and field with different spatial features (see section 2.3.4 for more information). 

By incorporating the synthetically generated images into the training dataset to 

develop computerised object detection models, the results in Chapter 6 have yielded 

an improvement in the generalisation ability of the models. As one of the significant 

practical contributions, the code for this model is publicly available at my Github 
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repository (https://github.com/Kahroba2000/BioGAN) for the use of 

practitioners and communities. 

 

● One of the key implications of this thesis is that a wide range of communities 

including computer vision, robotic assistive, bioinformatic, etc communities can 

use this platform to create annotated datasets at a low cost. Leveraging the 

technologies and concepts in this thesis, the communities can recruit crowd 

annotators and generate their annotated datasets reliably. Having close 

collaboration with biologists throughout the studies in this PhD, they expressed 

positive feedback toward this platform and simplicity of using it for storing, 

managing and annotating microbiological images. The platform for the use of 

practitioners is now available at www.ai-console.com which can be used by all 

the aforementioned communities in order to annotate their image datasets.  

Currently, the system cannot be used for the purpose of training a computer vision 

model, but it can be used for managing their data, documenting an occurrence in a 

microbial examination, sharing them with others, and also annotating their data. 

 

● The present thesis is one of the few formal attempts in which a platform has been 

designed exclusively for conducting studies in the crowdsourcing image 

segmentation area. A set of guidelines has been developed as a result of experience 

gained during previous research studies in this thesis. Table 7.1 presents the 

guidelines. 

 

TABLE 7.1. DESIGN GUIDELINES, PROPOSED FOR THE FUTURE PLATFROM DEVELOPERS 
 

# Guideline Discussion Example 

1 Auto set the sensitivity of 
mouse 

Dynamic mouse sensitivity 
adjustement during the different 
stage of annotation should be 
implemented 

During the drawing and revising the 
annotations (segmentation), the sensitivity 
of the mouse can be decreased while 
during the normal time it should increase 

2 Microbreak for crowded 
images 

Microbreak throughout the 
long-term annotation process is 
complusary, especially for 
crowded images. 

Play a short music at the opportune 
moments, proposed by the features 
presented in chapter 5 of this thesis. 

3 Informing the annotators 
about the difference 
between Tp, Fp, and Fn 

Annotators should be informed 
about the importance of the Fp 
objects and Fn, especially in the 
crowded images 

During the training course, designed by the 
project manager, annotators should be 
asked to assure the object is really an 
object before they start annotating it 
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4 Educating annotators to 
use the assistive tool 
efficiently 

Before using the the assistive 
tool, the platform should 
educate annottaors and 
highlight the key points. 

Annotators should be informed that if more 
than 30% of the points of a proposed 
annotation by machine require 
modification, it is better to remove in and 
drawn it from scratch. 

 

Lastly, the finding of this PhD thesis may also establish new research directions, especially 

in the field of computational biology. For instance, the research community can use the 

image-to-image translation models for digitally staining cells, hence removing the burden 

of staining by hand which is very prevalent among biologists. Or alternatively, the 

underlying features, extracted from the mouse dynamic in chapter 5 could be correlated to 

neuropsychological terms like the level of anxiety of computer users in other domains.  

 

7.3 Limitations 

 

In addition to the limitations of each study already mentioned at the end of each chapter, 

some more general limitations of the reported studies and the proposed technologies are 

discussed in this section. First, the studies discussed in chapters 4 and 5 were carried out 

by a limited number of crowdworkers who were recruited from mostly a group of 

university students. For simplicity, the user accounts were pre-made for the participants, 

and login information for these accounts was given to the workers on the day of the 

experiment. Given that, the ecological validity is a limitation of the current thesis. As part 

of both studies, the experiments were conducted in a controlled environment with a set of 

predefined protocols which included standard computers with the same specifications, 

type of monitor and so on. Although protocols have been developed to minimise the impact 

of confounding factors, there is no escaping the fact that different monitor sizes, variations 

in computers' specifications, etc. are bound to occur in the real world. One possible 

direction for future studies could be to investigate the generalisation of the findings, 

especially the crowd workers behavioural features discussed in section 5.3.2 and 5.3.3. 

Generally speaking, the ease of use of the new technologies for public users, especially 

those with a low computer literacy is one of the key requirements. Due to the complexity 

of artificial intelligence networks, for technologies associated with artificial intelligence 

solutions, simplicity and ease-of-use to play a vital role in the success of the technologies. 

This is particularly important for technologies that target the public markets. Due to time 

constraints, however, usability design issues of some of the AI solutions in this PhD thesis 
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have not been fully addressed. In particular, the backbone of the proposed assistive tool 

proposed in the first study, discussed in chapter 4, was first trained on a HPC (High Power 

Computing) system and the trained model was then deployed on a Python server. It was 

not possible to train the model on the current Python Server due to the high computing 

power required to train the model. For this platform to be used by the practitioner 

community, it is ideal that the platform can be integrated with some cloud computing 

services like Microsoft Azure or Google Cloud Computing services to facilitate the training 

of the model by the project managers by simply annotating the reference images and 

pressing a button. 

In line with the limitation, it should be noted that the assistive tool in chapter 4 was 

deployed on a python server which was connected to the front-end via the Django28 

framework. It is obvious that there will be latency within such a system. Edge computing 

(running the scripts on the browser by some frameworks like TensorflowJS) is a possible 

solution, however, due to time constraints, we have chosen not to look at edge computing 

technologies. 

7.4 Future Work 

 

The primary aim of this Ph.D. thesis was to examine different issues in regards to 

generating high quality annotated image datasets for training computer vision models. 

Due to the complexity and depth of this problem, the studies presented in this thesis were 

designed to address some specific literature gaps we have identified, namely image 

segmentation assistive tools, quality control in crowdsourcing, and cost-effective dataset 

diversification. To this end, a custom-designed annotation platform was developed, which 

was iteratively upgraded as new studies were conducted. 

As such, there are several potential directions derived from this thesis that open up new 

avenues of future research, as outlined below: 

 

7.4.1. Using image translation models to reduce the cost involved with image 

generation which requires special microscopy devices like phase-contrast 

microscopy systems. 

 

                                                           
28  https://www.djangoproject.com/ 



168 
 

Chapter 6 illustrated the potential of a new paradigm of neural networks (i.e. GANs) to 

generate field-like images based on images taken in the lab. The aim was primarily to 

diversify microbiological image datasets at a low cost. In microbiology, such a translation 

model might also be useful for faster, easier and cheaper specimen examinations (e.g. 

finding a specific cell or organs) that require special microscopy equipment. For instance, 

phase-contrast microscopy is an example of an expensive microscopy technique, which is 

used to enhance the visibility of specific cells within microscopic images. The high cost of 

these instruments prevents them from being widely used in laboratories. Thus, the concept 

of translating images comes into play. An examination of the practicality of utilising the 

proposed solutions in chapter 6 can serve as a useful starting point for future research in 

this regard. A similar architecture, as defined in chapter 6 can be implemented in a future 

study to investigate whether such a network can translate images obtained via bright-field 

microscopy devices into images obtained via phase-contrast microscopy devices. As a 

result, it would be possible to eliminate the need for costly microscopy equipment, such as 

phase-contrast microscope. 

 

7.4.2 The use of crowdsourcing platforms to perform image processing for 

clinicians and points of cares. 

 

The positive feedback by the bioscience collaborators toward the annotation platform 

developed in this thesis, has triggered new ideas regarding the application of such a 

platform. Inspired by these positive feedbacks and given the fact that cell detection [173], 

[193] and counting [50], [94] are common applications of computer vision in biology, we 

recommend such a system could have great implications for the biology community by 

enabling them to perform processing on their microscopic images. For this, the platform 

can be upgraded further to provide an easy-to-use environment for performing a 

centralised image processing on microbiological images, where it can also host a wide 

range of annotated microbiological images from labs. In such a platform, one can envision 

the platform to be used by bioscientists, resulting in large amounts of data and annotations 

coming into the platforms. Therefore, as a future direction, we can also integrate a life-

long learning image processing model that keeps being updated as new data comes 

through.  
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7.4.3 The effectiveness of micro-breaks in improving the quality of worker 

annotations when the quality control model identifies fatigued workers. 

 

The results from the study in chapter 5 indicate that fatigue has a detrimental effect on 

worker performance. The results of the experiment revealed that the quality of annotations 

of crowd workers began to reduce as a consequence of fatigue. The results of the study have 

also demonstrated the effects of fatigue on the behavioural patterns of workers, which 

could be used as features to estimate the level of fatigue of workers. One of the solutions 

which can be considered to alleviate worker fatigue and workload is the use of micro-

breaks. In light of the aforementioned reasons, it makes sense that another compelling 

direction for future study could be an exploration of the effectiveness of integrating fatigue 

estimation models that propose the opportune moment for micro-breaks in crowdsourcing 

platforms. A study can be carried out to examine how such a microbreak proposed by 

machine can improve the quality of the annotations when compared to regular 

microbreaks with certain time intervals and no microbreaks. The findings of such future 

studies are likely to greatly contribute to the expansion of knowledge in the areas of 

crowdsourcing quality control, user behaviour analysis, and pattern recognition. 

 

CLOSING REMARKS 

 

It is important to have a large and well-annotated image dataset when training a 

supervised computer vision model. Large dataset in terms of the quantity and diversity of 

the data, and well annotated, in terms of the accuracy of the labels for the images. 

Considering the importance of having such a big and diversified dataset, and of the costs 

and challenges involved with generating that, a vast body of research discussed in this 

thesis explored different ways in which to address the challenges. In this thesis, some 

computer solutions to address the gaps in the existing literature were presented. We 

mainly focused on the challenges related to low-quality annotation caused by crowd 

workers in crowdsourcing platforms, as well as the challenges related to the collection of 

real-world images on the ground to diversify the image datasets. In this thesis, the findings 

and proposed solutions will hopefully provide researchers with useful insights and 

encourage them to continue research in the area of generating low-cost, high-quality image 

datasets that can be of use to a wide range of practitioners.   
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APPENDIX 
A. Data Statistics 

 

To explore the correlation between annotations’ cost and images’ features such as shape, 

size, color, number of objects per images, and difficulty level of detecting objects in images, 

we computed different features of the images in each group. The number of objects in the 

images seems to be a factor that can influence the annotator’s behavior, and consequently 

the cost of annotation. Fig. 4.15 presents the number of parasites in each group of images. 

 

Fig. 1. Histograms of the number of objects in images: (a) LD Entamoeba, (b) LD Giardia, (c) LD 
Prototheca, (d) HD Entamoeba, (e) HD Giardia, (f) HD Prototheca 

 

The object’s size is another factor that can affect the annotation’s cost, including the 

number of clicks and time. To investigate the effect of annotating objects of different sizes 

on the annotator’s performance, we have computed the object’s size per each group of 

images as present in Table 4.2. 

 

TABLE 1. PARASITES’ SIZE - HD-ENT: HIGH-DENSE ENTAMOEBA, LD-ENT: LOW-DENSE ENTAMOEBA, HD-GIA: HIGH-
DENSE GIARDIA, LD-GIA: LOW-DENSE GIARDIA, HD-PRO: HIGH-DENSE PROTOTHECA, LD-PRO: LOW-DENSE 

PROTOTHECA 
 

IMAGE 
GROUP 

HEIGHT (PIXEL) WIDTH (PIXELS) AREA (PIXEL) 

MIN MAX MEAN MIN MAX MEAN MIN MAX MEAN 

HD-ENT 103 1099 560 113 1121 608 431k 1189k 355k 

LD-ENT 97 1147 560 84 1160 549 36k 1169k 348k 

HD-GIA 55 520 264 122 500 271 15k 206k 71k 

LD-GIA 109 524 263 126 586 263 20k 224k 69k 

HD-PRO 27 460 206 89 502 214 3.4k 227k 46k 
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IMAGE 
GROUP 

HEIGHT (PIXEL) WIDTH (PIXELS) AREA (PIXEL) 

MIN MAX MEAN MIN MAX MEAN MIN MAX MEAN 
LD-PRO 56 556 217 50 524 218 8k 264k 50k 

 

 

The Entamoeba and Prototheca have a round shape, while the Giardia has a non-round 

object and therefore is more challenging in terms of visibility and for drawing (see Fig. 

4.5). Entamoeba, Giardia, and Prototheca are the biggest to the smallest objects in terms 

of pixels, based on Table 4.2. On the other hand, Prototheca images are the most populated 

(dense) images, as there are 2023 objects in Prototheca images, 643 objects in Giardia, 

and 541 objects in Entamoeba images. 

B. Time and Clicks 

 

This section presents detailed results of clicks and time analysis for all participants. 

Table 4.3 shows the net-time spent on each group of images by the four annotators and 

the expert biologist. 

 

TABLE 2. NET-TIME (SECONDS) SPENT ON EACH GROUP OF IMAGES BY FOUR ANNOTATORS AND BIOLOGIST. THE 

FIRST NUMBER IS DRAWING TIME AND SECOND NUMBER REFERS TO THE MODIFYING TIME 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO 

# 1 440;72 26;161 285;0 0;66 490;10 73;251 133;4 10;189 878;40 37;105 694;51 63;116 

# 2 525;117 52;240 235;94 44;266 356;41 136;153 201;25 88;97 1509;180 104;75 139;3 32;21 

# 3 972;303 63;600 554;107 10;395 904;23 82;217 510;10 89;44 2581;178 323;273 232;0 9;79 

# 4 951;88 159;624 389;14 0;167 682;15 149;277 293;18 132;39 2654;178 355;32 1420;247 223;40 

EXPERT 4205;765 N/A 1553;210 N/A 2481;248 N/A 1565;82 N/A 8641;1112 N/A 3187;445 N/A 

 

Tables 4.4 and 4.5 present the average time spent per object (drawing and modifying) 

in manual and semi-auto mode (calculated based on 4.2). 

 

TABLE 3. AVERAGE SPENT TIME (DRAWING AND MODIFYING, IN SECONDS) PER OBJECT IN MANUAL MODE. 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 14.2±4.5 9.5±1.6 7.1±1.7 7.6±2.4 6.9±2.4 5.5±1.8 

# 2 10.5±3.2 11.7±3.4 6.8±2 8±2.3 8.3±3.5 8.3±4.1 

# 3 23.6±11.6 21.3±10.5 14.2±10.9 11.8±4 10.5±3.5 9.2±3.9 

# 4 18.2±8.5 13.8±4.7 9.17±3.2 11.5±4 13.1±3.5 11.9±4 
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# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

EXPERT 19.5±8.8 12.8±4.5 7.9±2.3 9.9±4.1 10±3.5 9.4±3.2 

 

 

TABLE 4. AVERAGE SPENT TIME (DRAWING AND MODIFYING, IN SECONDS) PER OBJECT IN SEMI-AUTO MODE. 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 3.4±2.6 2.2±1.1 4.7±4.6 5.3±1.8 0.7±0.2 1.1±0.8 

# 2 4.8±0.9 9.7±2.1 4.5±1.9 7.2±2.5 0.8±0.4 2.5±1.8 

# 3 10.8±6.9 12.8±6.5 3.4±1.1 2.5±1.6 2±0.6 3.5±4.2 

# 4 12.1±2.7 4.7±6.9 5.3±2.1 4.4±4.3 1.6±3 1.4±2.3 

 

The average number of clicks per object in manual mode, for all four annotators, 

according to Equation 4.4 are shown in Table 4.6. 

 

TABLE 5. AVERAGE NUMBER OF CLICKS (DRAWING AND MODIFYING) PER OBJECT IN MANUAL MODE. 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 33.4±10.54 24.7±3.9 14.8±2.8 17±3.5 16.5±4 14.2±2.8 

# 2 21.8±6.3 21.1±5 15.3±3.3 15.3±3.3 17.9±5.6 19.1±7.5 

# 3 42.9±14.7 45.9±16.5 33.4±9.8 30.8±7.5 19.4±5.5 24.4±6.7 

# 4 25.4±8.2 22.8±7.9 15.8±3.8 17.6±4.7 17±15 15.6±3.3 

 

In manual mode, when annotators are drawing parasites from scratch, the time between 

each click is different from person to person. Table 4.7, illustrate the average time spent 

for each click for different group of images.  

 

TABLE 6. AVERAGE SPENT TIME (IN SECONDS) PER CLICK FOR DRAWING PARASITES (MEAN ± STANDARD DEVIATION) 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 0.36±0.05 0.38±0.04 0.48±0.1 0.43±0.07 0.4±0.05 0.37±0.1 

# 2 0.45±0.08 0.51±0.06 0.42±0.08 0.5±0.08 0.43±0.09 0.41±0.05 

# 3 0.4±0.14 0.37±0.06 0.41±0.3 0.37±0.07 0.51±0.14 0.38±0.16 

# 4 0.62±0.1 0.58±0.06 0.55±0.12 0.62±0.09 0.72±0.11 0.63±0.1 

 

The total number of clicks by annotators are presented in Table 4.8. The first number 

shows the total number of clicks for drawing and second number shows the total number 

of clicks for modifying objects. 
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TABLE 7. TOTAL NUMBER OF CLICKS FOR EACH GROUP OF IMAGES. (NUM. OF DRAWING CLICKS; NUM. OF MODIFYING 

CLICKS) 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO 

# 1 1205;53 58;107 742;0 0;40 1041;3 191;274 306;2 26;197 2198;24 108;54 1919;35 134;102 

# 2 1311;107 85;170 593;85 95;314 891;33 301;118 431;16 189;66 3628;205 290;43 326;2 61;15 

# 3 2318;255 103;448 1425;78 14;251 2175;13 164;116 1357;5 182;38 5106;106 659;121 611;0 18;73 

# 4 1451;30 255;571 664;4 0;137 1207;5 283;260 477;4 254;33 3674;63 661;22 2197;99 447;38 

 

 

C. Precision and Recall 

 

Table 4.9 shows the number of truly identified, wrongly identified, and missed objects 

in both manual and semi-auto is calculated (for calculation, the IOU threshold is set to 

50%). 

 

TABLE 8.  TP (TRUE-POSITIVE), FP (FALSE-POSITIVE) AND FN (FALSE-NEGATIVE) WITH IOU-THRESHOLD=50% FOR 

EACH GROUP OF IMAGES, PER ANNOTATORS (NUM. OF TP; NUM. OF FP; NUM. OF FN) 
 

# USER HD ENTEOMEBA LD ENTEOMEBA HD GIARDIA LD GIARDIA HD PROTOTECA LD PROTOTECA 

MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO MANUAL S-AUTO 

# 1 33;3;23 45;2;11 24;6;11 30;3;5 55;15;49 71;41;33 10;8;33 24;13;19 103;30;89 167;34;25 115;20;57 150;13;22 

# 2 60;1;8 59;1;10 27;1;9 31;1;5 33;25;44 57;6;20 9;19;22 22;5;9 167;35;59 202;18;24 16;1;2 18;0;1 

# 3 50;4;4 50;10;4 30;1;1 30;1;1 37;28;33 54;33;16 36;8;7 40;12;3 209;53;82 259;28;32 13;12;4 15;11;2 

# 4 56;1;21 66;1;11 28;1;7 32;2;3 60;16;32 74;12;18 22;5;26 36;7;12 208;8;56 235;23;29 136;4;42 152;13;27 

PRECISION 95.67 94.01 92.37 94.61 68.77 73.56 65.81 76.72 84.50 89.33 88.32 90.05 

RECALL 78.03 85.93 79.56 91.95 53.93 74.62 46.66 73.93 70.60 89.52 72.91 86.56 

 

D. Intersection of Union 

 

IOUs for each group of images in both manual and semi-auto are shown in Tables 4.10 

and 4.11. 

 

TABLE 9. FINAL IOU IN MANUAL MODE FOR EACH GROUP OF IMAGES (MEAN ± STANDARD DEVIATION). 
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# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 85±7.9 75.5±6.2 72±11.1 68.8±12.6 77.3±8.9 79.4±7.7 

# 2 85.5±8.9 85.1±10.4 69.5±10.7 64.8±10.8 77.7±8.9 80.3±9.4 

# 3 87.4±12.4 90±5 71±12.3 76.3±8.8 78.2±11.9 75.9±23.3 

# 4 90.1±6.5 90.8±5.5 76.2±12.8 75.6±13.4 84±6.8 85.9±5.7 

TABLE 10. FINAL IOU IN SEMI-AUTO MODE FOR EACH GROUP OF IMAGES (MEAN ± STANDARD DEVIATION). 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 86.8±6.5 86.6±7.4 75.6±11.9 75.2±12.8 80.7±7.8 83.7±6.9 

# 2 87.8±6 85.9±9.5 81.8±8.5 79±10.9 82.8±8.7 86±6.9 

# 3 84.8±12.4 87.1±6.5 76.6±13.7 82.2±6.4 83.4±9.9 80.8±13.3 

# 4 88.6±4.9 86.6±7.4 80.1±9.8 79.3±10.2 84.2±7.3 82±7.8 

 

 

The IOUs for the masks generated in the semi-auto mode in comparison with the GT 

(ground truth) are shown in Table 4.12. 

 
 

TABLE 11. IOU OF COMPUTER-GENERATED MASKS (MEAN ± STANDARD DEVIATION). 
 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 86±6.9 86.3±7 78±9.5 80±7.2 81.4±6.8 84.2±6.6 

# 2 87±6 85.3±8.3 81.1±8.2 80±8.5 83.7±6.5 85.5±7.4 

# 3 84.7±8.9 86.1±7.2 79±9.6 82.6±6.4 85.3±6.8 84.7±10 

# 4 86.3±6.4 85.8±7.1 80.2±7.2 80.6±8 84.7±6.5 81.6±7.8 

 

E. Semi-auto Mode Complementary Results 

 

Number of proposed objects, along with the number of added and removed parasites in 

semi-auto mode are shown in Table 4.13. 

 

TABLE 12. ACCEPTED, REMOVED AND MODIFIED MASK PROPOSALS IN SEMI-AUTO MODE. (P: TOTAL NUMBER OF 

PROPOSED OBJECTS, A: NUMBER OF ADDED OBJECTS BY ANNOTATOR, D: NUMBER OF DELETED OBJECTS BY 

ANNOTATOR, T: THE FINAL NUMBER OF ANNOTATED OBJECTS) 
 

# USER HD ENTEOMEBA  LD ENTEOMEBA  HD GIARDIA  LD GIARDIA  HD PROTOTECA  LD PROTOTECA 

P A D T  P A D T  P A D T  P A D T  P A D T  P A D T 

# 1 56 2 11 47  40 0 7 33  140 14 40 112  58 2 23 37  203 7 9 201  158 12 7 163 

# 2 68 4 13 59  38 4 10 32  86 14 37 63  44 8 25 27  225 19 24 220  27 3 12 18 

# 3 60 2 2 60  31 1 1 31  82 6 1 87  47 7 12 42  256 35 4 287  44 1 19 26 

# 4 76 7 16 67  38 0 4 34  106 12 32 86  61 9 27 43  220 46 8 258  142 12 31 165 
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TABLE 13. NUMBER OF PARTIALLY AND FULLY ACCEPTED POLYGONS (NUM. OF ACCEPTED PROPOSALS WITH 
       MODIFICATION; NUM. OF ACCEPTED PROPOSAL WITHOUT MODIFICATION). 

 

# USER ENTEOMEBA GIARDIA PROTOTECA 

HD LD HD LD HD LD 

# 1 9; 36 10; 23 39; 61 24; 11 25; 169 23; 128 
# 2 34; 21 27; 1 20; 29 12; 7 15; 186 4; 11 
# 3 25; 33 16; 14 40; 41 8; 37 43; 209 11; 14 
# 4 43; 17 24; 10 38; 36 7; 27 0; 212 1; 133 

 

 


