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Abstract

When confronted with applications to real data problems, it is always challenging to simul-
taneously deal with potential group structures, high-dimensional features and the relationship
between predictors and response variables. Most of the time missing data exist across the
whole dataset, which makes the problems even more tricky. Meanwhile, with the advent of
big data and high-throughput technology, the dimension of the given data could easily exceed
the sample size, which places the ordinary linear regression into a difficult position where the
normal equation is degenerate and traditional statistical techniques cannot be used properly.
Notwithstanding, generally speaking, there is only a small part of variables being informative
to the needs of researchers by significantly affecting the dependent variables. To address these
issues, we develop a model to realise classification, variable selection and parameter estimation
simultaneously in this thesis. This model also shows flexibility and inclusiveness to datasets
with missingness. Moreover, by introducing the /;,—norm penalty to tune the sparsity level to
the specific needs of researchers, our methodology has been improved further.

With the help of Bayesian Information Criterion, we can specify the number of components
and degree of penalty for this modelling. After that, the uses of marginal analysis and the
k-means clustering method facilitate the following application to whole datasets by realising
a dimension reduction purpose. In the application to the anti-cancer drug and screened gene
expression data, our methodology shows good abilities for clustering drugs into a finite number
of groups and screening out the related genes which play significant roles in configuring the
corresponding groups. With our specific enhancements to the model, including missingness
indication and adjustable sparsity level, our methodology has the potential to be applied to a
wide range of datasets in the scientific area, including but not limited to economics, finance,
biology, and physics. Based on the above applications, we also propose another method to
determine the number of components in a mixture model, which provides an alternative view
on the clustering problem.

Afterwards, we examine the inherent skewness of given data by resorting to skew normal

distributions. After adaptations to the traditional skew normal density function, we success-
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fully estimate the parameters in a skew normal distribution under different skewness scenarios.
The asymptotic distributions for the MLE estimates of our skew normal distribution are also
obtained with detailed proofs attached in the Appendix. Meanwhile, some intriguing asymp-
totic properties behind our skew normal function are discussed later in this chapter. Lastly,
we propose the four-piece distribution family for skew normal mixture models to consider the
group structure, which shows a good estimation accuracy in the following simulation studies.
From these simulations, the above models have been verified as a complement to the existing R
package mclust which is popular for handling model-based clustering, classification, and density

estimation problems.
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Chapter 1

Introduction

This thesis is motivated by the development of anti-cancer drug studies. They are close to our
human being life as a result of the wide use of targeted anti-cancer drugs to help the related
treatment. First of all, we will introduce the concept of cancers in connection with human
genes to explain the importance of personalised treatment. Then the anti-cancer drug dataset
used in this thesis for our statistical analysis is introduced to provide a real-data application
for our statistical algorithms and methodologies. After the description of existing challenges,
our contributions are also mentioned. The organisation of this thesis is given at the end of this

chapter to help readers have a glimpse of the whole thesis.

1.1 Cancer and Genes

Cancer comes from the changes or mutations in DNA which can alter essential cellular processes
that govern cell behaviours, resulting in the invasion and move of cells to places they do not
belong to (Elk and Landrine, 2012). These changes or mutations affect cell processes through
gene expression which is the process of transferring coded information in a gene to a functional
product such as a protein. In practice, these kinds of changes in genes are genetically unique,
which indicates discrepancies for the same type of cancer among different individuals. These
discrepancies can lead to different responses to one treatment for patients with the same type
of cancer.

Almeida and Barry (2011) asserted that there is no single treatment for cancer. After that,
the personalised treatment of cancer started to bloom in modern oncology. The personalised
treatment uses the information about the patient and his tumour to figure out what is driving
the disease, and then create a unique treatment plan with anti-cancer drugs for the patient.

The most important task for the personalised treatment is to match up the right drugs with



the right patient (Yang et al., 2013).

The aim of fighting cancer more precisely drives the development of targeted therapy (tar-
geted drug) which is a kind of drug designed to react with specific molecules to interfere with
the progression of tumour cells. Targeted therapy has become the most effective way of treat-
ment over the past years. Owing to the precision of targeted therapy, the amount of damage
to normal cells is considerably minimised (Kidd et al., 2015).

Most of the time genes function in groups instead of alone. This is called genetic interactions,
where two or more genes show a combined effect which does not manifest itself through only
one of them alone (Bebek, 2012). Thus, the gene expression profile becomes a helpful tool for
discovering the functional cooperativity between different genes (Garnett et al., 2012). And
the research on gene interaction networks becomes necessary to understand the pathway and
regulation behind the working principle of genes (Bebek, 2012), then an insight into cancer
can be provided to power the research of disease-specific cure and personalised treatment.
This thesis focuses on genes and anti-cancer drugs to reveal statistical features and hidden

connections between them.

1.2 Cancer Drug Data

Doctors and scientists are always exploring better ways to treat patients with cancer. One way
to do this is by creating new drugs. They also try to find new ways of using drugs which are
already available. Before any new drug becomes available to be prescribed to patients, there is a
long process taking many years and lots of resources. In general, there are 3 steps of developing
a new anti-cancer drug: preclinical research, clinical research, and post-clinical research. Our
research can contribute to the first step ‘preclinical research’ where the drug is discovered and
designed.

The data of our research comes from Iorio et al. (2016), who integrated heterogeneous
molecular data of 11289 tumours and 1001 cell lines, and they also measured the responses of
these 1001 cancer cell lines to 265 anti-cancer drugs. Thus, our data consist of two parts. The
first one is the sensitivity of different cell lines (COSMIC_ID) to various anti-cancer drugs,
which is quantified by the logarithm of the half maximal inhibitory concentration (Ln_IC50).
IC50 is a quantitative measure of how much (concentration) one drug is needed to inhibit the
multiplication of that cell line by 50% (Schwab, 2008). Generally, IC50 is estimated by two
steps. Firstly, measure the inhibition activity of one cell line against a range of dilutions of the
drug (as well as without the drug). Secondly, perform curve-fitting (a sigmoid curve) of these

inhibition results against concentrations, then IC50 is calculated as half of the upper asymptote



value. The other data part is the gene expression data for the correspondingly aforementioned
cell lines. In this article (Iorio et al., 2016), the authors take advantage of these data by using
ANOVA to identify gene-drug associations, where many relevant associations have been known
clinically. While some associations do not contain known cancer genes, this may give clues to
the likely driver cancer genes through the patterns of drug sensitivity. Following this research,
we used other methods to analyse the associations between genes and drugs to hope for more

insights into the gene-cancer research to power the development of anti-cancer drugs.

1.3 Challenges and Contributions

When multiple genes are connected with different drugs, the modelling for drugs and genes
becomes a multivariate multiple linear regression problem. When using the gene expression
data, high dimensionality imposes a hurdle against the modelling of these data as a result of
the large number of genes in human being. Each gene will add one more dimension to our
analysis, and there are thousands of genes. However, the number of cell lines is much fewer
than that quantity. To overcome the problem of overfitting, some constraints are needed to filter
parameters. Pan and Shen (2007) used [y —norm penalty to help multivariate clustering but
not under a regression basis. Different from existing models, we build a penalised multivariate
multiple regression model and then simultaneously solved variable selection (for genes) and
clustering (for drugs) problems. After that, missingness is considered in our modelling to
include more data into our analysis and avoid any improper deletion, which is very close to
real-world data situations since missingness exists everywhere in research applications.

When building these models, the group structure for anti-cancer drugs is always accom-
modated because drug combination therapy has been proved more effective than monotherapy
when killing tumour cells (Janku et al., 2014; Musgrove et al., 2011), where these drugs fulfil
their functions by binding to one or more protein targets. Moreover, drug resistance is largely
reduced when drugs are used simultaneously on patients (Carter et al., 2016).

In the field of anti-cancer drug statistical researches, when building models, skewness has
rarely been considered. While the inherent skew property of the drug data could distort the
shape of normal modelling. The introduction of the skew normal distribution could better
depict our skewed data, but the inference for this model is not easy. To reach a more accurate
estimation result, starting from the location-scale skew normal model, we introduced a different
penalised skew normal model with a new way of EM algorithm to estimate it in Chapter 4. Using
this skew normal estimation, we revealed the inherent skewness within the given drug-and-cell-

line data for some drugs. In the next asymptotic analysis part, the asymptotic distributions



for the MLE of skew normal distribution under the regular condition (skewness is not zero)
(Azzalini, 2014) are calculated to the end, which has not been found in the literature to our
best knowledge. For the skewed data with a group structure, we also proposed a new way of
estimating the skew normal mixture models, which is different from existing methods within

the literature.

1.4 Organisation of The Thesis

There are six chapters in total except for four more chapters in the appendix. The following
chapters form the rest of this thesis’s main body.

In Chapter 2, we briefly introduce some concepts used in this thesis as a preliminary for the
next analysis, and we also review some backgrounds for these concepts.

In Chapter 3, a new penalised likelihood fusion model is introduced. To estimate the
parameters in this model, the EM algorithm is laid out step by step in detail. Then we extend
this model by adapting it for missing entries, and the corresponding EM algorithm is also shown
here. The cancer-drug and gene-expression data analysis using this model is also carried out,
and a group-related gene map is plotted with drug clustering tables.

In Chapter 4, we introduce a skew normal location-scale model with a different EM algorithm
from the conventional ones in the skew normal estimation. A new penalised likelihood is also
put forward to address the odd behaviour of estimation when true skewness is near 0. Then
asymptotic distributions for MLE are computed afterwards following some newfound asymptotic
properties.

In Chapter 5, we introduce a new modelling called ‘the four-piece distribution family’ for
skew normal mixtures, it provides a new view of skew normal mixture problems. The following
simulation studies demonstrate the validity and good performances of our method for skew
normal mixture modelling,.

Finally, Chapter 6 contains the conclusions and future works of this thesis. Not only does
it show the constraints or limits of our modellings, but also suggests some potential extensions
for our modellings and algorithms in the future. The technical details are postponed to the

Appendix.



Chapter 2
Methodological Background

2.1 Curse of Dimensionality

Curse of Dimensionality refers to various phenomena arising as a result of dimension increasing.
The impact can be multiple and includes different ways. Giraud (2021) mentioned four aspects:
firstly, data points are isolated in high-dimensional immensity; secondly, the accumulation
of small fluctuations results in a large global fluctuation; thirdly, rare events accumulate to
non-rarity; fourthly, numerical computations and optimisations become excessively intensive in

high-dimensional spaces.

2.2 LASSO and Extensions

In high-dimensional problems, we need variable selection methods to reduce the model com-
plexity effectively but at the same time balance model bias and variance. Variable selection is
supported by the idea that only a small fraction of predictors are informative and significantly
connected with the response variables (Buhlmann and Van De Geer, 2011). Least Absolute Se-
lection and Shrinkage Operator (LASSO) and its variants were developed for variable selection.
For a high-dimensional dataset, we consider the observations (x1,41), ..., (Xn, yn), Where x; is a
p—dimensional covariate independent of each other coming from X = (x1,Xa,...,%,)?, and y;
is a univariate response variable from y = (y1, 92, . . . 7yn)T. To perform regression, we assume
a linear model y; = Bo+ i Bjxij+¢€; (i =1,...,n) where z;; is the explanatory variable from
X = (i1, Tizy -« s Tip)s BZZI; the coefficient from vector 8 = (61, B2, .., 3)T, and error term ¢;
is from € = (e1,¢€2,...,6,)7, Bo is the intercept. When p < n, this regression problem is solved
by minimising the objective function En: (yi — Bo— i z;;Bj)%. When p > n, generally there is

=1 Jj=1
B3 to make the objective function 0, but 3 is not unique, and the data are also over-fitted as a



result of parameters outnumbering observations.

2.2.1 Original LASSO

LASSO regression (Tibshirani,1996) is an improvement to the ordinary least square (OLS), it
adds a [;—norm constraint onto the coefficients:

n p

: )1 : &
Brasso = arggnm om Z (yi — Bo— 2 ;53;) ¢ subject to Z 1Bl < t.

i=1 = j=1

Generally the intercept By can be omitted by standardising the dataset:

%Zy’ =0, %Zm” =0, %foj =1L

For the convenience of notations, we can also put it in the Lagrangian form:

Buasso = argmin (ly =Xl /n+ A8l )

where A > 0 is a tuning parameter to control the severity of the penalty term A ||3||,. Through
this, the shrinkage degree of the estimated coefficients can be controlled. And there is a one-
to-one correspondence between A and ¢ depending on given data.

The solution for LASSO regression can be seen as the classic linear least-squares method
with a bound constraint Zp: |B;] < t, which can help to yield a sparse solution and also reach
coefficient shrinkage. In ]]F‘Tglure 2.2.1, each curve shows the gradual change of each coefficient
from zero to non-zero with the increase of the constraint ¢ on the iy —norm ||3||, = 217: |B;]. The
bound ¢ varies from 0 on the leftmost side, all the way to a large value 14 on ti;lrightmost
side in this coefficient-path plot. The constraint ¢ has no effect anymore when it becomes large
enough. More coefficients are released to non-zero as the severity of the penalty becomes looser
with the extension of the horizontal axis.

LASSO becomes very useful when the data is provided with p > n feature, but actually,
k (< n) variables have non-zero coefficients in the underlying true model. When p > n, with the
ordinary least square (OLS) objective function mianzl(yi — Bo— ﬁ:l z;;3;)?, the estimates
which set the objective function as zero are not unique. From this JpEoperty, it also suggests
that the model is overfitted. Moreover, all of the coefficients are usually estimated as non-zero,

which cannot realise variable selection purpose. To explore the variable selection property of

LASSO, we first introduce ridge regression as a comparison.
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Figure 2.2.1: The coefficient-path plot against the [y —norm of the coefficient vector. Y axis
indicates the coefficient value of the variable, and X axis is the value of bound t.

2.2.2 Ridge Regression

Ridge regression (Hoerl et al., 1970) is the OLS method with a constraint on the l3—norm of

coefficients:

. 1

p
Bridge = arg min o — Bo— Z z;;B3;)? ¢ subject to Z 5? <t.

i=1 j=1

M:

Similarly, omit intercept 3y by standardisation and put it in the Lagrangian form:

Brase = axgmin (Ily ~XBI3 /n-+ M85)

where [|8]|5 = Z 87, and A > 0 is a tuning parameter with a one-to-one correspondence to t.
However, rldgé _regresswn can not yield sparse solutions because the contour (red ellipse curves
on the graph) can not touch the ls—norm constraint (blue circle on the right graph) with the
coeflicient of one dimension being zero. It is illustrated in Figure 2.2.2. As is shown, the RSS
contour in the LASSO case reaches the minimum value by touching the square’s corner where
B1 = 0 as marked on the left graph. That is why LASSO has the ability of assigning zero values
to some coefficients to realise variable selection. Thus, the sparsity is achieved by using LASSO
regression, where sparsity means the property of a model with few non-zero coefficients. This

key property comes from the geometry of I;—norm, and it can be applied in other statistical

models.
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Figure 2.2.2: The contours of residual sum of squares ||y — XBHg are plotted with red ellipses.

B is the OLS estimate (XTX)71 XTy. The LASSO case is on the left with the constraint area
|B1|+|B2| < t. The ridge case is on the right with the constraint area 57 + 35 < t2. (Tibshirani,
1996; James et al., 2013)

2.2.3 Elastic Net

If we turn to variations of the basic LASSO [; —norm penalty itself, we can find that the [; —norm
penalty makes it possible for the shrinkage and selection of variables because of the existence
of the non-differentiable property from the /; —norm. But with this character, we may set some
coefficients as zero, which is sometimes overly absolute without any prior knowledge. To keep
variable selection and shrinkage, but compromise with the accuracy from the ridge regression,
the Elastic Net can be considered, which makes the coefficient estimates more accurate but less
sparse.

Elastic Net (Zou and Hastie, 2005) is a compromise between LASSO and ridge penalties by

solving the following convex problem:

B, o) = axgmin (|ly = X3 /n-+ 21 1813+ 22181, )

where A1, A2 > 0 are regularisation parameters, and the problem reduces to LASSO or ridge

regression when A\; or A, is set as O respectively. This problem can also be expressed as

Bla,X) = argmin (|ly = XBI3 /n+ X [(1 = ) 1813 + a[18],])
B

which can show the compromise between LASSO and ridge, where « is a proportion parameter.
But there are two tuning parameters o, A to be determined. Here o can be seen as a higher-level
parameter which can be set by users. Alternatively, we use a grid of values to select o and A

from cross-validation. In the field of genomics, we often find that correlated features work in



groups, where some genes express together with the same biological pathway. So their data
have strong correlations with each other. But LASSO does not perform well with variables
which are highly correlated with each other. By using squared l;—norm penalty and [, —norm
penalty together, it can work better with such correlated features and tends to screen out the
correlated variables together.

The drawback of the Elastic Net is always obvious. It is computationally more expensive
than LASSO or ridge because the relative weight between LASSO and ridge has to be selected
using cross-validation. But in the absence of prior knowledge, the Elastic Net is generally
preferred compared to pure LASSO or ridge regression. The prior knowledge acquired before

the regression includes the examples such as

e All covariates (regressors) are relevant and highly correlated. Then variable selection is
not needed as we want to keep all information in the result. Under this circumstance, we
should turn to the ridge regression to avoid unnecessary variable selection which could

remove useful information hidden in some variables.

e Some regressors are completely irrelevant. We need to do variable selection using LASSO
to leave them out in the next step of research. This is what we did in the preliminary
analysis part of next chapter. We have known that most of the genes are irrelevant to the
development of one certain kind of cancer, so we may exclude them from the connection
to one certain anti-cancer drug. A strong variable selection is required here, thus, LASSO

regression is treated as the priority over other regression methods.

To uncover the screening power of the Elastic Net when different as are applied to the model,
we performed variable selection using the glmnet package on 227 anti-cancer drugs respectively.
The number of variables (genes) that remains after the regression for each drug is shown in
Figure 2.2.3. Fewer variables are screened out with more weight put on /; —norm penalty until

it becomes a pure LASSO regression where « is set as 1.

2.2.4 Adaptive LASSO

Although LASSO is a powerful screening method to produce sparse outcomes, it can still come
out with many noise covariates (the ones screened out but close to 0). So we need optimisation
methods which can reduce the number of noise covariates to produce sparser results.

To optimise the inadequate screening behaviour of LASSO (noise covariates are selected

besides relevant variables), Adaptive LASSO (Zou, 2006) is introduced here which replaces the



Number of Variables after Screening Using Elastic Net with Different Alphas
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Figure 2.2.3: The number of remaining genes for different drugs after applying the Elastic Net.
We illustrate the variable selection effects (by counting how many genes are screened out for
each drug) under different as. Y axis indicates the number of non-zero-coefficient variables
(genes) after the Elastic Net screening.

l1—norm penalty with a reweighted version:

5 |8;
Buiaps () = axgmin { lly = X85 /n + s Al (2.21)
Jj=1 /Bllllt,j‘
where Binit is an initial estimator from LASSO:
BuaaX) = axg min (ly = Xl /n+ X 181),). (222)

Use cross-validation twice to select parameter A’ and A . Firstly, we choose it for the initial
parameter ﬁinit = Binit (N) from 1) Secondly, we use cross-validation again to select A for
Adaptive LASSO (2.2.1)).

The inadequate screening behaviour of LASSO can be explained theoretically that
P [S(2) 2 S| = 1(p = n— o0),

lim sup P [S(A) - SO} <1(p>n— o),

n—oo

where S is the underlying true set of active variables expressed as Sy = {j; ﬁ? #0,7=1,... ,p}.
So noise covariates cannot be avoided with the choice of A, we can just reduce the number of
them. And Adaptive LASSO plays this role. Actually, selecting the regularisation parameters
X and ) in a sequential way is computationally cheaper than simultaneous optimisation over
two tuning parameters.

Now we illustrate that the Adaptive LASSO can yield a much sparser result than the original

10
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Figure 2.2.4: The number of genes for different anti-cancer drugs after screenings with the
original LASSO (blue line) and Adaptive LASSO (orange line). Y axis indicates the number of
non-zero variables after the screening.

LASSO. One property of Adaptive LASSO can explain it (Buhlmann and Van De Geer, 2011):
Binit,j =0= Badapt,j =0.

If is large, Adaptive LASSO employs a smaller penalty for the jth coefficient 3; where

Binit,

less bias is implied. Then when ‘Biniw»

is small, a heavy penalty could be put on this coefficient
B, which may result in a zero coefficient this time. Thus, Adaptive LASSO yields a sparser
solution than the original LASSO. It can reduce the number of noise covariates (which are left
over after screening but irrelevant) from the first step ‘original LASSO’.

We conducted a comparison between the original LASSO and Adaptive LASSO on the real
data to show this property. With the help of the glmnet package in R, the comparison for
the number of active variables left after the screening processes is plotted in Figure 2.2.4. The
second step of Adaptive LASSO used the estimates from the original LASSO as the weight to
refit. As shown in this graph, the orange line (Adaptive LASSO) is beneath the blue line (the
original LASSO) everywhere. Therefore, it can be affirmed that Adaptive LASSO yields sparser

solutions than the original LASSO.

For the computation of Adaptive LASSO, we can use rescaling technique on covariates after

which it becomes a LASSO problem (Buhlmann and Van De Geer, 2011),

X0, f =P

X0 — j
)6init,j

Binit,

then the Adaptive LASSO problem of becomes

11



- |2 .
min (HyX,@H /n+)\H,8H ) .
B 2 1
Here we omit the variables j with Binit,j = 0. So the solution of Adaptive LASSO is

Bj-

ﬁinit J

5adapt,j =

This Adaptive LASSO can be upgraded to multi-step adaptive LASSO (Buhlmann and Meier,
2008) where every iteration step uses a separate tuning parameter and increases the sparsity
in every step. The same as basic Adaptive LASSO, it also benefits from selecting tuning

parameters sequentially instead of simultaneously to alleviate the computational complexity.

2.2.5 LASSO-OLS Hybrid, Thresholded LASSO and Relaxed LASSO

For the LASSO-OLS hybrid (Guo et al., 2015), it is an ordinary least square estimator on the

selected variables following the original LASSO:
. —1
Brassoors = (XEXg) Xly,

where § = { 3; By, ASS0,j 7 0} is the set of non-zero coefficients selected from the first step
LASSO. And Xg is the restriction of X to columns in S,

The thresholded LASSO (Zhou, 2010) is another way to obtain a sparser parameter estimate
than the original LASSO. At first, the coefficients from the original LASSO are thresholded

through the following procedure:

Bthres,j()\init,5) = Binit,j XH(’Binit,j > 6),

where Binit,j = Binit,j (Minit), and I(+) is the indicator function. Then the selected variables are

refitted with ordinary least squares like the LASSO-OLS hybrid:

Sthres Sthres

-1
- T T
l@thres—reﬁt = (X XSthres ) X3 Y

where Sinres = {j;/éthres,j # 0}-

The additional thresholding step leads to a better performance than the LASSO-OLS hybrid.
This thresholded LASSO method has inspired the introduction of our two-step initialisation
method for the mixture skew normal regression problem (attached in Appendix D).

The relaxed LASSO (Meinshausen, 2007) is one more step with a smaller penalty after the

12



original LASSO in the first step. So in the second step, the estimator is

Bs(r.¢) = argmin{ly - XsBs; /m+0-A|Bs],}. 0 <o <1).

where § = { Ji Brasso s # o}. When ¢ = 0, it becomes the LASSO-OLS hybrid. In this
method, A and ¢ are selected by cross-validation simultaneously unlike Adaptive LASSO.
Moreover, the relaxed LASSO and Adaptive LASSO have similar performances in practice.

Owing to the interest of my research, the detailed performances of them are not discussed here.

2.2.6 Package glmnet

glmnet (Friedman et al, 2015) is an R package to fit one generalised linear model through
penalised maximum likelihood. With the different settings of penalty terms, it can solve LASSO
or Elastic Net problem when facing different shapes of data. The options and features in the

arguments are introduced below:

e Family: the loss function and the associated model, including Gaussian, Poisson, binomial,
multinomial and cox. In our application, the residual sum of squares for Gaussian errors

is a kind of deviance measure.

e Penalties: glmnet will generate a sequence of 100 values for A to test. A can control how
heavy the penalty is. And « in Elastic Net can be chosen by cross-validation with a grid

of @ and A, where « € [0,1] is the mixture proportion between ridge (o = 0) and LASSO

e Coefficient bounds: to accelerate the calculation, there are upper and lower bounds during

the coordinate-descent loop.

e Offset: a real-valued number for each observation, which is added to the linear predictor

and is not associated with any parameters.

e Matrix input and weights: when response input is a matrix instead of a vector, which
indicates the grouped data. Each row of response matrix is filled with weights or weight

portions.

e Sparse model: when p > n, store efficiently by only storing non-zero coefficients. Co-
ordinate descent takes advantage of that sparsity because of one variable one time and

inner-product operation.

e Cross-validation: K-fold cross-validation can be performed with a function inside to find

the ‘best’ tuning parameter .

13



2.3 Model-based Clustering and Mixture Model

Clustering or cluster analysis is the identification task to group similar observations into the
same group in contrast to the differences from the elements in other groups. Most of the time, it
is done through heuristic steps until Fraley and Raftery (2002) composed systematic guidance
on cluster analysis to solve the problems such as the number of clusters needed, suitable methods
and treating outliers, see also Raftery and Dean (2006). Model-based clustering assumes that
the given data are generated through an existing but unknown model, and it tries to recover the
true model from the given data. After recovering, the estimated true model defines the clusters
and their parametric features. In our research, we use maximum likelihood as the criterion to
estimate the true model. We try to find out the parameter set ® to maximise the log-likelihood

of generating the given data Y:

& = argmaxL(®|Y) = arg maxlog H p(yi|®) = argmax Z log p(y:|®),
® ® i=1 ¢ =

where L(®[|Y) is treated as the objective function. When clustering with the same known
number of groups K, higher L(®|Y) is preferred.

Different clustering methods can yield different assignments, and the form of clustering
could also be very different. For example, fuzzy c-means (Dunn, 1973) produces soft clustering,
which means each data point can belong to more than one group using a membership grade
indicating the degree of belonging to each group. k-means (MacQueen, 1967) is the other case
as it assigns each data point to only one specific group. So k-means produces hard clustering.
Mixture modelling is another way to handle clustering problems which may include the EM
algorithm (Dempster et al., 1977) to help the computations of interlocking equations, then a
soft clustering result is reached owing to the nature of EM algorithm E-step (refer to Section
2.4).

For the mixture model, the first major analysis where it was used can date back over 120
years. Pearson (1894) fitted a mixture model with two normal density functions which have
different means, variances and proportions to the data from Weldon (1892, 1893). He used the
measurements from 1000 crabs from the Bay of Naples on the ratio of the forehead to body
length, from which he found that the asymmetry in the histogram of these data may indicate
two new subspecies present in that population. Pearson (1906) is the first research advocat-
ing statistical analysis as the primary method to solve biological problems. Contemporarily,

McLachlan and Peel (2000) gave a comprehensive review of finite mixture models.
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The likelihood function of the mixture model with K groups for data y is shown here:

n K
L(b,....0k;m1,..omkly) = []D0 mnfulyiibn),

i=1k=1

where fi(+) is the density function, ) is the parameters in the k-th group, and 7y, is the mixture
K
proportion as a prior probability of k-th group which must add up to 1 ( 7, = 1 and m, > 0).
k=1
When fi(+) is a multivariate normal density, we have y; ~ N(u;, X) and

exp [<1/2(vi — )" B (v — )|
det (27T2k)

Te(yo g, i) =

The covariance matrix 3j can determine the geometry of clusters. When 3, = A1, all clusters
are sphere-shaped structures of the same size. When ¥, = 3 (a constant matrix which is a
matrix with all its entries equal to one given number), then all clusters have the same geometry
which could be sphere-shaped or not. When 3 is not restricted to one matrix, each cluster
can have its own geometry (shape, orientation and volume). Eigenvalue decomposition for the
covariance matrix of multivariate normal mixtures (Banfield et al., 1993) can build a general

framework for the geometry of clusters:
Sy = MORDLOT,

where Ay is a constant to control the volume of k-th cluster, Oy is the orthogonal matrix of
eigenvectors to control the orientation of k-th cluster, and Dy, controlling the shape is a diagonal
matrix with elements proportional to the eigenvalues. From this decomposition, we can deduce
that when X, = A\, I, all clusters are sphere-shaped but with different volumes.

A powerful method called EM algorithm can help us with the mixture model estimation as
we can not solve it directly by derivation. The presence of the sum in logarithm log L :f:
p i=1
log (Z wkfk(yi;ek)> will lead to a very complicated solution for the maximum likelihood.
FI‘OHlkI_IéXt section, we will move to the introduction of EM algorithm.

In our research, for the purpose of comparison, we used the package mclust in R to do
clustering, where mclust (Scrucca et al., 2016) is an R package to perform model-based cluster-
ing, classification and density estimation for finite normal mixture models through parameter
estimation from EM algorithm. It can cope with different covariance structures and select the
optimal model according to BIC values. The eigen-decomposition concerning the within-group

covariance matrix 3 for multidimensional data is also available through the function inside to

reveal the geometric features (volume, shape and orientation) of clusters.
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2.3.1 Mixture Regression Model

When one random variable with a finite mixture distribution depends on some covariates, a
finite mixture regression model is obtained (Khalili and Chen, 2007). Now with given data pairs
(x4, y;) from variables (X,y), we can perform a mixture model regression under the assumption
that y follows a mixture distribution. Then the response variable y and predictor variable X
can be connected by a finite mixture regression. Each data pair (x;,y;) belongs to one of K
clusters. Given the information that (x;,y;) comes from cluster k (k € [1,2,... K]), then we
have

Y = XiTﬁk + €,

where €; ~ N(0,0%), and the conditional distribution for y given X is the mixture model with

following density function:

K

fyx(ilxi) = Zﬁkfk(ydxzrﬁk,ff%%

k=1

where fi(-|x'B,,0%) can be regarded as the density of normal distribution with mean x7 3,
and variance o2, or say y; ~ N(x!'B;,02). And 7 is the mixing proportion with properties
f: 7 = 1 and 7 € [0, 1].

kZIWhen the dimension of covariate x; is large, sometimes even larger than the number of
observations n, it comes to the problem of variable selection in the finite mixture regression
model owing to the common practice of including only the important covariates in the model
(Khalili and Chen, 2007). Akaike Information Criterion (Akaike, 1973) and Bayes information
criterion (Schwarz, 1978) have been used in mixture regression model selections such as the
application in finite mixture of Poisson regression models (Wang et al., 1996). But they be-
come more and more computationally intensive with the increase of dimensions. LASSO and
smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001, 2002) are the later methods
suitable for variable selection in high-dimensional problems. See also Khalili and Chen (2007)

who introduced a penalised function to automatically select the sub-model and also performed

parameter estimations.

2.4 Expectation—Maximisation Algorithm

2.4.1 Introduction

Maximum likelihood estimation has been the most commonly used approach to estimating the

mixture distribution by far since the advent of the EM algorithm (McLachlan et al., 2019).
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Expectation-maximisation (EM) algorithm (Dempster et al., 1977) is an iterative method to
find the local maximum likelihood estimates of the parameters in a parametric probability
distribution when the model depends on unobservable latent variables. It alternates between
the E-step and M-step until convergence is reached. In a mixture model, data come from K
components, but the group label z of each is not observable, because we don’t know which
component each observation belongs to. In this circumstance, we turn to the EM algorithm to
find the maximum likelihood estimates for these latent variables. The E-step tries to calculate
the expectation of the log-likelihood function with the current estimates of parameters and
observed data. The M-step tries to maximise the expectation of the log-likelihood function

with respect to all parameters needed to estimate.

2.4.2 E-step

First, we introduce the incomplete-data likelihood function which is the target function we

want to maximise:

n K
Line(®) =] [ mefi(yi 0n), (24.1)

i=1k=1
where ® is the set of all parameters and 6 is the set of the parameters in kth component.
But the incomplete-data likelihood function is hard to be maximised. We use another way to
maximise it indirectly.

With the latent (hidden) information z, becomes a complete-data likelihood func-
tion:

n K

Lcom((I)) :HH [kak(yu ek)]zm )

i=lk=1
where z;; = 1 when observation ¢ belongs to group k, otherwise z;; = 0. It works as an
indicator.

Because z;; is unobservable from the data, we use the Bayes theorem to estimate it with

the current information (the v-th parameter estimates) and the observed data

= Pr(zi = 1ly:, 0)

E(zikly, 0)

7 fi(yi; 65)
K _w (v)
Z T fk(Yz';ek )

k=1

Sometimes T(]: )

e 18 called ‘membership probability’. Then the conditional expectation of the

complete-data log-likelihood function is:

17



Q('I)|'I)(U)) = EZ|Y,9(v> [108: (Lcom(‘I)(v))>}

n K
=Eziy om <ZZ [zik log T, + zix 1og fr(yi; 0k)]>

i=1k=1

n K
=> > [E(Zik|Yia0(v)) x log mi + B (zik|y:, 0)) x log fr(vi; 0)
1=1k=1

n K
=35 [ tog e + 7 o filyis 04)] (2.42)
i=1k=1

This is the expectation function which needs to be iteratively maximised and updated in the

next M-step.

2.4.3 M-step

(2.4.2)) is maximised with respect to ®(all parameters), then the (v + 1)-th parameter estimate
set, ®“ TV is obtained:

&Y = arg maxQ(®|®™)).
®

Thus, for every M-step we have
(@) > Qe|e"). (2.4.3)

Then update the parameters in (2.4.2)), and carry on the iteration alternating between E-step

and M-step until our preset stopping rule is achieved:
‘log Line(®*Y) —log Lipn.(®Y)| < e,
where € is a preset tolerance such as 10~° or 10710,

2.4.4 Monotonicity

When the iteration goes on, the (v + 1)-th incomplete likelihood Linc((I’(”“)) will never be less

than the v-th one me(@(”)), that is
Linc(q)(v+1)) Z LGc(é(v))
It is called monotonicity (Dempster et al., 1977) of the EM algorithm. Gupta et al. (2011)

proved it by using the logarithm version I(®) = log L;y.(®).
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1 y; € cluster k
First, define z;, = , 2; = (2i1, 2i2, - . ., zirc) Where only one element out

0 y; ¢ cluster k
of all K elements is 1, others are 0, and ( is the space composed of all possible z; such as
(1,0,...,0),(0,1,...,0),...,(0,0,...,1). Then we can derive that

K different kinds of z;

1@ = log Linc (@)

=log f(Y | 61)

= log > Leom (@Y | Z)
z1€(,...,2n€C

augment the incomplete-data likelihood to be a complete-data likelihood

= log lZf(Y, Z | 9“’“51

(Y,Z | 6w+
log | SIS0 ZD'M(U))) f(ZIYﬁ(“))]
Z

f(Y,Z]6")
=logE 0 | ——
S Lzv,00) l 1z Y,O(”))
Y,z 6% N
> F o [log ————— = | by Jensen’s inequalit
= Bziy,om 1(Z | Y,O(”)) y q y
i Y Z (’UJrl)
= Eziy o f(¥,216 ) by conditional density
’ FOY,Z69)/f(Y | 6™)
- oo /Y22 16) < f(Y [ 6)
= v 0,
Ao |7 F(Y.z]6%)
= By 00 [108 /(Y. 2|0 *)] = Bypy g [log f(Y, 2| 0¢))] +log f(Y | 6©))

= Q@) | @)~ Q™ | @) + 1(@™) (2.4.4)
From (22.4.3)), we can rearrange (2.4.4) and obtain that
(@)~ 1(2) = QB V|8 — Q@) |2) > 0,

which completes the proof.

This monotonicity can guarantee that the parameter estimates will never get worse in terms
of the (incomplete-data) likelihood function as the iteration goes on. The convergence of para-
meter estimate sequence {Q(”)} also depends on the characters of [(®), Q(®|®)) and the

initial parameter values 3,
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2.5 k-means Clustering

2.5.1 Introduction

k-means (MacQueen, 1967) is a clustering method for unsupervised learning, which iterates
between assigning each data point to the nearest-mean group and calculating the new means un-
til convergence. k-means can be treated as a variant of the generalised expectation-maximisation
algorithm, where the assignment step is regarded as the E-step and the update step as the M-

step.

2.5.1.1 Assign Data Point

Each data point y is assigned to the nearest centroid which has the least squared Euclidean

distance
: ) N2
argmin d(m; ’,y)*,
m{eM®)
where d(+) is the Euclidean distance between these two points, and M® = {mgt), mét)7 R m,(f) }

is the set of k means for k groups in the ¢-th iterative refinement.

2.5.1.2 Update Centroid

The iterative refinement is done by recomputing the centroid for each group. The centroid of

one group is calculated by averaging all data points assigned to that group:

1
ml(‘t+1) _ Z i

(t)
Si ijSEt)

where Si(t) is the set of assigned data points for i-th group in the ¢-th iteration.

2.5.1.3 Stopping Criteria

The iteration will continue between the above two steps until certain stopping rule is met.
Mostly we will use the rule that the clustering result is stable, which means no data point
changes its assignment anymore.

Moreover, as the k-means algorithm tries to minimise the within-cluster sum of squares:

k
arg min DX My =l (2.5.1)

i=1y;€S;

so sometimes the stopping rule is that (2.5.1) is achieved.

Since k-means is not a convex problem (as a discrete problem), the results can often be
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Figure 2.5.1: For different number of groups ks(from 1 to 10 groups), this line chart shows the
average distance to the within-group centroid for each k. Here the within-group centroid is the
imaginary or real data point locating at the centre of a cluster.

sub-optimal. We usually restrict it by setting the stopping rule as some maximum number of
iterations to allow for repetitive computations.

The convergence of k-means may result in a local optimum which is not a global optimum
to produce the best clustering result. So we usually repeat the k-means multiple times with

different initial centroids to reach a better clustering result.

2.5.1.4 The Choice of &

The k-means algorithm starts with a preset k¥ (the number of groups). To find the best k, we
need to run the k-means algorithm several times with a range of ks and compare the clustering
outcome with one certain criterion. Different criteria can bring different ks, there is no exact k
for most clustering analyses.

Elbow point on the plot of the average distance to the centroid against k is one kind of
criterion. An example of one elbow point is shown in Figure 2.5.1. As we can see from this
plot, the average distance to the centroid will always decrease when k increases until & equals
the number of data points (average distance becomes 0). So the elbow point is chosen (k =7
here) where the decrease rate has a sharp change. Other criteria are also available here such as

information criteria and cross-validation.
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2.6 BIC and K-fold Cross-Validation

2.6.1 Introduction to BIC

Bayesian information criterion (BIC; Schwarz, 1978) is an index for model selection among 2

or more alternatives. It is defined as

BIC = klog(n)—2log(L(®)),

where n is the sample size or number of observations, k is the number of parameters estimated
in the model, L(®) is the maximised likelihood function. The model with the lowest BIC value
is preferred.

When building a model, the likelihood can increase by adding more parameters to it, which
can lead to overfitting gradually. To balance good fit with parsimony, a penalty term is added
onto the number of parameters which can represent the complexity of the model.

Since the derivation of BIC involves approximations, BIC as a heuristic method is just an
approximation to the true distribution of the data. The choice of other criteria such as Akaike
information criterion (AIC) are also available, but BIC penalises model complexity more than
AIC. The limitation of BIC lies in the sizes of n and k, where sample size n needs to be much

larger than the number of parameters k in the model.

2.6.2 Introduction to K-fold Cross-Validation

Cross-validation is a kind of technique to test the performance of one model’s prediction ability
by applying it to an independent data set which was not used in estimating this model. Cross-
validation can help to assess the model performance and know how accurate predictions this
model can give. Data are divided into two parts when fitting a model, one is ‘known data’
which plays as training data set in the cross-validation to analyse the model, and the other is
‘unknown data’ which plays as validation data set (testing data set) to validate the model.
K-fold cross-validation is one type of cross-validation, where the given data are partitioned
into K equal-sized (similar-sized) subsets randomly, each subset is called one fold. Retain one
fold as validation data for testing the model afterwards, the remaining K — 1 folds are training
data for modelling analysis. Then this process is repeated K times to nominate each fold as
validation data once in turn. These K results can be averaged to get a more accurate estimate
of the model’s prediction ability. Usually, multiple rounds of cross-validation are implemented
with different partition outcomes to reduce variability. In general, K = 10 is commonly used

but not fixed, it can be any value depending on the formation of given data such as subset size.
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K-fold cross-validation has the advantage that all observations are used both for training the
model and validating it in the whole process.
When K = n (the number of observations), K-fold cross-validation becomes leave-one-out

cross-validation.

2.7 Skew Normal Distribution

Gaussian distribution has been trusted for centuries, but scepticism also exists around there
about the validation of normality assumption under many circumstances. To represent a safer
initial mental attitude about this doubt, Geary (1947) stated that ‘Normality is a myth; there
never was, and never will be, a normal distribution’. Although overstated, it corresponds
to the practical viewpoint. Many alternative normal distributions have been put forward to
address these non-normality problems with their own desirable properties. Turner (1960) used
a heuristic way to look at the estimation method by introducing a generalised density function
to include Gaussian (normal) distribution. Prentice (1975) proposed one distribution with a
two-parameter density function which can show positive or negative skew from the difference
between these two parameters. Azzalini (1985) depicted the asymmetry feature of some skewed
normal distributions with a concise density function which can include ordinary normal as a

special case. This probability density function for any Z ~ SN (0,1, «) is given by

flza) = 20(2)®(az), (2.7.1)

where ¢ and ® are the standard normal probability density and cumulative distribution func-
tions respectively. Here o € (—o00,400) is the parameter regulating skewness. When o = 0,
becomes the N (0, 1) normal density function. It resembles ordinary normal distribution
in some properties, for instance, 22 follows a degree-one chi-square distribution. And
is strongly unimodal with the potential to help the analysis of the empirically unimodal but
skewed data. The skew normal distribution can also be seen as the linear summation of one
normal distribution and one half normal distribution. For any Z ~ SN (0,1, ), if U; and U,

are independent N (0,1) variables, then (Azzalini, 1986, 2005)

Z = §|Uh|+V1- 682U,

where § = a/v/1+ a2. Now that (2.7.1) is the ‘standard’ form of skew normal distribution,

location (u) and scale (o) parameters are introduced to get the general form (Azzalini and
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Capitanio, 1999), the density function of ¥ ~ SN (u, a2, a) fromY =p+o07is

fyipnoa) = %sb <T> o {a <y0”>} : (2.7.2)

The first three moments and the variance of Y are (Pewsey, 2000)

2

EY] = M“‘U(S\/»

™
2 2 2 2
E[Y?] = o*+u +205u\/>
™

2 2 2
E [Yﬂ = 3\/;M205 + 3uc? + 34/ ;036 —1/ ;0363

Var[Y] = o2 (1 - 252) .

™

The Pearson’s index of skewness of Y is

Vi -y
"= me(—O.Q%Q?,O.Q%Q?).

T

Arellano-Valle and Azzalini (2008) found a non-quadratic shape of the log-likelihood function
when researching skew normal problems. That is, the profile log-likelihood function encounters
a local minimum at o = 0, which comes from the rank-deficiency of the variance matrix of the
score functions when oo = 0. Here the singularity of the expected Fisher information suggests the
difficulty of estimation for the oo parameter as it violates the standard asymptotic theory of MLE.
Rotnitzky et al. (2000) showed the bimodality for the limiting distribution of estimates and the
convergence rate which is slower than usual O, (nil/ 2) for skewness parameter . To address
these problems, Arellano-Valle and Azzalini (2008) proposed an alternative parametrisation
‘the standardised version’. By using the mean, variance and Pearson’s index of skewness as

new parameters, parameter system changes from (p, 0%, @) to (1, 0'%,~1) where

t\
I
&
=
Il
=
Jr
Q
(e%)
NS

Q
1

2 Var [Y] = o2 (1 - > ,

Z—6+/2/7
\1-262 /7"

parametrisation is named CP (centred parameters) in contrast with the original parametrisation

This is defined from Y = u+o0Z = p' + 0’ Zy where Z ~ SN (0,1, ) and Zy = This

DP (direct parameters) which can be read directly from the original density function (2.7.2).
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However, this reparameterisation CP makes it very complicated to carry on the calculations for

the statistical inference. In Chapter 4, we adapt it for our calculations in estimation.

2.8 Fisher Information and Asymptotic Distribution of MLE

Fisher Information provides a way to measure the amount of information that a random observ-
able variable contains about the underlying unknown parameters from a distribution this ran-
dom variable is assumed to follow. Given random variable y and parameter 8, the log-likelihood

function is I (@ | y). Then the Fisher information is the variance of the partial derivative for 6:

2

1(6) = Var | 55t®1w)| =B |16 1w).

The matrix form for N-parameter case 8 = (61,60s,...,0x) is a N x N Fisher information

matrix:

zol, ~ B[(g10iw) (510 10)] =[50l

The asymptotic distribution of the maximum likelihood estimate is a N-dimensional multivari-

ate normal distribution:

Jn (é - eml) 4 Ny (O,I1 (0)*1) , (2.8.1)

where 0,..; is the real underlying parameter, 0 is the MLE, and Z; (0) is the Fisher information

for a single observation.

2.9 Big-O and Small-O Notations in Probability

X, = op (a,,) means that the set of values X,, /a,, converges to 0 in probability as n approaches a
limit. Thus, small-O indicates the convergence in probability. X,, = O, (a,,) means that the set
of values X,,/a,, is stochastically bounded. Thus, big-O notation means stochastic boundedness

here. The definition for O, (1) and o, (1) are as follows (Dodge, 2003):
O, (1) : Ve 3N, 6. such that P (|X,| >6.) <e Vn> N,

op (1) : Ve, 3N, s such that P(|X,,| >0) <e Vn> N.s.

Then we can affirm that if a set of random variables X,, ~ N (0,1), then X,, = O, (1).
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Proof. For 6. >0

P(|Xp| 26:) = 1—-2(5:)+ P (—0e)

22 (5.),

Ve > 0 that

9 _
2-20(0.)<e 652@1( 2€>,
_1(2—¢
supP (| X,| > 0:) =P (| X, > P — =e.
e>0 2
Thus, it is proved Ve, Vn, 36, = &1 (%), such that
P(| X, >6:) < e

namely X,, = O, (1).
Moreover, it can also be known that X—\/% =0, (1).

Proof. As we have obtained from the previous proof that Ve and Vn,

P <|Xn| > ¢! (2;5» < e

Thus, V§ > 0 we can calculate

P(fj% 25>=P(|Xn2\/776)§5<:>\/%2<1>‘1<2;5)<:>52

Moreover, as € > 0

namely X—\/% =0, (1).
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For y; ~ SN (ﬁ — &5\/%, 52,6 = O) =SN (ﬁ7&2, 0), we can derive that

_ Yi — [ 1 & (yi— i
i~ N (1,6%) = 22— ~N(0,1) = — ~ N (0,1),
w7 = R N0 = S (M)~ v 0

thus, with known knowledge from previous proof, we can reach

These conclusions can help understand the proofs in Appendix B.

2.10 Some Other Knowledge

2.10.1 Markov’s Inequality

Let X be a non-negative random variable and € > 0, then the following inequality holds

EX]

)

Pr(X>¢ <
€

where E [X] is the expectation of X.

2.10.2 Chebyshev’s Inequality

2

X is a random variable with a finite mean p and a finite variance ¢°. For any real number

e >0,

ag
PrX-pze) < 5.

Sometimes Markov’s inequality is termed ‘Chebyshev’s First Inequality’. We can use a proof to

connect Chebyshev’s inequality with Markov’s inequality.
Proof. Use Markov’s inequality to obtain

Pr ((X — u)z > 52> <
Because (X — p)® > e2 <= |X — p| > ¢, then we can write

EB|(x - |

PY(‘X—M‘ ZE) < )
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Since we have known the variance definition
El(x -’ = o

therefore, it is proved that

2.10.3 Slutsky’s Theorem

Let {X,} and {Y,} be two sequences of random elements (scalar/vector/matrix). If X, 4 X

and Y, e (c is a constant), then the continuous function g (x,y) has the property

9(Xn V) 5 g(X,0),

d C e P . -
where ‘—’ denotes convergence in distribution and ‘=’ denotes convergence in probability.

If we replace o with <5 everywhere, this theorem still remains valid.
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Chapter 3

Multivariate Mixture Regression
Models (with and without

Missingness)

3.1 Complete Case Analysis by Penalised Likelihood Fu-
sion

3.1.1 Introduction

Nowadays, high-throughput technology has made massive biological and chemical tests possible
in a short time, which could provide enormous multivariate data to researchers. But most of
the time, we got lost in these massive datasets, like what Rutherford D. Rogers has said ‘We are
drowning in information and starving for knowledge’. That is why we need statistical knowledge
to sort out essentials through oceans of information. As for our research, stress is laid on anti-
cancer drugs and different genes. There are over 30000 genes in the human body, but we don’t
expect all of them are connected with the growth of a certain kind of cancer. With a penalised
model, we can screen out a small proportion of them to conduct informative clustering and

classification to power the discovery of anti-cancer drugs in the future.

3.1.2 Preprocess Data

Our research uses the dataset as introduced in Section 1.2, which has two parts: drug sensitivity
and gene expressions. To connect these two parts, we keep the common observations (cell lines)

in these two matrices after removing these rows with missingness for the drug data matrix (Y)
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Erlotinib Rapamycin Sunitinib  PHA.665752 MG.132 Paclitaxel Cyclopamine AZ628 Sorafenib  Tozasertib

Figure 3.1.1: The regression coefficient plot from LASSO regression for 10 drugs. All 17737
genes (unlabelled) run from top to bottom in each vertical long line. Small line segments
pointing to the right indicate positive weights, and to the left, negative weights.

to make it a complete-case problem. After deletions, 227 anti-cancer drugs, 111 cell lines and
17737 genes are screened out for the next step of our research. Here two big matrices Y and
X are constructed from the aforementioned two parts. Y is a 111 x 227 response matrix which
consists of 111 cell lines (COSMIC _ID) tested on 227 anti-cancer drugs. X is a 111 x 17737
covariate matrix where the corresponding 111 cell lines (COSMIC _ID) are tested to obtain the

expression data across 17737 genes.

3.1.3 Preliminary Analysis of Group Structure

Anti-cancer drugs always manifest a hidden group structure in which the drugs in one group
may help with the same treatment or share similar chemical characteristics. To identify the
underlying group structures, we carried out the following preliminary analysis with the help of
LASSO from the glmnet package and the Jaccard Index (Jaccard, 1912) for similarity compar-
ison. Then we grouped the drugs into reasonable clusters and displayed them with clustering
plots plotted by Gephi (Bastian et al., 2009).

Here LASSO regression is carried out on each drug with all applicable genes. The bar plots
are drawn to indicate the weights of coefficients for each anti-cancer drug. Figure 3.1.1 takes
out 10 drugs as examples. They show the feature of sparsity for LASSO regression, where only
a handful of gene weights are set as non-zero for each anti-cancer drug. This sparsity feature
can help building our model in the next section.

The Jaccard index (Jaccard, 1912) is a statistic used to compare the similarity between two

sample sets, it is defined as
_ |AnB]

JAB) = (35 pr
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Figure 3.1.2: 79 anti-cancer drugs are grouped into 20 clusters. Darker green the edge between
two nodes is, the greater weight they have. For the name tags, different colours are assigned to
different clusters.

Obviously, 0 < J(A,B) < 1. For our analysis, A and B are the sets of active genes for two
drugs respectively. And J(A, B) is set as 0 when A and B are both empty since some cell lines
are deleted to exclude missingness before the LASSO regression.

To group these drugs, we need a Jaccard index benchmark J. We set J = 10% as a default
value to indicate the group structure of the drugs in the next step. Then two drugs with the
Jaccard index of no less than J are considered coming from the same cluster. Figure 3.1.2 is
plotted using Gephi to show the clustering results with J = 10%.

Using the same dataset, Iorio et al. (2016) performed an anti-cancer drug clustering based
on the similarity of the area under curve (AUC) pattern. In their results, 223 drugs are grouped
into 26 clusters. Compared with my result about clustering, there are some similar clusters,
which can partly support my clustering result based on LASSO regression and Jaccard index.

Here we put forward a method to realise clustering which is easy to carry out. This method

can yield reasonable results. As for the Jaccard index benchmark J, it can determine both
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the number of clusters and the number of drugs participating in our clustering. After all,
the underlying group structure within these 227 anti-cancer drugs can be revealed, which can
enhance the theoretical support for our penalised mixture modelling in the remaining parts of

this chapter.

3.1.4 Penalised Likelihood Fusion

As shown from our preliminary analysis, anti-cancer drugs indeed manifest a hidden group
structure. Recent research has verified that drug combination treatment is more effective not
only in killing tumour cells but also in drug resistance reduction when certain drugs are applied
simultaneously (Carter et al., 2016). Anti-cancer drugs exert their functions by binding with
protein targets. Correlating drugs with biomarkers can help identify their molecular targets
to power the discovery of new drugs and disease-specific therapies. In our research, it is a
multivariate mixture regression problem, so we turn to the multivariate Gaussian mixture model
for our next modelling.

Similar to the finite mixture model structure, we propose the likelihood fusion model (Oft-
adeh, 2017) to start our regression. The likelihood fusion model is a mixture model composed of
many likelihood density functions, where different anti-cancer drugs in our data are combined in
one model. As shown in the matrix Y, each anti-cancer drug out of J = 227 drugs has recorded
n = 111 observations, which means each column y; = (y1;,. .. ,ynj)T is a n x 1 vector. Then
the conditional density of anti-cancer drug j under the condition of kth component (X3, 07)
is

n

Feilog, XBy, 03) =] [ Filwsslay, x{ By, oF)

i=1
n 2
1 (45 — o — %7 By)
i=1 (27“71%)1/2 20}
T
_ 1 C(y— o1 = XBy) [y — oyl — XBy)
= 73 €XP 5 ,
(2ma?)" 20},

where 3, is the coefficient and O’,% is the variance for component k, and «; is the intercept. This
is a multivariate normal density with respect to the error term e in y; — a;1 = X3y, + €y,
where «; is the intercept, and 1 is the vector of n ones. And it can be expressed as e ~
Np—111 (O,diag(a,%)), where 0 is the vector of n zeros, and independence is assumed for each
dimension from the diagonal covariance matrix setting. The likelihood function can be regarded
as a joint distribution with n independent, identically distributed (i.i.d.) observations. If we

assume that drug j has the probability mj of originating from component k, then the likelihood
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fusion model is constructed:

K

flyil X, @) = Y mfu(yiloy, X8y, 07),
k=1

where ®; stands for all the parameters needed to estimate such as o;, 3,7 and o. It is a
weighted summation of K density functions, and many properties can be inherited from the
ordinary Gaussian mixture model. Inspired by the Laplace-inverse-gamma priors and the pen-
alised likelihood function in the literature of Zhang (2017), we impose a penalty term onto the
likelihood fusion model to realise variable selection purpose. The [;—norm penalty has been
used before in multivariate mixture model problems, see Pan and Shen (2007), Zhou and Pan

(2009). Then we have the following fused likelihood:

J K
I s w;)mexp{m — ;1= X8)" (v, — a1~ XBy) }Xexp (2020 L
k

2
207,

i=1 1 (270 ok
~—
All Drugs Likelihood Fusion Penalty Term

(3.1.1)

It comes from the penalisation on each observation of each drug, which can be decomposed into

no A3 1
gr(yilas, X8y, 0f) = [ Jiwislas, T By, of) x exp (_0:1) “5/n

i=1 : O

n 2
_ L (yij — s —x{ By exr Bl ) 1
- o\1/2 p 202 b o 2/n

i=1 (2moy) k k Tk
_ 1 (v; — il =XBy)" (y; — aj1 — XBy)
= 5 n/2 exp § — 20_2

(2mo}) k

cep (MBI L

O O’I%.

Generally speaking, our target is to find maximum likelihood estimates of the parameters in
a penalised likelihood function which is a mixture of multivariate normal density. And the
expectation-maximisation (EM) algorithm is a good choice for solving this kind of mixture
problem. McLachlan and Basford (1988) firstly demonstrated the use of EM algorithm to fit
the normal mixture models with the data from different fields. EM algorithm can do iterations
between the expectation step and the maximisation step until convergence is reached. In our
calculation, the glmnet package in R is used to help solve the LASSO problem when we are
updating the parameter 3;, which will be explained afterwards.

(8.1.1) is the incomplete-data likelihood function, it comes from the combination of J
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independent drugs:
PLinc(®) = H g(Yj|Xa (I’j)

K
Z Trk:gk(yj‘aj7 Xﬂka O-I%)
e

J K
_ m (vj — a1 =XBy)" (v, — ;1 = XBy)
= 11X f)n/z eXp{_ — k20k ] k}

j=1k=1 (2mo};

nA || Bl
X exp ( Rbn nd 21K Pl

(o k

where @ represents (@1, ®o,..., P ).
With the hidden (latent) variable z which is the group label for each drug j, we can enhance

the incomplete-data likelihood function to a complete-data likelihood function:

TGk ( yyl%,Xﬁk,cfk)}%

n 2
(yi; — @ — x{ By)
e

chom (é) =

k

I
It

J
A T
Xexp(_ |5:|1> z/n} |
Tk

where z;; = 1 when drug j belongs to group £, otherwise z;;, = 0. It works as an indicator.

Then the corresponding complete-data log-likelihood function is

pl(()m(@) = log (pL(‘om(@))
J K 7 K 1
J K n 2 J K »n
— yzg X ﬂk )\||ﬁk||1
222%? e
N ZZ 2y - log (k) ZZ Zjk 10g( (2m) n/2 "*2)
g=tk=1 j=1k=1

_ ZZ Zjk - —a;1 — X,Bk) (vj — ;1 —XBy)

2
jlkl gk

ZZ ’I’L)\ H/@klll (3.1‘2)

j=1lk=1

The step-by-step calculations for this EM algorithm is put in Appendix A as it is similar to

our Section 3.2.2 in the next Incomplete Case part.
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3.1.5 The Choices of A and K

To find the best number of components K and the tuning constant A, we used Bayesian in-
formation criterion (Schwarz, 1978; see Section 2.6.1). First, construct a grid of As (from 0.003
to 0.06 with interval 0.003 for our dataset, it comes from many empirical pilot tests) and K
(integers from 1 to 10). Then start the EM algorithm with each K and A, calculate the BICy g

every time with the estimated parameters Bk, &,% and 7y, using the formula below

N P s log(J) 2 ., (&
aie = (K =1+ K+ 3 1B #0) | x =57 = 5 x Line(®),
1=1k=1

where I(z) is the indicator function to count how many coefficients are non-zero, and ;. (®) is

U TN (vs 1~ XB) (v~ 1 - XB,)

)
20%,

After that, the minimum BIC) g value is chosen and the best K and A are determined from it.

3.1.6 Simulation

To test the screening ability and clustering accuracy, we carried out this simulation. Firstly,
we created 3 groups with sparse matrix 8 = (81,0,,3;) where active points are marked
with red hollow triangles in Figure 3.1.3, and the error term e, ~ N, (O,diag(a,%)) where
(01,02,03) = (0.5,1,1.5). Then we extracted a small part from gene expression data matrix X
as Xysy 000 With assignment possibilities 7 = (20%, 30%, 50%), we generated the response
vectors y; — ¢;1 for 50 drugs using y; — ;1 = X8, + €. After that, with these X555, and
Y5, 50, we performed the penalised likelihood fusion modelling and estimated it with the EM
algorithm as introduced. Through re-running with the ‘best” A and K after our BIC selection,
these drugs are clustered into 3 groups. The estimate B (black hollow dots) and its preset true
value B (red hollow triangles) are plotted in Figure 3.1.3. As shown on the graphs, estimates
come out with some noise variables, but noises are much smaller than our estimates. Almost
all preset active (non-zero) variables are detected with shrunken estimates. The result of this
simulation can verify that when the data have a hidden group structure and a sparse-coefficient
feature, our modelling can classify these data and screen out these relevant variables with good

accuracy.
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Figure 3.1.3: The coefficient plots for all three drug groups to show the performance of penalised
likelihood fusion model. Red hollow triangular markers are the preset true values of 8. Black

hollow circular markers are our estimates 3.
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3.1.7 Real Data Performance

We have introduced the structures of real data matrices at the beginning of this chapter (Section
3.1.2). We start from these two matrices X111x17737 and Y111 x227 here. Due to the large number
of genes, it is a high-dimensional problem so it is not a good choice to apply all 17737 genes
into our modelling considering the computing capacity of our computers. Dimension-reduction

methods on explanatory variables are needed before our penalised regression modelling.

3.1.7.1 Individual LASSO

With the help of the package glmnet (Friedman et al., 2015), we apply LASSO to each drug

across all genes (drug j is shown here):

B,(\) = arg min (v = XB,113 /m+ 25 1851, (3.1.3)

where X is the column-wise standardised matrix, and y; is the centralised vector for drug
j namely the centralised jth column of Y. After these operations, the intercept for
becomes zero and can be removed from the formula.

After 227 drug-wise LASSO regressions, we can construct a coefficient matrix Bi7737x227-
By checking this matrix, the genes which have no effects on any drugs are removed from our

data. After this step, 3800 out of 17737 genes are retained for our next screening step.

3.1.7.2 Marginal Likelihood Fusion

To screen out fewer genes for our next main analysis, we implement a marginal regression (the
EM algorithm calculations here are similar to those in Appendix A) with each gene across all

drugs using the likelihood fusion model. The incomplete-data likelihood for the i-th gene is

Linc(®;) = 1_][ 3 - nj2 XP l y; — 41 i) (y; — 91 _Xiﬁk)] .

j=1k= (27Wk) 20’%

With the latent variable z;;, the complete-data likelihood for the i-th gene is

_ T _ Zjk
HH Yi — Yl —xiB) (y; — g1 —xif
Lcom ’L { n/2 exp [_( J J k)20'2( J J k) .
27r0k k

j=1k=1
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For the convenience of calculation, we use the complete-data log-likelihood

leom (®;) = ZZ Zji;, - log () ZZ Zjy, - log ((277)"/2 ")

j=1lk=1 Jj=1k=1

_ ii zin - (yj — 351 —xiBe)” (v — G31 — Xiﬁk).

2
j=1k=1 205,

(v

Then replace z;, with membership probability T k) to reach the expectation function Q:

Q = <<1>4|<1><”>>
= ZZ Tjk -log (m) ZZ Tjk 10g(27r)"/2 n)
Jj=1lk=1 j=1k=1
v . T _
_ZJ:XK: ](k (yi =gl —xiBe)” (y; — 951 — xiBk)
2 )
j=1k=1 20},
where
2
T(U) _ T )fk:(y]|xz k 7 ](C) )
Jk K

2. fk(yJ|XZﬁk 7Uk )

(v) U ‘ﬂ(v) T . VB‘v)
e S A

[ == (o=

(2raf” >2)”/2 eXP 20,"°

™=

k=1

From here, the EM algorithm can start by updating the parameter estimates as below:

S 0
~(v+1) =1 o Alv+1) XTIy~
T - #’ k T OXTYX !
where
%E)'Xi %E) (y1 —nl)
7 X il (y2 — 921)

X* — Ok Y*: Ok
)

5 v _
e x; 2 (ys —ys1)

For given k, X* is a nJ x 1 vector here compared with the nJ x p matrix (6.2.4) in the full

model, because only one gene is applied into the modelling for the marginal analysis, where
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p=1here. And Y* is a nJ x 1 vector the same as (6.2.5]).

J

> T;}i) (yj — 51— xiBr)" (v — 751 — xiBr)
~(v+1 j=1
sl —

L W)
ny, Tik
j=1
We use the stopping rule with default e = 10~% as follows:

linc(q)(erl)) - lznc((ﬁ(v))

7 7

linC(‘I’z('U))

< €,

where

K

J _ T _
T (y;j — 931 —xiBr)" (y; — ;1 — XiPx)
line(®i) = E log E ————exp |- -

= {k_l (2m02)""? 203

Then the EM algorithm for the i-th gene applied in a marginal model is done. The estimates

of parameters Bk, 5,3, 7y, are used to calculate BIC; i value:

S log(J) 2
BIC; x = <K —1+ K+ kz::l 1(Bx # 0)> X = = S x (@),
where
J K B g B
X =l - x gl —x
. i (YJ Yj i k) (YJ Yj i k)
@) = Ylogd> e _
j=1 k=1 (27&13)”/ 203,
In our programming, we set K =1,2,...,16 (chosen from many pilot tests), and the minimum

BIC value for each gene is kept to continue our next step, for the ith gene,
1<K<16

After getting these 3800 selected BIC;s, our next step continues by using the reciprocals of

them, for the ith gene,
1
BIC;, = —.
rBIC: = 16
To cluster these 3800 genes into two groups, we utilised k-means clustering method on rBIC;s.
The ordered rBIC;s and the separator line (red) are plotted in Figure 3.1.4. The left part of

the red line is the group with a larger cluster mean. In this group, 872 genes with the larger

rBIC; values are screened out for our next full model analysis.
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Figure 3.1.4: The rBIC values for different genes from high to low with red vertical line classi-
fying them into two groups based on k-means clustering method.

3.1.7.3 Applying to the Full Model

After the screening with the marginal likelihood fusion, 872 genes are held for the next penalised
likelihood fusion modelling. Thus, X111xs72 and Y111x207 are applied to our full model .
After computation, the lowest (best) BIC locates at (A = 0.015, K = 9), which means 227 drugs
are clustered into 9 groups. This result is plotted in Figure 3.1.5 where all anti-cancer drug
names are coloured with nine different colours to represent nine groups, and these clusters have
different sizes. For example, Group I has just one drug inside.

In Figure 3.1.6, 8 (coefficient) is estimated for each group. These coefficients can indicate
the degrees of relevance to the selected genes. The red horizontal lines are the testing bounds
(the hypothesis test assuming the coefficient is not 0) with a significance level of 5%. The
significant genes are screened out by locating outside of the bounds, while the noise variables
locate within the bounds.

Then we exhibit these significant genes marked with their corresponding group names and
colours in Figure 3.1.7. The correlation between the drugs and genes can be obtained when
connecting with Figure 3.1.5.

To give an overview of the results, we summarise these 3 graphs in Table 3.1. Since we have
made an independence assumption for these drugs, the covariance matrix is a diagonal matrix

021, for each group. So we only need to estimate o for the covariance here.

3.1.7.4 Cross-Validation and Comparison with mclust

Then we divide J = 227 drugs into 5 folds randomly to start our cross-validation. Four out of

five folds are set as training data Y _,, the remaining one is set as validation data Y,. The
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Figure 3.1.5: The clustering result for anti-cancer drugs. There are 9 groups in total with each
group displayed in a different colour.

Group Name Group Size (Drugs) Number of Significant Genes o,”ino,’1, Marking Colour

A 15 : o.22 [N
B 25 6 0.41
C 43 8 0.20
D 32 3 0.81
E 36 4 175
F 37 5 172
G 34 4 1.63
H 5 1.09
I 1 11 0.06

Table 3.1: The summary table for the clustering and variable selection results using our penal-
ised likelihood fusion.
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Figure 3.1.6: The coefficient plot for each anti-cancer drug group with 5% significance level
bounds (red lines).
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Figure 3.1.7: The exhibition of significant genes related to specific anti-cancer drug groups from
the screening results in Figure 3.1.6.

numbers of drugs for these 5 folds are J, = (45,45, 45,46,46). Each fold plays as validation
data in turn, which means the training and validation are performed 5 times in total to reach
an average result. Every time, we calculate the log-likelihood with the formula below for the

validation data using the estimates from training.

N ~\T o
Jo K . — g1 —-XA yi—y;1— X3
. T (y] Yj k) ( J j Kk
Ly (@ | Yv> = E log E —————exp |— - ,
j=1 k=1 (277‘}1%)71/2 201%

where J, is the number of validation drugs, y; is the observations of validation drugs from
validation matrix Y,. These estimates K, Ty Ok, Bk are from the estimation with training data
Y_,. Here J_, = J — J,.
mclust (Fraley and Raftery, 2002; Scrucca et al., 2016) is a popular R package for model-
based clustering, classification, and density estimation based on finite normal mixture models.
To compare with mclust, we input training data Y_, into R package mclust to get new

estimates and calculate the validation data log-likelihood with:

J K*
; : it (N )
[ (¢*|Yv) => log¢ Y ——E__exp [—Q(yj—uZ)TE Yyj — i)
=1 k=1 [(2m)" | 3~

where ‘f}*‘ = det X* is the determinant of 3*. These new estimates K*, 71, 3*, it are from
the outputs of the function mclust with training data Y _,.

The results are exhibited in Figure 3.1.8. Our estimates can always yield higher likelihood
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Figure 3.1.8: From test 1 to test 5, the likelihood values and numbers of groups for the results
of our penalised likelihood fusion modelling and mclust respectively. The line graphs are the

likelihood values I, (@ | Y@) and I (@* | Yv>. Blue one is from our modelling, yellow one is

from mclust. The triangle (our modelling) and circle (mclust) markers show the comparison of
group numbers.

values for validation data, and anti-cancer drugs are clustered into more groups compared with

the outcomes from meclust.

3.1.8 Conclusions

e Anti-cancer drugs manifest a group structure and are relevant to a small number of genes
out of all body genes. The selected genes play a key role in the functioning of anti-cancer

drugs.

e The comparison with R package mclust can indicate that gene expression data can con-
tribute to drug clustering work, since this additional information can help yield a more
detailed clustering outcome. The classification for new drugs also becomes more accurate

regarding likelihood values.

e The performance in clustering indicates that our penalised likelihood fusion model and
dimension-reduction methods applied above are effective in both screening out the relevant

genes and clustering the drugs with drug sensitivity and gene expression data.

3.2 Incomplete Case with Missingness

When studying with high-dimensional data problems, missing data problem always becomes
an annoying barrier which hinders the use of full given data. Since the complete-case analysis

(Little and Rubin, 2014) leaves out all the individuals which have missing entries, it will result
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in a high chance of the deletion of useful information. As the illustration from Zhu, Wang and
Samworth (2019), when a n x J data matrix has an independent probability of only 0.01 for
each entry that there exists missingness, it can lead to a huge difference as n increases. When
n = 5, there will be around 95% of individuals (out of all J individuals) having complete data.
But when n increases to 300, there will be only 5% of all J individuals remaining complete
(no missingness). In our analysis, we try to use all given data and perform a multivariate
mixture regression with the LASSO penalty and [,—norm penalty to realise clustering and
variable selection simultaneously. Our data come from anti-cancer drug studies (Iorio et al.,
2016) and consist of the logarithm of half maximal inhibitory concentration (drug sensitivity)
and RMA process basal expression (gene expression). There is missingness in the drug data.
Then it becomes necessary for us to introduce the new model from this part to perform a more
complete analysis by not constraining to the rectangle shape of a matrix. We keep nearly all
columns by just removing the useless rows from drug data. Thus, more data can participate
in the analysis without compromising on the missing patterns. In this chapter, we will also
compare the penalty ¢ = 1 (LASSO) and the penalty ¢ = 0.5 (I;) to reveal the estimation
accuracy and sparsity attribute within them, after which we will combine these penalties to
propose an original methodology for better solving clustering and variable selection problems.

As introduced in Section 1.2, our research data have two parts Y, x s and X,,x,. There are
missing entries (denoted as NA) in this matrix Y, ;. There are no missing entries in matrix
Xpnxp. These two data matrices are connected by sharing the same cell lines, thus, X,,», and
Y ..« have the same row length. As the complete case problem introduced in previous section,
we use our likelihood fusion model again, but different from Section 3.1.4, for response matrix
Y, «s this time we don’t need to do any column or row deletions to make it a complete-case
matrix. We use subscripts to avoid the missing entries in each column, and then most columns
with small proportions of missingness can be retained for our numerical analysis. Thus, the
possibility of the deletion of useful information could be greatly reduced.

For the response matrix Y,y s, each column is a vector, such as the jth column y; =
(yj,-..,NA, ... ,ynj)T. After avoiding all missing entries in it, we obtain a new n;y X 1 vector
denoted as y(;) = (y(j)l, .. ,y(j)n(]_))T where n;y is the cardinal number of jth column without

any missing entries. The conditional density of jth drug, under the condition that this drug
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belongs to kth component following (X(j)ﬁk, ai), can be written as

(4)

fr (Yo | 05, X(5Bro0k) = H i (y(j)i | aj7xg;)iﬂk7(7}%)
i=1
2
- Tﬁ - exp{ — (y(j)i T X(Tj)i'ak)
i=1 (27701%)1/2 20’%
1

neiy/2
(271’0’,%) W/

T
o d 0 m L =XG)B) (v — ol = X(;)Br)
p 2013 b

(3.2.1)

where [y is the coefficient vector and U,% is the variance for the kth component, and «; is the
intercept.

Here X;y is a sub-matrix of the design matrix X, x,, and X(;) shares the same rows as
vector y(;), so matrix X(;) has a size n¢;) x p. And x(;); is the ith row vector of X(;), then
a; is a tuning constant which will be determined in our next estimation. If the j-th drug has
a probability of 7y that it belongs to the k-th component, then this likelihood fusion model is

constructed as

K

Fo 1 Xe®0) = D mhs (Yo | o Xy B o7) -
k=1

For convenience, we denote all parameters needed to estimate as ®;, such as a;, 8,7 and o.

It is the same as Section 3.1.4 where we impose a penalty term upon the likelihood fusion
model to give it the variable screening ability. But this time a [;,—norm penalty is introduced
instead of the previous LASSO (I —norm) penalty term, which can bring in more flexibility for

our analysis. Hence we have the following fused likelihood:

T
poe@= [ = e - {_ (Yo) — 251 = X(8i) " (v — 21 = X(5)84) }

. 2\7(5) /2 202
j=1 =1 (2mog)" Y k

All Drugs Likelihood Fusion

nAq 1Bkl | 1
k

Penalty Term

(3.2.2)

where ® represents (‘I'(l), ®3),-- -, ‘I>(J)).

It comes from the penalisation onto each observation of each drug, which can be decomposed
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From next section, we will use Expectation-Maximisation algorithm to solve the optimisation

problem with interlocking equations under the circumstances of ¢ = 1 and g = 0.5 respectively.

3.2.1 Algorithm and Methodology

To find the maximum likelihood estimates of the parameters in a penalised likelihood function
which is a mixture of multivariate normal density, we resort to the EM algorithm. is
an incomplete-data likelihood function short of group label z for each drug. After imposing
hidden (latent) variables z to indicate the affiliation with groups for each drug, we enhance the

incomplete-data likelihood function to a complete-data likelihood function

S 5 A 1B 1lg 1]
PLeom(®) = HH T fe (V) | 0 X5y B, 0%) X exp | — 2/ng;
kel O o 7
J k
2
ﬁ K | (y(j)i —a; — Xg)iﬁk)
= Tk —— 5 €exp | —
j=1k=1 i=1 (27“7;%)1/2 20’%
. (_Aq ||ﬂk||3> | }
2/ng
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- 2
20},

A 1Bkle) 117"
X exp *40_]6 ? )
k

= Hﬁ { ™ [ (vo) — sl =XeB) (v — sl - X(j)ﬁk)]
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where z;;, = 1 when jth drug belongs to group k, otherwise z;, = 0. For the convenience of

calculation, we use the log-likelihood function:

plcom(q’) = 1Og( com(q)))

- ZZ Zjk log () ZZ Zjk - log( (27) n(y/2 ”(J)+2)

jlkl j=1lk=1

T
~ ZZ - (Yo =l = X;Be) (yy) — a1 — X5 B)

2
20},

]1k1

_ZZ Zik 7n(j)AUHBk” (3.2.3)

j=1k=1
E-step

Under the current information (the v-th parameter estimates) and the given data, from the

Bayes theorem, the hidden variable indicator z;; can have a proportional expectation with

weights (")

= Prlze =11y, X, @)
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A:

After replacing z;j, in with this 7. k , we reach the conditional expectation function which

needs to be iteratively maximised and updated:
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Jj=1k=1
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M-step

To update the estimate ®, we maximise Q(®P | <I>(”)) with respect to ® block by block. Starting

from «;, we set

0 Z Z (v et X(])BQZ) (v = 1=X(;)Be)
% - j=1k=1 :

80éj 801]-

7.(]:) (i
T
[ij Z (y(j)i — Q= X(j)iﬂk)]
k=1
le (j) (4)
T
éfi ( TERIOCTEDS) X(j)iﬁk>

k=1 i=1 i=1
= 0.
()
Here if we standardise X ;) by column-wise before the EM algorithm, which means S ox X(jywi =
w1
(@) ()

0, then we can have ) x HiBk = 0, hence Z Y(j)i — n)a; = 0. Then we can reach

i=1

n(5)
_Zl Y()i

It suggests that «; is the average of elements in y;). Therefore, the calculation y;) — ;1 is
a centralisation operation on each column of Y, and «; just depends on the original data Y
which is independent of other parameters such as 7y, ok, By, Tk, Aq. Accordingly, we don’t need
to update «a; in the iteration of the EM algorithm. We replace it with ;) in our next steps.
To update 7, with the constraint f: T = 1 and 7, > 0, we turn to the Lagrange multiplier

k=1
for help. The corresponding Lagrangian function is

J K
L(ﬂ'k,/l) = ZZ () 10g Trk <Zﬂ'k1>

j=1k=1

To maximise this function, we differentiate it with respect to m; and make it equal to O:

J _(v)
aL(’]Tk, /1) Tik
—_— = - —A=0
87% Z Tk ’
Jj=1
after rearrangement, it gives
J
£
ot = 2 (3.2.4)
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then
L )
K 2 Tik

=1
=1

k=1

K
> s
k=1

K J K J
which gives A =3 3 T;Z). From the definition of 7, we have ) T;Z) =1 Thus A=) 1=
k=1j=1 k=1 j=1

J. So we update (3.2.4) in the v-th EM iteration to reach the (v + 1)-th estimate of my:

J

> )
O I =
g J
Afterwards we update 3, by
b i’: f: Tﬁ)'(ym—?7<j>1—X<j>5k)2T(Y<j>—17<j>1—X<j>6k)
0Q  j=1k=1 207
9By, 0B,
J K .
9 @) no Bl
n jglkgl jk Ok
=0 (3.2.5)

To solve the equation (3.2.5)), it suffices to solve the following minimisation problem:

J
S(v+1 . 1 « % 9 v
BT = amind IV X8+ 2 X (R ) I8l 00 (326)
k =1
where
0
X1 ok X(1)
v v v 1/2 T(U)
(Y %o || e
a_k70_k7...;o_k . ‘ ,
X L)
) Era )
Y _
ya) —Yml o (v —9m1)
(v) (v o)\ 1/2 = £ . .
Y" = diag (leT%)TLSk)) N o (Ve —9e)1) ;
or ok ok : .
Y —Ynl Y

ey —9nl)

J J
and X* is a ) n(;) X p matrix, Y*is a ) n(;) x 1 vector.
j=1 j=1
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q=1 Case

J

When ¢ = 1, (3.2.6) is a LASSO problem with ) n;) observations and p covariates. Gen-
j=1

erally we can use the coordinate descent method to solve this LASSO problem. The detailed

calculation is attached in Appendix A. This optimisation is implemented by using the glmnet
package (Friedman et al., 2010), which makes use of warm starts and active-set convergence to

save much time.

q—=0.5 Case

_ : 05 & . .
When ¢ = 0.5, (3.2.6) is a nonconvex problem, and ||B,|los =>> /|Bkil is a £, quasi-norm,
i=1

0 < g < 1. To solve this tricky problem, we use the IRucLq-v algorithm (Lai et al., 2013). Here,
to make it differentiable, a smoothing parameter §,, is added to make [|3,]|7 :i (B2, + 53)!1/2
where J, starts at a large value and is gradually reduced towards 0. Moreover,zgv can also help
avoid being trapped into local optimum in the next iterations. From empirical results (Lai et

al., 2013), this approximation can yield a very good estimate for 3, under 0 < ¢ < 1 especially

q = 0.5. Our updating process follows the first-order optimality condition:

J Y P 2
8{; IV =X+ 3 () n) - X (8 +82)” }
J= =

= 0.
9By,
Then 3, can be updated to ﬂgfﬂ) by solving
) (v+1)
Ag - q Z:l Tik " T(G) " Pri
—XT (Y- xBY) + = =0

1<i<p

Rearrange it to reach

)
Agq 21 Tik ")
]:

1—q/2 i
(817 +a2)

*T~7* *T ~7 % . v+1)
XTy* = |X*TX* + diag —1,2,...,p| | BTV,

3

0, is updated by d,41 = min {(51,7 a-r( ,(:H))sﬂ}, where a € (0, 1) is a step-size constant. s is

an estimated sparsity level to guide the stoppage of iterations which is inspired from Daubechies
et al. (2010). And r( ](€v+1))s+1 is the (s+1)th largest absolute-value entry of 3, after (v+1)th
iteration. The iteration process will stop until d, 41 = 0 or within a reasonable time, after which
the latest ,BS:H) is returned as the output.

Insofar, we have finished the update of 8, under the circumstances of ¢ = 1 and ¢ = 0.5
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respectively. From now on, we start updating oy, by solving

2Q
(r“)a,%

After rearrangement, it becomes

.
i M“
)

J
T gy +2) 0= 3 7 A 1B - o
j=1
J ) -
> ) v — I = X»B) (vo) — Uil — X5)Bs) -
7=1

Solve this quadratic equation with respect to oy, we can reach

SO+ _ B+ vB2+4A-C
¢ —

24 ’
where
J
A=D1 (ngy +2),
j=1
J
B=Y"71% nuA 18,

.
I
—

TV (yo) — 901~ X8 Vo) — Tl — X()By) -

aQ
I
M~

.
Il
A

Stopping Rule

The above algorithm alternates between E-step and M-step until convergence is reached. The
stopping rule imposed to confirm the convergence is based on the relative changes in the log-

likelihood. The convergence is attained when the following equality holds:

plinc((I)(v+1)) - plznc(q)(v))

< €,

where ¢ is a reasonably small value (generally 107° or 1071°) and pl;,,.(®) is the penalised

incomplete-data likelihood defined by

znc ; IOg {Z Yo n(J)/2

k=1

XeXpl o — 90! 5k)20(yw ~ 951~ X()Be)
k

N N\ 1
X exp (—(J) iﬂﬂk||q> 02} .
k
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3.2.1.1 Thresholding the Regression Coefficients

After the estimation with ¢ = 0.5, due to the limitation of iteration times and floating point
issue in computer, the inactive points (zero entries) in Bs are not estimated as exact zeros. Then
the use of BICy, , x in next section to select number of components K and tuning constant
Ao.5 will have a problem because the term zp: i I (Bkl #* 0) in BIC,, , x cannot reflect the

i=1k=1
actual sparsity. Now we need to filter out these noises by setting thresholds for the estimates

Bkis-

In empirical studies, we like to use three-sigma rule of thumb p 4+ 30 to describe the
range to contain most values in a normal distribution, where ‘three’ is used to guarantee that
Pr(p—30 < X < pu+30) ~ 0.9973. Back to our problem, here we treat it as a robust estim-
ation problem, so the median is used as a robust measure of central tendency p, and median
absolute deviation (MAD) is used as a robust measure of statistical dispersion . Then the
threshold becomes

lnew) _ 0 median (ﬁkz) —ax MAD (ﬁm) < Bri < median (ﬁm) +a x MAD (Bki) :

ki
Bri otherwise.

a is the accuracy factor to gauge the confidence. Generally a can be calculated by ¢ x
®~1(1-0.001/(2p)) which is composed of the scale factor ¢ and a quantile function with
Bonferroni correction (Dunn, 1961) for multiple tests (as p comparisons are performed). Here
significance level is assumed as 0.1%, and it is a two-tailed test. The scale factor ¢ depending
on the distribution is to make MAD a consistent estimator when using it as an estimation of
the standard deviation o (Rousseeuw and Croux, 1993). To make sure 50% (the interquartile
range from 25% to 75%) of the standard normal cumulative distribution function is covered,
we set

X—p
(o)

P (X~ <3ap) =

‘ MAD) ( MAD
< =P

g

g

then it is

@ (MAD) " (_MAD) 05
o o
Therefore, MAD /o = &~ (0.75) = 0.67449 = 1/c, that is ¢ = 1.4826. So in normal distributed
data we set ¢ = ¢- MAD = 1.4826 - MAD.
In the simulation section, under Xsoxs500 and Y5020, @ = ¢ x ®~1 (1 —0.001/(2p)) =

1.4826 x &~ (1 — 0.001/(2 x 500)) = 7.047427. So for convenience we apply median (Bki) +

7 x MAD (Bk,) to the simulation as the threshold for filtering out noises.

33



3.2.1.2 The Choices of \; and K

To find the best number of components K and penalty tuning constant ), we decide to use the
BIC value (Schwarz, 1978; see Section 2.6.1). First, construct a grid of A, and K respectively.
Then implement the aforementioned EM algorithm with each pair of A\, and K, calculate the

BIC,, i each time with estimated parameters & and given data X,Y by

J
p K log <§1 %)) )
BIC,, x = (K 1+ K+ Y3 1B £ o)) « —~— L2 1),

i=lk=1 J J
where
J K N
@ = Sy
j=1 k=1 (27”’1%) W/
__7_1_X_B(new)T __7_1_X_z_](new)
YG) — Y6 (1) Pk Y@ —YG) (1) Pk
X exp | — —
20},
K
K — 1 represents the number of parameters estimated in 1.5 = (71, 7m2...,7x) (> 7 = 1),
k=1
p K
and K represents the number of parameters estimated in o = (01,09,...,0K). Here > >
i=1k=1
J

]I(B,i?ew) # 0) uses the indicator function to count how many coefficients are non-zero. > ng;)
j=1

is the number of observations. In the experiments, this \;—and—K grid needs to be amended

to make the smallest BIC) r locate in the middle of this grid, then the smallest BIC value

indicates the best A\, and K.

3.2.1.3 Combine ¢ =1 Case and ¢ = 0.5 Case

As far as we know, ¢ = 1 case will yield a decent estimation with a much faster speed than
q = 0.5 case. This may owe to the high-speed computing ability of the glmnet package. But
q = 0.5 case can give a more accurate estimation concerning the variable selection and estimation
abilities on 3, see Section 3.2.3.3. Meanwhile, ¢ = 1 case and g = 0.5 case both demonstrate
strong ability in clustering. Therefore, ¢ = 1 case can provide a good warm start of 1.k, 3, 0
and decent estimates of K and s for ¢ = 0.5 case. After that, ¢ = 0.5 case is performed to reach
a more accurate result and much time is saved. Moreover, \; can guide our selection process

of A\g.5 when drawing the Xos—and—K grid for ¢ = 0.5 case.
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3.2.2 Initialisation

Here we propose a good starting point for our EM algorithm when starting the esimation
for ¢ = 1 case. Firstly, without prior information, we consider the group size equally. So

for any k € (1,2,...,K) the initial value of W]go) is set as %, which means jth drug has a

probability % coming from group k (also a probability % from any other group). Then, with
the linear assumption we have y ;) = X(;)3;, +¢&x where the error term €, follows a multivariate

normal distribution as g ~ Nn(j) (O,Ui]:n(j)). Here 0 is a n;)—size zero vector, and In(j) is a

n(;)—dimensional identity matrix. 0,31 makes up a covariance matrix. Secondly, we aim to

()
reach a sparse estimate of 3, by the LASSO penalty term. Thus, most entries in 3, will be

estimated as 0 in the end. We set 5,&0) as a p—size zero vector 0 which can be updated to a

sparse vector easily. From that, we can get y;) = X(j),B,(CO) + €I(€0) = s,(fo), then we can use the

standard deviation of y ;) as a reference for the initial value a,go). We calculate the variances of

0 0 0
© 50,0

geeey

Y(1):¥(©2)---» ¥ () to find the range of their variances to construct a grid for o

We denote the maximum and minimum of these standard deviations by M and m, then we let

aio):m, aéo):m—k Af{_’f‘,aéo)zm—kl]\I/I(:T,...,Ugg):m—k(l(—l%]\f{’f = M, from

this setting we have a rough coverage for the value of U,(CO). Our initialisation for ¢ = 1 case is
finished here. As mentioned in last section, ¢ = 0.5 case will have a good starting point (warm

start) inherited from the result of ¢ = 1 case.

3.2.3 Simulation Studies
3.2.3.1 Selection Accuracy Evaluation

Before numerical simulation studies, we define several measures to evaluate our estimation
performances. First of all, we introduce criteria — sensitivity and specificity, to quantify the
variable selection accuracy of our method. Sensitivity is the effective selection rate of true active
(non-zero) variables. And specificity is the effective selection rate of true zero variables. When
one variable has a non-zero coefficient, we regard it as active. When the corresponding coefficient
of one variable is zero, we regard it as a non-active or zero variable. In our simulation settings,
we use Vi, and Vi to denote the locations of true underlying and estimated active variables
respectively in group k. V)¢ and V,f are the complements representing the locations of true and
estimated zero variables respectively in group k. Then sensitivity and specificity of group & can

be expressed as the ratio of set cardinality (size):

35



Obviously Vi, U V¢ = Vi U V,f = {1,2,...,p} representing all the locations of the coefficients
in vector 8. For the reason of sparsity, SPE is often close to 1. The overall sensitivity and
specificity of one estimation are expressed as

’VkﬂVk‘ K ’chﬂf/,f
k

They are the weighted summations of sensitivity and specificity for each group. The simulation

performs well when sensitivity and specificity are both of high values.

3.2.3.2 Simulations on n, p, J for ¢ =1 Case

|[V| is the cardinal (size) of true active variables. And ‘f/‘ < n, it means the cardinal of
estimated active variable is always less than or equal to n. In our dataset, p is larger than n,
and when compared with n, the larger p is, the larger \; is, to penalise on the variable selection
process. When n is close to p, the specificity (SPE) will not be so close to 1 anymore. In
general, when p > |V| + n, the specificity (SPE) is close to 1. When the number of drugs ‘J’
increases, the number of groups ‘K’ is likely to increase since more anti-cancer drugs participate
in our clustering. In this section, we will generate datasets to simulate the changes of n, p or J
to illustrate the effects on our estimations.

Here we discuss the performances of variable selection (for ¢ = 1 case) by changing n, p

or J respectively under the same parameters o, 8 and y.x. Firstly, start our simulation by

X(real)

nxp

and Y where n = 200,p = 1000 and J = 50.

using a small part of the real data as ]

Perform our penalised regression to obtain estimates &, ﬂ,ﬁ'k & and group amount K. Every

time under the probability of 71y, 73, ..., 7z, we generate jth column of response matrix Y(sm)

with real design matrix XE;)eal) by y) = X( NS ),Bk + &5, where error term €,y is sampled from

multivariate normal distribution N,

(0, &,%In(j)), and I,, . is identity matrix to make 631

)

n(4) ()

a diagonal matrix. As mentioned before, y ;) is the jth column of matrix Ygth}l after avoiding
missing entries in it by using subscripts. y(;) has a column length n(;. And X(Teal) is the

sub-matrix of X;TXEZZ) with the same cell lines as vector y ;). And Xg)e “D has been standardised

by column-wise (each column) before generating y ;.

Increase the Number of Drugs J

We increase the number of drugs J from 50 to 70. After generating YSLX J) with y;) =

X(;)eal)ﬁk + €k, we perform penalised regression (¢ = 1) with xeaD) and Y™ to com-

nxp nx.J
pare selection accuracies by calculating SENs and SPEs of the results (only sensitivities are

plotted below). Repeat trials with each setting (J = 50 and J = 70) one hundred times re-
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Figure 3.2.1: The sensitivity table, line chart and box plot for 100 trials under the numbers of
drugs J = 50 (blue) and J = 70 (orange).

spectively to remove the randomness of error term e€;. The results are illustrated in Figure
3.2.1. Seen from the graph, when more drugs are put into our clustering with a definite number
of groups K and group characteristics (3,0 and 7, ), the variable selection accuracy will be
improved. This is predictable since more drugs being added to each group will increase group

distinction, so it becomes easier to cluster them together.

Increase the Number of Cell Lines n

We increase the number of cell lines n from 200 to 300. The new design matrix ng%‘;l; is

a extension of the old one Xgﬁf&l;. To extend it, we just need to extract a larger part from

the original real data X. The generated response matrix Yflsi?) has the same missingness

positions as real data matrix Yflrle). After generating Yffiry) with y(;) = ngal),@k + €k,
(real)

(stm) . .
nxp  and Y 57 to compare selection accuracies

again we perform penalised regression with X

a7
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Figure 3.2.2: The sensitivity table, line chart and box plot for 100 trials under the sample sizes
n = 200 (blue) and n = 300 (orange).

by SENs and SPEs of the results (only sensitivities are plotted below). Repeat trials with each
setting (n = 200 and n = 300) one hundred times respectively to remove the randomness of
error term €. The results are displayed in Figure 3.2.2. When more cell lines are observed in
our simulation with a definite number of groups K and group characteristics (3, o and T 4)
variable selection accuracy will be improved obviously. This is also predictable since more

observations will bring in more information for us to exploit.

Increase the Number of Genes p

Then we increase the number of genes p from 1000 to 1300. The new design matrix X240

is also a extension of the old one X"%4"  To make it compatible, the length of 3 is extended

to 1300 for each ﬁk by filling in zeros. Here ﬁk used to be a 1000—dimension vector, now it

Y(szm)

becomes a 1300—dimension vector with 300 more zeros in the rear. After generating Y,
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Figure 3.2.3: The sensitivity table, line chart and box plot for 100 trials under the numbers of
genes p = 1000 (blue) and p = 1300 (orange).

eal)

with y;) = XE;) Bk + €, same as above, we perform penalised regression with x (reab)

nxp
and Yffii’,“) to compare selection accuracies by SENs and SPEs (only sensitivities are plotted
below). Repeat trials with each setting (p = 1000 and p = 1300) one hundred times respectively
to remove the randomness of error term ;. The results are shown in Figure 3.2.3. When more
genes are added into our simulation data generation process as noises with a definite number of
groups K and group characteristics (3,0 and 7, ), variable selection accuracy will distinctly
drop. This happens as a result of the dilution of active data because the added new data act as

noises to reduce the ratio of active (non-zero) variables, which leads to 3 sparser and increases

between-group homogeneity. Then our clustering and variable selection become trickier to

handle.
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3.2.3.3 Compare the Performances of ¢ = 0.5 Case and ¢ =1 Case

As the intuition that a smaller ¢ would produce a more sparse vector, SEN and SPE are not
suitable anymore for the comparison of ¢ = 0.5 case and ¢ = 1 case. As a consequence, here we
define a new measure to evaluate our estimation accuracy by quantifying the difference between

our estimated coefficients and the underlying true ones.

K Hﬂk 5k
Relative Error := Z Al ,
kll2

where 3, is the true underlying coefficients, and in the simulations we simulate the active point
values by sampling from N (0,1) under a certain sparsity level s”.

Firstly, we start our simulation by assuming that the given J = 20 drugs come from K = 2
groups with a probability of 60% from Group 1 and a probability of 40% from Group 2. From
part of original matrix X (") we construct matrix Y ) with y(%m) Xégexa%oﬁk + €k
where €, is sampled from the multivariate normal distribution N,—s0 (0, 0,%1) with (o1,02) =
(0.5,0.6). I is a 50—dimensional identity matrix. Each time we set a real sparsity level s”
from (5,10, 15, 20, 25, 30, 35, 40, 45, 50), and generate (3, 35) with (s",s") active points whose
values are sampled from standard normal distribution N (0,1). After constructing Yéow)oa we
fabricate some missing data artificially by assuming that there is an equal chance for each entry
to become missing in each column. And the missingness proportion for each drug (column)
is sampled from uniform distribution U (0,20%], thus we control our missingness proportion
within 20%. Then we perform penalised regression with ¢ = 1 to select K and )\, meanwhile,
produce a warm start &, for q = 0.5 penalised regression. After that, we select the best A\ 5
and use it to reach our final estimate <i>0_5. To evaluate the performances of ¢ = 0.5 case (with
the warm start) and ¢ = 1 case, we calculate the Relative Error with &, and b 5 respectively.
After repeating each trial 50 times under one certain sparsity level s”, we take their average
and plot Figure 3.2.4 to compare their performances under different sparsity levels. As shown
in the plot, the estimation accuracy of both cases will drop dramatically as 3 gets less sparse.

Until 2% = 10% of the data entries are active (sparsity level 50), the Relative Error rises to 1

which means no estimation made, as Bk = 0 will lead to Relative Error equal to 1 as well. And
g = 0.5 case (with the warm start) can always outperform ¢ = 1 case in terms of estimation
accuracy measured by Relative Error.

3.2.3.4 Evaluate the Efficacy of the Warm Start

Under the setting that real sparsity level s” = 5 and active points of 8 sampling from U (—0.5, 0.5)

(instead of NV (0, 1) as above to produce a weaker signal), each time we generate simulation data-
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Sparsity and Relative Error

Figure 3.2.4: The Relative Error comparison for ¢ = 0.5 case (with the warm start) and ¢ = 1
case against the increase of underlying coefficient sparsity (from 5 to 50 active coefficients).

\ SEN \ SPE \Relative Error‘

q =1 case 0.8875 | 0.9774 0.2636
q = 0.5 without warm start | 0.8665 | 0.9739 0.2544
q = 0.5 with the warm start | 0.9055 | 0.9897 0.1371

Table 3.2: The summary table about SEN, SPE and Relative Error for different penalty and
initialisation settings.

set Y5 as explained above. To show the efficacy of our warm start, we use three different
methods to perform our regressions, i.e. ¢ = 1 case, ¢ = 0.5 case without a warm start and
q = 0.5 case with the warm start. After 20 trials, the average results are laid out in Table 3.2.
As shown, after using the result of ¢ = 1 case as a warm start, ¢ = 0.5 case can reach a higher

performance in terms of SEN, SPE and Relative Error.

3.2.4 Numerical Results on Anti-Cancer Drug Data

With the same dataset matrix Y, s, lorio et al (2016) performed a drug clustering based on
the area under curve (AUC) pattern similarity. In their results, 223 drugs were clustered into
26 groups. This drug heterogeneity suggests that a single regression model may not be proper.
Our mixture modelling can just deal with this hidden group structure. Gupta and Ibrahim
(2007) successfully demonstrated a unified mixture model which could perform clustering and
variable selection simultaneously. Inspired by this aim, we build our model and realise the same
functions as theirs. Faced with the same situation as Khalili et al (2011) that the number of

potential features p is much larger than the number of observations n, we use another method to
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K=1 K=2 K=3 K=4 K=5 K=6

A1 = 0.010 | 1306.529 | 1250.557 | 1225.578 | 1228.122 | 1249.891 | 1272.006
A1 =0.015 | 1308.901 | 1248.825 | 1223.047 | 1223.795 | 1235.240 | 1253.420
A1 =0.020 | 1311.940 | 1250.225 | 1223.359 | 1222.517 | 1224.951 | 1243.708
A1 =0.025 | 1315.127 | 1253.470 | 1225.351 | 1223.360 | 1220.526 | 1241.193
A1 =0.030 | 1318.933 | 1256.267 | 1246.357 | 1224.856 | 1220.610 | 1238.878
A1 =0.035 | 1322.561 | 1259.620 | 1250.306 | 1227.059 | 1223.836 | 1239.937
A1 = 0.040 | 1325.838 | 1263.040 | 1253.644 | 1230.487 | 1225.592 | 1240.111

Table 3.3: BIC grid for ¢ = 1 case on real data to show that (A; =0.025, K = 5) has the
minimum value 1220.526 which is regarded as the optimal.

diminish p to alleviate the computational burden in such a high-dimensional problem. Starting
with Xoggsx17737 and Yggszxos1, all p = 17737 genes are our potential features. Considering
the computing capability of computers, our composite matrix X3, , (N = 2;1 n()) (see
Section 3.2.1) becomes X3ggg28x17737 Which excessively exceeds the allocation capacity of our
computers. To make it possible to handle, we first implement individual LASSO onto each
drug to pick out the genes related to each drug. Then the remaining genes which have no
relation to any drugs are deleted from all p genes. After individual LASSO, p is diminished
from 17737 to 9083. Since there are many missing entries in matrix Ygg3zx251, considering the
effect of outliers, empirically we just keep the drugs and cell lines containing more than 80%
information to reduce J from 251 to 187 and n from 983 to 795, where 80% means there are
80% entries in that row or column being not missing. For X795x90s3 and Yrg5x 187, we calculate
the row variances for matrix Yr95x187, then use k-means clustering method to divide these
795 variances into two groups and keep the higher-value group to reduce n again from 795 to
397. After that, we conduct individual drug analysis with ¢ = 0.5 penalty by using TRucLqg-v
algorithm (Lai et al., 2013). The result ( (ind) glind) g;d)) will indicate the related
features (genes) to each drug, thus the top 1000 features (by adding up to the total weights
for each gene) are kept. From the results of regression with ¢ = 1, we have learned that each
drug is generally related to 100 ~ 200 genes. So keeping 1000 genes as candidates for our next
analysis is adequate and appropriate considering the computation speed of computers. Finally
these dimension-reduction methods lead us to X397x1000 and Ysg7x1s7. With ¢ = 1 case, the
smallest BIC value sits at (A\; = 0.025, K = 5) as shown in the Table 3.3. From this K = 5,
we construct a BIC-value grid for possible A\ 5, then using ¢ = 0.5 case penalised regression
analysis we obtain the BIC-value grid as Table 3.4. Using the optimal point from Table 3.4,
the final clustering and gene selection outcomes are listed in Table 3.5, Table 3.6 and Table 3.7.
The related-gene coefficients for each group are plotted in Figure 3.2.5. In Appendix A, to

compare with our final results, we also list the results from ¢ = 1 case after calculating with

(A1 = 0.025, K = 5).
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Figure 3.2.5: Coefficient bar-plot for each group. Selected genes are labelled and run from top

to bottom in each vertical long line. Small hollow bars pointing to the right indicate positive

weights, and those to the left indicate negative weights.
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K=1 K =2 K=3 K=1 K =5 K=6

Ao.s = 0.001 | 1350.307 | 1270.243 | 1288.399 | 1272.772 | 1262.720 | 1285.654
Ao.s = 0.002 | 1304.643 | 1242.177 | 1266.980 | 1251.313 | 1234.266 | 1255.397
Ao.s = 0.003 | 1303.190 | 1238.743 | 1253.645 | 1239.584 | 1231.022 | 1240.678
Ao.s = 0.004 | 1311.045 | 1243.675 | 1246.849 | 1225.467 | 1216.436 | 1225.252
Ao.s = 0.005 | 1314.379 | 1248.228 | 1245.891 | 1228.392 | 1202.692 | 1234.803
Ao.s = 0.006 | 1316.136 | 1254.292 | 1247.376 | 1239.010 | 1205.142 | 1215.820
Ao.s = 0.007 | 1320.542 | 1258.935 | 1222.912 | 1216.696 | 1208.888 | 1216.942
Ao.s = 0.008 | 1324.985 | 1262.924 | 1227.683 | 1222.031 | 1216.382 | 1222.082
Ao.s = 0.009 | 1329.003 | 1267.183 | 1233.683 | 1226.407 | 1220.988 | 1226.697
Ao.s = 0.010 | 1333.158 | 1270.512 | 1237.936 | 1229.972 | 1226.992 | 1230.691

Table 3.4: BIC values show that ()\0_5 = 0.005, K= 5) has the minimum value 1202.692, it is

an optimal point. Generally we just need to compute the K =5 column to locate the optimal
point, which can save much time.

3.2.5 Discussion and Conclusion

We have proposed a methodology to address high-dimensional clustering and variable selection
problems when given information has missing data. We fuse all drugs into one model to real-
ise clustering and variable selection simultaneously. And from the comparison of two different
non-convex penalisation terms, readers can have a general view of the performances of mix-
ture models under the different penalised regression systems. Meanwhile, from initialisation to
thresholding, our novel methodology can help researchers when faced with some non-convex
penalised mixture modellings. During our research, imputation methods were also attempted
to complete the matrix Y, « s first, then applied the complete matrix to our methodology for
discussing their performances. These imputation methods included Soft Impute (Mazumder,
Hastie and Tibshirani, 2010) and primePCA (Zhu, Wang and Samworth, 2019). After im-
putation, the complete dataset did not outperform our original dataset when applied to our
methodology (so these imputation analyses are not included in this thesis), because the imputed
entries might contaminate the whole data matrix by bringing in new errors. But it still needs
time to testify whether there exists a kind of imputation method which surely improves our

methodology under different simulation settings.
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Table 3.5: Drugs in each group and some group characters. (Part 1)

Group
Label

Drug
Names

Group
Size

Number of
Related Genes

g

LFM.A13, SGC0946,
Ruxolitinib, FMK,
CP724714, STF.62247,
Zibotentan, VNLG.124,
0SI1.930, Tivozanib,
T0901317, Selisistat,
Veliparib, Lenalidomide,
Vismodegib, SL0101,
10X2, UNC1215,
Temozolomide, PFI.3,
GW.2580, XMD14.99,
KIN001.236, FR.180204,
KIN001.270, XMD15.27,
Tamoxifen, VX.702,
GSK1904529A.

29

103

0.155

0.686

NSC.87877, Midostaurin,
JNK.9L, PF.562271,
FT1.277, OSU.03012,

Shikonin, Embelin,

FH535, Dacinostat,

Bexarotene, PAC.1,
Luminespib, Linifanib,

Bryostatin.1, TAK.715,
AS601245, Alectinib,

GSK429286A, WHI.P97,

Quizartinib, KIN001.266,
AICA .Ribonucleotide,
Vinblastine, Cisplatin,
Docetaxel, Tretinoin,
Gefitinib, Vorinostat,
Axitinib, GW441756,

Lestaurtinib, Motesanib,

KU.55933, BX795,

NU7441, Doramapimod,

JNK.Inhibitor. VIII,
PD173074, ZM447439,
R0O.3306, MK.2206,
Dactolisib, AZD8055,
CCT007093, EHT.1864,

o7
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0.305

1.01




Table 3.6: Drugs in each group and some group characters. (Part 2)

Group
Label

Drug
Names

Group
Size

Number of
Related Genes

Q>

Cetuximab, PF.4708671,
Serdemetan, TW.37,
CCT.018159, Rucaparib,
SB505124, PFI.1,
YK.4.279, XAV9309,
Piperlongumine.

CP466722, BMS.345541,
TL.2.105, Idelalisib,
Cabozantinib, JW.7.24.1,
NPK76.11.72.1, NG.25,
TL.1.85, Tubastatin.A,
L.LBET.762, BIX02189,
KIN001.244, Masitinib,
KIN001.260, PIK.93,
MPS.1.IN.1, TPCA.1,
NVP.BHG712, BX.912,
Fedratinib, Foretinib,
Y.39983, YM201636,
QL.XI1.92, XMD13.2.

26

94

0.139

1.116

Doxorubicin, Etoposide,
Gemcitabine, Vinorelbine,
Mitomycin.C, QS11,
Ponatinib, HG6.64.1,
JQ12, GSK650394,
DMOG, BAY.61.3606,
IPA.3, Thapsigargin,
Obatoclax.Mesylate,
BMS.754807, Linsitinib,
Bleomycin, Phenformin,
Pazopanib, Epothilone.B,
Tipifarnib, AS605240,
Enzastaurin, VX.11e,
NSC.207895, SB52334,
Amuvatinib, Cytarabine,
Methotrexate, Nilotinib,
Navitoclax, CI.1040,
Temsirolimus, Bosutinib,
AZD7762, Tanespimycin,
Elesclomol, Nutlin.3a,
Palbociclib, PD0325901,

50
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95

0.267

1.570




Table 3.7: Drugs in each group and some group characters. (Part 3)

Group Drug Group Number of
Label Names Size Related Genes | 7.1 o
SB590885,

X.57..7.0x0zeaenol,
Talazoparib, rTRAIL,
ICL1100013, SN.38,
Trametinib, Dabrafenib,
Bleomycin..50.uM.
X5.Fluorouracil, AR.42,
Ispinesib.Mesylate,
AT.7519, GSK1070916,
Daporinad, QL.XII.47,
7ZSTK474, WZ3105,
Genentech.Cpd.10,

) Sepantronium.bromide, 25 75 0.134 | 1.620
CUDC.101, Belinostat,
CAY 10603, Pelitinib,
Omipalisib, OSI.027,
CX.5461, PHA.793887,
PI1.103, GSK690693,
SNX.2112, QL.X.138,
THZ.2.49, THZ.2.102.1.

3.3 Discussions about Imputation and Component Num-

ber Selection

3.3.1 Introduction

The matrix completion problem has drawn large attention over years. Formerly, we have mul-
tiple imputation methods (Rubin, 1987) which replace each missing value with multiple possible
values. Missing values here mean the unobserved data that would be meaningful for analysis if
observed, or rather, a missing value masks an underlying meaningful value (Little and Rubin,
2014). Nowadays when faced with this kind of problem, we usually use softImpute algorithm
and hardImpute algorithm (Mazumder, Hastie and Tibshirani, 2010; Hastie, Mazumder, Lee
and Zadeh, 2015), which impute (namely fill in) the missing entries of one matrix by solving
an optimisation problem in a series of iterations. And these methods have reached decent res-
ults. After all, imputation can help a lot. As these missing values are once filled in, many
complete-data methods for analysis can be adopted (Rubin, 1987), moreover, most computer
programs can be run without error reports regarding incomplete data input. To this advantage,
more efforts are taken by worldwide researchers recently. Zhu, Wang and Samworth (2019) de-
veloped one algorithm called Projected Refinement for Imputation of Missing Entries in PCA
(primePCA), which can be regarded as state of the art for matrix completion problems. It is

an iterative algorithm using singular value decomposition (SVD) to refine the principal compon-
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ents of the target matrix. PrimePCA is also the first method designed for high-dimensional
PCA to deal with heterogeneous missingness settings (Zhu, Wang and Samworth, 2019). With
the application to Million Song Dataset, primePCA showed strong performance and yielded
a reasonable result. But as a nuisance parameter, the choice of K (the number of the prin-
cipal components of interest) has not been discussed in their article. Moreover, the model can
be augmented by including additional explanatory variables with fixed effects 8, which could
capture relations between covariates and responses. To realise these aims, the algorithm is
explained next, and after the discussions, we will propose another method about the selection

of the number of components K.

3.3.2 Algorithm
3.3.2.1 Regression and Imputation

We are provided with a design matrix X,,«, and a response matrix with missing entries Y, j.
We assume that they have a linear relationship after imputing missing entries in Y, » s, which
is YnXJ =alT + X upBpxs + Waxs + Znxy where 8, ; is a column-wise coefficient matrix
representing fixed effects, alT is an intercept term, W, ; is a matrix representing random
effects with K principal components, and Z, « ;y is a standard normal error term. Our targets

are
e Estimate the coefficient matrix 8, ;;
¢ Estimate the nuisance parameter K;
e Impute the missing entries in Y, s to reach a complete matrix YnXJ.

To fulfil these aims, we need to carry out a regression. Pick out all complete rows in Y, x s
and denote the new matrix by Y;. A complete row means there is no missing entry in that
row of Y,, ;. Here I in Y is the ordinal number of all non-missing rows. We use vector Y to

represent the mean of each row. With centralisation on rows, we estimate the residuals by

where X is the sub-matrix of X,,«, with corresponding rows as Y, and |I| is the cardinal

number of /. Here ,3 is from the multi-response LASSO estimation that

1 _ o112 LTI
B3 = argmin: ‘YI—Y~1T—XIBH +)\ZHBu
,BERPXJQ F p—

9 .
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The complementary residual part is computed by
Ere=Yre =Y 17 4 —XrpB,

which contains the same missing entries as Y c. After that, we reach the estimate of residuals

Er
Enxg = (assembled as the same row order as Y, x) .

Ejc

With the help of package primePCA and Algorithm 1 from Zhu, Wang and Samworth
(2019), we impute the missing entries in &,  with estimate éij and keep the existing entries
in &, s unchanged. Finally missing entries in our observed response matrix Y, » s are imputed

via
gij = Yi+xiB;+ i

Hence, we obtain a complete matrix Y, x s.

We can calculate the mean absolute error (MAE) for imputed values in Ynx,] to quantify

the accuracy when underlying missing values yvn)

;; 8 are given in simulations, which is (assume

that there are N missing entries totally in Y, .7)

N
>
MAE = ==L

o =yl ‘

N

3.3.2.2 Estimate K

When using package primePCA, the argument K (the number of the principal components of
(m)

interest) has to be determined. When underlying missing values y, ; '8 are known in simulations,
the MAE values can be calculated under different A's. And the chosen K locates at the smallest
MAE. This is done in our next simulation part and the result is shown in Figure 3.3.1.

But in real data analysis, missing values will never be known. We need to find some
counterparts to replace unknown missing values to realise the same function. Here we can
regard adjacent entries as missing ones which are the entries next to true missing ones. We set
these adjacent entries in Y, »; as NA (treat them the same way as true missing ones) before
implementing package primePCA. Then impute these adjacent entries as the way mentioned
above but keep the true missing ones still as NA. Then use these known ‘missing’ entries to

calculate MAE (true missing ones are set as 0) and select the Ks from the smallest MAE. This

is also carried out in the next simulation part.
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3.3.3 Simulation

First of all, under n = 100,p = 50, J = 20, we sample a n X p matrix X,,x, by independently
generating x; from N, (0,%,), here x; (i € {1,2,...,n}) denotes the i-th row of X,,»,, 0 is the

p-sized zero vector (0 = (0,0,...,0)7), and

1 0.1 012 0 - 0
0.1 1 0.1 0.12
01> 01 1 01 . 0
PXP =
0 012 01 1 . 012
0.1
o - 0 01* 01 1
Then a coefficient matrix 8,,; = (81,8s,...,8;) is built, where the column vectors have
sparse alternate entries as
0
0
2 0
-2
-2 2
2
ﬂl = O b /82 = ) /63 = _2
0
0
0
0
0

Let w; denote the i-th row of W,,« 7, to make K = 3, the w;s are independently sampled from
Ny (0,0 - OI + 09 - 0; + o3 - og) where O is the J-sized zero vector and 01, 05, 03 are orthogonal

with each other:

3
2 -3
1
1 2 3
01 = s 0y = , 03 =
-2 -3
1 0
-2
0
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Boxplot for Chosen K using Underlying Missing Values

Figure 3.3.1: Box-and-whisker plot for chosen K from 50 sample trials. MAE made use of the
underlying true missing entries.

Let z; denote the i-th row of Z,,« s, the z;s are independently generated from N, (0, 1), here I;
is an identity matrix of size J. With a n-sized intercept vector a = (2,2,...,2)7, we compute

the complete response matrix Yoy by

Yn><J = ol + anpﬁpxj +Wn><J + ZnXJ-

To simulate the missing values, we sample a missing-pattern matrix Q,x s from binomial dis-
tribution, where each entry @Q;; follows the binomial distribution B (1,0.99), which means there
is a possibility of 0.01 for each entry being missing. Then we get our observed response matrix

Y.« s by the Hadamard product of Y,»s and Q.. «s (missing entries are denoted as 0 because

Of QnXJ):
Yoxs = Wij)pws = Yoxs0Quxy = (Ji “Qij) s -

Then we carry out our aforementioned algorithm with these X,,», and Y, ;.

Figure 3.3.1 is the box-and-whisker plot after conducting 50 sample trials by sampling
different design matrices and error terms. We also put the statistics for these 50 sample trials
in Table 3.8. Here in Figure 3.3.1 and Table 3.8, we suppose that underlying missing values are
all known to us. So MAEs are calculated based on them. As seen from Figure 3.3.1, most of the
chosen K fall into 3 or 4, and the average lies at around 3.5, so when provided with underlying
missing values in simulations, MAE is a good statistic to identify K. Table 3.8 again supports
this idea by showing that the smallest Average MAE appears at K = 3.

As mentioned, missing values cannot be known to us in real data analysis. So we conducted
other 100 sample trials and covered adjacent entries (the right or left entries next to true missing

ones) as artificial missingness, but uncover them when calculating MAE. Figure 3.3.2 lays out
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Stats for Figure 3.3.1 | K=1| K=2|K=3[K=4|K=5| K=6 |
Average MAE 2.421 1.851 1.657 1.761 1.809 1.877
Standard Errors 0.070 0.049 0.042 0.047 0.043 0.041

Table 3.8: Statistics table as complementary information for 50 sample trials related to Figure
3.3.1.

Boxplot for Chosen K using Adjacent Entries

Figure 3.3.2: Box-and-whisker plot for chosen K from 100 sample trials. MAE made use of the
entries adjacent to missing ones.

these simulations and Table 3.9 shows the statistics behind them. As seen in Figure 3.3.2, this
box plot has nearly the same pattern as Figure 3.3.1. So it suggests that our adjacent-entry
method works well for estimating this K. Table 3.9 also supports our method as K = 3 has
the smallest Average MAE.

This adjacent-entry method is actually a kind of cross-validation. But the adjacent-entry
method uses specific subsamples as a validation set. Generally we can choose other entries
instead of adjacent ones as our validation set, such as random ones in every row which has
missing entries. But when the missing proportion increases to more than half of the row size,
we can not find the same number of counterparts as the missing ones. Adjacent entries will
always be found in this circumstance as overlapping is considered, and here overlaps (true values

cannot be known) should be retained as 0 after imputation to avoid mismatch.

3.3.4 Complete-Case Problem

This MAE statistic can also be generalised to solve the complete-case problem where there are

no missing entries in the target matrix and we just want to find out the possible K. In this

Stats for Figure3.3.2 | K=1 | K=2 | K=3[K=4 | K=5| K=6 |
Average MAE 2.327 | 1.838 | 1.600 | 1.697 | 1.768 | 1.865
Standard Errors | 0.043 | 0.032 | 0.029 | 0.031 | 0.033 | 0.037

Table 3.9: Statistics table as complementary information for 100 sample trials related to Figure
3.3.2.
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Missing Percentage ‘ Success Rate ‘ Average Chosen K | Standard Errors

0.05% 30.0% 3 0.494
0.15% 20.0% 3 0.471
0.50% 20.0% 3.8 0.291
1.00% 70.0% 3.3 0.153
1.50% 80.0% 3.2 0.133
2.00% 80.0% 3.2 0.133
2.50% 80.0% 3.3 0.213
4.00% 80.0% 3.3 0.213
5.00% 70.0% 3.6 0.306
7.50% 60.0% 3.6 0.267
10.00% 70.0% 3.5 0.269

Table 3.10: Statistics for different missing percentage levels with respect to indicator matrix Q.

case, we have to fabricate missing entries first, which can be based on an indicator matrix Q
from a binomial distribution. Then calculated MAE after imputation will pick out K and the
boxplot will be like Figure 3.3.1. The indicator matrix Q should be sampled several times, and
the final box plots will be compared with each other to reduce the randomness brought about
by Q. Now the only question lies in how to build up this indicator matrix Q, which means how
many percentages of missing entries are needed to best help us in identify this K. To address
this problem, we sample Q with different missing percentage levels from 0.05% to 10% and
implement 10 trials with each missing percentage level respectively. The missing percentage
level is not set to exceed 10% here because all non-missing rows are used to estimate ﬁ, larger
missing percentage level probably results in no non-missing rows left. So under Qigox20 and
the underlying K = 3 (the same setting as 01,02,03), we obtained some statistics in Table
3.10. As seen from Table 3.10, when the missing percentage level was set as 1.5% or 2.0%, it
has the highest success rate of selecting K (80.0% as displayed), and the Average Chosen K is
closest to the underlying true K = 3 along with minimising the Standard Errors. Therefore,
when encountering a complete-case problem, the missing percentage level can be fabricated as
around 2.0% to facilitate the estimation of K which is the number of the principal components
of interest.

This result conforms to our expectation. On the one hand, when there is an excessively
low missing percentage level, the effect of randomness will largely affect our choice of K from
calculated MAE values. For instance, 0.05% means only nJ x 0.05% = 100 x 20 x 0.05% = 1
entry is fabricated as missing. Then in the calculation of MAE, only one imputed value will be
involved. So the chosen K shows a high Standard Error in the first line of Table 3.10. At the
same time, Success Rate can not be accepted. That Average Chosen K going to exact 3 just
comes from the trade-off in the over- or under-estimate of K. On the other hand, when there
is an excessively high missing percentage level, the missing entries will cut down the amount

of information by excluding more rows in our regression part, which results in a less accurate
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estimate of ,é' More entries needed to impute will increase the difficulty of imputation from
primePCA. Therefore, a mild missing percentage level is desired for our estimation of the
number of components K.

In summary, in this section, we propose a good method of selecting the number of compon-
ents for clustering problems, which is different from the BIC method we have used in previous
sections. This new method is based on the matrix imputation method primePCA (Zhu, Wang
and Samworth, 2019), and it can be used in not only complete-case problems where there is no

missingness but also incomplete-case problems.
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Chapter 4

Estimation of Skew Normal Model

4.1 Introduction

In the previous chapter, we conducted our analyses under the assumption that the error terms
(residuals) of the regression follow a normal or mixture normal distribution. However, there
are many situations where the assumption is invalid. There is a knowledge that the incorrect-
ness of the underlying assumption may temper the utilisation and application of the methods
(Shaphiro and Wilk, 1965). For example, observations from asymmetric distribution could mis-
lead the inferences and distort the shape of mixture normal modelling. Thus, we turned to
the skew normal distribution (Azzalini, 1985) to address the potential skewness feature within
the dataset. The skew normal distribution extends the normal distribution function by in-
cluding one more parameter called shape parameter o which is used to gauge the skewness.
From this feature, the normal distribution function becomes a special case of the skew nor-
mal function when o = 0. Hence skew normal is a more reasonable and flexible model to
describe the asymmetric observations. At the same time, Azzalini (1985) found the peculiar
singularity property for the Fisher information matrix as the shape parameter o approaches
0, then he proposed an alternative re-parametrisation system which is a kind of standardised
version (called CP short for centred parameters, see Section 2.7) with a ‘normalised’ variable.
Arellano-Valle and Azzalini (2008) explained that the standard skew normal density represent-
ation f (y;&,0,a) = %cﬁ (%) ) (a (;,ng)) , y € R is problematic when applied to likelihood-
based inference due to the unsuitable parametrisation in the model. Then our research starts
by adapting this problematic parameter system. Inspired by this CP parametrisation, a dif-
ferent location-scale version of the skew normal density function is proposed in this chapter.
Similar to CP version our location-scale version also benefits from the orthogonal feature of

w and o (they are diagonal in Fisher information matrix, see Section 4.3 below). As known,
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the orthogonal parameters have independent maximum likelihood estimates, so each parameter
can be estimated separately. Even after the introduction of the a—penalty quadratic term, this
problematic inference problem is addressed. Compared with the CP, our location-scale version
has a simpler form, and thus it is easier in the computation when applied to likelihood-based
inference such as estimation with EM algorithm. Moreover, most of the articles relating to
skew normal distribution and EM algorithm used the linear summation form of normal and
half normal distributions, see Lin et al. (2007), Baghfalaki (2011) and Teimouri (2020). In this
chapter, a different EM algorithm is developed which is distinct from the conventional EM al-
gorithm for skew normal estimation. In this method, we exploit Fisher transformation (Fisher,

1915) and logarithm transformation to help with the calculations in the EM algorithm.

4.2 Methodology

4.2.1 Location-Scale Skew Normal Model

Let Z ~ SN(0,1,«) be the standard skew Normal with density fz(z;a) = 2¢(2)®(az),z €
R, where ¢(z) and ®(z) are the density and cumulative distribution function respectively,
and « is the shape parameter. It is known (see Section 2.7) that Z can be expressed as a
linear combination of a half standard normal Z, and the standard normal Z; in the form
Z =687, +1—02Zy, where § = a/v/1 + a2 and Z, has the density 24(z),z > 0. We have
var(Z) = 1 — 262/ and E[Z] = §,/2/~.

Let Y = pu+ 0(Z — 6+/2/7), where yu and o are location and scale parameters respectively.

Then Y has density function:

9(ysp, o) = i¢<y;“+5\/z>q><a<y;“+5 i))

with E[Y] = u, var(Y) = o2(1 — 262 /7).

To facilitate the calculations in EM algorithm, we introduce a new reparametrisation system
by using Fisher transformation and logarithm transformation.
Re-parametrisation

Re-parametrise ¢ by using Fisher transformation

1+0

),06R,5€(1,1),
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thus, shape parameter « can also be expressed with 6

e? —1 2 L.,
B R v L k- 1C

then we re-parametrise scale parameter o by taking its logarithm, n = log(o).

We can write our location-scale skew normal density function as

2 y—p 2 y—p 2
g (y; ., 0 X —&-59-\/7 D a@) | == +50)-1/=1|],

Wm0 = 56 <a<n> @-yz O oy P00 V7

where
o) =el  6O)=1-—  al) =1 (¢ )
’ 1420’ 2

4.2.2 Estimation with EM Algorithm
Maximum Likelihood Estimation
Given independent observations y = (y;)i1<i<n, we derive the parameter estimates for our

location-scale skew normal model through maximising likelihood:

(ﬂ,ﬁ,é) = argmaxline (14,7,0 | y)
(/477779)

n

= argmax Z log g (yi; 1,1, 0)
(1,m,0) i=1

where ;. (11,7,0 | y) is the incomplete data log-likelihood with
- 2 (y—up Vﬁ y—u 2
1 — T 450) -4/ | D 0 6(0) -/ —
2 Og{a(n)¢<0(n) o) 7r> <“( ) <a<n> £ w>>}
2
I G & o ]2
505 (o) 2Z< ot 00 w>

1

+;log <<1> <a(9)~ (i(_ngt +5(6) - i))) .

After deriving the first derivative to each parameter we arrive at the simultaneous equations.

line (/La 7, 0 | Y)

For this kind of interlocking equations, we use EM algorithm to solve them. Our EM algorithm
consists of four parts: E-step, M-step, initialisation and stopping rule. To begin with, we

augment the data y with another variable W to form the following joint density.

7



Complete Data Likelihood

We introduce a positive random variable W so that (Y, W) has the joint density

g(y,w)id)(eré\/E)é(wa(yaqué\/E)), y € R,w e (0,00).

Then the marginal density is

[ st = S0 (5E w3 R) [ (o (5E V) oo
= 2o ( ) (10 (o (2 ) )

9(y, w) ¢(w*a (y% +5\/2/7>)

glwly) = o) @(a<%+5\/g>) :

Augmenting y by w = (w;)1<i<n, we form the complete data (y,w) = (y;, w;)i<i<n. The

w € (0, 00).

complete-data log-likelihood is

leom (11,0 | y,w) = log (g(yi, wis 1., 0))
i=1

For the convenience of notation, we define

_ . () N
b=2H Ly 500) - 37 B =Y E L 56y 3

o(n) ™ o(7) ™

where (v) means the v-th iteration. Then we start from the expectation step.
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E Step

Given 2™, 7 and 6() the estimates obtained in the v-th iteration, then the conditional

expectation is

W(p,n, 0| 4,7, 00)

= Ew‘y”a('u)ﬁ(v)’(;(’v) [Leom (1,1, 6 [y, W)]

- i (o) <33, (S o0 V)

") P

;i e [(wia(o).(y;(n) +0(0) - \/2/7>)2]
N —

i=1 i—-1 29 ( (6®) - b; U))

i —a(0) b))% 6 (wi — a(0®) -5\ duw;

x/0<w a(0) - 5)* 6 (w; — a(6®) 1) dw
n 1 1 — " 1

- 210g<a(n)2.ﬂ2>_22b?_z A .b(v)>

x / h (i +a(0) -5~ a(0) bi)Q 6 (w:)dw

—a(§@)-p{"

1\3\3

n

_ ;ﬁog(W) Zb2 3 !

— ~ 29 (a(em) : b,E"))

X /00 [w? + 2 (a(é(”)) . bgv) —a(f) - bi> wz} o(w;)dw;

—a(f).b{"

1 A 2 [
_ Z _ (a(e(v)) ) bl(v) —a(h) - bi) / A o(w;)dw;
i—1 2® (a(Q(“)) : bgv)) —a ()b
n 1 1 & . 1
T
2 0'(77)2 .2 2 ; ; 20 (04(9(”)) . bgv))
S n é(v) . b(v) —a(f) - b, 0o
X wié(w;)dw; — o(6™) L a(6) - bi w;d(w; )dw;
) v (v) 5
— ()b ~ 9 (a(e(v)) B ) ()5
N 2 o0
_ Z (aw(v)) . bz(-v) — () - bi) / ) o(wi)dw;
i—1 2<I>( (0) b§”>) —a ()b
n 1 1 & " 1
= glog ( ) -5 - -
2 (n)2 -2 2 ; ; 2@( (6 b(v))

_ nlog m)Zb2i{ ( R —2@(9)-bi) ’

=1

+ (a(é(”)) " — a(6) - bl-)Q} .
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where

o0
/a(ém).bg”)

w (w;)dw; w; @' (w;)dw;

o0
/a(ém).bg“’)
o0

- [Oﬁ (a0 ") - (@) -5 / A B(w
—a(f).b{")

=6 (a(6)-5") - a(d®) b + @ (@) "),

/ . wzd)(wl)dwz - _/ . ] <z§’(w
—a(B).b{" —a ()b
) (a(é(v)) : bl(v)) .

i)dwi‘|

i) dw;

M-Step

In the maximisation step, we derive the first partial derivatives of the following conditional
expectation ¥ w.r.t. p,n, 0 respectively. Then we find the maximum by setting these derivatives

equal to 0. We write U(u,7,80 | 4,7, é(”)) in detail here

n

~(v) ~(v) plv 1 1 < 1 n(v
U(p,m, 0| a5, 0 nlog <W> —nn—§zbf—52{1 [ (6™))b 20&(9)61}
i=1 =1
(6% 0(” bgv) . 2
( ) + [al6@) o — a(0) 5] ¢,
( (6@ )
Yi — M 2 (v) _ — p® A (v) 2
b +6(0)-y/ 2, o= 50y
o O T Sy O
o) = ¢, o(@®)=e"
2 A 2
__c W)y —71___ =
5(9) 1 + 620’ 6(9 ) - 1 1 + 629”(1,) )
1.9 9 oy _ L (e g
a(f) 5 (" —e?), a0\ = 5 (e e ) .

To update the estimates of u,  and 6, we need to solve the following simultaneous equations

ov

oy =Y
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Before calculating the derivatives on ¥, we calculate in advance that

ob;
e
ob;
an
90
82 bl
002

91/a(n)
on

~1/a(n) =e7",
—e MNy; — 1), ?377()21 =e "(yi — ),
95(6) o 4e¥
o0 VA= A emp VAT
0°5(6) _ 8e(1— )
a7 V= Ty VA
5(0) 5(0) = —0)
1-4(6)2 1+ a(0)?
11 =280 1
1-06(02 2 (1- 5(9)2)3/2 B (1— 5(9)2)3/23
3 =20(0) 36(9)
2(1-60))"%  (1-8(0))
1 _ Pa(f) 1 —0y _
(e’ +e™), 50 = 5" =) =a(0),

4% a1
(1_|_620)2 - 14 e20 (1+€29)2 ’
4 2¢20 n 429 B 8626(1 - 629)
(1+e20)2 " (1+e20)3) (1+e20)3

—e™ .

for the conciseness of notation we denote ¥ (u, 7,6 | 4,7, ) by using 0.
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Derive the partial derivatives of ¥ as follows:

ov "L Ob; " 0b; ¢<a(é(v))b§”)) ()7 (v)
Giu = —;biafuﬁ-;a(a)a ((I)(a(é(v))bgv))‘FOé(e )bq, — a(0)b;
)(v (v)
S h @) & (a(60) GO
— ;g(n) “ a(n) <¢ (a(g(v))bzgv)>+ (0*)b; (0)b
w oon o (O(e0OR)
Er —n—;bia* i:104(9)6n <W+a(9 )by " — ()b
= —nde Y bi(yi—p) —a®)e D> (yi— p)
i=1 1=1
(@)
X ¢< (A ) ) a(é(“))b(v) a(0)b;
@ (a(@@)”)
ov "L 0b; <~ [ 0a(0) Ob;
90 ;b’ae z_;( gg el ae>
a(f@)pt
x ¢< (A i )—i—a(é(“))b(”) a(0)b;
@ (a(@@)”)

|
—
S
e ml\’)
[\~ (o)
fes)
Y
O
H'M:
Sa
_|_
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0?v
062

B A 9%b;  [0a(h) ab;1°
- Z{(ae H’"'am*{ 26 'bi”‘(a)'ae]

. 27
do(0) Ob; , o bz]

26 9 10 5p

+a(@®) b — af) - bi]

46 \/5
m(e20 +1) 7T

a(f) - b; — \/geeg (¢ — 6¢2 +1)
T (€20 + 1)

8e? (1 —€e2)  2a(h)-¢  2a(0)-¢?
(1 + e20)® 1+ €20 14 e2?

>
i=1

NCIONAS
¢< (A )b; ) a6 — a(0)b;
o (a(g(v))b(v))
8n - e2? 8 n 2 n ) n
= rager VPO g ()R D o) b

s e (649 —6e2? + 1)
T @’

H(v)yp(©)
[¢ (0‘(9( ))bi ) (é(v)) ) a(f) - bi] :

o (a(é<v>)b§”>) e

To solve these simultaneous equations, we adopt following iterative algorithm. Firstly, fixing

(n,0) = (ﬁ(”),é(“)), we update p. It follows from %—i’ = 0 that

s n

o ¢ (a(0®)p” A
w = g+oln)-600)- 2_ (7 : +a 2 Z (E g(v )b(” % + a(e(’v))bl(.v)) .

So, given 6 = 6 and n =7, we can update u by

R B R . 2 o) @)
W) — g4 g (@Y. 54 \f ) A
fi g+oa(@®)-6(0™) -/~ n Thag@y

z”: { ¢ (0‘(9(“ )b (U)) + a(é(v))bgv)} '

@ (a(6)p”)
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Secondly, fixing (u,0) = ([L(”H),é(”)), we update 7. It follows from %—‘TI’] =0 that

el = (1+oz

3\>~

=1

n 6 (@)
—a(f) - i — — a0
; (0) Z(y 1) ((I)(a(é(”))bgv)> + a(0)b;
_ Lrolr Zen v = 10)? + (1+(6)%) 8(6) - V2[5 — )

o fefe)
Z: (@ (a0 + (60 >>

3\’*

which implies that

21 _ T(u, 0, b(”)) cel — W Zn:(yi —w? =0
with
(1,0,6™) = (1+a(8)?)-6(9) %(‘f ) — @ (yi — 1)

» 1+ a6)?
0(77) =el = 7T(:u‘707b(v)) T \l T(’u ¢ b( ))2 n( ) (yl - .u)2
=1
So, we update 1 (namely o = €") via
6_(v+1) _ U(ﬁ(erl))
_ e,f]('u+1>
= ET([L(UH) o) b(U))Jr ET([L(UH) H(v) b(“)) 1+0‘ i (yi — ptD)2
2 I ) 4 9 ) v
where
. . A 2
T(EC,00,60) = (1+a(0)2) 507) -/ 27 - ")
T

_al0™) S~ e M (6™
Z(yl i) @(a(é(v>)b§”>)+ (A

Finally, fixing (1z,7) = (2T, 7(**1), we update @ by using the following Newton-Raphson
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method:
ov _ o
002

To solve f (6) = 0, we iterate

£
It =0 = 57 5,0)

until |0,11 — 6, < t, where ¢ is the tolerance controlling the accuracy (default value of ¢ is

10-8).

Initialisation

It is well known that the success of EM algorithm depends largely on good initial parameter
values. The multimodality on likelihood could cause local optimum. To increase the chance of
finding the global maximum or a decent local maximum, most of the time it is recommended
to use multiple initial points (McLachlan and Peel, 2000). But it will overly increase the
computation time when a prohibitively large number was applied. Method of moments has
been widely used for the estimation of skew normal distribution. And the moments can be linked
to Pearson’s skewness index to help us express the shape parameter via the moments. Here this
Pearson’s skewness index ; can be linked to second and third moments, after rearrangement,
it can be used to set an initial value for 6.

CEB(Y - 4-7m 8(2/m)%?
m= var(Y)3/2 2 (1—262/m)3/2’

T (@n/(-m)'?

=1\/3 NG ﬂ))z/s’ when |y1| < 0.9952,

1+6

Then our initialisation starts. Given observations y; (i = 1,...,n), we initialise the estimation

as follows:

1 1 i P9 n
nO = g==3 i 8= > wi—9)?, 7§O)=Z 1(53 /n

n—1
1/3
. = (" a-m) o
o — /T ., when ‘71 ‘§0.9952,
2 0) 2/3
1+ (297 (4= )
1-60 52
© _ 1-0"7 o2 _ S o _ 050002
0 0.5log (1 m 6(0)) , o 20027 7 log (S/ 1—-26 /7r> .
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Stopping rule

In each update, we need to verify whether the incomplete data likelihood is increasing. When
a(é(”))bl@) < —37.519, ® (a(é(”))bgv)) will be treated as exact 0 in R because values smaller
than 1073% (approximately) will be returned as 0 in R, then ¢ (a(é(”))bgv)) /® (a(é(”))bgu))
overflows in R. We need some way to avoid that problem when writing our programs. The

following approximation can help us.

o (al0”)
‘I’(a(é(”))bﬁ-”)) - 1—’a(é<v>)b§”)

(@l

when a(é(”))bgv) < —37.519.

X

Then the EM algorithm iteration alternates between E-step and M-step until:

Line (VD 70D 604D | y) — Line (), 7,00 | y)
Line (), 1), 0 | y)

< €

where ¢ is the tolerance (1078 is default value). And L,.(4®,7®),8®) | y) is the incomplete-

data log-likelihood function calculated after v-th iteration:

~(v) ~() Alv - 2 yl—/j’(v) (v 2
linc(:u( )777( )79( ) | Y) = E log{(j(ﬁ(v))(b ( U(ﬁ(v)) + 6(9( )) : ;
1=1

x d (a(é(v)) (y;(_n(/z)(;) +6(0™)y. i)) } )

This modelling has also been extended to skew normal regression and penalised skew
normal regression (for high-dimensional problems). Owing to some similarities to this part,

both of these two additional parts with simulation studies are attached in Appendix C.

4.3 «a-Penalised Estimation

As mentioned in the introduction of this chapter, there is peculiar behaviour for the likelihood
function when the true parameter « is near 0. We explain it by Fisher information matrix

of line (n, 0, | y) at @ = 0, which can be written as

= 0 0
T (( — Ty _ 2n
w0, =0) | = 0 % o0 (4.3.1)
0 0 0

The orthogonal feature of 1 and o could help the inference as mentioned in Section 4.1.

As we can see, for (4.3.1) the determinant is 0 here. This singularity of expected information
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causes trouble for the estimation at o = 0, making it hard to estimate o when the true value
is close to 0. Thus, before the start of the aforementioned EM algorithm, we use D’Agostino’s
K-squared test (D’Agostino, 1970) to test the null hypothesis that a = 0. For the o = 0 case,
we just need to fix & = 0 at the start of our EM algorithm (no 6) updating anymore) and
carry on other updatings. Otherwise, we follow the aforementioned EM algorithm to the end.

A more natural way to overcome it is introduced here. We can bring in an a-penalised term

Aa? to our incomplete-data log-likelihood function, that is

e (y0,0|y) = line (p0,a | y) — Aa®
_n 2 1 & o, v Ny A2
= glog <m2> e ;Ai—i—;log[@(fll)] Ao (4.3.2)

where 6 = a/v/1+a? and A; = « (% + 6\/2) The tuning constant A is selected from
a grid of candidates by a 10-fold cross-validation step (see Section 4.3.1). Then the Fisher

information function at o = 0 for I, (1,0, ¢ | y) is

o0 0
I((moa=0")=| o 2 o
0 0 2X

The determinant of the Fisher information matrix is not 0 anymore, which means the likelihood-
based inference can be obtained smoothly. From this modification, we can reveal some inter-
esting findings in Section 4.3.2 below. Based on these findings, some intriguing theorems could
be obtained in Section 4.3.3 below. The proofs of these theorems are attached in Appendix
B. The asymptotic analysis of this a-penalised skew normal model can help us have a better

understanding of the estimation results.

4.3.1 Cross-Validation for Selecting A

The k-fold cross-validation has been introduced in Section 2.6.2. Here we use it (k = 10) to select
the tuning constant A for our a-penalised skew normal modelling. Divide the given observations
y into 10 groups (G1,Ga,...,G1o) and validate by computing {7, . (i, 0, | G;) with estimates

wmc

(1,6, &) from the estimation of training set G_; (log-likelihood I}, . (i, 0, | G—;)), and repeat

mc

it for 10 times with j = 1,2,...10 respectively.
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Here I}, . (1,0, | G;) and I}, (p, 0,00 | G_;) are

wmc wmc

N n; 2 1 & o
el @) = Fiog(25) = gor 30 AT D logle ()] o’
R P
4 - o (Gu . 5@ |
o T
n; : cardinal number of Gj;
N n—n; 2 1 N — N
el Go) = "G (23] - 5 Y A Y loglo(an)] - aa
i=1 i=1
A = « (G_j’i —K +(5\/5> ,
o ™
n : cardinal number of y.

Generally the candidate grid A = (A1, Aa,...) is determined through some pilot trials to com-
promise between the accuracy of A and computation speed of the computer. Algorithm 4.1 uses
the pseudocode to show the whole process where the ‘update’ is realised through EM algorithm
as we introduced in Section 4.2. But we need to pay attention that as a result of introducing

quadratic penalty term the updating for § has changed to

9 A

FO) =27 =5 (=), ()

_ o
G ) N

G

Here, the introduction of Aa? term will only affect the updating for 6.

4.3.2 Asymptotic Properties of Cross-Validated \¢y

We want to investigate the behaviour of Aoy from cross-validation under different underlying
scenarios. We carried out some simulations to find the asymptotic behaviours about Agy. For
these simulations, we sampled with the underlying true parameter values (i = 0,6 = 1,& = 0,2, 3,4)
respectively, and performed Mgy selection through 10-fold cross-validation under different sample
sizes ns for each & setting. Then these simulations were replicated many times to produce the
box plots and trend charts. From these graphs, we found some interesting asymptotic properties
about this Aoy . After that, we used some inequalities to verify these properties empirically.
The following simulations are specified as four cases to investigate Aoy ’s behaviours under true

& = 0 and true & # 0.

Case 1. Underlying true parameter settings are (i = 0,6 = 1,& = 0), for different sample

size n, analyse the behaviour of Aoy /n.

Case 2. Underlying true parameter settings are (i = 0,5 = 1,4 = 3), for different sample

size n, analyse the behaviour of Aoy /y/n.

88



Algorithm 4.1 The 10-fold cross-validation process to select Aoy

Input:Data points y = (y1,%2,---,Yn), @ grid of )\ candidates A =
(A1, Ag,...).
Output:The log likelihood table with (A, Ag,...) for A=
(M, A2,...), and the best A from them.
Divide y into 10 groups (Gi,Ga,...,G1o)
for i in 1,2,...
for j in 1:10
G_j=(G1,Ga,...,Gj-1,Gj1,...,Gio)
moment estimates pp,00,0 as initial values
while (|If,. (4,6, &) | G_;) 1%, (A=, 60=D a0V | G_;)| >
1078 and iteration_times< 500)
update 2"~V to (") with ﬂ(”_l),&(”_l),&(”_l),G_j
update (1) to (") through n with [L(”),6(“’1),OA¢(”71),G_]-
update &(*~Y to &(*) through 6 with ,&(”),&(”),@(”71),6’,]- and \;
calculate incomplete log-likelihood I}, (ﬂ(”),(f(”),d(”) |G,]-)
v=v+1
end while
calculate validation log-likelihood Iy =1}, (i, 0,6 | G;)
end for
calculate A; (the average of l,ls,...,l10)
end for
Choose the maximum A,,,, from A, As,...
return the best Aoy from A = (Ag,Ag,...)

Case 3. Underlying true parameter settings are (i = 0,6 = 1,4 = 2), for different sample

size m, analyse the behaviour of Aoy /v/n.

Case 4. Underlying true parameter settings are (i = 0,6 = 1,& = 4), for different sample

size m, analyse the behaviour of Aoy /v/n.

For each case we set n = 50,100, 200, 300, 400, 500, 600, 1000 respectively, and for each sample
size n we performed 20 simulations which means we re-sampled and replicated the whole cross-
validation process for 20 times.

Figure 4.3.1 displays the boxplots and trend chart about Aoy /n for Case 1 as n increases.
The trend chart indicates that under true & = 0 the average of statistic Aoy /n manifests a
trend of converging to a constant ¢o (about 0.0035 here) and variance of Aoy /n tends to 0 with
the increase of sample size n.

Figure 4.3.2 displays the boxplots and trend chart about A¢y /4/n for Case 2 as n increases.
The trend chart indicates that under true & # 0 the average and variance of statistic Aoy /v/n
both manifest a trend of converging to 0 with the increase of sample size n. Figure 4.3.3 for

Case 3 and Figure 4.3.4 for Case 4 can provide more support for this idea.
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Figure 4.3.1: The box plots for Aoy /n and trend chart for average (variance) of Aoy /n under
Case 1. Blue line plots different averages and orange line plots different variances for Aoy /n
as n increases.
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under Case 2. Blue line plots different averages and orange line plots different variances for
Acv/+/n as n increases.
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Acv has the following asymptotic properties. Ach — ¢p > 0 in probability when the
true value of « is 0, and )‘CTT‘L’ — 0 in probability when the true value of « is not 0 as

n — oo respectively.

Now we use inequalities to verify them. We have

Pr(AC“ — e >e) Pr(‘)‘c” E(’\>’+‘E (AC”)CO
n n n n
PrqAC” —E</\>’>e—‘E <>\CV>—CO
n n n

Var (Aev)
s) )

)
|

(Chebyshev’s inequality) .

(e—[E(

Judging from Figure 4.3.1, we can use the results that lim E (2¢%) = ¢ and hm Var (22v) =
n——+oo +oo

0. Then using Slutsky’s theorem, we can reach that lim Pr (|22 — ¢o| > €) = 0 for any € > 0.
n—+oo n

Therefore, it holds that /\ch — ¢o > 0 in probability as n — oo under true parameter value

a=0.

And we also have known

Acv
P v
r( NG

) - ((2)=7)
(Sl

()« [2 ()

IN

Markov’s inequality)

Judging from Figure 4.3.2, Figure 4.3.3 and Figure 4.3.4, we use the results that hm E ( T ) =
n—-4o0o
0 and hm Var ()‘\CFV) = 0. Again with Slutsky’s theorem we can reach that lim Pr ( Aoy | > s) =
n——+o0o n—-+oo

0 for any ¢ > 0. Therefore, it also holds that ’\CT; — 0 in probability as n — oo under true

parameter value & # 0.

4.3.3 Asymptotic Distributions of a—Penalised MLE

In our EM algorithm, we use the method of moments estimates as initial estimates of
the parameters. It is known that these method of moments estimates are consistent with
rates Kun, Kon, Kan respectively. In light of this, we consider the following restricted area that
i — | < kpn =0, |6 — 6] < kon = 0, |& — &] < kan — 0, where (i1, 5, &) are the underlying
true parameter values, to improve the performance of our estimates by assuming all good
estimates are within this restricted area. In Section 4.3.2, we have found that the Aoy selected

from our cross-validation has the asymptotic properties Ach — ¢g > 0 in probability under
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the true parameter value @ = 0 and )‘CTT‘L/ — 0 in probability under the true parameter value
& # 0 as n — oo respectively. Provided with these assumptions, some asymptotic results can
be summarised in the following theorems with detailed proofs attached in Appendix B.

In Theorem 1 below, we show the asymptotic distribution when the true parameter value &

is 0.

Theorem 1. Let (fi,5,&) be the restricted mazimum likelihood estimate when (u,o,«) are
restricted to [p— fi| < kpp — 0, |0 — 6| < ko = 0, | — 0] < Kan — 0. Here (fi,6,6 =0) are

the underlying true parameter values. With n — co, assume ACTV — ¢o > 0 (co is a positive

constant) in probability. Then the restricted MLE (fi,&,&) for the a-penalised log-likelihood

function I%, . (1,0, | y) have the following properties that as n — oo

ﬁ(@)iN(o,l), ﬂ(f};&)iN(a;),

(07

\/ﬁ( ;O> = (Kpn + Fon + Fan) Op (1) = 0.

In Theorem 2 below, we show the asymptotic likelihood-ratio when the true parameter value
ais 0.

FOR A 3

Theorem 2. Let ({i*,6*,0) be the mazimum likelihood estimate when fixing o = 0 and (fi, 5, &)
be the restricted mazimum likelihood estimate when (u, o, o) are restricted to |p — fi| < Kyun — 0,
o — 6| < kon = 0, Ja—0| < kan — 0. Here (f1,6,& = 0) are the underlying true parameter

values. With n — oo, assume Ach — ¢o > 0 (co is a positive constant) in probability. Then the

likelihood ratio (mostly used for likelihood-ratio test) has the following property that as n — oo
line (1,66 | ) = Uiy (07,57,0 1 3) = Op (n72) + (R + Km + Kan) - Op (1) = 0.

In Theorem 3 below, we show the asymptotic distribution when the true parameter value &

is not 0.

Theorem 3. Let (ji,d,&) be the restricted mazimum likelihood estimate when (u,0,«) are
restricted to (i — fi| < Kkpp =0, [0 — G| < kop = 0, o — @] < Kan — 0. Here (fi,6,&) are the
underlying true parameter values and & # 0. With n — oo, assume )\CT;L/ — 0 in probability.
Then the restricted MLE (fi, 0, &) for the a-penalised log-likelihood function I}, (1, 0, | y) have

the following properties that as n — oo

Viali—p) SN (0w, Va@E-8)SN0w),  Vaa—a) SN (0,.u),
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We have obtained the asymptotic distributions for the MLE of skew normal distribution

under true parameter value & # 0. To our best knowledge, it has not been found in the
literature about the final calculation results on the variances of these asymptotic distributions.
These variance values can help the numerical calculation to find the confidence interval for

the MLE under different known skew normal distribution settings such as the 95% confidence

L 96w3 G + L96ws

interval (d NG ) for a. For example, when the underlying true parameter values

are (i =0, 6 =1, & = 2), the 95% confidence interval for shape parameter « is (0.704, 3.296).

4.4 Simulation Studies

In the following simulation studies, first of all, we showed a general estimation accuracy for our
location-scale modelling. Then with the further introduction of the quadratic penalty term, we
showed how the estimation accuracy is dramatically improved when the underlying true & is 0.
After that, we compared the quadratic penalty with another penalty system from the literature
to show the superiority of our method. Finally, with a comprehensive box plot collection, we

showed the performances of our method under a wide range of scenarios.

4.4.1 The Simulation Study for Location-Scale Skew Normal

In this simulation, through rsn function from package sn in R, n = 300 observations were

w=o, a:a)where,u:2, c=05 a=15 d=a/V1+a?=

7T7

sampled under ({ uw—od
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Figure 4.4.1: The box plots for estimated location parameter pu, scale parameter o and shape
parameter « after 100 times of resampling and estimation with our location-scale skew normal
modelling under true parameter values ji = 2, 6 = 0.5, & = 1.5 with sample size n = 300. The
averages of these parameter estimates (marked with crosses in the boxes) are i = 2.003, 7 =
0.495, & = 1.485.

0.832. Here £ is the location parameter after centralisation. The centralisation is realised by

Y

E+oZ
w—oo\2/m+0Z
p+o (Z— 5\/2/7r)

where Z ~ SN(0, 1, «) follows the standard skew normal distribution. And the expectation of

Z is 0+/2/m. After the centralisation, the density function becomes

v = (ol 5)
y~ (n=06y/2/7) ola v~ (n=06y/2/7)

_ §¢<y;M+5\/§>¢<a (t“w\/z))

Under the underlying true parameter settings, the simulation data were resampled 100 times

¢

2
o

and each time the estimation process with aforementioned methodology was performed. The

box plot regarding these 100 results is shown in Figure 4.4.1.
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4.4.2 The Simulation Studies for a-Penalised Skew Normal

To address the peculiar estimation behaviour when underlying true parameter value & = 0, we

introduced the a-penalised skew normal likelihood function on n observations in Section 4.3:

l;‘(nc (Na g, | Y) = linc (H’ﬂ o, | Y) - Ao’

n 2

1 n n
= 21 =) - = A? log [® (A;)] — Aa? 44.1
108 (7))~ 07 22 A+ Dol (4] el (441)

where A; = o (% + 5\/g)

Azzalini (2014) used centred parameters (CP) reparameterisation to deal with the singu-
larity problem when true parameter value @ = 0 and did a good asymptotic analysis on this
reparameterisation system but lack of simulation support for & under different value levels.
Moreover, a penalised log-likelihood for skew normal was considered by Azzalini and Arellano-
Valle (2012), where I, (§) = (#) — Q (6) with penalty Q (6) = ¢1 log (1 + c2a?) was put forward
to avoid the divergent behaviour of estimate & for a formulation applicable to a wide situations.
To check the performance of this penalty term, we applied it to our location-scale skew normal

likelihood function:

l;'rnc (/1‘7 g, | Y) = linc (/1'7 g, | y) — ¢ log (]— + 02042)
n 2 I & 0w )
= 2log<7m2)—w;Ai—l—;log[(b(Ai)]—cllog(1—|—02a).

(4.4.2)

But in this penalty system ¢; and ¢y were fixed as constants (¢; ~ 0.875913, ¢ ~ 0.856250).
Different from that, we choose Agy by 10—folded cross-validation which is much more flexible
with considering the possible underlying true value &. As we know, when the true value & is
close to 0, the tuning constant A should be larger compared with the case where the true one
is away from 0. To observe the ability of Aa? on penalising o, we used the aforementioned EM
algorithm to estimate , the simulation result is illustrated through box plots in Figure
4.4.2.

Arellano-Valle and Azzalini (2008) explained that it is the unusual feature of non-quadratic
shape of the log-likelihood function at the stationary point o = 0 that makes it hard to estimate
shape parameter o when the underlying real one is 0. In Figure 4.4.2, we have shown that with
this penalty term Aa?, shape parameter o can be estimated properly via our EM algorithm
when it is 0 in the underlying skew normal distribution. For comparison, the estimation result
from the model without penalty (A = 0) is also put in Figure 4.4.2.

To check the performance when « is away from 0, we set the underlying true g = 0,6 =1
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Figure 4.4.2: Box plots for the simulation estimation result of skew normal data sampled from
SN (—2,1,0), based on sample size n = 400, re-sample and replicate 50 times. The left one did
not use penalty (A = 0). The right one used Aa? penalty and each time Aoy is selected from a
grid of candidates by 10—folded cross validation.

and & = 1,3,5 under n = 50,100,200 respectively. And for each setting, we also re-sample
and replicate the trials 50 times, and then calculate the mean bias, median bias and standard
deviation for it. To compare with it, we also performed our EM algorithm for . The
summary under our Aa? penalty (left block) and the ¢; log (1 + 02a2) penalty (right block) for
the estimation of each parameter is put in Table 4.1. From this table, we can see that the
skew normal density function with ¢; log (1 + 02a2) penalty showed a much higher standard
deviation in some cases when estimating «. The bias for & under ¢ log (1 + 02042) penalty
is also uncompetitive compared to our result. And the corresponding results under our \o?
penalty for these estimates under all 9 different settings (& = 1,3,5 and n = 50,100,200 ) are

illustrated with box plots in Figure 4.4.3.

4.5 Anti-Cancer Drug Data Application

For Y397x187 the anti-cancer drug data from Chapter 3, we are curious about the inherent
skewness of the data for each drug. These data consist of responses (measured by half maximal
inhibitory concentration) to different cell lines. There are 187 anti-cancer drugs in total for
the dataset Ysg7x187. We applied the a-penalised skew normal model onto each anti-cancer
drug, then use aforementioned EM algorithm to find the estimates (fi, 5, &). Figure 4.5.1 shows
the scatter plot and histogram for all 187 &s. The detailed results for each drug can refer to
Appendix C Figure 6.2.4. When o = 1.5, we can calculate the Fisher’s moment coefficient
of skewness v; =~ 0.3. There are 131 out of 187 drugs featuring the IC50 data with evident
skewnesses that |y1| > 0.3.

Take 84th drug ’Pelitinib’ as an example to perform a bootstrapping for it. The estimation
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under Ao penalty | under ¢ log (1 + czaz) penalty

a n Quantity i 1% & i G &
1 50 Mean bias | -0.0121 -0.0499 -0.6868 | -0.0085 -0.0761 -0.2569
Median bias | -0.0171 -0.1009 -0.9951 | -0.0128 -0.1280 -0.9979
Std.dev. 0.1083 0.2187  1.4872 | 0.1301 0.1960 3.9374
100  Mean bias | -0.0032 -0.0432 -0.4939 | 0.0288 -0.0776 -0.5650
Median bias | -0.0022 -0.0516 -0.5718 | 0.0224 -0.1415 -0.9956
Std.dev. 0.0740  0.1593  0.9795 | 0.0909 0.1379 0.8608
200  Mean bias | 0.0068 -0.0481 -0.3837 | -0.0028 -0.1029 -0.7150
Median bias | 0.0032 -0.0529 -0.3137 | -0.0037 -0.1440 -0.9910
Std.dev. 0.0514 0.1312  0.8040 | 0.0492 0.1082 0.6986
3 50 Mean bias | -0.0058 -0.0765 0.2319 | -0.0229 -0.1429 1.3152
Median bias | -0.0082 -0.0696 -0.5578 | -0.0448 -0.0961 -0.8977
Std.dev. 0.0766  0.1595  2.4054 | 0.0956 0.2364 7.3542
100  Mean bias | -0.0105 -0.0558 -0.2522 | -0.0160 -0.0710 1.3614
Median bias | 0.0026 -0.0458 -0.3852 | -0.0112 -0.0714 -0.5395
Std.dev. 0.0689  0.1238  1.1349 | 0.0619 0.1746 6.8711
200 Mean bias | 0.0041 -0.0116 -0.2255 | -0.0035 -0.0224 1.3475
Median bias | -0.0038 -0.0127 -0.4833 | 0.0039 -0.0225 -0.3582
Std.dev. 0.0532  0.0801  0.9482 | 0.0434 0.1426 6.1749
5 50 Mean bias | -0.0240 -0.0727 -0.5477 | -0.0185 -0.0614 4.0295
Median bias | -0.0212 -0.0417 -0.4806 | -0.0138 -0.0538 -0.8666
Std.dev. 0.1020  0.1567  2.2759 | 0.1022 0.2268 10.1609
100  Mean bias | 0.0002 -0.0511 -0.4073 | -0.0096 -0.0030 4.4940
Median bias | -0.0120 -0.0227 -0.9159 | -0.0058 -0.0011 -0.4098
Std.dev. 0.0713  0.1110 2.1078 | 0.0665 0.1500 9.7276
200  Mean bias | 0.0007 -0.0265 -0.0150 | -0.0046 -0.0020 1.9516
Median bias | -0.0007 -0.0310 -0.4611 | -0.0127 -0.0120 -0.6123
Std.dev. 0.0388  0.0713  1.8044 | 0.0485 0.0950 6.9836

Table 4.1: The summary for skew normal models with our Aa? penalty (left block) and
c1log (1 + c2a?) penalty (right block) respectively when they are estimated with our EM al-
gorithm under distribution SN (0,1, «) when true parameter & = 1,3, 5, based on sample size
n = 50,100, 200. Each entry is based on 50 replicative trials.
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Figure 4.4.3: The box plots correspond to our Aa? penalty result area in Table 4.1. There are
three different settings for skew normal distribution skewness parameter « (they are 1,3,5),
and three different sample size n (they are 50,100, 200) for each «.
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Scatter Plot of Estimated a's for Anti-Cancer Drugs
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Figure 4.5.1: The scatter plot and histogram of &s for 187 anti-cancer drugs. The scatter plot
shows the value of & for each drug from 1st drug to 186th drug. For the convenience of the
layout, the drug 'Sepantronium.bromide’ is removed from the scatter plot, as it has an oversized
& = 27.8853. Refer to Appendix C Figure 6.2.4 for details.
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Bootstrapping for Drug 'Pelitinib’
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Figure 4.5.2: The box plots for bootstrapping of drug 'Pelitinib’. Resample n = 397 samples
from SN (0.00742, 2.56255, —1.64613) and perform estimations for 200 times to produce these
box plots.

result for 'Pelitinib’ is (i = 0.00742, & = 2.56255, & = —1.64613) (as shown in Appendix C
Figure 6.2.4). Repeatedly sample n = 397 observations from the skew normal distribution
SN (u=0.00742, 0 = 2.56255, o = —1.64613) for 200 times and each time estimate it with our
a-penalised modelling and its EM algorithm. The box plot for these 200 trial estimation results
is shown in Figure 4.5.2. For &, the interval including 95% estimation results is (—2.256, —0.735)

among these 200 trials. And & = 0 (skewness does not exist) is not included in this interval. If

we calculate the 95% confidence interval with ws formula (4.3.3|) and (d — 1'96;37 o+ %) by

assuming & = —1.64613, then we can reach (—2.550, —0.742) which is close to our bootstrapping

result (—2.256, —0.735).
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Chapter 5

Estimating Skew Normal Mixtures

5.1 Four-Piece Distribution Family

In R package mclust (Fraley and Raftery, 2002), a kind of model-based clustering method is
introduced, where equal variance and unequal variances are specified as two different models in
the estimation process. Inspired by this, a kind of model-based mixture skew normal clustering
method is put forward in this chapter. The scale parameter o and shape (skewness) parameter
« are discussed separately regarding whether os are equal and as are equal for all components.
Then four-piece distribution family is introduced here, where four different models are con-
sidered in the density function construction. They are ESVA (equal o and variable «), VSEA
(variable o and equal «), ESEA (equal o and equal o)) and VSVA (variable o and variable «).
After estimation with these four different models, the best model is determined as the one with

the best Bayesian Information Criterion value.

5.1.1 Density and Likelihood

Suppose that we have n observations (y1,¥2,...,¥yn) on random variable Y which comes from
a finite mixture model that is the K—component mixture of skew normal densities. We also
suppose that any information about the origin (group), which each observation comes from, is

unknown to us. Then the mixture density functions for the four-piece distribution family
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can be given by
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VSVA) being specific parameters for kth component where Oy = (7, p, 0, o) (for ESVA),

O = (Tk, b, ok, o) (for VSEA) and O = (7, pk, 0, @) (for ESEA) are also included in it.

Once again, to facilitate our next EM algorithm calculation, we introduce the reparametrisa-

tion as Chapter 4 to our location-scale skew normal mixture model. Then the density functions

for the four-piece distribution family can be written as

9 (y:;©%) =

where

e (4575

X 2
1
k§1 ¥ Un)(b(
X 2
71— .
kgl k C/'(le)(’ZS
K
’7"' .
kZ::I k5 n)
K
T o}
kgl k 77k)
o =
0 =
0p =
0 =
0 =
o(m) =
8(0) =
alf) =

Yi— Nk

Yi— Mk
0(%)

el
)o oo s

%

(J(m)

(©1,...,0%),
(T e, 15 Okc) ESVA
(ks ks Tk, 0) - VSEA
(7k, s, 0),  ESEA
(They Moy Mk, O VSVA
e, o(m)=e",
H%, 5(6) =1 — H%
% (" =), o(fy) = % (% — e 0%).

106

) (e +5000y/2)).
+3(0)y/2)).
+ 5(9)\@) @ (a(0) (Mg +00)y/2)).
+6(9k)\f) ( (9k>(a<n> +5(9’€)\[))’

ESVA

VSEA

ESEA

VSVA



Then we get the incomplete-data log-likelihood functions:

ESVA
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N———

X (a(e) : (g<7,“§ +6(6) - %))) , VSEA
linc (@% |y) =

X (a(9)~ (yi—”k +6(6) - %))) , ESEA

> 1og(§ me sy 6 (e + 660 - 2)

i=1 k=1
@ (al0y) - (L5t +6(6) \/2))) : VSVA.

Similar as Chapter 4, for each component we augment y by introducing w = (w;k)1<i<n,1<k<K,

X

and we also introduce a set of latent component indicators Z; = (Z;1,...,Z;x) with i =

1,2,...,n. We define it with binary values

1 if y; belongs to component k,

0 otherwise.

Thus, we form the complete dataset (y,w,Z) = (y;, Wi, Zi)1<i<n. The complete-data log-

likelihood functions for the four-piece distribution family can be obtained now:

lcom((_)* | y,w, Z)

S5 Za {logmy +log b = 103, — § (wax — a(Bh) - b)* |, ESVA
i=1k=1
n K 1 9
3 Zin {log my +log sk — $03, — & (win — a(6) -bu)* b, VSEA
= n K 9
X2 Z {1og i + log b — 363 — & (wir — a(0) - bix) } ., ESEA
n K
S Za {logﬂk +1og o7 — 3b5 — 5 (wik — a(bh) - bik)Q}a VSVA.
1=1k=1
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where b;;, is used for notation conciseness, and it is specified as

Bk 4 5(0) /2, ESVA
i 2

o wom 1 6(0)- /2, VSEA
i k 2
s 5(0) /2, ESEA

Lok 4 5(0) /2, VSVA.
5.1.2 E-Step and M-Step in EM Algorithm

To find the MLE of log-likelihood I;,,. (@™ | y), we use the EM algorithm introduced in Chapter
4 again to help our calculations. Then the E Step starts by finding the expectation for
complete-data log-likelihood [.,,, (®* | y, w, Z).

Given ©*(") which are the parameter estimates obtained from the v-th iteration step, then

L E LW () 5 E Lo
S Zy, longrZZZ 108 o= —%ZZ A
1=1k=1 1=1k=1 i=1k=1
n K (v) (v)
o OO o (0105
-3 530 20 {1+ [ -1 2000 0] SIS
N v 2
[ (912 ) - bgk)_a(ek)'bik} }, ESVA

n

nE L) (v) (o)
PO log7rk—l-Z:Z:Zvlogg(m)Tr TDIDIPARA

1=1lk=1 1=1k=1 i=1k (:1 )
n K R 9(1)) p(»)
1 (v) @) . p®) _ O b))
DIPIRL {1+ [a(6®) -5}~ 20(0) - by L}< o)
~ 2
+ [a(@0) 53 = a(0) - bu] } VSEA

\I’(@* | é*(v)) —

n K o 9<v>),b<u>)
1 () Ao)y . n(®) o (a
2 z;kzzzl Z {1 * { (O 2(0) blk} é(a(m”))'b(v )
. 2
+ [a(Q(“)) ) — a(f) - bik} } ESEA
n K 5 () n K (v) & K (v) 19
4 1k21 Zy, log my+ Z Z Zy, log 7 nk) 7 T3 Z Z 23 0%
1= = =1 1=1k=1
n K 5(0)) 4 (0)
1 - (0) () ) _ #(a@)0)
2 i;kgl Zix {1 + { (0,7) - b3 — 20(6,) - } ®(a(@))
. 2
+ [04(91(@”)) by — a(Bh) - bik} } ; VSVA
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(v)

where b;,” is specified as

Then the expectation of the latent

()

y;(n;(t)) + 6(él(cv)) : \/%
MR+ 8602,
w1 5(00) /2,
nR 60 -2,

ESVA

VSEA

ESEA

VSVA.

component indicator is updated by

ZAZ(]’:) =1x P (sz =1 | yi7(:.)*(1))> + 0 x P (Zlk =0 ‘ y“ ('U)) _ |:Zik | yi7é*(1)):| ,

ﬁ,ﬁ“%(

) N 0
- +5(00): \/§> ® <a(0<’“))~ (z"( im
o (7

7.

fﬁi’%( +5<0<“>>\/?> ( (6. (
t=1

(2

5607/ E ))

Yi— “’t +5(9(v)) 7))

o (7))

.
+5(0“’))\f><1>< (0. (”‘(ﬁfgg)w(e“))»\/%))
A

t=1

K
~(v) 2
POk
o (g

)

+6<é<"’>-ﬁ>¢>(a<é“’)>~(yl i85+

5 (V) R g (0) .
)) +5(0()). f) <a(0(’u)).(%+5(0(v)).\/§>>

us (v) i v i
PILI Y “t +5(0< N2 )@ | a(d) | L “t)

- (v)
fr,i%( pm
k

5@E™). ))
2

+8(()). \/:>)

‘9(1!) f)@(a(e(u)) (yt "‘k (9(”)).@))

In the M step we calculate the derivatives of ¥ concerning ©; block by block to update each

m%(“ o +5<0<”>>\F ) ( e“”)(*”(i(“;))+6<é£“>>~\/%>)
o (g

ESVA

VSEA

ESEA

VSVA.

parameter. Firstly, by using the Lagrange multiplier on ¥, we update the block of m; by

(v 1 O~ 50
H) = EZZ’L(IC'
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Secondly, we update uy by setting g—‘l; = 0, with known 7,

(or H¥)), é,(f) (or é(”)) from last



iteration, then we can update py by

v 4(v)
2t uc y? +O’( (y)) 6(9(11)) \/gi ( ( )) ) 04(91c )

n 125“ K 25 Tra6)?
) 6 ) )
X Zz 1 Z?k) |: <( g(v)) b(v % + OZ(Q( )) b( ):| ESVA
w o(7™) - 560 \f () o)
2 Zi, ( - ) g Ez L2y 1+a(0()?
a(0%))-b; v . (v)
XLia 2 [ B (a(6). b<v>) +a(0C)) - by } ; VSEA
/11(¢U+1) _
T 2 5(v) j(v) .\ﬁf o(@™) | _ad™)
o Tl 00 - ST EE ey
( G(U) b(v)) v (v)
i Zi [ @ (a(00)b5)) +a(6™) by } : ESEA
S 2 o(n™) . 50 @) | _a@”)
P 0 21 IZS;” L+a(6,”)?

i
( (0(7’)) b(“ )
(e

x Ez 1 Zzl::)) [ 0(1})) b(u)) + O‘(ka ) : bZ(Z :| > VSVA.

Thirdly, to update n (or ) we set O¥/dn, = 0 (or 9V /9n = 0), then we can have

ESVA with known (,&(”“), 9(”)) from previous step and last iteration, we update o = exp ()

by solving the quadratic equation w.r.t. €7, then

st — U(ﬁ(”+1))

(1)
6"]

1 P 1
= 5T (ﬂ(v+1)70(v)) 4+ =
n n

{0 e S5 () 25 ()

i=1k=1

in which

T (a,00) = [ZZ 1 a(0)) 660 - 25 (s — i)

i=1k=1
¢ (a(8”) -0}

_ZZ 6z (Z—ﬂgfﬂ)). @(a(éﬁ)ybgz)) + o) o |

i=1k=1
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VSEA with known (ﬂ,&vﬂ),é(”)) from previous step and last iteration, we update o, =

exp (nx) by solving a quadratic equation w.r.t. e, then

o = eltY)
— ety
1 L (041) A(v 1
= T (Mk ¢ )) <
Qlem Z
= -

ESEA

with known (ﬂ(”“),é(”)> from previous step and last iteration, we update ¢ = exp (n) by

solving a quadratic equation w.r.t. €7, then

s+t — U(ﬁ(vﬂ))

(1)
677

1 R
= 5T (ﬂ(vH)’g(v)) +
n

n

X iﬂ (ﬂ(vﬂ)vé(” ) +n (1 + a(f) ) ZZ ZZ(: ( yi — i A(”+1)>

i=1k=1

T, (ﬂ(erl),é(v)) _ (1+a(é(u U) \/722 Zf;;) i — A(v+1))

1=1k=1

I e R
—a(6™) ;; AN (yi — i H)) : (a(g(v 9 513) +a(@@) b5 ;

VSVA

with known (ﬂ,(cvﬂ),é,(f)) from previous step and last iteration, we update o = exp (nr) by
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solving a quadratic equation w.r.t. e+, then

a_l(cv-i-l) _ U(ﬁ](cv+1))

ﬁx(ch)

1 S (v1) 4(v) 1
= ﬂT5(uk 0y, )+n7(v)
2> Zy ; Zik

Lo (241 500)2 Q¥ (v) (v) P
) () 5250 5 ) ()

in which

(0 07) = (R 30002 3D (™)

. (v) v)
a0 Y 2 (- i) - ZEaiZm)) b(k>) '
i=1 k /" Yik

a(@) - o)

Finally to update parameter 6; (or 0), we use Newton-Raphson method, so calculate the

first- and second- partial derivative of ¥ w.r.t. 0 (or 6). We calculate some pre-knowledge:

Ob,  4e? \F 9a(0r) 1, o g
89k_(629k+1)2 ™ 00y, _5(6 ).

Then we can have
ESVA

ov 2 420k _
aigk = _\/;' QZsz zk+Zsz |: ek)bik

29k + 1
9 46201“ d) (a(&l(;’)) . bzz))

+Oz(9k) — n 5 — +

T (e 1) ] |8 (a(e)(“)) : bf.g))

0% 8e20x - (v) \/> )y W 0\ 2
—_— = Z -9 Z bix — — k —Uk
00? (11 c20r) Z:: Z z +e )
Z (02 ZZU) g 2 e
X Z5 by, + bik g (629k+1)3
)y, p(v) _ B
X + Oé(ek ) bik Oé(ek) blk? ’

¢( (6”) b”) :
o ( (6. b(v))

o Yi— Mk ]2,
bi,k, = ) +0(6k) \/;,

a(0”) b — a(Ox) - b |
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VSEA

o
00

v

ESEA

VSVA

6 (a(@)-v)
x . (0) - b5 — a(0) - bur |
P (a(e(v)) . b(”))
8¢*n 2 NSNS ) 6, )2
— 24/ —-6(0 2570 — = (e? + e
7T(1+629)2 = (6) ;]; ik Uik ( )
n K n K 0 26
(v) 1.2 (v) 2 e ( be +1)
0] (a(é(v)) : bz('z,)) A (v)
x _ o +a@™) b)) —a8) - b |
@ (a(6®) b))
- 2
o (k) m

OV /06 and 9?W /06? are the same as VSEA in forms but b;;, has a different formula

Yi — Mk 2
£= T Oy

OV /06 and 9?W /06? are the same as ESVA in forms but b;;, has a different formula

Yi — bk 2
by = 480 \f

Then 0¥ /06, = 0 (or 0¥ /90 = 0) can be solved by successively better approximations, which

has been introduced in Section 4.2.2.

5.1.3 Model Selection

To compare these four models in the four-piece distribution family after estimation, the Bayesian

Information Criterion (BIC) is calculated for each model (the best one yields the smallest BIC
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here).

[3K é; (g = O)} log (n) — 2line (O* | y), ESVA
BK —T(a=0)]log(n) — 2in: (O |y), VSEA
BIC =
2K +1—-1I(a=0)]log(n) — 2. (0" |y), ESEA
[4K —-1- f: (o = 0)] log (n) — 2lin. (| y), VSVA
k=1

where I(z) is a binary function to show whether z is true or not. I(x) is 1 when z is true,
otherwise 0.

This four-piece distribution family has also been extended to mixture regressions in my
thesis. For the time reason, the model (VSVA as an example) and detailed EM algorithm steps

are attached in Appendix D for your interest.

5.2 Simulation Studies

To observe the performances of our four-piece distribution family, we use Bayesian information
criterion (Schwarz, 1978) (see Chapter 2.5.1) to check whether the model has been improved
from meclust (Fraley and Raftery, 2002), BIC is a good criterion for model selection among
different models. In our skew normal mixture model, for a K —component mixture dataset, at
most K more parameters are added in the modelling to describe the skewness of each component
compared with mclust where skewness parameters as are all assumed as 0. Our four-piece
distribution family uses the mclust results as initialisation and carries out D’Agostino’s K-
squared test (D’Agostino, 1970) for each initial component (cluster) to check the existence of
skewness before carrying on the EM algorithm in our four-piece distribution family. In Table 5.1
for each setting (from setting I to setting XVI), we sampled 100 times and each time modelled
it with our four-piece distribution family. Meanwhile, the BIC value calculated from mclust
was kept to compare with our four-piece distribution family’s BICs. The Im_ R (Improvement
Rate) is the percentage where at least one of our four-piece distribution family’s BICs was
superior to mclust’s BIC. In Table 5.1, K is the underlying component number, n is the sample
size, (u, 0, ) are the underlying true skew normal parameters, 7 is the mixing proportions
which add up to 1 for each setting, and ‘Model’ indicates the underlying true model out of
four different models in the four-piece distribution family regarding the values of o and a.
As we can see from Table 5.1, there is at least a quarter (25% from setting VIIT and setting
IX) chance that the model selection for the mixture dataset is improved with the help of our

four-piece distribution family. Even in setting XIII where real underlying as are all 0, there is
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No. n ™ o o Model Im R
I 400 (25%,35%,40%) (0,-3,2) (0.5,1,1.5) (-2,0,2.5) VSVA  44%
I 400  (25%, 35%,40%) (0,-3,2) (0.5,1,1.5) (0,3,0) VSVA  89%

I 400 (25%,35%,40%) (0,-3,2) (0.5,1,1.5) (2.5,2.5,2.5) VSEA  80%

IV 400 (25%,35%,40%) (0,-3,2) (1,1,1) (1.5,3,2)  ESVA  86%
\Y% 400  (25%, 35%,40%) (0,-3,2) (1,1,1) (2.5,2.5,2.5) ESEA  81%

VI 300 (40%,60%) (0,2) (0.5,1) (—2,2.5) VSVA  52%

VII 300 (40%, 60% ) (0,2) (0.5,1) (0,2.5) VSVA  51%

VIII 300 (40%,60%) (0,2) (1,1) (0,2.5) ESVA  25%

IX 300 (40%,60%) (0,2) (1,1) (—2,2.5) ESVA  25%
X 300 (40%,60%) (0,2) (0.5,1) (2.5,2.5) VSEA  70%

XI 300 (40%,60%) (0,2) (1,1) (2.5,2.5) ESEA  70%

XII 300 (40%, 60% ) (0,2) (0.5,1) (0.5,0.5) VSEA  46%

XIII 300 (40%, 60%) (0,2) (0.5,1) (0,0) VSEA  38%

XIV 300 (40%,60%) (0,3) (1,1) (—2,2.5) ESVA  66%

XV 300 (40%,60%) (0,3) (1,1) (0,2.5) ESVA  64%

XVI 300 (40%, 60% ) (0,3) (0.5,1) (0.5,0.5) VSEA  89%

XVIT 300 (40%, 60% ) (0,3) (1,1) (2.5,2.5) ESEA  92%
XVII 300 (20%, 80%) (0,2) (0.5,1) (2.5,2.5) VSEA  81%

XIX 300 (20%, 80%) (0,2) (0.5,1) (0,2.5) VSVA  72%

XX 300 (20%, 80%) (0,2) (1,1) (0,2.5) ESVA  53%

XXI 300 (20%, 80%) (0,2) (1,1) (2.5,2.5) ESEA  84%

Table 5.1: The Improvement Rates (the percentage where at least one of our four-piece distri-
bution family’s BICs was superior to mclust’s BIC) under 21 different settings where 4 possible
mixture model types and different skewness degrees were simulated. Repeated each scenario
100 times by resampling and replicating the estimation process to produce each Im R value.

still a good chance of 38% to improve the modelling with our method considering meclust has
assumed o = (0,0) beforehand. It comes from the benefit that one fewer o is used to depict
the dataset in our ESEA model, then BIC value is improved by taking one fewer parameter
into the penalty. Therefore, judging from the results in Table 5.1, our four-piece distribution
family is a good complement to the existing R package mclust to adapt to any possible skewed
mixture data.

To take a closer look at the estimation accuracy of our four-piece distribution family under
different scenarios, we calculated the Mean Absolute Error (MAE) for each estimate value
and Rand Index (Rand, 1971) which is a measure to quantify the agreement between two
classifications based on the class label of each object. As shown in Table 5.2, we simulated
some scenarios from Table 5.1 (marked with Roman numerals) and compared them with the
results from meclust (the ones with dash notation). As we can see, the estimation accuracy
could be improved vastly for the scenarios with both skews being evident. For scenarios with
an evident skew in one component, some statistics could be improved. In scenarios where skews
were not obvious in both components, our method could not exceed mclust because of the

nature of mclust which assumes the inexistence of skewnesses for all components.
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Results  from  four-piece distribution | Results from  package meclust

No. RI MAE,, MAE, MAE, RI MAEL MAE’, MAFE’,
VI 92.6% 0.06 0.14 1.42 95.5% 0.06 0.24 2.31
VIII 51.0% 0.31 0.13 2.13 49.9% 0.28 0.23 1.71
X 90.0% 0.06 0.12 1.22 86.8% 0.09 0.23 2.50
XI 73.3% 0.11 0.13 1.03 67.4% 0.17 0.31 2.50
X1V 97.9% 0.05 0.10 1.29 98.2% 0.05 0.30 2.30
XVI 93.5% 0.06 0.08 0.61 93.5% 0.05 0.07 0.50
XVIII | 87.3% 0.09 0.12 1.26 85.9% 0.10 0.28 2.50
XX 66.8% 0.17 0.15 1.57 63.7% 0.17 0.29 2.12

Table 5.2: Comparison of the estimation performances between our four-piece distribution
family and mclust. RIis Rand Index. MAE,,, MAE, and MAE,, are the Mean Absolute Errors
for the estimated parameters p, o and a. The left-side four statistics (RI, MAE,,, MAE,,
MAE,) are the results from our four-piece distribution family. The right-side four dashed
statistics (R, MAEL, MAE’,, MAE’,,) are the results from R package mclust. Repeated each
scenario 50 times by resampling and replicating the estimation process, then the average values
were recorded in this table.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, first of all, a brand new penalised likelihood fusion model is established to
handle the multivariate high-dimensional mixture regression problem. In Chapter 3, we ex-
amine the group structure of our drug-and-gene dataset by adopting LASSO (Tibshirani,1996)
onto each drug individually and using Jaccard Index to find similarities between them. Then
inspired by the likelihood fusion model (Oftadeh, 2017), we introduce our penalised likelihood
fusion model to adapt to the high-dimensional property of the gene expression data. With the
Expectation-Maximisation algorithm (Dempster et al., 1977), the parameter estimation of this
model is realised, at the same time, the penalty term and the number of components are selec-
ted through the Bayesian information criterion method (Schwarz, 1978). In the following drug
data application, after dimension-reduction steps (individual LASSO and marginal analysis),
the whole penalised likelihood fusion model is applied to the drug-and-gene dataset to reach the
result that 227 anti-cancer drugs are divided into 9 groups with significantly correlated genes
discovered for each group. The likelihood comparisons from cross-validation can manifest the
superiority of our model over mclust (Fraley and Raftery, 2002) in clustering anti-cancer drugs
when gene expression data are provided.

Next, we take missingness into consideration for the aforementioned penalised likelihood fu-
sion model by introducing subscripts to exclude missing data in each anti-cancer drug. Mean-
while, the LASSO-penalty (l;—norm) is generalised to the /,—norm (Hastie et al., 2015) to
obtain a more flexible result. With a warm start, the relative error also decreases in the simu-
lation trials compared with /; —norm case and without-a-warm-start case. Then our /,—norm
penalised likelihood fusion model considering missingness is constructed with ¢ = 0.5 as the

preferable choice for our drug and gene data application. In the numerical results, this time 187
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anti-cancer drugs are divided into 5 groups and the related genes are also marked with weights
for each group. Compared with the previous numerical result, sample size n increases from 111
to 397, which benefits from our subscript (to avoid missingness) upgrade. Moreover, fewer drugs
and more genes are put into our modelling with {; —norm upgrading to lp 5—norm (and a warm
start) to improve the accuracy (conclude from simulations). In summary, Figure 3.2.5 illus-
trates our final result by relating the anti-cancer drug IC50 sensitivity data to gene expression
data. After that, we propose another method (different from the former BIC method) based
on a matrix imputation method primePCA (Zhu, Wang and Samworth, 2019) to determine
the number of components K. This new method can be used in not only complete-case (data
without missingness) but also incomplete-case (data with missingness) problems.

From Chapter 4 we commit to the inherent skewness of our drug data. With our new
location-scale model and the introduction of a quadratic a—penalty, we use the EM algorithm
to estimate the parameters in this model successfully. The next asymptotic analysis reveals the
behaviour of our estimates under certain conditions for two scenarios ‘underlying true « is 0 or
not’. With our efforts, the asymptotic distributions including detailed variance formulae for the
MLE estimates of the skew normal distribution are discovered. The following bootstrapping on
one certain drug shows, to some degree, the validity of our variance calculations by deriving the
confidence interval for the drug data skewness. The simulation studies also show the superiority
of our method over the constant penalty from Azzalini and Arellano-Valle (2012). In the
next anti-cancer drug data applications, our modelling has detected the inherent skewness
within most drug data, where the data from 131 out of 187 anti-cancer drugs manifest Fisher’s
moment coefficients of skewnesses larger than 0.3. In Chapter 5, inspired by mclust (Fraley and
Raftery, 2002), we put forward the four-piece distribution family to look at skew normal mixture
problems. With the aforementioned EM algorithm, the MLE estimation is accomplished after
the model selection process motivated by optimising the BIC value. The following simulation
studies verify that our four-piece distribution family is a good complement to the existing R

package mclust when confronting mixture data with potential skewness features.

6.2 Future Works

e When building our /,—norm penalised likelihood fusion model considering missingness,
we only compared the performance between ¢ = 1 and ¢ = 0.5, the choice of ¢ could
actually be any number within (0, 1]. A proper grid could be set such as 0.1,0.2,...1 to

select a more convincing ¢ based on cross-validation or other criteria.

e When dealing with the missing data in our applications, we excluded them by introducing
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subscripts to avoid the discussion about the actual underlying values there. We have left
the space for finding a good matrix imputation method after which we could also apply
our [,—norm penalised likelihood fusion model to the completed dataset. Actually we have
tried Soft Impute (Mazumder, Hastie and Tibshirani, 2010) and primePCA (Zhu, Wang
and Samworth, 2019) to complete the matrix imputation problem separately in the first
step. But the following applications in our [,—norm penalised likelihood fusion modelling
showed inferior performances compared with our original method using subscripts. Thus,
whether there exists a good imputation method for incomplete data before applying them

to our methodology is still in the air.

For our location-scale skew normal model with a quadratic a—penalty in Chapter 4, we
have not thrown it into the high-dimensional situation, since the introduction of one
more penalty term could result in a much more complex procedure of selecting these
two tuning parameters. There is also a big space left to build a multivariate version of
the location-scale skew normal model with the quadratic a—penalty which could even
be used to analyse our complete drug-and-gene dataset when extending to regression
and high-dimensional version. If we continue linking with Chapter 5 and also introduce
subscripts to avoid the missingness in the given dataset, after some great efforts, finally
lq—norm penalised likelihood fusion model considering missingness and skewness could
be accomplished, where our entire anti-cancer drug and gene expression dataset could
be analysed with more considerations. But it could bring about the choices of multiple
penalties and sparsities, which are two more big topics to research. I hope our research
could arouse interest among researchers to move forward in this drug-and-gene statistical

field.

In this thesis, we discussed about the classification of drugs with our modelling. But it is
still of interest for medical researchers to classify patients’ cancer cells at the same time.
Then it will become the modelling and clustering on our data X. There are some papers
relating to mixture modelling with concomitant variables, see Huang and Yao (2012),

Huang et al. (2013), and Huang et al. (2018).
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Appendix A

Cyclic Coordinate Descent Calculation

Let ¢ =1 and (3.2.6) can also be expressed as

J (v)
R T v
Byl = argminf = arg min Z { Iy = 9651 = XBilly + 731 ni - A ||ﬂk-||1} )

k

which can be seen as a summation of J LASSOs sharing a common coefficient vector 3.
Our cyclic coordinate descent starts by deriving the partial derivative w.r.t. each coordinate

direction:

(n+1) (n+1) (n+1) (n)
ki = argerglnf( ,--.,Bk(, 1Y IBk(Hl B )
of A T

= i % 2B XT —X X 9
OBk P le ok X +Z (i) (=) Br(—i)

v W
- Z X(g)z Yoy — 9G)) + Z Tin 1) - Asgn(Bri)
=0 (6.2.1)

for i € {1,2,...,p}. When each variable 8; of 8, is updated once, round n + 1 is finished.
Here X(;)(—;) means the sub-matrix X(;) without i-th column. As we have standardised X;

by each column, so we have —— o (j)ZX(j)Z = 1. Then, for convenience, we can define:
4)

J _(v) J (v)

7j 5Tk

A=N" 1k T Xy =y 2k
2 5 XoXei=2 =g,

j=1
J T(Z) J (1:)
Ik xT T _

5= ;—k XGyX)-0Bri-n= 2 *f,k Xy (Y6 = U)

j=1 j=1

J
=Y ng M

j=1
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Equation (6.2.1) can be written concisely as B, - A+ B+ C - sgn(8,;) = 0. This is a soft

thresholding. After rearranging, we have

—B-C
T B<-C
~(n+1
nr =<, B <C

=B B>C.

Continue rounds of updates cyclically until

7 (a) -1 (8)]
7 (8" B

here ,Bl(f) is the 3, after ¢-th round of updating, thus ,Bg) = ( ,(ctl),ﬁ,gtz), e ,B,i?).

EM Algorithm for Penalised Likelihood Fusion Complete

Case (Without Missingness)

E-step

Using the Bayes theorem considering the current information (the v-th parameter estimates)
and the given data, the hidden variable indicator z;, can have a proportional expectation with

weights 7'('](;)) :

e
= Pr(zjr=1]y,, <I>(v))
= E(z | Yj»‘I’(U))
" fuly; |0, X8, al"%)

K
2 m ey | ag X8 o)

() —a1-X8N T (v, —a;1-%8) N
(zw;ﬁ;)m exp{(y’ 01-X8,") (y,=oy1-XB, )} X exp (n |L;j; ) o
k .

(v)2
20']:

K ) —o;1-%80) " (v —a;1-%x8) Allg¢” '
> ﬂf n/z SXP Y — (yJ v - ) <yJ = : ) X €xp = “ (% ! (}1)2
770']2) U'k G’k

)2
20,;
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After replacing the zj; in lb with T(k), we reach the expectation function

Q = Qe

= EZ\Y X, &) [log( Lcom(q)))]

= ZZ T k -log (mx) ZZ P log( 277)”/20,?“)

j=1k=1 j=1k=1
J K _(v) T J K
_ ZZ ]: yj —o;1=XB)" (v —ajl—Xﬁk)_ ZZ HON nA |8kl
20,% : Jk o) '
J=1k=1 Jj=1k=1

M-step

To update the estimate of ®, we maximise Q(® | <I>(”)) with respect to @ block by block.

Starting from the intercept «;;, we let

ZJ: f (v) (yj—oy1— Xﬁk) (yj—cj1-XBy,)
k=1

6@ B = 20’
day da
K n (U)
= _ZZ (yij — aj — ] Bk)
k=1i=1
K ('U) n
- -3 (zzﬂ)
i=1 i=1
= 0.

If we standardise X by column-wise way before the EM algorithm, we can have Y x? 3, =0,
i=1

7

hence Z

- (3 5= nay ) = 0. Then

5w

o — =1 —y
J n 7

where g is the mean of every jth column. Therefore, the calculation y; —a;1 is a centralisation
operation to each column of Y, and «; just depends on the original data matrix Y, which is
independent with other parameters such as 7, o, 8, T, A. Accordingly, We don’t need to
update «; in the iteration of the EM algorithm. We replace it with g; in the next steps.

To update m;, with the constraint f: 7 = 1 and 7, > 0, we turn to Lagrange multiplier

k=1
for help, thus the corresponding Lagrangian function is

J K
L(7Tk,/l) = ZZ () 1og 7Tk <Z7Tk—1>

j=1k=1
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and to maximise this function, we differentiate it with respect to 7 and equal 0

J (v)

aL(ﬂ'k, /1) ]k
STk ) —A=0
87% Z Tk ’
Jj=1
after rearrangement, it gives
J
o
ﬁI(Cerl) B T (6.2.2)
Substitute the 74 with our estimate 7" we get
J
K K '21 Tg(k)
J:
= = 1
D M=)
k=1 k=1

J

Hence A = Z Z 7! k . From the definition of 7, we have Z T(U) 1. Thus A=>1=1J
k=1j=1 j=1

Finally we update the in the v-th EM iteration to reach the (v + 1)-th estimate of my:

J
S T(k)
A(+D) =’

k = T
To update the block of 3,,, we can apply

9 i i T;Z)'(YJ’*?le*Xﬁk)T(ij.@l*Xﬁk) P i Z ('u) n)\H,GkHI

0Q J=1k=1 207, =l Tik on
0Bk 8, a8,
T 2r ) XT (y; — 51— XBy) a7y A sgn (Br)
= Z 20.2 +Z e
j=1 k j=1 k
T ) T T ) T T )
21 T - X (yj — g51) ;Tjk -XTX3, 21 ) nA - sgn (Br)
= = 2 + = 2 + 1=
Ok O Ok
= 0
Thus
J (Z) J (Z)
Z Tjk_ XT (y; — 71 Z Tik_ XX, — Z Tjk ‘nX-sgn(Bg) =0
j=1 Tk j=1
We can write it as
XTy* - X TX*3, — Z 70 n-sgn (Br) =0, (6.2.3)

where sgn (Bk) = (sgn(Br1), - - -, sgn(ﬁkp))T is a vector of sign functions with length p, and X*,
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Y™ for given k are defined as

(v)

X X
QG @\ | x = x
= diag < TQk Yoy Lok > = 7w ) (6.2.4)
o ok Ok : :
X X
ok
T(v) —
2 (y1—wl)
SO @)\ /2 (v — 1
= diag ( LTS /S > Y = s 2 = g21) , (6.2.5)
O’k O (o :
T(/U) —
e (yg —ys1)

where for every entry of X*, X is a n X p matrix, so X* is a nJ x p matrix. And for every
element of Y*, y; is a n x 1 vector, so Y* is a nJ x 1 vector.

To solve the equation (6.2.3)), it suffices to solve the following LASSO problem

J

. 1

](€+1) = arg,emm 52 XI@k (J ngk +ZTJ’€ e A8yl
k j=1

- egain 3355 -0+ S M
k j=li=1

= argﬁmin ||Y* Xﬂk”z‘*‘ZT]k - A|Blly
k j=1

As explained above, and B is a p x 1 vector, therefore, it is a LASSO problem with nJ
observations and p covariates.

To update oy block, we set

oQ

2
oy,

which can yield

J (v) n+2 J _ ~
0= > 7 —Zm *ak Ay — 51— X8 (v; — vyl — XBy)
]:

! 1
= 2ot (Bl
j=1
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Rearrange the equation, we get

J
Sy — il = X8 (v — 51— XBy)

0 = (n+2)02— N8y, + nko) o — = .
> T
j=1
Thus we can update the block of o by
~(v+1) nA ||/3k||1
o = —
2(n+2)
J _ T _
A8, Z: Yy 1= XB8)" (v — 51 — XBy)
IR + = :
2(n+2)

(n+2) XJ: T(k)

j=1

The EM algorithm alternates between the above E-step and M-step until convergence. The
stopping rule that we impose to confirm the convergence is based on the relative change in the

log-likelihood. We say that the convergence is attained when the following tolerance holds

plinc(@(wrl)) - plinc(q)(v))

<,

where ¢ is a reasonably small value (default value of € is 107°) and pl;,.(®) is calculated by
K

Line( Z log {Z 771/2 exp [_ (v; — 951 — X,Gk)QU:yg )

k=1 (27mk)
n||B3 1
oy (B 11
k

Real Data Results from ¢ = 1 Case

The part shows the table mentioned in Section 3.2.5. Although ¢ = 1 case has a strong
power of clustering, it still has a few differences on the detailed clustering results compared
to the final results in our main text. As shown in Table 6.1, Table 6.2 and Table 6.3, in
total, 14 anti-cancer drugs are clustered into different groups (i.e. PAC.1, TAK.715, BX.912,
AS605240, Enzastaurin, GSK429286 A, Quizartinib, CP724714, KIN001.266, OSI.930, SB52334,
Methotrexate, Navitoclax, MK.2206), which can result in the changes of Group Size, 71.x and
. And more genes are selected out for each group, which manifests a less sparse coefficient

result for 3.
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Table 6.1: From ¢ = 1 case, we find (A = 0.025, K = 5). The clustering outcome and group
characters from this point are listed. (Part 1)

Group Drug Group Number of
Label Names Size Related Genes | 1.5

LFM.A13, SGC0946,
Ruxolitinib, FMK,
STF.62247, Tivozanib,
Zibotentan, VNLG.124,
T0901317, Selisistat,
Veliparib, Lenalidomide,
1 Vismodegib, SL0101, 27 166 0.145 | 0.661
10X2, UNC1215,
Temozolomide, PFI.3,
GW.2580, XMD14.99,
KINO001.236, FR.180204,
KIN001.270, XMD15.27,
Tamoxifen, VX.702,
GSK1904529A.
NSC.87877, Midostaurin,
JNK.9L, PF.562271,
FT1.277, OSU.03012,
Shikonin, Embelin,
FH535, Dacinostat,
Bexarotene, TW.37,
Luminespib, Linifanib,
Bryostatin.1, Rucaparib,
AS601245, Alectinib,
WHI.P97, CP724714,
Cetuximab, PF.4708671,
AICA .Ribonucleotide,
Vinblastine, Cisplatin,
2 Docetaxel, Tretinoin, 52 144 0.278 | 0.973
Gefitinib, Vorinostat,
Axitinib, GW441756,
Lestaurtinib, Motesanib,
KU.55933, BX795,
NU7441, Doramapimod,
JNK.Inhibitor. VIII,
PD173074, ZM447439,
RO.3306, Serdemetan,
Dactolisib, AZD8055,
CCT007093, EHT.1864,
CCT.018159, SB505124,

Q>
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Table 6.2: From ¢ = 1 case, we find (A = 0.025, K = 5). The clustering outcome and group
characters from this point are listed. (Part 2)

Group Drug Group Number of
Label Names Size Related Genes | 1.

Q>

Piperlongumine, PFI.1,
YK.4.279, XAV939.
CP466722, BMS.345541,
TL.2.105, Idelalisib,
Cabozantinib, JW.7.24.1,
NPK76.11.72.1, NG.25,
TL.1.85, Tubastatin.A,
I.LBET.762, BIX02189,
KIN001.244, Masitinib,
3 KIN001.260, PIK.93, 32 212 0.171 | 1.057
MPS.1.IN.1, TPCA.1,
NVP.BHG712, PAC.1,
Fedratinib, Foretinib,
Y.39983, YM201636,
TAK.715, GSK429286A,
Quizartinib, OSI.930,
QL.XI1.92, XMD13.2,
KIN001.266, SB52334.
Doxorubicin, Etoposide,
Gemcitabine, Vinorelbine,
Mitomycin.C, QS11,
Ponatinib, HG6.64.1,
JQ12, GSK650394,
DMOG, BAY.61.3606,
IPA.3, Thapsigargin,
Obatoclax.Mesylate,
BMS.754807, Linsitinib,
Bleomycin, Phenformin,
Pazopanib, Epothilone.B,
Tipifarnib, SB590885,

4 Enzastaurin, VX.11e, 46 132 0.246 | 1.553
NSC.207895, MK.2206,
Amuvatinib, Cytarabine,
Nilotinib, CI.1040,
Temsirolimus, Bosutinib,
AZD7762, Tanespimycin,
Elesclomol, Nutlin.3a,
Palbociclib, PD0325901,
X.57..7.0x0zeaenol,
Talazoparib, rTRAIL,
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Table 6.3: From ¢ = 1 case, we find (A; = 0.025, K =5). The clustering outcome and group
characters from this point are listed. (Part 3)

Group Drug Group Number of
Label Names Size Related Genes | 7.k
ICL1100013, SN.38,
Trametinib, Dabrafenib,
Bleomycin..50.uM.
X5.Fluorouracil, AR.42,
Ispinesib.Mesylate,
AT.7519, GSK1070916,
Daporinad, QL.XII.47,
ZSTK474, WZ3105,
Genentech.Cpd.10,
Sepantronium.bromide,
CUDC.101, Belinostat,
5 CAY 10603, Pelitinib, 30 216 0.160 | 1.574
Omipalisib, OSI.027,
CX.5461, PHA.793887,
PI1.103, GSK690693,
SNX.2112, QL.X.138,
THZ.2.49, THZ.2.102.1,
BX.912, AS605240,
Enzastaurin, Navitoclax,
Methotrexate.

Q>
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Appendix B

Proof of Theorem 1

Proof. From mean value theorem (fi, 7, @) is the parameter values between the MLE (f, 6, &)
and underlying real parameter values (f, 5, & = 0). Use multivariate Taylor series expansion of

Lagrange form at MLE (i, 6, &):

ol
0 B
— ol oA
0 - wre p=p,0=06,a0=&
ol
0 inc
3x1 dox 3x1
ol
o
_ alr. . o
- wre p=p,0=6,a=0
oLy,
da 3x1
U, U, 9, no
ou2 oudo Ouda F K
%1z, %1}, %17 A~
T oot 9t doba p=po=oa=a [0 =0 :
azl;nc azl:nc 82l:gc @
dadu Jdado oo 3%3 3x1
where
M w w—p
sl = |6|+t|le—-6], te(0,1)
a 0 &
To make it simple, we use block matrix to simplify it.
alj c 7 h
3;: n—
o Ci1 Cho o
- # p=p,oc=c,a=0 — |p,:;l,o’:5',a:5¢ o—0
o Ca Oz .
da o
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where

agl;gc aazlénc

_ w udo

Cu= 927% 2%
0 l'inc 0 linc
dodu Oo?

Then we denote it as

The inverse of it is

where

11
12

21

22

opda o21*
C = C = inc
12 s | 21 ErEm
doda
(711 (712
¢ = |p=p,0=6,0=a -
(721 (722
1 Ch Cp
c = |p=p,0=5,0=a
CE] CEZ

821

inc

dado

_ _ _ —1 _
Cri' +C'Cra (Cao — Co1C' Cra) Con C1f

—C1' Cha (Coa — 021Cﬂ1012)_1
— (022 - 02101_11012)71 02101_11

(Ca2 — 02101711012)_1 .

Therefore, we can solve the equation now.

That is

11

21

A, . N
op K
-1 | ar N
-C Zze | |u=io=s0=0 = |6
8l;nc
da
al;nc
o _
H=f,0=6,0=0 T V12 |u:ﬁ,o:6,a:&
Olnc
do
al:nc
on _
p=p,0=0,0=0 ~ 22 |u:ﬁ70:67a:a
alinc
do
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inc

o

inc

Oa

H=f,0=5,0=0=

p=f,o0=5,a=0= Q.

o

) ’ C&Z'_

=

Q>

wmc

Oa?

=
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~ \u=fi,0=6,a=0= 0, then

e

B o H—=p
-Chn |u:ﬂ70267a:d p=p,0=0,0=0—
alr, . N~
5 6o
8§TLC
_ I ~
—C31 lu=p,0=5,0=a p=p,0=5,a=0= &
*
alnu‘
oo
For simplicity, we denote
62[:’”6 82l;nc a/ c
C o op? opdo o
1 = 2% 27% -
9 linc 9 l’inc c d
oo do?

where A; = & (y’;“

convenience we define

)71/2

and § = a (1+ a? , then for

e Pl
p=p,0c=0,0=x& — 8,&2 H=f,0=0,0=0Q
L n @m0l 5 @ e o(A)
o2 0 = B (4) o2 @(&)2
_ _ _ _ 621:7’7/6 | _ _ _
Clu=p,c=5,a=a — auao_ p=p,0=,a=a
_ I & 1 a &9 (4)
= —%;Az_g;(yz_ﬂ)"‘?;@(j&)
@ e(A) @, ()
T H TR T 5T ey
Pl
d|u:ﬂ,a:6,a:& = 902 |u7u70':<7 a=a
2 = D
= %*ﬁZ(yi*/«L)Az*g (yi — )’
=1 i=1
2~ o) ates e o(4) o
53 ;(yz_ﬂ) @(Az) - 4 P (yz_/u) (I)(/L)A’L
& & 2o (4)
74 v (yi — i) > (AZ 5 -
We also denote:
2 B 2 a2l:n<‘ B '
doda €
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where

b ‘;L:ﬁ,a:&,@:& = 8u8a |u=ﬁ,o=6,a=5¢
_ n\/2/7r3 . i ) (b(/%z) _'_i ¢(/Ez) IE
7 (1+a2)" az‘:1q)( i) Uz:lq)(Ai)
EV2r o) p axs o(A)
= AZ + = — Bz
a(1 —|—0z2)3/2 ; o (Az) o ; P (Az)2
Pl
€ lp=p,0=5,0=a = doda p=p,0=0,a=a&
B 2/ . - 1 & o (Ay)
= (1 +@2)3/2 ; (yi — ) 52 . (i — ) o (Az)
1 ¢ o (A) at\/2/r & (A -
+= i = Az + [ T Az
02;@ “)@(Az) 62(1+a2)3/2;(y “)<1>(Al)
G (A
+—= 7 — Bl
72 zz:; (y ) > (Ai)g
And
Ol
C22 |,u:/],o':6',oz:d = Ja2 n=p,0=c,a=a

(1+a2)"? = 7 (1+a2)® (14a2)*? = @(4)
(A 1 ae = 0(A) s

_ ") A.B2— B2 — 2\
2w (a2 gy

As (f1,6, &) is restricted to | — ] < Kyp — 0, |6 — 6| < Kgn — 0 and |& — 0] < kan — 0, we

can also give that

‘/j - la| < Rpun s |6' - 5" < Ron, |07| < Kan-
Then we also have
_ - - . 1 1
|H|§|M|+Runa 0750n§0§0+ﬂana TQS —
o (6 — Kon)
For
a a B 11 a2l = o (A) i
p=p,0=0,a=0a p=p,c=6,a=0 — _?"‘? - ﬁ%zl (I)(/Il) l—O
i=
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Because

1 1 o+0 0+ 0+ Kgn
——4+—=| = |5-5 5 — O(1) - kgn.
‘ 52 " 52 7 =0l 5a5z = |&2(a—fem)2 = O Fon
And for function ¢ (z) /® (x), when x < 0, we have
¢(x) 1+2° ¢(x) _1+2°
< , thus, < <
¢@ =l e T a2 ST

We can find a positive constant Sy, when = > —fy, as ¢ (z) < \/% and @ (z) > ® (—f), so

) 1
S0 T@) S Var (<)

Meanwhile, when x < —f3,

_o(@) 1oL
SO Eew - e

Then

|| 2

\/5‘5| _ o /2
T V1t az T

_ | \/5
o (1 +0—/2)3/2 T

(Lagrange form of Taylor series expansion at 0, @'is between 0 and &)

IN
=l

(VN (vi—htR—R & 2 <
= . —_— —_— —6
@ (n ;( o o + 7r|’
N]- n i ~ 2
< jal- (2L (Bt Lle—al e 215
an el (o g g ™
~ 1 n L ~ 5 ~ 2
< o [—2 1 yi — +Iu~u\ 7 /2
0~ Kon N | o o 0 — Kon, s
~ 1 n 7;_~ — 2 _
< o [ 1 vi—i\|, 1A u|+\f‘5‘
0 — Kgn N - o 0 — Kon T
e (nfl/)+mm O (1) + Kan 0(1)]
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Thus, from the result above, we can derive

LI~ (yi—i)| _ 1|~ (vi—i+i—i
nz< o > N nz( o
i=1 =1
gl Yi — i %ju—mli
- an = o o o
~ 1 n i_~ ~ =
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O — Rgn T =1 g 0 — Ron
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- g2 n;< 2 )+ o
~ —\2
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5—2
~ ~\ 2
< 2 1 . <yi M) i
(0= Fon)” N o
~ —\2
L BB
(6_5071)2

= O () 1= il O (n12) + (

= Oy () +hn -0y (n712) 4 12,0 (1)
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n
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=
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1g~ o(A) I~ 0(A) o oio oy, L $(A) 1 11 _
=1 =1 i=1
L o | T(Ai==B0)| 1| ;o ( 1)
< 21N 4l SIS AR (14 =) -1 (4 < —
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1o~ - 1 1 e - 1
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= kan- 0, (n-1/2)+@nnan 0, (1) + K2, - 0, (1)

where I(z) is an indicator function, I(x)

I(z) =1/ < L.
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Now we can find

a
- |p=p,0=5,0=a

a

;L:ﬁ,o:&,azo‘

1 a1 - o (A) -
= ‘_02+02 T & o (4
a2 1 < 6 (4)°
HETDY

IN
Q
_

) “Kon + Kin . OP (n—l/Q) + Kﬂnﬁin -0 (1)
+Hin -0 (1) + K’in : OP (1)

= Op (1)'“0n+“in'op (1).
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2/ {32(;

56— n) (1+5/2)‘7/2|145/2|542+|&a|}

(Lagrange form of Taylor series, @'is between 0 and &)
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From Lagrange form of Taylor series at 0, here A’ is between 0 and A, we can have

(L) 000 [s@)], &
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From Lagrange form of Taylor series at 0, here & is between 0 and &, we can have
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Moreover, we calculate d/n
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Here we again use Lagrange form of Taylor series expansion at A; = 0 to reach

igAi z((ii))_q)ig)) = 0(1).;214@2 <0, (1)- K2
L () |5 - s3] - o w =00
Then
()56 (573
- R[5 S - (5 6 () 8- (50) 88
< S (7 [5Gy sw) s ()
< 0,(1) Kan + O, (n71/2> ign + Op (1) - Kyun
5750 ()
) S () 1 (50 8
V2/m L~ (i i
G n;( 5 >]
_ 1%(%—”)“&)) 15— 5] 1il(y—u>¢((ii))_<y—u>i<(g>)
==\ 5 )9 65 on |~ c ) o(A &
< [op (nflﬂ)mw.opu)man op(1)}.m+op(1).nm+op (n71/2> Keom
0, (1) Kyn
= 0y (1) Fan+ Oy (07/2) < bign + Op (1) -

149



Q| Qi
SEI

Yi —

ﬂ) A3

IN

IN

IN

IN

+/€in : OP (1)

,‘iin . Op (n_1/2) + Hun"'@in ' Op (1) + Kin : OP (1)

Eg A < a@[0(1)-0,(1) - Kan)
< 0p(1)-KY,
S| - s (1) (et a2
< 2 (EE) ey
i;(ygu>|

< a0, (1)
= K(ZITL'OP(I)
¢ (A) LIS (v EN 5
(P(Ai)QBl < | ln;( = )Bz O (1)
1 z": (yiﬁ>AQB o)
S Ran [O_p (1)+Hin OP (1)]
= 0p,(1) - Kan

150




IN

IN

e
- |li=ﬁ10=51@=@ _E |M=ﬁ,a=&,o¢=0

e (50 T ()
o (555 T (5 B (5 s
i & (5B (5 (57 e

+0, (1) - Kan

0, (n*1/2) bion + Op (1) - Ky + Op (1) Ko

O/Q% (2—2)2’;%2))—2 i(1+2)5/2]
¢ (

V2T 1 2 5 _2\5/2
Kan - Op <n71/2) + Kunkan - Op (1) + min O, (1) + /{in 0(1)
Kan - Op (n—1/2) + Kunkan - Op (1) + min 0, (1)

L= [6(4) 00°] ;o _ 1l
w2 oy eor) ] T 0(”'5 24
< KOy (7! )wnnan- b0, (1)
A, 2 2 i 2 B
i((g))2 - i(g)z (y = M) = Kan " ( 1/2) +f<¢p,n"fozn . "Qin 'Op (1)

151



=
)
2.
<
3]
VR
=3
| o)
=
N—
|
™
/N
IS8
NS
5
N———
| S
AL
— |
=+
P =
13 ~—
_ e O
= ~
S~— —
Y
™ | e
N 5
= N———
S |
Sl o
~ /N
IS8
< | S
~—| ~— ~_
SN I S|

(2171 “Yp (1)

, (n_1/2> + Kk

2 .
an

D (1) + Kgnk

2 .
un

Kon - Op (1) + Kum - Op (n_l/Q) + K

an ' OP (1)

3

+Konk

<2)m “Yp (1)

-Op (1) + Kunk

2
un

Kon - Op (1) + Kum - Op (n_l/Q) + K

L

—
£ Il
e

— |2

—
[

K

i
nz I
<

2/m
1+ a2

2

2
s

2

+ 9]

Yi — W

—lg —lg —Ie

VI

VI

-Op (1) + Kan - O (1)

2
an

p (1) + Kunk

2 .
un

Kon - Op (1) + Kpum - O (n*1/2) + K

p (1) + Kan - Op (n_l/Q)

2 .
an

p(l)} Ttk

an

. {Op (n_1/2) +Eun - Op (1) + &

Y (1)
Kon - Op (1) + Kun - Op (n_1/2) + K

an

+Eunkan - Op (1) + K

“Op (1) + Kan - Op (n_1/2)

2
an

“Op (1) + &

2
un

Fhuntan - Op (1)

152



IA

IN

2
1 + = 1|« —0 < /2 - - [2 2+a?
72141’312 — |O7|'7Z yz_M+5 “ Yi M+6 = +(342
n = n | o ™ o T 14+a
Lis~ (- 1\’ LI (yi— i\’
< lal |- . 1)+ 8] = : 1
_|a|ln;< ) 0()+|5|nl_1<0_) o(1)
o 1 = Yi — [ 3
- 1 1
+0 n; . oM +18"-0()
< Kan {OP n/? + Kpun - Op (1) + Kan - Op (1) + K5, - Op <n71/2)

‘75(‘41‘) 152 l - .52 l S 1252
(I)(Ai)AzBZ < H;Ala 0(1)+ni;Az B?[-0(1)
S Kan - OP (n—l/Q) + l{ld«’ﬂﬁa’ﬂ : OP (1) + ’k;in Op (1) + Kan OP (1)
= FKan-Op (”71/2) + Kpmbian - Op (1) + K2, - Op (1)
L R
n H=[,0=0,a=0Q H=[,0=0,0=
3\/2/xm lznjg N 2 2| [V2m(2-a)1 &9 (A) 4
(1+a2)?n | r(i+a?)’ 7 (1+a2)”? niz @(4) =
1 0(A) ¢ mol [T o(A) o, 2 1 (%—ﬁ)
+ = — A, B;"| + |— ——= B — - — =
n;q)(Ai) n;@( i)2 T on G
Kan - Op (n—W) + Bpntian - Op (1) + K2, - Op (1) + K2, - O (1) + Kan - O, (n—1/2)

+hpnkian - Op (1) + K2, - Op (1) + Kan - Op n_1/2> + Kpnkan - Op (1) + K2, - Op (1)
+hon - Op (1) + Kun - Op (n_1/2) + nfm -0, (1) + lﬁin -O0p (1) + Kan - Op (n_1/2)
+runkan - Op (1)

Ko - O, (n-1/2) + Kmkian - Op (1) + 62, - Oy (1) + Fn - Op (1) + Ky - O, (n-1/2)

Fhiy - Op (1)

153



Finally, we have the results
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Therefore, after calculation and rearrangement,
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As we can calculate now

e 2
E |u=ﬁ,a=6,a=o7 =

d f
e lu=p,o=,0=a =
c f
E : E |u=ﬁ,a=6,a=o7 =
b e | B
N p w=Ro=ga=a =

a f
e lu=po=,0=a =
Then
en2 dof]
()~ ) lemprmra=s
c f b e_|
n n n n| P70
b\> f
o) Tan lp=i,o0=0,0=a

KsinOp (nil) + KunkonOp <n71/2) + KonkanOp <n71/2>
+ (Fun + ’fom)2 -0p (1)
4c, _
6720 + O (n 1/2> + (Kyun + /-@m)2 “Op (1) + Ko - Op (1)
Op (nil/Z) + (Kun + Kan) - Op (1)
Hlth(QML : O;U (1) + Hin ' Op (1) + ’i<27n : Op (nil/z)
+Epunkon - Op (1) + Kgnkan - Op (1) + Kunkan - Op (n_l/Q)
Jrnin -Op (n71/2> + /@fmnan -0, (1)
R+ Op (1) + on2, - Op (1) + K5, - Op (n™1/2)
ik - Op (1) + K2, - Op (1) + Kgnkan - Op (”71/2)
+Hun/€anﬁan . Op (1) + '%inOP (n_l)

2 19) —-1/2 2 2 0. (1
Jr’{lﬂl’{om p \T + Hun’ian P( )

2
S5+ 0y (n7Y2) 4 (R + Fan)* - O (1) + Figm - Oy (1).

4
- + 0, (nil/z) + (Kyn + nan)z Op (1) + Kon - Op (1)

52

= 0y (W) 4 (s + ) - 0, (1)

2
= 2240, (n72) + (un + Fan)” Op (1) + gm0 (1).

52
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Moreover,

a d 4c _
(n o i) |u=ﬁ70=6,a=d = _?f +0p (n 1/2) + (“/m + “an)Q Op (1) + KonOp (1)
c\2 f _ _
{ ﬁ) ) n} lu=po=s.0=a = Op (n 1) + (Kun + Kan) Op (n 1/2) + (Fpun + “an)Q 0y (1)
b\? d 4 2 3 —1/2
ﬁ ' ﬁ |lt:ﬁ7<7:57a:07 = Kan- O;D (1) + KonKan * OP (1) + Kan OP (TL )
+K:H”K‘in <Op (1) + "@2m “Op (1) + Konkan - Op (n_l/Q)
+hunkonkan - Op (1) + ’ingp (n_l) + “lmﬁin -Op (n_1/2>
+Kin"<‘in : OP (1)
b c e _ 2 0 (p-1/2 2 2 5o 3 .0 (1
wnn lp=io=c,0=a = Kunkgn - Op (n ) + Kunfan - Op (1) + Kunkioy, - Op (1)
+K2, - O, (n‘l/Q) + gy - Op (1) + £2,0, (1)
+K/Ln/”"/an ' Op (n71/2> + /"iin”an . Op (1) + RunKonKan * Op (1)
+Konkan - Op (n_l/z) + Konk2,, - Op (1) + KunkanOp (n_l)
+I€inl-€om -Op (nil/z) + /-z?mOp (nil) + liinnan -0, (1)
2
{Z . (%) } lhepo—sama = KonOp (7)) + KunkonOp (n_1/2> + KontianOp (n_1/2>

+ (“lm + “an)g -0y (1).

After calculation and rearrangement

a d f c\2 f b\? d b ¢ e a re\2
A [ T ) IR Y A ho—so—a
[n n n (n) n <n> R anon n (n)lu_”’ ’
4¢ _

= — 62 + 0, (n 1/2) + (Kun + Iiom)2 Op (1) + kenOp (1)

As we have

Q.\;‘H
—
£

I
=
S~—

1 W _ 1 (U
Vi Sn g 1S (g — i) 7 \v,
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therefore, from (6.2.6)) we can reach

—4% 4 (Kpn + Fan)” Op (1) Op (n™Y2) + (Kpun + Kan) - Op (1)
+Kon - OP (1) + OP (n*1/2)

Op (V2) + (Kpn + Kam) - Op (1) —2% + (K + 50m)° O (1) y
+rgnOp (1) + Op (n71/2) -
—2% + 0, (n7Y2) + (K + Kan)” Op (1) + KonOp (1) .
i i
= Va
o—0

As kun = 0(1), Kon =0 (1), kan =0(1) and U, = O, (1), V,, = O, (1), so

vn (/5‘ - ﬂ) —deo - Un + Op (n71) + (Kyun + Kon + Kan) - Op (1)
—4co + Oy (n71/2) + (Kpn + Kan)? Op (1) + KonOp (1)

= Un + Op (’I’L_I/Z) + (K/;,Ln + Kon + K‘a’ﬂ) : OP (1)

— N(0,1)

& — 5-) —2¢co -V, + Op <n71/2) + (l‘fyn + Kon + Kan) * OP (1)
—4co + O, (n_1/2) + (Fpun + “an)Q Op (1) + £gnOp (1)

Vi

= 7 + 0, (nilﬂ) + (Fun + Kon + Kan) - Op (1)

d 1
— NI{0,=]).
(03)
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And we can solve (6.2.7) by calculating

b d _
n ’ n |u=ﬁ70=57a=@ = Hin -Op (1) + Kon - Op (1) + Kan - Op (n 1/2)
+hpunkan - Op (1)
c e
n : E p=p,0=5,a=& — Hanop (nil) + ’funop (nil/Z) + ’ianop (n71/2>
Hhin - Op (1) + Kunkian - Op (1) + K - Op (1)
R 0, (n1/2 0, (1 0, (1
n n lu=po=z,0=a = kon Op(n + Kpun - Op (1) + Kan - Op (1)
(b ] 2 —1/2 2 3
E ' ﬁ |H:ﬂ7‘7:5’70¢:a = K’anOP (n ) + '%MnK“anOp (1) + "{anOP (1)
+konOp (nfl/z) + KunkonOp (1) + KonkanOp (1)
+5anOp (n_l) + KunkanOp (n_1/2> + mfm/ﬁanOp (1)
b d ¢ e _
e S hrna = R 0p (1) e O (1) an0 (077
+Eunkan - Op (1) + KunOp (n71/2> + Kin -0, (1)
= (Kun + Fan)? Oy (1) + (Kpun + Kan) Oy (n_1/2)
+£0nOp (1)
a e b ¢ _
|: E - ﬁ : ’I'L:| |u:ﬂ,a’:6’,a:5¢ = Kanop (n 1/2) + (l‘fun + "iom,) Op (]-) .
Thus,

T
(Kun + f@om)2 Op (1) + (Kun + Kan) Op (n71/2) + konOp (1)

qz‘s

KonOp (n’1/2) + (Kun + Kan) Op (1)
—40 4 0, (n71/2) + (Kun + Kan)? Op (1) + K0 Oy (1)

s

Therefore, we can get

& (Kp,n + Kon + '%Ot’ﬂ) O;D (1)
vnl| = 2
—4co + O, (n_l/Q) + (ff,un + Kan) Op (1) + KonOp (1)
(h:'un + Ron + K(xn) OP (1) .
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Proof of Theorem 2

Proof. First with the results from the previous section we can calculate:

ﬂ - ,11 2 a U2 ,
n (5’) . ﬁ ‘u:ﬂ,oza(x:& = _ﬁ + Kon * Op (1) + K2, Op (1)
1 & b )
vn (M) /n (& o ‘u:ﬂ,ozfr,a:a = [ﬁin -Op (1) + Kon - Op (1) + KanOp (n 1/2)

+8mban - Op ()] - (Kun + Kon + Kan)

i — i 66 .
. (M 7 M> v ( g wmnio=saza = Op (1712) + (un + an) - Op (1)
Vo -1/2 2
hmpio=oaza = 555 O (n72) + (o + Fian)” - O (1)
+Han . Op (1)
a\ e i
g n ‘HZEU:&JX:& = (’%Mn + Ron + '%om) ’ |:/Qan . OP (n 1/2)

+ (lil»”l + "{an) : Op (1)]

‘lt:ﬁ’az&’(X:& = (K’Mn + Kon + /fom)Q : Op (1) .

3
o
Q>
SIS
Qe
~—— ~—— — L~ N
N ) .
Sl 3o
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Therefore, use multivariate Taylor series expansion of Lagrange form at point o« = 0, we can

get

* N A A
linc (/J,O',Oz | Y)
T
3lfnc JU
|;L n,o=6,a=0 n—
* (1.6 al o
linc(u70—70|y)+ “w |# 1,0 =6,0=0 5—6
8l7.71.C ~
|;L f,0=6,a=0 (8%
T
G — i 0%, 0%l,. 9%, o
H—H o2 oudo Ouda m—=
+=16-5 0%, 0%L,. 9%, R
g-a Ooop Oo2 dooo n=p,oc=c,a=a | 0 — O
~ a?l*ﬂ (92l* 32l; X
a Babuc 30418"(; aagc o
T
= p = p a c b
line (71:0,011y) c6—oc|+5|6—-¢6 ¢ d el lup=po=s0=a
a a b e f
lznc (1“’70 0 | y f

+2v/n <’:L

W (6

Up Vi
52 252

&
2
2

. U, Vi
l:nc(:u’vo—vo|y)+7+7+019

2

V2
(u,aO|y)+U2+?+O

p (n*1/2) + (Kun + Kon + Kan) - Op (1)}

4

d
(

(n772) G5+ i + in) - O (1)

(n71/2> + (ﬁun + Kon + KJO‘”) ’ Op (1) ’

The definitions of U,, and V,, can refer to Proof of Theorem 1. Then as we have

l:nc(:a75a0|Y) =

n N e
210g(277) 2log(0) 22

(5%

i=1

= —glog (2m) — glog (6%) — % (VnV, +n).

Therefore, (6.2.8) can be written as

U2

+2 4+ 240,

2

—ﬁ log (27) — glog (6%) — % (vVnVy, +n)

V2
4
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( —1/2) + (Kpn + Kon + Kan) - Op (1)
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n
As (p*,6*,0) is the maximum likelihood estimate when fixing o« = 0,50 4* =+ Y y; =y
i=1
n
and 62 = L S (y; — y)? are the maximum likelihood estimates for the ordinary normal
i=1

T
distribution. And

= Pl )+ MY (R2) (nygnﬂﬂ
o \/gvﬁn”(“ﬂyy]
_ %Q(ﬁanrn—Uﬁ)

n Ak \ 2

(m—u) = _
g = = ——————=n
‘ o*

i=1

(0t 6 " n oy L (vi— i
linc(# T 30|y) = _ilog(Qﬂ')—Elog(g )—5 2 (a-*)
= —glog(%)—*log [ (\/ﬁVn+n—U§)} _g
= _ﬁlog (2m) — n log (52) + n logn — n log (\/HVn +n— UTZL) _ E.
Finally, we can calculate the desired likelihood ratio
* A AoA * A% Ak - \/’ﬁVn n Vn Urzy, UEL Vn2
lmc(MaU,OZb’) linc(u70,0|y) — 9 +210g \/ﬁ+1 0 —+ 9 —+ 1

+Op (n_1/2) + (l‘fun + Kon + "{an) ! OP (1) .

2
As Taylor series expansion can be used to calculate log (% +1-— %), SO

V, U2 V, vz v?
1 n4q1_Zn - Q4 _Zn_In O<*3/2).
Og<\/ﬁ+ n> +\/ﬁ n 2n+ "
Then
ViV n v, U2 SV Ve U2 V2 e
— 1 niq1_Zn - — _Zn_ ’'n O( /2
2 Tyl ti T 2 T3 o 1 O )
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0

wmnc

Vo VAV U2 V2 Us
(,6%,01y) = -V Th Ty () g O

V2
+Tn + Op <n71/2) + (’%Hn + Ron + Hom) : Op (1)

= Op (n_l/Q) + (K/u,n + Ron + K/an) ) OP (1) :
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Proof of Theorem 3

Proof. From mean value theorem (fi, 5, @) is the parameter values between the restricted MLE
(i1, 6,&) and underlying real parameter values (fi,5,&). Then the multivariate Taylor series

expansion of Lagrange form at the restricted MLE (fi, &, &) can be written as

e
0 o
0 = % A A A
e p=p,0=6,a=4&
ol
0 inc
3x1 9o/ 351
e
o
1r
= % n=p,0=c,a=a&
ine
e 3x1
azl:nc 82l:nc 82l;nc Iy I
ou? Oudo Ouda B
azl;na 62[;10 82l;n,c = = — jal ~
+ dodu Oo? Ooda w=po=0,a=a | 0 —0
azl:nc 32[:1;0 821;nc A ~
o —
Oadu dado Oa? 3%3 3x1
where
Iz g fo— p
gl = |a|+t]le-a]|, te(01).
a «Q & —a
To make it simple, we use block matrix to simplify it.
e A
ou m—=p
oLy Cui Gz N ~
- # u=p,c=c,a=& — |;L:ﬁ,a:&,oz:a‘c g—0
oLy Cor O o ~
81&1(: o —
where
82l;nc 82[:710 azl:nc 821*
Cpy = | o owoe Oy = | P10 Oy = [ Plne Pl Cag = ——inc
dodu Oo? Ooda
Then we denote it as
Cll Cl?
c = |p=p,0=6,0=a -
021 022
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The inverse of it is

where

12

22

Cri = O +ChlCi (Cor — CanCi'Cra) OOy
5 = —Cp'Cia (Cay — CnCi'Ca) ™"

Coi = —(Cos— ConCi Cr) ' Con O

5 = (Caa—CunCHCro) "

Therefore, we can solve the equation now by

e
op
*
—071 ol},.
Oo
e
Ja
That is
Olnc
_ O
—Vi11 |H:ﬂaU:5,a:5é
e
o
al:ﬂc
_ ou ~
V21 |H:ﬁ,0:5’,0¢:56
Olinc
do

p=fi,o=5,a=d —

f—fi

u=p,0=c,a=& — oc—0
a—a

oly,
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 — [ z_~ 252
E[yz~u}:07 Var y~u}:1_7
g & T
~ 2 2 r B 2 2_
E|YEL 1:5 2 g (yijﬂ+6~\/7> 0
g T T & -
_ ] g . - ) : E S 2
il vi— [
Var < = 1o W) , ( =t \/?) m( +1+d2>

For the convenience, we denote that

weefi] o wefern)]
=200 (125)] - 22 (24 3)
sams 208 (22 -2 (2.2).
T
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With central limit theorem, we can derive

VRS
MOQ
© | &
—
|
~4r0n~/.a
X0 | k&
|
[\
=
~
2,
~1
L — |
/N
o
)
x|«
|
—
~
|
[a]
7\
3
I o
5
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i
2\l
— |
| S|

B .
o |+ T
Z |8
e T
| |
g 3
K Sy
=) =)
~_ ~_—
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=T =T
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f— < 3
(A\/I\ | |
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<t =¥
==
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< |
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© | & |
e d 7 N
Al =
— | RS
ﬁ ~
<t |
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< | &
S
L
— |
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Denote them as U,, , V,,, Q, and R,,:

< B a0
cﬁw 2ﬂ Tl 3
— |+ |+
_ = \ns
o ﬂa & [S
X |k

)
)
)

o (a] o
Z Z Z
=T <7 =T =T
T 1T 1
(o] ™
e e [fE ikl
- o %Tn ||+ ||+
SN | — —
~
—
g 1 S— I |
- | — —
~g - (N E
e N NN N
[ = < |l o
e _~U 1L
o 3 ) — —
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then

. o n 2o o (4
%M:ﬁ,a:&,a:d = ;; yz6#+5 i)—g; EA%

L ey U Vb [2 @
\/ﬁ aﬂ U=[,0=0,00=Q ~ ~ T =

Thus,
L al*n ‘ B _ Un - dQn d N (o i QQEQO
yn op MTHoTrese G TG 52
And
%|_~ L = _B_"_i - yz_ﬁ A_gi yi_l2 ¢(Az)
Jo MO o oQ P o ‘G P 1o & AZ>
1 ar* V, 202 5/2 A ¢ (A i — I
— |;L:[L,o’:5,a:6¢ = = - ~7\/ﬁ+ = /Tr Un - g Rn + \/HE ( = ) (U)
Vn 0o G om 2 o & (Ai) o
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R - — /L' ) ~ 52
Var (yzNM) _1+5\/5<y1~u>_& ( )(yz~u> _ g 207 48
o m o <I)(14L) o s s
Thus,
1 o, Vo 62/ a
Vo hmmemsesa = G H 2GR GR
d 2 202 46*  @%E,
VY Erm et e
And
ol r e s & ¢<Ai> ) i
L mfo=F,0=a = — Ait Bi —2xa
Do In=io=, a(1+a2)%? ; P <I>(/L>
* 5 ¢ (A; 7
1_line lu=ppo=,0=a = — \/2/73 5Un — 26\/532+Rn+\/ﬁE (~) (w)
N (1+a2)* m(1+a2)% o(d)\ @
- [2 32/ ¢(Ai) A
52+ TN g, 4 vaE 26—
VT 1+d2>{Q n @ (4,) “Vn
- _7\/% Ut Rot (624 VT Q20
(1+a2)%? T 1+a? n
[ <y7n)+¢( ) (121)
Vi | (1+a2)? o @ (&) g
- [2 52/ ¢(1‘L‘) 2 A
+ |6/ —+ — - 5| — 20—,
T l1+a (I)(Ai) (14 a?) vn
w [ (i), (4) (5=0) (5,2 A 0(4)
(1+@2)3/2 o @(Az) o s 14+ a2 (AZ>
2
7 (14 a2)?
B 2 < /2 6\/2/m \/5 6\/2/m
= T )3+E22+2<5 W+1+d2>Ezl+<5 T Tyar | o
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As known, A/y/n — 0 with n — oo, so

wmc

N lp=p,0=5,0=c

= ——Y V2/7TU,L+Rn+<S 2+6V2/7T> Qn — 232

(14 a2)%/? A W
~ ~ 2
d 2 ~ /2 5\/2/7 ~\/§ (5\/2/771'
v N(O’ _7r(1+d2)3+E22+2<5\/;+1+&2 Par Vet aw) o)

For simplicity, we denote

Lo

27% 92 7%
0 linc 0 l'inc a c
C o op? oudo -
1 = 2% 52 7% - ’
<) linc 0 l'inc c d
Oodu do?

_ 62l;(ncl
0 \y=p,0=6,a0=a — 8/142 H=p,0=0,a=0Q
n @A), @ ()
- =2 z2 1) =2 —\2
o 0%~ <I>(AZ) 0%~ ‘?(Az)
_ _ _ 82l:rlc|
Clu=p,0=5,a0=a — (')uaa p=p,0=o,a=a
B 1 - 1T A& 90 (4)
— Tl A mE L e 5 ) 5
B, () @@, o)
=D Wi—n)_—5Ai—= D Wi—n——
7 L Gy L G
d|u=ﬁ,a=5,a=6¢ = 902 |p,=ﬁ,a=&,o¢=&
o2& 1 L, wmd (A
= 5’2_£;(yl_ﬂ)141 gizl(yz_ﬂ) +?;(yz_ﬂ)¢(gz)
~2 N 1 _9 n = \2
o _2¢(Az)— e} '7_2¢(A¢)
T eyt e L T g
We also denote:
1. b
Co = Chi=[2" =]
80(197;; €
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where

b ‘;L:ﬁ,a:&,@:& = 8u8a |u=ﬁ,o=6,a=5¢
1) 13604
g(1+a2)’? o i=1 ®(4;) o i=1 ® (4;)
EV2r o) p axs o(A)
= AZ + = — Bz
a(1 —|—0z2)3/2 ; o (Az) o ; P (Az)2
Pl
€ lp=p,0=5,0=a = doda p=p,0=0,a=a&
B 2/ . - 1 & o (Ay)
= (1 +@2)3/2 ; (yi — ) 52 . (i — ) o (Az)
1 ¢ o (A) at\/2/r & (A -
+= i = Az + [ T Az
02;@ u)@(Ai) 62(1+a2)3/2;(y “)<1>(Al)
G (A
+—= 7 — Bl
72 zz:; (y ) > (Ai)g
And
Ol
C22 |,u:/],o':6',oz:d = Ja2 n=p,0=c,a=a

(1+a2)"? = 7 (1+a2)® (14a2)*? = @(4)
(A 1 ae = 0(A) s

_ ") A.B2— B2 — 2\
2w (a2 gy

As (f1,6,d) is restricted to |t — fi| < Kyn = 0, |6 — 6| < Kop — 0 and |& — &| < Kan — 0, we

can also give that

|ﬂ_ﬁ| Sﬁun; |5’—5’| S"'ﬁany |@_d|§/€an~
Then we also have
_ - N _ - 1 1
|ﬂ|§|ﬂ|+’€um 0 — kgn <0 <0+ Kon, T2§ -
o (6 — Kon)
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b

— lu=po=0,0=a —

n

b

lu=ji,0=6,0=a

IN

IN

IN

IN

1 1
75
21 6(A) - a1 o(A)
*in;wgi)&;n;@(&)&
o1 5oty g o(A)
+j?1lz; pi) (;2;; ()2

2/ 2/

g(1+a2)*?  &(1+a2)*?
HEMB L
i st nE e
i S
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IN

IN

C C
— |p=p,0=5,0=a - |lp=p,0=5,0=c

"
+ ;ing—u)—;;iw—m
a5

T L :1 (s — ) iiﬁig&—fi Zj; (yiﬂ)zgig A
+ g—z% :1 (vi — i) i((i); - g% i: (vi =) iij;

(Kan + Kon + Kun) - Op (1) + (Kon + Kun) - Op (1)

op (1)

g g

n H=p,0=0,a=0Q n H=[,0=0,a=C

11 2 1< _ 2 1< .

52 52| T %ﬁ;(yz_ﬂ)Ai_&g)dE;(yz_ﬂ)Az
11 o 11 2

+gg;(?}z—u) —ggzl(yz—ﬂ)

U?’nl: (I)(/L) Ugni:l (I)(AZ)
Pl Leld) . @ies, Lo(d)
+ gﬁé(yz_ﬂ) Q(Ai)Az—gﬁ;(yz—u) @(/L)Al
N\ 2
_9 n Aiz ~2 n ¢ A’L
+ = iZ(yiﬂ)2¢< 4)2*0[ (yi*ﬂ)z (
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(&4 (&
— |pu=p,0=5,0=a - |p=p,0=5,0=a

n
2/7 1 & 2/7 1 & .
< [ - 7
- |52 (1+0—[2)3/2n ;(y ) 52 (1+d2)3/2n ;(y A)
11 p(A) 11 _ ¢(14L)
+ ﬁgizzl(yz_/i)q)(gl) _&ZH;C%_M)(I)(,&-)
11y 6(A) o 11, ()
a2\/2/r 1 «— ¢ (A;) - A2 1 ~ ¢<Al)~
+ [ = Az - — [ Az
srrrann 2 U ) e 2 )
N2
al P (A) L a1 ~¢(AZ) 5
+ —_5 [ — Bz - =<5 7 Bz
52 n - (y /u)q)( z)2 0.271;@ u)q)(Ai)Q
< (Kan + Kon + Kun) - Op (1)
= o0p(1)
I e
n p=p,0=0,a=a n p=p,0=06,a0=&
3V2/m 1 3v2/7 1N - 2 2
< =N 4 - Al + -
T +ax)En ; (1+a2)%2n Z T(1+a%)°  7(1+a2)°
VAR 1§ o) VAT -at) 5 o (4:)
(1+a2)? n e(4) (1+a)? nDo (Ai)
"6 (4) . no¢(A)
_*_lz (b(‘%z)AZBZ?_l (~)AzB7,2
n i=1 ® (Al) n =1 ) <A’L)
N2
"6 (4)° - noo(Ai)
+lz¢(,)2312732 ( >2Bi2
" 1=1 @ (Ai) " i=1 ® (Az)
< (Kan + Kon + Kun) - Op (1) + Kan - O (1)
= o0p(1)
Therefore,
a a b b
ﬁ |u:ﬂ,o:6,a:&: E |u:ﬁ,o’:&,a:& +Op (1)7 E |u:ﬂ o=5,a=a— g |;L:ﬁ,a’:6’,a:& +0p (1)7
c c d d
E U=p,0=0,0=a— E |;L:ﬁ,o:&,o¢:6z +Op (1) ) E |p:ﬁ,a:& a=a— g |,u:ﬁ,o:6,a:& +Op (1) )
e _e L A R
E |}L:ﬁ,0’:5’,(¥:@7 n |;L:/L,<7:a,o¢:o¢ +Op (1) ) n |;L:/ ,0=0,0=Qx" n |/t:#,¢7:070¢:0¢ +OP (1) .

176



And with central limit theorem we have

p=p,0=0,a=0a&

- |#:ﬁ»U:&,a:5¢ =

6(4)°
& { 2 I
o @(Ai)rz o
1 _& ~1/2
52 §E20+Op<n )
RECCRRLYS >+;;§¢§ 3

c(l+a 1 :1‘I><Ai)2
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A @ (4)
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Then we can reach

a 1 a?

E |M=ﬁ,a=6 a=a — _? - ?EQO + Op (1)

b afl<[2 627 a

— |\p=p,0=,0=& — < 04/ — = E TE 1
n|u—u, 0(\/;—’_1—1—042) 20+U 21+ 0p (1)
c — 2 &P

n |u:ﬁ,o:6,a:a = =9 T ?Em + op (1)

J 202 (1428%) —2r 4

n li=p,o=5,0=6 = g, ?EQQ + o0, (1)

e 264(7r+27r042—oz4) a a [~ /2
— =0, 0=6,a0=a& — fE — o/ —
n s w25 (1 + d2)3 + 2+ o T +

T 1+a2
i op Imehesvess = TG
1 oI Vo  6\/2/7 a
— e o=5,a=a& — T~ = Un - TRn
\/ﬁ do |H—# & + & P2

From previous calculations we have

. df —e? be—cf
n2
be —cf af —b?
2X2

C; = ,
i T (adf — 2f — bd + 2bce — ac?)
L[ ee— bd
n?
bec — ae
nCr — 2x1
12 n% (adf — 2 f — b2d + 2bce — ae?)’
% (ce —bd bec— ae)
’nCi — 1x2
21 n% (adf — c2f — b2d + 2bce — ae?)’
1 2
nCy, = az (ad =),

5 (adf — 2 f — b2d + 2bce — ae?)’
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Then (6.2.9) can be written as

Because -

v

fo— [
Vvn

6—6
L e2 —df cf —be %
L _

,o,0 < p -
of —be b —af Vay N2y _ap,

2x1

o (adf — ¢ f — b2d + 2bce — ae?) [0,

bd — ce T < 5 g ~

1ta2

ae — be
+ I

-3 (adf — c?f —b2d + 2bce — ae?) |p5.a
Vn (& — @)
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1 < c
= | bd—ce ae— bc) 5,56 < :
! Yoy N2y, _ap,

2x1
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\/ T s 5 T ~
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% (adf — 2 f — b2d 4 2bce — ae?) |u5.a

+

— 0 as n — 400, finally we can reach
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Here wq,ws,ws can be calculated using (2.8.1). First the Fisher information matrix is

T (p,0,0)
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5 N 2/2/ma(24+a2
—%E21 —%EQQ + (1152()3/20‘ )E21 + Eoyo
Then the determinant of it is
—m —3na® — 3rat + (4 — m) &b + 1068 + 4410 462
R B e L
w264 (1 + a2) w264 (1 + &2)
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And the diagonal elements of adjoint matrix are
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Appendix C

Skew Normal Regression

The response variable y is related to the n-covariate row vector x by the equation y = 73 +
o(2—8/2/7), where 3 is a column vector of unknown regression coefficients. Given observations
(i, Yi)1<i<n, let X = (z1,...,2,)T, y = (Y1, .., yn)T. Suppose that p < n. If we replace u in
the skew normal model by 273, the EM algorithm steps can be directly extended to the skew
regression model. Let Y = Xﬂ+0(276\/2/77r), where 3 and o are location and scale parameters

respectively. Then Y has the density function

g(y\x)z%qb (y_:T'B—HS\/z)(I’(a (@—HS i))

with E[Y | X] = XT3, var (Y | X) = 0%(1 — 262 /7) and Pearson’s skewness index 7.
Given independent observations (X, y) = (24, ¥i)1<i<n, the incomplete-data log-likelihood

is

o2

£l )

Augmenting (X,y) by w = (w;)1<i<n, we form the complete data (X, y, w) = (24, i, Wi)1<i<n-

B 01%y) = G () - 53 (B o)

The complete-data log-likelihood is

lcom(ﬁvnaa | X,y,W) = Zlog(g(xmyuwz))

where a = §/v1—02, §=a/V1+a? nzlog()andQ-OMog(i&)
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Initialisation

Here the ordinary least squares estimator is used as the initial value for 8. The replacing y; by

— <0 1
the residual yi—x?ﬁ(o) and y by average of residuals which isy — Xﬁ(o) = - E n ) (yl — xiTﬁ(O)).
n4é—i=

The initialisations are as follows:

5(0) = ()(T}()_1 XTy
1 n 5
§* = (?Jz — m;fﬁ(o) —y— Xﬁ(o))
n—1 P
—\ 3
(0) w it (yz — 27" —y — Xﬁ(o))
71 = &

(2007 (a-m) "

50 — \/?
2 (0)
1+ (2

A0/ a-m)”

. when MJ)’ < 0.9952

1—6O
0 _
0 = 0510g(1+5(0)>
2
S02 5
1—2502 /7
7 = log (S/ 1-— 25(0)2/7r> .

E Step

Given ,6'(“), 7™ and 6(*), the estimates obtained in the v-th iteration, consider

\I/(ﬁa mn, 0|ﬁ(v)7 ’r}(v)v 9(71)) = Ew|X,y,B(“),Y](v),9(“) [lcom(ﬁv 7, 0 ‘ X? Y, W)]
L I (p—alB ’

= nlog(—) - =S (L4252
nlog(-) 2;;( 28 4 52

n 2
1 yi —alp
-5 gl E i ys,80) 020 o) [(wz - (0 +0v/2/m
1 1
= nlog(=)=—nn—=Y b2
nlog(—) —nn — o ;Zl ;

1 = v (v)b(v) v
—= Z (1 + (a(”)bz(. ) 2abi)7¢(a i) + (a(”)bg ) ab)? .

2 i=1 (b(a(v)bgv))
Let
T 3(v)
(v) yi —z; B (v)
b o) +0\/2/m
T
by = Yi — % +0y/2/m.
o
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We have

b,

8['3 = —in/o',

Ob; _ 0%b; _

o = —e Ny — %T ), o =e "y _'rzT )
ob; ad 4e20

% = %\/2/7—7(14_620)2 2/7T
0?b; %5 8e20(1 — e27)

a2~ VT Ty VAT

M-Step

Calculate the derivatives of ¥ block by block as follows:

O U9~ O [ H(ab) )
— = - b; + a— | L Ly ) g,
B = ao Sy (s o
N "z @)p{)
_ x _Z:ra (M—Fa(l’)bgv)—abi
i1 -1 7 @(a(v)bi )
0%V 1 - 1+ a?
— = ——(1+a? xle = ——X'X.
aﬁaﬁT 0—2( )ZZ:; 0—2

The other partial derivatives of ¥ in the previous section can be adopted here.

Let

(0)5(®) (0)3(®) T
D(a,0) = —2 Haby ) | a®p? LG 0 RN OMO) , 1=(1,.., 17
L+a? \ d(ab) ® ()b}

Then g% = 0 implies

B = (XTX) X7 (y + 10(5\/2 - D(a,a)) .

So, we can update 3 by

Bt = (X'X) ~'x” (y + 10(”)6(“)\/5 — D(a(”),a(”))> .

™

Secondly, similar to previous section, we update (") by a quadratic equation

n

> wi—alp)? = 0

=1

14 a?
n

e — Ty (B, a) - e
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with

5 B n n (v)b(v) .
e SUSE LR SR (W +al )> -

Solving the above quadratic equation, we have

o= = LT(Ba) ¢ | SR8 + TS (- aT B

So, we update 7(*) (namely o(*) = e"(v)) via

(v+1)
st —  on

}Tl(I@(erl) a(v)) + lTl(ﬁ(erl) a)2 4 LQ(U)Q Zn:(y,, _ xTﬁ(erl))Q.
2 ) 4 ) n P 7 i

After fixing (B,n) = (ﬁ(v+1),n(”+1)), we update () the same as Section 4.2.1 by using
Newton-Raphson method.
Stopping rule

Then the EM algorithm iteration alternates between E-step and M-step until:

Line (BT D) 90+ | X y) — 1o (B, 7,0 | X, y)
line(B™),n®,0) | X, y)

<e

where ¢ is the tolerance (1078 is the default value). And l,o(8), 7™, 0®) | X,y) is the

incomplete-data log-likelihood function calculated after v-th iteration:

v v » n 2 .,szﬁ(v) . 9
line(B), 1,000 | X, y) = Zlog{aﬂ(%”” -

, o)
o) =en”

Simulation

In the model Y = X3 4 0(Z — §/2/7), same as ordinary skew normal simulation settings

(n =300, p =2, 0 =0.5, « =1.5), X is a 300 x 20 matrix sampled from a multivariate normal
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1

W REofB Mo Ha SNR

Figure 6.2.1: The estimation result for skew normal regression model under n = 300, p =
20, 0 = 0.5, @ = 1.5. The averages of these estimated parameters after the 100 trials are
RE (B) =0.019, & = 0.482, @ = 1.556, SNR = 0.593. RE means relative error.

distribution Nag (114, ) where

1 01 001 0 --- 0
0.1 1 0.1 0.01
O . .
_ 0.01 0.1 1 - 0
Mo = . P Zw =
0 0.00 - . 0.1 0.01
0
01 1 0.1
0 0 001 01 1

Thus, p = 20 and 3 is a non-sparse vector with each element sampled from the 0.01-grid points
of [-2,2]. To illustrate the results, let’s introduce two criteria. Relative error of B is defined to
measure the accuracy of the 3 estimation. With the help of Euclidean norm (lo—norm), relative

error of B is defined as HB = Breal

/ 1Breaills where B,.,; is the real underlying coefficient
2
vector. The other criterion signal-to-noise ratio (SNR) is defined as | X345 / (n0rear) Where
Oreal 18 the real underlying skew normal scale parameter o. After 100 trials, the estimation

results with aforementioned methodology are shown in Figure 6.2.1.

Penalised Skew Normal Regression

Dealing with high-dimensional case (p close to n) or sometimes even encountering p > n case,
it poses challenges on our aforementioned method. Multicollinearity and overfitting can arise
in high-dimensional dataset. To address these problems, we bring in a [;— norm penalty term

to help apply variable selection for potential sparse 3.
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Incomplete and Complete data likelihoods

n . _xT S
pLine = TI %d) (y,xl,8+5\/§> & (a <ylxlﬁ+5\/5>>exp(_)\|ﬂ|l)
1=1 O (o2 ™ g i
_on 2 [yi—x/B \/5 , /
pLeom = 1'131 ;Cﬁ (0 +0 7r> o (wz —« ( ‘|‘ 4 2/”)) exp ( )‘|ﬂ|1)

plcom = IOg (chom)

n

= nlog(— 0'7T %Z <yz—x B +(5\/2/7T>

=1

_Z(wz_a@z +5¢2/7))2—M|ﬂ|1,

where |3|, is the Manhattan norm or [y — norm, known as |3|, = Zp . |8;]. And A is chosen
=

through BIC values.
Initialisation

The only difference from the ordinary skew normal regression part is that B is initialised

through LASSO estimator which is

. 1
B = axgmin {3 Iy - X815+ X121, .

where X' is chosen to give the minimum mean cross-validated error. The initialisation of other

parameters keep the same as ordinary skew normal regression part.

E Step

Given ,6'(”) () and ("), the estimates obtained in the v-th iteration, consider

‘I'(,@’U79|/@(U)777(v)a9(v)) = Ew|y7X7ﬂ(v)m(v)79(v)[plcmn(ﬁvn;a ‘ Yaxaw)]

1 1 —
= nlog(=) —nn—nA|Bl, — 5> b}
=1

n

() )
=3 (14 (@b — 2ab; )Ll(,)) + (@@ — ab;)? | .
i=1 q’(a(v)biu )

l\D\>—~

M-Step

Calculate the derivatives of ¥ block by block as follows:

(v)p(¥)
Zx by — — Z (‘MO‘ b )) +ap”) — abi> — nAsgn(3).

i=1 (I)(a(v)bgv )
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Then solve 2% = 0 to reach

oB
zn: vi — v 0'52b(v)+ 5\/7_062 ¢(Oé(v)bz(v)) X;
e o)

i=1

_ inTﬁxi — 0% (1—6%) nA-sgn(B)

i=1

which can be represented as
X Ty* - X*T'X*B — A\*sgn(B) = 0,

where sgn(3) = (sgn(p1), ..., sgn(ﬁp))T, A =02 (1-06%)nA\, and X* and Y* are defined as

ﬂaé%gv) + ad\ﬁ _ 082 e
« U

« @(a(”)b(lv)

)
)
Yo — o o52p() 4 ag\ﬁ T L G
Y* — o 2 ™ ] @(a(u)béﬂ))

v )
n — %06217%) + 05\/2 _ o 9 Th )

« (D(a(v)b(u))

nx1
(v)2 @™ g a(® () (@) p{v)
Y1 a T a(v) . o (b))
Tra ()2 + T+a (2 X1B + 1+ (1/)2 T oN3/2 \[ 1+a(1))2 <I>(oz(“)b<1"))
v o a2 TR 4 a® <v> Ca®e®  p(ai”)
v® TFa(0)2 1+a('u)2 2 (1+ (1;)2)3/2 P 1Ha™2 " pamp)
e g | _ael) [T aet sl
14+a(v)2 1+a(®)2n (1+o¢(“)2)3/2 s 1+a()2 @(a(“)bgu)) ol
(v)2
ag
)\*(v) = Wn)\ = O'(,U)2 <1 — 5(1})2) TLA
[0

To solve this equation, it suffices to solve the following LASSO problem

1 2
gt = g {3 [0 g + 191

Similarly, to update () (namely o) = e"(v)), we solve %—‘}7’ = 0 which is equivalent to the

quadratic equation

n

~Ti(B.a) e~ Sy - xTBE = 0

n :
i=1
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with

5 9 n n (v)b(v) )
Ti(8,0) = <1+az>n\/;§<yi—x?ﬁ>—Z;@i—x?ﬂ) (;’Mw% >>.

Solving the above quadratic equation, we have

2
o = = STB)+ | {Th80) + S  —xT

Therefore, we update 7(*) (namely o(*) = e”(v)) via

O'(U+1) _ en(v+1>
1 1 1+ a2 &
_ 1 (v+1) _ (v) L (v+1) (0))2 T at)y2
= JhE"a)+ 11T ,av)? 4 - z§:1(yz x] BYT)2

After fixing (3,7) = (8TD,n(*+1) we can also update 6(*) the same as before by using the
Newton-Raphson approach.
Stopping rule

Then the EM algorithm iteration alternates between E-step and M-step until

Pline(BYT, n@ D 90+ | X y) — plin (8, ™), 00) | X, y)
Pline(B8"), 7,00 | X,y)

< g

where ¢ is the tolerance (10~ in our programs). And plmc(ﬁ(“), 7™, 0™ | X,y) is the penalised

incomplete-data log-likelihood function calculated after v-th iteration:

i 2 —xT 3™ \F
(g@ ) g _ Yi = % ), /2
Pline(B™, 0™, 07 | X, y) ‘E—l log { 0 ? ( gy B |

Simulation

For this modelling, the only difference from skew normal regression model lies in the underlying
B. To explore the variable selection ability of the penalised skew normal regression model, p is
increased from 20 to 200, and 3,.,; is set as a fixed sparse vector shown in Figure 6.2.2 for all

100 trials.
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Figure 6.2.2: The fixed sparse underlying real g for penalised skew normal regression model
simulation trials.

Penalised skn regression a=1

Penalised skn regression a=0.5 Penalised skn regression a=1.5
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Figure 6.2.3: The penalised skew normal regression estimation results under oo = 0.5, 1.0and 1.5
with underlying real parameters (n = 300, p = 200, o = 0.5). RE means relative error.

To test the estimation abilities under different skew normal shapes, « is set as 0.5, 1.0 and
1.5 for each 100-trial. After all these 300 simulation trials, the estimation results are exhibited
in Figure 6.2.3. A smaller shape parameter « can bring in more erratic features as the sample

skewness can approach the opposite (negative) direction.

Inherent Skewness of Anti-Cancer Drug Data Analysed with

a-Penalised Skew Normal Model

This part provides the detailed table for Section 4.5. In Figure 6.2.4, the drug data has been
centralised before calculation with EM algorithm. The drug names are highlighted in green,

and the 3 estimates on the right of each drug are i, 6 and &.

194



Drug names Esti_p

Doxorubicin
Etoposide
Gemcitabine
Mitomycin.C
Vinorelbine.
NSC.87877
Qs11
CP466722
Midostaurin
Ponatinib
JNK.9L
PF.562271
HG6.64.1
1012

DMOG
FT1.277
0SU.03012
Shikonin
Embelin
FH535

PAC.1

IPA.3
GSK650394
BAY.61.3606
X5.Fluoroura
Thapsigargin
Obatoclax.M
BMS.754807
Linsitinib
Bexarotene
Bleomycin
LFM.A13
GW.2580
Luminespib
Phenformin
Bryostatin.1
Pazopanib
Dacinostat
Epothilone.B
GSK1904529
BMS.345541
Tipifarnib
Ruxolitinib
AS601245
Ispinesib.Me:
TL.2.105
AT.7519
TAK.715
BX.912
ZSTKAT74
AS605240
Genentech.C
GSK1070916
Enzastaurin
GSK4292864
FMK
QL.XI1.47
Idelalisib
Cabozantinit
Wz3105
XMD14.99
Quizartinib
CP724714

0.0064
0.0042
0.0505
0.0023
0.0367
-0.0076
-0.0114
0.0033
-0.0003
-0.0453
0.0201
0.0005
-0.0011
-0.0021
-0.0003
-0.0060
0.0093
0.0020
0.0092
0.0071
0.0000
-0.0186
-0.0065
-0.0006
0.0000
0.0618
0.0070
-0.0042
-0.0015
-0.0007
-0.0030
0.0014
-0.0234
0.0434
0.0006
0.0082
0.0117
0.0154
0.0180
-0.0073
0.0000
0.0023
-0.0133
0.0130
-0.0650
-0.0435
-0.0276
0.0001
-0.0013
0.0000
-0.0032
0.0000
-0.1148
0.0000
-0.0281
-0.0022
0.0097
-0.0262
-0.0181
-0.0108
-0.0042
-0.1136
-0.0045

Esti_o
2.0324
2.5579
3.7687
2.2171
2.1528
1.3342
2.1437
2.1465
1.4316
2.8326
1.3462
1.1754
1.8100
2.0770
1.5575
1.1541
1.4835
1.5121
1.3188
1.3618
1.2419
2.5445
21126
1.9726
1.8219
24210
2.1519
2.2875
2.4949
1.3183
3.0052
0.9335
1.0004
1.7035
24527
1.4804
2.2975
1.5635
2.3933
0.9885
1.2390
1.9448
1.0364
1.4024
2.8983
2.1878
2.9796
1.2822
3.0098
1.8036
24920
1.8636
3.9317
1.7452
1.9189
1.2650
2.9505
2.1979
2.0919
2.6205
1.56258
1.6691
1.2523

Esti_a Drug names Esti_p

24351 IW.7.24.1
2.2213 NPK76.11.72.1
5.5675 STF.62247
2.4459 NG.25
45727 TL.1.85
-2.4573 VX.11e
2.5178 FR.180204
2.2572 Tubastatin.A
1.1844 Zibotentan
-4.1994 Sepantroniut
1.9478 NSC.207895
1.2141 VNLG.124
-0.8312 AR42
1.4184 CUDC.101
0.6710 Belinostat
-2.1867 I.BET.762
1.7872 CAY10603
1.3218 Linifanib
2.5082 BIX02189
1.2908 Alectinib
-0.0248 Pelitinib
3.7608 Omipalisib
1.5899 KINOO1.236
1.6793 KINOO1.244
-0.0169 WHI.P97
3.6143 KINOO1.260
2.2619 KINOO1.266
-1.8306 Masitinib
-6.7760 Amuvatinib
-1.1275 MPS.1.IN.1
2.3066 NVP.BHG71Z
-1.5935 0S1.930
-2.0395 0s1.027
44241 CX.5461
-1.2496 PHA.793887
-5.9105 PL.103
-4.9792 PIK.93
2.5527 SB52334
2.8082 TPCA.1
-2.1695 Fedratinib
0.0366 Foretinib
1.2006 Y.39983
-2.3466 YM201636
2.0098 Tivozanib
3.9126 GSK690693
-4.3138 SNX.2112
2.6457 QL.X1.92
-0.5135 XMD13.2
-3.2222 QLX.138
-0.0172 XMD15.27
-1.7030 TO901317
-0.0171 Selisistat
-7.7784 THZ.2.49
-0.0172 KINOO1.270
-4.3005 THZ.2.102.1
-2.9247 AICA.Ribonu
4.6097 Vinblastine
-5.1443 Cisplatin
-1.8242 Cytarabine
2.2202 Docetaxel
-3.2117 Methotrexats
-3.7435 Tretinoin
-2.3163 Gefitinib

Esti_o
0.0022 2.3295
0.0452 2.8762
-0.0075 1.3770
-0.0389 2.8072
-0.0321 2.9871
0.0248 2.5033
0.0012 1.3951
0.0203 2.3260
-0.0042 0.7546
0.3617 3.1026
0.0000 1.4796
-0.0542 1.5305
0.0060 2.6686
0.0096 2.5567
0.0469 3.0607
0.0544 2.9495
0.0242 2.8101
-0.1653 1.6313
0.0015 1.9038
-0.0817 1.5467
0.0074 2.5626
-0.0026 2.6081
0.0086 1.5720
-0.0020 1.6331
0.0092 1.6254
-0.0011 1.9679
0.0412 1.6771
-0.0132 1.8686
-0.0561 2.5376
-0.0001 1.4811
-0.0205 2.7668
-0.0168 1.7822
-0.0807 3.9356
0.1029 3.5497
0.0149 2.9927
-0.0457 3.8463
-0.0002 2.4083
0.0086 21175
0.0011 2.0533
0.0000 1.6520
0.0096 1.9682
0.0090 2.3748
0.0000 1.3487
-0.0391 1.1970
-0.1143 3.0620
-0.0219 34572
0.0231 21177
0.0002 1.4747
-0.0090 2.5636
-0.0071 1.3365
-0.0166 1.4785
-0.0059 0.9021
0.0000 2.4094
0.0052 1.3689
0.0103 4.1537
0.0000 1.2760
0.0047 1.4732
0.0004 1.3546
0.0009 1.8965
-0.0017 1.6201
-0.0023 2.8258
-0.0497 2.0216
-0.0414 1.9436

Esti_a Drug names Esti_p

1.9653 Navitoclax
-3.0881 Vorinostat
-2.7379 Nilotinib
-2.2232 CI.1040
-4.9176 Temsirolimus
-4.4672 Veliparib
-2.9114 Bosutinib
-4.7648 Lenalidomidt
-1.4568 Axitinib
27.8853 AZD7762
-0.0164 GW441756
-4.3790 Lestaurtinib

2.7604 Tanespimycit

2.0274 VX702

3.7045 Motesanib
-4.3188 KU.55933

2.6148 Elesclomol
-4.6832 Vismodegib
-2.3944 BX795
-4.3022 NU7441
-1.6461 SLO101

1.4572 Doramapimc
-2.8909 INK.Inhibitor
-0.9581 Nutlin.3a....
-3.7254 PD173074
-4.1225 ZM447439

3.8010 RO.3306
-1.3681 MK.2206
-3.7717 Palbociclib

0.4098 Dactolisib
-2.8435 AZD8055
-4.0582 PD0325901

4.2235 SB590885
-5.1427 CCT007093
-1.7393 EHT.1864

2.8569 Cetuximab
-1.3242 PF.4708671
-3.3111 Serdemetan
-0.7968 TW.37
-0.0168 CCT.018159

1.2960 Rucaparib
-4.8096 SB505124

0.0159 Tamoxifen
-2.7081 PFL.1
-7.8466 10X2

5.6145 YK.4.279
-3.0842 X.57..7.0x0z
-0.4740 Piperlongum

2.0417 Daporinad
-2.9232 Talazoparib
-2.6331 rTRAIL
-1.8229 UNC1215

0.0184 SGC0946
-2.1280 ICL1100013

3.8515 XAV939

0.0776 Trametinib

1.5160 Dabrafenib

0.9913 Temozolomi

1.1284 Bleomycin..5

1.4565 SN.38
-7.3362 PFI.3
-4.5335
-8.0513

-0.0479
0.0008
-0.2124
0.0000
0.0006
0.0007
0.0000
-0.0026
-0.0179
-0.0085
-0.0133
0.0000
-0.0011
-0.0148
-0.0480
0.0002
0.0045
0.0034
-0.0026
0.0024
0.0012
-0.0030
0.0014
0.0118
0.0008
0.0000
0.0171
0.0002
-0.0003
0.0030
0.0003
0.0050
-0.0396
-0.0017
0.0000
-0.0608
-0.0010
0.0007
0.0013
-0.0030
0.0069
-0.0025
-0.0011
0.0036
-0.0086
0.0254
-0.0199
0.0253
-0.1214
-0.0022
-0.0643
0.0010
-0.0008
0.0000
-0.0045
0.0000
-0.1767
-0.0082
0.0000
-0.0061
-0.0026

Esti_o
3.1136
1.3617
2.2723
2.1069
1.9519
1.0463
1.4294
1.1159
1.8517
1.7654
1.6920
1.3171
2.0499
1.2325
1.5183
1.2523
2.2353
1.3033
1.3345
1.1164
0.9631
1.3976
1.0012
2.3042
1.6500
1.1350
1.6869
1.4059
1.6709
1.2629
1.1497
2.5865
1.8888
1.0592
0.8941
1.6003
1.3961
1.1235
1.2912
1.4429
1.5161
1.3736
1.0982
1.4870
0.9987
1.6529
21168
1.3009
4.7752
2.6894
2.2566
0.6829
0.7412
1.5869
1.3740
2.5828
3.4595
1.1829
1.9870
1.9816
0.8910

Esti_a

-9.0964

1.2679
-8.5091
-1.8908
-1.4265
-2.3070
-0.0202
-2.9341
-1.8443
-1.1587
-3.5447
-0.1737

0.7032
-3.2108
-4.0807
-1.4119

1.9514
-2.5698
-0.9664
-1.2961
-1.6926
-3.0706
-1.2895
-5.7845
-4.3315

0.0129
-2.8289
-0.5130

0.5184

14194
-0.9761
-1.4617
-3.8586
-2.0000
-0.0131
-8.0032
-1.9597

1.0958

1.0536

2.8437
-2.0023
-2.7186
-2.5577

2.3364
-2.1396

3.1586
-2.3315

3.5875

7.3214
-2.2314
-9.1337
-1.5421
-1.8024

0.0160
-2.8923
-0.1794
-7.2048
-2.8922

0.0217

1.8426
-2.3885

Figure 6.2.4: The detailed estimation results of parameters (fi, &, &) for 187 anti-cancer drugs
after applied with a-penalised skew normal model and corresponding EM algorithm computa-

tions.
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Appendix D

Mixture of Skew Normal Regressions

Following Section 5.1, when it comes to skew normal mixture regressions, the location parameter
. becomes x7 3,., then we take VSVA model (see Chapter 5) as an example. Let’s consider a
finite mixture model in which a set of independent data (x;, ;) <;<,, come from a K —component

mixture of skew normal densities

K
9(x,9:;0) = > m-—¢ Y% P Bk+5k\/7 L Bk+6k\/7 ;
1 (o O ™ (o ™

and X = (x1,..,Xn)T, ¥y = (Y1, -, yn)T. Here w1.x = (m1,...,7k) are the mixing probabilities
K

with constraints m; > 0 for ¢ = 1,2,...,K and ), m; = 1. And ©® = (04,...,0k) with
i=1

Oy = (7k, By, ok, a) being specific parameters for kth component.

The incomplete-data log-likelihood is

K _xT T
£ 22 2 )

k=1

linc(@ ‘ XaY) :Z 10g (

i=1

Same as before, we augment (X,y) by w = (wx)1<i<n,1<k<k, and also introduce a set of latent

component indicators Z; = (Z;1,..., Zix) with i = 1,2,...,n. We define it with binary values

1 if y; belongs to component k,
Ziy =

0 otherwise.

Thus we form the complete data (X,y,w,Z) = (x;,¥i, Wi, Zi)1<i<n. The complete-data log-
likelihood is

n K
1 1 1
lcom(® | X?Yawv Z) = E E Zik {log Tk + 1Og oRT - §bz2k - 5 (wi’f - akbik)2}
i=1k=1

where by = (y; — x! B),) /ok + 0u\/2/T.

196



Iterate with EM Algorithm
E Step

Given ©"), the estimates obtained in the v-th iteration, consider

vee") = E, w|X,y o [leom(© [ X,y, W, Z)]
= Zz Z )logﬁk—i— Zz Zy (v) logL
i=1k=1 i=1k=1 kT
—% Zz 2003 — = Zz { ik (wie — obi)® | Xy, @)
. ;{—11@:1 . 1K1k 1 1
= Zz ZZ(;:) log 7+ Zz ZAEZ) log —
i=1k=1 i=1k=1 TkT
1 n K ()
3 ;; Z3i by
. ZZ E |: [ ik wzk - akblk) | Zikaxayv(-)(v)iH
i=1k=1
= ZZ Z )logﬂk—i— Zz Z (v) log—
i=1lk=1 i=1lk=1 kT
1 n K . (v)
—3 ;; Z3y) U,
— ZZ ZWE | Zix (wie — anbin)® | X,y,0), Zy = 1]
n ;(UC 1 1 n K n K
= Zz 28 log mi + log — Zz 70— Zz A
i=1k=1 i=1k=1 i=1k—=1
R e (0); (v)
—3 D2 =5 DS 2 1+ (a0 — 201ba)
i=1k=1 i=1k=1
$(ay”0})) (v) ;. (v) 2
xm + (a0 — anb )

where b( V) = (y7 - xiT,BIgU)) /0,(:) + 5,21})\/2/77 and

ZA7,(I’CU) =F |:Z7,kt | Xi7yia®(v)i|
~ (v =X 5” v —xTB 2w
A o (2ZH 50 2 ) e (0 (el 40 2
k k
,i_xr”iv) NO (v i—x/TAtﬂ) NG :
(A ()
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M-Step

Same as before, we calculate the derivatives of U with respect to Oy block by block. Update

the block of 7 by
| R
- 15
i=1
Then find the partial derivative of 3, with the help of 0b;;/98;, = —x; /o) and get

ov ey o = s (Db )
aa = o Z; bikxi - — 7 X; — 0 _r —+ « b, — akbik .
o, o &gt o) B | Gt en

Solve gT;I; = 0 and reach

n (v)1,(v)
N 2 b
E Zz(:) Yi +5k0'k\/7 akgk2 . ¢(a’(€ 3 ’L(k)) — OszkZ O‘](gv)bgz) X;
P T l+4+ag (I)(ak” bi}i ) 1+ ag

n
= ZZi(,:)xiT,kai.
i=1

Write it as matrices

XTdiag (Z,(Cv)) (y + 10k§k\/z — D(ak7ak)> = XTdiag (Z,@) X B,

where
aror ($B) e Sl )
Dlewsow) = 1773 | o~y 0y T ik oty Tk bu |
B\ P(ay "byy) (o, by )
After rearrangement we can update 3, by
v . (v -1 . (v v) (v 2 v v
() — (Xleag (ZE€ )) X) X" diag (Z;c )) (y + 1075 )\/;— D, 6! ))>
in which
() () (v) 5 (v) (v) 5 (v) T
D(al(cv) Ul(cv)) _ % %% <¢(ak 1) T al(cv)bgz) Pl b)) + al(cv)b(vk)>
, 5 - e - n .
L+ \ @b (o,
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As b, can also be written as b;, = exp (—nx) (yl - xiT,Bk) + 0k+/2/m, so we can derive that

Obik. /O, = —exp (—nk) (yi — xiT,Bk). Then the partial derivative of 7 is

ov = A(U) _ v) 2
o - —;Zik (1+0a3) 2%22 yi — xi By,)
+ (1+03) e‘”’“ék\/7 . Z Zf,g) (yi —x{ By)
g i=1
n ()0
Cage 320 (- xT ) [ Dt ) @)
k ; i ( k) <I>(oz,(f)b,(z)) k Vik

Then solve 0¥ /dn;, = 0 and reach

0 = ZZ};f)em— (1+a3) 5;@\/722};’) yi — %7 By)
i=1

n
(v ¢(a( )bg )) v v
—ay, Z 25 (yi —xT'By) - ((I)(alz'“)b(lz)) +afb)
’ k Dk

We use Ts (B}, ax) to denote

Ts (By, o) = 1+0% 5k\/>ZZ(U —XTﬂk)

(v (b(a(v)bgv)) v v
— Ok Z Zi(k) (yZ - X;/Bk) ’ ( ](Cv)b(lj))) + a; )bv(k) .
i=1

O(ay, by,
So we update oy, = exp (1) by

v+1
PCE S VR 6771<€+)

k
1 v v 1
- (U)T6 ( ( +1)’a7(€ )) T n  A(v)
222 1Z Zi:l Zik

1 2 n R n A 2
1 Ts (BU,al) + (1+af?) S0 2003028 (v - xTBe ™)
=1 =1

in which

7, (80 ,0f) = (1+al?) 60 \/;ZH:Z(;;)( X+

i=1

( (v) (U))

) Z” 5() (1) ¢ biy (v) ()
=1 k‘ 1k
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From b, = exp (—nk) (yi — x! By) + (1 — 2/ (exp (26;) + 1)) y/2/7, we have

Ob;y, _ 420 2 Oay,

(69’c + 6_9’“) .

1
00 (200 112N @ 00, 2

Then the partial derivative of 0y is

ov 2 420 v
90, _\/;' ZZsz Zk+ZZz(k)|: ™) bix

(e20x 4 1)
9 4 2604 (v )b( v) o) (v

+Oék\/> . € 5| - ¢(a](€1)) 7‘(12)) + O[EC )bgk) _ akbik .
T (e20x +1) Q(ay, b))

To use the Newton-Raphson approach, we calculate the second-order partial derivative of 6,

9?U 8629k ) 2 3 - 5 (v) 1, 4 2
Z - v =, (S0 S k —0k
902 7 (1+ e20n) T 02 E :sz p 20y, E_ :sz bir, 1 (€% +e™™)
2 2601‘ ( 40, 6620;C + 1)
% Z(u)b2 + Z( v) agbix — \/7
Z Z (626’9 + 1)3

(v) p(v)
X (¢(a’(“v) 1(12)) —i—a,(f)bl(.z) — Oékbik> ;
‘I’(ak bik)

where ), = 0.5log (”5’“) , bgz) = exp (—77,(:)) (yi - x?ﬁ,gv)> —1—5,(;) V2/m, 77,(6”) log ( (v))
and a(”) 5(”)/\/ ”)2 =ag/\/1+ ai.
Stopping rule

Then the EM algorithm iteration alternates between E-step and M-step until

linc((-)(UJrl) ‘ Xay) - lznc((-)(v) | X,y)
lznc(e)(v) I Xay)

< e,

where ¢ is the tolerance. And l;,,.(®”) | X,y) is the incomplete-data log-likelihood function

calculated after v-th iteration:

n K (v)
v 2 Yi — X?ﬁ v 2
linc(®@Y) | Xy) = Zb4iﬁfg¢w(amk+&wc>
=1 k k

k=1
T 2(v)
— x 2
oo (220 2)) )

Oy
; v v 2 . 1 v e
o) = ek, ¢>:1_3@743 Q}:i(ﬁﬁ—eep)

+1
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Initialisation

Inspired by the thresholded LASSO (refer to Section 2.2.6), we came up with this two-step
method to initialise for the mixture skew normal regression problem.

Different from previous initialisation parts, mixture skew normal regression estimation with
EM algorithm needs a two-step initialisation to improve the clustering result. The first step is
carried out to obtain classification result as some simulation trials showed that the classification
accuracy is not sensitive to the initialisation settings, but the parameter estimation accuracy
is. Given the component number K, for each component £ (k =1,2,..., K) the same initial

parameter values are applied in the first trial run. The detailed first initialisation is as follows:

-1
’(CO) — (XTX) XTy
1 & R
S = n—1z<yi*XiTﬁ;(§)fnyﬁ§€))
i=1
—\3
(0) % > i (?Jz - XZTBSJ) —y - Xﬁl(cO))
Tk T 5,
0 1/3
© - (2 a-m) (©)
61@ - 5 2/3, when ‘Vlk ’ < 0.9952
\/1 + (2’&)/ (4- ﬂ))
1- 5@
91(60) = 0.5log 77230)
1+,
2
(0)2 S}
o - Pk
k 1_ 25}20)2/#

After the first trial run, the classification result (Ci, Cs, ... Ck) is reached, where C}, is a vector
to indicate the rows belonging to Group k. So y¢, is the sub-vector with all elements from

Group k, and X, is the sub-matrix with all rows from Group k. Then for all k € {1,2,... K},
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the second step initialisation (the one after thresholding) is shown here:

-1
I(CO) = (ng Xck) ngyck
1 & 0 ) 2
S}% = nk_1;<yck,i_xgk,i ;C)_yck_xck ](c)>
_— 3
n 0 0
(0) % Zi:l (yckﬂ' - ng,i 5@ )~ o, — Xy, Ec ))
/ylk = Sg
0 1/3
) ™ (Mk)/ (4- ”)) ©)
50 = /3 — when ] < 0.9952
\/ 1+ (207 (4-m)
1- 04
9,&0) = 0.51og (6?0)
146
2
(0)2 Sk
o = —>
i 1-2092)x
¥ = log (Sk /A/1 =261 /ﬁ) :
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