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Abstract
Using formal methods complemented by large-scale simulations we investigate information theoretical properties of

spiking neurons trained using Hebbian and STDP learning rules. It is shown that weight space contains meta-stable states,

which are points where the average weight change under the learning rule vanishes. These points may capture the random

walker transiently. The dwell time in the vicinity of the meta-stable state is either quasi-infinite or very short and depends

on the level of noise in the system. Moreover, important information theoretic quantities, such as the amount of information

the neuron transmits are determined by the meta-stable state. While the Hebbian learning rule reliably leads to meta-

stable states, the STDP rule tends to be unstable in the sense that for most choices of hyper-parameters the weights are not

captured by meta-stable states, except for a restricted set of choices. It emerges that stochastic fluctuations play an

important role in determining which meta-stable state the neuron takes. To understand this, we model the trajectory of the

neuron through weight space as an inhomogeneous Markovian random walk, where the transition probabilities between

states are determined by the statistics of the input signal.

Keywords Hebbian learning � Spike-timing dependent plasticity � Stochastic systems � Random walk

1 Introduction

Spiking neural networks (SNN) (Maass 1997; Gerstner and

Kistler 2002) are an alternative to the more commonly used

rate-coding artificial neural networks (ANN) based on

McCulloch-Pitts neurons, which underpin most of modern

deep learning. While ANNs are indispensable for modern

machine learning, SNNs have a number of advantages that

make them an interesting alternative. (i) It is now well

known that a single spiking neuron is computationally

more powerful than a perceptron (Maass 1997; Rubin et al.

2010). For example, a spiking neuron can solve the XOR

problem (Fil and Chu 2020), a task on which the perceptron

famously fails. (ii) SNNs can be implemented on neuro-

morphic hardware (Lin 2018) such as Davies (2018) or

Plana (2011) which promise high execution speed com-

bined with ultra-low power-consumption. (iii) Finally,

SNNs are particularly suitable for learning of temporal data

(Kreiser et al. 2017; Manette 2011).

An important class of learning rules for SNNs are

Hebbian learning algorithms, in particular the classical

Hebb rule (Hebb 1949; Oja 1982) and its generalisation

spike timing dependent plasticity (STDP) (Caporale and

Dan 2008; Kozdon and Bentley 2018; Lobov et al. 2020;

Białas et al. 2020; Long 2011). Unlike backpropagation-

based algorithms (Shrestha et al. 2018; Fang 2021) Heb-

bian and STDP algorithms can be implemented on neuro-

morphic hardware and thus benefit from its advantages.

This makes them an important class of algorithms in the

context of SNNs.

The general idea shared by all variations of Hebbian

rules is that the connection between two neurons is

strengthened (i.e. the weight increased) if the two neurons

fire at the same time. In the basic Hebbian learning rule this

usually means that the weight of an input channel i is

increased if this channel has fired immediately before the

neuron produced an output spike. STDP is an extension of

this basic Hebbian rule: The weights associated with an

input channel i of a neuron are increased (decreased) when
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i fires within a certain time window s before (after) the

neuron produces an output spike.

Given the conceptual importance of Hebbian and STDP

learning both in neuroscience and in neural networks, there

has been interest in understanding these learning rules

theoretically. An important line of mathematical analysis

focusses on understanding how the learning algorithms

impact the long-term weight evolution; see for example

(Kempter et al. 1999; Markram et al. 2012; Oja 1982). A

common approach to this is to assume that learning is

deterministic (Gerstner and Kistler 2002; Akil et al.

2020, 2021). This means that the evolution of weights is

not materially impacted by random fluctuations in the input

data, which simplifies the mathematics. This assumption

may not always be true. Indeed, in this contribution, we

will show that noise plays an essential, qualitatively

important role for the dynamics of Hebbian and STDP

learning. This is true even for the fully deterministic neu-

ron model that we consider here, where the sole source of

stochastic fluctuations is the noise in the data and the

presentation of the data.

Our contributions are as follows: We conceptualises the

neuron as performing a Markovian random walk in weight

space (Leen and Moody 1992; Orr and Leen 1992) and

show that the dynamics of the spiking neuron is dominated

by noise, in the sense that the strengths of stochastic fluc-

tuations determine how the weights will evolve in the long-

run, and thus what the neuron learns. We then show that for

the Hebbian neuron there are well identified regimes of

behaviour. Within each regime, the neuron evolves towards

a particular set of weights and has specific information

processing properties, as measured by the mutual infor-

mation between input and output. Which one of the regions

the neuron ‘‘chooses’’ depends on the parameters, espe-

cially the amount of noise. Within each regime, the beha-

viour of the neuron is insensitive to variations of the

parameters, but transitions between regions are discontin-

uous. In contrast, the STDP neuron is unstable and does not

settle into meta-stable states for most choices of parame-

ters. To the best of our knowledge, the discrete nature of

the learning dynamics has not been characterised before.

Our results thus provide novel insights into how the out-

come of Hebbian learning algorithms is determined by the

hyper-parameters of the neuron.

To derive our results, we use theoretical approaches

which are then corroborated and extended by large scale

numerical simulations. We will limit the scope of the

investigation to a single neuron. Extending this to networks

of neurons would be interesting, but would also require

more space than is available for this article. Furthermore,

we will focus most of our results on unstructured, random

data. Prima facia, this is an unrealistic choice because real

data will have a lot of structure and complicated statistical

dependencies. On the other hand, there is an unlimited

number of different real data sources. Even if we consid-

ered a large sample of those, no general insight could be

won from what would remain a small fraction of all pos-

sible data-sets. We therefore chose synthetic, random data

to understand specifically the effects of noise. That said, we

will sanity check the validity of our results, when we

dedicate section 4.2.1 to showing that our conclusions

remain valid when a real-world data source is used.

2 Methods

In this section we will describe the methods we used to

simulate the neuron. First we will introduce the neuron

model. Subsequently, we describe technical details on how

simulations were conducted and how we determined key

indicators of the neuronal behaviour.

2.1 Neuron model

Throughout this contribution we consider only the

dynamics of a single neuron with N input channels and a

weight vector w ¼ ðw1;w2; . . .;wNÞ. We assume that each

of the input channels i is associated with a weight

wi 2 ½0; 1�. To reduce the parameter space we enforce a

strict weight-normalisation of the neurons, that is
P

i wi ¼
1 during initialisation and following any weight update.

The internal state V(t) of the neuron is initialised to

Vð0Þ ¼ 0. Each time the neuron receives an input spike

through channel i the internal state is increased by wi.

Throughout this contribution we assume that the neuron is

updated in continuous time. A consequence of this is that it

never experiences two simultaneous input spikes.

Once the internal state V(t) crosses a user-determined

threshold h from below, then the neuron generates an

‘‘output spike’’ and the internal state is reset to 0. For our

purposes here, the output spike itself will not be modelled,

but simply recorded as having taken place.

Hebbian learning of the neuronal weights is coupled to

output spike generation. Whenever the neuron creates an

output spike, we determine the last input channel that fired

before the output was generated. Calling this channel j, we

then increase the value of the j-th weight by the learning

rate �, i.e. wj  wj þ �. Following this weight update, we

then normalise the weights of all channels i to 1 by setting

wi  wi=
P

j wj. Altogether this results in a weight change

from wi to ðwi þ �Þ=ð1þ �Þ, for the channel whose weight

is increased and in a weight change from wj to wj=ð1þ �Þ
for all other channels. We will henceforth refer to a spiking

neuron that is updated according to the Hebbian learning

rule as a Hebbian neuron.
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Similarly, for the case of the STDP neuron — a spiking

neuron trained using the STDP rule — we increase by � the

weights of all channels i that fired s time units before an

output spike was generated and decrease the weights of the

channels that fired within s time units after an output spike.

Weights will be normalised to one after each update.

Throughout this article, we set s ¼ 0:1.

Metastable states are points in parameter space where

the effective learning rate vanishes on average (Chu and

Nguyen 2021). This means that the expected increase and

decrease of weights at this point is zero for all weights.

There may be (and typically are) several metastable states

in weight space. It is possible to determine conditions that

the weights have to fulfil when the neuron is in a

metastable state. Following (Chu and Nguyen 2021), for

the Hebbian neuron this condition is simply

PðijoÞ ¼ wi ð1Þ

where PðijoÞ is the conditional probability that input

channel i has fired last given that the neuron has triggered a

spike output.

For the STDP neuron a more complicated condition was

derived in Chu and Nguyen (2021):

wi ¼
PP � PPðijoÞð1� �Þ � PD � PDðijoÞð1þ �Þ

PPð1� �Þ � PDð1þ �Þ ; ð2Þ

where PPðijoÞ is the probability that the weight of channel i

is increased given that there was an output spike and

PDðijoÞ is the probability that the weight of channel i is

decreased given that there was an output spike. Similarly,

PP and PD are the (unconditional) probabilities that a

weight will be increased or decreased respectively with

PD þ PP ¼ 1.

2.2 Random input data— Poissonian neuron

We will explore the properties of the spiking neurons when

they are stimulated with independent identically distributed

(iid) random input. This means that each channel receives

input spikes with a rate of l and the inter-spike waiting

times are distributed exponentially. In this case generating

an input spike consists of two steps. Firstly, choose an

input channel which will receive the spike by drawing a

random number from the set f1; . . .;Ng, each with proba-

bility 1/N. Secondly, generate a time interval Dt since the

last spike happened, by drawing a number from an expo-

nential distribution with parameter k ¼ N � l. Throughout

this paper, we set l ¼ 0:9.

2.3 Preparation of MNIST dataset

To train the neuron on the MNIST (Lecun et al. 1998)

dataset, we used a spiking neuron with N ¼ 28 input

channels. During each training episode, we considered only

a single class of images from the dataset. Here, we arbi-

trarily chose images showing the digit 5. We started the

training by setting the time t ¼ 0. Next, we chose randomly

an image of the digit 5. To simplify the computation, we

limited ourselves to pixels chosen from line 14 from each

image. Next we chose a random pixel in this row. The

probability to choose the pixel in column i was given by

gi=
P28

j¼1 gj, where gi is the intensity of the pixel i. If the k-

th pixel was chosen, then we provided an input spike to the

k-th input channel of the neuron. We then updated the time

to t t þ Dt, where Dt is a random number drawn from an

exponential distribution with parameter k ¼ ð28 � 0:9Þ. We

repeated this procedure until t[ 60000.

2.4 Determining the distance
from a metastable state

Due to random fluctuations that occurred as a result of

learning, the weights of a neuron will normally not be

exactly in a metastable state. In order to know how far

away the neuron is from a metastable state, we measure the

distance from a metastable state or simply the ‘‘distance,’’

following (Chu and Nguyen 2021). In order to determine

the distance in the case of the Hebbian neuron, we first

estimated in simulation the probability PðijoÞ that input

channel i triggered an output spike. To do this, we stopped

the learning process (i.e. weight updates) but continued to

provide input. In order to estimate PðijoÞ, we determined

the relative frequency fi with which each of the input

channels triggered an output spike. Excluding all those

channels where fi ¼ 0, we then calculated the distance as

d :¼
X

i

1� wi

fi

� �

: ð3Þ

In the case of the STDP learning, the distance is computed

analogously, as the difference between the left hand side

and the right hand side of Eq. 2. To compute this, we

estimated (from simulation) the probability of the weight of

any channel firing within the relevant time window before

(PP) and after (PD) an output spike with PP þ PD ¼ 1;

these values could be interpreted as the probabilities of

weights being promoted/demoted as a part of the STDP

algorithm. We also determined the probabilities fi (gi) that

the i-th channel was found to fire within a relevant time

window before (after) an output spike was triggered. The

distance was then calculated as:

d :¼
X

i

PP � fið1� �Þ � PD � gið1þ �Þ
PPð1� �Þ � PDð1þ �Þ � wi

� �

: ð4Þ
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3 Theory

In this section, we will present some theoretical results

about the dynamics of the Hebbian and STDP neuron. The

insights that we present here will then be confirmed and

complemented with simulation results in Sect. 4.

3.1 Learning as a random walk

The training of the neuron can be modelled as a Markovian

random walk in weight space. The walker takes a step each

time the learning rule is invoked, or equivalently, each time

the neuron produces an output spike. Let Piðw; tÞ denote

the probability that after t learning episodes the weight of

the i-th input channel takes the value w, where w 2 ½0; 1�
and t 2 N. Then the master equation for the system reads:

Piðw; t þ 1Þ ¼PðijoÞPiðwð1þ �Þ; tÞ
þ ð1� PðijoÞÞPiðwþ w�� �; tÞ

ð5Þ

Here PðijoÞ is the probability that given that the neuron

fired an output spike the weight of channel i will be

increased. In the case of the STDP algorithm, this would be

the probability that channel i fired within a time s before an

output spike was triggered. The probability PðijoÞ depends

on the current weight vector w, not just on wi, and hence

couples the dynamics of the different weight channels. The

update rule itself is local though.

In practice, the master equation Eq. 5 is difficult to solve

for at least two reasons. (i) The functional form of PðijoÞ is

unknown, and indeed intractable to compute, except in

some special cases. (ii) The step size of the random walker

depends on the weights. For example, if the current weight

is wð1þ �Þ then the weight decrease would be by w� to w.

As w! 0 the step size vanishes, but as w! 1 the weight

decrease maximises to �. A similar argument applies to

weight increases. The varying step size makes this an

inhomogeneous random walk. This class of random walk

problems are difficult to solve. See Fig. 1a for an illustra-

tion of the random walk of weights.

Short of solving the master equation Eq. 5, it is still

possible to gain qualitative insight into some properties of

the walk. In particular, we will be interested in the time

required for the weight to fall below a certain (small) value

w0 when starting from a different value ws [w0; this

quantity is usually referred to as the mean first passage

time.

To gain some insight into this, we first review the well

known results for the standard discrete time/space homo-

geneous random walk with bias p (q) to take a step to the

right (left). The domain of the random walker is infinite,

ranging from �1 to þ1. The master equation for this

random walk is:

Pðx; t þ 1Þ ¼ qPðxþ 1; tÞ þ pPðx� 1; tÞ ð6Þ

We used here x as the state variable, so as to make clear

that this is not a model of the neuron. A standard result for

this type of random walk concerns the average waiting time

of the random walker to reach the site immediately to the

left of its starting place. With probability q, this happens

immediately at the first step, but the walker could also

make an excursion of arbitrary length to the right, before

returning to its starting place and finally taking the step to

the left. The precise mean first passage time depends on the

bias p. Qualitatively, there are two regimes: the mean first

passage time is small when q[ p, but diverges when p� q;

see Fig. 1b for an illustration of this.

The random walk of the spiking neuron (Eq. 5) is dif-

ferent from the standard random walk (Eq. 6), in that the

step size of the former changes depending on the location.

While the random walker can still make an infinite number

of steps into each direction, it is restricted to the interval

[0, 1]. As it reaches one end, say 0, the step size towards

the boundary will become smaller, such that it never

reaches the boundary. More precisely, the ratio of the step

size to the right (increasing the weight) and to the left

(decreasing the weight) is given by ð1� wÞ=w. From this it

can be seen, that the step sizes are equal only when the

weight is w ¼ 0:5.

In order to relate this inhomogeneous random walk to

the standard one, we now ask how many steps to the left

are required, so that the weight is reduced by ð1�
wÞ�=ð1þ �Þ as a single step in the positive direction. To

simplify the reasoning, we can assume that this step would

leave the weight within the allowed range. An estimate of

the required number of steps is

#steps required ¼ 1� w

w
ð7Þ

In reality, the number will be higher, because as the neuron

reduces the weights, the weight decrements become

smaller as well, but this simplification does not alter the

conclusion we will reach. If the distance covered by a step

in the positive direction is D, and the probability to make a

step to the left is q, then the probability to make the

required number of steps to travel by D in the negative

direction is q
1�w
w . On the other hand, the probability that the

walker takes a single step into the positive direction during

this period is given by 1� q
1�w
w . Thus, locally, the random

walk Eq. 5 in weight space looks like a standard random

walk Eq.6 with appropriately modified transition proba-

bilities. Note, that this conclusion remains valid even if the

probability q becomes a function of w, for as long as q(w)

does not go to 1 as w! 0.

We observe that the local transition probability q
1�w
w ! 0

as w! 0, and hence we know that there is an area of small
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weights to which the mean first passage time diverges.

Based on this, we can formulate the following proposition:

Proposition 1 (First passage time to lower boundary) Let

ws be the weight associated with channel i at time t ¼ t0
and let the weights of the neuron evolve according to the

master equation 5 with a learning rate of �. Then, there is a

set of values S :¼ ½w0;ws� with w0\ws such that the first

passage time to reach a value w 2 S is finite and indeed

short. The first passage time for values w\w0 diverges.

Note that it may be the case that w0 ¼ 0, in which case

the weights can reach any of the allowed values within a

short period of time. This will be the case, when the

learning rate � is sufficiently high. By symmetry, we can

immediately formulate the corresponding proposition for

reaching an upper boundary.

Proposition 2 (First passage time to upper boundary) Let

ws be as in Proposition 1. Then, there is a set of values

S :¼ ½ws;w0� with w0 [ws such that the first passage time

to reach a value w 2 S is finite and indeed short. The first

passage time for values w[w0 diverges.

This first passage time property has tangible conse-

quences for the behaviour of the Hebbian neuron, because

the Markov chain that the random walker is sampling is not

ergodic. It has absorbing states and also absorbing sub-sets

corresponding to specific weights being set to zero. We first

define what we mean by an absorbing sub-set.

Definition 1 (Absorbing sub-set) Let V be the space of all

possible values of the weight vector w ¼ ðw1;w2; . . .;wNÞ
of a neuron, with wi the weight of the i-th input channel of

the neuron and
P

i wi ¼ 1. Let T be a learning rule, and

wðtÞ 2 V a weight vector that has been updated t times

according to T . A set A � V is absorbing with respect to

T if wðt0Þ 2 A)wðt1Þ 2 A for all t1 [ t0.

In essence, an absorbing sub-set is a part of weight space

from which there is no more escape under the update rules

of a training algorithm T . The nature of the absorbing sub-

set will depend on the learning rule; indeed, the absorbing

sub-set may be the empty set. For our purpose, we find that

the Hebbian learning induces a number of absorbing sets

on the weight space.

Proposition 3 (Absorbing sets of the Hebbian neuron) Let

V be the space of all possible values of the weight vector

w ¼ ðw1;w2; . . .;wNÞ of a Hebbian neuron, and Vn is a

sub-set of V such that for each weight vector w 2 Vk there

exist exactly k indices j with wj ¼ 0. Vk is an absorbing set

for all k�N.

It is straightforward to see this. According to the Heb-

bian update rule, a weight can only increase if it triggered

an output spike. If the weight is vanishing, it cannot trigger

an output spike and hence will never be increased.

The absorbing sub-sets Vk are organised hierarchically

in that for every Vk and k\N there is a sub-set Vkþ1 such

Fig. 1 a Illustration of the random walk of an STDP neuron. We

simulated a neuron with 2 weights for 300 time units and two

different learning rates, � ¼ f0:0001; 0:0005g. The y-axis shows the

value of the first weight. b The mean first passage time of the simple

random walk (Eq. 6) to reach the site immediately left to the starting

site estimated based on 2000 samples and maximal run times of 5

million steps. The horizontal axis is the probability to take a step to

the right. The rapid transition from short to quasi-infinite times is

apparent. At p ¼ 0:5 transition still seems to be short, which is

because the average in this case is dominated by rare walks with

infinite excursions
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that Vk � Vkþ1. At the highest level, there are N different

absorbing sub-sets corresponding to exactly one of the N

weights vanishing. There are a further N
2

� �
absorbing sub-

sets corresponding to two weights being zero, and more

generally N
k

� �
sub-sets with k vanishing weights. From this

proposition follows the following corollary:

Corollary 1 (No-escape for the Hebbian neuron) Let w 2
Vn with n[ 0 be the weight vector of a Hebbian neuron. If

trained under the Hebbian rule, then the weights will be

restricted to sub-sets Vm with m� n for all times.

This tells us that the Hebbian neuron, once it has set one

of its weights to 0, will never be able again to recover from

this. From the no-escape Corollary 1 it follows directly that

the neuron will, after an infinite number of training

updates, end up in a globally absorbing state.

Corollary 2 (Globally absorbing state) In infinite time, the

Hebbian neuron neuron will reach a globally absorbing

state located in VN.

However, note that the passage time to the globally

absorbing state may diverge because of Proposition 1.

During training, the Hebbian random walker will often

get trapped in metastable states fulfilling PðijoÞ ¼ wi for all

weights, and wi [ 0 for more than one channel. Each of the

metastable states has a basin of attraction. This is a

neighbourhood around the meta-stable state with the

property that the random walker will be attracted back to

the metastable state if it remains within this neighbour-

hood. We can now formulate the following proposition:

Proposition 4 (Dwell time in the basin of attraction of a

meta-stable state) The random walker will remain in the

basin of attraction of a meta-stable state either for a short

time or for quasi-infinite times.

Leaving a basin of attraction is a first passage time

problem. In order for the random walker to leave the basin

of attraction, at least one of its weights has to fluctuate

beyond the boundary of the basin. From propositions 1 and

2 it follows that the time to do this is either very short or

quasi-infinite. In practice, this means that the dwell time of

the random walker in the basin of attraction of a

metastable state will depend on the size of the basin of

attraction and the learning rate. The proposition implies

that there will be sudden transitions in the transient beha-

viour as parameters of the neuron are changed. For

example, a small adjustment of the learning rate may be

sufficient for the dwell time in a meta-stable state to change

from quasi-infinite, to very short.

We found that for the Hebbian neuron Vk are absorbing

sets. The following proposition tells us that for the STDP

neuron they are not.

Proposition 5 (STDP metastable states have all weights

non-vanishing) Assume an STDP neuron with N input

channels receiving statistically independent input spikes at

frequencies fi [ 0. The weight of the i-th input channel is

wi. In a metastable state all weights will be non-vanishing,

that is wi [ 0 for all i.

Assume that the proposition is not true, and that in a

meta-stable state channel i has a vanishing weight wi ¼ 0.

The assumption of the proposition is that the input channel

fires with a frequency fi [ 0. By coincidence, it will fire

within a time period s before an output spike. At this point,

the weight of the channel will be increased by �. Vice-

versa, for as long as wi ¼ 0 the weight cannot be decreased.

Hence, the mean step size is non-vanishing and hence

cannot correspond to a meta-stable state.

From this proposition it follows immediately that

weights of channels cannot remain vanishing for a long

time in the STDP neuron.

Corollary 3 (STDP weights do not vanish permanently)

Let i be an input channel of an STDP neuron and wi ¼ 0 at

time t ¼ t0. Then there is a time t1 [ t0 such that wi [ 0 at

t ¼ t1.

3.2 Calculating the mutual information

In many practical contexts the mutual information between

the input and the output of the neuron is of interest. The

mutual information quantifies how much one can learn

about the input to the neuron from its output, or vice versa.

Depending on the task at hand, one may be interested in

maximising the mutual information (Toyoizumiyz et al.

2004), or indeed minimising it (Tishby et al. 1999). Here,

we quantify the mutual information between a specific

input spike and the output spike (or lack thereof). This

notion of mutual information quantifies how much infor-

mation one has about the last input spike, given that the

neuron produced an output spike or failed to do so. Since

the output of the neuron can take two values, namely to fire

or not to fire, the maximal possible value of the mutual

information is 1 bit. There are numerous other ways to

define mutual information. For example, one could take

into account uncertainty about the time of spikes, or con-

sider the mutual information of sequences of input spikes

and output spikes. However, for our current purpose, the

mutual information defined in this way is an appropriate

measure that will provide useful insights into the dynamics

of Hebbian and STDP learning.

More formally, below we calculate the mutual infor-

mation IðI ;OÞ between the input I and the corresponding

output O. The input can take an integer value 1; 2; . . .;N,

where N is the number of input channels. The output takes

the values o and :o corresponding to an output being
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generated following an input or not. PðojiÞ denotes the

probability that given input channel i fired an output spike

will be produced. Similarly, the probability that an input

spike through channel i results in the neuron not producing

an output spike is Pð:ojiÞ. Correspondingly, we will be

interested in the probability PðijoÞ that a particular output

was triggered by an input through channel i; similarly

Pð:ojiÞ is the probability that a non-spike of the neuron

follows an input through channel i. We define the mutual

information.

Definition 2 (Mutual information between input and out-

put) Let P(o) be the probability that following an input

spike the neuron produces an output spike and let P(i) be

the probability that input channel i fires. Furthermore, let

PðojiÞ and PðijoÞ be the corresponding conditional proba-

bilities. Using the general definition of the mutual infor-

mation in terms of entropies and conditional entropies

IðX; YÞ ¼ HðX; YÞ � HðXjYÞ � HðY jXÞ, as well as the

general relation Pði; oÞ ¼ PðiÞPðojiÞ we then obtain:

IðI ;OÞ ¼ � PðoÞ log2 PðoÞ � Pð:oÞ log2ðPð:oÞÞ
þ
X

i

PðiÞPðojiÞ log2 PðojiÞ

þ
X

i

PðiÞPð:ojiÞ log2 Pð:ojiÞ
ð8Þ

or equivalently

IðI ;OÞ ¼ �
X

i

PðiÞ log2 PðiÞ þ PðoÞ
X

i

PðijoÞ log2 PðijoÞ

þ Pð:oÞ
X

i

Pðij:oÞ log2 Pij:oÞ

ð9Þ

In general, this mutual information is intractactable to

compute exactly. For example, it is normally difficult to

obtain an expression for P(o). However, some useful

general statements can be made about the mutual

information.

Proposition 6 (Mutual information when the spiking

threshold h ¼ 0;1) The mutual information vanishes when

the spiking threshold is either h ¼ 0 or h ¼ 1.

To see this let us consider the case of h ¼ 0 threshold

first. In this case, PðoÞ ¼ 1� Pð:oÞ ! 1, which also

implies that the conditional spiking probability PðojiÞ ! 1

for any i, hence Eq. 8 must vanish. By the same reasoning,

we can see that the mutual information also vanishes in the

limit h!1. This implies that the mutual information is

either 0 everywhere or there is at least one h which max-

imises the mutual information. Since the mutual informa-

tion is not vanishing everywhere, we conclude that there is

at least one threshold that maximises the mutual informa-

tion. This conclusion is independent of the nature of the

input data and indeed the training algorithm.

3.2.1 Mutual information in the large threshold regime

In the limit of the neuron having a large firing threshold, it

is possible to compute the mutual information analytically.

Definition 3 (Large and small threshold regime) We say

that a spiking neuron operates in the large threshold regime

when h�
P

i wi. Conversely, we say that it operates in the

small threshold regime if 1=N � h 	 0.

The next proposition states that in the large threshold

regime, the mutual information of a trained Hebbian neu-

ron can be computed based on knowledge of the weights

and the input statistics only. In particular, there is no

requirement to know the probability of an output spike,

which is usually difficult to obtain.

Proposition 7 (Mutual information in the large threshold

regime for a trained Hebbian neuron) Assume a Hebbian

neuron parametrised in the large threshold regime. In

steady state the mutual information is then given by:

IðI ;OÞ ¼ �
P

i PðiÞwi

h
log2

P
i PðiÞwi

h

� �

� 1�
P

i PðiÞwi

h

� �

log2 1�
P

i PðiÞwi

h

� �

þ
X

i

PðiÞwi log2 wi

þ
X

i

PðiÞ
X

j 6¼i
wj

 !

log2

X

j 6¼i
wj

 !

ð10Þ

In order to calculate the mutual information, one nor-

mally needs to estimate the probability of an output spike

P(o) before calculating the mutual information. In the case

of the Hebbian neuron in the large threshold regime, this

can be avoided. In this limit the system will have received a

large number of input spikes through each of its input

channels (on average) between any two output spikes. It is

then possible to find an analytic expression for the mutual

information. We first calculate the average membrane

potential after L ¼ k � N steps, where k 2 N� 1. The idea

is that after L steps each of the input channels has fired a

number of times in proportion to its relative firing fre-

quency. We can then write the membrane potential:
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hVi ¼ L
XN

i

wiPðiÞ

Here P(i) is the probability that the i-th input channel fires.

An output spike happens when hVi ¼ h; we can thus write:

1

L
¼
P

i PðiÞwi

h
¼ PðoÞ ð11Þ

This can be substituted into Eq. 9; remembering that in the

case of a Hebbian trained neuron PðijoÞ ¼ wðiÞ, we then

obtain the proposition.

Mutual information in the small threshold regime It is

possible to make some general statements about the mutual

information and the weight evolution in the limiting case of

very small thresholds h. In the small threshold regime the

numerical details of the weight values do not matter. When

an input spike arrives through one of the channels whose

weight is above the threshold then the neuron will always

spike; otherwise, it will never produce an output. The

Hebbian learning rule guarantees that those channels

whose weight are below the threshold will never increase

their weights any more. The weight normalisation implies

that those weights that are below the threshold are driven to

zero.

Proposition 8 Assume a Hebbian neuron parametrised in

the small threshold regime. The mutual information can

then be computed from knowledge of the weights alone.

IðI ;OÞ ¼ �
P

i Hðwi � hÞ
N

log2

P
i Hðwi � hÞ

N

� �

�

�
P

ið1�Hðwi � hÞÞ
N

log2

P
ið1�Hðwi � hÞÞ

N

� �

ð12Þ

Here HðxÞ is the Heaviside function and evaluates to 0

unless x[ 0, when it evaluates to 1.

This proposition states that in the small threshold

regime, the mutual information reduces to the entropy of

the output signal of the neuron. To see this, note that in the

small threshold regime an input spike through channel i

with wi [ h 	 0 will always trigger an output spike; if

wi\h, i.e. wi 	 0, then it will never trigger an output spike.

Thus PðojiÞ ¼ 1 when wi [ h and PðojiÞ ¼ 0 otherwise.

This means that the last two terms in Eq. 8 vanish. Fur-

thermore, we also have PðoÞ ¼
P

i PðojiÞ=N. The propo-

sition (Eq. 12) can then be obtained by substituting the

special value of P(o) into Eq. 8.

Corollary 4 (Maximal value of mutual information) The

mutual information is 1 and it is obtained in the small

threshold regime when exactly N/2 input channels have

weights below the threshold.

This is a direct consequence of Proposition 8. Then P(o)

evaluates to
N=2
N ¼ 1=2. and the mutual information reaches

its maximal value of 1 bit.

Proposition 9 (Maximal mutual information in small

threshold regime) The mutual information can take its

maximal value of 1 only in the small threshold regime.

This can be seen directly from Eq. 8. The first two

terms, are the function �ðx log2ðxÞ þ ð1� xÞ log2ð1� xÞÞ,
which is known to have a maximal value of 1 when

x ¼ 0:5. The final two terms will make a negative contri-

bution. Hence, the mutual information can only reach its

maximal value when these final two terms vanish, which

can only be the case when PðojiÞ is either 0 or 1. This latter

condition is only true in the small threshold regime.

Another perspective on this is that outside of the small

threshold regime, it is no longer true that every input spike

through the N � k channels with non-vanishing weights

triggers an output spike. In this situation, knowledge of an

input spike through one of those channels does not provide

certainty about an output spike being generated. Indeed, the

higher the threshold, the harder it is to predict the effect of

a particular input spike, because input spikes will only

sometimes trigger an output spike. Therefore, in this

regime input spikes carry less information about output

spikes.

4 Results

In this section, we will present simulation results to cor-

roborate and extend our theoretical insights. We will first

discuss in detail how various parameters impact on the

weight evolution of Hebbian learning. Subsequently, we

will make the equivalent investigation for the STDP neu-

ron. We conclude this section by discussing how the results

generalise to real world data.

We will be interested in how random effects impact on

the weight evolution during learning. In order to under-

stand this, we will focus mostly on Poissonian neurons; See

Sect. 2.2 for details. When the input to the neuron is

unbiased and uncorrelated, then we know that any bias that

evolves in the weights is a consequence of fluctuations,

rather than any particular bias in the input data. Throughout

most of this article, we will therefore focus on iid input

data before confirming that the main conclusions hold

when the neuron is trained with real data.

4.1 Hebbian learning

We will first focus on the mutual information between

input and output of the neuron. This will provide important

D. Chu

123



insights into the behavioural regimes of the neuron. Sub-

sequently, we will then characterise the weights the neuron

take.

4.1.1 Mutual information

In order to understand how the mutual information

depends on the learning rate � and the threshold h, we

performed over 447000 separate simulations of the Heb-

bian neuron. All results reported here have been obtained

for a neuron with N ¼ 40 input spikes, unless stated

otherwise. The results are summarised in Fig. 2a, where

each pixel represent the mutual information as obtained

from a single simulation.

The main findings that can be seen from the graph are:

For a fixed learning rate, the mutual information has a

single maximum value. This means that for a fixed learning

rate, there is a unique critical threshold h
 that globally

maximises the mutual information. We find that h
 is a

small value. It gets exceedingly small as the learning rate

increases. For higher learning rates, the maximal mutual

information is not resolved any more in Fig. 2a. For suf-

ficiently small values of the learning rate �, the mutual

information reaches not just a global maximum, but it

actually reaches the maximally possible value of 1 bit;

cf. Corollary 4. When the threshold is increased beyond h
,
then the mutual information gradually falls to zero, which

is compatible with the functional relationship derived for

the large threshold limit above; see Eq. 11 and proposition

6. On the other hand, if h is decreased from h
, then there is

a dramatic, almost instantaneous drop of the mutual

information to zero, with the mutual information collapsing

from its maximal value to 0 for the tiniest changes of the

threshold. Due to the small size of the maximising

threshold h, the drop to 0 is only resolved for small

learning rates in Fig. 2a. Fig. 2c shows more detail for two

particular learning rates.

The mutual information does not vary continuously as a

function of the parameters, but the observed values for the

mutual information are distributed around specific numer-

ical values only. This is apparent from the heat-map

(Fig. 2c), but more clearly seen in Fig. 2c. Taking into

account that the weight values are subject to random noise,

we take this as meaning that only certain values of the

mutual information are allowed. A perhaps surprising

consequence of this discrete nature of the spectrum is that

the mutual information sometimes changes abruptly as

parameters are varied. In Fig. 2a this is readily visible in

that the parameter space is organised into discernible

regions, which makes the figure reminiscent of phase dia-

grams as they are used in statistical physics. Finally, we

note that a higher learning rate allows for fewer distinct

values of the mutual information than smaller learning

rates, despite being subject to much higher noise (via the

higher learning rate).

4.1.2 Weights

In order to get a better insight into how the parameters of

the neuron impact on learning, we next investigate the

weights that a single Hebbian neuron can take. A conve-

nient measure to summarise the weights is the entropy of

the weights after the system was allowed to settle. To

obtain this entropy, we simulated the Hebbian learning

system for 60000 time units. Then we interrupted the

simulation and recorded the last weights that the system

took. Calling these wi, we calculated the weight entropy as

Ew :¼ �
PN

i¼1 wi log2ðwiÞ. While formally an entropy, this

measure does not have a direct information theoretic

meaning, but is merely used here as an easy-to-interpret

summary statistics of a 40 dimensional weight vector. The

upper bound of the weight entropy is limited by the number

of weights (which is 40 in this case); the maximal value of

Ew is obtained in the case of maximal disorder, i.e. when

wi ¼ 1=N for all i. The lower bound of the entropy is zero,

which is reached when the system is in one of its N globally

absorbing states. In-between these two boundaries, the

entropy is a continuous function of the weights. We find,

however, that Hebbian learning preferentially leads to

specific weight entropies only. These correspond to the

metastable states.

The weight entropies are summarised in Fig. 2b. It

shows regions of constant values separated by abrupt

changes, similar to the case of the mutual information. We

observe that for ultra-low learning rates, the system retains

its full weight diversity (see the bottom blue line in

Fig. 2b). In this regime, the random walker is not able to

follow a persistent trend and essentially remains stuck

around the initial conditions. At the opposite end of the

spectrum, when learning rates and/or thresholds are high,

the neuron enters into a globally absorbing state which

implies that the weight entropy falls to 0. In-between, the

system settles onto metastable points. These meta-

stable points are located in absorbing sub-sets of V, that is

the neuron has reduced its dimensionality. The learning

rate and the threshold dictate which one of the possible

points the system takes, in particular which one of the

absorbing sub-sets it occupies.
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4.1.3 Random walk model to explain choice of absorbing
sub-set

This begs the question as to what precisely determines how

deep the random-walker enters into absorbing sub-sets. In

this respect, an important hint is given by Proposition 4,

which states that the escape time from a meta-stable state is

either fast or quasi-infinite.

We hypothesise that the reduction of the dimensionality

is driven by the first passage time of weights to below the

threshold h. At least in the small threshold regime, once the

weights wi of a channel i has fallen to below the threshold

h, this channel i will not be able to trigger an output spike

and consequently cannot be increased again. In combina-

tion with Proposition 2 this suggests a mechanism by

which the weights of channels that are close to the

Fig. 2 a The mutual information as a function of both the learning

rate and the threshold. As the threshold it is varied, it is apparent how

the mutual information changes abruptly. b The weight entropy as a

function of the learning rate and the threshold; the data displayed here

represents the same simulations as in Fig. a. The deep red area shows

where the neuron reaches the globally absorbing state. c Same data,

but showing only slices corresponding to � ¼ 0:0031 and � ¼ 0:1491.

Here it is clearly visible how the mutual information collapses to 0 as

h is decreased from its maximum. In the case of the higher learning

rate, the maximum is no longer resolved. Also visible are the discrete

levels of mutual information. d Detail of the weight entropy for two

different learning rates. The black solid lines indicate the entropy of a

system where each weight takes the value wi ¼ 1=ðN � kÞ, and k
weights have a vanishing weights. We show lines of N � k equalling

40 for the top line and then 35; 20; . . .; 10; 5; 3; 2
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threshold after initialisation fall below the threshold and

never recover back. The idea is that in accordance with

Proposition 2, given a learning rate �, some of the weights

will be close enough to the threshold h to have a short first

passage time to h. As more of the weight components wi

fall below zero, the remaining ones get further away from

the threshold, putting them into an area where the first

passage time to the threshold diverges, in an effect similar

to the one depicted in Fig. 1b. In order to test whether the

first passage time indeed determines the order k of the sub-

set Vk, we compared a random walk model that directly

implements the above hypothesis with the Hebbian learn-

ing algorithm.

The model is as follows: We assume a random walker w

in weight space with all weights initially drawn from a

uniform distribution, before being normalised. After nor-

malisation, we assume that the weights are wi [ h for all i.

Each weight performs a random walk in weight space. We

are interested in the time required for a weight, starting at

some value w0, to fall below a threshold h when weights

are adjusted according to the Hebbian dynamics. We model

the random walk of each weight wi independently. The

following routine returns the first passage time:

• Initialise the random walker with a value w w0 and

t 0; choose a learning rate �.

• Do the following until t[ 2000000:

– With probability 1/N increase the current value w to

w wþ�
1þ�. With probability ðN � 1Þ=N decrease the

weight from the current value w to w w
1þ�.

– t t þ 1

– If w\h stop further iterations and return the value

of t.

• Return the value of t.

Here, we limited the duration of the random walk to 2

million iterations, to prevent extremely long running times.

This particular value was chosen to be large, but otherwise

its precise value is unimportant. In practice we find that the

loop runs for the full 2 million iterations or for much

shorter, depending on the parameters, as predicted by

Proposition 2.

Using this random walk model, we can now determine

how many weights of a neuron will fluctuate below the

threshold h within a short time. We can do this using the

following model:

1. Draw a set of N random numbers r1; r2; . . .; rN , sort

them such that ri\riþ1 and set ri  ri=
P

j rj. Set

l 1.

2. Choose rl as the initial value for the above random

walk model. Determine the first passage time to below

the threshold value h. If this time is � 2000000 then

return the value of l.

3. Otherwise, remove rl from the set, set l lþ 1 and

ri  ri=
PN

j¼l rj

4. Go to 2.

The idea of this model is that we start from N input

weights above the threshold. Then we check whether one

of those (the one with the smallest weight), fluctuates

below the threshold h within finite time (or rather within 2

million time steps). If it does, we check the second value,

then the third, etc ...until the first passage time diverges. At

this time, we have then determined how many weights

remain finite for a long time. Note that the outcome of the

model is insensitive to the time limit of 2 million steps,

which can be doubled (or halved) without changing the

results.

We compared the model predictions (diamonds in

Fig. 4) with the simulations of the actual neuron (solid

points in Fig. 4). As can be seen from the figure, we found

the model to reproduce the real neuron accurately. This

corroborates the hypothesis that the absorbing sub-set of

the neuron is determined by the first passage time proper-

ties of the weights, in the Hebbian neuron.

4.1.4 Multi-stability

So far we have established that the Hebbian neuron tran-

siently (but for very long time) remains in absorbing sub-

sets Vk and that k is a result of the first passage time

properties of the random walk. We will now look in more

detail into the dynamics and weight distribution of the

meta-stable states that the neuron takes. This will uncover

unexpected dynamical effects.

To better understand what determines the weights of the

neuron, we kept the learning rate fixed and investigated

how the weight entropy changed as we varied h. This gives

some insight into which weights the algorithm finds. We

chose a learning rate of � ¼ 0:0031, as an example that

provides good insight. Figure 2d illustrates that for small

thresholds the weight entropies take only discrete values

corresponding to homogenous sub-set configurations. By

this we mean that the weight vectors w 2 Vk where the

weights are either wi 	 1=k or vanish. We find that the

absorbing sub-sets Vk become deeper, i.e. k becomes lar-

ger, as h increases, which is expected given the discussion

in the previous section. The initially monotonous decrease

of the weight entropy is, however, interrupted at a point

h 	 0:125 where suddenly higher order sub-sets appear

again. Note that these ‘‘new’’ weight entropies are again

homogenous solutions of higher absorbing sub-sets. How-

ever, now there is a bi-stable behaviour, where the neuron
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makes a stochastic choice during training whether to enter

the deeper or a shallower absorbing sub-set. The fig-

ure suggests that two or more different trends operate at the

same time. The first trend is the continuation of the

monotonous reduction of the dimensionality from the small

threshold regime, until the weight entropy reaches zero.

The second trend has a similar shape but admits higher

weight entropies, corresponding to the neuron settling into

higher absorbing sets Vk; see Fig. 3b.

A closer investigation reveals that there are areas of

multi-stability of the neuron. In the case of h ¼ 0:5, the

neuron can take 4 different weight configurations. To

illustrate this in more detail, we ran 2000 simulations of the

neuron for 60000 time units and recorded the largest

weight against the second largest weight. The data is

plotted in Fig. 3a and shows 4 clusters corresponding to

k ¼ 1; 3; 4; 5. For each run, the system chose stochastically

one of 4 possible solutions. No other solutions were stable.

Fig. 4 Comparing the random walk model to the weight evolution of

the neuron. The vertical axis shows the number of weights that are

expected to be non-vanishing after a long time of training. The solid

points are the predicted numbers of non-vanishing neurons from the

random walk model for different values of the threshold. The

diamonds are the corresponding values from the neuron. We show

two different learning rates corresponding to � ¼ 0:01 and

� ¼ 0:0001. It can be clearly seen that the random walk model

(squares) and the spiking neuron (diamonds) are in excellent

agreement

Fig. 3 a For h ¼ 0:5 and � ¼ 0:0031, we ran 2000 simulations for

60000 time units and recorded the weights at the end. Then we plotted

the largest weight against the second largest weight, resulting in 4

different ‘‘clusters’’ of weights. Each point represents a single

simulation. This demonstrates that for this particular parameter

setting, the system stochastically selects between 1 of 4 different

solution classes. b We started a simulation at a metastable state for

� ¼ 0:001 and h ¼ 0:05 with a learning rate to � ¼ 0:005. Without

interrupting the training, we then increased the learning rate every

10000 time units. The graph shows the largest versus the second

largest weight sampled every 100 iterations. As the learning rate

increases, the excursions from the metastable state become larger

until the next metastable state is reached. The transition to deeper

absorbing sub-sets are clearly visible
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Fig. 5 a-d Metastable states in the Hebbian neuron: The probability

PðijoÞ for a channel to trigger an output spike as a function of the

weight for different thresholds and a neuron with two weights only.

The metastable states correspond to the points where the curve

intersects the diagonal. If the probability is higher than the weight,

then the weights tend to increase under the Hebbian learning rule. For

the case of a threshold of 1 and 2, the curves are mostly under the

diagonal, indicating stability, whereas in the case of h ¼ f0:5; 1:5g
the metastable states are not stable. e The weight entropy (purple) and

mutual information (green) as a function of the threshold and

� ¼ 0:03; each point represents a separate training run
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4.1.5 Non-monotonicity of the stability of meta-
stable states as the threshold is varied

So far, we found a trend that increasing the learning rate

and the threshold tends to drive the system into ever deeper

absorbing sub-sets, with arguably less interesting dynam-

ics. At least with regards to the threshold, this trend is only

true up to a point. As h is increased sufficiently, the weight

entropy reaches zero and the system is in the globally

absorbing state. A further increase of h leads to an increase

of the weight entropy, albeit only for a narrow interval of

thresholds around the value of 1, before it falls to zero

again into the absorbing state, then it rises again to around

2 and falls again and so on; see Fig. 5e.

This unexpected behaviour, is a consequence of changes

in the stability of meta-stable states, as the threshold is

varied. It highlights that the threshold is a key parameter in

determining the stability landscape of the Hebbian neuron.

To understand this, we investigated the stability of

metastable states in the simplified case of a neuron with

only 2 input channels. This case is useful to consider

because it is tractable in the sense that we can compute

PðijoÞ explicitly by enumeration. In Fig. 5 we show the

exact probability for an input channel to trigger an output

spike as a function of the channel weight. Specifically, the

figure displays a system consisting of only 2 input chan-

nels, each receiving inputs with a frequency of 0.9. This

models exactly the situation of a neuron with N ¼ 40 input

channels out of which k ¼ 38 neurons have vanishing

weights. In Fig. 5 the metastable states correspond to the

weights where the probability to trigger an output spike

crosses the diagonal, i.e. where wi ¼ PðijoÞ. However, the

stability of the metastable state depends on precisely how

the curve crosses the diagonal. Taking Fig. 5a as an

example, we see that the curve crosses the diagonal four

times. The first crossing is at w ¼ 0:5, where both weights

have equal value; and then there are two more crossings

between 0.6 and 0.7; finally, the curve also crosses the

diagonal for w ¼ 1, which corresponds to the globally

absorbing state. The important feature of this figure is that

after the third crossing (below 0.7), the curve remains

below the diagonal. This means that any perturbation of the

weights upwards from the metastable state at around w 	
0:7 is pulled back to this metastable state. In fact, the

absorbing state w ¼ 1 will only be reached if the weight

reaches 1 exactly, otherwise, the weights will converge

back to the metastable state. Similarly for the case of

h ¼ 2. A qualitatively different picture emerges for

h ¼ f0:5; 1:5g, where the curve is above the diagonal. The

two metastable points (one at w ¼ 0:5 and one between 0.7

and 0.8) are entirely unstable. Any perturbation of the

weights away from the metastable points, will drive the

system to the globally absorbing state. A similar

explanation can be constructed for other sub-sets. How-

ever, calculating the probabilities PðijoÞ as a function of

the weights and visualising the results becomes challenging

for neurons with more than 2 input channels.

We conclude that the periodic change in the weights as

the threshold is increased reflects changes in the stability of

the meta-stable states. This suggests that, given fixed input

data, the stability, and indeed the size of the basin of

attraction of meta-stable states is primarily determined by

the threshold parameter. Altogether, thus a picture emerges

where the absorbing sub-space that the Hebbian neuron

enters is determined by the learning rate and the threshold.

The latter controls the size of the basins of attraction,

whereas the former scales the fluctuations that the weights

suffer and as such controls whether the first passage time

beyond the basin is short or quasi-infinite.

As an interesting aside, note that while the weight

entropy changes non-monotonically, as the threshold

increases, the mutual information falls monotonically to

zero; see Fig. 5e. Just from looking at the mutual infor-

mation, one would not be able to infer the changes in the

weights as the threshold changes.

4.2 STDP

Turning now our attention to the STDP algorithm, we

find three key differences in the behaviour.

• In the case of Hebbian learning, we found that weights

space is partitioned into qualitatively different phases.

Each phase is a well delimited area of the parameter

space where the dynamics is insensitive to changes of

the parameters. This is no longer so for the STDP

neuron, which takes continuous values for the mutual

information.

• The sub-sets Vk are not absorbing for k\N. The STDP

algorithm still has a tendency to set a number of its

weights to zero. Channels that have vanishing weights

eventually recover again, taking non-vanishing values.

• For most parameter settings the STDP algorithm does

not settle onto meta-stable states.

It is immediately apparent from Fig. 6a that the mutual

information varies continuously as the threshold and the

learning rate are adjusted, which is also confirmed by a

detailed investigation of the data (not shown). This marks a

key difference to the Hebbian neuron. At the same time,

Fig. 6b shows that for higher learning rates and thresholds

STDP tends to set a large number of its weights to zero,

which prima facia is similar to the Hebbian neuron. When

considering the update rules of STDP, it becomes clear that

the vanishing weights are, and have to be, of a different

nature than in the Hebbian neuron. Corollary 3 states that
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the weights of the STDP neuron cannot remain vanishing

permanently. Intuitively, it can also be seen that this must

be so. In the simulations we present here, the window

length was set to s ¼ 0:1. The input data is iid, firing with a

rate of 0.9 per channels. There will therefore be on average

	 2:5 input spikes within Ds time units before each output

spike. This means that each weight is increased about every

11 output spikes by chance alone. To corroborate Corollary

3, we performed additional simulations where we

monitored weights over time (data not shown); these sim-

ulations confirmed that weights that vanished at one point

in the simulation, recovered again to significant values.

The finding that over large parts of parameter space

input channels have vanishing weights combined with

Proposition 5 means that in those areas the STDP neuron

cannot be in a metastable state. To understand this better

we checked in simulations the distance of STDP trained

neurons (Eq. 4) after a training period of 60000 time units;

Fig. 6 a The mutual information for the STDP neuron as a function of

the threshold and the learning rate. Here we show data for a neuron

with 40 input channels, each firing at a frequency of 0.9; the window

size of the STDP update is 0.1. b For the same simulation, we show

the number of weights that are non-vanishing. Clearly, there is a

continuous trend for the algorithm to set weights to 0, as the learning

rate and the threshold (or both) increase. Meta-stable states can only

exist where all weights are non-vanishing. c The mutual information

as a function of the distance. The neuron only remains close to the

metastable state when the mutual information is almost zero and when

all weights are non-vanishing. d The distance from a metastable state

as a function of the threshold for the STDP neuron trained on random

input data and MNIST (digit 5). The learning rate was set to 0.0001.

There is threshold that minimises the distance. Qualitatively, the

random data and the MNIST data are the same, but there are

quantitative differences
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see Fig. 6c. A distance of 0 indicates that the weights are

exactly in a metastable state. Due to stochastic perturba-

tions of the weights, the neuron will never have a distance

of 0, but can come very close to it. Our simulations indi-

cated that across most parts of parameter space the STDP

neuron has high distances, which means that it does not

settle onto metastable states.

A closer analysis shows that there is an optimal

threshold h that minimises the distance; see Fig. 6d. Fur-

thermore, we found that there is only one, relatively small

area of the parameter space where the system evolves

towards and remains close to a metastable state. Interest-

ingly, this optimal area is characterised by a vanishing

mutual information; see Fig. 6c.

We next discuss the mutual information. By the same

reasoning as in the Hebbian case, we would expect from

Eq. 8 that the mutual information of the neuron is zero for

h! 0 and h!1. Again, this means that there is at least

one maximum of the mutual information for intermediate

thresholds. In Fig. 6a this is clearly visible as the blue strip

on the left hand side of the graph. A closer analysis of the

data shows that, similar to the case of the Hebbian neuron,

the mutual information reaches the maximal value of 1. It

is instructive to analyse how this maximal mutual infor-

mation is reached, as there are some differences between

the case of the Hebbian neuron and that of the STDP

neuron: Firstly, we find that for a given set of parameters,

the neuron does not reliably reach the maximal mutual

information, but it does so only for some repetitions.

Secondly, when it does, then this does not necessarily mean

that half of the weights are vanishing. Instead, we find that

the mutual information is maximal when the probability

PðojiÞ that an output is generated following an input at

channel i is either 0 or 1.

For very low thresholds the mutual information drops to

zero, as required by Proposition 6. The critical values

where this drop happens become exceedingly small as the

learning rate increases. For example, for a learning rate of

� ¼ 0:05 and a threshold of h ¼ 10�8 we found the mutual

information to be 	 0:2 falling to zero only at h ¼ 10�9.

When we double the learning rate to � ¼ 0:1 then at h ¼
10�13 the mutual information is still larger than 0.3 drop-

ping to zero only at h ¼ 10�14. The drop of the mutual is

not resolved in Fig. 6a, except for the smallest learning

rates. As the learning rate increases it takes ever smaller

values of the threshold to reach a vanishing mutual infor-

mation. Still, setting the threshold strictly to zero always

reproduces the predicted result of a vanishing mutual

information.

4.2.1 Real world data—MNIST

So far we have discussed experiments, where all channels

receive identical and uncorrelated input. Real-world data is

statistically different from random data. It is therefore

reasonable to wonder whether the conclusions that we

reached from the random data will carry over to realistic

input data.

We first consider the case of Hebbian learning. The

important qualitative feature that we found above was that

the meta-stable state that was chosen by the algorithm

depended on the learning rate. This is a consequence of the

mathematical properties of the underlying inhomogeneous

random walk, or more specifically of the first passage time

properties. We would therefore reasonably expect to

observe the same behaviour in the case of real data, except

that the distribution of meta-stable states may be different

then. Real data sets will be less random in the sense that

they will have correlations between input channels and

over time, which will have an impact on the distribution of

meta-stable states. To see why, consider the (trivial) case of

a spiking neuron where only channel 1 receives input. This

example is minimally stochastic. Clearly, such a neuron

will not have any meta-stable states. Independently of the

learning rate the weights will converge to w1 ¼ 1 and all

other weights to 0. Real world data will be somewhere in-

between this minimally stochastic data source and the iid

random data that we used above. We therefore conjecture

that it will have some meta-stable states, but fewer than the

iid random data.

To test this conjecture on an example, we trained the

Hebbian neuron on the well known MNIST data-set (Lecun

et al. 1998); see Method section for details on how the

experiments were set up. We chose this dataset because it

is well-known, easily available, reasonably large and

commonly used as a benchmark.

As can be seen from Fig. 7, the behaviour of the mutual

information is qualitatively the same as in the case of

Poissonian neuron. A comparison of Fig. 7a with Fig. 2a,

however shows that the behaviour is noisier. The main

feature we found for the Poisson data, that the spectrum of

the mutual information is discrete, remains valid also in the

case of MNIST; see Fig. 7b.

In the case of the STDP neuron we found that the weight

evolution did not get captured by meta-stable states when

trained on completely random data. One could take the

perspective that this is not surprising, because the com-

pletely random data did not have anything to learn, so it is

reasonable to expect that the STDP algorithm did not learn

anything. However, when trained on the MNIST data, we

observed the same. The STDP neuron did not converge to

any meta-stable states for most settings of the learning rate

and the threshold. Indeed, the distance, which is an
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indicator of how far the neuron is from a stable state, is

systematically higher when the neuron is trained on

MNIST when compared to the neuron trained on unstruc-

tured data; see Fig. 6d. The failure to find meta-

stable states extends to low learning rates. We find, how-

ever, that there is an ideal threshold that minimises the

distance. As can be see from Fig. 6d, the minimising

threshold is the same in the case of unstructured data and

the MNIST input.

We conclude, that the qualitative features that we found

for both the Hebbian and the STDP neuron, remain valid, at

least some types of real world data.

5 Discussion

We established that the dynamics of Hebbian and STDP

learning are dominated by stochastic effects. Their beha-

viour depends crucially on the learning rate, which controls

the amount of fluctuations (or noise) that the random

walker is subject to, which in turn determines the qualita-

tive behaviour of the algorithms. This suggest that

stochastic effects need to be taken into account when

analysing the properties of Hebbian and STDP learning

algorithms. In particular, whether or not the neuron enters a

metastable state and for how long it remains there depends

on the size of fluctuations that it suffers and the size of the

basin of attraction. The former is controlled by the learning

Fig. 7 a As in fig. 2b but instead of random input data, we used

images of the digit ‘‘5’’ from the MNIST dataset. b Same data but

only two different learning rates are shown. It is clear that even in the

case of the MNIST data, the mutual information is discrete. c The

entropy of weights as a function of the threshold for the MNIST data.

As in the case of the iid input (Fig. 5e), the stability of solutions, and

hence the resulting solutions change as the threshold is increased
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rate, whereas the latter is due to the threshold. Hence,

together, these two parameters are responsible for the

transient behaviour of the learning neuron.

An interesting implication of this is that the learning rate

has a far more important role in Hebbian and STDP

learning than is traditionally acknowledged. It is not

merely controlling the speed and precision with which a

metastable state is reached, which would be the usual way

to think about learning rates in computational intelligence.

Instead, the learning rate is crucial in determining which

metastable state will be taken by the neuron. In the case of

the STDP algorithm, setting the learning rate and the

threshold correctly is essential so that the algorithm con-

verges even into the neighbourhood of a meta-stable state.

To some extent, this aspect of the learning rate in Hebbian

algorithms has been pointed out before. It is, for example,

well known that Oja’s rule only finds the principal com-

ponents of data in the limit of a vanishing learning rate, but

computes something else otherwise. There are few sys-

tematic studies of this, however.

A surprising outcome of our study is that the Hebbian

neuron displays distinct ‘‘phases’’ in parameter space with

different behaviours and sudden transitions between them.

These phases are essentially due to a hierarchy of

metastable states with different stabilities. In contrast, the

STDP neuron does not have phases and for most parts of

the parameter space does not settle onto metastable states.

Surprisingly, the distance of the STDP neuron from the

metastable state depends on the threshold, in that for every

learning rate there is a value of the threshold that min-

imises the distance. Still, for most learning rates, the STDP

neuron remains far from the metastable point even at the

minimising threshold.

One may now speculate how these different qualitative

behaviours impact on the abilities of the neuron to learn.

The mutual information, as formulated here, quantifies to

what extent one can predict the output behaviour of the

neuron from knowledge of the input. For some parameter

settings, this quantity can reach the maximally possible

value of 1, which means that from knowledge of a single

input spike one can determine with certainty what the

output will be. It is unlikely that the neuron can perform

interesting computation in this regime. A mutual infor-

mation of 1 means that the neuron computes each input

spike separately, without taking into account temporal or

spatial correlations. In the other extreme, when the mutual

information goes to zero, then the output behaviour of the

neuron cannot be predicted at all from a single input. This

is compatible with the neuron taking into account complex

correlations of inputs. We therefore conjecture that inter-

esting computation requires a low mutual information,

although, low mutual information is not sufficient for

interesting computation. In this context it is interesting to

note that the STDP neuron, finds its metastable only when

the mutual information vanishes, suggesting that this marks

a sweet-spot for computation. In practice, the combined

measure of mutual information and distance can be used to

check how well an STDP algorithm has converged to a

useful solution; in other words, whether the unsupervised

learning has extracted features from the data. A failure to

find small values for both, would indicate that the hyper-

parameter settings of the learning algorithm are not set

appropriately. We thus see the results as practically useful.

We also remark that the idea of a minimal mutual infor-

mation chimes well with the well-known principle of

information bottleneck (Tishby et al. 1999), which requires

also that machine learning algorithms filter out as much

information as possible about the input data.

In the case of the Hebbian neuron, the sweet-spot is

harder to identify. There is no point in phase space that

minimises the distance, because the Hebbian neuron finds a

metastable state for all parameters. It reaches a vanishing

mutual information in 3 different cases. Firstly, in the limit

of a vanishing threshold. Secondly, in the limit of a van-

ishing learning rate. Thirdly, in the limit of an infinite

threshold, but finite learning rate. Clearly, the first two

cases are trivial, because simply no learning takes place in

those two limits. The third case is problematic as well,

because in this limit the Hebbian neuron tends to fall into

the absorbing state, almost irrespective of the learning rate.

We focussed here mainly on the (Poissonian) spiking

neuron with iid input. This allowed us to attribute the

outcome of simulations to built-in bias of the neuron, rather

than biasses in the input data. However, we found that we

could reproduce qualitatively similar outcomes with the

MNIST dataset as input. This gives confidence that the

behaviours we report here are relevant beyond the special

assumption of iid data.

The present paper highlights a number of avenues for

future research. Firstly, computing meta-stable states

directly is intractable, but it may be possible to develop

efficient approximations to do this. Secondly, another

challenge for future research is to understand how the

impact of noise depends on the particulars of the neuron

model. Throughout this paper, we considered weight

update schemes with normalisation. It would be important

to develop a general mathematical theory for other types,

or even arbitrary, types of update schemes. Finally, the

scope of this contribution was limited to individual neu-

rons. An obvious extension would be to consider networks

of neurons. Clearly, in a network, the input to neurons

would be the outputs of other neurons in the network. An

interesting consequence of this is that the meta-stable states

have to be consistent with one another, a situation that is

reminiscent of spin-glasses in statistical physics. The
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question is whether such networks will then show similar

effects, such as genuine phase transitions.
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