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Abstract Martensitic phase transformation and plasticity are two primary mechanisms of deformation in
shape memory alloys (SMAs) and the interaction between them influences the behaviour of SMA during
cyclic loading, specifically the pseudoelasticity behaviour and the shape memory effect. This interaction,
which occurs in microscale, affects the reversibility and eventually the actuation capacity of SMAs. In order to
capture this interaction in microscale, a discrete dislocation–transformation model was developed in Sakhaei
et al. (Mech Mater 97:1–18, 2016) and was applied to simulate the single-crystalline NiTi samples under
thermo-mechanical loads. In this study, themicroscale coupling between phase transformation and plasticity as
well as grain size and orientation effects is investigated in multi-crystalline shape memory alloys under thermal
andmechanical loading by using the discrete dislocation–transformation framework through the representative
numerical simulations. The results illustrated the dependency of dislocation slip andmartensitic transformation
to crystalline orientations as well as grain size and grain boundary densities in the multi-crystalline SMAs.

Keywords Multi-crystalline alloy · Shape memory alloy · Discrete dislocation · Discrete transformation ·
Shape memory effect · Pseudoelasticity
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σ Stress field
ε Strain field
u Displacement field
N d The total number of edge dislocation cores
Nm The total number of martensitic region
bi Burgers vector of the i th dislocation core
f di Peach–Koehler force for the i th dislocation
vdi The velocity of i th dislocation on a slip plane
vdmax Limit for maximum velocity of dislocations
f trj Local transformation driving force at j th transformation source point
t Traction on boundary ∂�t
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C Fourth-order stiffness tensor
D Fourth-order compliance tensor
ρ Mass density
λ Transformation latent heat
θ Temperature
θT Transformation temperature
ν Poisson’s ratio
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1 Introduction

Shapememory alloys (SMAs) have the ability to recover the original structure after experiencing amacroscopic
inelastic deformation upon applying desirable thermo-mechanical cyclic loading. This performance is called
the “shape memory effect” or “pseudoelasticity”, depending on the loading type. Furthermore, SMAs could
consume and dissipate energy by illustrating hysteric behaviour under cyclic loads. These specific behaviours
are due to martensitic phase transformation that makes SMAs an attractive material for actuation scenarios in
various industrial applications [2]. Themartensitic transformation is a diffusionless and solid–solid phase trans-
formation between two different crystalline structures. The phase with higher symmetry is named austenite,
whereas the phase with lower symmetry in atomistic structure is called martensite.

Martensitic phase transformation which generates the recoverable strain has the main contribution to the
inelastic deformation of a sample made of SMA. However, the plasticity mechanism could also provoke
irrecoverable strain in SMAs that influences the reversibility behaviour of this material under thermal and/or
mechanical cyclic loadings [3–5]. Ezaz et al. [6] illustrated that the slip planes in body-centred cubic structure
(BCC) of austenitic NiTi are active, and therefore, the transformation and plasticity mechanisms could interact
each other as well as the total thermo-mechanical response of SMA. This phenomenon is explored in several
types of metallic alloys and is generally called as transformation-induced plasticity (TRIP) in the literature.
These phenomena have been investigated in microscale in various studies in the literature. For example,
Xu et al. have developed a three-dimensional phase field model for single-crystalline NiTi shape memory
alloys which has integrated the austenite and martensite plasticity mechanisms [7]. They have also observed
that during cyclic deformation the reverse transformation is affected by plastic deformation, and therefore,
the residual martensitic phase would be remained through cyclic loading. Furthermore, the effect of grain
boundaries on shape memory effect and pseudoelasticity of polycrystalline NiTi SMA has been studied using
the two-dimensional phase field model in [8], where the grain size dependency of martensitic transformation
and plasticity in polycrystalline SMAs have been revealed.

The nature of transformation-induced strains in NITI SMAs during austenite to martensite phase trans-
formation has been also studied in nanoscale level using molecular dynamics (MD) simulations [9–11]. For
example, Wang et al. have observed that the transformation-induced plasticity and phase transformation have
been generated in martensitic phases and near the martensitic variants interfaces in monocrystalline NiTi SMA
using MD simulations [10]. Furthermore, they have shown that the transformation ratcheting generated under
isothermal pseudoelastic behaviour of NiTi is due to the occurrence of plastic deformation at grain boundaries
as well as the accumulation of residual martensitic phases in the microstructure [11].

At the macroscopic level, the effect of transformation-induced plasticity in SMAs has been considered in
different phenomenological models (e.g. see [12–15]). It is assumed that the local stress fields associated with
the martensitic transformation may activate the plasticity although the external stresses are lower than the yield
stress of the material [16,17]. Therefore, they come up with a phenomenological continuum models that are
able to consider the interaction between plasticity and phase transformation in the macroscopic simulations.
Furthermore, Yu et al. have developed a constitutivemodel for anisotropic pseudoelasticity of single-crystalline
NiTi shape memory alloys considering experimental studies [18]. Similar to [1], they have also considered
the martensitic phases as ellipsoidal inclusion inside austenitic phase to accommodate the effect of internal
stresses and transformation-induced plasticity in their model. The model was then used for the investigation
of anisotropic behaviour under multi-axial loading scenarios through comparison with experiments.

At the microscopic length scale, plasticity phenomenon is interpreted by kinetic of dislocations along slip
planes and themartensitic phase transformation occurs through the creation of plate-like regions. Therefore, the
influence of plastic deformation onphase transformationmight be studied by looking at the effect of dislocations
on the nucleation and growth of the martensitic regions. Similarly, the impact of martensitic inclusions on the
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generation andmovement of dislocations represents the effect of phase transformation on plasticity. Although it
is not yet provedwhether the dislocation plasticity assists themartensitic phase transformation or resists against
the movement of martensite–austenite interface, some studies have attempted to provide an answer based on
microscale simulation [1,19,20]. Discrete dislocation dynamic method facilitates to model the microstructure
of plastic deformation by considering the nucleation, motion, and annihilation of dislocations [21]. Shi et al.
[19] used the discrete dislocation dynamic method for modelling plasticity and combined it with the proposed
discrete transformation model to simulate the phase transformation in multi-phase TRIP steel. However, their
framework was unable to model the reversible martensitic transformation in SMAs and simulate the response
ofmaterial under thermal loading. Furthermore, [1,4] presented amodified discrete dislocation–transformation
model for SMAs to study the interaction between plasticity andmartensitic transformation under cyclic thermal
and mechanical loading for single-crystal samples of SMA.

In the current work, we aim to apply the discrete dislocation–transformation framework presented in our
earlier work [1] for multi-grain SMA structure. The goal is to study the effect of grain boundaries and Hall–
Petch effects in addition to the interaction between plasticity and phase transformation under cyclic mechanical
loading in the multi-grain NiTi SMA.

The polycrystalline structure is composed of numerous grains with different sizes and orientations. These
grains are connected to each other via grain boundaries across which the orientation of the crystals changes.
The material behaviour of single- and polycrystalline SMAs are different with each other as in single crystals,
the behaviour is highly dependent on the direction of loading and crystal orientation, whereas the polycrys-
talline SMA shows less anisotropic behaviour. Furthermore, the grain boundaries have a resistance role on the
dislocation slip and the growth of transformation regions. Shi et al. [22] studied the interaction of martensitic
phase transformation of dislocation plasticity in polycrystalline multi-phase TRIP steel. They also investigated
the Hall–Petch effect and orientation effect in their study. However, they did not model the two-way phase
transformation which occurs in SMAs. Moreover, their model was unable to incorporate temperature effects
and thermal cycling as important factors that affect the response of SMAs. Therefore, the current study aims
to cover these gaps and investigate the interaction between plasticity and martensitic transformation in the
presence of grain boundaries by using the authors’ earlier proposed discrete dislocation–transformation model
in [1].

The structure of this paper is as follows: in Sect. 2, a summary of the discrete dislocation–transformation
method as well as the numerical implementations for modelling the microscale behaviour of multi-crystalline
shape memory alloys is presented. In Sect. 3, the interaction between plasticity and phase transformation
in the presence of grain boundaries is analysed. Moreover, the orientation effect, grain size effects, and the
interaction of grain boundaries on dislocation dynamic and martensitic transformation are investigated in this
section. Finally, concluding remarks are provided in Sect. 4.

2 Thermo-mechanical discrete dislocation–transformation model

The discrete dislocation–transformation framework used in this study for simulation the behaviour of multi-
crystalline SMAs has been presented completely in the authors’ previously published article in [1]. Therefore,
we only summarized the important aspect of this model here and the readers should refer to [1] for compre-
hensive explanation.

2.1 Discrete dislocation–transformation model

As it is described in [1], two-dimensional discrete dislocation–transformation model is developed by incorpo-
rating the two-dimensional discrete dislocation method presented by [21] and the representation of martensitic
transformation in themicrostructure. Tomodel the phase transformation, themartensitic regions are speculated
to generate and grow as elliptically shaped inclusions during a thermo-mechanical loading process. Therefore,
the migration and evolution of dislocation cores and martensitic regions in austenite domain characterize the
plastic deformation and martensitic transformation, respectively. In the current model, it is essential to deter-
mine the stress, strain, and displacement fields due to the existence of dislocation cores, martensitic regions,
and boundary conditions in the domain before updating the configuration of them for the next time step using
kinematic relations.

If the material domain is occupied � with boundary ∂�, the stress, strain, and displacement field of the
configuration under prescribed boundary conditions are determined with the decomposition method presented
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Fig. 1 Dividing the problem into three sub-problems: interacting dislocations in infinite region, martensitic inclusions in infinite
medium, and complementary problem

in [1,19,21] as ⎧
⎪⎨

⎪⎩

σ = σ d + σm + σ c,

ε = εd + εm + εc,

u = ud + um + uc,
(1)

where all the quantities with d , m, and c superscripts correspond to fields associated with the dislocations,
martensitic plates, and the complementary problem, respectively. Figure 1 illustrates the above decomposition
schematically.

At any time t , we define N d = N d(t) the total number of edge dislocation cores and by Nm = Nm(t) the
total number of martensitic regions inside �. Therefore, the terms in Eq. (1) are calculated as a summation of
states from each individual dislocation and martensitic region as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ d =
Nd
∑

i=1
σ d
i ,

εd =
Nd
∑

i=1
εdi ,

ud =
Nd
∑

i=1
udi ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σm =
Nm
∑

j=1
σm

j ,

εm =
Nm
∑

j=1
εmj ,

um =
Nm
∑

j=1
umj ,

(2)

where the subscripts i and j determine the individual dislocations and martensitic inclusion, respectively. The
calculation related to dislocations and martensitic inclusions is performed analytically in an infinite medium,
and the complementary field is applied to assure the actual boundary conditions in the original finite domain.
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Fig. 2 aDisplacement field at an arbitrary point x due to a dislocation i at point xi , b Schematic diagram of an ellipticalmartensitic
region embedded in an austenitic grain

Thedisplacement and stress fields of any arbitrary point in the domain because of the existence of dislocation
cores depend only on location of dislocations i = 1, . . . , N d and Burgers vector bi of the i th dislocation core
and elastic properties of the domain. By defining a local coordinate system as shown in Fig. 2-a, the stress and
displacement fields at each point x in the plane due to the dislocation i are determined as

udi (x) = bi

2π(1 − ν p)

[(
1

2

xbxn
r2

− (1 − ν p) tan−1 xb
xn

)

eb +
(
1

2

x2n
r2

− 1

4
(1 − 2ν p) ln

r2

(bi )2

)

n
]

(3)

and

(
σ d
i

)

bb = −ci
xn(3x2b + x2n )

r2
,

(
σ d
i

)

nn = ci
xn(x2b − x2n )

r2
,

(
σ d
i

)

bn = ci
xb(x2b − x2n )

r2
, with ci := μpbi

2π(1 − ν p)
, (4)

where bi = ‖bi‖, r := ‖x−xi‖, xb := (x−xi )·eb, xn := (x−xi )·n, and ν p = (3κ p − 2μp) / (2 (3κ p + μp))
refers to the Poisson’s ratio of the medium where the dislocation core is embedded, with p = a,m for the
austenitic and martensitic phases, respectively.

Regarding the fields due to themartensitic transformation, it is possible to characterize the transformation at
the continuum level by a pair of vectors a and n, where a is the transformation strain vector and n is the normal
vector to the habit plane. According to experiments conducted in [23] and the assumptions made in [1,19], it
is considered here that each martensitic region has an elliptical shape as shown in Fig. 2-b. Furthermore, the
nominal habit plane normalm j is considered as themajor semi-axis of the elliptical plate and the transformation
strain of the j th martensitic inclusion is calculated as

εtrj := 1

2
γ (m⊥

j ⊗ m j + m j ⊗ m⊥
j ) + δ(m j ⊗ m j ), (5)

where δ = a j · m j and γ = a j · m⊥
j are dilation and shape strain terms during transformation, respectively.

m⊥
j is a unit vector perpendicular to m j and in the loading plane as presented in Fig. 2b.
The stress field σm

j inside and outside of elliptical martensitic plate could be determined based on the
Eshelby solution of elliptical region using the eigen-strain of inclusion εmj [24]. The eigen-strain in our
problem is because of the difference between elastic behaviour of martensitic and austenitic phases and the
transformation strain. For the points inside of the j thmartensitic plate, the strain and stress fields are determined
by

εmj = S[(Cm − C
a)S + C

a]−1
C
mεtrj in �m

j ,
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σm
j = C

a(S − I)[(Cm − C
a)S + C

a]−1
C
mεtrj in �m

j , (6)

where S is the fourth-order Eshelby’s tensor for interior points [24]. Furthermore, the stress fields of the points
outside of martensitic elliptical inclusion are determined by Muskhelishvili decomposition as it is presented
in [19].

Finally to satisfy the original boundary condition of the problem as illustrated in Fig. 1, we need to solve
and add a complementary field to the decomposition problem presented in Eq. (1). Therefore, assuming the
original boundary condition as

u0 = u0(x, t) on ∂�u,

t0 = t0(x, t) on ∂�t , (7)

the boundary conditions for the complementary problem are given by

uc := u0 − ud − um on ∂�u,

tc := t0 − td − tm on ∂�t , (8)

where ∂�u and ∂�t indicate the area that the displacement and traction boundary condition are prescribed,
respectively. Furthermore, tc = σ cn, td = σ dn, and tm = σmn where n is the outward unit vector normal to
∂�. The elastic boundary value problem is then solved by finite element method at each time step to compute
the complementary terms in Eq. (1).

2.2 Two-dimensional dislocation dynamics

The discrete dislocation method correlates the plastic deformation in crystalline structures with nucleation,
motion and annihilation of dislocations. In this study, we follow the discrete dislocation model which is
specified for two-dimensional plane strain problems in [21] and is presented comprehensively in [1].

As indicated in [21], the nucleation of new dislocations and the glide of existing ones are determined by
Peach–Koehler force, f di which is the work conjugate to the dislocation displacement. The Peach–Koehler
force is determined as the product of the total stress at the i th dislocation position and the strain tensor due to
a glide of the dislocation on the slip system bi , ni as

f di := (σ − σ d
i ) · (bi ⊗ ni ). (9)

When the magnitude of this force at the i th source point overreaches a critical value ( f cri ), a pair of
dislocations with different signed Burgers vector are set up. This is formulated in [1,19] as

1

tnuc

∫ t+tnuc

t
| f di |dt ≥ f cri ⇒ Nucleation of dislocation dipole. (10)

Furthermore, the kinetic formulation for gliding of the i th dislocation is represented as

vdi =
{
f di /Bd if 0 ≤ ∣

∣ f di /Bd
∣
∣ ≤ vdmax,

sign( f di )vdmax if
∣
∣ f di /Bd

∣
∣ > vdmax,

(11)

where Bd is a drag constant, vdi is the velocity of i th dislocation on a slip plane i, and vdmax is the limit for
maximum velocity of dislocations.

It is worthmentioning that the interface betweenmartensite and austenite phases and grain boundaries in the
microstructures work as the obstacle against the migration of dislocations in the slip systems and changing the
thickness of grain boundaries is not the scope of this study. Furthermore, two dislocationswith opposite Burgers
vectors will be annihilated from the domain if the distance between them is less than a material-dependent
parameter Le which is considered as Le = 6bi based on [21].
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2.3 Martensitic transformation kinetics

Transformation kinetics means updating themartensitic region configuration from time t to t+�t that includes
the roles for nucleation and annihilation as well as growth and shrinkage of elliptical martensitic inclusions
during forward and backward transformation in SMAs [1].

Similar to Peach–Koehler force in dislocation dynamics, it is possible to determine the local driving force
acting on the interface between austenite and martensite domains Smj according to [1,25] as

f trj = σ+n · εtrj n + 1

2
D
aσ+ · σ+ − 1

2
D
mσ− · σ− − ρλ

θT
(θ − θT ), (12)

where σ+ and σ− are the local stress tensor across the interface, Da = (Ca)−1 and D
m = (Cm)−1 are the

compliance tensors for austenitic and martensitic phases, n is the habit plane normal vector, and εtrj is the
transformation strain. Moreover, ρ is the mass density, λ is transformation latent heat, θ is temperature, and θT
is called transformation temperature of shape memory alloys which is the average of austenite and martensite
start temperatures.

Similar to nucleation rule of dislocations, a new martensitic embryo is generated when the transformation
driving force exceeds a critical value ( f crj ) at j th randomly distributed transformation source point. Due to the
fact that there is no austenite/martensite interface at transformation source point, the nucleation transformation
driving force could be calculated as f nucj := σ · εtrj − ρλ

θT
(θ − θT ) according to Eq. (12). At this point, an

elliptical embryo with semi-axes c0 and d0 is created and the transformation source j would be deleted.
The kinetic rules for growth and shrinkage of the elliptical martensitic regions are presented in [1] by

determining the velocity of ellipse tips as

v
(q)
tip =

{
(πec/B) f̄ (q) if 0 ≤ ∣

∣(πec/B) f̄ (q)
∣
∣ ≤ vmax,

sign( f̄ (q))vmax if
∣
∣(πec/B) f̄ (q)

∣
∣ > vmax ,

(13)

where v
(1)
tip and v

(2)
tip are the velocities of tips 1 and 2 when the opposite one is kept fixed, c is the major semi-

axis of elliptical region, B is a viscosity-like constant, and vmax is the cut-off value for tip velocity which is
physically related to the sound speed in the material. Furthermore, f̄ (q) is the effective driving force at tip (q)
where q = 1, 2 and it is determined according to [1] by integrating the local driving force acting on martensitic
interface as

f̄ (q) := 1

πec

∫

S j
f trj w(q)ds , (14)

where f trj is the local driving force calculated in Eq. (12) for any points on the austenite/martensite interface,

and w(1) and w(2) are weighting functions independent of v
(1)
tip (please refer to [1] for more details).

Finally, during the backward phase transformation, the shrinkage of each elliptical martensitic region is
continued until the size of that region goes less than the embryonic dimensions (d0 and c0). At this point, the
martensitic inclusion is eliminated from the microstructure completely.

3 Thermo-mechanical loading of multi-crystalline SMA

In this section, the mechanical behaviour of un-textured multi-crystalline shape memory alloy samples is
investigated under thermo-mechanical loads using the 2D discrete dislocation–transformation model which is
described in Sect. 2. To interpret the results, we have defined the dislocation density as ρd = ρd(t) := Nd

|�|
and the total martensitic volume fraction, ζm = ζm(t) := |�m|

|�| at a given time t , where |�m| is the total
area occupied by the martensitic phase. It is worth mentioning that the un-textured multi-crystalline structure
consists of randomly oriented grains.
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Fig. 3 Schematic of slip planes and plane–strain loading plane for BCC crystal

3.1 Problem assumptions and material parameters

The assumptions related to computational framework (i.e. discrete dislocation–transformation method) are
same as reported in [1]. The material in all the simulations are considered under plane strain conditions in the
(1̄ 0 1) plane which is named as loading plane in Fig. 3. Then, (1 2 1) [1 1̄ 1], (1̄ 2 1̄) [1̄ 1̄ 1̄], and (1 0 1)
[0 1 0] are considered as active slip systems for dislocation slips in BCC structure. Furthermore, to study the
martensitic phase transformation in two-dimensional state, two groups of transformation systems are chosen
in a way that the habit plane normal m and the strain vector a are lied in the loading plane.

In the multi-crystalline model, different grains are attached together across grain boundaries. This leads to
another assumption regarding the grain boundaries. It is considered that the dislocations and martensitic areas
which are nucleated and grown inside a grain cannot pass the grain boundaries. A multi-crystalline sample
including of four grains as well as the pinning of dislocations and martensitic regions in grain boundaries are
illustrated schematically in Fig. 4.

In this study, the multi-crystalline specimens are assumed to be initially in the austenitic phase under a
stress-free and dislocation-free configuration. Furthermore, the dislocation sources are randomly scattered in
the domain on the slip planes. The strength τ cr of each dislocation source is randomly generated fromaGaussian
distribution. The locations and strengths f cr of the transformation sources are determined in a similar way,
with consideration of habit planes instead of slip planes. Table1 summarizes the material parameters which
are used in the simulations which are collected from [21,26,27]. Moreover, in this study, each multi-crystalline
structure is composed of grains of the same size and square shape and the orientation of each grain is assigned
randomly. Due to the computational limitations, the maximum number of grains are bounded 16 grains.
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Fig. 4 Schematic of multi-crystal problem including dislocations and martensitic regions pinning at grain boundaries

Table 1 Material parameters used in the simulations

General properties
Young’s moduli Em ≈ Ea = 62 GPa
Poisson’s ratios νm ≈ νa = 0.33
Mass density ρ = 6500 Kg/m3

Discrete dislocation
Burgers’ vector b = 0.25 nm
Nucleation time tnuc = 10 ns
Drag coefficient Bd = 10−4 Pa·s
Cut-off value for velocity vdmax = 20 m/s
Source strength τ cr (Gaussian) mean= 195 MPa

std.dev= 40 MPa
Discrete transformation
Martensite finish Mf = 51◦C
Martensite start Ms = 71◦C
Austenite start As = 92◦C
Austenite finish Af = 105◦C
Transformation strain: γ = 0.11

δ = 3.4 × 10−3

Latent heat λ = 130 MJ/m3

Cut-off of tips velocity vmmax = 4800 m/s
Drag coefficient B = 40 Pa·s
Source strength f cr (Gaussian) mean= 6MPa

std.dev = 1.2 MPa

The multi-crystalline NiTi specimens in this study is subjected to plane strain uniaxial loading when the
temperature is constant and above Af. The boundary conditions according to Fig. 4 are defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(x1 = 0, t) = 0, t2(x1 = 0, t) = 0,
u1(x1 = L , t) = L ˙̄εt, t2(x1 = L , t) = 0,
t1(x2 = 0, t) = 0, t2(x2 = 0, t) = 0,
t1(x2 = H, t) = 0, t2(x2 = H, t) = 0,

(15)

where ˙̄ε is the applied strain rate. In order to improve computational efficiency, it is suggested to impose a
relatively high strain rate. In this study, it is assumed to be equal to 5×103s−1. Furthermore, the values of dislo-
cation source and transformation sources densities used in the simulations are ρd

source = 30µm−2and ρm
source =

8µm−2.
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Fig. 5 Schematic of grain orientation problem

3.2 Discrete dislocation–transformation method and grain orientation effects

Although the macroscopic behaviour of polycrystalline materials is considered to be isotropic and homoge-
neous, the microstructure of polycrystalline materials is anisotropic and it is combined from numerous crystals
with different orientations. The grain orientations would induce a non-uniform local stress in the microstruc-
tures that affects the plastic deformation and strength of metals [28], the direction of crack propagation [29],
and the propensity for twinning [30]. Therefore, at this part of the study, we illustrate the potential of our
proposed discrete dislocation–transformation framework (as a tool for microscale modelling of the interaction
between dislocations and martensitic transformation in the microstructure), in capturing the effect of grain
orientations on local stress as well as the martensitic transformation and dislocation plasticity mechanism in
the microstructure.

As schematically depicted in Fig. 5, the mechanical responses of four bi-crystal cases are studied under
isothermal mechanical loading. Each case is combined from two grains which the orientation of the first grain
of each case is kept the same while the orientation of the second grain is defined by rotating the first orientation
by zero, 15, 30, and 45 degrees and are named as cases 1 to 4, respectively.

The specimens are loaded at a rate ˙̄ε > 0, as described above, up to an average axial strain of ε̄ = 0.01.
The results of these simulations are presented in Fig. 6 in terms of (a) the stress–strain curve (averaged over
the whole sample), (b) the evolution of the dislocation density, and (c) the evolution of martensitic volume
fraction as a function of the average axial strain ε̄11. Furthermore, to demonstrate the contribution of plasticity
to the irreversible strain after a complete cycle involving the forward and reverse martensite transformation
processes of shapememory alloy, the full pseudoelastic behaviour of thematerial during loading and unloading
condition is provided in Appendix section in Fig. 12

Figure6a illustrates the pseudo-elastic behaviour of the above-mentioned bi-crystal samples. As it was
expected, Fig. 6a shows the different mechanical response for the four cases due to different orientation of
grains. However, it is not clear yet that this variation of results is due to the difference of dislocation slip
directions or transformation systems or both of them. To find out the answer of this question, the change of
dislocation density and martensitic volume fraction along the loading are compared for the above four cases
in Fig. 6b and c, respectively.
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Fig. 6 Effect of grain orientation on pseudoelasticity behaviour of bi-crystal samples by comparing a the stress–strain response,
b the dislocation density, and c the martensitic volume fraction

As shown in Fig. 6b, the evolution of dislocations varies from a bi-crystalline sample to another. This is
in agreement with the physical fact that the plastic deformation behaviour of a crystalline grain is orientation
dependent. Furthermore, the above result confirms that the discrete dislocation–transformation framework
proposed in this study is able to capture the effect of slip system orientations in microscale simulations.

To investigate the effect of transformation system orientations on the mechanical response of the SMA,
the change of the martensitic volume fraction for specimens 1 to 4 under isothermal mechanical loading is
compared in Fig. 6c. The value of martensitic volume fraction (ζ ) for four different bi-crystalline samples
explains how much the martensitic regions grow in each of the cases. Therefore, it can be concluded that the
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grain orientation has clear effect on the nucleation and growth of the martensitic phase and more importantly
our discrete dislocation–transformation framework is able to capture the effect of grain orientations on the
transformation mechanism in microscale modelling of the structure.

3.3 Discrete dislocation–transformation method and grain size effect (Hall–Petch effect)

The grain size is another important factor related to the polycrystalline metals. The effect of grain size on the
mechanical behaviour of metals was first proposed by Hall and Petch; therefore, the grain size effect is also
called “Hall–Petch effect”. There are a lot of studies that investigate the grain size effect in polycrystalline
structure experimentally and computationally [31]. Shi et al. [22] studied the effect of grain size on the
transformation-induced plasticity in TRIP steels by discrete dislocation–transformationmodel. It was observed
that the grain boundaries play an obstacle role against the dislocation motion. It is clear that the smaller grain
size means higher grain boundary density and more resistance against dislocation motions. Therefore, the
finer grain size materials exhibit higher strength behaviour in comparison with coarse grain polycrystalline
structure.

To investigate microstructurally the effect of grain size on the mechanical behaviour of multi-crystalline
domain, three multi-crystalline samples are studied with discrete dislocation–transformation method under
isothermal mechanical loading. These specimens are combined from 4, 9, and 16 square-shaped grains,
respectively. Furthermore, the orientation of each grain in multi-crystalline structure is assigned randomly.
The schematic of the multi-crystalline samples is depicted in Fig. 7.

In Fig. 8, the mechanical responses of the three multi-crystalline domains with different grain sizes under
isothermal mechanical loading are compared together. As it is shown in the figure, the specimens with finer
grains showmore hardeningmechanical behaviour. The small grain sample has higher grain boundary densities;
therefore, it causes more resistance against dislocation motion and phase transformation. To have a better
understanding about the effect of grain boundaries on the dislocation dynamic and transformation growth, the
evolution of dislocation density and martensitic volume fraction is compared for simulations with different
grain sizes. These are illustrated in Fig. 8b and c, respectively.

Fundamentally, work hardening is quantified by increasing the number of dislocations in microstructure
of crystalline metals. As shown in Fig. 8b, the size of the grains affects the dislocation density in the domain.
As the smaller grain specimens have more grain boundary densities in their microstructures, the likelihood
of dislocations reaching the grains and having pinned to the boundaries would be increased. Therefore, the
sample with higher dislocation density in Fig. 8b shows more hardening response in Fig. 8a.

Figure8c shows the particular effect of grain boundaries on the phase transformation in multi-crystalline
NiTi. As it is illustrated in the figure, the samples with finer grains show less martensitic transformation. This
result is in accordance with the assumption which is considered in the beginning of this section. Based on this
assumption, the martensitic regions stop growing by reaching the grain boundaries. Therefore, the resistance
against martensitic growth increases in multi-crystalline samples with smaller grains.

To provide more detailed insight into the effect of grain boundaries on mechanical behaviour of samples
including plasticity and martensitic transformation, the distribution of the local axial stress σ11 inside the
samples and the corresponding microstructure are shown in Fig. 9 for the three aforementioned cases (four
grains, nine grains, and sixteen grains). The figures include a contour plot at the end of the loading step, when
the average axial strain is ε̄11 = 0.01. In Fig. 9, dislocation cores are indicated with the symbol “+” while
the martensitic regions are represented through their external (elliptical) shapes and the grain boundaries are
highlighted with red colour.

Figure9 presents a typical plastic deformation with dislocation pile-ups at the grain boundaries, which
generate the hardening observed in Fig. 8a. It is illustrated that there is more dislocation pinning in the bound-
aries in Fig. 9c in comparison with Fig. 9a and b due to the higher density of grain boundaries. Therefore,
more resistance against dislocation motion in Fig. 9 causes higher dislocation densities and more hardening
behaviour that are shown in Fig. 8a and b, respectively.

Furthermore, Fig. 9 illustrates the local stress concentration at grain boundaries in the microstructure. As
a result, the specimens with smaller grains (higher density of grain boundary) represent more local regions
with concentrated local stresses in the microstructure (the light yellow area in Fig. 9). Therefore, predicting
the non-uniform stress distribution as illustrated in Fig. 9 is one of the potentials of the current discrete
dislocation–transformation framework presented in this study. This could be applied for calculating the local
stress concentration in microstructure that affects other deformation mechanisms such as twinning, fracture,
and failure.
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Fig. 7 Schematic of models to study grain size effect

3.4 Grain size effect under thermal cyclic loading of multi-crystal NiTi

This section studies the mechanical behaviour of multi-crystalline SMA under thermal cyclic loading and
constant external stresses. These simulations are performed to observe the shape memory effect in multi-
crystalline NiTi and the effect of grain sizes on this behaviour. Here, the same samples presented in Fig. 7 are
cooled from austenite to martensitic phase and then heated back to the initial temperature when they are under
constant uniaxial stress.

The grain size effect on thermal cyclic loading ofmulti-crystallineNiTi is illustrated in Fig10a–c. As shown
in Fig. 10a, the specimen with larger grain size experiences larger transformation strain than specimens with
smaller grain sizes along cooling and heating. Furthermore, to study the grain size effect on both transformation
and plasticity mechanisms, the evolution of martensitic volume fraction and dislocation density is compared
for different grain sizes in Fig. 10b and c, respectively.

Figure10b presents that the material transformed less in finer grain samples. It is because of the fact that
by reducing the size of grains, the density of grain boundaries increased and each grain boundary acts as a



A. H. Sakhaei, M. Shafiee

Fig. 8 Grain size effect on pseudoelasticity behaviour of multi-crystalline samples by comparing a the stress–strain response, b
the dislocation density, and c the martensitic volume fraction
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Fig. 9 Distribution of axial stress, dislocations, and martensitic regions at an average strain of 0.01 for the following cases: a four
grains, b nine grains, and c sixteen grains

resistance wall against the growth of transformation interface. Moreover, Fig. 10c illustrates that the amount of
dislocation density and, as a result, plastic strain is higher in specimens with larger grain size. At a glance, it is
against the fact that grain boundaries cause the increase of dislocations and hence work hardening. However,
by looking deeply at Fig. 10c it is notable that dislocation generation is induced by phase transformation around
the temperature of 70◦C , and before martensitic transformation, there is no dislocation dynamics. It means
that the plastic mechanism is activated by the local stress field generated by martensitic regions. Therefore, the
sample with higher transformation growth (grain size = 2 µm in Fig. 10b) shows higher dislocation density in
Fig. 10c.

3.5 Effect of applied stress in thermal cyclic loading of multi-crystal NiTi

Finally, two-way shape memory effect behaviour of a multi-crystalline SMA sample made from nine grains is
studied under temperature cycling and two different uniaxial stresses equal to 50 and 300MPA. The results are
presented in Fig. 11. As shown in Fig. 11b and d, for both samples, the martensitic regions transformed back
completely by heating to the initial temperature in austenite phase. This means there is no residual strain due
to the remaining martensitic phase after thermal cyclic loading. However, Fig. 11a and c illustrates some non-
reversible strain after thermal cycling in both sample. This remaining strain is due to the dislocation plasticity
which is induced mainly by the martensitic transformation (as the uniaxial applied stress is much lower than
yield stress in NiTi material). It is observed that the plastic strain for the sample under 300MPa external stress
is higher than that of the sample under 50MPa applied stress. It is due to the fact that the Peach–Koehler force
(driving force for dislocation generation and motion) is computed by local stress field which is a combination
of stress field of martensitic regions (which is similar for both sample) and the external stresses.

4 Conclusions

In this study, the interaction between dislocation slip plasticity and martensitic phase transformation was
investigated. This interaction included the effects of martensitic transformation on dislocation plasticity (i.e.
transformation-induced plasticity) and effects of dislocations on the generation and growth of martensitic
regions. These phenomena were modelled by a discrete dislocation–transformation method at the sub-micron
length scale.

The two-dimensional bi-crystalline samples of NiTi shape memory alloy were simulated by the discrete
dislocation–transformation framework. The results illustrated the effect of different structural orientations on
the thermo-mechanical response of the SMAs. It was explained that both dislocation slip and martensitic
transformation are orientation dependent. Therefore, changing the orientation of one grain in a bi-crystalline
sample led the mechanical response of the specimen during loading to change.

Furthermore, the effects of grain size and grain boundary densities on the two-way shape memory effect
and pseudoelasticity behaviour were studied. The grain boundaries act as an obstacle against the dislocation
motion and martensitic growth. Therefore, the smaller grain specimens caused more dislocation pinning and
less martensitic growth, and as a result, it showed more hardening responses. These results also confirm
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Fig. 10 Grain size effect on the shape memory behaviour of multi-crystalline NiTi under temperature cyclic loading

that our discrete dislocation–transformation framework has the ability to simulate the Hall–Petch effect in
polycrystalline structures.

Finally, despite the limitations of a two-dimensional discrete dislocation–transformation model, it still
provides useful validated information about the interaction between plasticity and martensitic phase trans-
formation. The model could describe the grain orientations and grain size effects in shape memory alloys
at the length scales that are somewhat sophisticated to resolve experimentally, particularly when the loading
conditions change. This could be therefore a robust computational tool for further investigation on coexistence
of plasticity and phase transformation in SMAs and other alloys. Furthermore, the proposed computational
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Fig. 11 Two-way shape memory effect of multi-crystalline NiTi under thermal cyclic loading with an externally applied uniaxial
stress of a, b 50MPa, and c, d 300MPa

method would benefit the data-driven and machine learning modelling approaches by providing further data
from the microstructure of SMAs and accelerates the data sampling methodologies.
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A Full pseudoelasticity response

In this appendix, the full stress–strain curve of pseudoelasticity behaviour of polycrystalline NiTi during
loading and unloading is provided in Fig. 12. This graph demonstrates the irreversibility in the super-elasticity
response and the contribution of plasticity to the irreversible strain after a complete cycle involving the forward
and reverse martensite transformation processes of shape memory alloy. Figure12 is particularly related to the
four polycrystalline case with four different grain orientations described in Figs. 5 and 6 in Sect. 3.2.

http://creativecommons.org/licenses/by/4.0/
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Fig. 12 Grain size effect on the shape memory behaviour of multi-crystalline NiTi under temperature cyclic loading
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