

Kent Academic Repository

Koestler, Benedikt, Bae, Hyunwoo, Gilmer, Jannik, Virovets, Alexander, Lerner, HansWolfram, Albert, Philipp, Fantuzzi, Felipe and Wagner, Matthias (2022) *Dope it with germanium: selective access to functionalized Si5Ge heterocycles.* Chemical Communications . ISSN 1359-7345.

Downloaded from <u>https://kar.kent.ac.uk/99150/</u> The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1039/D2CC06060D

This document version Author's Accepted Manuscript

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

View Article Online

ChemComm

Chemical Communications

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: B. Koestler, H. Bae, J. Gilmer, A. Virovets, H. Lerner, P. Albert, F. Fantuzzi and M. Wagner, *Chem. Commun.*, 2023, DOI: 10.1039/D2CC06060D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 13 December 2022. Downloaded on 12/14/2022 1:21:44 AM.

COMMUNICATION

Dope it with germanium: selective access to functionalized Si₅Ge heterocycles

Received 00th January 20xx, Accepted 00th January 20xx Benedikt Köstler,^a Hyunwoo Bae,^a Jannik Gilmer,^a Alexander Virovets,^a Hans-Wolfram Lerner,^a Philipp Albert,^b Felipe Fantuzzi,^c and Matthias Wagner^{*a}

DOI: 10.1039/x0xx00000x

The Cl⁻ diadduct $[nBu_4N]_2[A\cdot 2Cl]$ of the mixed cyclohexatetrelane $(SiCl_2)_5(GeMe_2)$, A, is accessible from Me₂GeCl₂, 6 eq. Si₂Cl₆, and 2 eq. $[nBu_4N]$ Cl in one step (96%). Free, tenfold functionalized A can be released from the primary product by decomplexation with AlCl₃ (78%). Insight into the assembly mechanism of $[nBu_4N]_2[A\cdot 2Cl]$ and the reactivity of A is provided.

Oligomers of the heavier group 14 elements are relatives of the alkanes. However, unlike the alkanes, their skeletal σ electrons are significantly delocalized along the oligomer backbones.¹ This σ delocalization is fundamentally interesting and may lead to potentially useful optoelectronic properties, especially in oligosilanes and -germanes.^{2,3} Given this background, the synthesis and properties of homonuclear Si-2,4 and Gecontaining^{3,5–7} oligomers and polymers have been thoroughly studied. In stark contrast, structurally well-defined heteronuclear oligomers containing both Si and Ge atoms in their backbones have received much less attention, although the targeted doping of an oligosilane chain with more electronegative Ge atoms should provide an efficient means of tuning the oligomer's electronic structure (Allred-Rochow electronegativities:⁸ Si = 1.74, Ge = 2.02). In addition, volatile Si_xGe_v species are promising single-source precursors for the deposition of mixed (hexagonal) Si_xGe_v alloys,^{9–12} which not only have important applications in high-speed microelectronic devices,13 but also possess potential as direct band-gap emitters, making them "an ideal material system in which to

Figure 1. Selected examples of Si_4Ge_y structural motifs realized by using the $Si_2Cl_6/[nBu_4N]Cl$ silylation system and R_2GeCl_2 (1, 2; R: *n*Bu, Ph), GeCl_4 (3) or Me₂GeCl₂ (4, 5, 6, A).

combine electronic and optoelectronic functionalities on a single chip".¹⁴

Single-source Si_xGe_v precursors not only allow better control over the composition of the deposited semiconductor film, but also require the adjustment of only a single kinetic parameter, i.e., the flow rate of the precursor at the specified temperature.¹³ Despite these obvious advantages, suitable heterooligotetrelanes combining Si and Ge atoms are rare, mainly because of a lack of universally applicable synthesis protocols. Since the established Wurtz-type coupling and nucleophilic substitution reactions possess a very limited functional group tolerance, most of the known Si_xGe_v species carry organyl substituents at their peripheries.¹⁵ For several years, our group has been developing the Si₂Cl₆/[nBu₄N]Cl silylation system¹⁶ for the synthesis of novel organosilanes¹⁷ and oligosilanes.^{18–20} Recently, we have also adapted it successfully for the preparation of mixed chlorosilaneorganogermane oligomers, such as the tri- (1),¹² tetra- (2),¹² and neo-pentatetrelanes (3),²¹ or the heteroadamantanes 4-6 (Figure 1).22

^{a.} Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany. E-mail: matthias.wagner@chemie.uni-frankfurt.de

^{b.}Smart Materials, Evonik Operations GmbH, Untere Kanalstraße 3, 79618 Rheinfelden, Germany.

^c School of Chemistry and Forensic Science, University of Kent, Park Wood Road, Canterbury CT2 7NH, UK.

⁺ Electronic supplementary information (ESI) available: Experimental procedures, NMR spectra, and crystallographic data. CSD 2217223–2217225. For ESI and crystallographic data in CIF format see DOI: XXX

COMMUNICATION

Herein, we present the high-yield synthesis of the Lewis-acidic six-membered heterocycle $(SiCl_2)_5(GeMe_2)$, **A** (Figure 1), its Cl⁻diadduct $[nBu_4N]_2[\mathbf{A}\cdot 2Cl]$, and its permethylated derivative $(SiMe_2)_5(GeMe_2)$, **B** (Scheme 1). Due to its inert and NMR-active Me groups, **B** is particularly well suited to conclusively confirm the proposed Si₅Ge scaffold. Unlike **B** and most other oligotetrelanes, **A** still possesses ten functionalizable Si–Cl bonds; a first reactivity screening showed interrelations between the chain-like species **1** and **2** (R = Me), the monocycle **A**, and the polycyclic heteroadamantanes **4**, **5**, and **6**.

The primary product $[nBu_4N]_2[\mathbf{A}\cdot 2CI]$ was synthesized from 6 eq. Si₂Cl₆, 2 eq. [nBu₄N]Cl, and 1 eq. Me₂GeCl₂ at room temperature in CH₂Cl₂ (Scheme 1). After 3 d, all volatiles were evaporated and the residue was washed with n-hexane to afford $[nBu_4N]_2$ [**A**·2Cl] in 96% yield. To rationalize the applied stoichiometry by formal electron bookkeeping, we assume that Cl⁻ ions induce the disproportionation of Si₂Cl₆ to SiCl₄ and SiCl₂.^{17,23} Of the latter, 5 eq. are incorporated into the Si₅Ge ring, while the 6th eq. serves to reduce Me₂GeCl₂ to the Me₂Ge stage. Similar to (SiCl₂)₆,²⁴ (SiCl₂)₅(GeMe₂) is apparently a strong Lewis acid that traps 2 Cl⁻ ions, so stoichiometric amounts of $[nBu_4N]Cl$ are required. Permethylation of $[nBu_4N]_2[\mathbf{A}\cdot 2Cl]$ with MeMgBr in Et₂O reduces the Lewis acidity of the resulting (SiMe₂)₅(GeMe₂), B (72% yield), to the point where it no longer binds Cl⁻ ions. Alternatively, decomplexation of $[nBu_4N]_2[\mathbf{A}\cdot 2Cl]$ with AlCl₃ in C₆H₆ at room temperature can be achieved. Free A was isolated by extraction into *n*-hexane (78% yield).

The ¹H NMR spectrum²⁵ of $[nBu_4N]_2[\mathbf{A}\cdot 2CI]$ shows the countercation signals and a singlet at 0.53 ppm for the GeMe₂ moiety. In the spectrum of **B**, the $[nBu_4N]^+$ signals have disappeared, the GeMe₂ resonance shifts to 0.21 ppm (6H), and three more singlets, assignable to SiMe₂ groups, appear at 0.18 (12H), 0.14 (12H), and 0.13 (6H) ppm. Free **A** gives rise to a GeMe₂ singlet at 0.84 ppm. Each of the ²⁹Si{¹H} NMR spectra of $[nBu_4N]_2[\mathbf{A}\cdot 2CI]$, **A**, and **B** is characterized by three signals with approximate integral ratios of 2:2:1 (Figure 2). In all three cases, the signal with the lowest intensity is assigned to the unique Si³

Scheme 1. Synthesis of the mixed Si₅Ge heterocycle **A** as its Cl⁻ diadduct [R₄N]₂[**A**·2Cl] (96%; CH₂Cl₂, 3 d). Reversible release of **A** by decomplexation with AlCl₃ (78%; C₆H₆, 1 d). Synthesis of **B** by tenfold methylation of [R₄N]₂[**A**·2Cl] using exc. MeMgBr (72%; Et₂O, 1 d). R = *n*Bu.

Figure 2. Top: ²⁹Si¹H} NMR spectrum of [*n*Bu₄N]₂[**A**·2Cl] in CD₂Cl₂ (left; Si¹, Si², and Si³ are the Si atoms in α , β , and γ positions relative to the Ge atom, respectively). ²⁹Si chemical shift values of [*n*Bu₄N]₂[**A**·2Cl], **A**, and **B** (right); reference compounds: [*n*Bu₄N]₂[(SiCl₂)₆·2Cl] (*a*).¹⁸ (SiCl₂)₆ (*b*).²⁶ (SiMe₂)₆ (*c*).²⁴ Bottom: X-ray crystallographically determined solid-state structures of [*n*Bu₄N]₂[**A**·2Cl] (left) and **A** (right). Counter cations and H atoms are omitted for clarity. In [A·2Cl]²⁻, GeMe₂ is equally disordered over two sites; in **A**, GeMe₂ is disordered to varying degrees over all sites. Si: blue, Cl: yellow-green, disordered SiCl₂/GeMe₂: gray.

atom; only the signals attributed to Si¹ atoms show cross peaks with the GeMe₂ resonances in the ²⁹Si/¹H HMBC experiments (Figures S8, S12, and S16). Likely due to the higher electronegativity of Ge relative to Si, the Si¹ nuclei consistently are the most deshielded ones (Figure 2). In line with the smaller coordination numbers of c.n. = 4, all ²⁹Si resonances of **A** are shifted downfield by >20 ppm relative to those of [**A**·2CI]²⁻. Compared to **A**, Cl/Me exchange in **B** results in pronounced upfield shifts of >40 ppm (Figure 2). These shielding trends in the Si₅Ge heterocycles match those in comparable Si₆ analogues.^{18,24,26}

Single crystals of [nBu₄N]₂[A·2Cl] were grown from nhexane/CH₂Cl₂. X-ray analysis revealed an inverse sandwich complex with 2 Cl⁻ ions residing above and below a planarized Si₅Ge ring (Figure 2). The complex $[\mathbf{A} \cdot 2Cl]^{2-}$ has an inversion center with mutual disorder of GeMe₂ and the SiCl₂ group opposite it. The intramolecular distance between the two coordinating Cl⁻ ions amounts to Cl…Cl = 3.9083(9) Å, which is 0.073 Å longer than in the case of [*n*Bu₄N]₂[(SiCl₂)₆·2Cl] (3.8357(6) Å).²⁷ We therefore conclude that the energy gained by Lewis pairing with A is somewhat smaller than in the case of the (SiCl₂)₆ ring with 12 (instead of 10) electron-accepting Si–Cl σ^{*} orbitals, but still large enough to flatten the Si_Ge ring by suppressing the pseudo-Jahn-Teller effect.²⁸ Compound A crystallizes from CH_2Cl_2 as a solid solution with 8 mol% of $(SiCl_2)_6$ (according to the unconstrained refinement of the corresponding site occupancy factors). A adopts a puckered chair conformation in the solid state and lies on an inversion center (Figure 2); due to disorder, all three crystallographically unique SiCl₂ positions are shared to varying degrees with GeMe₂.²³ Permethylated **B** is isostructural to **A** and suffers from comparable GeMe₂/SiMe₂ disorder (Figure S29). Nevertheless, the six-membered ring motif is undoubtedly still present after tenfold nucleophilic Cl/Me substitution.

Page 2 of 4

Journal Name

At this point, the following questions arise: Why is A a sixmembered ring and what is the reason for the selective incorporation of exactly one GeMe2 group? Cl--induced heterolysis of Si₂Cl₆ leads to SiCl₄ and the primary reactive species [SiCl₃]^{-.18,29} In the present case, [SiCl₃]⁻ can target either Si₂Cl₆ or Me₂GeCl₂, with the attack on the dichlorogermane apparently being preferred: Analogous to the synthesis of 1 (R = Ph, nBu; Figure 1),¹² we converted Me₂GeCl₂ quantitatively and instantaneously to $Cl_3Si-Me_2Ge-SiCl_3$ (1, R = Me) by adding exc. Si₂Cl₆ and cat. [nBu₄N]Cl.^{23,30} In a quantitative yet much slower follow-up reaction, $[nBu_4N]_2[\mathbf{A}\cdot 2CI]$ is subsequently accessible from Cl₃Si-Me₂Ge-SiCl₃, 4 eq. Si₂Cl₆, and 2 eq. [nBu₄N]Cl (Scheme 2a).²³ NMR monitoring of this second step showed the appearance and disappearance of several (unknown) intermediates over the course of 3 d, eventually leading solely to [nBu₄N]₂[A·2Cl]. Based on these overall findings, we propose that also in the one-pot synthesis of [nBu₄N]₂[A·2Cl] (Scheme 1), Cl₃Si-Me₂Ge-SiCl₃ is formed as a key intermediate. Its silyl substituents then grow by further reaction with [SiCl₃]⁻ until the oligotetrelane chain becomes sufficiently long to cyclize via established ring-closing mechanisms.^{18,31} The early incorporation of GeMe₂ into the Cl₃Si-Me₂Ge-SiCl₃ tritetrelane is likely essential for GeMe₂ to be found in the final [A·2Cl]²⁻ product as well. Even if different ring sizes were initially formed, Cl--catalyzed rearrangement equilibria should provide some "self-healing effect", eventually the thermodynamically establishing most favorable cyclohexatetrelane diadduct (note that (SiCl₂)₅ undergoes ring expansion to (SiCl₂)₆ diadducts in the presence of 2 eq. Cl⁻).²⁷ The important role of Cl⁻-diadduct stability could finally explain why not more than one GeMe₂ group is incorporated into the heterocycle: Any exchange of SiCl₂ for GeMe₂ leads to the loss of strongly electron-accepting Si–Cl σ^* orbitals, which should decrease the Lewis acidity of the ring and thereby reduce the thermodynamic thrust toward the formation of a corresponding inverse sandwich complex. To validate this assumption, we performed a competition experiment between [nBu₄N]₂[A·2Cl] and free $(SiCl_2)_6$ in CD_2Cl_2 and detected the intense ²⁹Si resonance of the newly formed diadduct [(SiCl₂)₆·2Cl]²⁻ (Scheme 2b). Vice versa, $[(SiCl_2)_6 \cdot 2Cl]^{2-}$ persists in a mixture with free **A**. Quantum-chemical calculations also confirm that the transfer of two Cl⁻ ions from $[\mathbf{A} \cdot 2Cl]^{2-}$ to $(SiCl_2)_6$ is exergonic by -14.9 kcal mol⁻¹ and becomes even more exergonic upon going to the higher doped 1,3- and 1,3,5-GeMe₂ derivatives (Scheme 2d).²³ In other words, the thermodynamic stability of the respective diadducts indeed decreases upon stepwise incorporation of GeMe₂.

One remarkable fact, however, is still puzzling: Cl₃Si-substituted derivatives of ${\bf A}$ do not seem to be generated, although oligochlorosilanes have a pronounced tendency to build neosubstructures with formal Si(0)/Si(III) centers. For example, the reaction between 6 eq. Si₂Cl₆ and 2 eq. [nBu₄N]Cl furnishes substantial amounts of [(SiCl₂)₅(Si(SiCl₃)₂)·2Cl]²⁻ and its positional isomers. Conversion of this product mixture to [(SiCl₂)₆·2Cl]^{2–} requires additional SiCl₂ extrusion by thermolysis at 85 °C in CH₂Cl₂.¹⁸ Although the question of why incorporated GeMe₂ suppresses the formation of branched final products

COMMUNICATION

Accepted Manus

Scheme 2. (a) Synthesis of Cl₃Si-Me₂Ge-SiCl₃ and its subsequent conversion to the Cl⁻ diadduct of (SiCl₂)₅(GeMe₂), [A·2Cl]²⁻. (b) Abstraction of Cl⁻ ions from $[\mathbf{A} \cdot 2CI]^{2-}$ by $(SiCl_2)_6$; the released **A** is not stable under these conditions, but rearranges mainly to 1, 2 (R = Me),²³ and 5. (c) Conversion of A to the heteroadamantane 5 in the presence of 1 eq. [A·2Cl]²⁻. Counter cations: $[nBu_4N]^+$. (d) Theoretical study on the thermodynamics of the competition reaction between (SiCl₂)₆ and its 1-, 1,3-, and 1,3,5-GeMe₂-doped congeners: the tendency to form Cl⁻ diadducts decreases with increasing GeMe₂ content. SMD(DCM)/MN15/6-311++G**//SMD(DCM)/MN15/6-31+G*.

already at room temperature remains to be explored, we take this observation as an indicator of how significantly the incorporation of GeMe2 can perturb the electronic structure of cyclooligosilanes (a second indicator being the influence of the GeMe₂ dopant on Lewis acidity).

Having achieved a basic understanding of the assembly mechanism of A, we finally attempted to contextualize this monocyclic compound with the open-chain molecule 1 (R = Me) and the polycyclic heteroadamantanes 4-6. In a series of NMRscale experiments (CD₂Cl₂, room temperature), A was treated with varying amounts of Cl⁻ ions: (i) Addition of 2 eq. [*n*Bu₄N]Cl takes A back to the [A·2Cl]²⁻ diadduct state, thereby demonstrating that decomplexation is fully reversible (Scheme 1). (ii) Addition of 1 eq. [nBu₄N]Cl to A formally leads to $[nBu_4N]$ [**A**·Cl]. The same stoichiometry can be obtained by mixing equimolar amounts of A and $[nBu_4N]_2[A\cdot 2CI]$, which is more practical and therefore the way we performed the 1 d, the experiment. After solution contained heteroadamantane 5 and [A·2Cl]²⁻ as only GeMe₂-containing species (Scheme 2c). To a good approximation, the proton integral values indicated a ratio of 5 to $[A \cdot 2Cl]^{2-} = 1:5$. (iii) Decreasing the amount of added [nBu₄N]Cl further to 0.1 eq., yielded a complex product mixture that showed the characteristic ¹H NMR signal of 1 (R = Me) next to a broad, undiagnostic hump. Notably, even after six weeks, the reaction had not proceeded further to the stage of heteroadamantanes, although pure samples of 1 (R = Me) in the presence of 0.1 eq. $[nBu_4N]Cl$ give **5** and **2** (R = Me).²³

In summary, we succeeded in the high-yield synthesis of the heteronuclear cyclohexatetrelane (SiCl₂)₅(GeMe₂), A, from Me₂GeCl₂, 6 eq. Si₂Cl₆, and 2 eq. [*n*Bu₄N]Cl. The primary product is the Cl⁻ diadduct $[nBu_4N]_2[\mathbf{A}\cdot 2Cl]$; here, the Cl⁻ ions play a

Accepted Manus

emcomm

Journal Name

decisive role in templating the six-membered ring and protecting it from further rearrangement or degradation. Key factors for the selective incorporation of precisely one GeMe₂ group into $[A\cdot2Cl]^{2-}$ have been identified. Decomplexation of $[nBu_4N]_2[A\cdot2Cl]$ was achieved by means of AlCl₃ (to give free **A**). Treatment with MeMgBr gave free (SiMe₂)₅(GeMe₂), **B**. This successful tenfold methylation reaction makes us optimistic that other nucleophilic late-stage derivatizations will lead to a broad scope of other mixed cyclohexatetrelanes in the future. Of particular interest is (SiH₂)₅(GeMe₂), a promising single-source precursor for the deposition of Ge-doped silicon semiconductor materials.

The authors are grateful to Evonik Resource Efficiency GmbH, Rheinfelden (Germany), for financial funding and the generous donation of $GeCl_4$ and Si_2Cl_6 .

Conflicts of interest

COMMUNICATION

B.K., H.-W.L., and M.W. are inventors on patent application WO2021244705A1 submitted by the Goethe University Frankfurt, which covers the synthesis and use of 1 and 2 (R = Me).

References

- 1 M. Jovanovic and J. Michl, J. Am. Chem. Soc., 2019, **141**, 13101–13113.
- 2 R. D. Miller and J. Michl, Chem. Rev., 1989, 89, 1359–1410.
- 3 M. L. Amadoruge and C. S. Weinert, *Chem. Rev.*, 2008, **108**, 4253–4294.
- 4 C. Marschner, Oligosilanes in *Functional Molecular Silicon Compounds I. Structure and Bonding*, ed. D. Scheschkewitz, Springer, Cham, **155**, 2013.
- 5 K. D. Roewe, A. L. Rheingold and C. S. Weinert, *Chem. Commun.*, 2013, **49**, 8380–8382.
- 6 S. M. I. Al-Rafia, M. R. Momeni, R. McDonald, M. J. Ferguson, A. Brown and E. Rivard, *Angew. Chem., Int. Ed.*, 2013, **52**, 6390–6395.
- 7 W. Fa and X. C. Zeng, *Chem. Commun.*, 2014, **50**, 9126–9129.
 8 A. F. Holleman, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 101 ed., de-Gruyter, Berlin, New York, p. 144.
- 9 C. J. Ritter, C. Hu, A. V. G. Chizmeshya, J. Tolle, D. Klewer, I. S. T. Tsong and J. Kouvetakis, J. Am. Chem. Soc., 2005, **127**, 9855–9864.
- 10 A. V. G. Chizmeshya, C. J. Ritter, C. Hu, J. B. Tice, J. Tolle, R. A. Nieman, I. S. T. Tsong and J. Kouvetakis, *J. Am. Chem. Soc.*, 2006, **128**, 6919–6930.
- 11 S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson and E. Rivard, Angew. Chem., Int. Ed., 2011, 50, 8354–8357.
- B. Köstler, F. Jungwirth, L. Achenbach, M. Sistani, M. Bolte, H.-W. Lerner, P. Albert, M. Wagner and S. Barth, *Inorg. Chem.*, 2022, **61**, 17248–17255.
- 13 C. Hu, J. L. Taraci, J. Tolle, M. R. Bauer, P. A. Crozier, I. S. T. Tsong and J. Kouvetakis, *Chem. Mater.*, 2003, **15**, 3569–3572.
- 14 E. M. T. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. J. van Tilburg, C. Mao, Y. Ren, V. T. van Lange, K. Korzun, S. Kölling, M. A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J. J. Finley, S. Botti, J. E. M. Haverkort and E. P. A. M. Bakkers, *Nature*, 2020, **580**, 205–209.
- Selected representative examples: (a) A. G. Brook, F. Abdesaken and H. Söllradl, J. Organomet. Chem., 1986, 299, 9–13; (b) K. M. Baines and J. A. Cooke, Organometallics, 1991, 10, 3421–3423; (c) K. M. Baines, K. A. Mueller and T. K. Sham,

Can. J. Chem., 1992, **70**, 2884–2886; (*d*) S. P. Mallela and R. A. Geanangel, *Inorg. Chem.*, 1993, **32**, <u>5623</u>, <u>553</u>, <u>553</u>, <u>6600</u> Mallela, S. Hill and R. A. Geanangel, *Inorg. Chem.*, 1997, **36**, 6247–6250; (*f*) H. Wagner, J. Baumgartner, T. Müller and C. Marschner, *J. Am. Chem. Soc.*, 2009, **131**, 5022–5023; (*g*) L. Albers, M. A. Meshgi, J. Baumgartner, C. Marschner and T. Müller, *Organometallics*, 2015, **34**, 3756–3763; (*h*) L. Albers, S. Rathjen, J. Baumgartner, C. Marschner and T. Müller, *J. Am. Chem. Soc.*, 2009, **131**, 5022–5023; (*g*) L.

- 16 J. Teichmann and M. Wagner, Chem. Commun., 2018, 54, 1397–1412.
- 17 (a) I. Georg, J. Teichmann, M. Bursch, J. Tillmann, B. Endeward, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, J. Am. Chem. Soc., 2018, 140, 9696–9708; (b) I. Georg, M. Bursch, J. B. Stückrath, E. Alig, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, Angew. Chem., Int. Ed., 2020, 59, 16181–16187; (c) I. Georg, M. Bursch, B. Endeward, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, Chem. Sci., 2021, 12, 12419–12428.
- 18 J. Tillmann, L. Meyer, J. I. Schweizer, M. Bolte, H.-W. Lerner, M. Wagner and M. C. Holthausen, *Chem. Eur. J.*, 2014, **20**, 9234–9239.
- J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H.-W. Lerner, M. C. Holthausen and M. Wagner, *Angew. Chem., Int. Ed.*, 2015, 54, 5429–5433.
- 20 M. Bamberg, M. Bursch, A. Hansen, M. Brandl, G. Sentis, L. Kunze, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, J. Am. Chem. Soc., 2021, 143, 10865–10871.
- 21 C. Kunkel, M. Bolte, H.-W. Lerner, P. Albert and M. Wagner, *Chem. Commun.*, 2021, **57**, 12028–12031.
- 22 B. Köstler, M. Bolte, H.-W. Lerner and M. Wagner, *Chem. Eur. J.*, 2021, **27**, 14401–14404.
- 23 More details are given in the Supporting Information.
- 24 S.-B. Choi, B.-K. Kim, P. Boudjouk and D. G. Grier, *J. Am. Chem. Soc.*, 2001, **123**, 8117–8118.
- 25 All NMR spectra of $[nBu_4N]_2[\mathbf{A}\cdot 2CI]$, **A**, and **B** were recorded in CD_2CI_2 .
- 26 J. Tillmann, M. Moxter, M. Bolte, H.-W. Lerner and M. Wagner, *Inorg. Chem.*, 2015, 54, 9611–9618.
- 27 J. Teichmann, B. Köstler, J. Tillmann, M. Moxter, R. Kupec, M. Bolte, H.-W. Lerner and M. Wagner, Z. anorg. allg. Chem., 2018, 644, 956–962.
- 28 K. Pokhodnya, C. Olson, X. Dai, D. L. Schulz, P. Boudjouk, A. P. Sergeeva and A. I. Boldyrev, J. Chem. Phys., 2011, 134, 014105.
- 29 J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, *Inorg. Chem.*, 2017, 56, 8683–8688.
- 30 Du Mont *et al.* synthesized 1 (R = Me) in a Benkeser-type reaction from Me₂GeCl₂, 2 eq. HSiCl₃, and 2 eq. NEt₃ (79%): L. Müller, W.-W. du Mont, F. Ruthe, P. G. Jones and H. C. Marsmann, *J. Organomet. Chem.*, 1999, **579**, 156–163. Although this approach is similarly effective as ours for the preparation of this specific tritetrelane, we emphasize that the template effect of Cl⁻ ions (present only in our protocol) is mandatory for the assembly of more complex oligotetrelanes, such as **A** or our recently published silafulleranes (Ref[19]).
- 31 In a second conceivable scenario, Si₂Cl₆ remaining after the formation of Cl₃Si–Me₂Ge–SiCl₃ could undergo the well-known Cl⁻-induced conversion to [(SiCl₂)₆·2Cl]⁻ (Ref[18]), which then reacts with Cl₃Si–Me₂Ge–SiCl₃ to give [A·2Cl]⁻. However, this alternative pathway can be ruled out since we found that a 1:1-mixture of [(SiCl₂)₆·2Cl]⁻ and Cl₃Si–Me₂Ge–SiCl₃ in CD₂Cl₂ remains unchanged for several days (NMR-spectroscopic control; cf. the Supporting Information).

Published on 13 December 2022. Downloaded on 12/14/2022 1:21:44 AM.