
Vollmer, Michael, Scott, Ryan G., Musuvathi, Madanlal and Newton, Ryan
R. (2017) SC-Haskell: Sequential Consistency in Languages That Minimize
Mutable Shared Heap. SIGPLAN Not., 52 (8). 283–298. ISSN 0362-1340.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/98981/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3155284.3018746

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/98981/
https://doi.org/10.1145/3155284.3018746
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

SC-Haskell: Sequential Consistency in
Languages That Minimize Mutable Shared Heap

Michael Vollmer1 Ryan G. Scott1 Madanlal Musuvathi2 Ryan R. Newton1

Indiana University (USA)1, Microsoft Research (USA)2

{vollmerm, rgscott, rrnewton}@indiana.edu madan@microsoft.com

Abstract
A core, but often neglected, aspect of a programming lan-
guage design is its memory (consistency) model. Sequen-
tial consistency (SC) is the most intuitive memory model for
programmers as it guarantees sequential composition of in-
structions and provides a simple abstraction of shared mem-
ory as a single global store with atomic read and writes. Un-
fortunately, SC is widely considered to be impractical due to
its associated performance overheads.

Perhaps contrary to popular opinion, this paper demon-
strates that SC is achievable with acceptable performance
overheads for mainstream languages that minimize mutable
shared heap. In particular, we modify the Glasgow Haskell
Compiler to insert fences on all writes to shared mutable
memory accessed in nonfunctional parts of the program. For
a benchmark suite containing 1,279 programs, SC adds a ge-
omean overhead of less than 0.4% on an x86 machine.

The efficiency of SC arises primarily due to the isolation
provided by the Haskell type system between purely func-
tional and thread-local imperative computations on the one
hand, and imperative computations on the global heap on the
other. We show how to use new programming idioms to fur-
ther reduce the SC overhead; these create a virtuous cycle of
less overhead and even stronger semantic guarantees (static
data-race freedom).

Keywords memory models, functional programming, se-
quential consistency

1. Introduction
The prospect of sequential consistency (SC) [21] as a con-
currency abstraction for programmers has been debated
against a backdrop of mainstream C++ and Java programs.
These languages have settled on memory models based on
DRF0 [26, 8] that guarantee SC for data-race-free programs.
However, as Adve and Boehm point out [3], this is far from a

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

PPoPP ’17 Feb. 4–8, 2017, Austin, Texas, USA.
Copyright © 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4493-7/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3018743.3018746

satisfying solution due to the inherent difficulties in enforc-
ing data-race-freedom and in pinning down the semantics of
programs with data races.

This paper rests on the hypothesis that high-level lan-
guages should shield all programmers from the counter-
intuitive effects of compiler and hardware reorderings by
providing SC. The key challenge is that doing so requires the
language runtime to insert hardware fences to counter the
relaxed memory models of current hardware architectures.
Doing so for shared-memory imperative languages, such as
C++ and Java, either incurs unacceptable overheads or re-
quires sophisticated whole-program analyses [36, 38, 5] that
modern language runtimes are loath to implement.

This is not necessarily true for language paradigms that
deemphasize access to shared mutable heap when possible.
For instance, consider Haskell, Erlang, and Rust, which are
designed for functional programming, message passing, and
linear ownership, respectively. Programs in these languages
naturally use fewer shared heap locations. Moreover, the
language type system provides a clean separation between
pure or thread-local computation and shared-mutable state.
Thus, these languages provide an opportunity to make SC
mainstream with acceptable overheads. The goal of this pa-
per is to evaluate this hypothesis for the Haskell language.
As functional programming primitives are gradually intro-
duced into mainstream imperative languages, we believe that
lessons learned from our efforts here could influence future
efforts to tighten the memory models of Java and C++.

Despite its fundamental importance, memory model con-
siderations are usually an afterthought during language de-
sign. The current Haskell specification does not formally
specify a memory model, a sore spot in a language that oth-
erwise provides a mathematically grounded semantics. We
show that this oversight is more than a minor annoyance and
demonstrate how a weak memory model can break the fun-
damental abstractions of Haskell. In particular, in Section 3
we show that the current GHC implementation on ARM is
type-unsafe — a particular sharing pattern in the imperative
parts of a Haskell program can break the type safety of the
functional parts of the program, a core language guarantee.

To comprehensively resolve such issues, this paper pro-
poses SC-Haskell, a refinement of the existing Haskell lan-

guage semantics. We implement SC-Haskell in the context
of the mature Glasgow Haskell Compiler (GHC), which is
the mainstay of the Haskell ecosystem.

Haskell contains threads and mutable references. Thus, in
principle, SC-Haskell shares the same problems as a hypo-
thetical “SC-Java.” But unlike Java, the Haskell type system
isolates pure computations from effectful ones—writing to
a global mutable reference is an action with “IO” type. Ad-
ditionally, Haskell provides a menu of options to minimize
sharing of mutable references between threads, including:

1. (parallel) functional programming [28],
2. thread-private references (ST type) [22],
3. software transactional memory (STM type) [17], and
4. libraries that encapsulate alias-free partitions of

shared mutable state [19].
In all these cases, the type system serves as a firewall pre-

venting code using these mechanisms from modifying un-
synchronized (non-transactional, non-atomic) shared muta-
ble variables. Thus, program transformation to ensure SC
can be type directed by systematically ignoring all store
operations that originate from the four alternate facilities
above. Thus our first question is whether the presence of
these facilities has already made reliance on unsynchronized
shared-heap writes statistically rare in existing Haskell pro-
grams, and thus the surface area for SC-enforcement small.

The answer to this question is a resounding “yes”. As
described in section 7.2 we find occurrences of unsynchro-
nized, global-heap-mutating code in less than two percent of
one hundred thousand publicly available Haskell modules in
the Hackage package manager, representing 17 million lines
of open source code. Targeting x86-64 architectures, if we
attach memory barriers to all writes to shared mutable mem-
ory, only 483 benchmarks of 1,279 we surveyed issued any
barriers at all (Section 7.3). For the 483 with barrier over-
head, the geometric mean slowdown was only 0.4%. Further,
only 12 benchmarks slow down more than 10%.

We believe SC is the right choice for the Haskell lan-
guage moving forward, and, further, that SC-Haskell show-
cases a methodology for language design that emphasizes
modular construction of effects on memory regions. Mixed-
paradigm functional and object-oriented languages of the fu-
ture have the option of reducing reliance on a monolithic
shared memory, and instead using separate mechanisms for
immutable data, thread-local state, and transactional state,
just as Haskell does. The memory models for these lan-
guages can be much simpler to specify and simpler for the
programmer to use. Finally, for the language designer, sep-
arate, modular memory effects can make proving sequential
consistency easier, by showing that a specialized memory
area is disjoint from the global heap (Section 4).
The contributions of this paper are:

• A formal operational semantics for core Haskell against
a weak memory model following total-store-order (TSO).
Using this we can show that our implementation strat-

egy for global mutable state preserves SC while not
adding overhead to thread-private or transactional state
in the ST and STM types, respectively (Section 4).

• To our knowledge, the first practical demonstration that
a mainstream concurrent language can provide SC with
low overheads on a wide swath of application code. We
demonstrate this with an empirical evaluation over a
thousand benchmark programs (Section 7).

• A case study where we seek out examples of SC-
Haskell adding barriers to core libraries, then demon-
strate how these libraries can be rewritten to both avoid
synchronization overheads and have much stronger
semantic guarantees. In Section 6, we introduce two
novel techniques for enforcing locking discipline and
thread-private memory respectively.

2. Background: Mutability in Haskell
The first thing to know about Haskell is that functions and
expressions are pure, i.e. lacking externally visible side ef-
fects. Thus a function of type Int → Int takes and returns a
number but cannot print to the screen or modify memory.

Ultimately, such effects are a necessary part of pro-
gramming, and they appear in Haskell in a manner explic-
itly marked in the types. Specifically, they are expressed
in Haskell using monadic actions: explicit, first-class de-
scriptions of effects to perform. Thus a function of type
Int → IO Int takes and returns an integer, while also per-
forming additional input/output side effects. Semantically,
we view this function is as producing an “IO Int” object:
an abstract description of the actions to perform later on. IO
actions are realized only at the “main” function of a complete
program. The main function provides the “imperative spine”
of a program, even if the vast majority of the work happens
in pure functions called from this spine.

Because they are first class values, IO actions can be
put in a list or passed as inputs to functions. But for most
programs this is irrelevant. Rather, a function in the IO
monad (i.e., returning an IO action) is compiled to assembly
code very similar to that produced from imperative code in
other managed languages. From the point of view of the
compiler, the monadic treatment is not very different than
a type-effect system [24].

Mutable heap locations Within the IO monad, Haskell
programmers use a simple library API to build and use
mutable references:

newIORef :: a → IO (IORef a)

readIORef :: IORef a → IO a

writeIORef :: IORef a → a → IO ()

In these type signatures, the lower case “a” is a type variable
indicating that the above functions are polymorphic and a
IORef a is a mutable reference to an object of type a. Thus,
newIORef takes an object of type a and returns a reference
to a, with the side effect (indicated by IO) of allocating
memory to hold the reference. The function readIORef takes

such a reference and returns the value of the object. Haskell
functions are usually curried, but the type of writeIORef

could just as well be written (IORef a, a) → IO(); it takes
a reference and a value and returns a monadic action that
writes the value to the reference. Here, () is the unit type,
equivalent to “void” or an empty tuple.

The monadic actions returned by the above functions are
typically combined using do notation, e.g.:

−−A multi-line do-expression with type “IO Int”:
do r ← newIORef 0 −− Initial value is zero

writeIORef r 3 −−Modify value
readIORef r −−Returns three

When Haskell gained concurrency [32], IORefs could
be accessed by multiple threads, by using forkIO to create
language-level lightweight threads:

forkIO :: IO () → IO ThreadId

Unfortunately, no memory model was defined to specify
which return values can be obtained from a readIORef. In-
deed, to this date, the documentation1 says only that:

IORef operations may appear out-of-order to an-
other thread, depending on the memory model of
the underlying processor architecture

Our position is that writeIORef, with these semantics, is
harmful and unnecessary: harmful because of debugging
difficulties and even bugs on some architectures (Section 3);
unnecessary, because it is possible to simply rely on other
mechanisms. For starters, atomic operations are already pro-
vided for IORefs:

atomicWrite :: IORef a → a → IO ()

atomicModify :: IORef a → (a → (a, b)) → IO b

Both were implemented in GHC with compare-and-swap.
Both incur significant overhead and should be used spar-
ingly, but they need not change to support SC.

Intercepting mutable state modifications Because muta-
ble references do not have built-in syntax, it is straight-
forward to modify their behavior by modifying the library
that exposes the above API. The same argument applies to
Haskell’s other mutable heap objects: (un)boxed arrays. By
intercepting all calls that write to mutable, potentially-shared
memory, we can enforce a new memory model. For example,
in this work, we attach a store-load barrier to each writeIORef

(turning it effectively into atomicWrite), which yields se-
quential consistency on any TSO architecture.

2.1 Thread-local state: ST monad
Before we go further in changing the semantics of IO-based
state, first we look at the alternative mechanisms that allow
programmers to avoid IO-based state in the first place. If a
programmer needs to, e.g., implement an efficient in-place
sort, then there are other monads to turn to in place of IO.

1 https://hackage.haskell.org/package/base-4.9.0.0/docs/

Data-IORef.html

A State Thread (ST) computation [22] enables private,
thread-local mutable state. An action of type ST s a returns
a value a while performing side effects on a memory re-
gion identified by s. Mutable memory managed by the ST
monad includes references and arrays, but these data are not
allowed to escape the state thread. That is, they cannot be
read or changed by another ST computation with a different
s parameter. Furthermore, ST computations cannot fork new
threads, so mutable data structures in an ST computation are
guaranteed to be used by only one thread.

In order to enforce this, the mutable datatypes—such as
the STRef counterpart of IORef—must also be tagged with an
s parameter, becoming STRef s Int instead of IORef Int. The
function for mutating a reference then becomes:

writeSTRef :: STRef s a → a → ST s ()

Here the reference’s s parameter must match the returned
ST action. Eventually, we can eliminate the s parameter and
embed an ST computation in pure code using runST:

runST :: (∀ s. ST s a) → a

Here is the old trick at the heart of the ST technique: the
higher-rank type (indicated by the explicit “∀ s.” quantifier)
is what enforces the requirement that no mutable data may
escape the scope of the ST computation. That is, because
of the limited scope of the ∀ s. quantifier, if the program-
mer attempts to return a value such as an STRef s Int—i.e.
smuggled inside of runST’s a return value—the compiler will
report a type error. The s cannot escape its scope.

Critically, in order to enforce an SC memory model for
Haskell, we do not need to add any additional synchroniza-
tion to STRef operations, because they are guaranteed by the
type system to be used in one thread, in which case SC is
already preserved by all major architectures2, including the
x86 TSO architectures we focus on in our experiments.

Indeed, as we will see in Section 6 and Section 7, shifting
most of the work in a program to (1) pure functions, or (2) ST
computation, reduces the overhead of SC. But there’s also
a third category of mutable memory in Haskell—memory
which already includes implicit synchronization.

2.2 Synchronized mem: STM, MVars, and beyond
In addition to the ST monad, Haskell programmers have at
their disposal the STM monad, for software transactional
memory [17]. Like other STM systems, transactions execute
atomically. They are also restricted by the type system to be
of a distinct type: STM a rather than IO a, and they mutate
only references of type TVar t, never IORef t.

STM requires its own synchronization and retry strategy,
and a correct implementation naturally preserves sequential
consistency. As one of the major concurrency mechanisms
in modern Haskell we include it in our formal treatment
(Section 4) to show how it interacts with our language-level
model of relaxed memory.

2 by the program order relation

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-IORef.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-IORef.html

Haskell also has other forms of data with built-in synchro-
nization, such as MVars, which include a full/empty bit and
blocking operations, or the synchronization variables sup-
ported by a family of Par monads [28, 25, 20] that com-
plement the existing ST and STM monads. We omit these
from our formalism, though the treatment for MVars and Par
would follow that of STM and ST respectively—no addi-
tional synchronization is needed to achieve SC. The real tar-
get of our SC-enforcement effort must be IO actions.

2.3 Safe Haskell
Ideally, the scope for enforcing a memory model would
be “every program written in language X”, i.e. all IO ac-
tions in all Haskell programs. However, even “safe” lan-
guages typically contain backdoors. For instance, Rust has
the unsafe block, and Java has the JNI, which allows pro-
grammers to run unsafe C code. Haskell also has backdoors
and under-the-hood primitives. In particular, GHC exposes
several functions which can subvert programmer expecta-
tions, such as unsafePerformIO, which can break purity.

To avoid these pitfalls (except in specialized expert code),
GHC has a Safe Haskell mode [40]. Safe Haskell is a subset
of Haskell code for which the compiler verifies that certain
key properties of a safe programming language holds, in-
cluding type safety, referential transparency, and encapsula-
tion of modules, by disallowing certain exotic language fea-
tures and restricting the use of certain unsafe modules3.

Safe Haskell provides a natural target for enforcing our
memory model. We guarantee that compiling a module or
package with the -XSafe flag results in an SC program. Li-
braries that use raw, lower level primitives (which may leak
the weak memory model) are by default considered “Un-
safe” and thus not available to Safe programs. On the other
hand, select libraries can be marked as “Trustworthy”, and
become part of the trusted code base if they use unsafe fea-
tures internally but expose only safe external interfaces.

3. Example: GHC type unsafety bug
In general, the “leave it to the architecture” approach to
memory models is unacceptable, particularly for languages
such as Haskell that otherwise provide a mathematically
grounded semantics. However, this oversight is more than
a specification problem. We found that the current version
of GHC is not type safe on ARM. To see why, let’s look at
two ways that values can flow between threads.

First, purely functional computation can contain paral-
lelism, where multiple threads share the same (pure) data
structures. Due to lazy evaluation, a delayed computation
(thunk) updated on one thread can issue writes that mutate

3 In fact, Safe Haskell can be used for untrusted code execution. A Haskell
server receives untrusted code over the wire, specifies its expected type, and
compiles it in Safe mode [40] together with runtime resource limits [42].
In this way it supports type-system-enforced safety rather than modified
runtimes for sandboxing, such as found in Javascript [41].

the heap, which are then read by another thread. This sce-
nario is correctly handled, with a memory fence preceding
the write that commits a thunk update. Thus writes that ini-
tialize a data structure will be visible.

A second way data can flow between threads is IORefs:

−−Force allocation/initialization to happen on the child thread:
{−# NOINLINE mk #−}
mk x = MkMyStruct x

go = do r ← newIORef 0

−− The $! operator is strict application, no thunks:
forkIO (writeIORef r $! mk 3)

readIORef r

In this program the readIORef may or may not observe
the new value written to r. Unfortunately, here GHC has a
bug as of version 7.10.3. The MkMyStruct heap value must be
allocated and its initialization visible to the parent thread’s
readIORef. Yet GHC does not currently generate a fence on
IORef update in the ARM backend. Thus the read may return
an uninitialized value. We plan to fix the bug in GHC 8.2.

Java handles the similar problem of initializing final fields
in object constructors by adding a fence at the end of such
constructors. This solution, however, is unacceptable in our
case as most objects are created in pure computations that
never escape to the imperative spine of a Haskell program.
Note that our fix erases the difference between writeIORef

and atomicWriteIORef and automatically provides SC seman-
tics on TSO architectures.

4. Formal semantics
In this section we introduce a formal model for SC-Haskell
as implemented on a weak-memory, TSO architecture. In
contrast, the simplest high-level model of SC-Haskell would
take for granted a global, sequentially consistent memory
and not address the question of how writes and reads are im-
plemented. Here, we instead expose the store buffer which
enables relaxed memory and closely follows current x86
hardware4. This enables us to explicitly model the imple-
mentation strategy of attaching barriers to IO writes (but not
ST or STM writes). The “lower level” relaxed-memory op-
erational semantics in this section would also be useful for
explicitly reasoning about unsafe code or new extensions.

SC-Haskell is designed such that all well typed programs
are sequentially consistent, that is, all programs would pro-
duce the same observable behavior under a semantics with-
out store-buffers. The language we present is a combination
of a core, purely functional language with a series of ex-
tensions for performing different kinds of side effects: IO,
ST, and STM. Both purely functional and imperative pro-
grams are expressable in this language. To keep the size of
the model reasonable, the only kind of mutable memory in
the semantics we present are mutable references (not arrays).

4 As shown in previous work on x86-TSO [35], the store-buffer based
operational semantics is equivalent to an axiomatic semantics based on
happens-before event graphs.

Further, we omit features of Haskell that do not directly re-
late to concurrency.

4.1 Abstract syntax
The abstract syntax for SC-Haskell is given in Figure 2. It is
mostly standard. As in [28] and other semantics for subsets
of Haskell, we consider monadic actions—e.g., writing to a
mutable reference—to be values.

Our subset of SC-Haskell has syntax for fork, runST, op-
erations on mutable references, and syntax for STM compu-
tations. The operations on references are parameterized by a
subscript m, which is the monad in which the action occurs.
Thus writeIO is a shorthand for writeIORef, and so on.

States in SC-Haskell consist of a parallel composition
of threads, P || . . . || Q, where each thread contains a
store buffer and a program term. While relaxed memory
models are often formalized in a processor-centric rather
than thread-centric fashion, it is reasonable to treat store
buffers as per-thread (as previous authors have [9]). This is
because a realistic implementation issues a memory fence
when context switching between threads, which prevents
sharing or aliasing of thread-local store buffers.

No special syntax is necessary for introducing fences.
The atomic syntax, which is used to launch an STM trans-
action from within the IO monad, is used also wherever a
memory fence is needed. Essentially, fence can be defined
as an empty transaction: fence = atomic (return ()).

4.2 Static semantics for SC-Haskell
The static semantics for SC-Haskell are given in Figure 1. It
is straightforward, and is similar previous formulations [22].

To support the ∀ quantifier in the typing judgment for
runST, the static semantics have both types T and type
schemes S:

t, s ∈ Type Variables

Types T ::= t | T1 → T2 | () |
ST T1 T2 | STRef T1 T2 |
IO T | IORef T |
STM T | TVar T

Schemas S ::= T | ∀t.S

Type judgments could be included for reading and writing
to references, but they are generally not interesting. Reading
an IORef, for example, is a function that takes an r of type
(IORef a) and returns a value of type IO a. runST is given its
own typing judgment (RUN) to simplify the type system.

4.3 Dynamic Semantics
The main semantics for SC-Haskell are given as a small-
step operational semantics via two relations: −→ for pure
computation, and =⇒

m
for monadic computation (Figure 4).

Structural congruence and structural transitions for states
P,Q are given in Figure 3, ensuring that parallel compo-

APP
Γ `M1 : T1 → T2 Γ `M2 : T1

Γ ` (M1 M2) : T2

LAM
Γ, x : T1 `M : T2

Γ ` λx→ e : T1 → T2

ATOMIC
Γ `M : STM T

Γ ` atomicM : IO T

VAR
Γ, x : S ` x : S

SPEC
Γ `M : ∀t.S

Γ `M : S[T/t]
t 6∈ FV (T)

GEN
Γ `M : S

Γ `M : ∀t.S
t 6∈ FV (Γ)

RETURN
Γ `M : T

Γ ` returnM : m T

BIND
Γ `M : m T1 Γ ` N : T1 → m T2

Γ ` (M >>= N) : m T2

RUN
Γ `M : ∀t. ST t T
Γ ` runSTM : T

t 6∈ FV (T)

FORK
Γ `M : IO ()

Γ ` forkM : IO ()

Figure 1: Static semantics for SC-Haskell

sition is both associative and commutative. States obey an
equivalence relation ≡, defined up to α-equivalence.

The pure relationM → N maps terms to terms, while the
monadic relation P ; ∆,Θ =⇒

m Q; ∆′; Θ′ maps a state, name
environment, and global store to a new state, name environ-
ment, and global store. A state is either a thread (a term M
and a thread-local buffer 〈Φ〉) or a parallel composition of
states P || Q. Different syntax is used to express stores and
buffers: buffers are ordered, and the semantics needs to, at
various points, distinguish between accessing elements from
the front (newer elements) or from the back (older elements)
of the buffer. The store is an unordered map.

The main semantics for the monadic relation are given in
Figure 4. A simple evaluation context E is used to drill into
>>= (monadic bind):

E ::= [·] | E >>=M

4.3.1 Reduction rules
Most of the reduction rules in Figure 4 are straightforward,
but we nevertheless explain them in turn below. For brevity
we omit additional features of the STM monad, such as
retrying or transaction composition. A full operational se-
mantics for STM is given in [17].

Reading from mutable references happens in one of two
ways. In READ-LOCAL, if r is mapped to M in the thread’s
local buffer Φ, then readm r evaluates to returnM (and a
side condition ensures that the most recent occurence of r is
used). Otherwise, in READ-GLOBAL, when r does not occur
in Φ, it is looked up in the heap, Θ.

A FLUSH rule non-deterministically moves entries from a
thread’s local buffer to the global store. It pulls elements out
of the right side of Φ, which acts as a FIFO buffer. The only
way entries are added to the global store in the language is
through FLUSH, so only this rule must be considered when
reasoning about writes to the store.

When creating a new reference in NEW, a fresh reference
r is created, and local buffer Φ is extended on the left with a
new mapping. This is where ∆ is needed, to enable globally
unique names that do not occur in the store or any thread’s
store buffer. The NEW serves for all three monads.

WRITEIO reduces a write action writeIO r M to
atomic (return ()), while appending the write of M to
r to the local buffer. Because writes are performed purely
for side effects, they return a unit value, or ().

In rule FORKIO, on forkM a single thread forks into two
threads, with the child thread added to the pool to execute
the term M. Child threads are executed for effect—they never
return a value, and there is no thread-join. Before forking, a
thread must have flushed its buffer.

Rule WRITEST(M) is similar to WRITEIO, but leaves out
the memory fence. Because the type system ensures that
STRefs are thread-local, it is not necessary to ensure that
writes to STRefs move to the global store. Likewise, STM
writes are synchronized by other means, whose implemen-
tation is not modeled explicitly, but is abstracted into the
ATOMIC rule.

RUNST states that if a term M reduces to a result N via
some ST computation, then the pure term runST M can be
reduced to to N, effectively turning an ST computation into
a pure computation. One interesting aspect is that when a
runST completes, all remaining state in the store buffer and
the (local) store become garbage.

In ATOMIC, if M reduces via a multi-step STM computa-
tion to return N , then atomicM can be reduced in the IO
monad to return N . The rule also enforces that the thread-
local buffer was flushed during the STM computation.

4.4 Sequential Consistency: Proof sketch
Toward proving SC, we propose a new reduction relation
=⇒
m

′
, which corresponds to reduction relation =⇒

m minus
the use of local store buffers. A translation function takes
a configuration P ; ∆; Θ to an equivalent configuration that
lacks a store buffer:

T JP || QK = T JP K || T JQK
T J〈·〉M ; ∆; ΘK = M ; ∆; Θ

T J〈Φ(r,N)〉M ; ∆; ΘK = T J〈Φ〉M ; ∆; Θ[r 7→ N]K

It is important that T JK collapses Φ into Θ by copying
elements from right-to-left, just as FLUSH moves writes from
the right of the buffer into the store. A buffer may contain
several writes to a reference r, and the final state of Θ should
reflect those writes happening in the correct order.

x, y ∈ Variables r ∈ Refs

Terms M,N ::= x | V |M N | runSTM | · · ·
Values V ::= λx→M | returnM |M >>= N

| forkM | atomicM
| newm M | writem r N | readm r

Monads m ::= IO | ST | STM
States P,Q,R ::= 〈Φ〉M | P || Q

Buffer Φ ::= · | Φ Φ | (r,M)

Figure 2: Abstract syntax for SC-Haskell programs, and for
abstract machine states.

P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R

P ; ∆; Θ =⇒
m Q; ∆′; Θ′

P || R; ∆; Θ =⇒
m Q || R; ∆′; Θ′

P ≡ P ′ P ′; ∆; Θ =⇒
m Q′; ∆′; Θ′ Q′ ≡ Q

P ; ∆; Θ =⇒
m Q; ∆′; Θ′

Figure 3: Congruence rules for states

For simplicity we omit most of the details of =⇒
m
′.

The rules are a direct simplification of those in Figure 4.
For example, translating the ATOMIC rule simply involves
removing the barriers from the configurations:

ATOMIC’
M ; ∆; Θ =⇒

STM

′∗return N ; ∆′; Θ′

atomicM ; ∆; Θ =⇒
IO

′
return N ; ∆′Θ′

Lemma 4.1 T J〈Φ〉readm r; ∆; ΘK is equivalent to
readm r; ∆; Θ in =⇒

m

′
.

PROOF Follows from the definition of T JK.

Lemma 4.2 T J〈Φ〉writeST r M ; ∆; ΘK is equivalent to
writeST r M ; ∆; Θ in =⇒

m

′
.

PROOF Follows from the definition of T JK.

Lemma 4.3 atomic (return ()) is equivalent to return ()

under the =⇒
m
′ relation.

PROOF Follows from the ATOMIC’ rule.

Theorem 4.4 Given a term M and a name environment ∆
such that 〈·〉M ; ∆; · =⇒

ST
∗〈Φ〉return N ; ∆; Θ, then

T J〈·〉M ; ∆; ·K =⇒
ST

′∗T J〈Φ〉return N ; ∆; ΘK.

PROOF SKETCH RUNST is defined so that non-interference
is “baked in”—we start with an empty buffer and store, and
the types ensure that only thread-local references are written
to them. From lemma 4.1 and lemma 4.2, reading from and
writing to the local buffer is equivalent to reading from and

M −→M ′

MN −→M ′N
(λx→M)N −→M [x/N]

PURE
M −→ N

〈Φ〉E [M]; ∆; Θ =⇒
m 〈Φ〉E [N]; ∆; Θ

BIND-RETURN
〈Φ〉E [returnM >>= N]; ∆; Θ =⇒

m 〈Φ〉E [N M]; ∆; Θ

NEW
〈Φ〉E [newm M]; ∆; Θ =⇒

m

〈(r,M) Φ〉E [return r]; ∆, r; Θ
r /∈ ∆

READ-LOCAL
〈Φ1 (r,M) Φ2〉E [readm r]; ∆; Θ =⇒

m

〈Φ1 (r,M) Φ2〉E [returnM]; ∆; Θ
r /∈ Dom(Φ1)

READ-GLOBAL
〈Φ〉E [readm r]; ∆; Θ[r 7→M] =⇒

m

〈Φ〉E [returnM]; ∆; Θ[r 7→M]
r /∈ Dom(Φ)

FLUSH
〈Φ (r,N)〉E [M]; ∆; Θ =⇒

m 〈Φ〉E [M]; ∆; Θ[r 7→ N]

WRITEIO
〈Φ〉E [writeIO r M]; ∆; Θ =⇒

IO

〈(r,M) Φ〉E [atomic (return ())]; ∆; Θ

FORKIO
〈·〉E [forkM]; ∆; Θ =⇒

IO (〈·〉E [return ()] || 〈·〉M); ∆; Θ

WRITEST(M)
〈Φ〉E [writem r M]; ∆; Θ =⇒

m

〈(r,M) Φ〉E [return ())]; ∆; Θ
m ∈ {ST, STM}

RUNST
〈·〉M ; ∆; · =⇒

ST
∗〈Φ〉return N ; ∆′; Θ

runSTM −→ N

ATOMIC
〈Φ〉M ; ∆; Θ =⇒

STM
∗〈·〉return N ; ∆′; Θ′

〈Φ〉atomicM ; ∆; Θ =⇒
IO 〈·〉return N ; ∆′; Θ′

Figure 4: Reduction rules for the pure and monadic relations

writing to the store after translation. Reads directly from the
store are unchanged.

Theorem 4.5 Given a state P and store Θ such that
P ; ∆; Θ =⇒

STM
∗Q; ∆; Θ′, then T JP ; ∆; ΘK =⇒

STM

′∗T JQ; ∆; Θ′K.

PROOF SKETCH Similar to theorem 4.4.

Theorem 4.6 Given a state P , a name environment ∆, and
store Θ such that P ; ∆; Θ =⇒

IO
∗Q; ∆′; Θ′, then

T JP ; ∆; ΘK =⇒
IO

′∗T JQ; ∆′; Θ′K.

PROOF SKETCH We proceed by induction on the monadic
reduction relation =⇒

IO . Assuming, for all reductions R

of size N in the relation =⇒
IO , there exists an equivalent

reduction R′ in the relation =⇒
IO

′
:

The cases for reduction rules BIND-RETURN, NEW, FLUSH,
FORKIO, WRITEST(M), and PURE are straightforward.
In the case of rules READ-LOCAL and READ-GLOBAL, either
a reference r occurs in Φ, or it is absent from Φ and present
in Θ. The latter case is trivial, and the former case follows
from lemma 4.1.
In the case of WRITEIO, we know by lemma 4.3 that
WRITEIO’ is equivalent to WRITEST(M)’. From there we can
use lemma 4.2.
The ATOMIC case can be proven from theorem 4.5.

5. Implementation
Our changes to GHC were relatively minor. It is possible
to narrow down the Safe uses of global heap mutation to a
handful of functions in the Haskell standard libraries. There-
fore, patching those functions to insert memory barriers is
sufficient to make GHC sequentially consistent. This pre-
cisely follows the formal model of the previous section.

The abstraction of SC is useful to the programmer only if
the provided granularity is at least as large as individual pro-
gram variables. Haskell IORefs have the nice property that
sharing occurs at the granularity of a reference and all hard-
ware architectures enable (properly-aligned) addresses to be
read and written atomically. Implementing unboxed arrays
(Data.Vector.Unboxed) requires care, e.g., to provide atomic
64-bit accesses on 32-bit architectures. In GHC, vectors use
type families (type-level functions), so their representation
can be changed based on the element type. This makes it
straightforward to implement an additional level of boxing
for Vector Double on 32-bit architectures.

5.1 Barrier insertion
We added a new primitive operation to GHC 7.10.3 called
storeLoadBarrier#, which, when compiled down to x86 as-
sembly, emits a lock instruction followed by an addq. Al-
though storeLoadBarrier# can work in any state-transforming
monad, which includes ST, in practice we only use storeLoad-

Barrier# in the presence of IO. Hence, we need only intro-
duce one more function, storeLoadBarrier :: IO (), which
encapsulates storeLoadBarrier# in an IO context.

Equipped with storeLoadBarrier, we searched through
base, Haskell’s standard library, for any Safe or Trustworthy

modules with functions that expose the ability to mutate
the global heap. This includes the API for IORefs as well
as other primitive data structures, such as mutable arrays.
For each function that directly writes to global memory, we
inserted a storeLoadBarrier to ensure that SC is upheld.

5.2 Low-level libraries
Patching base is not the end of the story, since many Haskell
libraries bypass base and use mutable references from an-
other library called primitive. Libraries which utilize

primitive include the widely used vector library. To en-
sure that we obtained an accurate picture of how SC affects
Haskell libraries in the wild, we also patched the primitive

library to make use of storeLoadBarrier after writes.
Crucially, primitive abstracts over both ST and IO with a

type parameter m. In our modification, we emit barriers only
when m ultimately equals IO. A consequence of this is that
programmers can use primitive to write functions that are
polymorphic over whether they will need a barrier on writes
to enforce SC. For the most part, adding barriers did not
effect the existing Safe Haskell properties of base (though
we did need to change the type of stToIO, as described in
Appendix A.1).

6. Case studies: auditing fenced references
Before diving into the results, we examine uses of non-
atomic writes found in commonly used Haskell code. While
uses of mutable memory are relatively rare (see Section 7.2)
in both core libraries and large-scale applications, one can
still find code which mutates memory in the IO monad.

Our large-scale evaluation in Section 7, shows a worst
case SC-scenario—only adding the barriers described in
Section 5, nothing more. We believe that while the basic
technique is already low overhead, that this is only the be-
ginning of a transition for the Haskell ecosystem as a whole.
Ultimately, it should be possible to rewrite virtually every
use of a writeIORef to use another alternative that either (1)
removes the overhead, and/or (2) enforces even stronger se-
mantics, such as statically-guaranteed data-race freedom.
Specifically, there are many techniques one can employ to
transition IORef-heavy code over to ST-style mechanisms.

6.1 Buggy uses of writeIORef
Auditing the uses of writeIORef in Haskell code can reveal
bugs (data races) that expose non-SC behavior. One source
of problems is APIs which are unclear about thread safety
guarantees. The standard System.Random library exposes a
global random number generator (as well as the ability to
coin local RNGs). The global RNG can be used and updated
atomically, which internally uses atomicModifyIORef, and it
can be read with getStdGen and written with setStdGen:

setStdGen :: StdGen → IO ()

setStdGen sgen = writeIORef theStdGen sgen

Here the update is non-atomic! Yet the documentation
makes no mention that this part of the API is non-thread
safe. Therefore, enforcing SC in GHC fixes a bug in random,
making the write atomic, and likely fixes bugs in other pack-
ages that use writeIORef or modifyIORef carelessly.

In many cases, the extra memory fence will be enough to
provide SC semantics, but not enough to statically enforce
a correct thread-safe behavior. In those cases, we can build
new type-safe mechanisms to ensure stronger safety proper-
ties. We cover two examples in the next two subsections.

6.2 Handle: informal, unenforced locking protocols
The base library features a Handle datatype used for man-
aging file handle operations. Handle uses IORefs in a way
such that they cannot be trivially converted to STRefs. The
(abridged) definition of Handle is:

data Handle =

FileHandle FilePath (MVar Handle__)

data Handle__ =

Handle__ (IORef (Buffer Word8))

(IORef (Buffer CharBufElem))

(IORef (BufferList CharBufElem))

A file handle is essentially a group of IORefs that are mu-
tated in response to file I/O. These IORefs are used by mul-
tiple threads, but they are only reachable from the MVar in
a Handle, and that the MVar serves as a lock that protects the
IORefs. As mentioned earlier, an MVar is a synchronization
variable which obeys a blocking interface:

newMVar :: a → IO (MVar a)

putMVar :: MVar a → a → IO ()

takeMVar :: MVar a → IO a

An MVar is either full or empty—equivalent to a length-
one blocking FIFO. When used as a lock, taking from an
MVar is “lock”, and putting it back is “unlock”. As in most
imperative languages, this locking mechanism is not en-
forced by the type system, and thus nothing prevents a pro-
grammer from storing a reference to the Handle__ outside the
MVar and performing non-atomic operations on its IORefs.

While SC-Haskell will ensure that all IORef operations
are SC, it’s still not a satisfactory solution. Now Handle

operations must bear the extra overhead of memory fences
unnecessarily, since multiple threads shouldn’t be modifying
mutable state concurrently in the first place! We wish to
enforce the correct locking behavior and avoid the overhead.

MVarLock solution: Our proposed solution is to introduce
a new data type:

newtype MVarLock s a = MVarLock (MVar a)

This is just an MVar with an extra type parameter s. The
s represents pieces of state, most notably the state in an ST
computation. Holding an MVarLock gives the authority to
modify both the underlying value inside the MVar as well as
any other state tagged with s.

We can refactor Handle to make use of MVarLocks:

data Handle = ∀ s.

FileHandle FilePath (MVarLock s Handle__)

data Handle__ s =

Handle__ (STRef s (Buffer Word8))

(STRef s (Buffer CharBufElem))

(STRef s (BufferList CharBufElem))

Finally, we need a way to modify the state held by an
MVarLock. This is accomplished with:

withMVarLock :: MVarLock s a

→ (a → ST s (a, b))

→ IO b

withMVarLock (MVarLock mv) fn =

do x ← takeMVar mv

(a,b) ← unsafeSTToIO (fn x)

putMVar mv a

return b

Of course, this function itself must be a part of the trusted
codebase due to the use of unsafeSTToIO. Likewise, MVarLock
is an abstract data type, such that the end user cannot access
the underlying, raw MVar value.

In withMVarLock, the ST computation serves as a trans-
action to execute while holding the lock. This goes beyond
runST, because the state lives across multiple sessions, inter-
mixed with IO. But the basic idea is the same: The ∀s in the
Handle declaration ensures statically that no references to the
mutable state can escape. Dynamically, withMVarLock ensures
that the state is modified only while holding the lock.

While analogous to the formulation of locking in Rust,
MVarLock is actually more general, because it allows modify-
ing state that is stored outside of the value pointed to the
lock itself (i.e. the a in MVarLock s a). To our knowledge,
this is a novel formulation of type-enforced locking, which
is lighter-weight than static solutions that require full per-
mission types [29] or session types [39].

6.3 A web server with unnecessary IORefs
In the evaluation (Section 7), we use a web server as an
example application to measure SC-Haskell’s overhead, be-
cause it is necessarily IO intensive, and a likely candidate
for high SC-overhead. In examining the snap web server5,
we found that because most of the application involves IO,
there are in fact several uses of IORefs that could potentially
be avoided. For instance, inside the large record type that
represent client requests, the request body is an IORef:

data Request = Request { · · ·
rqBody :: IORef SomeEnumerator

· · · }

Following the decision to use this and other IORef fields,
there are 29 uses of writeIORef across the three core snap
packages6. The request body is either initialized or rewritten
in several places. Because snap is a multi-threaded appli-
cation, it would increase confidence that accesses to rqBody

are non-racy by simply using atomicModifyIORef to update
rqBody. But this could introduce substantial overhead be-
cause an atomic modification is roughly ten times as expen-
sive as an unsynchronized write (Table 1).

A better solution in this case is to enforce snap’s invariant
that separate clients are handled by separate threads, and
each client’s data structures are modified only by a single
thread. We propose a simple solution—not to use locks or
atomic updates—but instead to dynamically enforce that the
thread accessing the state is the same thread that created it:

newtype TLState s = TLState ThreadId

newTLState :: (∀ s . TLState s → ST s b)

5 http://snapframework.com/
6 snap-0.14.0.7, snap-core-0.9.8.0, snap-server-0.9.5.1

→ IO b

withTLState :: TLState s → ST s b → IO b

Here we create a token TLState s, which binds together
the thread ID (dynamic value) and the type of the state.
Typically, the b value above must use an existential type to
capture both the TLState and the references it protects. For
instance, this data type that stores a token together with a
mutable reference to an integer:

data Pk = ∀s. Pk (TLState s) (STRef s Int64)

We can create a new Pk value, hiding s, as follows:

do e ← newTLState (λtls →
do r ← newSTRef 3

return (Pk tls r))

And then peek inside the value and modify it:

case e of

Pk t r → withTLState t (writeSTRef r 4)

To our knowledge, TLState is novel and does not previ-
ously occur in the literature or folklore. Yet it is a simply way
to enforce that thread-private state stays thread-private. Fur-
ther, while Table 1 shows that the overhead of withTLState

is about the same as a memory fenced writeIORef (7 or 8
nanoseconds), there are several benefits:

1. The measurement for a fenced IORef is optimistic be-
cause, architecturally, the cost of a fence depends on
how full the store buffer is. When benchmarking fenced
writes in a loop, the buffer is always empty.

2. The cost of withTLState can be amortized by checking
the token once and then performing an arbitrary number
of ST operations against the state. E.g. withTLState can
be lifted outside of loops.

3. TLState provides stronger semantics than an SC-preserving
IORef, guaranteeing data-race freedom rather than SC.

In summary, MVarLock and TLState, enable small reduc-
tions in overhead. However, there’s limited room to improve,
as most Haskell programs have little performance impact for
SC, as we’ll see in the next section. Rather, these techniques
provide a continuum for improvement in semantic guaran-
tees: SC becomes the new baseline, and static data-race free-
dom becomes the goal, with a whole ecosystem full of code
that needs to be pushed up the slope.

7. Evaluation
Unless otherwise mentioned, we run our benchmarks on
a cluster of identically configured dual-socket Xeons (E5-
2670 2.60GHz) with 32GB of memory. Not all benchmarks
are parallel, but all are compiled to support parallelism and
linked with the threaded runtime system; thus they pay the
cost for SC whether or not they are multithreaded.

For all our results, we use the criterion package [1] to
report the marginal cost of performing one additional opera-
tion. This is done by repeatedly measuring 20 seconds worth

http://snapframework.com/

Method Cost
writeSTRef 1.67ns

writeIORef (w/barrier) 7.24ns
atomicModifyIORef 11.2ns

MVarLock/writeIORef 28.1ns
TLS Check/writeIORef 7.78ns

read ThreadId only 1.81ns

Table 1: Reference update costs. Here we use linear regres-
sion to compute the marginal cost of one loop iteration that
writes a boxed integer into a mutable reference.

of a particular computation and fitting a linear-regression
model to the timing results. This methodology can perform
timing measurements at nanosecond granularities.

We also include limited results from an NVIDIA Jetson
TK1 board, with a quad-core ARM Cortex A15 CPU. We
were not able to run more extensive benchmarks due to the
limited portability of many Haskell libraries.

7.1 Microbenchmarks
Reference overheads First, we look at the overheads of
individual IORef operations as shown in Table 1. One take-
away is that MVar-based locks are expensive. A spinlock
could probably do somewhat better, but an atomicModifyIORef

is already more efficient. Thus MVarLock should only be used
when the program already has MVars, as in the Handle case
study. The cost of the TLState operation depends on how effi-
ciently the thread-ID operation is implemented, and whether
storing the token value inhibits other compiler optimizations.

Trust the standard library? We described the Handle im-
plementation in Section 6.2. It is one of fourteen compo-
nents of the standard library that we found which use IORefs
internally. We audited these and decide that several, includ-
ing Handle can become part of the trusted code base. They
need no fences to guarantee SC. Others, like System.Random,
expose get and set methods and require barriers.

We tested the performance impact of trusting versus not
trusting the Handle/Bytestring implementations. We tested
the overhead of getLine, which internally updates several
IORefs while holding the MVar lock. We found that each
getLine call executes exactly two memory fences if run
untrusted. In this case, the optimization to eliminate the
memory fences—which are redundant with taking the MVar
lock—has a small but measurable impact. Using linear re-
gression, we computed the cost of each getLine as 220ns
with the barriers and 212ns without (with anR2 fit of 1.000).
In this case, we tried to maximize the overhead by making
the lines themselves very short: two characters. The result
reinforces the intuition that “stray” fences are unlikely to in-
cur substantial overhead unless they are inside a tight inner
loop: true IO or other substantial work in the loop is likely
to amortize the cost of stray fences.

Operation Lines Modules
writeIORef 4,450 (0.03%) 1,504 (1.47%)
modifyIORef 1,631 (0.009%) 564 (0.55%)

Total non-atomic 6,028 (0.03%) 1,767 (1.73%)
atomicModifyIORef 1,263 (0.007%) 460 (0.50%)
atomicWriteIORef 53 (0.0003%) 22 (0.02%)

Total atomic 1,310 (0.008%) 469 (0.46%)
Total: 17,435,314 102,266

Table 2: Frequency of IORef operations within all packages.

7.2 Static code survey: Hackage
Hackage is the central repository of open-source Haskell
packages on the Internet. At the time of writing, Hackage
contains 9,017 packages, which contain 17,435,314 lines of
Haskell code. We searched all Hackage packages to ascer-
tain the number of uses of unsynchronized writeIORef and
modifyIORef functions, in order to estimate the approximate
frequency of packages susceptible to non-SC behavior and
to overhead under with SC-Haskell.

Of the 9,017 packages, 379 (4.20%) contain at least one
use of modifyIORef, and 816 (9.05%) contain at least one use
of writeIORef. Note that under TSO, SC-Haskell does not
insert fences on packages that only contain readIORef.

A package typically contains multiple modules such as
Data.Map and Data.Set. In Table 2, we measure the occur-
rences of the IORef operations as a percentage of modules
and lines of code. One thing that we see is that even among
modules that had writeIORef, the number of occurrences per
module was less than three on average. writeIORef is used
sparingly, which is consistent with our expectation that it is
usually used for configuration, or coarse-grained communi-
cation. Thus we predict that the probability that writeIORef is
used in an inner loop (such that fence overhead will be sub-
stantial) is low. But to evaluate this, we need benchmarks
that evaluate a large cross-section of Haskell code.

7.3 nofib and Stackage benchmark suites
nofib [31] is a collection of Haskell benchmarks that GHC
developers use to determine if a new feature results in an
appreciable difference in performance. Most nofib programs
do not mutate global state directly. If the Handle implemen-
tation is not trusted, most benchmarks will perform some
memory barriers by virtue of writing to file handles. Here
we report on our optimized version with a trusted Handle.
For details on the savings of this choice, see Appendix A.2
for the full numbers with the unoptimized variant and its ad-
ditional barriers.

We ran each nofib benchmark 20 times with both “stock”
GHC and SC-Haskell and calculated the mean runtimes.
Within nofib, k-nucleotide and n-body are the only bench-
marks which perform (non-file-handle-related) memory bar-
riers, so we focus on those. The total runtime for k-nucleotide
was 4.0% slower with SC-Haskell than stock GHC, and

85%

90%

95%

100%

105%

110%

115% SC vs SC
stock vs stock

SC vs stock

Figure 5: Stackage benchmarks. The X-axis ranges from
1 to 483 benchmarks, sorted by change in runtime. Self
comparison allows us to calibrate the degree of variation
expected due to noise or inappropriate use of randomness
in a large “crowdsourced” benchmark collection.

for n-body, the runtime was 0.8% slower. The overall ge-
ometric mean runtime for SC-Haskell was 3.3% slower than
stock, however. While k-nucleotide and n-body are long-
running, nofib unfortunately contains many short-running
benchmarks that contribute to noise in this geomean result.
For example, the lcss benchmark ran for 0.212 seconds on
stock GHC and 0.229 seconds on SC-Haskell.

We were also able to evaluate nofib on ARM7. Here
we added additional fences to all readIORef operations. The
overhead remained low: the overall geomean runtime for
SC-Haskell was 1.9% slower than stock.

Noise notwithstanding, the main take away is a negative
result—that this repository of large benchmark applications
does not make substantial use of mutable references or ar-
rays in a way that would incur an unacceptable SC penalty.

Stackage: A broader set of benchmarks comes from ana-
lyzing Stackage. Stackage is an online repository of curated
Haskell libraries that have been confirmed to compile when
built against the other libraries in Stackage. Therefore, a sim-
ple and effective way to run many working Haskell bench-
marks in the wild is to download all packages from Stack-
age and filter the ones that contain benchmarks. These con-
tain everything from data structure benchmarks to applica-
tion benchmarks (such as the pandoc package).

We ran the benchmarks from the LTS-5.16 Stackage re-
solver, which uses GHC 7.10.3, the same version of GHC
that we modified. From that resolver, we uncovered 61
benchmark suites that ran to completion, with a grand to-
tal of 1,279 individual benchmarks. Of those, 19 bench-
mark suites (483 individual benchmarks) emitted at least
one write barrier when compiled with SC-Haskell. In fact,
few of these emitted many barriers-per-iteration; the worst
offenders are listed in Table 3. We ran benchmarks against
stock GHC 7.10.3 (which we refer to as LTS-GHC) as well
as SC-Haskell, averaging the results of eight full runs.

Across the 483 benchmarks with added fences, the ge-
ometric mean runtime for SC-Haskell was 0.4% slower
than LTS-GHC. This is encouraging, but this result hides
a large benchmark-specific variance that we discuss below.

7 One nofib test had to be disabled on ARM due to a codegen bug.

Benchmark Barriers performed
tls-1.3.7 278

incremental-parser-0.2.4.1 421
mutable-containers-0.3.2.1/ref 1,500

mutable-containers-0.3.2.1/deque 9,800
wai-middleware-metrics-0.2.3 20,000

conduit-extra-1.1.13.1 200,156

Table 3: Memory barriers on selected Stackage benchmarks.

There’s also one extreme outlier; one of the benchmarks is
explicitly designed to measure the cost to modify an IORef
1,500 times. Not surprisingly, SC-Haskell is 182.96% slower
than with LTS-GHC. This represents the worst case for SC-
Haskell. Fortunately, this anomalous behavior does not oc-
cur in other programs. Even with the outlier, it is trivial to
replace the non-escaping IORef with an STRef and achieve
performance parity between LTS-GHC and SC-Haskell.

Barring the IORef benchmark, only 8 benchmarks have an
overhead greater than 10% with a maximum of 17.7%. Sur-
prisingly, two benchmarks consistently showed a speedup of
greater than 10% with the maximum of 15.0%. The overhead
for the remaining benchmarks ranged from 10% to −10%,
suggesting an inherent noise in our measurements for these
benchmarks. To visualize noise effects, in Figure 5 we plot
the distribution of overhead among the 483 bechmarks. We
compare this variation against that incurred by self compar-
ison. I.e. we split the 8 runs into two groups of four and
compare LTS-GHC to itself and SC-Haskell to itself. Here
we see variation at the tails, even with self-comparison, but
bigger differences between SC and LTS-GHC. We conclude
that while SC makes certain benchmarks slower, and while it
causes a general shift in position (slowing down and speed-
ing up), averaging out the noise reveals that SC did not im-
pose too much of a performance hit as a whole.

Finally, while we were not able to build all the depen-
dencies for Stackage benchmarks on ARM, we can simulate
the expected overhead on an architecture with weaker-than-
TSO consistency. We ran all the Stackage benchmarks on
our x86 platform with additional fences on all readIORef op-
erations. This added an addition 0.2% geomean overhead,
with a worst-case of an additional 33% overhead.

7.4 TechEmpower web server benchmarks
The TechEmpower benchmark suite compares over 100 web
frameworks implemented in various languages. We choose
web servers because they emphasize the IO monad and stress
the parts of the GHC runtime system (e.g. IO and event man-
ager) that receive extra memory fences. Four Haskell frame-
works are included in the TechEmpower suite: wai, snap,
spock, and yesod. As a point of comparison, in Round 12 of
the official TechEmpower benhcmarks wai ranks 12/195 and
snap 88/195 in the “JSON” benchmark, and they rank 23rd
and 76th out of 159 entrants in the “Plaintext” benchmark.

Figure 6: Web server benchmarks; Json serialization bench-
mark above, Plaintext responses below. Y-axis is through-
put in requests/second. Each benchmark runs multiple ex-
periments, which are aligned in slightly offset columns. The
large gaps between columns represent different web servers.

The TechEmpower “vagrant-production” environment
creates three dual-core virtual machines for the client, server,
and database respectively. We run these VMs on one 18 core
Xeon E5-2699 (2.3GHz, 64GB) machine, which makes it
less likely that networking is a bottleneck rather than CPU.
The raw data is shown in Figure 6. Each run of the bench-
mark suite tests the server in multiple bouts, each of which is
shown separately as a slightly offset subcolumn. The whole
benchmark suite was run 20 times with stock GHC and 20
times with our SC-Haskell patches, meaning that each verti-
cal column of the scatterplot contains 20 points.

Surprisingly, there is no statistically significant overhead
on either benchmark, with wai, yesod, or spock. This was
determined by a Mann Whitney U test with a p-value of
0.05. This same test reported that snap had a small differ-
ence in performance—it got faster. We believe small varia-
tions in results are likely due inaccurate timing used by the
TechEmpower infrastructure. (The duration of the the bench-
marking interval is reported in an integral number of sec-
onds. Some report 15 second intervals, some 16.)

8. Related works and conclusion
Defining the memory consistency models of shared-memory
programming systems is a long-studied area (see, for in-

stance, [2]). Sequential consistency [21] is widely accepted
as the memory model that programmers should work with.
For instance, foundational works such as Lamport [21] and
Shasha-and-Snir [36] equate “correct” execution with an SC
execution. Moreover, DRF0 [4] together with its manifesta-
tions in the recent standardization of Java [26] and C++ [8]
require programmers to follow a data-race-free program-
ming discipline in order to achieve SC.

One way to provide SC is to build a SC-preserving com-
piler [27] that targets an SC processor. While efficient re-
search proposals exist for efficient SC hardware [15, 34, 12,
6, 23, 37, 13], current commercial processors do not imple-
ment SC and it is unclear if future ones will do so.

Barring hardware SC support, the only option is for pro-
grammers, compilers, and/or language runtimes to insert
sufficient fences to provide the desired semantics at the
programming language interface. Recently, mainstream lan-
guages such as C++ and Java have finalized a memory model
based on DRF0, with the intention that programmers follow
a data-race-free programming discipline. However, enforc-
ing data-race-freedom is hard statically [33, 30] and dynam-
ically [14]. Without tool support, even expert programmers
are prone to inadvertently introduce weak-memory-model
behaviors in their programs.

Sasha and Snir [36] propose a static program analysis to
insert as few fences as needed in imperative programs so as
to ensure SC. Building on this, Sura et al. [38] and Kamil et
al. [18] present compiler techniques for automatically ensur-
ing SC in Java programs, and Alglave et al. present a scalable
tool for automatically inserting fences in C programs [5]. All
of these techniques rely on a whole-program analysis that is
difficult to scale beyond moderately-sized programs.

Given these difficulties, a viable approach for efficiently
providing SC is to restrict the use of shared-memory in pro-
gramming languages [11, 10, 7, 16]. Boyapati et al. [11, 10]
use ownership types to only allow a shared-memory ac-
cess when holding appropriate locks. Determinstic Parallel
Java [7] statically guarantees detereminism and data-race-
freedom (and hence SC) through a sophisticated type-and
effect system. Similarly, Gordon et al. [16] propose a type
system where mutations to objects are only performed by
threads that own a unique pointer to that object. However,
these approaches create a significant programmer burden in
terms of type annotations to ensure SC.

This paper observes that a functional programming lan-
guage, such as Haskell, naturally controls the mutable up-
dates. The language runtime can guarantee SC by simply
inserting fences at all potentially shared-memory accesses,
because there aren’t very many. The language designer can
add new memory effects by adding new monads, and can
prove SC by proving that the new effects do not interfere
with the main, IO monad, evaluation. This paper, to the best
of our knowledge, is the first to demonstrate the empirical
feasibility of this approach.

References
[1] criterion: a Haskell microbenchmarking library. http://

www.serpentine.com/criterion/.

[2] S. Adve and K. Gharachorloo. Shared memory consistency
models: a tutorial. Computer, 29(12):66–76, 1996.

[3] S. V. Adve and H.-J. Boehm. Memory models: A case for
rethinking parallel languages and hardware. Commun. ACM,
53(8):90–101, Aug. 2010.

[4] S. V. Adve and M. D. Hill. Weak Ordering—A New Defi-
nition. In Proceedings of the Seventeenth International Sym-
posium on Computer Architecture, pages 2–14, Seattle, WA,
May 1990.

[5] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. Don’t sit
on the fence - A static analysis approach to automatic fence
insertion. In Computer Aided Verification - 26th International
Conference, CAV 2014, pages 508–524, 2014.

[6] C. Blundell, M. Martin, and T. Wenisch. InvisiFence:
performance-transparent memory ordering in conventional
multiprocessors. In ISCA ’09, pages 233–244, 2009.

[7] R. L. Bocchino Jr, V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and
M. Vakilian. A type and effect system for deterministic par-
allel java. ACM Sigplan Notices, 44(10):97–116, 2009.

[8] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In Proceedings of the SIGPLAN
2008 Conference on Programming Language Design and Im-
plementation, Tucson, AZ, June 2008.

[9] G. Boudol and G. Petri. Relaxed memory models: An oper-
ational approach. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’09, pages 392–403, New York, NY,
USA, 2009. ACM.

[10] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
OOPSLA ’02, pages 211–230, 2002.

[11] C. Boyapati and M. Rinard. A parameterized type system for
race-free Java programs. In OOPSLA ’01, pages 56–69, 2001.

[12] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
bulk enforcement of sequential consistency. In ISCA ’07,
pages 278–289, 2007.

[13] Y. Duan, A. Muzahid, and J. Torrellas. Weefence: Toward
making fences free in TSO. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA
’13, pages 213–224. ACM, 2013.

[14] C. Flanagan and S. N. Freund. FastTrack: Efficient and pre-
cise dynamic race detection. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’09, pages 121–133, New
York, NY, USA, 2009. ACM.

[15] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques
to enhance the performance of memory consistency models.
In Proceedings of the 1991 International Conference on Par-
allel Processing, ICPP ’91, pages 355–364, 1991.

[16] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and
J. Duffy. Uniqueness and reference immutability for safe
parallelism. SIGPLAN Not., 47(10):21–40, Oct. 2012.

[17] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’05, pages 48–60, New York,
NY, USA, 2005. ACM.

[18] A. Kamil, J. Su, and K. Yelick. Making sequential con-
sistency practical in Titanium. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 15. IEEE
Computer Society, 2005.

[19] L. Kuper, A. Todd, S. Tobin-Hochstadt, and R. R. Newton.
Taming the parallel effect zoo: Extensible deterministic paral-
lelism with lvish. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, page 2. ACM, 2014.

[20] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. New-
ton. Freeze after writing: quasi-deterministic parallel pro-
gramming with lvars. In POPL, pages 257–270, 2014.

[21] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE transactions
on computers, 100(9):690–691, 1979.

[22] J. Launchbury and S. L. Peyton Jones. Lazy functional state
threads. In ACM SIGPLAN Notices, volume 29, pages 24–35.
ACM, 1994.

[23] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient
sequential consistency via conflict ordering. In Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 273–286, New York, NY, USA, 2012.
ACM.

[24] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’88, pages 47–57, New York, NY, USA, 1988. ACM.

[25] P. Maier and P. Trinder. Implementing a high-level distributed-
memory parallel haskell in haskell. In Implementation and
Application of Functional Languages, pages 35–50. Springer,
2012.

[26] J. Manson, W. Pugh, and S. Adve. The Java Memory Model.
In Conference Record of the Thirty-Second ACM Symposium
on Principles of Programming Languages, Long Beach, CA,
January 2005.

[27] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy.
A case for an SC-preserving compiler. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages 199–
210, New York, NY, USA, 2011. ACM.

[28] S. Marlow, R. Newton, and S. Peyton Jones. A monad for de-
terministic parallelism. In Proceedings of the 4th ACM sym-
posium on Haskell, Haskell ’11, pages 71–82. ACM, 2011.

[29] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type
system for borrowing permissions. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of

http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/

Programming Languages, POPL ’12, pages 557–570, New
York, NY, USA, 2012. ACM.

[30] M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for Java. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN conference on Programming language design
and implementation, pages 308–319, 2006.

[31] W. Partain. The nofib benchmark suite of Haskell programs.
In Functional Programming, Glasgow 1992, Workshops in
Computing, pages 195–202. Springer-Verlag, 1993.

[32] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’96,
pages 295–308, New York, NY, USA, 1996. ACM.

[33] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
Context-sensitive correlation analysis for race detection. In
Proceedings of the 2006 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’06,
pages 320–331, New York, NY, USA, 2006. ACM.

[34] P. Ranganathan, V. S. Pai, and S. V. Adve. Using specula-
tive retirement and larger instruction windows to narrow the
performance gap between memory consistency models. In
Proceedings of the Ninth Annual ACM Symposium on Paral-
lel Algorithms and Architectures, SPAA ’97, pages 199–210,
New York, NY, USA, 1997. ACM.

[35] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge,
T. Braibant, M. O. Myreen, and J. Alglave. The semantics
of x86-cc multiprocessor machine code. SIGPLAN Not.,
44(1):379–391, Jan. 2009.

[36] D. Shasha and M. Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory. TOPLAS, 10(2), 1988.

[37] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-end sequential consistency. SIGARCH
Comput. Archit. News, 40(3):524–535, June 2012.

[38] Z. Sura, X. Fang, C. Wong, S. Midkiff, J. Lee, and D. Padua.
Compiler Techniques for High Performance Sequentially
Consistent Java Programs. In PPoPP, 2005.

[39] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based
language and its typing system. In In PARLE94, volume 817
of LNCS, pages 398–413. Springer-Verlag, 1994.

[40] D. Terei, S. Marlow, S. Peyton Jones, and D. Mazières. Safe
Haskell. In Proceedings of the 2012 Haskell Symposium,
Haskell ’12, pages 137–148, New York, NY, USA, 2012.
ACM.

[41] J. Terrace, S. R. Beard, and N. P. K. Katta. JavaScript in
JavaScript (js.js): Sandboxing third-party scripts. In Pro-
ceedings of the 3rd USENIX Conference on Web Application
Development, WebApps’12, pages 9–9, Berkeley, CA, USA,
2012. USENIX Association.

[42] E. Z. Yang and D. Mazières. Dynamic Space Limits for
Haskell. In Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’14, pages 588–598, New York, NY, USA, 2014. ACM.

A. Appendix
A.1 Safe-Haskell changes: stToIO
For the most part, adding barriers did not effect the existing
Safe Haskell properties of base—that is, modules that were
marked Safe and Trustworthy continued to be so after our
changes. There is one exception, though: a function with the
type signature

stToIO :: ST RealWorld a → IO a

that is used within a module marked Trustworthy. This
poses a problem for an SC-aware definition of trustworthi-
ness, because use of stToIO can violate a critical assumption
about ST. Namely, we have previously assumed that all ST

computations occur within a single thread, but if ST is al-
lowed to be lifted up to IO, that assumption no longer holds.
Here is an example of problematic code:

main :: IO ()

main = do

x ← stToIO $ newSTRef (0 :: Int)

y ← stToIO $ newSTRef (0 :: Int)

forkIO $ do

stToIO $ writeSTRef x 1

y' ← stToIO $ readSTRef y

putStrLn $ "T2: x=1, y=" ++ show y'
stToIO $ writeSTRef y 1

x' ← stToIO $ readSTRef x

putStrLn $ "T1: y=1, x=" ++ show x'

This code contains two threads contending on the values of
STRefs, and since writeSTRef does not emit barriers, this can
result in data races that expose non-SC behavior!

The simplest solution to this problem is to modify the
type signature:

stToIO :: (∀ s. ST s a) → IO a

to disallow the code above, and export the original defi-
nition of stToIO from a module marked as Unsafe.

A.2 nofib barriers
The below tables include the largest barrier-counts per-
formed by nofib benchmarks, before and after including
our optimized version of file handles (both SC-Haskell).

Benchmark Barriers Benchmark Barriers
listcompr 385 para 1,654
listcopy 385 maillist 18,177

compress2 962 hpg 37,172
compress 993 sphere 180,024
cacheprof 1,334 reverse-complement 316,170
treejoin 1,371 fasta 571,685

Table 4: Number of memory barriers performed on selected
nofib benchmarks, unoptimized mode including the barriers
upon writing to file handles.

Benchmark Barriers Benchmark Barriers
k-nucleotide 20 n-body 35

Table 5: Number of memory barriers performed on nofib

benchmarks, without the barriers resulting from writing to
file handles.

B. Artifact description
The artifact bundled with this paper is a virtual machine im-
age set up with two copies of the Glasgow Haskell Compiler:
an unmodified (“vanilla”) build of GHC 7.10.3, and a buid of
GHC 7.10.3 with the modifications we describe in the paper.

The virtual machine image is based on Ubuntu 16.04
and includes example programs and benchmark programs.
Scripts are included in the virtual machine to automatically
run benchmarks and compare their results.

The VM is 5.7GB, and can be downloaded from the
following location: http://doi.org/10.5072/FK22J6F

G6C (md5sum 2797486cf47e977b0ef979bc2ebfd660), or by
using the DOI to find the current URL.

B.0.1 Hardware dependencies
To successfully complete the benchmarks it is recommended
that at least 4GB of RAM is available to the virtual machine
(and we have set he default to 8GB, and two cores). Running
on one core may require less memory.

B.0.2 Software dependencies
The software dependency is VirtualBox, which is freely
available.

B.0.3 Datasets
We used freely available Haskell benchmarks from Stack-
age, an online source of stable Haskell packages. We used
the benchmarks from the LTS-5.16 set, available at https:
//www.stackage.org/lts-5.16.

B.1 Installation
All required software is already installed on the virtual ma-
chine image. The virtual machine uses an account whose
password matches the account name (and thus it should not
be exposed to a network).

B.2 Experiment workflow
The VM contains step-by-step instructions to run the bench-
marks mentioned in Section 7. A brief summary is included
here, and full instructions are given in evaluation.md in
the home folder of the virtual machine image.

B.2.1 nofib results
The nofib test suite (Section 7.3) is located in ~/nofib.
We ran this with both the original and modified versions of
GHC. To compute the results, type the following commands:

cd ~/nofib

http://doi.org/10.5072/FK22J6FG6C
http://doi.org/10.5072/FK22J6FG6C
https://www.stackage.org/lts-5.16
https://www.stackage.org/lts-5.16

source use_vanilla_ghc

make run

mv nofib-log nofib-vanilla-log

source use_sc_ghc

make run

mv nofib-log nofib-sc-log

nofib-analyse/nofib-analyse \

nofib-vanilla-log nofib-sc-log

(Note that the “use_” scripts are found in ~/opt/bin

and are thus not specific to any directory.)
The nofib-analyse command prints out a chart which

compares the compilation and performance characteristics
of each program in the test suite when compiled with each
of the two versions of GHC. It produces a lot of output, but
the “Elapsed” column of the first section is what we are pri-
marily interested in. Positive or negative changes represent
increases or decreases in runtime in the second log compared
to the first.

Note also that the above instructions execute a single run
of nofib. In Section 7.3 we ran nofib 20 times for both the
modified and unmodified compiler, and computed the mean
runtime for each benchmark in each mode. This especially
helps to compensate for noise from a minority of short-
running benchmarks.

B.2.2 Stackage results
Next, instructions for running our Stackage benchmarks
from Section 7.3. The Makefile we provide runs only a por-
tion of the Stackage benchmarks, as running them all would
take about a day. If you want to run all the benchmarks,
you can edit /sc-haskell/benchmarking/Makefile

and remove the parts from the vanilla and sc targets that
say NODE_NUMBER=1 TOTAL_NODES=67.

cd ~/sc-haskell/benchmarking

make vanilla

make sc

make compare

Similarly to nofib-analyse, running make compare

will print out a detailed comparison of the runtime differ-
ences between the benchmarks run with the unmodified and
modified versions of GHC, and gives a geometric mean run-
time difference at the bottom.

B.3 Evaluation and expected result
For both the nofib and Stackage benchmarks, the ex-
pected result will be the difference in runtime between code
generated by vanilla GHC and SC GHC.

Limits of virtualized evaluation Be warned that virtual-
machine-based evaluation is non-ideal for this experiment.
The purpose of this experiment is to measure small dif-
ferences in runtime between two variants of a compiler,
with programs executing on dedicated machines under a job
control system (as found in HPC deployments). We expect

that jitter from virtualization may dominate the differences
in runtime. Thus VM-based results can reconfirm that the
sequentially-consistent compiler (SC-Haskell) did not add a
large amount of overhead, they are unlikely to provide an
accurate quantification of the effect.

B.4 Experiment customization
The artifact includes both versions of the compiler, and can
thus be reused to evaluate other programs than those we have
included.

The instructions on the image also descibe how to in-
spect the assembly language output of the compiler when
called on an arbitrary program. The example program (in
the ~/examples folder) can serve as a starting point to ex-
periment with what code the compiler produces for different
Haskell programs.

cd ~/examples

source use_sc_ghc

ghc IORefExample1.hs -O2 -ddump-asm

B.5 About TechEmpower
We included results from the TechEmpower web bench-
marks in section 7.4, but opted to exclude them from the
virtual machine, as setting up the benchmarks requires three
virtual machines to be running, which makes it impractical
to encapsulate within this virtual machine.

