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Abstract
When written idiomatically in most programming languages, programs that traverse and con-
struct trees operate over pointer-based data structures, using one heap object per-leaf and per-
node. This representation is efficient for random access and shape-changing modifications, but for
traversals, such as compiler passes, that process most or all of a tree in bulk, it can be inefficient.
In this work we instead compile tree traversals to operate on pointer-free pre-order serial-
izations of trees. On modern architectures such programs often run significantly faster than
their pointer-based counterparts, and additionally are directly suited to storage and transmission
without requiring marshaling.

We present a prototype compiler, Gibbon, that compiles a small first-order, purely functional
language sufficient for tree traversals. The compiler transforms this language into intermediate
representation with explicit pointers into input and output buffers for packed data. The key
compiler technologies include an effect system for capturing traversal behavior, combined with
an algorithm to insert destination cursors. We evaluate our compiler on tree transformations
over a real-world dataset of source-code syntax trees. For traversals touching the whole tree,
such as maps and folds, packed data allows speedups of over 2× compared to a highly-optimized
pointer-based baseline.
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26:2 Compiling Tree Transforms to Operate on Packed Representations

struct Tree {
  enum {Leaf, Node} tag;
  union {
    struct {long long elem}
    struct {struct Tree* l;
            struct Tree* r;}}}

N

NL 1

L 2 L 3

(a) Standard representation of a tree structure in C: by default, word-sized tags and pointers.

N L 1 N L 2 L 3

(b) Serialized version of the same tree. Not to scale: tags take one byte and integers eight.

Figure 1 Standard and serialized representations of trees.

1 Introduction

Programs that traverse and construct trees are widely used across all domains of computer
science, ranging from compiler passes, to the browser Document Object Model, to particle
simulations with space-partitioning trees. Yet almost all modern programming languages
and compilers represent trees and their traversals identically. Each node of the tree is a
heap object, followed by fields for child nodes or leaf values. This representation has not
changed since early LISP systems and is shared across source languages with diverse type
systems—whether algebraic data types or class hierarchies, statically or dynamically typed.
The deviations from this consensus are found within limited high-performance scenarios
where complete trees can be laid out using address arithmetic with no intermediate nodes.

We submit that this consensus is premature. In numerical computing it is an axiom that
you cannot treat the numbers in a matrix as individual heap objects. Rather, the emphasis
is on bulk efficiency. Likewise, many tree traversals process trees in bulk, reading or writing
them in one pass. On such workloads, traditional tree representations are not favored by
current trends in computer architecture. Pointer-chasing implies randomized memory access
patterns. While previous work addresses spatial locality for tree data [4], much memory is
still wasted both in pointers themselves and in tags on nodes (e.g. distinguishing “interior”
vs “leaf” objects). For example, a C compiler uses 96 bytes of memory to represent the tree
shown in Figure 1a. On the other hand, if we are sending the tree over the network, we would
naturally use a more compact form in serializing it, as shown in Figure 1b. In the latter
version, we use the same 24 bytes for the data in the leaves, but only 5 bytes for the spine
(capturing the “tags” of the 5 nodes in the tree), rather than 72. Further, a tree traversal
processing this memory representation follows a precisely linear memory access pattern,
because the data is already laid out in a preorder traversal. On architectures with inexpensive
unaligned access, such as modern x86, this is a desirable in-memory representation as well as
a serialization format.1

Indeed, if we can compile programs to operate directly on this serialization, we follow a
precedent of using serialization formats jointly as memory formats. For example, Cap’N Proto
[28] makes it ergonomic for C++ code to operate directly on the Protobuf serialization format

1 Even restricted to aligned access, we would still shrink from 72 bytes to 20 by switching to a packed
format.
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in memory. Likewise “data baking”2. is an established practice in video games—caching
assets on disk in a format that allows them to be mmap’d into memory and used without
further conversion. As a general example of this capability, the Glasgow Haskell Compiler
(GHC) recently added the capability to store any closed subgraph of the heap as a Compact
Normal Form (CNF) [29]—a contiguous memory region that is treated as a kind of “super
heap object”, never traced by the GC and collected only when there are no pointers into any
of the sub-parts of the CNF.

The packed tree format above is precisely a dense encoding of a CNF—a transitive closure
of heap objects with no escaping pointers, in this case, no pointers at all. GHC’s CNF
support—like related efforts at region [26] or pool memory management [16]—colocates
heap objects without changing their representation. Code accessing the data can remain
unchanged. In contrast, the dense tree format requires a complete rearrangement of the
compiled code that operates on the data. This rearrangement is fundamental to the space
savings and format simplicity.

In this paper, we take a first step towards compiler support for packed tree data types
without changing the source program. Packed representations aren’t always appropriate,
and we don’t automate the choice of when to use them, but rather automate the necessary
code transformations to transparently use packed representations for selected data types.
Henceforth, we use tree traversals or tree transforms to refer to programs that walk over
an immutable tree, building an output tree of size proportional to the input tree, without
substantially relying on sharing in the representation. We also address a limited class of tree
searches that require random access within a tree. We make the following contributions:

We present a compiler, dubbed Gibbon, that can compile a range of tree transforms,
written in a minimal functional language, to be more than twice as fast as standard
techniques (Section 3). We evaluate Gibbon against both a number of existing compilers
and its own best performance (without packing) in Section 6.
We present compilation algorithms for data packing (Section 4), including a method
for determining when a function reaches the end of its input(s), and for converting to a
destination-cursor-passing style, which supports operating on data in dense byte streams.
In an additional evaluation, we show that not only can tree traversals become faster in the
packed representation, but that they are still amenable to parallel speedup (Section 7.2.1).
To leverage parallelism, we need random access and thus extra layout information in dense
encodings—a feature that also allows tree searches to be expressed in our framework,
such as a point correlation application evaluated in Section 7.2.2.

2 Background and Example

We begin our study of packed tree representations with perhaps the simplest example: binary
trees with integer leaves. In a language with algebraic data types, a recursive walk on the
tree would typically use pattern matching, which we demonstrate with the following function
that increments each integer leaf by one.

data Tree = Leaf Int | Node Tree Tree

add1 t = case t of
Leaf n → Leaf (n+1)
Node x y → Node (add1 x) (add1 y)

2 Described here http://nullprogram.com/blog/2016/11/15/
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26:4 Compiling Tree Transforms to Operate on Packed Representations

Here we use a Haskell-like syntax, but in fact the small, strict, first-order, purely functional
language of tree traversals we consider in this paper is already a subset of most existing
languages. The above program is not substantially different in C, Haskell, ML, F#, Scala,
Swift, Rust, etc. Only the details of switching on sum types (tagged unions) differ, as well as
the syntax for constructing an object while initializing its fields, here: Node e1 e2.

The first problem for tree-walks such as this is memory management, as add1 can easily
become a malloc or garbage collector benchmark. For instance, the following C code is over
twice as slow as the same implementation in Java or a good functional compiler, thanks to
overhead in malloc.

Tree* add1(Tree* t) {
Tree* tout = (Tree*)malloc(sizeof(Tree));
tout→tag = t→tag;
if (t→tag == Leaf) {

tout→elem = t→elem + 1;
} else {

tout→l = add1(t→l);
tout→r = add1(t→r);

}
return tout;

}

But even if we assume bump-pointer allocation in an arena, and no header objects—even
if we go further and enable the __packed__ attribute for our structs to save tag space—the
performance of the above code is still several times below what is achievable. The main
observation of this paper is that bulk tree walks are efficient if done directly on a pre-order
serialization of the tree, and that it is possible to automate the translation of recursive
functions, such as add1 above, into code that directly manipulates data buffers containing
serialized trees.

char* add1(char* tin, char* tout) {
if (*tin == Leaf) {

*tout = Leaf;
tin++; tout++;
*(int*)tout = *(int*)tin + 1;
return (tin + sizeof(int));

} else {
*tout = Node;
tin++; tout++;
char* t2 = add1(tin,tout);
tout += (t2 - t);
return add1(t2,tout);

}
}

For our simple example, this buffer-
passing code isn’t complicated to write by
hand in C, as pictured on the right. Yet this
approach cannot scale—it quickly becomes te-
dious and error prone. Clearly, no one would
use a technique like this for building a non-
trivial tree processing program such as a com-
piler or a web browser!

This C program is similar to the output
produced by the Gibbon compiler we describe
in this paper. We refer to the input and
output pointers as cursors, and one of the
primary jobs of the compiler is to insert them
automatically.

2.1 Challenges and Limitations
At a basic level, the remainder of the paper describes how to generate efficient, but complex,
cursor-passing C code automatically from the simple functional tree-walking program we
began with. However, this code generation process is not as easy as our initial example
makes it seem. Our compiler must solve several challenging problems: ensuring complete
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traversal to consume the stream in order, tracking the state of cursors into the tree, and
more. We begin by outlining some of those challenges, and delve into their solutions in
subsequent sections. Of course, many challenges can be overcome with extensions to the data
format, and in Sections 2.1.2 and 7 we will explore various extensions to the basic preorder
serialization. But we begin with the most basic scenario, where all data for a tree resides in
one buffer, contiguously.

2.1.1 Ensuring complete traversal
Our add1 function is well-behaved and easy to compile. But many real programs, even very
simple ones, pose more challenges. For example, consider the following two seemingly-similar
functions:

left t = case t of
Leaf n → n
Node x _ → left x

right t = case t of
Leaf n → n
Node _ y → right y

These functions are isomorphic to each other in a pointer-based representation. But
with a preorder, packed representation there is the stark difference between them. The left
function only needs access to left branches, which are serialized immediately after the tag
for Node. But the right function needs to skip over that left child, to reach the right child.
Our prototype adopts a simple solution for this problem: generate a dummy traversal that
walks the left child to reach the right. This of course is inefficient for many applications,
if the tree traversal need only consider a small portion of the tree. But in bulk processing
where most of the tree is visited, dummy traversal is simple and fast, preserving the linear
memory access pattern favored by modern processors. However, adopting this strategy is
not straightforward—the compiler must determine when these extra traversals are needed.
This requires the addition of an effect system to track how much of the input buffer is read,
corresponding to the effect of moving a cursor in the resulting code (Section 4.1).

2.1.2 Extensions
There are many possible extensions to the basic preorder format. For example, we can include
indirections, which use a distinct tag in the serialized stream to insert a pointer to another
buffer or portion of the existing buffer. We can also selectively use alternative constructors
that include size information and allow random access. Note that we can still save space
even while storing size (layout) information. For instance, the Node record above could be
laid out as: NodeTag <size_left> <left> <right>.

Whereas a pointer based representation would spend two words for the left and right
pointer (16 bytes3), if we assume individual tree values are less than 4GB, we need only four
bytes for the size of the left tree, and we needn’t store the size of the right tree at all! Indeed,
we plan to explore the tradeoff between density of encoding, and computational overhead. A
dense encoding in the style of UTF8 would enable us to store small values of <size_left>
in as little as one byte.

We return to the topic of extending the basic format in Section 7, and we present prelim-
inary experiments using layout and indirection extensions in Section 7.2.1 and Section 7.2.2.
Further, in the future, it makes sense to fully explore the spectrum of representations between

3 One basic advantage that we leverage here is that 64 bit platforms have become wasteful of memory,
using 8 bytes for every pointer, even though most of the time it is unneeded.
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26:6 Compiling Tree Transforms to Operate on Packed Representations

packed and pointer-based. In this paper, to simplify the exposition, we present our core
language plus our compilation algorithms in the setting of the simple, completely serialized
representation.

2.2 Related Work
One line of closely related work focuses on managing data layout in trees and other data
structures to promote spatial locality [4, 5, 27, 16, 6], by modifying garbage collection to
co-locate objects [6], modifying memory allocators to proactively place objects with similar
access patterns together [16, 4], or modifying the internal layout of objects to place hot
fields near each other [5]. These approaches attempt to “pack” data together, using various
techniques, into cache lines to improve spatial locality, and hence have some resemblance to
our packed representations, which gain some performance benefits from packing tree data
into a compact format that promotes spatial locality.

Perhaps the most closely related of these is Chilimbi et al.’s cache conscious structure
layout [4]. They propose a cache-conscious data placement scheme where, given a traversal
function, tree-structured data will be laid out in memory in a clustered manner: nodes from
small subtrees will be placed on single cache lines. By matching the tree layout to a specified
traversal order, spatial locality is improved when the tree is traversed in that order. A key
difference between our packed representation and Chilimbi et al.’s work is that this work
focused on object layout, without changing the internal representation of the objects. Leaving
the object representation of tree nodes the same allows code that manipulates the objects to
remain the same, but incurs costs: there is no opportunity to reduce the space or instruction
overhead incurred by pointers linking nodes in the tree (see Figure 1), as exploiting that
opportunity requires code transformation. Most of the aforementioned spatial locality work
makes the same tradeoff.

One exception is Chilimbi et al.’s work on automatic structure splitting [5], where objects
are transformed into split representations, allowing hot fields from multiple objects to be co-
located on a single cache line while those objects’ cold fields are placed elsewhere. Because this
layout optimization changes the internal representation of the object, Chilimbi et al. develop
a compiler pass that automatically transforms code to work with the split representation.
The transformations for structure splitting concern how to access object fields, and hence,
unlike our work, do not require deeper transformations to remove the pointer dereferences
inherent in traversing linked data structures. Indeed, neither this work nor cache-conscious
structure placement affect the behavior of pointers in data structures.

Lattner and Adve’s automatic pool allocation identifies memory allocations that, roughly,
correspond to different data structures so that objects from disjoint data structures can be
allocated into separate pools [16]. This approach does not change the internal layout of data
structures (and hence does not require substantial modifications to the way a data structure
is used) nor does it do any further layout optimization to promote locality. However, it
does enable a compression step. Because pointers internal to data structures point to other
objects in the same pool, these pointers do not need to point to arbitrary addresses, and can
instead use fewer bits to represent the target [17].

Hsu looks at a representation of abstract syntax trees that uses a matrix layout, allowing
operations to be specified in a data-parallel manner without traversing pointers [14]. While
this representation shares a goal with ours of avoiding pointers, it is not “packed”—the
representation requires a dense representation of a sparse matrix—and hence does not yield
the type of space savings we target.

In the high-performance computing community, linearizing trees and tree traversals for
improved performance has been a common technique [18, 9]. These linearizations tend to be
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ad hoc, written specifically for a given application, and each application must be re-written by
hand to benefit. This contrasts with our compiler-based approach which allows programmers
to write using idiomatic traversal algorithms, relying on the compiler to synthesize the packed
representation as well as the algorithm to traverse that representation.

Similar ad hoc layout transformations have recently been pursued in the context of
vectorization [20, 22, 23]. Meyerovich et al. discuss different linearization schemes that can
promote packed SIMD loads and stores, improving vectorization efficiency [20]. These layouts
have the implicit effect of eliminating pointer dereferences, as in our packed representations,
but rely on index arithmetic to traverse formerly-linked nodes, rather than encoding particular
traversal orders. Ren et al. look at a wide range of tree layouts for vectorization, each
targeted at different traversal patterns [22, 23]. These layouts are chosen to match the
traversal patterns of an application, enabling the removal of pointers, as in our layouts. Ren
et al. use a library-based approach: applications are written using high-level tree interfaces,
with specific layouts chosen based on hardware and application considerations. In contrast,
our work focuses on compiler-driven transformations of both the tree layout and the code
that traverses the tree.

3 The Gibbon Input Language

To demonstrate the compilation technique we propose, we use a typed programming language
simple enough to present briefly in a paper, and featureful enough to express some interesting
tree-manipulating functions, such as compiler passes.

The syntax is given in Figure 2—it is simply a standard first-order functional language.
Programs consist of a series of data type declarations and function declarations. Similar
to most functional programming languages, programmers may define algebraic data types,
and dispatch on them with a case form (called match or switch in some languages). For
example, a data type for Peano numbers would have two cases: Zero and Successor.

Data types declared with data are automatically and implicitly packed in this language.
In this basic design, the only non-packed data types are tuples (e1, . . . , en), accessed with e.n.
Note, however, that tuples are sufficient for functions to take and return arbitrary numbers
of packed data types. When we perform cursor translation in our compiler, this will mean
passing multiple output cursors to a function in order to provide buffers for it to write its
results to.

Other language features are standard: tuple access, let binding, conditionals, and primitive
operations. Conditionals are included to avoid the need for Bool to be packed data (because
case operates on packed data only). Standard primitive values are included such as integers,
booleans, and symbols. Finally, Gibbon provides dictionaries (not shown) to support more
sophisticated operations such as bulk transformations—substitution on an abstract syntax
tree is one example. A fuller language would support richer data types, more operations, and
data structures such as arrays and lists, but the crucial elements for expressing tree-shaped
data and transformations on trees are present.

Rather than moving directly from a high-level functional language to cursor-oriented
low-level C code, our compiler transforms programs first into an intermediate language
which captures the crucial invariants. These additional forms are presented in Figure 3 and
described in Section 4.

ECOOP 2017



26:8 Compiling Tree Transforms to Operate on Packed Representations

K ∈ Data Constructors, T ∈ Type Constructors, v ∈ Variables

Program prog ::= dd ; vd ; fd ; e
Packed Data Declarations dd ::= data T = K τ

Value Declarations vd ::= v : τ ; v = e

Function Declarations fd ::= f : τ → τ ; f ( v ) = e

Expressions e ::= v | n | True | False | e� e | f e
| (e1, . . . , en) | e . n | let v : τ = e in e

| case e of K v ⇒ e | if e then e else e

Types τ ::= T | ( τ 1, . . . , τ n) | Int | Bool | . . .
Prim Ops � ::= + | − | ∗ | . . .

Figure 2 Grammar for source language.

Expressions e ::= . . . | switch v of K (v)⇒ e | toEnd (e) | fromEnd (e)
| write (‘K’, v ) | write ( n , v ) | read ( v ) | finish (e)

Types τ ::= . . . | T` | Needs([τ ], τ) | Has([τ ]) | End(ˆ̀)
Extended vars v ::= v | end v | start v

Location vars ` ::= α | β | . . .

Figure 3 Extensions to the core language for cursor-inserting compilation. Here we read and
write word-sized (or smaller) values from byte streams. And switch is a low-level mechanism to read
and case on the next tag byte from a stream.

Using Gibbon

Gibbon is implemented as a language built on Racket [8], using Racket’s language implemen-
tation and extension facilities. Gibbon’s type checking support is implemented by compiling
to Typed Racket [25]. A programmer can develop and test a Gibbon program using the
DrRacket IDE and tools, which include code coverage, syntax highlighting, on-the-fly type
checking, etc.

Given a working Gibbon program, it can then be compiled using our compiler via a
C backend and a standard C compiler. These backends apply the techniques described in
subsequent sections to automatically use packed data to represent all types declared using
the data form.

4 Compilation Algorithms

Gibbon’s approach is to convert programs into a form of destination passing style [15], where
destinations are not managed per-heap-object (i.e. per-data-constructor), but rather for
entire trees or subtrees. This approach implies function calls producing data types do not
generally call the allocator, for example, even a simple function such as f below (on the left)
is transformed to take a destination cursor argument, as shown on the right:

data Foo = MkFoo Int
f() = MkFoo 3

f ptr = let p2 = write('MkFoo',ptr)
in write(3,p2)
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We say that data types like Foo are packed types, whereas Int, Bool, Symbol, etc. are
not. As we will see in this section, during compilation the data constructors for packed types
(MkFoo) will themselves come to require destination cursor arguments, before eventually
ending up in the final state (shown above) of writing directly to input and output data
streams. We insert these cursors using the extended language of Figure 3, which includes an
extended type-system for safely dealing with cursors (currently used only by the compiler,
and not exposed to the user).

Functions do not, however, merely have the effect of writing destination memory. Some-
times functions will need to allocate new memory regions as well. We treat tuples (e1,e2) as
value types, so they don’t account for allocation. But consider expressions (e :: T), where
T does not contain packed values, yet subexpressions of e have types which do. For instance:

g n = (case MkFoo n of MkFoo i → i) + 4

If the optimizer does not eliminate this silly expression, then MkFoo must be given a
destination, even though the constructed data does not escape the function g. For this
purpose, we will use a very simple form of region allocation which takes advantage of the
purely functional nature of the Gibbon language. Namely, we know that the case expression
of type Int above can have no other visible effect or communication than producing an Int,
so thus we can region allocate the MkFoo constructor inside a buffer that is freed when the
expression returns (in the implementation, this resembles stack allocation). This follows
the precedent of other languages such as UrWeb [7], as well as previous work on region
types [26, 11].

This matter of destination routing is the primary function of the Gibbon compiler.
However, to support it, other analyses are required. For instance, determining the destination
cursor for a field within a data record requires determining an end witness for the field before
it—that is, a pointer to the position in the buffer that marks the end of one field and the
start of the next. If we recursively unpack adjacent fields without storing a pointer to the
later fields, we must rediscover those downstream fields as a side effect of traversing their
upstream ones. (For example, in our binary tree data type, to discover the start location of
y in Node x y, we must first scroll through x in the preorder packed data.) Thus we begin
with an inter-procedural analysis of which functions are able to traverse their inputs.

The overall structure of the compiler, covered in the rest of this section, is:
1. Infer traversal effects (Section 4.1).
2. Generate additional traversals as necessary to reach input ends (Section 4.2).
3. Route end-of-value witnesses as additional function returns (Section 4.3).
4. Switch to destination cursor-passing with additional function arguments (Section 4.4).
5. Code generation (Section 4.5).

4.1 Inferring traversal effects

To reason about traversals, we associate with every packed type an abstract location. This is
different from a region variable in prior work, because it is a symbolic value representing the
exact memory location that a value starts at. No two distinct data constructors can share
the same location, whereas two values can share the same “region”. The type signature of
add1 becomes:

add1 :: Treeα → Treeβ

ECOOP 2017



26:10 Compiling Tree Transforms to Operate on Packed Representations

This is read “function f takes a tree at location α and produces one at location β.”
Note that a function of type Treeα →Treeα is necessarily the identity function. Next, if f
examines all the bytes in α, we say it has the effect traverse(α) and we write its type as:

add1 :: Treeα
α−→ Treeβ

We write endα to signify the location after the last byte of α, or α̂ for short. One way of
looking at a function that traverses α is that it can witness endα. At runtime, this witness
is merely a pointer value. Ultimately we will rewrite the function to return such a witness.
For now, the goal of the effect inference pass is to determine a consistent traversal type for
all functions jointly. Of course, if f calls g, whether f reaches (witnesses) the end of its input
may depend on whether g does likewise.

A lattice of locations

The locations used above, α, β, are metavariables that can range over different locations,
depending on what the (location-polymorphic) function f is applied to. Intuitively, we expect
outputs to be polymorphic in location, corresponding to the as-yet-undetermined destination
parameter. Conversely, inputs already exist in memory at a fixed location. This includes
lexically-bound variables introduced by λs or pattern matching. For example, the variables
tr, x, and y from add1 below.

add1 :: Tree → Tree
f(tr) = case tr of Node x y → · · ·

In fact we name these fixed locations after their lexical variables, simply: `tr, `x, `y. In
contrast, let-bound variables take on the locations of their right-hand-side. Every data
constructor in the program introduces a fresh location. Fixed variables only unify with
themselves, but fresh variables unify with any other (non-tuple) location. Together with
tuple locations (`, `), these fresh and fixed locations form a lattice under unification. For
example, (`1, `2) v (`3, `4), if and only if there exists a substitution on metavariables that
ensures `1 = `3 ∧ `2 = `4 . Such a substitution assigns fixed locations to metavariables, and
does not allow metavariables to range over entire tuple locations.

In this lattice, non-packed values such as integers always have location ⊥. On the other
hand a top value (>) is reached when two locations are incompatible. For example, the
following term has location > because it attempts to unify two fixed locations `x and `y.

(case p of Node x y → if _ then x else y) :: SomePackedDatatype

Indeed, we cannot statically know what location this expression will return, even symboli-
cally. (We have no notion of disjunction locations in our definition: e.g., `x ∨ `y.) Finally,
ends are always distinct locations from starts: ∀`.end(`) 6= `.

Analysis and fixed point

We use the lattice of locations above to perform a program analysis, assigning a location to
each subexpression, as well as a set of traversal effects. The basic idea is that an expression
case e of . . ., creates a traversal effect for the location of e provided that all the branches
of the case traverse the (non-statically-sized) arguments of their data constructors. This
stage of the process is optimistic, in that it assumes that any additional traversals that are
necessary but not present will subsequently be inserted later. For example:

case v of K (y :: Tree) (x :: Int) → x
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Here, when reading data type K from a a preorder serialization in a buffer, accessing the
simple scalar x requires somehow traversing y to witness ˆ̀y, where ˆ̀y = `x. During the infer
effects phase, we optimistically assign the traverse effect, traverse(`v), to the above code,
assuming that a dummy traversal will later be inserted (Section 4.2). If it were not, this
program couldn’t compile!

Even with this assumption, determining the traversal effect signature for each function is
nontrivial because of interdependencies between functions. Thus we design this pass as a
traditional program analysis that iterates to a fixed point. We begin with every function
having a maximum traversal signature—we assume it reaches the end of every packed input.
Then, this set monotonically decreases in every round until the fixed point is reached.

The running add1 example does not contain mutual recursion, so it takes only one
iteration to reach a fixed point. But the reasoning is still recursive (inductive)—add1 is only
able to traverse its input because its recursive call sites traverse their (subtree) inputs:

add1 :: Treeα
α−→ Treeβ

add1 t = −− when the polymorphic type is instantiated, α 7→ `t
case t of −− case has traverse(`t), because all branches do

Leaf n → Leaf (n+1) −− fresh location; γ, static size, thus traverse(`t)
Node x y → let x' = add1 x in −− x’ at fresh loc; call’s effect: traverse(`x)

let y' = add1 y in −− y’ at fresh loc; call’s effect: traverse(`y)
Node x' y' −− traverse(`y) implies traverse(`t)

Here the compiler has also performed a bit of standard flattening, introducing temporaries.
Inferring the traverse effect for the Leaf case is trivial, because once we know t is a Leaf, we
know its exact byte size, and can compute ˆ̀

t = `t + 9 bytes. In the Node case, because of the
polymorphic signature, (∀αβ. Treeα

α−→ Treeβ), the lexical variables x' and y' have fresh,
unrestricted locations, but, more importantly the recursive call gets the effect traverse(`y),
due to the effect annotation on the function’s type ( α−→).

4.2 Copy and traversal insertion

During analysis, we generated all the information we need not only to label traversal effects
in function signatures, but to recognize where they are needed, but missing, and where
destination-location constraints conflict. Next we need to repair the program to fix these
problems. With the inter-procedural traversal types settled, we reprocess the program and
repeat the same location analysis, but this time, we mark wherever we are (1) missing a
witness of a field stored within a packed buffer, or (2) have conflicting constraints where a
packed value flows to two incompatible destinations (sharing).

First, a missing end-witness can always be restored, if necessary, by inserting a call to a
dummy traversal function. For example, the program fragment from the previous subsection
(with a missing traversal) would take the following form after a dummy-traversal insertion:

case v of K (y :: Tree) (x :: Int) → −− Here we know `x = ˆ̀
y

let endy = traverseTree y in x

Here, traverseTree is synthesized by the compiler based on the structure of the type
definition. The call to traverseTree may look like dead code, but it’s dead code with the
correct location, which lets the compiler pass described in the next section reuse the end of y
as the start address of x.
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Second, a conflicting destination location can always be resolved by inserting a copy
function4. A simple example of a program that forces a copy is one that introduces sharing:

let x = f t in Node x x

In later extensions (Section 7), we will use these missing traversals and conflicts to go
back and change the data format (i.e. use packed records augmented with indirection nodes,
rather than the most straightforward preorder serialization). But, for completeness, it always
suffices to naively insert copies or dummy traversals. Copy insertion for the above program
would break the sharing:

let x = f t in Node x (copyTree x)

Here the call to x can flow to the destination location right after the Node constructor,
and can, from there, be copied to occur a second time in the output buffer. Inlining can also
resolve these conflicts, producing Node (f t) (f t), in which the two calls flow to different
destations in the output buffer. Our current prototype compiler prefers inlining where
possible (because it enables subsequent optimizations), and uses copy-insertion otherwise.

4.3 Routing end-of-value witnesses
After all traversal constraints are satisfied by recursive calls or compiler-inserted traversals,
we then transform the program in a type-directed way, to include additional return-values:
end-witnesses.

add1 :: Treeα
α−→ Treeβ −− Before

add1' :: Treeα → ( End(α̂), Treeβ ) −− After

Here the type of the end-witness is End(α̂), which signifies a cursor (pointer) to the
end of a value, which is not useful by itself. Rather, it is useful if it witnesses the start
of another value. This brings us to the topic of our type system for cursors. Cursors
are internal to the compiler, rather than exposed to the user. We use a typing discipline
resembling session types [13] to ensure their correct handling in the compiler’s intermediate
language—specifically, the types ensure that data is read from and written to buffers in the
correct order.

We add three new cursor types: the End type, as mentioned above, Has cursors for
reading, and Needs cursors for writing. These will be described further in Section 4.4. In
brief, Has([A,B]) is an input pointer that, when read from, yields a value of type A as well
as a pointer of type Has([B]). The Has type is parameterized by a list of types A, B, . . . ,
which correspond to the types of values that must be read in a particular order from the
buffer. Needs([A,B], C) is an output pointer that requires a value of type A be written
to the pointer, followed by B, after which a fully initialized value of type C can be read
from the buffer. A given Needs cursor must be used linearly, after the address is written to,
writing it again would clobber existing data.

During the routing pass, we use these cursor types to insert additional bindings in the
program that explicitly encode facts about how to reach the end of a given location. This
uses startv and endv as special variables to refer to the physical start and end locations of
other variables. (startv is roughly &v in C.) Namely:

4 More generally, we can perform a program synthesis here to fix the program by generating a recursive call
that meets that constraint. Copies work, but so does inlining. Ultimately, when we consider indirection
extensions to the data format (Section 7), the program repair process interacts with data-structure
layout choices, because sharing can be addressed by adding (limited) indirections back in.
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One field’s end becomes its successor’s start. This becomes a binding, such as:
let starty= endx.
Fields of static sizes have known offsets, such as:
let starty= startx+ offset.
In case a of K b1. . .bn → . . ., the end of last field bn is also the end of a, thus
let enda= endbnin · · ·

We could record these facts in program metadata, but in our current approach we instead
manifest them explicitly as let bindings. Note, however, that they may refer to (temporarily)
unbound end-variables! We solve this later with a pass that reorders these bindings.

Performing this transformation on add1 yields a program with extra bindings as well as
the additional end-address-of-input return values.

add1' :: Treeα → ( End(α̂), Treeβ ) ;
add1' tr = case tr of

Leaf n → let endn = toEnd(startn + 8) in
let endtr = endn in
(endtr, Leaf n+1)

Node x y → let starty = fromEnd(endx) in
let (endx,x') = add1' x in
let (endy,y') = add1' y in
let endtr = endy in
(endtr, Leaf x' y') ;

Just as with the dummy traversal example earlier, the compiler at this phase does not use the
starty binding. Later, when we switch to using explicit cursors into input and output byte
streams (Section 4.4), we lose direct access to fields beyond the first one, and the starty
binding then replaces the binding for y.

Further, to make the injected bindings above type check, the compiler must insert
coercions between Has/Needs types on the one hand and End types on the other. The
toEnd/fromEnd forms are coercions. The compiler ensures the correctness of these coercions
and offset computations. For instance, given startn :: Has(Int), we know that startn+8
is a valid offset (8 is the size of Int), but that 7 would not be.

Lastly, before we proceed, note that the original textual order of the program does not
effect the results of traversal inference or end-witness discovery. This is because the compiler
aggressively reorders programs in order to connect end-witnesses with their consumers.
(Starting with purely functional programs makes this easier.) For example, the following two
programs for summing the leaves of a tree are equivalent to the compiler.

sum1 t = case t of Leaf n → n | Node x y → sum1 y + sum1 x
sum2 t = case t of Leaf n → n | Node x y → sum2 x + sum2 y

4.4 Output cursor insertion
Next we are ready for the core translation in the compiler—switching to destination-cursor-
passing calling conventions. This proceeds in two phases:

First, perform a dataflow analysis and mark every data constructor, K, or function call
which returns packed data, with a destination. A destination is a static source location
of another constructor application, or is one of the output terminals of the enclosing
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function definition, i.e. location β in a Treeβ output. Copy-insertion will have guaranteed
a unique destination for each such value (i.e. no sharing).
Second, perform a type-directed, type-preserving cursor-insertion pass. This augments
functions with additional inputs (output cursors), and changes their return value conven-
tion to return additional end witnesses for outputs as well as inputs. That is, rather than
conventionally returning the start address of an output value, the function now returns
the end-address of that same value.

For example, the add1 function becomes:

add1'' :: (Has([Treeα]), Needs([Treeβ ], γ)) →( End(α̂), End(β̂)) ;
add1'' cin cout =

switch cin of
LEAF(cin1) → let cout2 = write(LEAF,cout) in

let (cin2,n) = read(cin1) in
let cout3 = write(cout2, n+1) in
(toEnd(cin2), toEnd(cout3))

NODE(cin1) → let cout2 = write(NODE,cout) in
let (end1, cout3) = add1'' cin1 cout2 in
let (end2, cout4) = add1'' fromEnd(end1) cout3 in
(end2, toEnd(cout4))

The new switch form reads one byte from an input buffer and dispatches based on the
contained tag. Each case of the switch statement binds a cursor pointing to the beginning of
the first field of the matched data—naturally these cursors have different Has types based
on the types of fields in the respective data constructor. The return value of the function
has turned into a End cursor, whereas the inputs have turned into read and write cursors
respectively (Has and Needs). These behave much like typed channels with protocols. We
use the extensions in Figure 3 to write and read cursors:

write :: (Needs(a : rst, b), a) →Needs(rst, b)
read :: Has(t : rst) →(Has(rst), t)

Here we use Haskell-style list syntax at the type-level, so single-colon is “cons”, and
the list literal [a,b] is shorthand for a : b : []. Needs tracks a list of values its waiting
for. For instance, given a data type, data Foo = MkFoo Int Int, after we write a tag
for MkFoo to an output buffer, the output cursor has type Needs([Int,Int],Foo). The
second argument of the Needs is the type of the value which will be completed only after all
the obligations have been satisfied. Once the list of needed-values is empty, retrieving the
completed value can be accomplished with finish:

finish :: Needs([],T) →Has([T ])

In the context of the above example, if cout :: Needs([Tree`], γ), then the expres-
sion write(cout,LEAF) has type Needs([Int], γ), whereas write(cout,NODE) has type
Needs([Tree, Tree], γ), corresponding to the different number and type of the fields for
those respective data constructors.

Locally dilated representation of packed values

Sometimes the end-witness of a given value is computed, say, underneath a conditional. Thus
we may need to change the types of expressions to (locally) tack on additional return values.
In order to accomplish this, our cursor-inserting transformation internally switches to a dilated
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representation of every packed value. Inside the local scope of a function body, a subexpression
that originally returned Treeα, must instead return a pair (Has(Treeα), End(α̂)). The
transformed program routes these tuple values throughout the function body, making it
possible for the compiler to directly produce End(α̂), in the tail position of the function body,
to satisfy the calling convention by returning an end-witness. Note that the inter-procedural
calling conventions do not change to reflect this dilated representation, rather, mediation
happens at the call sites.

One surprising aspect of the cursor-passing output language is that it is still purely
functional. Rather than directly encoding effects, we have created a purely functional
interface where write returns a new cursor, and all Needs() cursors must be used in a linear,
but pure, way. (For instance, in the Gibbon interpreter we use for debugging, evaluating
programs after every compiler pass, we model cursors as lists, where write is “cons”.)

The fate of constructors and case expressions

Here we cover the switch form in more detail. The cursor-insertion pass lowers constructors
to operate directly on destination cursors. Thus MkFoo 55 becomes a multi-step operation,
where we first initialize the MkFoo structure (returning a cursor pointing to its Int field),
then write the 55 to that cursor. We capitalize data constructor names when they are used
as simple one-byte “enum” values:

let cur2 = write(MKFOO,curs) −− 1 byte tag
cur3 = write(cur2,55) −− 8 byte int

in (curs, toEnd(cur3)) −− Return dilated start/end pair. cur3 = curs+9

The above program is well-typed, following the protocol on output cursors. The “value”
of the resulting data constructor is now equivalent to the pointer location at which it was
written, i.e. curs, which we return in the body, together with an end-witness to match
the dilated convention. Note again that cursors themselves are persistent, not mutated,
which is why each operation with side-effects on a buffer (e.g. write), returns a fresh cursor
representing the new value of the cursor.

Finally, what becomes of the case expression? case v of K x y → e2, if both x and y
are of fixed size, is ultimately translated to:

switch startv of
K(cur) → let (cur2,x) = read(cur)

(cur3,y) = read(cur2)
in e2

Here switch reads one byte from the cursor given as its scrutinee, and then dispatches
based on that tag (just like C’s switch statement). It is a binding form only insofar as it
binds a cursor, cur, to the position just after the tag—i.e., the start of K’s fields. Then, we
generate explicit code to read the fields one at a time from the appropriate positions in the
byte stream. Not that the Has type for cur will contain two values, cur2 one, and cur3
zero remaining values.

4.5 Code generation
The final step for Gibbon compiler is to generate native code. Any backend target would
do (LLVM, native code, etc.), but we presently generate C code. Because the current
Gibbon design is a first order language, this is straightforward. We generate C code in static
single-assignment form.
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The compiler eliminates tuples through “unarization”, except at function call returns
where structs encoding tuples are returned. Tuple function arguments become multiple
arguments. Conditionals that return tuples instead write multiple destination variables. The
compiler walks through the program to accumulate all remaining anonymous tuple types,
and emits C struct declarations for each.

The cursors become merely char* pointers, and switch statements closely correspond
to C switches, while read and write are open-coded as pointer operations. Because read
returns two values, it generates multiple statements rather than creating a tuple, and thus
need not create a struct. Finally, the generated C code is linked with a simple run time
system that includes code for (de)allocation and initialization.

5 Implementation

In the next section we evaluate a prototype Gibbon compiler, implemented in Haskell, exposed
through a Racket #lang mode, and generating code via C. This compiler implements the
algorithms of the prior section, with a few current limitations.

Packed & Pointer, malloc & bumpalloc

The Gibbon C backend supports multiple modes of code generation, which we compare in
the next section. The first distinction is between two primary implementation strategies:

packed: Generate code using all the compiler passes of Section 4. Data of packed type
can be read from disk in human readable or binary/packed formats, but in memory it
stays always in preorder serialized representation.
pointer: Use traditional C struct representations. This mode provides a baseline for
comparison. It shares the front and back of the compiler with packed mode. But, in pointer
mode, we skip the transformations that introduce cursors and packed representations.
Rather, we use a traditional pointer graph of heap objects to represent all data. This
mode uses the default policies of the C compiler for struct layout.

The packed mode manages tree data by allocating large buffers to serve as output
destinations (and an additional large region for scoped allocations). In the future, we will
employ the standard technique for a block-structured heap, where a linked list of blocks
provides growable storage areas for destination cursors. The current performance should be
representative of an implementation strategy that uses large regions capped by guard pages
to enable unbounded growth.

Within the pointer mode, we allocate regular heap objects and thus need an allocation
strategy. One policy is to use the system malloc implementation, but this does not typically
perform well given the large numbers of fine-grained allocations incurred by out-of-place tree
transformations. A second strategy is to use a custom arena-allocation method for storing
heap objects. This doesn’t change the internal layout of heap objects, but it does pack them
densely within cache lines and provides a near-optimal memory management strategy—about
the best you can do without going to packed. We use a simple arena implementation where
a single global variable stores the heap pointer, which is incremented upon allocation.

For each of these implementation strategies, no garbage collection is required. In both
packed and pointer mode, we can use coarse-grained arena deallocation. Our region inference
is currently quite simple compared to a compiler like MLKit [26], and is not yet suitable
for programs complex programs with complex lifetimes. Our present benchmarks allocate
regions for input and output trees, and temporary packed data that does not escape a lexical
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scope is freed at the end of the scope. Finally, for comparison purposes, we also generate
code for a fine-grained malloc/free mode of the pointer-based backend, which substitutes a
recursive “free tree” function in place of arena deallocation.

For benchmarking, we add an iterate(e) form to the language which runs an expression
multiple times and reports the time for all iterations together. Iterate also resets the state of
the arena allocator, after each iteration but the final one, in order to “undo” the effects of
previous iterations and avoid leaking memory. Thus, when we benchmark a traversal with
iterate(treetraversal(tr1)), we repeatedly walk tr1 to produce tr2, such that tr2 is
allocated into the same memory region on each iteration. This optimizes our use of the cache
if both input and output trees fit in memory. It is this optimized version of the “bumpalloc”
pointer-based mode that provides the most competitive baseline against which to evaluate
our proposed packed-mode compiler pipeline in Section 6.

Embedding Gibbon

Ultimately the ideas in Gibbon should either be ported to a mature compiler for existing
general purpose languages, or the prototype Gibbon compiler should be used as an embedded
domain-specific language (EDSL) from within such a host. In the latter scenario, we would
write tree-traversals in a subset of the host language that corresponds to Gibbon, and those
traversals would then be compiled to a shared object file and linked back into the host
program for transparent interoperability. Tree data would be marshaled at the boundary, as
usual, in this case converting from pointer graphs to packed representations. Indeed, this
arrangement is similar to that used by existing EDSLs for, e.g., GPU programming [19, 3, 24],
except that those languages are typically focused on arrays and matrices and exclude recursive
sum types and recursion—which are Gibbon’s emphasis.

Currently, we’ve taken the first steps to making Gibbon available as an embedded language
in the host language Racket. Our front-end Gibbon is available as a custom #lang gibbon
mode in Racket. This provides IDE support via DrRacket, while enforcing all the specific
restrictions of our minimal language (including using Typed Racket to enforce the type
system with good error messages and source locations). What remains is to enable in-calls
and out-calls between Racket and Gibbon. Indeed, these are already possible using a Gibbon
backend which simply expands Gibbon (during macro expansion) to run as native Racket
code. Eventually, the C backend will likewise be supported without modifying the program.

In the next section we compare to the Racket backend as a baseline for a high-level
language with significant overheads. This information is useful, but the more relevant data
for evaluating the packing technique is to compare the different modes supported by the C
backend (packed and pointer).

6 Evaluation

We evaluate the performance of our approach in three ways. First, we examine the performance
of packed vs. pointer-based tree walks in idealized microbenchmarks. We also use these
microbenchmarks to examine the state of the art in several existing compilers. And while we
find significant variation between compilers, no existing system we’re aware of comes close to
matching Gibbon’s packed mode. Second, in Section 6.2, we evaluate an important class of
tree traversals—AST traversals, as found in a compiler. We use ASTs gathered from real
programs to ensure realistic shape and depth. Specifically, these tree benchmarks operate
on Racket’s intermediate representation, and show substantial speedup using the packed
representation. Finally, in Section 7, we look ahead to what a future compiler will be able
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Figure 4 Performance when building (left), mapping add1 (top), and summing (right) a tree
respectively. Traditional compiler approaches vs. the packed approach. All handwritten implemen-
tations. X axis is tree depth, implying 2N leaves. Y axis shows time in seconds.

to achieve if it extends the basic preorder packed format, including indirections or layout
information to enable parallel traversals.

All benchmarks were conducted on a cluster of identical, dedicated Intel machines in a
two socket configuration with Xeon E5-2670 CPUs at 2.60 Ghz, 20MB cache, and 32GB
RAM, running Ubuntu 14.04 LTS. All C code is compiled with GCC 5.3 and -O3.

6.1 Microbenchmarks
Our first benchmarks return to the example from Section 2: simple binary trees. We implement
three operations: constructing a tree, incrementing the values in a tree, and summing the
elements of a tree. To understand the performance of packed data representations, we
implemented these three operations in multiple ways across a variety of languages: with
pointer-based trees in Racket, Chez Scheme, MLton, GHC Haskell, and C (using both malloc
as well as a fast bump-pointer allocator).

Figure 4 shows the results for these three microbenchmarks on purely handwritten
implementations, while varying tree size. The results show a clear advantage for packed
representations (note the log scale), in some cases with 100x speedup over pointer-based
representations in garbage-collected languages. All competing implementations use their
default memory management settings, including GC parameters as well as the “C (pointer)”
using the system malloc.
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Figure 5 Cursor-inserting compiler’s performance compared to handwritten cursorized C im-
plementation. Tree building (left), tree summing (right), and mapping add1 over the tree (top).
The Gibbon prototype is currently embedded in Racket, so we show its Racket backend as well, as
different modes of its C backend (packed, pointer, bumpalloc).

We next implement the tree building and summing benchmarks in Gibbon, and use our
prototype cursor-inserting compiler to generate code over packed representations. Figure 5
shows the results of comparing this generated code to both Racket and the handwritten C
version of the packed representation. We see that our compiler generated code is competitive
with, and occasionally exceeds, hand-written C code performing packed tree traversals.

Figure 5 shows building, mapping over, and summing a tree, separately. Here we introduce
a couple of additional variants, which we will carry into the next section. First, the pointer
version of Gibbon, as explained in Section 5, uses the same code generator, but does not pack
trees, and uses system malloc and free to manage memory. This version is faster than the
Racket backend, but much slower than packed. Also, over these benchmarking runs, at these
tree sizes, the pointer-based implementations consume 6× more memory than packed ones.

However, there is one more mode of the Gibbon code generator, bumpalloc, also described
in Section 5, which shrinks the gap further. “bumpalloc” uses the same representations as
“pointer”, but approximates optimal memory management with cheap arena allocation rather
than simple malloc. Still, it remains the case that on add1, packed yields a geomean speedup
of 1.75× over bumpalloc, and 18× over the malloc-based pointer code.
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Figure 6 The factor slowdown of competing approaches compared to a baseline of Gibbon’s
packed mode. The malloc-based implementation performs especially badly when given large structs
of over 800 bytes each.

The influence of leaf size

In our simple tree example, we have thus far used a single Int as the payload of the leaf. This
implies a certain, fixed ratio of payload bytes to the memory used for storing the structure of
the tree—i.e., the tags in the packed representation, or tags and pointers in a traditional
representation. We would expect that increasingly “heavy” nodes, with many scalar fields,
would directly reduce the advantage of the packed representation. To verify this hypothesis,
we ran a simple parameter study where we generated alternate versions of the Tree data
type and add1 traversal over it, varying the number of Leaf fields. Figure 6 shows the
results. As expected, the best performance of the packed approach is with zero leaves, and
the performance of the bumpalloc version catches up as the scalar payload of leaves increases.

Pathological cases

Because Gibbon fixes a traversal order, it is possible to write programs that exhibit patha-
logically bad performance when compiled with the packed approach. A simple example
is a function that traverses a binary tree to return its right-most leaf. With the pointer
approach, the function need not ever inspect the left child of any node, while with the packed
approach the compiler must traverse both left and right children of every node, leading to
asymptotically worse run-time complexity. For example, when run on trees of height 12, the
generated packed code runs 150× slower than the pointer code (and arbitrarily slower on
progressively larger trees). In Section 7, we propose a solution to this problem: the addition
of indirection in packed buffers.

6.2 Compiler passes on realistic inputs
While our microbenchmarks demonstrate the potential of the packed representation, and also
demonstrate Gibbon’s ability to automatically generate code that operates on the packed
representation from idiomatic implementations, they don’t demonstrate a large savings of
programmer effort, because directly implementing functions on simple data in a packed
representation is tractable.

More challenging, however, is to operate on trees that have more complex structure,
such as the abstract syntax trees (ASTs) that arise in full blown programming languages:



M. Vollmer et. al. 26:21

(i) the trees themselves do not have homogeneous structure, so the location of a particular
tree node in a packed buffer is intimately related to the types of the other nodes in the
tree; and (ii) the operations on the tree nodes are not homogeneous, so the structure of
computations (including how to extract particular fields from a serialized representation
of a tree node) varies based on the type of the tree node. In this setting, writing a tree
traversal that operates directly over a packed representation is complex and error prone. On
the other hand, writing such a traversal in an idiomatic style using pattern matching is fairly
straightforward. This, then, is an ideal use case for Gibbon’s approach.

Benchmarks

In this portion of the evaluation, we look at the performance of two classes of tree walk on
full Racket Core syntax, an AST definition which is excerpted in Figure 8. These benchmarks
consume a Racket abstract syntax tree as input and produce either (1) a count of nodes, or
(2) a new abstract syntax tree. While we only evaluate two simple treewalks, we note that
these traversals contain the two major operation types that might be performed on trees:
maps, where the output tree is structurally similar to the input tree but with a function
applied to each node, and folds, which in this context is transforming an entire subtree
into some differently-structured result. Seen at this high level, all compiler passes on ASTs
are roughly similar, differing mostly in the work done near the leaves of trees. For example,
substitution, copy-propagation, and constant folding all traverse a tree and “act locally”. In
general, many transformations only transform a small fraction of the input and spend most
of their time simply walking over syntax.

We write both benchmarks in Gibbon. We then generate versions of each benchmark, as
before, one using Gibbon’s pointer-based backend (which generates passes over pointer-based
ASTs in C), and one using Gibbon’s packed backend. By letting the implementations differ
only in the backends used to generate them, we isolate the performance differences to those
that arise from the difference in representation. Because Gibbon allows tree traversals to be
written using standard data type match operations, this evaluation also serves to confirm
our ability to generate packed implementations from idiomatic code.

We generated a dataset of inputs by collecting all of the (macro-expanded) source code
from the main Racket distribution, which contains 4,456 files consuming 1GB of code which
drops to 485MB when stripped of whitespace and comments, and 102MB once packed in
our dense representation. We benchmark on this entire dataset, but report only on a subset,
sampling from a spectrum of sizes. The largest single file was 1.4MB. To simulate larger
programs (as would be found in whole-program compilation), we combined the largest K
files into one, varying K from 1 to 4,456. This is representative of a whole program compiler,
which would indeed need to load these modules as one tree.

Results

First, our benchmark methodology is to traverse each input tree N times, doubling N until
the run takes at least two seconds. This gives us a uniform way of measuring both traversals
over very small trees and very large ones.

Figure 7 shows the performance of Gibbon’s packed mode vs gibbon’s pointer (malloc) and
bumpalloc modes, expressed as slowdowns of the pointer-based approaches over packed. We
measured the last level cache reference and cache misses and found dramatic improvements
in these for the packed approach (and modest differences in the number of instructions
executed). Nevertheless the performance of pointer-based approaches is good at small sizes:
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Figure 7 The factor slowdown of competing approaches compared to a baseline of Gibbon’s
packed mode. The X axis is the size in bytes of the (packed) input tree. Left is the fold benchmark
which counts the AST nodes in the tree. On the right is a map over the tree.

data Toplvl = DefineValues ListSym Expr | DefineSyntaxes ListSym Expr
| BeginTop ListToplvl | Expression Expr

data Expr = VARREF Sym | Top Sym | Lambda Formals ListExpr | App Expr ListExpr
| CaseLambda LAMBDACASE | If Expr Expr Expr | SetBang Sym Expr
| Begin ListExp | Begin0 Expr ListExpr | Quote Datum
| QuoteSyntax Datum | QuoteSyntaxLocal Datum
| LetValues LVBIND ListExpr | LetrecValues LVBIND ListExpr
| WithContinuationMark Expr Expr Expr
| VariableReference Sym | VariableReferenceTop Sym | VariableReferenceNull

. . .

Figure 8 Excerpt of Racket Core AST definition in Gibbon., which follows https://docs.
racket-lang.org/reference/syntax-model.html. There are nine data types total.

(1) trees are small and fit in cache, (2) the single-threaded workload can acquire all of the last
level cache, not contending with other threads on the 16-core machine. The end result is that
the system is able to mask the bad behavior of these implementations at these sizes. When
the input/output tree sizes exceed the cache size, however, we see a phase shift. Once we
need to stream trees from memory, the smaller memory footprints and linear access patterns
of Gibbon’s packed approach yield speedups of 2.5-3× for fold and 2× for map.

7 Extensions

This section evaluates two extensions to Gibbon that enable more complicated traversals
and expose more opportunities for performance.

Our benchmarks up until now focus on “full” treewalks: traversals that visit every node
of the input tree, in order. While this assumption is accurate for most compiler passes, there
are some scenarios and applications where this may not be true:

If a traversal exploits truncation. Some tree traversals, such as those of space-partitioning
trees [10] gain asymptotic improvements by truncating traversals of subtrees. Based
on some condition (for example, that a given subspace in a space-partitioning tree is
unimportant), traversal of a node’s entire subtree is skipped, and the traversal continues
on to the sibling of the current node. This optimization means that not all of the tree is
visited by the traversal.

https://docs.racket-lang.org/reference/syntax-model.html
https://docs.racket-lang.org/reference/syntax-model.html
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If a traversal is parallelized. To run a traversal in parallel, multiple threads collaborate
to walk over a tree. In many traversals, this parallelism is natural: walks over different
subtrees are independent of each other. In such a scenario, a single thread may not walk
over the entire tree and, indeed, may not even start its tree walk at the beginning of the
buffer holding the tree.

For both of these cases, our current Gibbon compiler is insufficient, because it does not
support non-full treewalks. It assumes that the cursor moving through the buffer runs by
each node in the tree during the tree walk, and the transformations that ensure that cursors
get routed correctly assume the same. The key distinction here is that in both the truncation
case and the parallelism case, we need some way to move a cursor to (or generate a cursor
at) some later point in a packed tree buffer without walking over the intermediate tree nodes.

This section describes an extension to Gibbon’s packed representation—layout information—
that enables these more sophisticated traversals, as well as a evaluation of two benchmarks
that use this extended representation.

7.1 Adding Layout Information for Indirection
As described in Section 4.2, our current approach for handling traversals where we need a
cursor position (e.g., the position of a right child) without an accompanying traversal that
generates it—in other words, if we need to skip over a portion of the tree—is to insert a
dummy traversal that traverses the portion of the tree we are skipping. This dummy traversal
generates the required cursor position to continue with the “real” traversal. However, this
approach can be inefficient if the amount of work done by the dummy traversal is large.
In some situations, these dummy traversals can turn O(logn) operations into O(n) ones,
an unacceptable increase in complexity (consider, for example, the right example from
Section 2.1).

Our solution to this problem is the introduction of indirections in the packed representation.
These are, effectively, values stored in the packed tree that can be used to generate necessary
cursor positions without performing traversals. This layout information amounts, essentially,
to adding pointers to our packed representation (albeit ones that only have to be used in lieu
of dummy traversals). However, they still preserve some of the space benefits of the packed
representation for three reasons. First, indirections are not necessary for the first child, as it
is placed immediately after its parent. Second, indirections are only necessary during some
portions of traversal; if a particular type of node does not have computations that require
skipping subtrees, there is no need to add indirections to that type of node. Third, even if
indirections are required everywhere, if they are only offsets within the buffer, full (64-bit)
pointers are not required, enabling space savings [16].

The particular type of indirection needed depends on the mechanism of the traversal.
Here, we discuss two common patterns.

Pointer-style indirection The most common type of indirection is a “pointer style” indirec-
tion, where the indirection serves to provide easy access to children beyond the first child:
a node contains a field that contains the size of the left subtree. Adding that value to the
current cursor allows the cursor to be moved past the left subtree and on to the right
subtree. These types of indirections are useful to quickly access, say, the right child of a
node without traversing the left child’s subtree. The right code example from Section 2.1
can benefit from a pointer-style indirection.

Rope-style indirection This is a more subtle style of indirection. In some types of tree
traversals (such as those that arise in n-body codes [10]), an interior node is visited
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and, based on some data-dependent condition, either both children of the interior node
are visited or neither is visited, effectively truncating the traversal of both the left and
the right subtrees. This truncation effectively serves as a data-dependent base case
for a recursive traversal. We call these rope-style indirections because these types of
indirection pointers are frequently called “ropes” when used in GPU implementations
of tree traversals [9, 21, 12]. An indirection pointer captures the size of both the left
and right subtrees (generalizing, all child subtrees) of a node, allowing the cursor to be
bumped to the necessary location upon truncation.
Interestingly, Gibbon’s packed representation makes finding the next node easy—a simple
calculation of the size of subtrees. In pointer-based representations, finding the next node
of the tree requires more work: it could be the right sibling of the current node, it could
be the node’s parent’s right sibling, etc.

Note that in both cases, the indirection pointer’s main job is to capture the size of a
subtree or subtrees rooted at a particular node. In general, if a given interior node knows
the sizes of all of its child subtrees, it can use these indirection pointers to provide random
access to a tree, even if that tree is in a packed representation. Hence, we call this indirection
information layout information.

Not every traversal requires full random access to the tree, and hence not every piece
of layout information is necessary to synthesize traversals over packed trees. Automatically
inferring what layout information is necessary, inserting them into packed representations,
and synthesizing cursor updates based on that layout information is a topic for future work.

7.2 Evaluation
Because Gibbon does not currently support a packed representation extended with layout
information, our evaluation uses hand-written packed implementations (in C) that include
that layout information, mimicking what would be produced by a backend that understands
indirections. We evaluate two benchmarks: a parallelization microbenchmark (Section 7.2.1)
that uses pointer-style indirections to distribute the traversal of a tree, and an implementation
of two-point correlation (Section 7.2.2) that uses rope-style indirections.

7.2.1 Parallelism opportunity study
We evaluate a parallel version of our add1 benchmark from Section 6.1. In the pointer-based
version of this code, adding parallelism using Cilk [2] is straightforward: because the add1
operation treats the left and right subtrees independently, we can simply add Cilk spawn
commands to recursive calls to introduce parallelism, cutting off parallelism (after depth 5)
to avoid runtime overhead.

For the packed representation, however, we cannot simply adopt this approach: being able
to spawn a task that processes the right subtree of a node requires being able to reach that
right subtree without traversing the left subtree. We thus manually introduce pointer-style
indirections that allow programs written over the packed representation to directly access
the right subtree, facilitating parallel execution. In any scenario where there is a Cilk spawn,
we use the indirection pointer to launch the right-subtree task, allowing that work to be
stolen. Once we cease using spawns, producing coarse-grained leaf tasks, we revert to the
full tree-walks supported by Gibbon.

Figure 9 shows the result of our parallel packed implementation (left), compared to the
performance of a mature parallel functional compiler, GHC, running the same benchmark
(right). While for small trees we see that our parallel implementation does not yield much
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Figure 9 Parallel speedup: mapping a function over a packed tree. Each line is labeled with
the tree depth that it represents, including trees of 215 to 225 leaves. This compares a Cilk (C)
implementation using the packed trees with layout information that allow random access to subtrees
(top). For comparison, we also show the parallel speedup from a mature parallel functional compiler
(GHC, bottom). All lines are normalized to their own 1-core speeds. In absolute terms, GHC starts
off 34× slower than our approach at one core, and grows to 223× slower at 16 cores.

scaling, for large trees we can achieve a speedup of about 11× on 16 cores (relative to one-core
execution). In contrast, the GHC implementation cannot scale beyond eight cores. At these
allocation rates, GHC spends much of its time in garbage collection, and the runtime system
presents a bottleneck. When comparing the packed implementation directly to GHC, the
packed version is 34× faster on a single core and 223× faster on 16 cores!

While automatically exploiting parallelism in Gibbon is future work, these results demon-
strate the potential for large performance gains.

7.2.2 Point correlation
Point correlation is a well-known algorithm used in data mining [10]: given a set of points in
a k-dimensional space, point correlation computes the number of points in that space that
lie within a distance r from a given point p.

In a naive implementation of point correlation, each point in the space needs to be checked
against the query point. A more efficient approach is to use kd-trees [1] to store the points.
KD-trees are space-partitioning trees where the root of the kd tree represents the entire
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Figure 10 Speedup of packed implementation of point correlation over pointer-based implemen-
tation. X axis shows varying tree sizes (represented in number of nodes).

space, and each node’s children represents a partition of that node’s space into two subspaces.
KD-trees allow the search process to skip some regions in the space. By storing at each
internal node the boundaries within which all descendent points lies, the search process can
skip a subtree is a given point is far enough from the boundaries. As a result, querying a
kd-tree to perform point-correlation is O(log n) instead of O(n). Note that it is exactly the
process of “skipping” subtrees that gives kd-tree-based point correlation its efficiency, but
also that prevents a normal packed representation from sufficing to implement the algorithm:
there is no way to skip past a subtree without performing a dummy traversal, obviating the
asymptotic performance gains.

We implemented both a standard pointer-based version of 2-point correlation in C, as well
as a version that operates over a packed representation augmented with indirection pointers.
Each interior node stores a rope-style indirection pointer that maintains the size of its child
subtrees. If a traversal is truncated at that node, the cursor is incremented by the value in
that indirection pointer, skipping the subtrees and resuming traversal on the rest of the tree.

Figure 10 shows the speedup of the packed version with respect to the standard pointer-
based implementation for different tree sizes. For each tree size, we ran 10 query points
through the tree. For small trees, the queries were performed 10000 times to produce sufficient
runtime for accurate measurements. Each experiment was performed 10 times, and the mean
is reported.

We note first that for every tree size, the packed representation uses 56% less memory than
the pointer-based trees. This reduction in memory usage has two sources: nodes do not need
to store left-child pointers; and more efficient packing of data in the packed representation.
For small trees, the runtime performance of the packed and pointer versions are comparable.
For large trees, the packed version is up to 35% faster than the pointer-based version.

We note that the relatively smaller performance improvement for this benchmark versus
the AST benchmarks is unsurprising. First, taking an indirection means that any spatial
locality gains from the packed representation are lost, resulting in similar behavior to the
pointer-based version. Second, there is relatively more work to be done per node in this
benchmark, so the time spent in traversal of the tree is relatively less, reducing the opportunity
for improvement.
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8 Future Work and Conclusions

Future work

While our initial results show that packed tree-based data representation have significant
promise for accelerating tree transformations, much more work remains to be done. First, our
Gibbon compiler remains an initial prototype—a more realistic implementation supporting
arrays, lists, and more base values would allow the construction of more interesting programs,
further validating our hypotheses. We also plan to support optional automatic inclusion of
layout information to enable applications such as kd-trees directly in Gibbon. This should
support studies in auto-parallelization, which can use packed data regions to coarsen tasks
and help with parallel communication and memory management.

The area of buffer management also deserves attention. For example, using indirections,
it is possible to write a insert or rebalancing operation on an immutable packed tree, by
writing the new nodes into a fresh buffer (like a transaction log). But this quickly introduces
fragmentation and memory reclamation problems that must be managed.

Another extension is data type factoring, storing leaves in a separate, dense, aligned
vector. This enables (1) vectorization of numeric operations, and (2) separating out pointers
that the GC must traverse. This may prove essential for an open-world implementation of
the Gibbon approach in a managed language such as Java, Haskell, or Racket, where GC
support is necessary and interoperation with arbitrary pointer-based values is desirable.

Conclusions

This paper investigates the use of packed representations to represent tree structures, which
serialize a tree and eliminate the pointers connecting the various nodes. While this represen-
tation saves space and, with carefully-written code, can result in performance improvements
(due to prefetching and spatial locality), writing programs that operate directly on the packed
representation is challenging and error prone. To address this problem, this paper introduces
Gibbon, a simple functional language and compiler that allows programmers to write tree
traversal algorithms in standard, idiomatic ways (recursion over algebraic data types), and
a compiler that automatically generates the packed representation for an application and
transforms Gibbon programs to operate directly on that representation.

We show through a series of microbenchmarks and case studies that our packed represen-
tation is highly efficient compared to pointer-based representations, both in terms of space
usage and time, and that we can process complex data, such as the full Racket language’s
ASTs in Gibbon, and automatically translate them to packed implementations. We also
discuss extensions to Gibbon’s representation that introduces selective random access to
packed tree nodes, enabling more complex applications.
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