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Abstract

Clustering algorithms will, in general, either partition a
given data set into a pre-specified number of clusters or
will produce a hierarchy of clusters. In this paper we
analyse several different clustering techniques and ap-
ply them to a particular data set of breast cancer data.
When we do not know a priori which is the best number
of groups, we use a range of different validity indices to
test the quality of clustering results and to determine the
best number of clusters. While for the K-means method
there is not absolute agreement among the indices as
to which is the best number of clusters, for the PAM
algorithm all the indices indicate 4 as the best cluster
number.

1 Introduction

Clustering is the process of dividing data elements into
classes (clusters) so that items in the same class are
as similar as possible. Since there is no a priori fixed
method to determine the best number of clusters for any
given data set, a number of cluster validity indices have
been proposed which attempt to measure how ‘good’ a
particular clustering assignment is. Conceptually, they
measure the ‘compactness’ of each cluster and the ‘sep-
aration’ of cluster centres. A solution in which all data
are assigned to clusters such that they are close to the
cluster centre while all the clusters are far apart may be
considered a good solution.
Numerous studies have reported distinct breast cancer
groups based on gene expression profiles. Recently we
have instead investigated an alternative approach based
on immunocytochemistry, an established robust technol-
ogy, in a total of 1,076 invasive breast cancer cases [1].
Using a hierarchical clustering methodology and Arti-
ficial Neural Network (ANN) modelling techniques, six
groups with distinct patterns of protein expression were
identified.
In this paper, we present a further study in which we ex-
tended our previous work by examining a range of alter-

native clustering techniques and utilising cluster validity
indices to externally verify the number of cluster groups
arrived at.

2 Patients and Methods

2.1 Patients

A series of 1076 patients from the Nottingham Tenovus
Primary Breast Carcinoma Series presenting with pri-
mary operable invasive breast cancer between 1986-98
were used. For clustering analyses, we used a large panel
of tumour markers, which are listed in [1]. Most of
the proteins selected to study in our work have a well-
established role in breast carcinogenesis.

2.2 Methods

Five different algorithms were used for the cluster analy-
sis: (i) Hierarchical (H), (ii) Fuzzy C-Means (FCM), (iii)
K-means initialized with hierarchical clustering (method
average), (iv) Partitioning Around Medoids (PAM), and
(v) Adaptive Resonance Theory (ART).

2.2.1 Hierarchical

Hierarchical clustering builds (agglomerative), or breaks
up (divisive), a hierarchy of clusters. The traditional rep-
resentation of this hierarchy is a tree (called a dendro-
gram), with individual elements at one end and a single
cluster containing every element at the other. Cutting
the tree at a given height will give a clustering at a se-
lected precision.
The hierarchical method was used as described previ-
ously in [1] and the same (six) cluster assignments as
obtained were used.

2.2.2 Fuzzy C-Means

The FCM algorithm is based on the minimization of an
objective function J(U, V ) (1) to achieve a good classifi-
cation.

J(U, V ) =
n∑

i=1

c∑
j=1

(µi,j)m‖xi − vj‖2 (1)



In (1) the expression X = {x1, x2, ..., xn} is a collec-
tion of data, where n is the number of data points and
V = {v1, v2, ..., vc} is the set of corresponding cluster
centres in the data set X, where c is the number of clus-
ters. µij is the membership degree of data xi to the
cluster centre vj (µi,j ∈ [0, 1]). m is called the “fuzziness
index” and the value of m = 2.0 is usually chosen. A full
description of this method can be found in [3].

2.2.3 K-means

The K-means technique aims to partition the data into
k groups such that the sum of squares from points to the
assigned cluster centres is minimized. As for the fuzzy
c-means, an objective function J(V ) (2) should be min-
imized, but for this method it has the following aspect:

J(V ) =
k∑

j=1

cj∑
i=1

||xi − vj ||2 (2)

where ||xi−vj || is the Euclidean distance between xi and
vj and cj is the number of data points in the cluster j.
The j-th centre vj can be calculated as:

vj =
1
cj

cj∑
i=1

xi, j = 1, ..., k. (3)

K-means clustering is dependent on the initial setting
of the cluster assignments (which, in turn, determines
the initial cluster centres). Various techniques have been
proposed for the initialisation of clusters [2], but for this
study we used a fixed initialisation of the cluster assign-
ment obtained with hierarchical clustering.

2.2.4 Partitioning Around Medoids

The PAM algorithm is based on the search for k rep-
resentative objects (the so-called medoids) among the
observations of the data set. These observations should
represent the structure of the data. After finding a set of
k medoids, k clusters are constructed by assigning each
observation to the nearest medoid. The goal is to find
k representative objects which minimize the sum of the
dissimilarities of the observations to their closest repre-
sentative object. Dissimilarities are non-negative num-
bers that are close to zero when two points are near to
each other and that become large when they are very
different.

2.2.5 Adaptive resonance theory

The adaptive resonance theory (ART) algorithm for self-
organisation [4] was motivated by analogy with biological
nervous systems, where the array of memory prototypes
is thought to grow in a stable manner in the presence of
new information, without necessarily over-writing previ-
ously derived states. The ART algorithm has two charac-
teristic properties; firstly, it constrains the self-organised
groups by a maximum separation from any point to the
group prototype, creating new prototypes dynamically as

necessary and, secondly, it introduces a bias pushing the
group prototype toward the covariate axes, which tends
to increase the differentiation between clusters. For de-
tails of the algorithm, see [4].

2.2.6 Validity Indices

Clustering validity is a concept that is used to evaluate
the quality of clustering results. If the number of clus-
ters is not known prior to commencing an algorithm, a
clustering validity index may be used to find the opti-
mal number of clusters for a given data set. Although
there are many variations of validity indices, they are all
based on considering the data dispersion in a cluster and
between clusters.
For hierarchical clustering, the same six clusters as ob-
tained previously ([1]) were utilised without further ex-
amining cluster validity.
For the Fuzzy C-Means algorithm Gath-Geva ([6]), Xie-
Beni ([11]), Partition Coefficient and Partition Entropy
([3]) indices have been used.
For K-means and PAM clustering, the algorithms were
both run for between 2 and 20 clusters. After each it-
eration, six cluster validity indices specified below were
calculated and recorded, in order to determine the best
number of clusters. The indices are ([10]): Calinski
and Harabasz, Hartigan, Scott and Symons, Marriot,
TraceW, and TraceW−1B. For each index the number
of clusters to be considered was chosen according to the
rule reported in [10].
For the remaining technique (ART), the cluster number
is a fixed parameter of the algorithm — i.e. the clus-
ter number is provided to the algorithm, which then at-
tempts to find the best assignment of the data to the
given number of clusters (while determining the location
of each cluster centre).

2.2.7 Visualisation

To enable visualisation, the original data space (the 25-
dimensional space of protein markers) was transformed
by principal component analysis (PCA) [7], and then the
points were plotted at their projected position against
the first and second principal components’ axes. Such a
plot provides a picture in which the clusters have been
‘spread out’ as much as possible according to the first
two components. We also used different colors for pa-
tients belonging to different clusters.
All our work was done using R, which is a free software
environment for statistical computing and graphics. [9]

3 Results

3.1 Clustering Results

3.1.1 Hierarchical and ART results

As the Hierarchical method was exactly as we used pre-
viously ([1]), the same six clusters were obtained.
For the ART algorithm, the parameters of the model
were adjusted to result in the same number of clusters



as the other methods, so facilitating the identification of
concordant cluster membership across the different ap-
proaches.

3.1.2 Fuzzy C-means results

The results for this method indicated that fuzzy c-means
algorithm was not obtaining good cluster partitions and,
instead, was assigning all data points to all clusters with
equal membership. Furthermore, it was found that when
the data set was divided into more than three clusters,
the final clustering obtained assigned no data to some
clusters (i.e. some clusters had no elements). Additional
validity indices ([10, 8]) were also calculated based on the
final hard clusters, but without improvement in results.
As a consequence, fuzzy c-means was dropped from fur-
ther analysis.

3.1.3 K-means and PAM results

The validity indices were calculated for each method, for
2 to 20 clusters. The corresponding best number of clus-
ters is shown in Table 1.
It can be seen that, while there was not absolute agree-
ment among the indices as to which was the best number
of clusters for the K-means method, there is good agree-
ment that the best number of clusters for the PAM algo-
rithm is four. But, on further inspection, it can be seen
that even for the K-means, there is more agreement than
might be immediately apparent. For example, the Scott
and Symons index (which indicated that the best num-
ber of clusters was three) indicated that the second best
number of clusters was six. Consequently, the indices
were used to rank order the number of clusters and the
minimum sum of ranks was examined. It was found that
the minimum sum of ranks (a form of consensus among
the indices) indicated that the overall best number of
clusters was six for K-means.

K-means PAM
Calinski and Harabasz 6 4
Hartigan 3 4
Scott and Symons 3 4
Marriot 6 4
TraceW 4 4
Friedman and Rubin 3 4
Minimum sum of ranks 6 4

Table 1: Optimum number of clusters estimated by
each index for K-means and PAM methods

A summary of the cluster distributions (number of pa-
tients in each cluster) obtained for each of the methods
is shown in Table 2.

PAM Hierarchical K-means ART
1 382 1 336 282 238
2 324 2 180 301 408
3 153 3 234 134 188
4 217 4 4 138 96

5 183 124 35
6 139 97 111

Table 2: Number of cases in each cluster

3.2 Visualisation

Biplots of the clusters obtained for each method, as
shown in Figure 1, were produced. From these plots,
it can be seen that the first axis splits two clusters (1 &
2) over the left-hand side of the biplots. A third cluster
(cluster 3) is evident towards the bottom of the biplots.
The PAM method places all patients on the right-hand
side into a single cluster (PAM cluster 4), while for the
other methods, various splits of these data into three
clusters (4, 5 & 6) can be seen.

4 Discussion

In this paper we reviewed five different clustering tech-
niques and applied them to a particular case study in
combination with a range of cluster validity indices.
From our experiments we found different results for each
of them.
The fuzzy c-means method seemed to be the weakest
one among the proposed techniques. It did not return a
clear classification and the membership function for each
datum was very poor. Even the validity indices compu-
tation did not suggest any relevant result.
We also found a difference between the most similar
methods: in fact, although K-means and PAM share sev-
eral features, they ended up with different results. Look-
ing at the validity indices values, we found that PAM
algorithm suggested a clear classification in four groups,
while the K-means one was more unstable. This dif-
ference might be explained saying that PAM is a more
robust method compared to K-means, as it minimises a
sum of dissimilarities (real numbers), instead of a sum
of squared euclidean distances. On further inspection,
using the minimum sum of ranks of validity indices, we
found that we could choose six clusters for the K-means
method. This fact was in accordance with previous re-
sults (hierarchical clustering) and with the last method
applied (ART), which needed the number of clusters as
an input value.
We then compared PAM method (with four clusters di-
vision) with the other ones (Hierarchical, K-Means and
ART all with six clusters split) using the biplots (Fig. 1).
We note that the four PAM clusters are more compact
and better separated compared to other methods. We
have also carried out a detailed examination of how these
clusters relate to clinical factors [5].
In conclusion, using five different clustering methodolo-
gies in combination with a range of cluster validity in-
dices, we have found that there are two possible ways of
splitting our data, one using four groups and the other
using six. It is worth noting that in such a large, com-
plex, high-dimensional data set, it is extremely unlikely
that a wide range of clustering algorithms would reach
perfect agreement.
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Figure 1: Biplots of clusters projected on the first and second principal component axes
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