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Abstract—In this paper,  we describe a dataset relating to 

cellular and physical conditions of patients who are operated 

upon  to  remove  colorectal  tumours.  This  data  provides  a 

unique insight into immunological  status at the point of tu-

mour removal, tumour classification and post-operative sur-

vival. Attempts are made to cluster this dataset and important 

subsets of it in an effort to characterize the data and validate 

existing  standards  for  tumour  classification.  It  is  apparent 

from optimal clustering that existing tumour classification is 

largely  unrelated to  immunological  factors  within  a  patient 

and that there may be scope for re-evaluating treatment op-

tions  and survival  estimates  based on a combination  of  tu-

mour physiology and patient histochemistry.

I. INTRODUCTION

OLORECTAL cancer is the third most commonly di-

agnosed cancer in the world. Colorectal cancers start 

in the lining of the bowel and grow into the muscle layers 

underneath then through the bowel wall [3]. TNM staging 

involves the Classification of Malignant Tumours 

C

• Tumour (T).   Size of the tumor and whether it has in-

vaded nearby tissue 

• Nodes (N). The extent to which regional lymph nodes in-

volved 

• Metastasis (M). This is the spread of a disease from one 

organ or part to another non-adjacent organ.

4 TNM stages (I,II,III,IV)  are generated by combining 

these three indicator levels and are allied with increasing 

severity and decreasing survival rates.

Treatment options include minor/major surgery, chemo-

therapy,  radiotherapy but the correct  treatment  is  heavily 

dependent on the unique features of the tumour which are 

summarised  by  the  TNM  staging.  Choosing  the  correct 

treatment at this stage is crucial to both the patients survival 

and quality of life. A major goal of this research is to auto-

matically optimize the treatment plan based on the existing 

data.

The data for this research was gathered by scientists and 

clinicians at City Hospital, Nottingham. The dataset we use 

here is made up of the 84 attributes for 462 patients. The at-

tributes are generated by recording metrics at the time of 

tumour removal, these include:

• Physical data (age, sex etc) 

• Immunological data (levels of various T Cell subsets) 

• Biochemical data (levels of certain proteins)

• Retrospective data (post-operative survival statistics) 

• Clinical data (Tumour location, size etc). 

In the research into the relationship between immune re-

sponse and tumour staging there has been some support of 

the  hypothesis  that  the  adaptive  immune  response  influ-

ences the behavior of human tumors. In situ analysis of tu-

mor-infiltrating immune cells may therefore be a valuable 

prognostic  tool  in  the  treatment  of  colorectal  cancer  [7]. 

The immune and inflammation responses appear to have a 

role to play in the responses of patients to cancer [8] but the 

precise nature of this is still unclear. 

The goal of this research is to assess the clustering be-

havior  of  this  dataset  to  see  how  best  the  data  can  be 

grouped, how many clusters it should be grouped into and 

what  these  clusters  represent.  It  is  hoped  that  this  may 

eventually help clinicians to decide how best to treat pa-

tients based on their biological, chemical and physical at-

tributes at the time of tumorectomy. Clustering is the act of 

assigning a set of n- dimensional attribute sets to clusters so 

that the members of one cluster are more similar to each 

other than to those in other clusters. If we define how pa-

tients can be optimally clustered into groups and how many 

groups they should clustered into, we can then assess how 

well these clusters match to key metrics such as survival 

and physical tumour grading.

This paper solely discusses unsupervised methods to rep-

resent the dataset. By removing supervised guidance we are 

allowing for undirected analysis of the data to inform us of 

features  that  may otherwise be missed.  We have made a 

parallel effort to perform supervised modeling but this be-

yond the scope of this paper. Supervised efforts on cancer 

biomarker datasets have previously shown interesting rela-

tionships in the data and a phenomena called “Anti-learn-

ing” where testable feature detection using standard learn-
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ing  methods  appears  impossible  when  modeling  of  low 

sample  sizes  in  high  dimensional  feature  spaces  is  at-

tempted [1,2].

II.DATA ANALYSIS

The dataset supplied is a biological dataset and as such 

has a rich complement of preprocessing issues. 11.32% of 

the values  are  missing,  with some attributes  having over 

40% missing values  and some patients having over 30% 

missing values. Saying this, it is still an invaluable record 

of an extensive set of attributes from a relatively large num-

ber of patients.

Missing data poses a problem for most modelling tech-

niques. One approach would be to remove every patient or 

every attribute with any missing data. This would remove a 

large number of entries,  some of which only have a few 

missing values that are possibly insignificant. Another ap-

proach is to average the existing values for each attribute 

and to insert an average into the missing value space. The 

appropriate average may be the mean, median or mode de-

pending on the profile of the data.  

Much of the data takes the form of human analysis  of 

biopsy  samples  stained  for  various  markers.  Rather  than 

raw cell counts or measurements of protein levels we are 

presented with thresholded values.  For instance, CD16 is 

found on the surface of different types of cells such as natu-

ral  killer,  neutrophils,  monocytes  and  macrophages.  The 

data contains a simple 0 or 1 for this rather than a count of 

the number of cells.  This kind of manual inspection and 

simplification is true for most of the data and any modeling 

solution must work with this limitation. 

It is apparent that there are some existing strong correla-

tions in the data. By using a combination of correlation co-

efficients and expert knowledge the data was reduced down 

to a set of ~50 attributes.  This included removing several 

measurements that were hindsight dependent (ie. chemo or 

radio treatment) and correlated with TNM stage. (ie. Dukes 

stage). 

Single attribute relationships exist within the dataset but 

are  not  strong.  Analysis  of  single  attributes  can  yield  a 

greater than 65% prediction rate when attempting to predict 

which TNM stage a patient was classified as but only ~55% 

when the TNM stages were restricted to the more interest-

ing  (TNM stage 2 or 3). If we look at CD59a and CD46 

thresholded values we can see that they are loosely related 

to survival (figure 1) with elevated levels of each indicating 

a reduction in survival averaging ~13 and 6 months. (Fig. 

1a and b) 

III. UNSUPERVISED LEARNING AND OPTIMAL CLUSTER 

NUMBERS

We initially look at how TNM stages are represented in 

the whole dataset when it is optimally clustered using a k-

means approach [4]. This aims to divide multidimensional 

data into k clusters where each data point belongs to the 

cluster with the nearest mean. We quickly see that cluster-

ing based on biochemistry and physical attributes does not 

classify patients into the same classes as the TNM stages. 

Table 1 is a truth table for TNM stages 2 and 3 and a 2 

cluster k-means approach showing that each cluster has a 

very  similar  number  of  patients  that  were  TNM stage  2 

and 3.

Table 1. Relationship of patients of 2 TNM categories to a 2 cluster k-

means approach

TNM Catagory

Cluster 2 3

1 24.62% 23.10%

2 28.27% 24.01%

If we look at the survival rates for patients in each of the 

2 clusters we see there is very little difference at averages 

of  41.75  and  41.98  months  respectively,  as  opposed  to 

46.78 and 36.36 months for TNM stage 2 and 3 patients re-

spectively.  This  would  suggest  that  when  we  optimally 

cluster the biochemical data into 2 clusters, membership of 

the resulting clusters is a poor indicator of survival.

If we look at optimal 3 and 4 cluster solutions we get a 

much wider difference in survival periods for each cluster. 

Figure 1a. Relationship of  CD59 to survival with average survival rates.

Figure 1b. Relationship of  CD46 to survival with average survival rates
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Average survival periods for the three cluster solution were 

39.56, 40.89 and 44.29 months and for the 4 cluster solu-

tion were 36.87, 40.15, 41.43 and 46.68 months. The TNM 

stages in each cluster are evenly spread suggesting survival 

can be predicted as well based on the biochemical marker 

combinations as the TNM stages. Figure 2a and 2b shows 2 

of the 4 clusters, cluster 2 has the lowest survival rate at 

36.87 months and cluster 4 has the highest survival rates at 

46.68 months. If  we look at the most widely differing at-

tributes we can see that there are strong differences in the 

representation of these attributes in each cluster when com-

pared to the average. To put this into context, nearly 60% 

of patients in cluster 2 had an elevated level for FLIP while 

only 21% of patients  in  cluster  4  had elevated  levels  of 

FLIP.  FLIP  is  a  key  regulator  of  colorectal  cancer  cell 

death [10] so this wouldn’t be surprising as the presence of 

of it in patients may indicate their response to their cancer 

at the time of tumorectomy was more advanced.

Figure 2a. Mean values for key markers in cluster 2 (low survival rates) 

and cluster 4 (highest survival rates)

Figure  2b.  Mean  values  for  key  markers  in  cluster  2  (low survival  

rates) and cluster 4 (highest survival rates)

IV. CLUSTER ANALYSIS OF DATASETS

Using research by Soria et al [5] as a basis we attempted 

to discover the optimal number of classes patients with dif-

ferent  TNM stage  tumours  should be classified into.  We 

had been largely unsuccessful  in classifying  patients into 

their  TNM stages  based  on  their  attribute  measurements 

and one possible reason for this is that the patients actually 

belong to 3 or more classes and attempting to classify them 

in a binary way resulted in poor performance.

In particular we implement a shorter version of the algo-

rithmic framework, proposed by Soria et al [9], which com-

bines different  clustering algorithms and, with the use of 

Validation Indices,  tries to define the optimal number of 

classes that describe the dataset. After this a method called 

Consensus Clustering is used to define the classes. The pro-

posed framework consists of up to 7 steps, of which we will 

use the first 4, these are:

1. Preprocessing : This step includes the deletion of rows 

which contain missing values, data transformation and the 

calculation of descriptive statistics.

2. Clustering : In this step various clustering algorithms 

are applied to the dataset including Hierarchical Clustering, 

K-means, PAM and Fuzzy C-means.

3. Validation : In this step the utilisation of validation in-

dices helps us to find the optimal number of clusters when 

this number is not known before the analysis.

4. Visualization & Agreement : In this step we obtain a 

general  characterisation  of  the  cluster  analysis  we  per-

formed here through various plots 

We began by taking a small subset of the data that had 

very  few  missing  values  (~0.5%)  and  only  pertained  to 

TNM stage 2 and 3 patients, replacing any missing values 

with the modal value. The main aim here was to define how 

many clusters would be required to classify the data opti-

mally and if the resulting clusters resembled the TNM stag-

ing. A k-means clustering approach was then used on the 

dataset to optimally cluster the data into 2-15 clusters. Each 

of these clustering approaches was then tested to see how 

well the clusters fitted using 6 clustering indices to score 

them [6]. Results shown in figure 3 show that 3 or 4 clus-

ters appears to be optimal for all 6 Indexes

We then ranked the performance of the six cluster index-

ing approaches for 2 to 10 clusters and calculated a value to 

Figure 3. Cluster Optimality as defined by 6 cluster index calculations
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represent performance using the reciprocal of the average 

ranking performance, with and without the Friedman Index 

(this index appeared to be the least  reliable).  The results 

from this (figure 4) would suggest that patients with TNM 

stage  2  and  3  tumours  should  be  separated  into  3  or  4 

groups based on their immunology and chemistry statistics.

Figure 4. Ranking calculation for 2 – 10 clusters

If we look in more detail at the cluster membership we can 

get  an  idea  about  how  attributes  are  divided  up  into 

3clusters (table 2). Discussing the role of each abbreviated 

attribute presented here is beyond the scope of this paper 

but it includes levels for various immune cell subsets (eg. 

CD68), tumour suppression proteins (eg. P53) and degree 

of  mutation  in  sections  of  DNA  (MSI).  These  results 

continue  to  confirm  that  the  patients  are  optimally 

separated  into  greater  than  2  groups  based  on  their 

immunohistochemistry.

Next we look at the relationship between the inclusion of 

missing values with predicted number of clusters. We have 

reported in detail the findings from two processed datasets 

that  point  to  the  data  being  optimally  clustered  into  3 

datasets. In this section we analyse this finding further to 

see  how  the  optimal  number  of  clusters  changes  with 

dataset size and if there is any effect of adding data from 

patients with TNM stage 1 and 4 tumours

Figure 5. Optimal cluster number using different patient subsets.

If  we reduce  the  number  of  patients  based  on  removing 

those with the most missing data points first, and then look 

at the optimal number of clusters for each resulting dataset 

we see a graph that suggests 3 or 4 clusters solutions are 

optimal for datasets with just TNM stage 2 and 3 tumours 

(figure 5).. This would suggest that the TNM staging may 

not  a  powerful  reflection  of  physical  and  biochemical 

conditions of a patient at the time of operation.

Table 2. Levels of cell markers for each cluster as a percentage above 

(+) or below (-) average

Cluster 1 Cluster 2 Cluster 3

CD68 -38.03 -9.09 44.59

vegfc -26.89 -9.28 34.23

micahilo -25.37 17.39 7.55

apcMHC2 -4.81 -21.16 24.57

p53 17.42 -24.09 6.32

ulbp3rec -15.04 -10.01 23.71

ulbp1rec -13.07 -11.81 23.55

CD16 -5.43 -18.01 22.19

bcl2 1.41 -17.46 15.20

DR4 -1.31 16.29 -14.19

msi -15.01 2.60 11.74

p27nuc -13.16 4.45 8.25

ulbp2rec -10.63 -3.08 12.96

mhc -11.59 2.25 8.83

FLIP -11.41 2.43 8.50

cd46 8.47 -4.11 -4.13

p27cyto -6.42 -1.39 7.39

stat1nuc2 0.62 -4.41 3.59

ki67 -1.61 -2.87 4.23

cd59a -4.05 0.99 2.89

mhcallele 0.92 2.17 -2.92

Figure 6a. Optimal number of clusters using consensus clustering for 

TNM 2,3
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We can also look at the effect of removing attributes from 

the  dataset  one  at  a  time  based  on  missing  values  and 

seeing how this affects the optimal number of clusters for 

both the 2 and 4 TNM scenarios (Figures 6a and 6b). These 

show that 3 clusters to be most optimal, especially in the 

range of 25-35 attributes. This may be the most important 

range given that higher than this many more attributes with 

a high percentage of missing values are included and lower 

than  25  starts  to  exclude  more  and  more  important 

attributes. Overall though it seems apparent that a dataset 

that is classified into 2 groups based on physical 

Figure 6b. TNM 1,2,3,4 tumour patients with an increasing number of 

attributes

V. CONCLUSIONS

We have presented results for a unique dataset based on 

the biochemical and factors associated with colorectal  tu-

mour patients. This dataset is limited in many ways, but ex-

tremely important nonetheless and understanding any rela-

tionships or features based on the dataset to hand is an ur-

gent priority. Currently, the most important guide to post-

operative treatment is the TNM grading of the removed tu-

mour. We argue here that TNM grading may not be aligned 

to the biochemical status of the patient. Given that the on-

going treatment  for  a  patient  immediately after  tumorec-

tomy  is  directly  acting  upon  a  patients  biochemistry  it 

could be argued that an understanding of this immunologi-

cal, biological and chemical status of the patient is at least 

as important as the physical characteristics of the tumour.

It is apparent that when clustering into 2 groups based on 

a selection of biochemical and physical characteristics is a 

poor representation of the patient state. There is no relation-

ship between the new clusters and survival or TNM stage. 

This could be argued another way that 2 TNM stages for 

these patients is a poor representation of their biochemical 

status. When the number of clusters is examined it seems 

apparent that 3 or 4 clusters is optimal for patients, regard-

less of if they are from 4 TNM stages or just the most am-

biguous TNM stage 2 and 3 group. Again, this would sug-

gest that TNM staging is a poor representation of patients 

biochemical state. 

The fact  that prediction of survival can be achieved at 

comparable  rates  to  TNM  staging  for  2  of  the  groups 

(36.67|36.87 and 46.68|46.78) suggests that survival is ac-

tually based on BOTH the physical metrics used for TNM 

staging AND the biochemical and immunological markers 

presented at the time of tumorectomy.
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