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Abstract

Background Children are frequently prescribed medica-

tion ‘off-label’, meaning there has not been sufficient

testing of the medication to determine its safety or effec-

tiveness. The main reason this safety knowledge is lacking

is due to ethical restrictions that prevent children from

being included in the majority of clinical trials.

Objective The objective of this paper is to investigate

whether an ensemble of simple study designs can be

implemented to signal acutely occurring side effects

effectively within the paediatric population by using his-

torical longitudinal data. The majority of pharmacovigi-

lance techniques are unsupervised, but this research

presents a supervised framework.

Methods Multiple measures of association are calculated

for each drug and medical event pair and these are used as

features that are fed into a classifier to determine the

likelihood of the drug and medical event pair correspond-

ing to an adverse drug reaction. The classifier is trained

using known adverse drug reactions or known non-adverse

drug reaction relationships.

Results The novel ensemble framework obtained a false

positive rate of 0.149, a sensitivity of 0.547 and a speci-

ficity of 0.851 when implemented on a reference set of

drug and medical event pairs. The novel framework con-

sistently outperformed each individual simple study design.

Conclusion This research shows that it is possible to

exploit the mechanism of causality and presents a frame-

work for signalling adverse drug reactions effectively.

Key Points

The ensemble of simple study designs outperformed

each single simple study design when considering

both the overall ability to rank adverse drug reactions

and the signalling performance at a natural threshold.

The ensemble method is adaptable as it can

incorporate any new measures of association that are

proposed over time.

The results of the paper highlight the potential

benefit of applying supervised learning for adverse

drug reaction signalling.

1 Introduction

There is an abundance of evidence to support the impres-

sion that side effects in children currently present a sig-

nificant public health problem [1, 2]. When there is a causal

relationship between a drug and medical event it is termed

an adverse drug reaction (ADR). Children of all ages can

suffer from diseases that require them to take medication

but the suitability of drugs in the paediatric population

(0–17 years old) is generally unexplored. The majority of

paediatric prescriptions are ‘off-label’ meaning the

licensed medication is used in situations that have not had

sufficient investigation to determine the drug efficiency or
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safety. Examples of off-label prescriptions are prescribing

a different dosage or frequency than recommended, pre-

scribing a drug for a different indication than the drug was

tested for or prescribing the drug to age groups such as

children where the drug has not been extensively evaluated.

The paediatric population are rarely involved in clinical

trials, so there is little evidence available to determine if a

medication is efficient and safe [3] and many drugs do not

have licenses for use in children. A study that observed a

paediatric hospital in Derby, UK found that 23 % of the

prescribed drugs were off-label and this was lower than the

off-label rate observed in four other European hospitals [2].

The problem with ‘off-label’ prescribing within the

paediatric population is that there are clear physiological

differences between adults and children, so the efficiency

and safety knowledge discovered during clinical trials in

the adult population cannot be accurately extrapolated for

the paediatric population [4]. Consequently, there has been

a recent demand for incorporating more children into ran-

domised controlled trials [5] so drug efficiency and safety

can be directly evaluated for children. In addition to being

able to assess the efficiency of drugs within the paediatric

population and determine suitable dosages, there are also

advantages for the children enrolled in trials such as access

to new medicine that may reduce morbidity. However,

there are also many downsides including both physical and

mental discomfort, separation from parents [5] and the

standard risks associated with adult clinical trials [6]. These

downsides may be magnified in children because of

potential errors in initially estimating ‘adult equivalent’

doses, and because of additional impacts of drugs on still-

developing tissues. In the worse case, a clinical trial could

result in child mortalities. Therefore, if possible, it is more

preferable to develop alternative means to identify ADRs

that do not have these negative effects.

Pharmacovigilance is the study of prescription drug

ADRs, including the collection of suitable data, and their

detection and prevention. As the clinical trial data for the

paediatric population is lacking, a key resource for paedi-

atric pharmacovigilance is the spontaneous reporting sys-

tem database [7, 8]. The spontaneous reporting systems

amalgamate the suspected cases of ADRs that are volun-

tarily reported within a population. For example, in the UK

if a patient is prescribed a drug and experiences an unex-

pected medical event then their doctor or the patient can

report the suspected ADR via the yellow card scheme by

filling out a form. All the yellow card scheme reports are

then combined into a spontaneous reporting system data-

base that is used to identify ADRs. As the database only

contains reports detailing cases when a drug is taken and a

suspected ADR occurs, and not the cases when a drug is

taken and no ADRs is suspected, the frequency that drugs

are prescribed is unknown. Furthermore, as the reporting is

done voluntarily, it is common for data to be missing,

incorrect or duplicated [9]. Consequently, there are no

current algorithms that can be applied to spontaneous

reporting system databases that are capable of detecting

ADRs with a high accuracy, nor are the algorithms able to

quantify the frequency that the ADRs occur. It is the com-

bination of a lack of clinical trials coupled with the general

spontaneous reporting system limitations that makes the

paediatric population potentially more susceptible to ADRs.

Research into developing novel algorithms that are able to

efficiently and effectively discover qualitative and quanti-

tative ADR information for the paediatric population is

required to reduce child morbidities and mortalities.

A new type of database, called the longitudinal obser-

vational database, has started to emerge as a potentially

new source of ADR information. The longitudinal obser-

vational database contains sequences of patients’ medical

data often spanning decades and offers a new perspective

for ADR discovery. One example of a longitudinal obser-

vational database is The Health Improvement Network

(THIN) database that contains medical records extracted

directly from general practitioners’ databases across the

UK (http://www.thin-uk.com). The THIN database con-

tains validated personal information about each patient in

the database including their year of birth and gender. There

is also a complete medical record and prescription history

for each patient during the time they have been registered

at the practice. However, patients may not inform their

doctors of all the medical events they experience, espe-

cially minor ones, and use of over-the-counter medication

for self-treatment is unlikely to be recorded. As the THIN

database contains information about how many patients are

prescribed a drug, it may be possible to extract quantitative

information about ADRs. The effect of dosage and fre-

quency of prescription could also be investigated to iden-

tify the optimal treatment for each child. This knowledge

could then be used to help personalise medication for

paediatric patients on the basis of their medical state, age

and gender.

Several methods have been presented to identify ADR

signals using longitudinal observational databases,

although comparisons have concluded that the methods

generally have a high false positive rate [10, 11]. These

algorithms include cohort techniques [12], case-series

approaches [13], case–control approaches [14], dispropor-

tionality analysis [15] or a mixture of the previously

mentioned techniques [16]. In addition to being limited by

a high false positive rate, many of these algorithms require

the use of the patient’s medical history years prior to the

drug prescription of interest and this limits their ability for

use on the paediatric population as a long medical history is

often not available (if a child is very young). The case–

control method compares the prevalence of the drug within
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the population of patients experiencing the medical event

and the prevalence of the drug within a population of

patients that have similar covariates but do not experience

the medical event. However, the case–control technique

applied to the paediatric population is likely to introduce

confounding as children experiencing a medical event may

have a serious disorder that makes them susceptible to

other illnesses, whereas children not experiencing the

medical event could be very healthy. Similarly, comparing

children who take a drug with children not taking a drug

may introduce confounding by indication [17] as children

who do not take any medication are likely to be very

healthy due to a lack of chronic or degenerative illnesses,

whereas children who require certain medication are likely

to be very unhealthy. It follows that a novel method that

does not suffer from confounding by indication or require

long periods of historic medical history should be more

effective at signalling ADRs.

Recently, a supervised framework [18] that learns from

known ADRs has been proposed to signal ADRs by using

features based on the Bradford Hill causality criteria, cri-

teria that are frequently used to determine causality. This

framework was shown to perform well, and obtained a low

false positive rate even when the frequency of the ADR

was low. Unfortunately, the calculation of many of the

Bradford Hill features requires knowledge of a long med-

ical history and this is often not available for paediatric

patients. Consequently, the framework using Bradford Hill

criteria-based features faces difficulties when applied to

detect ADRs within the paediatric population. One possible

solution would be to implement an analogous framework

that uses features based on the counterfactual method for

causal inference, as these features can be chosen such that a

large medical history is not required. This may enable rapid

detection of paediatric ADRs and the framework may yield

a low false positive rate. The main benefit of this method is

that it does not have the risks associated with clinical trials.

In this paper we aim to investigate whether an ensemble

of specifically chosen simple study designs can signal acute

ADRs within the paediatric population with a low false

positive rate. A comparison will be implemented to

determine whether the ensemble offers an improvement

over each individual simple study design. The ensemble

requires generating multiple distinct measures of associa-

tion between a drug and medical event on the basis of the

counterfactual method for causal inference. However, each

measure of association will be chosen such that a distinct

type of main confounding effect will be introduced. The

motivation of combining these measures of association via

an ensemble is that it may be possible to exploit any causal

mechanism structures. Using drug and medical event pairs

definitively known to represent ADRs or non-ADRs, we

calculate the various measures of association for each drug

and medical event pair to generate the labelled data used to

train a random forest classifier. The measures of associa-

tion for any drug and medical event pair with an unknown

ADR status can then be calculated and fed into the trained

random forest to determine whether the pair corresponds to

an ADR.

The objective of this paper is to investigate whether an

ensemble of simple study designs can be implemented to

signal acutely occurring side effects effectively within the

paediatric population by using historical longitudinal data.

The majority of pharmacovigilance techniques are unsu-

pervised, but this research presents a supervised framework.

2 Material

The THIN database contains temporal medical and therapy

records for over 11 million UK patients. We used a subset

of the THIN database for this research which contained

records for 4 million patients. Within the subset, there were

a total of 30,191,726 medical events recorded for 1.7 mil-

lion patients when they were 17 years old or less. For each

patient, their year of birth, gender and other personal details

are known. Each medical record specifies the patient that

the record corresponds to, the record date and the medical

event experienced by the patient. The medical events have a

tree structure, with the medical event becoming more spe-

cific as its node depth (i.e. the length of the path from the

root to the node) increases. Therefore, medical event nodes

with a depth of 1 are the most general and medical event

nodes with a depth of 5 are the most specific.

Each prescription within the THIN database contains

details about the specific drug prescribed and contains a

code corresponding to the drug known as the British

National Formulary (BNF) code [19]. The BNF code has a

hierarchal structure that can be used to identify similar

drugs. For example, BNF codes starting with 05 (e.g.

05-xx-xx-xx) correspond to drugs used to treat infections,

and BNF codes starting with 05-01-01 (e.g. 05-01-01-xx)

correspond to penicillins. A drug family is the set of drugs

with the same BNF code. For example, the drug family

benzylpenicillin sodium and phenoxymethylpenicillin have

a corresponding BNF code of 05-01-01-01, the drug family

penicillinase-resistant penicillins have a BNF code of

05-01-01-02 and the drug family broad-spectrum penicil-

lins have a BNF code of 05-01-01-03. These are the three

drug families used to evaluate the novel framework pre-

sented in this paper. The number of records for each of the

drug families in the THIN database is presented in Table 1.

These drug families were chosen as they are frequently

prescribed, so their ADRs are generally well known and the

creation of a reference set of definitive ADRs and non-

ADRs was possible.

Signalling Paediatric Side Effects using an Ensemble of Simple Study Designs 165



3 Methodology

3.1 Ensemble of Simple Studies Design Framework

Overview

The proposed ensemble of simple studies design (ESSD)

framework for signalling the acute ADRs that occur within

the paediatric population is:

1. Generate simple studies labelled data

• Choose n drug families of interest, where each drug

family is denoted by Dk; k 2 ½1; n�:
• Determine the risk medical events (RMEDk

) i.e. all

the medical events that are potential acutely

occurring ADRs to the drugs in Dk.

• For each drug family Dk and medical event 2
RMEDk

pair, determine whether the medical event

is a known ADR or non-ADR of the drug family Dk

and add labels. The label for the ith pair is denoted

by yi. For example, if the ith pair corresponds to an

ADR then yi = 1, but if the ith pair corresponds to

a non-ADR then yi = 0.

• Generate the features for each pair (Dk ? event 2
RMEDk

) by applying the simple study designs to

calculate multiple estimated causal effect values

(the measure of association). The feature vector for

the ith pair is denoted by xi:

2. Train a random forest model using the labelled data

(fðxi; yiÞg)

• Apply 20-fold cross-validation to tune the random

forest classifier.

• Select the optimal model parameter by considering

the classifier’s general ability to rank pairs corre-

sponding to ADRs above pairs corresponding to

non-ADRs.

3. Apply the trained random forest classifier to the simple

study design features of any unlabelled drug family

and medical event pair (not known to correspond to an

ADR or non-ADR) and classify the pair as an ADR or

non-ADR.

3.1.1 Risk Medical Events

For each drug family Dk, the medical events investigated

are determined using temporal information. As we are

interested in acutely occurring ADRs, we restrict our

attention to only investigate medical events that are

observed within the month after a prescription of any drug

within Dk is first prescribed. A month was chosen to be a

suitable trade-off to enable a sufficient amount of time for

the patient to report the medical event while not intro-

ducing a surplus quantity of noise. Therefore, given a drug

family Dk, the risk medical events of Dk (RMEDk
) are

defined as the set of all medical events that are observed for

a minimum of three patients within the month after any

prescription of a drug within Dk. We chose to add a limit of

three or more patients experiencing the potential ADR as it

is difficult to determine whether a medical event is an ADR

if it is experienced by less than three patients.

3.1.2 Generating Features

For each drug family (Dk) and medical event 2 RMEDk

pair, we extract six different estimates of the causal effect

of Dk on the medical event. These are the six simple study

designs. The target population is the patients prescribed Dk

and the etiological time period (the period we investigate)

is the month after the first prescription. The estimates of the

causal effect are calculated by either using a different

target population (target substitution) or using a different

etiological time period in (etiological substitution).

x1: Etiological substitution (SSD1)—The causal effect is

approximated by comparing the risk of the medical event

during the month after the prescription for the target

population with the risk during the month before the

prescription for the target population. The main con-

founding effect is caused by a covariate of ‘medical

state’ as the target population medical states are likely to

change between the month before and the month after

the prescription. This causal effect estimate is likely to

be large for progressive medical events (e.g. progres-

sions of the cause of taking the drug) even though they

are not caused by the prescription.

x2: Etiological substitution (SSD2)—The causal effect is

approximated by comparing the risk of the medical event

during the month after the prescription for the target

population with the risk during the year after for the

target population. The main confounding effect is a

covariate of ‘medical sate’, but unlike x1 the causal

Table 1 Details about the records within the subset of The Health

Improvement Network (THIN) database for a selection of three

penicillin drugs prescribed to patients aged 17 years or less

Drug family BNFa Number of

prescriptions

Total First in

3 months

Benzylpenicillin sodium and

phenoxymethylpenicillin

05-01-01-01 1,520,866 456,926

Penicillinase-resistant

penicillins

05-01-01-02 310,622 252,947

Broad-spectrum penicillins 05-01-01-03 6,490,455 1,448,563

a British National Formulary code
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effect estimate is likely to be small for progressive

medical events that become more common as the

population ages and large for medical events that

occurred acutely after the drug.

x3: Target substitution (SSD3)—The causal effect is

approximated by comparing the risk of the medical event

during the month after the prescription for the target

population with the risk during a randomly chosen

month for a substitute population that matches the target

population on age and gender. The main confounding

effect is caused by a covariate of ‘indication’ as the

target population all have certain illnesses causing them

to require the drug but the substitute population does not.

This causal effect estimate is likely to be large for

medical events linked to the indication (i.e. the cause of

taking the drug).

x4: Target substitution (SSD4)—The causal effect is

approximated by comparing the risk of the medical event

during the month after the prescription for the target

population with the risk during the month after for a

substitute population that are given a similar drug (i.e. a

similar BNF code) and have the same indications. The

main confounding effects are caused by a covariate of

‘medical caution’ as patients may be prescribed different

drugs for the same indication owing to medical caution

(i.e. one patient has kidney issues preventing them from

having the standard medication) or covariates of ‘age

and gender’ as age and gender may influence the choice

of drug prescribed.

x5: Etiological substitution (SSD5)—First, a mapping is

performed to ‘generalise’ the medical event descriptions.

This is done by mapping medical event nodes that have a

depth greater than 3 to their depth 3 ‘parent node’. The

causal effect is then approximated using the mapped data

by comparing the risk of the corresponding depth 3

‘parent node’ medical event during the month after the

prescription for the target population with the risk during

the month before for the target population. This causal

effect measure is less vulnerable to covariates of

‘medical event recording’, where different medical

events that correspond to the same/similar illness can

be recorded because of redundancy or illness

progression.

x6: Etiological substitution (SSD6)—First, a mapping is

performed to ‘generalise’ the medical event descriptions.

This is done by mapping medical event nodes that have a

depth greater than 4 to their depth 4 ‘parent node’. The

causal effect is then approximated by comparing the risk

of the corresponding depth 4 ‘parent node’ medical

event during the month after the prescription for the

target population with the risk during the month before

for the target population. This causal effect measure is

less vulnerable to a covariate of ‘medical event

recording’, where different medical events that corre-

spond to the same/similar illness can be recorded due to

redundancy or illness progression.

The vector x i = (xi
1, xi

2, …, xi
6) contains the six esti-

mates of the causal effect for the ith drug family and

medical event pair. We also create three additional features

from the original,

x7
i ¼

x1
i =x2

i if jx2
i j[ 0

x1
i else

�

x8
i ¼

x1
i =x4

i if jx4
i j[ 0

x1
i else

�

x9
i ¼

x1
i =x5

i if jx5
i j[ 0

x1
i else

�

These additional features indicate how much the simple

study design association measures deviate when consider-

ing time, similar patients or the specificity of the medical

event. So the complete feature vector for each drug family

and medical event pair is xi ¼ ðx1
i ; x

2
i ; . . .; x9

i Þ 2 R
9:

3.1.3 Random Forest Classifier

A random forest is a supervised classifier. The task of

supervised learning is to use the training data to learn a

mapping between the feature vector and the class. This

mapping can then be used to predict the class for unseen

data. The random forest is known as a ensemble classifier

as it trains and combines weak and diverse classifiers. Each

weak classifier is a decision tree that uses a subset of the

available features (the simple design study measures of

association) to predict the class (ADR or non-ADR). The

advantages of the random forest classifier are that it can

have features that are both discrete and continuous and

does not require the features to be pre-processed (e.g.

centred and scaled). The parameter of the random forest

that needs to be chosen is the number of features that each

decision tree can use, which is referred to as mtry. In this

research we used the R implementation of the random

forest [20].

The random forest is trained using the labelled drug

family and medical event pair data, XL = {(xi, yi) | the

label is known }. We applied 20-fold cross-validation; this

means that the data are partitioned into 20 sets and for each

set the random forest is trained on the other 19 sets and

then applies to predict the class of each data point within

the set. The trained random forest is then evaluated by

user-defined criteria, in our case the area under of receiver

operating characteristic curve (AUC), and the average

value corresponding to this measure over the 20 sets

determines how well the random forest has performed. This

performance measure is used to select the parameter
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mtry, as various random forests are trained with difference

values of mtry and the mtry that results in the highest AUC

is selected. When we refer to the trained random forest we

mean the random forest that has been trained using the mtry

value that was optimal.

3.2 Evaluation

To evaluate the ESSD framework, we created a reference

set of drug families and medical events pairs that are

known to be ADRs or non-ADRs. The drug families used

to create the reference set are the penicillins with the BNF

codes 05-01-01-01, 05-01-01-02 and 05-01-01-03. The

reference is used to train the random forest and evaluate it.

The reference set data corresponding to two of the drug

families is used as labelled data to train the random forest

and the reference set data corresponding to the remaining

drug family is used for evaluation.

3.2.1 Creating the Reference Set

The reference set was created by investigating all the

RMEDk
for each Dk. Medical events that are listed as side

effects on the BNF website or the medical event states the

occurrence of an adverse event or the medical event is

candidiasis as antibiotics are known to cause this were

labelled as ADRs. Any medical event with a cause that is

known and is not related to the penicillins (e.g. impetigo,

worms, diabetes) was labelled as non-ADRs and a selection

of medical events that are likely to be related to the cause

of taking the drug were also labelled as non-ADRs. The

labels corresponding to medical events that are likely to be

related are the most likely to be incorrect out of all the

labels as it is difficult to show that a medical event is not an

ADR, as even events that cause the drug to be taken could

also be ADRs.

3.2.2 Evaluation Measures

The ESSD framework is evaluated by considering its

ability to signal ADRs at its natural threshold and its ability

to rank drug family and medical event pairs by how likely

they correspond to ADRs. The ESSD is compared with

each individual simple study design (SSDi).

The natural threshold evaluation measures are the

number of true positives (TP), which is the number of pairs

corresponding to ADRs that the method classes as ADRs,

and the number of false positives (FP), which is the number

of pairs corresponding to non-ADRs that the method

classes as ADRs. Similarly, the number of false negatives

(FN) is the number of pairs that correspond to ADRs but

the method classes as non-ADRs and the number of true

negatives (TN) is the number of pairs that correspond to

non-ADRs and the method classes as non-ADRs. The

natural threshold measures can be calculated as

Sensitivity ¼ TP=ðTPþ FNÞ
Specificity ¼ TN=ðFPþ TNÞ

False positive rate (FPR) ¼ FP=ðFPþ TNÞ
: ð1Þ

The general ranking ability of the methods are measured

by the average precision (AP) and the AUC. The AUC is

the area under the curve of the sensitivity plotted against 1

minus the specificity for various thresholds. The AUC can

be interpreted as the probability of a uniformly chosen

ADR pair being ranked above a uniformly chosen non-

ADR pair. If a method performs poorly at its natural

threshold but has a high AUC, then this may mean the

natural threshold needs to be modified.

4 Results

The ESSD framework was evaluated three times. Each

time the reference set data for two of the drug families

were used to train the random forest and the reference set

data for the third drug family was used for evaluation. A

table containing the full reference set data and the confi-

dences returned by the ESSD framework can be found in

the electronic supplementary material. A summary of each

of the three evaluations is presented in Table 2. The opti-

mal mtry obtained when training the model is presented

and also the result of the AUC for the cross-validation.

At their natural thresholds, the ESSD had a lower

overall FPR of 0.149 compared to the other methods that

had FPRs between 0.184 and 0.716. The ESSD had a

sensitivity of 0.547. Although other methods had a higher

sensitivity, they also had a very high false positive rate

(C0.532) which is not desirable. The results of methods at

their natural thresholds for each individual evaluation are

presented in Table 3 and the overall results with the sen-

sitivity, specificity and false positive rate are displayed in

Table 4.

The general ranking ability of the ESSD was consistently

higher than the other methods with AUC values of 0.814,

0.806 and 0.813 for the evaluations 1–3 respectively. The

highest AUC value out of all the other methods was 0.813,

Table 2 Details of the evaluation experiments

Evaluation Training/

testing set

Optimal

mtry

Training

AUCa
Evaluation

set

1 05-01-01-{02, 03} 4 0.885 05-01-01-01

2 05-01- 01-{01, 03} 6 0.827 05-01-01-02

3 05-01-01-{01, 02} 9 0.875 05-01-01-03

a Area under the ROC curve obtained by the 20-fold cross-validation
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0.794 and 0.729 for the evaluations 1–3 respectively. The

AP value obtained by the ESSD was also greater for each

evaluation, with the ESSD being 0.615, 0.659 and 0.717 for

evaluation 1–3 respectively, whereas the highest AP

obtained by any other method over evaluation 1–3 was

0.587, 0.508 and 0.493 respectively. The results of the

general ranking ability are presented in Table 5.

5 Discussion

The results show that the ESSD framework consistently

outperformed the individual simple study design measures.

It consistently had a higher AP and AUC for all three BNF

families investigated. At its natural threshold the ESSD

framework was able to signal just over half the true ADRs

while only signalling approximately 15 % of the non-

ADRs. However, as it is difficult to prove a medical event

is not an ADR, some of the non-ADR labels may be

incorrect, so the probability of signalling an non-ADRs

may actually be lower (i.e. the FPR is probably less than

the value obtained within this research). The ESSD

framework is also efficient, as the simple measures can be

calculated readily and the classifier can be trained quickly.

Once trained, the prediction is fast and could be imple-

mented regularly when new data is added to the longitu-

dinal database. As the ESSD has a low false positive rate

and is efficient, it may be a useful framework to implement

for signal generation. However, the signals that are gen-

erated will still need to be refined as it does not have a zero

false positive rate.

There have been few attempts to apply supervised

learning to the field of pharmacovigilance but this is an

interesting area, as the results of a supervised classifier can

be improved when more labelled data is available. There-

fore, supervised methods should improve over time as

more ADR knowledge is gained. It may be possible to

feedback the results of the supervised methodologies to

further improve them via methods such as semi-supervised

techniques. The ESSD also has the advantage of being

adaptable, as it could incorporate new measures of asso-

ciation that get proposed over time as features.

In this paper we have trained the ESSD using similar

BNFs to the BNF used for the evaluation. The justification

for this is that similar BNF drugs are likely to have similar

underlying patterns. It would be interesting to see whether

the random forest within the ESSD framework could be

trained on a variety of different BNFs and still perform

well. This would indicate whether the underlying structures

are independent of the drug.

One difficulty that was noticed with the ESSD frame-

work is the choice of BNF to use to calculate the similar

BNF measure of association (SSD4). For the penicillins

that was easy as the BNF codes are numerous; however, for

BNF families such as the proton pump inhibitors, a closely

resembling BNF family is difficult to determine and the

wrong choice could lead to different models with various

performances. To overcome this the methodology may

need to be applied to individual drugs rather than BNF

families, but this could be problematic when the drug is

rarely prescribed and therefore rarely recorded within the

database. However, with the combination of longitudinal

Table 3 Number of TP, FP, FN and TN returned for the ensemble of

simple study designs (ESSD) and each individual simple study design

(SSDi)

Method 1 2 3

TP FP FN TN TP FP FN TN TP FP FN TN

ESSD 9 9 8 30 9 6 9 40 17 6 12 50

SSD1 17 21 0 18 15 31 3 15 26 33 3 23

SSD2 17 22 0 17 18 42 0 4 29 37 0 19

SSD3 5 4 12 35 5 13 13 33 17 17 12 39

SSD4 2 4 15 35 2 17 16 29 4 5 25 51

SSD5 17 19 0 20 17 26 1 20 25 30 4 26

SSD6 17 19 0 20 15 29 3 17 24 31 5 25

TP true positive, FP false positive, FN false negative, TN true negative

Table 4 Average number of TP, FP, FN and TN returned for the

ensemble of simple study designs (ESSD) and each individual simple

study design (SSDi) and the overall specificity, sensitivity and false

positive rate (FPR)

Method TP FP FN TN Sensitivity Specificity FPR

ESSD 35 21 29 120 0.547 0.851 0.149

SSD1 58 85 6 56 0.906 0.397 0.603

SSD2 64 101 0 40 1 0.284 0.716

SSD3 27 34 37 107 0.422 0.759 0.241

SSD4 8 26 56 115 0.125 0.816 0.184

SSD5 59 75 5 66 0.922 0.468 0.532

SSD6 56 79 8 62 0.875 0.440 0.560

TP true positive, FP false positive, FN false negative, TN true negative

Table 5 Comparison of the general ADR ranking ability of the

ensemble of simple study designs (ESSD) and each individual simple

study design (SSDi)

Method 1 2 3 Average

AUC AP AUC AP AUC AP AUC AP

ESSD 0.814 0.615 0.806 0.659 0.813 0.712 0.811 0.662

SSD1 0.797 0.559 0.606 0.362 0.678 0.457 0.694 0.459

SSD2 0.785 0.548 0.741 0.430 0.729 0.493 0.752 0.490

SSD3 0.602 0.499 0.484 0.292 0.629 0.433 0.572 0.408

SSD4 0.477 0.316 0.322 0.217 0.459 0.333 0.419 0.289

SSD5 0.797 0.558 0.794 0.508 0.698 0.448 0.763 0.505

SSD6 0.813 0.587 0.621 0.356 0.655 0.435 0.696 0.459

AUC area under the ROC curve, AP average precision
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healthcare databases now becoming common [21], even

rarely prescribed drugs should have a sufficient number of

occurrences in the combined database.

6 Conclusion

In this paper we have proposed a novel framework, called

the ensemble of simple study designs (ESSD), specifically

for signalling acute ADRs within the paediatric population.

The framework does not require knowledge of a patient’s

medical history of more than a month prior to the pre-

scription. The results show that the ESSD can outperform

each individual simple study design measure and appears

to be more consistent. The ensemble still misclassifies

some non-ADRs but it had a false positive rate of 0.149,

making it competitive with existing methods. The advan-

tage of this methodology is that it is supervised, so as new

ADRs are discovered its performance should increase as

more labelled data will be available for training it.

Future work could involve researching new methods for

refining the ADR signals that are generated and reducing

the false positive rate further or investigating different

features based on alternative substitutions for the hypo-

thetical counterfactual situation. For example, features that

deal with alternative forms of confounding such as the time

of the year could be incorporated. It is also of interest to see

whether adding more complex study design methods such

as Temporal Pattern Discovery [16] or HUNT [12] can

improve the ensemble and a comparison between these

methods and the ESSD would be useful.
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