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Abstract—Drugs are frequently prescribed to patients with the
aim of improving each patient’s medical state, but an unfortunate
consequence of most prescription drugs is the occurrence of un-
desirable side effects. Side effects that occur in more than one in
a thousand patients are likely to be signaled efficiently by cur-
rent drug surveillance methods, however, these same methods may
take decades before generating signals for rarer side effects, risk-
ing medical morbidity or mortality in patients prescribed the drug
while the rare side effect is undiscovered. In this paper, we pro-
pose a novel computational metaanalysis framework for signaling
rare side effects that integrates existing methods, knowledge from
the web, metric learning, and semisupervised clustering. The novel
framework was able to signal many known rare and serious side
effects for the selection of drugs investigated, such as tendon rup-
ture when prescribed Ciprofloxacin or Levofloxacin, renal failure
with Naproxen and depression associated with Rimonabant. Fur-
thermore, for the majority of the drugs investigated it generated
signals for rare side effects at a more stringent signaling threshold
than existing methods and shows the potential to become a fun-
damental part of post marketing surveillance to detect rare side
effects.

Index Terms—Adverse drug reaction (ADR), HUNT, longitudi-
nal healthcare, pharmacovigilance, semisupervised, temporal pat-
tern discovery (TPD).

I. INTRODUCTION

N EGATIVE side effects caused by prescribed medication
currently present a huge burden for the healthcare ser-

vice in terms of causing both patient morbidity or mortality and
costing large sums of money [1]–[3]. Investigations have shown
that the rate of unwanted side effects has been increasing an-
nually [4], [5]. Possible reasons for this are an increase in the
number of annual prescriptions due to an aging population or an
increase in polypharmacy, when numerous drugs are prescribed
at the same time [6]. Although it is common for a patient to
develop side effects due to prescribed medication there is cur-
rently no efficient means of identifying all the side effects of a
drug. When the side effect is detrimental to the patient’s quality
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of life, it is often referred to as an adverse drug event (ADE)
and when the drug causing the ADE is known, it is termed an
adverse drug reaction (ADR). A study conducted in the U.K.
between November 2001 to April 2002 indicated that 6.5% of
admissions to hospital were due to ADRs, with the mortality rate
for an ADR patient of 2.3% [7]. Interestingly, it was found that
more than 70% of these ADRs were potentially avoidable. A
more recent study in Brazil suggests ADRs may be the cause of
an even higher proportion of hospital admissions for the elderly
as it showed that ADRs were the cause of hospitalization for
more than 50% of elderly patients [8]. It also highlighted that a
significant factor for developing an ADR was polypharmacy [8].

Some obvious ADRs can be discovered during the experi-
mental stages of a drug’s development, but the occurrence of an
ADR can depend on a magnitude of factors and it is impossible
to investigate all the possible situations that may occur when the
drug is taken. For example, testing for ADRs that result from
polypharmacy would require clinical trials with millions of peo-
ple to be able to investigate all the different drug combinations
and this is not possible. Due to the limitations of clinical tri-
als, rare ADRs, including fatal ones, are in most circumstances
not discovered before a drug is marketed [9], [10]. As a con-
sequence, after a drug is approved and available to patients,
possible ADRs are investigated during the whole lifetime of a
drug by a process known as postmarketing drug surveillance.

Postmarketing surveillance (such as doctors being vigilant
and noticing possible drug and illness associations) can identify
common ADRs and in general the more common the ADR is,
the fewer the number of patients that need to be prescribed
the drug before it is discovered. However, ADRs that occur for
drugs that are rarely prescribed or rare ADRs may go unnoticed
by medical practitioners and may cause morbidity or mortality
in patients that could have been prevented with more efficient
drug surveillance methods. For example, it took 23 years before
there was sufficient evidence that the drug Tamoxifen used to
treat breast cancer caused endometrial cancer in about 1 in 6000
patients [11], [12].

Current methods to discover rare ADRs often involve using
a spontaneous reporting system (SRS) database that contains a
collection of voluntary suspected drug and ADR reports, such
as the database containing information from the U.K. yellow
card scheme. The algorithms that signal ADRs by mining SRS
databases calculate a measure of how disproportionally more
often the medical event is reported with a specific drug of inter-
est compared with any drug. The frequently implemented mea-
sures of disproportionality involve using standard epidemiology
measures [13], estimating the information component using a
neural network approach [14] or calculating a modified version
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of the relative risk by applying a Bayesian model [15]. SRS
databases combine reports of possible ADRs from a large popu-
lation enabling the identification of possible ADR signals more
efficiently, but they are known to suffer from underreporting [16]
and this causes a lag in the time it takes to confidently signal a
potential ADR. The underreporting may also prevent the detec-
tion of rare ADRs, as these ADRs may never be suspected and
therefore never be reported to an SRS.

A potential new way to detect the rare ADRs that can-
not be identified by doctors or by current methods applied to
SRS databases is to use The Health Improvement Network
(THIN) database (www.thin-uk.com), an Electronic Health-
care Database (EHD) containing complete UK General Practice
records for registered patients. The THIN database contains all
medical events (such as illnesses, laboratory results, signs and
symptoms or administrative events) that a doctor is informed
of for a patient as well as their complete prescription histories.
Therefore, any rare ADRs that are serious enough to be reported
to a doctor are more likely to be detected at an earlier point in
time by applying a suitable data mining method on the THIN
database rather than mining the SRS databases.

Existing methods developed for the EHDs are often dispro-
portionality based methods (methods that contrast how often
the event of interest occurs after the specified drug relative to
how often the event of interest occurs after any drug) similar
to the SRS methods [17]–[19] or association rule mining meth-
ods [20], [21]. As EHDs do not contain links between drugs and
suspected ADRs these are often inferred by investigating med-
ical events that occur within some time period around a drug,
but many of these medical events are linked to the cause of tak-
ing the drug and these “therapeutically related” medical events
present a major issue with the majority of the existing methods.
It has been demonstrated that these existing methods are cur-
rently not suitable for signaling rare ADRs [22]. However, it is
the rare ADRs that are unlikely to be detected by mining SRS
databases, due to underreporting, so developing an algorithm
that can signal rare ADRs using the THIN database would be
beneficial.

In this paper, we develop a novel computational metaanaly-
sis framework that integrates the existing methods (MUTARA,
HUNT, TPD, see Section III-A) and uses information obtained
from the internet to efficiently and accurately identify rare ADRs
that occur immediately or shortly after a drug is prescribed. The
framework uses the dependency measures obtained from some
of the existing electronic healthcare-based methods and novel
values of interest as attributes for each medical event that occurs
within a 30 day period after the drug of interest is prescribed for
any patient. After the attributes are generated for each medical
event we label some of the medical events by extracting infor-
mation from the internet informing us of the indicator events and
known ADRs for the drug of interest. The unlabeled medical
events then have labels assigned by applying metric learning and
semisupervised clustering. Finally, using the labels we develop
a novel filter that removes medical events labeled as indicator
events and then return the remaining medical events ordered by
how often they occurred unpredictably within 30 days after the
drug being investigated multiplied by weights based on their
assigned labels.

Fig. 1. Example of a branch within the Read Codes tree.

The continuation of this paper is as follows, Section II con-
tains the background information on the THIN database and
Section III describes the problem formulation. This is followed
by the description of the novel methodology we developed that
is able to identify rare ADRs in Section IV. Section V contains
the results of comparing our novel algorithm with a selection
of existing methods for the detection of known rare ADRs and
the discussion of these results is contained in Section VI. The
paper finishes with the conclusion and future work suggestions
in Section VII.

II. THIN DATABASE

The THIN database contains complete medical and prescrip-
tion records for registered patients at participating general prac-
tices within the U.K. The medical information is recorded into
the THIN database by Read Codes that correspond to illnesses,
so each Read Code is paired with the illness description. Each
Read Code is five elements long and the Read Codes have a tree
structure. A level one Read Code has “.” as its second element
and corresponds to a very general description of an illness, for
example “A. . . .” is a level one Read Code that corresponds to
“Infections.” A level two Read Code has “.” for its third el-
ement but not for its second element, an example is “A1. . .”
corresponding to “Tuberculosis.” A level two Read Code is the
child of the level one Read Code with a matching first element,
so “A1. . .” is the child of “A. . . .” (or A. . . .” is the parent of
“A1. . .”) and a child Read Code corresponds to a more specific
version of its parent’s illness. Fig. 1 shows an example branch
within the Read Code tree with the illness becoming more spe-
cific as the Read Code level increases.

Each drug is recorded into the THIN database by a drugcode
that is paired to the generic name. The drugcode consists of
nine numbers and does not have a structure we use but the
drugcode does specify the way the drug is ingested and the
dosage. Each entry also includes the date that a Read Code or
drugcode is recorded but does not contain the time. In this paper,
we used a subset of the THIN database containing records from
495 general practices. The subset contained approximately four
million patients, more than 358 million prescription entries, and
more than 233 million medical event entries.

Patients can register at a new practice at any point over their
lifetime and it has been shown that statistical studies using the
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TABLE I
EXAMPLES OF A MEDICAL TABLE AND A PRESCRIPTION TABLE

CONTAINING THE PATIENTS’ RECORDS

THIN database will be biased if records from the first year after
registration for a patient are included in the study [23]. The rea-
son for this is that newly registered patients will need to inform
their new doctor of any chronic illnesses they have, but these ill-
nesses will be recorded on the day they inform the doctor of them
rather than the actual day they were discovered. To prevent bias
in this study we do not include the first year of a patient’s medi-
cal records since registration. We also ignore the last 30 days of
prescription records for each patient to reduce potential under
reporting that may occur by including patients with less than
30 days of medical records after the first prescription of a drug.

III. PROBLEM FORMULATION

The focus of this paper is to develop a method for detecting
rare ADRs that occur shortly after prescription, so we can restrict
our attention to the medical events that occur around the time
of the drug prescription. In this paper, we consider the natural
numbers N to include 0 and use the interval [a . . . b] to be the
interval of natural numbers from a to b ({n ∈ N: a ≤ n ≤ b}).

If we let M denote the set of Read Codes, D denote the
set of drugcodes, and Ω denote the set of patients in the THIN
database then the sequence of Read Codes or the sequence of
drugcodes for a patient can be represented as two discrete func-
tions. The discrete function representing a patient’s Read Code
sequence is a mapping fM : N × Ω → P(M); fM (t, ω) → eω,t

where t is the age in days of the patient ω and eω,t is the
set of Read Codes that are recorded into the THIN database
for patient ω when they are t days old. Similarly, the dis-
crete function representing a patient’s drugcode sequence is
fD : N × Ω → P(D); fD (t, ω) → dω,t where dω,t is the set of
drugcodes recorded in THIN for the patient ω when they are t
days old.

Using the example THIN database entries shown in Table I,
we have

M = {A123., B21., C1 . . . , C11. ., C12. .,

C121.,D25. ., F1 . . . , F12. .}
D = {979 596 759, 969 686 881, 912 314 611}

Ω = {jj3, aa2, bb8}.
The set of Read Codes that patient jj3 has recorded when
he is 9999, 10 000, and 10 002 days old are fM (9999, jj3) =
{A123.}, fM (10 000, jj3)={F1 . . . , C1 . . .}, and fM (10 002,
jj3) = {} = ∅, respectively. The reason fM (10 002, jj3) =
{} = ∅ is that patient jj3 does not have a Read Code recorded
when he is 10 002 days old. Similarly, the set of drugcodes that
patient jj3 has recorded when he is 10 000 and 10 002 days old
are fD (10 000, jj3) = {979 596 759} and fD (10 002, jj3) =
{} = ∅, respectively.

The set consisting of every age in days where patient ω has a
drugcode recorded into the THIN database is

AD (ω) = {t|fD (t, ω) �= ∅}.
The set of all drugs that are prescribed for patient ω is the finite
union of the set of drugcodes recorded daily for the patient while
they are active in the THIN database

∪
t∈AD (ω )

fD (t, ω)

so to determine the age that patient ω is first prescribed the drug
of interest d∗ ∈ D we first find the set of ages that the patient
was prescribed the drug

α(ω, d∗) = {t ∈ AD (ω)|d∗ ∈ fD (t, ω)}
and then define a new function α1 : Ω × D → N ∪ {−1} :

α1(ω, d∗) =

{
min(α(ω, d∗)) if d∗ ∈ ∪

t∈AD (ω )
fD (t, ω)

−1 else

that finds the minimum age that the patient is prescribed the
drug or returns −1 if the patient has never been prescribed the
drug. The set of patient’s ages where the drug is prescribed
for the first time in 13 months is determined by the function
α̂: Ω × D → P(N ∪ {−1}),

α̂(ω, d∗) = {t ∈ α(ω, d∗)|(t − s∗) ≥ 386,

s∗ = argmin
s ∈α (ω , d ∗)

s < t

(t − s)} ∪ α1(ω, d∗).

If a patient is not prescribed the drug then the function returns−1
otherwise it returns the set of ages in days that the patient took
the drug and had a minimum of 386 days between previously
taking the drug.

For the example entries in Table I, the set of ages in days
that patient jj3 is prescribed any drugs is AD (jj3) = {10 000,
20 000, 20 001} and the set of ages in days that the patient is
prescribed the specific drugs 979 596 759 and 969 686 881 is
α(jj3, 979 596 759) = {10 000} and α(jj3, 969 686 881) =
{20 000, 20 001}, respectively. The minimum age that patient
jj3 prescribed 969 686 881 is α1(jj3, 969 686 881) = 20 000
but as the patient aa2 is never prescribed the drug
969 686 881, α1(aa2, 969 686 881) = −1. The patient aa2
is prescribed the drug 912 314 611 four times (α(aa2,
912 314 611) = {15 001, 15 031, 15 061, 25 304}) with the
first prescription occurring at 15 001 days old (α1(aa2,
912 314 611) = 15 001) but the drug was then repeated
monthly two times and then the patient had a 10 243 day
break before being prescribed the drug for the final time,
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therefore the set of ages in days that patient aa2 is prescribed
drug 912 314 611 for the first time in 13 months is α̂(aa2,
912 314 611) = {15 001, 25 304} as the instances when the
drug was repeated after 30 days are not included.

In the continuation of this paper, we will use α̂(ω, d∗)k

to refer to the kth time patient ω is prescribed drug d∗
for the first time in 13 months, so α̂(ω, d∗)1 < α̂(ω, d∗)2 <
· · · < α̂(ω, d∗)n−1 < α̂(ω, d∗)n , where n is the total number
of times patient ω is prescribed drug d∗ for the first time in
13 months (n = |α̂(ω, d∗)|). Following on with our example,
α̂(aa2, 912 314 611)1 = 15 001 and α̂(aa2, 912 314 611)2 =
25 304.

This then enables us to define a interval of interest around
each time the patient is prescribed a drug for the first time in 13
months, for each K ≤ |α̂(ω, d∗)|,
T (ω, d∗, t1 , t2)K

=

⎧⎪⎨
⎪⎩

[(α̂(ω, d∗)K + t1) if α̂(ω, d∗)K �= −1

. . . (α̂(ω, d∗)K + t2)]

∅ else

(1)

(1) is defining a time interval centered around the Kth time drug
d∗ is prescribed for the first time in 13 months for patient ω de-
termined by the integers t1 and t2 . For example, if we wanted to
investigate the 30 days after a prescription, we would use t1 = 1
and t2 = 30 and the time period around the first prescriptions
in 13 months of drug 912 314 611 for patient aa2 would be
T (aa2, 912 314 611, 1, 30)1 = [(α̂(aa2, 912 314 611)1 + 1) . . .
(α̂(aa2, 912 314 611)1 + 30)] = [(15 001 + 1) . . . (15 001 +
30)] = [(15 002) . . . (15 031)] and T (aa2, 912 314 611, 1, 30)2
= [(α̂(aa2, 912 314 611)2 + 1) . . . (α̂(aa2, 912 314 611)2 +
30)]=[(25 304+1) . . . (25 304+30)]=[(25 305) . . . (25 334)].
If the patient is never prescribed the drug then the time period
of interest is the empty set, for example, T (aa2, 979 596 759,
1, 30)1 = ∅.

As the function fM (t, ω) returns a set of Read Codes that are
recorded into the THIN database for patient ω when they are t
days old, we can find the set of ages in days that ω has any Read
Code recorded

AM (ω) = {t|fM (t, ω) �= ∅}
and the finite union over each t ∈ AM (ω),

∪
t∈AM (ω )

fM (t, ω)

is the set of all Read Codes that are recorded into the THIN
database for the patient ω. It follows that ∪fM (t, ω)

t∈T (ω,d∗,t1 ,t2 )K

is the

set of all Read Codes that are recorded into the THIN database
for the patient ω during the period of interest determined by t1
and t2 around the Kth prescription of drug d∗. The function
h: M × D × Ω × Z2 → {0, 1},

h(ei, d∗, ω, t1 , t2) = 1

{
ei ∈ ∪fM (t, ω)

t∈T (ω,d∗,t1 ,t2 )1

}

is one if the patient ω has the Read Code ei recorded within the
time period of interest around the first prescription of drug d∗
and zero otherwise. To determine the number of times the drug
d∗ is prescribed to patient ω for the first time in 13 months and

the Read Code ei is recorded within the time period of interest
we define another function ĥ: M × D × Ω × Z2 → N,

ĥ(ei, d∗, ω, t1 , t2) =
∑

K≤|α̂(ω,d∗)|
1

{
ei ∈ ∪fM (t, ω)

t∈T (ω,d∗,t1 ,t2 )K

}
.

The total number of patients in the THIN database that have
Read Code ei recorded within the time period of interest cen-
tered around the first prescription of drug d∗ is then∑

ω∈Ω

h(ei, d∗, ω, t1 , t2)

and the total number of first times prescriptions of drug d∗ in
13 months where the Read Code ei is recorded within the time
period centered around the prescription determined by t1 and t2
is ∑

ω∈Ω

ĥ(ei, d∗, ω, t1 , t2).

A. Existing Algorithms

The temporal pattern discovery (TPD) [17] calculates the
information component (IC) that looks at the disproportionality
between how often a Read Code is recorded within some time
period after the first prescription in 13 months of the drug of
interest compared to how often it is recorded within the same
time period after the first prescription in 13 months of any drug
but also adds a bias lowering the IC value if the Read Code or
drug is rare.

The function used to test if a set of medical events is empty
is Ĥ: P(M) → {0, 1},

Ĥ[B] =
{

0 if B = ∅
1 else

using the above function, we define the following values:

nd∗ei
(t1 , t2) =

∑
ω∈Ω

ĥ(ei, d∗, ω, t1 , t2)

n•ei
(t1 , t2) =

∑
d∈D

∑
ω∈Ω

ĥ(ei, d, ω, t1 , t2)

nd∗•(t1 , t2) =
∑
ω∈Ω

|α̂(ω,d∗)|∑
K =1

Ĥ

[
M ∩

(
∪fM (t, ω)

t∈T (ω,d∗,t1 ,t2 )K

)]

n••(t1 , t2) =
∑
d∈D

∑
ω∈Ω

|α̂(ω,d)|∑
K =1

Ĥ

[
M ∩ ∪fM (t, ω)

t∈T (ω,d,t1 ,t2 )K

]

where nd∗ei
(0, 30) is the number of times that event ei occurs

in the month after a first prescription in 13 months of drug
d∗, n.ei

(0, 30) is the number of times that event ei occurs in
the month after a first prescription in 13 months of any drug,
nd∗.(0, 30) is the number of times a drug d∗ is prescribed for the
first time in 13 months and has any follow up in the month after
the prescription, and n. .(0, 30) is the number of times any drug
is prescribed for the first time in 13 months and has any follow
up in the month after the prescription.

The expected number of first time prescriptions of drug d∗ in
13 months that have the Read Code ei occur within the time pe-
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riod defined by t1 and t2 if the Read Code occurs independently
of the drug is

Ed∗ei
(t1 , t2) =

nd∗•(t1 , t2)n•ei
(t1 , t2)

n••(t1 , t2)

and the IC(t1 , t2 , ei , d∗) value calculates how many first pre-
scription in 13 months of drug d∗ have the Read Code ei occur-
ring between t1 and t2 days after divided by the expected value
if the Read Code and drug occur independently

IC(t1 , t2 , ei , d∗) = log2(
nd∗ei

(t1 , t2) + 1/2
Ed∗ei

(t1 , t2) + 1/2
).

The value of a half added to both the numerator and denominator
in the IC(t1 , t2 , ei , d∗) value calculation creates a bias that
causes the IC(t1 , t2 , ei , d∗) value to tend to zero when the Read
Code or drug occurs rarely.

The ICΔ is a measure that compares the IC(0, 30, ei , d∗)
corresponding to the time period of a month after the first pre-
scription in 13 months compared to the IC(−810,−630, ei , d∗)
corresponding to a time period between 27 and 21 months prior
to the prescription

ICΔ(ei, d∗) = log2

(
nd∗ei

(0, 30) + 1/2
E∗

d∗ei
(0, 30) + 1/2

)
(2)

where

E∗
d∗,ei

(0, 30) =
nd∗ei

(−810,−630)Ed∗ei
(0, 30)

Ed∗ei
(−810,−630)

.

When investigating possible ADRs for drug d∗ the authors use a
filter to remove any Read Codes ei if the IC(−30,−1, ei , d∗) >
IC(0, 30, ei , d∗) or IC(0, 0, ei , d∗) > IC(0, 30, ei , d∗), these
correspond to the IC value the month prior to the prescription
being higher than the month after prescription, or the IC value
on the day of prescription (DOP) being higher than a month after.
In this paper, we will use the ICΔ(ei, d∗) as described above as
an attribute for each possible drug and Read Code combination
and use the Heaviside step function H: R → {0, 1},

H[n] =
{

0 if n ≤ 0

1 if n > 0

to define the filter functions

ζ1(ei, d∗) = H[IC(−30,−1, ei , d∗) − IC(0, 30, ei , d∗)]

ζ2(ei, d∗) = H[IC(0, 0, ei , d∗) − IC(0, 30, ei , d∗)] (3)

as two addition binary attributes.
The algorithm Mining Unexpected Temporary Association

Rules given the Antecedent (MUTARA) [20] applies a case
control approach that estimates the background rate that the
Read Code is recorded into the THIN database by finding out
how many patients who have not been prescribed the drug of
interest have the Read Code recorded during a random time
interval. MUTARA aims to find Unexpected Temporary Asso-
ciation Rules (UTARs) by investigating how many patients have
a specific Read Code unexpectedly recorded within a period of
interest centered on the first prescriptions of the drug being
studied. The algorithm Highlighting UTARs Negating TARs
(HUNT) [21] was developed by the same authors as MUTARA

and applies a similar method but is less prone to ranking ther-
apeutic failure Read Codes (Read Codes linked to the cause of
taking the drug) above Read Codes corresponding to ADRs.

MUTARA and HUNT both investigate the Read Codes that
occur during the month after the drug being studied is first
prescribed to a patient or the union of the month after the first
and second prescriptions of the drug if it is repeated within a
month of the first prescription. Previously, we defined α(ω, d∗)
to be the ages in days that patient ω is prescribed the drug d∗ and
α1(ω, d∗)) to be the age in days that patient ω is first prescribed
the drug d∗, so the set α(ω, d∗) \ α1(ω, d∗) contains the ages
that patient ω is prescribed drug d∗ except the age when they are
first prescribed. Using this, we define a new function that returns
the patient’s age in days for the second time a drug is prescribed
for a patient if this is within a month of the first prescription or
the patient’s age in days for the first time the drug is prescribed
if the second prescription is not within a month of the first

α2(ω, d∗) =

⎧⎨
⎩

∗
t = arg min(|t − α1(ω, d∗)|)

t∈α(ω,d∗)\α1 (ω,d∗)
if

∗
t < 30

α1(ω, d∗) else

MUTARA uses patients that have not been prescribed the
drug (so α1(ω, d∗) = −1) to estimate the background rate that
the Read Code is prescribed into the THIN database. For each
patient that has never been prescribed the drug d∗, a random
time interval is chosen within the age that the patient first has
any Read Code recorded and the age that a Read Code is last
recorded, min(AM (ω)) and max(AM (ω)), respectively, where
we defined AM (ω) previously to be the set of ages that patient
ω has a Read Code recorded into the THIN database. If a pa-
tient has never had a Read Code recorded into the THIN database
(AM (ω) = ∅) or only had Read Codes recorded for the short pe-
riod of time (max(AM (ω)) − min(AM (ω)) < |t2 − t1 |) then
the patient is not used in this study as they are not an active pa-
tient and may bias results. The time interval of length |t2 − t1 |
is chosen uniformly within [min(AM (ω)) . . . max(AM (ω))].

Putting this all together, the time interval of interest around
the first prescription of drug d∗ for patients prescribed the drug
or the time interval chosen at random for patients who have
never been prescribed the drug used by MUTARA is

TM (ω, d∗, t1 , t2)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(α1(ω, d∗) + t1) if α1(ω, d∗) �= −1

. . . (α2(ω, d∗) + t2)]

[(min(AM (ω)) + r) else

. . . (min(AM (ω)) + r + |t2 − t1 |)]
where

r ∼ U(0,max(AM (ω)) − min(AM (ω)) − |t2 − t1 |).

For patients who are prescribed the drug d∗ a filter is applied
to ignore any “expected” Read Codes that are recorded within
the time interval of interest after the first prescription of the
drug. A Read Code is “expected” for the patient during the time
interval of interest after the drug is prescribed if the patient
also had the Read Code recorded within t3 ∈ N days prior to
drug being prescribed. We define this time interval prior to the
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prescription as

Tfilt(ω, d∗, t3)

=
{

[(α1(ω, d∗) − t3) . . . (α1(ω, d∗) − 1)] if α1(ω, d∗) �= −1

∅ else.

We then determine if patient ω has Read Code ei recorded
“unexpectedly” during the time interval of interest after drug d∗
by

h∗(ei, d∗, ω, t1 , t2 , t3) = 1

{
ei ∈ ∪fM (t, ω)

t∈TM (ω,d∗,t1 ,t2 )

}

×
(

1 − 1

{
ei ∈ ∪fM (t, ω)

t∈T f i l t (ω,d∗,t3 )

})
.

The Heaviside step function applied to α1(ω, d∗) returns 1 if
patient ω has been prescribed the drug d∗, as in that case
α1(ω, d∗) > 0 or returns 0 if patient ω has never been prescribed
the drug d∗. MUTARA then calculates the unexpected-leverage
as

uLd∗
ei

=
∑

ω∈Ω [h∗(ei, d∗, ω, t1 , t2 , t3) × H[α1(ω, d∗)]]
|Ω|

−
(∑

ω∈Ω H[α1(ω, d∗)]
|Ω|

)(∑
ω∈Ω h∗(ei, d∗, ω, t1 , t2 , t3)

|Ω|

)
where the fraction of patients in the database who have the drug
multiplied by the fraction of patients who have the Read Code
recorded during their interval of interest is subtracted from the
fraction of patients in the database who have the Read Code
recorded “unexpectedly” within a month of the first time the
drug is prescribed (or up to a month after the second prescription
if the drug is repeated within a month).

HUNT calculates a similar value to the unexpected-leverage
known as the leverage that does not include a filter to remove
“expected” Read Codes based on a patient’s history

h∗∗(ei, d∗, ω, t1 , t2) = 1

{
ei ∈ ∪fM (t, ω)

t∈TM (ω,d∗,t1 ,t2 )

}

and

Ld∗
ei

=
∑

ω∈Ω [h∗∗(ei, d∗, ω, t1 , t2) × H[α1(ω, d∗)]]
|Ω|

−
(∑

ω∈Ω H[α1(ω, d∗)]
|Ω|

)(∑
ω∈Ω h∗∗(ei, d∗, ω, t1 , t2)

|Ω|

)
.

HUNT then ranks the Read Codes in descending order of the
leverage to attain the leverage rank and in descending order of
the unexpected-leverage to attain the unexpected-leverage rank
and then calculates the rank ratio between the leverage rank
and unexpected-leverage rank. Finally, HUNT returns the Read
codes in descending order of this rank ratio.

B. Proposed Algorithm Attributes

In the previous sections, we have defined the problem and
described three existing algorithms. In this section, we develop
novel attributes that may help a semisupervised algorithm sep-
arate Read Codes corresponding to ADRs from noise or indica-
tions. The first novel attribute of interest for detecting ADRs is

how many patients have the Read Code recorded a month prior
to the first prescription compared with how many patients have
it recorded a month after

ABratio30(ei, d∗) =
∑

ω∈Ω h(ei, d∗, ω, 1, 30)∑
ω∈Ω h(ei, d∗, ω,−30,−1)

(4)

a similar new attribute is to consider the ratio between the num-
ber of patients who have the Read Code recorded a year after
compared to a year before

ABratio365(ei, d∗) =
∑

ω∈Ω h(ei, d∗, ω, 1, 365)∑
ω∈Ω h(ei, d∗, ω,−365,−1)

. (5)

As the THIN database does not record the time that a Read
Code or drugcode is recorded, a Read Code that are recorded
on the same day as the drugcode could correspond to a serious
ADR that occurs immediately or an indicator, this is why the
DOP is not included in the above ABratios. To incorporate
data from the DOP we define another attribute by

DOP (ei, d∗) =
∑

ω∈Ω h(ei, d∗, ω, 0, 0)∑
ω∈Ω h(ei, d∗, ω,−365,−1)

. (6)

In previous methods, there has been a patient level filter that
removes medical events from a patient’s sequence that occur
30 days after the drug if the patient also had the medical event
shortly prior to the drug [20]. The justification for this is that
an illness is unlikely to be an ADR if it occurred shortly before
the drug and then repeatedly occurred after the drug for the
same patient. This inspires the third attribute that is based on
the number of patients who have the Read Code recorded in the
month after and also have it recorded during the month prior to
the first prescription

ex(ei, d∗) =
∑

ω∈Ω [h(ei, d∗, ω, 1, 30)h(ei , d∗, ω,−30,−1)]∑
ω∈Ω h(ei, d∗, ω, 1, 30)

.

(7)
The final attributes of interest make use of the Read Code tree

structure. When a patient first has an illness it is likely that not
much detail is known, so a low level Read Code will probably
be recorded into the THIN database, over time more informa-
tion may be discovered about a patient’s illness possibly due to
laboratory results and this may then result in a more specified
higher level Read Code being entered (a child of the original
less detailed Read Code). As a consequence, it is common for
higher level Read Codes related to the cause of taking the drug
to only be recorded after the drug, so to help distinguish between
these and ADRs we calculate the Read Code after and before
ratio when only considering the first two or three elements of
a Read Code. For example, considering the first three elements
of the Read Code, the Read Code A11ab becomes A11 and the
ABlev3 is the number of patients that have a Read Code starting
with A11 within the month after the first prescription of the
drug divided by the number of patients that have a Read Code
starting with A11 within the month prior to the first prescrip-
tion of the drug. Similarly, the ABlev2 for a Read Code is the
number of patients who have a Read Code with the same first
two elements within a month after the first prescription divided
by the number of patients who have a Read Code with the same
first two elements within a month prior to the prescription.
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Fig. 2. Five steps applied in the DRESS algorithm.

To calculate these attributes, we first define an equivalence
relationship, ei

n∼ ej if the first n elements of the Read Codes
of ei and ej are the same. The number of patients who have
Read Codes equivalent to ei recorded a month after the first
prescription of d∗ is

∑
ω∈Ω

H

⎡
⎣ ∑

e
n∼ ei

h(e, d∗, ω, 1, 30)

⎤
⎦

similarly, the number of patients who have Read Codes equiv-
alent to ei recorded during the month prior to the prescription
is

∑
ω∈Ω

H

⎡
⎣ ∑

e
n∼ ei

h(e, d∗, ω,−30,−1)

⎤
⎦ .

It follows that the ABlev3 and ABlev2 are calculated by

ABlev3(ei, d∗) =

∑
ω∈Ω H[

∑
e

3∼ ei
h(e, d∗, ω, 1, 30)]∑

ω∈Ω H[
∑

e
3∼ ei

h(e, d∗, ω,−30,−1)]
(8)

ABlev2(ei, d∗) =

∑
ω∈Ω H[

∑
e

2∼ ei
h(e, d∗, ω, 1, 30)]∑

ω∈Ω H[
∑

e
2∼ ei

h(e, d∗, ω,−30,−1)]
. (9)

IV. DRESS ALGORITHM

The detecting rare events semisupervised (DRESS) algorithm
comprises of five steps, see Fig. 2. The DRESS algorithm re-
quires the user to input the drug of interest (d∗) and returns a
ranked list of Read Codes in descending order of how likely they
are to be ADRs. Tentative ADR signals can then be determined
by the DRESS algorithm by considering the top k ranked Read
codes to be signaled as ADRs. The value of k will determine
the filtering threshold and in this paper we consider the top 100
ranked Read Codes to be signaled by the algorithms.

A. Step 1

The first step of the DRESS algorithm is the generation of
attributes for any Read Code that could be an ADR. This is
accomplished by initially finding the set of all the Read Codes
that are recorded within a month of the first prescription of d∗
for any patient, we denote this set of Read Codes by G. Then,
for every Read Code ei ∈ G the DRESS algorithm generates
the novel attributes ABratio30(ei, d∗), ABratio365(ei, d∗),

DOP (ei, d∗), ex(ei, d∗), ABlev3(ei, d∗), ABlev2(ei, d∗), see
(4)–(9), and the existing TPD values the ICΔ(ei, d∗), ζ1(ei, d∗)
and ζ2(ei, d∗), see (2)–(3). The data point for each ei ∈ G is
denoted by xi ∈ R9 and is a vector corresponding to the at-
tribute values. The set of data points is denoted by X = {x1 ,
x2 , . . . ,xn}, where the cardinality of the set G is n (|G| = n).

B. Step 2

As we are applying a semisupervised approach, we need la-
bels for some of the Read Codes. We have decided to have three
different labels for each Read Code, one label representing Read
Codes that are ADRs (known ADR), another label representing
Read Codes that cause the drug to be taken by the patients (indi-
cator), and the final label representing Read Codes that are not
linked to the drug but just occur by chance (noise). The reason
for choosing three labels is because there is information avail-
able to enable us to determine the labels for a sufficient number
of Read Codes when using three labels.

We determined the Read Codes that are labeled as noise by
using the hierarchal structure of the Read Code tree. We de-
termined branches that are not related to immediately occur-
ring ADRs by manually investigating the Read Code tree and
found the set of irrelevant Read Codes Mirrel . Examples of Read
Codes in Mirrel that cannot correspond to immediately occur-
ring ADRs are those related to cancer, occupations or family
history. Fig. 3 illustrates the Read Code tree and the Read Code
branches considered to be noise are shaded in, whereas the
Read Code branches that are possible ADRs are unshaded. Us-
ing the set Mirrel , the DRESS algorithm labels any Read Code
ei ∈ G ∩ Mirrel as noise.

To determine the labels of some of the Read Codes corre-
sponding to known ADRs or indicators, we mined data from the
internet. The Read Codes labeled as indicators are found by first
extracting the strings listed as indicators on the NetDoctor web-
site [24], then finding the set of Read Codes with descriptions
containing any one of these strings and finally validating these
are indicators by ignoring indicator Read Codes that do not have
an ABratio30 < 1. The Read Codes labeled as known ADRs
are found similarly, by first extracting the strings listed as side
effects on the NetDoctor website, then finding the set of Read
Codes with descriptions containing any one of these strings and
validating these by ignoring any Read Codes that do not have an
ABratio30 ≥ 1.5. In addition to the Read Codes corresponding
to the NetDoctor listed side effects, Read Codes with a descrip-
tion containing the drug name and the term “adverse” are also
labeled as known ADRs.

C. Step 3

After labeling some of the Read Codes we then applied the
metric learning algorithm detailed in [25]. Letting S denote
the set of all index pairs for Read Codes with the same label
(e.g., if Read Codes corresponding to the data points x1 and
x2 are both labeled as noise then (1, 2) ∈ S), D denote the set
of all index pairs for Read Codes with a different label (e.g.,
if the Read code corresponding to data point x1 is labeled as
noise but the Read code corresponding to the data point x5 is
labeled as an indicator then (1, 5) ∈ D) and the inner product
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Fig. 3. Read Codes tree.

of two d × n real valued matrices, X,Y ∈ Rd×n , is denoted
by 〈X,Y 〉 := Tr(XTY), where Tr(A) means the trace of the
matrix A. The cone of positive semidefinite matrices is denoted
by Sd

+ .
Given a pair of Read Code data points xi and xj generated

in step 1, we calculate the matrix Xij = (xi − xj)(xi − xj)T .
If τ = (i, j) is an index pair, then Xτ ≡ Xij . The matrix XS

is defined by XS =
∑

(i,j )∈S Xij and X̃τ = X
−1/2
S Xτ X

−1/2
S .

The authors calculated that ∇fμ(Sμ
t ) =

∑
τ ∈D e−〈X̃ ∼

τ , S 〉/ μ X̃ τ∑
τ ∈D e−〈X̃ τ , S 〉/μ

.

When applied in the DRESS algorithm, the distance metric
algorithm described in algorithm 1 finds a mapping from the
space consisting of the attribute values found in step 1 to a
different space that minimizes the distance between two Read
Codes with the same label and maximizes the distance between
two Read Codes with different labels. The mapping is, f :R9 →
R9 ; f(xi) = xi

T Sμ
t , where Sμ

t is the 9 × 9 learned distance
metric matrix.

D. Step 4

The constrained K-means algorithm [26] is applied to the
Read Codes on their corresponding transformed data points
determined by the distance metric learning algorithm above. The
constrained K-means algorithm is a semisupervised algorithm
that fixes the class of the labeled Read Codes and uses these
labeled Read Codes to calculate the initial cluster centers then
iteratively assigns the nonfixed Read Codes into the cluster with
the closest mean, with the means iteratively being recalculated
until convergence.

When the DRESS algorithm is implemented, the set of data
points input into the constrained K-means algorithm is the set
{f(x1), f(x2), . . . , f(xn)}, the value of K input is 3 and the
initial seeds are S1 = {xi: xi is labeled as a known ADR},
S2 = {xi: xi is labeled as an indicator} and S3 = {xi: xi is la-
beled as noise}.

Read Codes in the same cluster as the Read Codes that were
originally labeled as known ADRs are referred to as being in
the ADR cluster, Read Codes in the same cluster as the Read
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TABLE II
READ CODE RANKS RETURNED BY THE DIFFERENT METHODS

Codes that were originally labeled as indicators are referred to
as being in the indicator cluster and Read Codes in the same
cluster as the Read Codes that were originally labeled as noise
are referred to as being in the noise cluster.

E. Step 5

The last step involved applying two additional filters and then
used the Read Code attributes and clustering to order the Read
Codes by how likely they are to be ADRs. The first filter re-
moved all the Read Codes (eis) that were in the indicator cluster
or where (1 − ex(ei, d∗)) × ABratio30(ei, d∗) < 1. The sec-
ond filter is a filter that we have developed for postprocessing
with any algorithm that detects ADRs by mining the THIN
database. This filter removes all the Read Codes that are irrel-
evant for ADR detection such as Read Codes corresponding to
administrative events. Finally, Read Codes were ordered in de-
scending order of (1 − ex(ei, d∗)) × ABratio30(ei, d∗) × 1

β ,
where β = 1 for Read Codes in the ADR cluster and β = 3 for
Read Codes in the noise cluster.

If DRESS returned the ranked list of all the Read Codes then
this would consist of the labeled and unlabeled ones. The rank
of the labeled Read Codes is irrelevant as we already know
whether they represent ADRs. As a consequence, we decided to
ignore the labeled Read Codes and only returned the unlabeled
Read Codes in the ranked list. In summary, the DRESS algo-
rithm uses the semisupervised clustering to filter Read Codes
that have attributes that make them unlikely to be ADRs and
then orders the remaining Read Codes by how often they oc-
curred unexpectedly after the first prescription of the drug being
investigated but also adds a weight so that Read Codes that have
attributes similar to known ADRs are ranked higher.

V. RESULTS

We applied the DRESS algorithm to a range of drugs, some
of which have been withdrawn from the market due to serious
ADRs. Table II shows the rank that each data mining algorithm
assigns for a known rare and serious drug and ADR pair. The
table also states the year the drug was withdrawn and approx-

imately how common the ADR is. In some cases the rare and
serious ADR being investigated was listed as an ADR on the
NetDoctor website and to prevent any bias in the results for the
DRESS algorithm, any labels for the Read Codes correspond-
ing to the ADR being investigated were removed at the end of
step 2, prior to the semisupervised steps. So the Read Codes
corresponding to the ADR being investigated were always un-
labeled in the DRESS algorithm. As DRESS only ranks the
unlabeled Read Codes, to enable a fair comparison and prevent
bias, we also filtered the labeled Read Codes from the ranked
lists returned by the existing methods.

The DRESS algorithm had an average rank over the drug
and ADR pairs of 143.75 and had the highest rank compared
to all the other algorithms for 12 of the 16 drug and ADR
pairs investigated. It was able to return a rank under 100 for
56.25% of the ADRs and all the ADRs had a rank below 500. In
comparison the other methods had an average rank of 344.69,
791, and 2385.73 for TPD, HUNT, and MUTARA, respectively.
The TPD only returned a rank under 100 for 25% of the ADRs
and only 6.25% of ADRs ranked by MUTARA and HUNT had
a rank under 100.

VI. DISCUSSION

The existing methods for detecting ADRs using EHDs can
be considered to generate tentative ADR signals for the top k
ranked medical events in their returned list. This is effectively
filtering out all the medical events that are unlikely to be ADRs
or the medical events without sufficient evidence (number of
patients experiencing the event after the drug) of being an ADR.
The medical events with a rank greater than k are ignored and
the medical events with a rank less than k (the signaled medical
events) are investigated further to confirm if they are true ADRs.
Therefore, for an unknown ADR to be detected by these existing
methods it needs to be signaled by being ranked in the top k
medical events returned and the closer that the rank is to the
value 1, the more likely it will be investigated further, even
when low values of k are used. The results of this paper show
that the existing methods are not able to rank the known rare and
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serious ADRs highly, so they would be unlikely to signal these
for further investigation (or if they did get signaled, they would
be surrounded by superfluous false signals), but the DRESS
algorithm was able to rank more than 50% of these rare ADRs
within the top 100 and would most likely signal these for further
investigation. This implies that the DRESS algorithm is more
suitable than existing methods for detecting rare ADRs and has
the potential to discover many unknown rare ADRs.

The DRESS algorithm was unable to rank “Naproxen and
Hepatitis” and “Nifedipine and weight increase” higher than the
TPD, one reason for this is that the DRESS algorithm does not
perform as well for medical events that have a high background
rate as medical events that are common will have a greater
number of patients experiencing the medical event in the month
before the prescription and if the ADR is rare only one or two
patients extra will have the medical event in the month after the
prescription, so the ABratio will be close to one, but on the
other hand, the TPD performs better for medical events with a
high background rate as the bias in the IC calculation will have
less impact. It might be better to have two ADR clusters, one
for the medical events that occur at a low background rate and
another for the medical events that occur at a high background
rate, but this may cause issue if there is not a sufficient number
of Read Codes corresponding to known side effects, as if there
are only a few Read Codes for the known side effects there may
only be one to two labeled Read Codes in each cluster and this
will be deleterious for the semisupervised methods.

It may be argued that the DRESS algorithm can only be
applied after many ADRs are known and this may prevent it
efficiently detecting rare ADRs, but rare ADRs that occur less
than 1 in 1000 patients generally need three of more ADR cases
before there is satisfactory evidence to confirm the ADR and
this requires thousands of patients having the drug. DRESS can
be implemented after a few hundred patients have taken a drug
as the obvious side effects will be known, so the constraint
of requiring known ADRs will not reduce the efficiency of
DRESS. It is worth noting that the current implementation of
DRESS will not be as effective if a drug is generally safe and
does not have many side effects, but this is not common and
DRESS could be modified to use the positive effects of the drug
as labeled medical events as the positive effects and side effects
have similar attribute values as both should increase after the
drug is taken.

The DRESS algorithm still highly ranks medical events re-
lated to the cause of the drug and removing these medical events
would greatly improve the ability to detect rare ADRs with
DRESS. The ex attribute has limitations as it only indicates if
the patient had a repeat of a medical event and does not make
use of the medical event relations within the THIN database to
determine if a medical event is expected based on related med-
ical events. For example, if a patient has “a cold” then they are
likely to experience “a cough” if the illness progresses, but the
ex attribute only says “a cough” is expected if the patient has
had “a cough” shortly before and not if a predecessor medical
event has occurred before. To reduce the rank of medical events
related to the cause of the drug a new attribute that uses se-
quential patterns to determine the expectedness of each medical
event that occurs after the description could be used.

One possible bias in this study is that we cannot be 100% con-
fident that the ADRs of a drug that are listed in medical sources
are true due to the difficulty in determining causality. In this
paper, we have assumed that medical events listed as ADRs on
NetDoctor, which occur 1.5 times more often in the month after
the prescription than the month before in the THIN database,
are true ADRs. This assumption is not completely accurate as
confounding effects may make some non-ADR medical events
appear like ADRs. However, the more sources that confirm an
ADR signal the more likely the signal is to be true, so by adding
in the additional validation of only using medical events that
have an ABratio30 greater than 1.5 (are effectively signaled
in the THIN database) we are reducing the likelihood that the
labeled ADRs are incorrect. A possible way to further reduce
the chance of using incorrect labels would be to incorporate
additional validation steps, one such example could be to use
peoples search history logs to see if there is evidence of people
suspecting the ADRs [39].

VII. CONCLUSION

In this paper, we have described a novel methodology to de-
tect rare ADRs that incorporates some existing methods (TPD,
MUTARA, and HUNT), information retrieval from the web,
metric learning, and semisupervised clustering. The results sug-
gest this methodology is able to detect rare and serious ADRs
for the range of drugs chosen in the investigation and has the
potential to help detect many currently unknown ADRs. The
method is not able to remove all medical events related to the
cause of taking the drug and future work should aim to pre-
vent generating signals for these medical events by adding an
additional attribute to the clustering that determines the expect-
edness of each medical event based on sequential patterns that
can be mined from the whole database. DRESS, as presented
here, limits its risk windows to no more than 30 days beyond
the original exposure. However, ADRs may have a much longer
time between first exposure and ADR occurrence, and the risk
may increase with cumulative exposure. The reason that the
30 day risk period was chosen in this paper was to enable a fair
comparison with other published methods, which use a similar
time window [40]. It would be straightforward to adapt DRESS
for a more general risk window, but this is outside the scope of
this paper and an area of future research that has had little focus
to date.
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