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Abstract

Conservation decisions are invariably made with incomplete data on species’ distribu-
tions, habitats, and threats, but frameworks for allocating conservation investments rarely
account for missing data. We examined how explicit consideration of missing data can
boost return on investment in ecosystem restoration, focusing on the challenge of restoring
aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel
way of integrating the presence of unmapped barriers into a barrier optimization model
was developed and applied to the U.S. state of Maine to maximize expected habitat gain
for migratory fish. Failing to account for unmapped barriers during prioritization led to
nearly 50% lower habitat gain than was anticipated using a conventional barrier optimiza-
tion approach. Explicitly acknowledging that data are incomplete during project selection,
however, boosted expected habitat gains by 20–273% on average, depending on the true
number of unmapped barriers. Importantly, these gains occurred without additional data.
Simply acknowledging that some barriers were unmapped, regardless of their precise num-
ber and location, improved conservation outcomes. Given incomplete data on ecosystems
worldwide, our results demonstrate the value of accounting for data shortcomings during
project selection.

KEYWORDS

habitat restoration, hidden barriers, missing data, optimization, river connectivity

Incremento de la restauración de la conectividad a gran escala de los ríos mediantze la
planeación de la presencia de barreras sin registro
Resumen: Las decisiones de conservación se toman con datos incompletos de la dis-
tribución, hábitat y amenazas de las especies, pero los marcos para asignar fondos de
conservación rara veces lo consideran. Analizamos cómo la consideración explícita de
los datos faltantes puede incrementar la rentabilidad de la inversión en la restauración de
ecosistemas. Nos enfocamos en el reto que es la restauración de la conectividad entre eco-
sistemas acuáticos mediante la eliminación de presas y cruces de carreteras en los ríos.
Desarrollamos y aplicamos una forma novedosa de integrar la presencia de las barreras sin
registro dentro de un modelo de optimización de barreras en el estado de Maine (Esta-
dos Unidos) para maximizar la ganancia esperada de hábitat para los peces migratorios.
La omisión de las barreras sin registro durante la priorización resultó en una ganancia de
hábitat casi 50% menor a la anticipada cuando se usó una estrategia convencional de opti-
mización de barreras. Sin embargo, el reconocimiento explícito de los datos incompletos
durante la selección del proyecto incrementó la ganancia esperada de hábitat en un prome-
dio del 20–273%, dependiendo del número real de barreras sin registro. Estas ganancias
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ocurrieron sin datos adicionales. Los resultados de conservación aumentaron con tan sólo
el reconocimiento de que algunas barreras no estaban registradas, sin importar el número
y ubicación precisos, Ya que hay datos incompletos para todos los ecosistemas a nivel
mundial, nuestros resultados demuestran lo importante que es considerar la carencia de
datos durante la selección de proyectos.

PALABRAS CLAVE

barreras ocultas, conectividad de ríos, datos faltantes, optimización, restauración del hábitat
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INTRODUCTION

Conservation actors worldwide make substantial investments in
restoration projects to conserve biodiversity and ecosystem ser-
vices, mitigate threats, restore habitats, and enhance ecosystem
connectivity. Often, conservation projects are selected using
return-on-investment (ROI) frameworks that aim at maximiz-
ing conservation benefit per dollar spent. ROI frameworks have
been used, implicitly or explicitly, to direct spending for terres-
trial and marine reserve networks (Church et al., 1996; Meester
et al., 2004), habitat restoration (Orsi et al., 2011), restoration of
connections among habitat patches (Williams, 1998), payments
for ecosystem services (Hu et al., 2015), and a range of other
conservation actions. When ROI frameworks are used implic-
itly, decision makers rely on expert judgement to identify a set
of cost-effective projects. When done explicitly, resource alloca-
tion decisions are based on quantitative approaches that seek to
identify an optimal budget allocation among candidate projects.

An ROI framework can be an effective tool for allocating
resources, but a tacit assumption of most frameworks is that
underlying data on species’ distributions, habitats, and threats
are complete or at least unbiased and sufficient. Although con-
servation actors certainly recognize that data are imperfect
(Possingham et al., 2007), the implications of data shortcom-
ings are rarely acknowledged during planning (Boitani et al.,
2011). Failure to explicitly acknowledge incomplete data during
planning can potentially lead to an overestimation of conser-
vation benefits or an underestimation of costs and impacts of
proposed projects. Of greater concern are instances where bet-
ter data would have changed the priority ranking of candidate

projects and led to an alternative allocation of conservation
resources (Kujala et al., 2018).

We addressed a fundamental question: How might ROI
frameworks be modified to account for the fact that conser-
vation decisions are necessarily made with incomplete data?
Decision makers in other domains deal with uncertainty and
missing data by applying flexible decision frameworks under the
presumption that decisions are reversible and flexible (Fovar-
gue et al., 2021). Many conservation decisions, however, require
significant investment outlay that is not easily reversible, for
example, the financial and sociopolitical costs of establishing
protected areas, large capital costs of many restoration projects
(e.g., dam removal or cleanup of superfund sites), and opportu-
nity costs associated with failing to prevent a species’ impending
extinction. High extinction rates and rapid loss of ecosystem
services also preclude a wait-and-see strategy of taking no action
while more data are acquired (Grantham et al., 2009). In many
cases, it is not cost-effective to acquire more data (Grantham
et al., 2008; Hermoso et al., 2013)

To explore how ROI frameworks might be modified to
account for incomplete data, we focused on the challenge of
restoring aquatic ecosystem connectivity by removing dams and
impassable road crossings from rivers. Landscape connectivity
is crucial for biological conservation (Fahrig, 2003; Fischer &
Lindenmayer, 2007; Lucas & Baras, 2001), and rivers are partic-
ularly vulnerable to barrier fragmentation due to their dendritic
structure (Kemp & O’Hanley, 2010). In the United States alone,
there are an estimated 78,000 dams over 3 m tall and as many
as 3–8 million smaller structures that affect river flow (Doyle
& Havlick, 2009). This is highly likely to be a vast undercount
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CONSERVATION BIOLOGY 3 of 12

FIGURE 1 (a) Location of study region (Maine, U.S.A.), (b) fraction of accessible river (i.e., effective length multiplier) assuming 4250 unmapped barriers, (c)
cumulative passability (also known as accessibility, given recorded river barriers only), and (d) expected accessibility considering given recorded and 4250 unmapped
barriers (i.e., product of cumulative passability and effective length multiplier). EL, effective length multiplier; A, accessibility.

based on recent findings from Europe (Belletti et al., 2020) and
the United States (Buchanan et al., 2022).

Restoration of river connectivity through dam removal and
other barrier mitigation actions is an integral strategy for
improving freshwater ecosystems (Bednarek, 2001; Roni et al.,
2002). Millions of dollars are spent annually in the United States
alone on connectivity restoration (Bernhardt et al., 2005; Roni
et al., 2008), with planning carried out by a host of stakeholders
(e.g., local watershed councils, national nongovernmental orga-
nizations, state and federal agencies) focused on a wide range
of spatial scales, from small watersheds (O’Hanley, 2016), to
basins (CBCP, 2022), to entire states (CFPF, 2022), or even to
transnational regions (Moody et al., 2017).

Various methods have been suggested for prioritizing river
barrier removal and mitigation decisions. Most prioritization
approaches focus on enhancing dispersal of migratory fish
populations (Ioannidou & O’Hanley, 2018; Kuby et al., 2005;
Neeson et al., 2015; O’Hanley & Tomberlin, 2005; Paulsen &
Wernstedt, 1995); only a handful of studies concentrate on the
dispersal of resident fish (Diebel et al., 2015; O’Hanley, 2011;

O’Hanley, Wright, et al., 2013). None of these studies handle
uncertainty about the number or location of barriers. In practice
though, barrier inventories are far from complete, which these
modeling frameworks fail to recognize. In Oregon (USA), for
example, around 8900 structures were officially recorded as of
2004. This number subsequently grew to over 28,000 by 2011
and over 40,000 in 2019 (ODFW, 2020). The potential pres-
ence of unrecorded or hidden barriers raises a key question:
What impact does this have on the effectiveness of large-scale
connectivity restoration?

To help answer this question, we developed a novel
optimization-based approach for identifying a portfolio of
cost-effective barrier mitigation projects that considers how
hidden (i.e., unmapped) barriers might constrain habitat gains
of selected projects. As a case study, we applied this model to
the U.S. state of Maine (Figure 1a), where more than US$1 mil-
lion is invested annually in barrier removals to restore habitat
access for endangered Atlantic salmon (Salmo salar) (MFWCO,
2023; Hall, 2020) and other fish species. First, we used a
naïve version of our model (i.e., one that did not account for
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4 of 12 IOANNIDOU ET AL.

hidden barriers) to quantify habitat gains that might be achieved
without accounting for data shortcomings. Using this as a base-
line, we then quantified increases in ROI that may occur as well
as how mitigation choices differ spatially as a result of taking
missing barriers into account during project selection. Finally,
we performed a sensitivity analysis to quantify how increased
ROI depends on the true number of unmapped barriers. In
doing so, we sought to demonstrate how accounting for data
shortcomings during project selection might improve returns
on conservation investments.

METHODS

Naïve barrier optimization model

Before proposing our approach for optimizing barrier miti-
gation given the presence of hidden barriers, we introduce
a deterministic model, originally proposed by O’Hanley and
Tomberlin (2005) and later extended by King and O’Hanley
(2016), to optimize upstream habitat gains from barrier repair
and removal assuming all barrier locations are known (hereafter
naïve model). It is assumed the river network is strictly den-
dritic, meaning it never diverges in the downstream direction.
This assumption implies there is a unique path from the river
mouth to any point upstream. It is also assumed that each bar-
rier can be assigned a numeric passability value corresponding
to the fraction of fish (range: 0–1) that can successfully navigate
a barrier in the upstream and or downstream direction (Kemp
& O’Hanley, 2010). Cumulative passability, in turn, quantifies
the combined effect that barriers have on fish as they migrate
from the river mouth to areas above barriers (or vice versa) and,
assuming passabilities are independent, is evaluated for each
barrier by multiplying its passability with the passabilities of all
barriers downstream.

We used the following notation: J , indexed by j and k, is the
set of all known artificial and natural barriers. Included in J is
1 or more dummy barriers located at the mouth of each river
outlet. Dummy barriers have passability equal to 1 and are
included to account for available habitat situated between the
river mouth and the first set of artificial or natural barriers. Term
v j expresses the net amount of habitat in river subnetwork j

(i.e., the section of river immediately above barrier j up to the
next set of barriers or the river terminus). The set of mitigation
projects available at barrier j (possibly empty) is represented by
A j and indexed by i. The cost of implementing project i at bar-
rier j is given by c ji , and the available budget for carrying out
mitigation is given by b. Set D j is the subset of known barriers
downstream from and including barrier j . The initial passabil-
ity of barrier j is denoted by p0

j , and p ji denotes the increase
in passability at barrier j given implementation of mitigation
project i. Finally, the decision variables of the model are defined
below:

x ji =

{
1, if mitigation project i is carried out at barrier j ,

0, otherwise,

and

z j = cumulative passability
(
aka accessibility

)
to habitat area

immediate above barrier j .

With this in place, a mathematical formulation of the naïve
barrier optimization model is as follows:

max V =
∑
j∈J

v j z j (1)

s.t. ∑
j∈J

∑
i∈A j

c jix ji ≤ b, (2)

∑
i∈A j

x ji ≤ 1 ∀ j ∈ J , (3)

z j =
∏

k∈D j

(
p0

k
+

∑
i∈Ak

pkixki

)
∀ j ∈ J , (4)

x ji ∈ {0, 1} ∀ j ∈ J , i ∈ A j . (5)

The objective function (1) maximizes total accessible habitat
V by summing cumulative passability-weighted habitat across
all barriers. The inequality (2) places a budget on the total cost
of barrier mitigation. Constraints (3) specify that at most 1 mit-
igation project can be implemented at each artificial barrier j .
Equations (4) determine the cumulative passability of each bar-
rier j by taking the product of barrier passabilities in set D j .
Passability for any barrier k in D j is determined by taking ini-
tial passability p0

k
and adding to it the increase in passability pki

if mitigation project i is selected. Equations (4) are nonlinear
but can be expressed in linear form using the probability chain
technique proposed by O’Hanley, Scaparra, et al. (2013) and
explained in King and O’Hanley (2016). Finally, constraints (5)
require barrier mitigation decision variables to be binary.

Informed barrier optimization model

To formulate a model that accounts for the presence of hidden
barriers (hereafter informed model), we replaced the objective
function (1) with

max Ṽ =
∑
j∈J

ṽ j z j , (6)

where ṽ j is the expected net habitat above barrier j taking
into consideration the presence of hidden barriers downstream
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CONSERVATION BIOLOGY 5 of 12

from j and immediately above j (up to the next set of barriers
or the river terminus).

In what follows, we assumed the river network can be decom-
posed into a set of nonoverlapping river segments, denoted by S

(Appendix S1). The amount of habitat in any given segment s is
taken to be uniformly distributed along its length. For simplic-
ity and ease of explanation, we used river length as a proxy for
habitat, meaning that segments can be readily delineated by all
known barriers and confluence points; a more general approach
would require first splitting the river network by habitat areas,
then by known barriers and confluence points. Accordingly,
expected net habitat above barrier j is evaluated as

ṽ j =
∑
s∈Uj

l̃s , (7)

where Uj is the subset of segments in river subnetwork j

(Appendix S1) and l̃s is the effective length of segment s due
to the presence of hidden barriers.

To calculate effective segment length l̃s , we first introduce the
following notation. Let ls be the length of segment s. The total
length of the river network is denoted by L =

∑
s∈S

ls . Further,

let l ′s be the total length of river downstream from segment s

and let l
′′

s be the total length of river not downstream from or
within segment s. The total number of hidden barriers in the
river network is n. We assume their passabilities are independent
and identically distributed with mean p̃.

If hidden barriers are randomly located across the river net-
work and the likelihood of hidden barriers being present along
segments is proportional to length, it follows that the probabil-
ity 𝜋skt (that k hidden barriers are located on river segment s, t

hidden barriers are located downstream of s, and the remaining
n − k − t hidden barriers are located elsewhere in the river net-
work) is characterized by a multinomial distribution with counts

n, t , and n − k − t and event probabilities
ls

L
,

l ′s

L
, and

l
′′
s

L
. This

yields the following formula for 𝜋skt :

𝜋skt =
n!

k!t ! (n − k − t )!

(
ls
L

)k(
l ′s
L

)t
(

l
′′

s

L

)(n−k−t )

. (8)

In the case where hidden barriers are not randomly located
over the river network, one needs to modify the event
probabilities in the above equation (Appendix S2).

Given t hidden barriers downstream of segment s, it also
follows that the conditional expected cumulative passability
E(Ps|t ) of segment s, with random variable Ps denoting the true
(albeit unknown) cumulative passability of s, is

E (Ps|t ) = p̃t . (9)

Meanwhile, it is possible to show (Appendix S3) that the k

hidden barriers on segment s are uniformly distributed length-
wise, which is equivalent to the k hidden barriers being on

average equally spaced with separation
𝓁s

k+1
between them.

Accordingly, the conditional expected length E(Ls|k) of seg-
ment s, with random variable Ls denoting the true effective
length of s, is given by

E (Ls|k) =
k∑

r=0

p̃r

(
ls

k + 1

)
. (10)

For clarity, we provide an example of how conditional
expected length (Equation 10) is evaluated for a chosen seg-
ment in a hypothetical river network given a varying number
of hidden barriers (Appendix S1).

Putting everything together, an exact formula for calculat-
ing effective segment length l̃s (assuming independence between
hidden barrier passability and distance between hidden barriers)
is given by

l̃s =

n∑
k=0

n−k∑
t=0

𝜋skt ⋅ E (Ps|t ) ⋅ E (Ls|k) . (11)

For very large river networks involving hundreds of thou-
sands of river segments, the procedure outlined above for
estimating effective segment lengths l̃s can be computationally
taxing. As an alternative, we developed a log-linear regres-
sion model to derive a multiplier for effective segment length
(described below).

We emphasize that the only information added to the
informed model (compared with the naïve model) is estimates
of the number and passability of hidden barriers in the planning
area. No additional collection of field data is required. We fur-
ther stress that the benefits provided from using an informed
approach will generally be context dependent. Nonetheless,
even a hypothetical application of the model demonstrates that
optimal mitigation decisions do indeed change and significant
habitat gains can be achieved when even a single hidden bar-
rier with moderate impassability is present in a river network
(Appendix S4).

Maine barrier data set

Georeferenced data on dams, road crossings, and natural bar-
riers throughout Maine (n = 26,806) were obtained from the
U.S. Fish and Wildlife Service, Gulf of Maine Coastal Program
(GMCP). Each recorded structure in the most recent 2018 ver-
sion of the database includes a description of its structural
type (e.g., dam, culvert, multiple culvert, ford, bridge, natural
fall), a qualitative assessment of passability (i.e., barrier, poten-
tial barrier, no barrier, or unknown), basic physical information
like bank-full width for road crossings and structure height for
dams, and, in the case of dams, whether a fish pass has been
installed (see Appendix S6 for a complete list of recorded and
estimated barrier attributes). For our analysis, we first removed
all structures with passability classed as no barrier on the basis
that such structures are unlikely to present an obstacle to fish
passage. For road crossings, we further removed any struc-
ture designated as removed crossing or no crossing given such
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6 of 12 IOANNIDOU ET AL.

structures have either already been removed or are nonexistent
(i.e., stream and road layer intersections identified by a desk-
top analysis and initially included in the barrier database but
subsequently found to be not present following field surveys).
For natural barriers, we also excluded debris jams and beaver
dams on the assumption that these are transient features of the
landscape and unlikely to impede fish dispersal in the long term.

The remaining subset of structures (n = 18,656) was sub-
sequently snapped to a single-threaded river network derived
from the 1:100,000-scale National Hydrology Dataset Plus with
a 100-m snapping distance. As a final step, we excluded barriers
not located in coastal watersheds of Maine. This was required
because we did not have access to barrier and stream data for
Canada and without this, the connectivity status of rivers and
the benefits of barrier mitigation cannot be quantified. The final
data set (n = 14,902) included 13,913 road crossings, 829 dams,
and 160 natural barriers. The river network was subsequently
split at each barrier point and net upstream river length above
each barrier was determined by matching each river segment to
its immediate downstream barrier. The various geospatial data
processing steps were performed in ArcGIS 10.3 (ESRI, 2014)
with the Barrier Analysis Tool (BAT) add-in (Hornby, 2013).
Finally, we determined Strahler order with the RivEX toolbox
for ArcGIS (Hornby, 2014).

Initial barrier passability estimates for recorded barriers were
assigned as follows. For road crossings (e.g., culverts, fords, and
bridges), we assigned 0.0 passability to structures classed as a
barrier and 0.5 to those classed a potential barrier. For cross-
ings classed as unknown, we determined the mean passability
of existing crossings (0.47) in the full database, excluding any
removed or no crossing structures. We assumed a passability of
1.0 for structures classed as no barrier. For natural falls, we used
the same approach, assigning 0.0 to a barrier and 0.5 to a poten-
tial barrier. For dams, we assigned an initial passability of 0.0,
unless fitted with a fish ladder or fish lift (also known as eleva-
tor). The passability of a fish ladder was derived from analysis
of field data reported in Bunt et al. (2016). More specifically,
we estimated mean attraction (percentage of fish attracted to a
fishway entrance) and separately mean passage (percentage of
fish successfully exiting a fishway) of Denil-type fish ladders,
excluding a single outlier with very low efficiency (0.21) and no
passage (0.0). The product of mean attraction (0.69) and mean
passage (0.59) was used as an estimate for overall passability
(0.41). The passability of fish lifts (0.66) was estimated in a sim-
ilar manner by taking the attraction efficiency of a fish ladder
and using a high value for passage (0.95) based on expert advice
(B. Lake and B. Towler, personal communication) that once fish
are trapped, the passage efficiency of a lift approaches 100%.

We considered a single mitigation option for each artificial
barrier; natural falls were considered natural features for which
mitigation is normally proscribed. For crossings, mitigation was
assumed to restore full passability (1.0) and consisted of replace-
ment with an open-bottom arched culvert for streams with
bank-full width <18.3 m (60 feet) or with a bridge for bank-
full widths 18.3 m (60 feet) or greater. To estimate the cost of
installing a new culvert as a function of stream width (the main

determinant of cost), we generated a lookup table with 24 dif-
ferent intervals for bank-full width. Costs, varying from a low
of $24,100 to a high of $808,000, were derived from prior anal-
ysis (in 2009) performed by the GMCP on data collected by the
Salmon Habitat and River Enhancement Project and American
Rivers. All monetary units are in U.S. dollars. For our purposes,
we took the original cost table produced by GMCP, adjusted the
cost figures for inflation (to 2020 U.S. dollars), and extrapolated
to stream widths up to 18.3 m (60 feet).

Although the cost of constructing a bridge can vary widely
and depends on a number of site-specific factors, for simplicity
we assumed a median cost of $1 million. For small-sized dams
3.0 m (10 feet) high or less, removal was considered the most
cost-effective mitigation option for restoring full passage (1.0).
Inflation-adjusted costs for removing dams (to 2020 U.S. dol-
lars) were obtained from Graber (2011), with dams 0.6–1.5 m
(2–5 feet) high costing $47,600 to remove and dams 1.8–3.0 m
(6–10 feet) high costing $86,600 to remove. For medium-sized
dams over 3 m (10 feet) but not exceeding 15.2 m (50 feet),
installation of a Denil fish ladder was the preferred option at
a cost of $100,000 per vertical foot (B. Lake, personal commu-
nication). Passability of a fish ladder was assumed to be 0.41
(same as existing fish ladders). For large-sized dams in excess
of 15.2 m (50 feet) but not exceeding 30.5 m (100 feet), we
assumed a fish lift could be installed with passability equal to
0.66 (same as existing fish lifts). The cost of constructing a fish
lift varies based on height and river size. More fish typically
migrate through large rivers, necessitating more or larger hop-
pers (B. Lake, personal communication). As a proxy for river
size, we used Strahler order and assumed that lifts for large dams
<22.9 m (75 feet) cost $10 million for rivers of order 1–5 and
$25 million for rivers of order 6 or higher. A 50% increase in
cost was added to large dams with height >22.9 (75 feet) (i.e.,
$15 million for order 1–5 and $37.5 for order ≥6). Dams 30.5 m
(100 feet) and over, of which there are 4 in Maine, were not
considered candidates for mitigation due to the significant engi-
neering difficulties involved and high cost of constructing lifts
on very large dams. The only viable alternative for such dams
is trap and haul (also known as trap and truck), but this is not
normally considered a long-term solution (M. Brown, personal
communication). For any crossing or dam with a missing record
for bank-full width or structure height, we used median bank-
full width and structure height, respectively, according to stream
order.

We anticipated the number of unmapped barriers in coastal
watersheds was 1875–7490, with a most likely figure of 3745 (A.
Abbott, personal communication). To explore scenarios across
this range, we assumed the number of unrecorded barriers is
approximated by a triangular distribution parameterized by a
lower bound, upper bound, and mode. We determined the min-
imum, 25th percentile, median, 75th percentile, and maximum
values of the distribution to create 5 representative scenarios
for the number of hidden barriers (1875, 3495, 4250, 5200, and
7490, respectively). For unmapped barriers, passability was set
to the mean passability of all recorded structures (0.45) in the
GMCP database, including those with full passability.
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CONSERVATION BIOLOGY 7 of 12

TABLE 1 Summary of regression model (Equation 12) results for
predicting effective segment length multipliers in Maine watersheds

Parameter Estimate SE

𝛽1 −11.899* 4.432

𝛽2 −0.465** 4.477 × 10−4

𝛽3 −1.001** 2.251 × 10−6

𝛽4 0.459** 8.621 × 10−4

𝛽5 1.001** 3.918 × 10−6

Pseudo R2
∼1.000

*p ≤ 0.01
**p ≤ 0.001.

Approximation of effective river segment length

To calculate expected net habitat ṽ j above each barrier, we
coded a special Matlab script to estimate effective segment
length l̃s on a segment-by-segment basis. Given there are
203,281 segments in the Maine river network, this required
considerable computational overhead involving several days of
calculation. As an approximation, we developed the following
log-linear regression model to derive a multiplier for effective
segment length:

ln
(
l̃ ∕l

)
= 𝛽1

[
lnorm × p

]
+ 𝛽2 [lnorm × n] + 𝛽3

[
l ′norm × n

]
+𝛽4

[
lnorm × p × n

]
+ 𝛽5

[
l ′norm × p × n

]
, (12)

where l̃ ∕l is the ratio of a segment’s effective to true length,
lnorm is the normalized length of a segment (i.e., length l over
total length L), l ′norm is the normalized river length downstream
of a segment (i.e., downstream length l ′ over total length L), n

is the total number of hidden barriers, p is the mean passability
of hidden barriers, and the 𝛽s are regression model param-
eters to be estimated via ordinary least squares (OLS). With
OLS parameter estimates in hand, one can compute a multiplier
𝜃s = exp(𝜷Ty

s
) for each segment s (𝜷 being the vector of regres-

sion parameters and y
s

the vector of covariates for segment s) to
approximate effective segment length l̂s = 𝜃s ⋅ ls .

We estimated model parameters (Equation 12) by taking a
sample of 2035 segments from the Maine river network, system-
atically varying hidden barrier passability (p = 0.1, 0.3, 0.5, 0.7,
0.9) and the number of hidden barriers (n= 6.25%, 12.5%, 25%,
50%, 100% of the total number of known barriers), and then
calculating effective segment length exactly via Equation (11)
to produce 50,875 observations. Our approximation model for
effective length (Table 1) produced extremely accurate results,
with all predictor variables significant to the 0.01 level or better;
a pseudo R2, measured as the square of the correlation between
true and approximated effective length (Eisenhauer, 2003), near
1; a mean absolute error of 1.06 × 10−4 (∼0.01%); and a maxi-
mum absolute error of 4.42 × 10−3 (<1%). Although the model
parameter values reported here (Table 1) only apply to Maine,
the basic approach for approximating effective segment length
can be readily adapted to other locations.

RESULTS

Failing to acknowledge unmapped barriers led to a dramatic
overestimate of current ecosystem connectivity. Under the
assumption that no barriers are unmapped, we calculated that
only 16.1% of coastal rivers (75,781 km in length) are cur-
rently accessible to migratory fishes (Figure 1c). However, the
presence of just 1875 unmapped barriers (lower bound esti-
mate) reduced currently accessible habitat by 41% (Figure 2a,b).
With 4250 hidden barriers (median estimate), accessible habitat
dropped by almost two-thirds (Figures 1d & 2a,b).

Unmapped barriers also dramatically reduced gains in acces-
sible habitat achieved from barrier mitigation (Figure 3a). For
a budget of $100 million, for example, the naïve optimiza-
tion model identified a set of barrier mitigation projects that
would result in a hypothetical increase of 6095 km of accessible
habitat. However, this 6095-km gain was achievable only when
no unmapped barriers were present. If there were just 1875
unmapped barriers, barrier mitigation projects identified by the
naïve optimization model resulted in only a 3191-km increase
in accessible habitat. Thus, expected habitat gains were 48%
lower than expected due to the presence of unmapped barriers
(Figure 3b). For the same budget with 7490 unmapped barriers
(upper bound estimate), expected habitat gains were fully 75%
lower than expected.

Results for our informed optimization model demonstrated
how accounting for missing data during project selection can
substantially boost ROI from barrier mitigation (Figure 4). This
effect was greatest when budgets were low and the number
of unmapped barriers was large. In the scenario with 7490
unmapped barriers, a budget of $2 million resulted in a 218-km
increase in accessible habitat with the informed model, com-
pared with a 46-km increase if funds were allocated based on the
solution to the naïve model. In this case, explicitly accounting
for unmapped barriers during project selection increased con-
servation ROI by 371%. Given 7490 unmapped barriers and
budget of $250,000, ROI was a staggering 2586% (26 times)
greater for the informed model compared with the naïve model
(42 vs. 1.6 km). And although the benefits of an informed
approach trended downward as budgets became larger (fewer
remaining barriers) or there were fewer unmapped barriers (less
uncertainty), additional habitat gains were nonetheless substan-
tial (Figure 4). Averaged over all budgets, anticipating for the
presence of hidden barriers increased habitat gain 20–273%,
depending on the number of hidden barriers.

Accounting for missing data during project selection changed
the spatial distribution of barrier mitigation projects (Figure 5).
For a budget of $10 million, for example, projects selected using
the naïve model were on average 56 km from the mouth of
the river. For the same budget and assuming 1875 unmapped
barriers, projects selected using the informed model were on
average 14 km from the mouth of the river, one-fourth as
far inland. This substantial change in the location of barrier
mitigation projects occurred because each unmapped barrier
decreased the cumulative passability of all upstream barriers.
Thus, when unmapped barriers were present, potential habi-
tat gains were highest for barriers with few potential unmapped
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8 of 12 IOANNIDOU ET AL.

FIGURE 2 (a) Total accessible habitat of Maine coastal rivers as a function of the number of unmapped barriers and (b) percent reduction in accessible habitat
due to unmapped barriers relative to a baseline scenario of no unmapped barriers (dashed red lines, estimated lower and upper bounds on the true number of
unmapped barriers).

FIGURE 3 (a) Increase in total accessible habitat in Maine rivers that could be achieved for a given budget when barrier mitigation projects are selected using
the naïve model and (b) percent reduction in habitat gain resulting from a given number of unmapped barriers compared with a baseline scenario of no unmapped
barriers.

barriers downstream (i.e., at mapped barriers close to the river
mouth).

Given the true number of unmapped barriers is unknown,
we analyzed how well solutions optimized for a specific num-
ber of hidden barriers might perform when the actual number
of hidden barriers differed. Erring too low or too high for
the number of unmapped barriers led to significant variabil-
ity in foregone habitat gain (Figure 6). More precisely, when
we assumed a very small or large number of unmapped barri-
ers, little or no foregone habitat gain was forfeited only when
the true number of unmapped barriers was comparable. If the
true number of hidden barriers deviated considerably, foregone
habitat gain was comparatively high. In the most extreme case,
assuming no unmapped barriers were present, foregone habitat
gain was 53% given a modest $10 million budget. In contrast,
the most robust solutions were obtained when we assumed

an intermediate number of hidden barriers (4250). Under this
assumption, foregone habitat gains were the lowest on aver-
age and never exceeded 9% regardless of the true number of
unmapped barriers (Figure 6b).

DISCUSSION

There is growing international interest in dam removals and
road crossing upgrades as a means of restoring river connec-
tivity and biodiversity. Our informed optimization model adds
to the growing literature on barrier prioritization approaches
(Garcia de Leaniz & O’Hanley, 2022) by providing a method
for boosting conservation outcomes despite incomplete barrier
inventories (Belletti et al., 2020). Overall, our results showed
that accounting for unmapped barriers is essential for maximiz-
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FIGURE 4 Percent increase in habitat gain that could be achieved by
selecting river barrier mitigation projects with the informed model rather than

the naïve model. The y-axis is computed as
ΔHi− ΔHn

ΔHn
× 100, where, for any

given budget, ΔHi is the habitat gain for the informed model solution and
ΔHn is the habitat gain for the naïve model solution taking into account
unmapped barriers post facto.

FIGURE 5 Average distance to river mouth of barrier mitigation projects
selected using the informed model.

ing river connectivity gains. Critically, improved conservation
outcomes can be achieved simply by acknowledging that hid-
den barriers may be present without even knowing where they
are. Moreover, the importance of accounting for unmapped bar-
riers has direct relevance to river conservation practitioners. In
particular, as the number of unmapped barriers increased, selec-
tion of barrier mitigation projects was directed near to the river
mouth.

More broadly, our study demonstrated how ROI frameworks
might be modified to explicitly account for incomplete data.
For many conservation decisions, the threat of extinctions and
extirpations precludes inaction while more data are acquired
(Grantham et al., 2009), which means decisions must be made

with incomplete data. Furthermore, various studies have shown
that it is often not cost-effective to acquire more data on
species’ distributions, habitats, or threats (Grantham et al., 2008;
Hermoso et al., 2013). In the absence of additional data, conser-
vation decisions rely on spatial models of species’ distributions
(Wilson et al., 2005) or species’ indicators (Fitzpatrick et al.,
2021), habitats (Terrado et al., 2016), and threats (Vörösmarty
et al., 2010). The effects of these modeled or proxy data on
spatial conservation priorities and efficiency are well quantified
(Kujala et al., 2018; La Marca et al., 2019; Wilson et al., 2005),
but planning algorithms in spatial conservation planning tools
like Marxan (Ball & Possingham, 2000), Zonation (Lehtomäki
& Moilanen, 2013), and C-Plan (Pressey et al., 2009) do not
explicitly account for incomplete data. In contrast, our results
demonstrated how modifying the spatial planning algorithm
itself can improve the ROI of conservation projects.

We focused on anadromous fish, but future work could
extend our modeling approach to stream-resident fish and other
aquatic organisms (Cote et al., 2009; O’Hanley, 2011; O’Hanley,
Wright, et al., 2013), fish population dynamics (Ioannidou &
O’Hanley, 2019; Paulsen & Wernstedt, 1995; Ziv et al., 2012), or
spatial dynamics (Fitzpatrick & Neeson, 2018). Enhanced pre-
diction of the actual number of unmapped barriers could also be
incorporated into our framework and would greatly improve the
effectiveness of barrier prioritization decisions. Ramos (1999)
suggests the use of Bayesian models to simulate undercount
data, whereas Fader and Hardie (2000) propose the use of the
beta-binomial or negative binomial distribution.

Dams and other structures provide many societal benefits
(Doyle & Havlick, 2009) and deliberations to remove them
inevitably involve balancing a diverse set of costs (e.g., reduc-
tions in water provisioning, recreation, flood control, and
hydropower generation) and benefits (e.g., ecosystem connectiv-
ity improvements and reduced dam failure risk). Our informed
optimization model could be extended to consider multiple
objectives, including dam safety (Zheng & Hobbs, 2013), water
storage and hydropower production (Kuby et al., 2005), recre-
ation (Roy et al., 2018), potential threats from invasive species
(Milt et al., 2018), and climate uncertainty (Farzaneh et al., 2021).
In Maine, hydropower losses from dam removal could be poten-
tially offset by solar production on a modest land area (Sharma
& Waldman, 2021) or via offsetting opportunities (O’Hanley
et al., 2020; Owen & Apse, 2015), whereby lost hydropower is
compensated by hydropower installation or upgrade elsewhere.

Our results offer broad lessons for conservation practice.
Nearly all conservation decisions are made with missing or
incomplete data, but data limitations are rarely considered
when allocating conservation resources among candidate
projects. We demonstrated that simply acknowledging that data
are incomplete—and accounting for this shortcoming dur-
ing project selection—can boost ROI. Given incomplete data
on species’ distributions, habitat availability, and threats in
ecosystems worldwide, our results highlight the importance
of explicitly accounting for incomplete data in conservation
planning.

 15231739, 2023, 3, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14093 by T

est, W
iley O

nline L
ibrary on [08/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 12 IOANNIDOU ET AL.

FIGURE 6 (a) Foregone habitat gain resulting from a mismatch between the true number of unmapped barriers (horizontal axis) and the estimated number of
unmapped barriers used to parameterize the informed model and (b) range of potential foregone habitat gain that might occur for an assumed number of unmapped
barriers. The true number of unmapped barriers is unknown but assumed to be between 1875 and 7490. Both panels were calculated with a budget of
US$10 million.
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