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Abstract  

Conservation decisions are invariably made with incomplete data on species’ distributions, 

habitats, and threats, but frameworks for allocating conservation investments rarely account for 

missing data. In this study, we examined how explicit consideration of missing data can boost 

return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic 

ecosystem connectivity by removing dams and road crossings from rivers. A novel way of 

integrating the presence of unmapped barriers into a barrier optimization model was developed 

and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. 

Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat 

gain than would was anticipated using a conventional barrier optimization approach. Explicitly 

acknowledging that data are incomplete during project selection, however, boosted expected 

habitat gains by 20-273% on average, depending on the true number of unmapped barriers. 

Importantly, these gains occurred without any additional data. Simply acknowledging that some 

barriers are unmapped, regardless of their precise number and location, improved conservation 

outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of 

accounting for data shortcomings during project selection. 
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Introduction 

Conservation actors worldwide make substantial investments in restoration projects to 

conserve biodiversity and ecosystem services, mitigate threats, restore habitats, and enhance 

ecosystem connectivity. Often, conservation projects are selected using return-on-investment 

frameworks that aim at maximizing conservation benefit per dollar spent. Return-on-investment 

(ROI) frameworks have been used, implicitly or explicitly, to direct spending for terrestrial and 

marine reserve networks (Church et al., 1996; Meester et al., 2004), habitat restoration (Orsi et 

al., 2011), restoration of connections among habitat patches (Williams, 1998), payments for 

ecosystem services (Hu et al., 2015), and a range of other conservation actions. When ROI 

frameworks are used implicitly, decision makers rely on expert judgement to identify a set of 

cost-effective projects. When done explicitly, resource allocation decisions are based on 

quantitative approaches that seek to identify an optimal budget allocation among candidate 

projects.  

An ROI framework can be an effective tool for allocating resources, but a tacit 

assumption of most frameworks is that underlying data on species’ distributions, habitats, and 

threats are complete or at least unbiased and sufficient. While conservation actors certainly 

recognize that data are imperfect (Possingham et al., 2007), the implications of data 

shortcomings are rarely acknowledged during planning (Boitani et al., 2011). Failure to 

explicitly acknowledge incomplete data during planning can potentially lead to an 

overestimation of conservation benefits or an underestimation of costs and impacts of proposed 

projects. Of greater concern are instances where better data would have changed the priority 

ranking of candidate projects and led to an alternative allocation of conservation resources 

(Kujala et al., 2018). 
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 In this study, we addressed a fundamental question: How might ROI frameworks be 

modified to account for the fact that conservation decisions are necessarily made with 

incomplete data? Decision-makers in other domains deal with uncertainty and missing data by 

applying flexible decision frameworks under the presumption that decisions are reversible and 

flexible (Fovargue et al., 2021). Many conservation decisions, however, require significant 

investment outlay that are not easily reversible, for example the financial and sociopolitical costs 

of establishing protected areas, large capital costs of many restoration projects (e.g., dam 

removal or cleanup of superfund sites), and opportunity costs associated with failing to prevent a 

species’ impending extinction. High extinction rates and rapid loss of ecosystem services also 

preclude a wait-and-see strategy of taking no action while more data are acquired (Grantham et 

al., 2009). In many cases, it is not cost-effective to acquire more data (Grantham et al., 2008; 

Hermoso et al., 2013) 

 To explore how ROI frameworks might be modified to account for incomplete data, we 

focused on the challenge of restoring aquatic ecosystem connectivity by removing dams and 

impassable road crossings from rivers. Landscape connectivity is crucial for biological 

conservation (Lucas & Baras, 2001; Fahrig, 2003; Fischer & Lindenmayer, 2007), and rivers are 

particularly vulnerable to barrier fragmentation due to their dendritic structure (Kemp & 

O’Hanley, 2010). In the United States alone, there are an estimated 78,000 dams over 3 m tall 

and as many as 3-8 million smaller structures that affect river flow (Doyle & Havlick, 2009). 

This is highly likely to be a vast undercount based on recent findings from Europe (Belletti et al., 

2020) and the United States (Buchanan et al., 2022). 

Restoration of river connectivity through dam removal and other barrier mitigation 

actions is an integral strategy for improving freshwater ecosystems (Bednarek, 2001; Roni et al., 
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2002). Millions of dollars are spent annually in the United States alone on connectivity 

restoration (Bernhardt et al., 2005; Roni et al., 2008), with planning carried out by a host of 

stakeholders (e.g., local watershed councils, national non-governmental organizations, state and 

federal agencies) focused on a wide range of spatial scales, from small watersheds (O’Hanley, 

2016), through to basins (CBCP, 2022), and up to entire states (CFPF, 2022) or even 

transnational regions (Moody et al., 2017). 

Various methods have been suggested for prioritizing river barrier removal and 

mitigation decisions. Most prioritization approaches focus on enhancing dispersal of migratory 

fish populations (Paulsen & Wernstedt, 1995; Kuby et al., 2005; O’Hanley & Tomberlin, 2005; 

Neeson et al., 2015; Ioannidou & O’Hanley, 2018); only a handful of studies concentrate on the 

dispersal of resident fish (O’Hanley, 2011; O’Hanley et al., 2013b; Diebel et al., 2015). None of 

these studies handle uncertainty about the number or location of barriers. In practice though, 

barrier inventories are far from complete, which these modeling frameworks fail to recognize. In 

Oregon (U.S.A.), for example, around 8,900 structures were officially recorded as of 2004. This 

number subsequently grew to over 28,000 by 2011 and over 40,000 in 2019 (ODFW, 2020). The 

potential presence of unrecorded or hidden barriers raises a key question: What impact does this 

have on the effectiveness of large-scale connectivity restoration? 

To help answer this question, we developed a novel optimization based approach for 

identifying a portfolio of cost-effective barrier mitigation projects that considers how hidden 

(i.e., unmapped) barriers might constrain habitat gains of selected projects. As a case study, we 

applied this model to the U.S. state of Maine (Fig. 1a), where >US$1million is invested annually 

in barrier removals to restore habitat access for endangered Atlantic salmon (Salmo salar) 

(MFWCO, 2016; NRCS, 2019) and other fish species. First, we used a naïve version of our 
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model (i.e., one that did not account for hidden barriers) to quantify habitat gains that might be 

achieved without accounting for data shortcomings. Using this as a baseline, we then quantified 

increases in ROI that may occur as well as how mitigation choices differ spatially as a result of 

taking missing barriers into account during project selection. Finally, we performed a sensitivity 

analysis to quantify how increased ROI depends on the true number of unmapped barriers. In 

doing so, we sought to demonstrate how accounting for data shortcomings during project 

selection might improve returns on conservation investments.  

 

Methods 

Naïve Barrier Optimization Model 

Before proposing our approach for optimizing barrier mitigation given the presence of 

hidden barriers, we start by introducing a deterministic model, originally proposed by O’Hanley 

and Tomberlin (2005) and later extended by King and O’Hanley (2016), to optimize upstream 

habitat gains from barrier repair and removal assuming all barrier locations are known (hereafter 

naïve model). It is assumed the river network is strictly dendritic, meaning it never diverges in 

the downstream direction. This assumption implies there is a unique path from the river mouth to 

any point upstream. It is also assumed that each barrier can be assigned a numeric passability 

value corresponding to the fraction of fish (range 0-1) that can successfully navigate a barrier in 

the upstream and or downstream direction (Kemp & O’Hanley, 2010). Cumulative passability, in 

turn, quantifies the combined effect that barriers have on fish as they migrate from the river 

mouth to areas above barriers (or vice versa) and, assuming passabilities are independent, is 

evaluated for each barrier by multiplying its passability with the passabilities of all barriers 

downstream. 
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Further consider the following notation. Let 𝐽, indexed by 𝑗 and 𝑘, be the set of all known 

artificial and natural barriers. Included in 𝐽 is one or more dummy barriers located at the mouth 

of each river outlet. Dummy barriers have passability equal to 1 and are included to account for 

available habitat situated between the river mouth and the first set of artificial or natural barriers. 

Term 𝑣𝑗  expresses the net amount of habitat in river subnetwork 𝑗 (i.e., the section of river 

immediately above barrier 𝑗 up to the next set of barriers or the river terminus). The set of 

mitigation projects available at barrier 𝑗 (possibly empty) is represented by 𝐴𝑗 and indexed by 𝑖. 

The cost of implementing project 𝑖 at barrier 𝑗 is given by 𝑐𝑗𝑖 and the available budget for 

carrying out mitigation is given by 𝑏. Set 𝐷𝑗  is the subset of known barriers downstream from 

and including barrier 𝑗. The initial passability of barrier 𝑗 is denoted by 𝑝𝑗
0, while 𝑝𝑗𝑖 denotes the 

increase in passability at barrier 𝑗 given implementation of mitigation project 𝑖. Finally, the 

decision variables of the model are defined below.  

𝑥𝑗𝑖 = {
1 if mitigation project 𝑖 is carried out at barrier 𝑗 
0 otherwise                                                                    

 

𝑧𝑗 = cumulative passability (aka accessibility) to habitat area immediate above barrier 𝑗 

With this in place, a mathematical formulation of the naïve barrier optimization model is 

given as follows. 

max 𝑉 = ∑ 𝑣𝑗𝑧𝑗

𝑗∈𝐽

  (1) 

𝑠. 𝑡.   

∑ ∑ 𝑐𝑗𝑖𝑥𝑗𝑖

𝑖∈𝐴𝑗𝑗∈𝐽

≤ 𝑏  (2) 

∑ 𝑥𝑗𝑖

𝑖∈𝐴𝑗

≤ 1 ∀𝑗 ∈ 𝐽 (3) 
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𝑧𝑗 = ∏ (𝑝𝑘
0 + ∑ 𝑝𝑘𝑖𝑥𝑘𝑖

𝑖∈𝐴𝑘

)

𝑘∈𝐷𝑗

 ∀𝑗 ∈ 𝐽 (4) 

𝑥𝑗𝑖 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝐴𝑗  (5) 

Objective function (1) maximizes total accessible habitat 𝑉 by summing cumulative 

passability weighted habitat across all barriers. Inequality (2) places a budget on the total cost of 

barrier mitigation. Constraints (3) specify that at most one mitigation project can be implemented 

at each artificial barrier 𝑗. Equations (4) determine the cumulative passability of each barrier 𝑗 by 

taking the product of barrier passabilities in set 𝐷𝑗 . Passability for any barrier 𝑘 in 𝐷𝑗  is 

determined by taking initial passability 𝑝𝑘
0 and adding to it the increase in passability 𝑝𝑘𝑖 if 

mitigation project 𝑖 is selected. Note that equations (4) are nonlinear but can be expressed in 

linear form using the probability chain technique proposed by O’Hanley et al. (2013a) and 

explained in King and O’Hanley (2016). Finally, constraints (5) require barrier mitigation 

decision variables to be binary. 

 

Informed Barrier Optimization Model 

To formulate a model that accounts for the presence of hidden barriers (hereafter 

informed model), we replaced Eq. 1 with: 

max �̃� = ∑ �̃�𝑗𝑧𝑗

𝑗∈𝐽

, (6) 

where �̃�𝑗 is the expected net habitat above barrier 𝑗 taking into consideration the presence of 

hidden barriers downstream from 𝑗 and immediately above 𝑗 (up to the next set of barriers or the 

river terminus). 
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In what follows, we assumed the river network can be decomposed into a set of 

nonoverlapping river segments, denoted by 𝑆 (Appendix S1). The amount of habitat in any given 

segment 𝑠 is taken to be uniformly distributed along its length. For simplicity and ease of 

explanation, we used river length as a proxy for habitat, meaning that segments can be readily 

delineated by all known barriers and confluence points; a more general approach would require 

first splitting the river network by habitat areas, then by known barriers and confluence points. 

Accordingly, expected net habitat above barrier 𝑗 is evaluated as: 

�̃�𝑗 = ∑ ℓ̃𝑠

𝑠∈𝑈𝑗

, (7) 

where 𝑈𝑗 is the subset of segments in river subnetwork 𝑗 (Appendix S1) and ℓ̃𝑠 is the effective 

length of segment 𝑠 due to the presence of hidden barriers. 

To calculate effective segment length ℓ̃𝑠, we first introduce the following notation. Let ℓ𝑠 

be the length of segment 𝑠. The total length of the river network is denoted by 𝐿 = ∑ ℓ𝑠𝑠∈𝑆 . 

Further, let ℓ𝑠
′  be the total length of river downstream from segment 𝑠 and let ℓ𝑠

′′ be the total 

length of river not downstream from or within segment 𝑠. The total number of hidden barriers in 

the river network is n. We assume their passabilities are independent and identically distributed 

with mean 𝑝. 

If hidden barriers are randomly located across the river network and the likelihood of 

hidden barriers being present along segments is proportional to length, it follows that the 

probability 𝜋𝑠𝑘𝑡 that 𝑘 hidden barriers are located on river segment 𝑠, 𝑡 hidden barriers are 

located downstream of 𝑠, and the remaining 𝑛 − 𝑘 − 𝑡 hidden barriers are located elsewhere in 

the river network is characterized by a multinomial distribution with counts 𝑛, 𝑡, and 𝑛 − 𝑘 − 𝑡 

and event probabilities 
ℓ𝑠

𝐿
, 

ℓ𝑠
′

𝐿
 , and 

ℓ𝑠
′′

𝐿
. This yields the following formula for 𝜋𝑠𝑘𝑡. 
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𝜋𝑠𝑘𝑡 =
𝑛!

𝑘! 𝑡! (𝑛 − 𝑘 − 𝑡)!
(

ℓ𝑠

𝐿
)

𝑘

(
ℓ𝑠

′

𝐿
)

𝑡

(
ℓ𝑠

′′

𝐿
)

(𝑛−𝑘−𝑡)

 (8) 

In the case where hidden barriers are not randomly located over the river network, one needs to 

modify the event probabilities in the above equation (Appendix S2). 

Given 𝑡 hidden barriers downstream of segment 𝑠, it also follows that the conditional 

expected cumulative passability E(𝒫𝑠|𝑡) of segment 𝑠, with random variable 𝒫𝑠 denoting the true 

(albeit unknown) cumulative passability of 𝑠, is: 

E(𝒫𝑠|𝑡)  = 𝑝𝑡 . (9) 

Meanwhile, it is possible to show (Appendix S3) that the 𝑘 hidden barriers on segment 𝑠 

are uniformly distributed lengthwise, which is equivalent to the 𝑘 hidden barriers being on 

average equally spaced with separation 
ℓ𝑠

𝑘+1
 between them. Accordingly, the conditional expected 

length E(ℒ𝑠|𝑘) of segment 𝑠, with random variable ℒ𝑠 denoting the true effective length of 𝑠, is 

given by: 

E(ℒ𝑠|𝑘) = ∑ 𝑝𝑟 (
ℓ𝑠

𝑘 + 1
)

𝑘

𝑟=0

. (10) 

For clarity, we provide an example of how conditional expected length (eqn. 10) is evaluated for 

a chosen segment in a hypothetical river network given a varying number of hidden barriers 

(Appendix S1). 

Putting everything together, an exact formula for calculating effective segment length ℓ̃𝑠 

(assuming independence between hidden barrier passability and distance between hidden 

barriers) is given by: 

ℓ̃𝑠 = ∑ ∑ 𝜋𝑠𝑘𝑡  ∙ E(𝒫𝑠|𝑡) ∙  E(ℒ𝑠|𝑘)

𝑛−𝑘

𝑡=0

𝑛

𝑘=0

. (11) 
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For very large river networks involving hundreds of thousands of river segments, the 

procedure outlined above for estimating effective segment lengths ℓ̃𝑠 can be computationally 

taxing. As an alternative, we developed a log-linear regression model to derive a multiplier for 

effective segment length (described below). 

We emphasize that the only information added to the informed model (compared to the 

naïve model) are estimates for the number and passability of hidden barriers in the planning area. 

No additional collection of field data is required. We further stress that the benefits provided 

from using an informed approach will generally be context dependent. Nonetheless, even a 

hypothetical application of the model demonstrates that optimal mitigation decisions do indeed 

change and significant habitat gains can be achieved when even a single hidden barrier with 

moderate impassability is present in a river network (Appendix S4). 

 

Maine Barrier Dataset 

Georeferenced data on dams, road crossings, and natural barriers throughout Maine (n = 

26,806) were obtained from the U.S. Fish and Wildlife Service, Gulf of Maine Coastal Program 

(GMCP). Each recorded structure in the most recent 2018 version of the database includes a 

description of its structural type (e.g., dam, culvert, multiple culvert, ford, bridge, natural fall), a 

qualitative assessment of passability (i.e., barrier, potential barrier, no barrier, or unknown), 

basic physical information like bankfull width for road crossings and structure height for dams, 

and, in the case of dams, whether a fish pass has been installed (see Appendix S6 for a complete 

list of recorded and estimated barrier attributes). For our analysis, we first removed all structures 

with passability classed as “no barrier” on the basis that such structures are unlikely to present an 

obstacle to fish passage. For road crossings, we further removed any structure designated as 
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“removed crossing” or “no crossing” given such structures have either already been removed or 

are nonexistent (i.e., stream and road layer intersections identified by a desktop analysis and 

initially included in the barrier database but subsequently found to be not present following field 

surveys). For natural barriers, we also excluded debris jams and beaver dams on the assumption 

that these are transient features of the landscape and unlikely to impede fish dispersal in the long-

term. 

The remaining subset of structures (n = 18,656) was subsequently snapped to a single-

threaded river network derived from the 1:100,000-scale National Hydrology Dataset Plus with a 

100-m snapping distance. As a final step, we excluded barriers not located in coastal watersheds 

of Maine. This was required because we did not have access to barrier and stream data for 

Canada and without this, the connectivity status of rivers and the benefits of barrier mitigation 

cannot be quantified. The final dataset (n = 14,902) included 13,913 road crossings, 829 dams, 

and 160 natural barriers. The river network was subsequently split at each barrier point and net 

upstream river length above each barrier determined by matching each river segment to its 

immediate downstream barrier. The various geospatial data processing steps were performed in 

ArcGIS 10.3 (ESRI, 2014) with the Barrier Analysis Tool (BAT) add-in (Hornby, 2013). Finally, 

we determined Strahler order with the RivEX toolbox for ArcGIS (Hornby, 2014). 

Initial barrier passability estimates for recorded barriers were assigned as follows. For 

road crossings (e.g., culverts, fords, and bridges), we assigned 0.0 passability to structures 

classed as a “barrier” and 0.5 to those classed a “potential barrier”. For crossings classed as 

“unknown,” we determined the mean passability of existing crossings (0.47) in the full database, 

excluding any “removed” or “no crossing” structures. We assumed a passability of 1.0 for 

structures classed as “no barrier.” For natural falls, we used the same approach, assigning 0.0 to a 
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“barrier” and 0.5 to a “potential barrier.” For dams, we assigned an initial passability of 0.0, 

unless fitted with a fish ladder or fish lift (aka elevator). The passability of a fish ladder was 

derived from analysis of field data reported in Bunt (2016). More specifically, we estimated 

mean attraction (percentage of fish attracted to a fishway entrance) and separately mean passage 

(percentage of fish successfully exiting a fishway) of dennil type fish ladders, excluding a single 

outlier with very low efficiency (0.21) and no passage (0.0). The product of mean attraction 

(0.69) and mean passage (0.59) was used as an estimate for overall passability (0.41). The 

passability of fish lifts (0.66) was estimated in a similar manner by taking the attraction 

efficiency of a fish ladder and using a high value for passage (0.95) based on expert advice (B. 

Lake and B. Towler, personal communication) that once fish are trapped, the passage efficiency 

of a lift approaches 100%. 

We considered a single mitigation option for each artificial barrier; natural falls were 

considered natural features for which mitigation is normally proscribed. For crossings, mitigation 

was assumed to restore full passability (1.0) and consisted of replacement with an open bottom 

arched culvert for streams with bankfull width <60 ft or with a bridge for bankfull widths 60 ft or 

greater. To estimate the cost of installing a new culvert as a function of stream width (the main 

determinant of cost), we generated a lookup table with 24 different intervals for bankfull width. 

Costs, varying from a low of $24,100 to a high of $808,000, were derived from prior analysis (in 

2009) performed by the GMCP on data collected by the Salmon Habitat and River Enhancement 

Project and American Rivers. All monetary units are in U.S. dollars. For our purposes, we took 

the original cost table produced by GMCP, adjusted the cost figures for inflation (to 2020 U.S. 

dollars) and extrapolated to stream widths up to 60 ft. 
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While the cost of constructing a bridge can vary widely and depends on a number of site-

specific factors, for simplicity we assumed a median cost of $1 million. For small-sized dams 10 

ft high or less, removal was considered the most cost-effective mitigation option for restoring 

full passage (1.0). Inflation-adjusted costs for removing dams (to 2020 U.S. dollars) were 

obtained from Graber (2011), with dams 2-5 ft high costing $47,600 to remove and dams 6-10 ft 

high costing $86,600 to remove. For medium-sized dams over 10 ft but not exceeding 50 ft, 

installation of a dennil fish ladder was the preferred option at a cost of $100,000 per vertical foot 

(B. Lake, personal communication). Passability of a fish ladder was assumed to be 0.41 (same as 

existing fish ladders). For large-sized dams in excess of 50 ft but not exceeding 100 ft, we 

assumed a fish lift could be installed with passability equal to 0.66 (same as existing fish lifts). 

The cost of constructing a fish lift varies based on height and river size. More fish typically 

migrate through large rivers, necessitating more or larger hoppers (B. Lake, personal 

communication). As a proxy for river size, we used Strahler order and assumed that lifts for large 

dams <75 ft cost $10 million for rivers of order 1-5 and $25 million for rivers of order 6 or 

higher. A 50% increase in cost was added to large dams with height >75 ft (i.e., $15 million for 

order 1-5 and $37.5 for order ≥ 6). Dams 100 ft and over, of which there are 4 in Maine, were 

not considered candidates for mitigation due to the significant engineering difficulties involved 

and high cost of constructing lifts on very large dams. The only viable alternative for such dams 

is trap and haul (aka trap and truck), but this is not normally considered a long-term solution (M. 

Brown, personal communication). For any crossing or dam with a missing record for bankfull 

width or structure height, we used median bankfull width and structure height, respectively, 

according to stream order. 
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We anticipated the number of unmapped barriers in coastal watersheds was 1875-7490, 

with a most likely figure of 3745 (A. Abbott, personal communication). To explore scenarios 

across this range, we assumed the number of unrecorded barriers is approximated by a triangular 

distribution parameterized by a lower bound, upper bound, and mode. We determined the 

minimum, 25th percentile, median, 75th percentile, and maximum values of the distribution to 

create five representative scenarios for the number of hidden barriers (1875, 3495, 4250, 5200, 

and 7490, respectively). For unmapped barriers, passability was set to the mean passability of all 

recorded structures (0.45) in the GMCP database, including those with full passability. 

 

Approximation of Effective River Segment Length 

To calculate expected net habitat �̃�𝑗  above each barrier, we coded a special Matlab script 

to estimate effective segment length ℓ̃𝑠 on a segment-by-segment basis. Given there are 203,281 

segments in the Maine river network, this required considerable computational overhead 

involving several days of calculation. As an approximation, we developed the following log-

linear regression model to derive a multiplier for effective segment length. 

ln(ℓ̃ ℓ⁄ ) = β1[ℓnorm × 𝑝] + β2[ℓnorm × 𝑛] + β3[ℓnorm
′ × 𝑛] + β4[ℓnorm × 𝑝 × 𝑛]

+ β5[ℓnorm
′ × 𝑝 × 𝑛] 

(12) 

Here, ℓ̃ ℓ⁄  is the ratio of a segment’s effective to true length, ℓnorm is the normalized 

length of a segment (i.e., length ℓ over total length 𝐿), ℓnorm
′  is normalized river length 

downstream of a segment (i.e., downstream length ℓ′ over total length 𝐿), 𝑛 is the total number 

of hidden barriers, 𝑝 is the mean passability of hidden barriers, and the β’s are regression model 

parameters to be estimated via ordinary least squares (OLS). With OLS parameter estimates in 

hand, one can compute a multiplier θ𝑠 = exp(𝛃T𝒚𝑠) for each segment 𝑠 (𝛃 is the vector of 
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regression parameters and 𝒚𝑠 the vector of covariates for segment 𝑠) to approximate effective 

segment length ℓ̂𝑠 = θ𝑠 ∙ ℓ𝑠. 

We estimated model parameters (Eq. 12) by taking a sample of 2035 segments from the 

Maine river network, systematically varying hidden barrier passability (𝑝 = 0.1, 0.3, 0.5, 0.7, 0.9) 

and the number of hidden barriers (𝑛 = 6.25%, 12.5%, 25%, 50%, 100% of the total number of 

known barriers), and then calculating effective segment length exactly via Eq. 11 to produce 

50,875 observations. Our approximation model for effective length (Table 1) produced 

extremely accurate results, with all predictor variables significant to the 0.01 level or better; a 

pseudo R2, measured as the square of the correlation between true and approximated effective 

length (Eisenhauer, 2003), near 1; a mean absolute error of 1.0610-4 (~0.01%); and a maximum 

absolute error of 4.4210-3 (<1%). Although the model parameter values reported here (Table 1) 

only apply to Maine, the basic approach for approximating effective segment length can be 

readily adapted to other locations. 

 

Results 

Failing to acknowledge unmapped barriers led to a dramatic overestimate of current 

ecosystem connectivity. Under the assumption that no barriers are unmapped, we calculated that 

only 16.1% of coastal rivers (75,781 km in length) are currently accessible to migratory fishes 

(Fig. 1c). However, the presence of just 1875 unmapped barriers (lower bound estimate) reduced 

currently accessible habitat by 41% (Figs. 2a, 2b). With 4250 hidden barriers (median estimate), 

accessible habitat dropped by almost two-thirds (Figs. 1d, 2a, 2b). 

Unmapped barriers also dramatically reduced gains in accessible habitat achieved from 

barrier mitigation (Fig. 3a). For a budget of $100 million, for example, the naïve optimization 
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model identified a set of barrier mitigation projects that would result in a hypothetical increase of 

6095 km of accessible habitat. However, this 6095-km gain was achievable only when no 

unmapped barriers were present. If there were just 1875 unmapped barriers, barrier mitigation 

projects identified by the naïve optimization model resulted in only a 3191-km increase in 

accessible habitat. Thus, expected habitat gains were 48% lower than expected due to the 

presence of unmapped barriers (Fig. 3b). For the same budget with 7490 barriers unmapped 

barriers (upper bound estimate), expected habitat gains were fully 75% lower than expected. 

Results for our informed optimization model demonstrated how accounting for missing 

data during project selection can substantially boost ROI from barrier mitigation (Fig. 4). This 

effect was greatest when budgets were low and the number of unmapped barriers was large. In 

the scenario with 7490 unmapped barriers, a budget of $2 million resulted in a 218-km increase 

in accessible habitat with the informed model, compared with a 46-km increase if funds were 

allocated based on the solution to the naïve model. In this case, explicitly accounting for 

unmapped barriers during project selection increased conservation ROI by 371%. Given 7490 

unmapped barriers and budget of $250 thousand, ROI was a staggering 2586% (26 times) greater 

for the informed model compared with the naïve model (42 km vs. 1.6 km). And although the 

benefits of an informed approach trended downward as budgets became larger (fewer remaining 

barriers) or there were fewer unmapped barriers (less uncertainty), additional habitat gains were 

nonetheless substantial (Fig. 4). Averaged over all budgets, anticipating for the presence of 

hidden barriers increased habitat gain 20-273%, depending on the number of hidden barriers. 

 Accounting for missing data during project selection changed the spatial distribution of 

barrier mitigation projects (Fig. 5). For a budget of $10 million, for example, projects selected 

using the naïve model were on average 56 km from the mouth of the river. For the same budget 
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and assuming 1875 unmapped barriers, projects selected using the informed model were on 

average 14 km from the mouth of the river, one-fourth as far inland. This substantial change in 

the location of barrier mitigation projects occurred because each unmapped barrier decreased the 

cumulative passability of all upstream barriers. Thus, when unmapped barriers were present, 

potential habitat gains were highest for barriers with few potential unmapped barriers 

downstream (i.e., at mapped barriers close to the river mouth).  

Given the true number of unmapped barriers is unknown, we analyzed how well solutions 

optimized for a specific number of hidden barriers might perform when the actual number of 

hidden barriers differs. Erring too low or too high for the number of unmapped barriers led to 

significant variability in foregone habitat gain (Fig. 6). More precisely, when we assumed a very 

small or large number of unmapped barriers, forfeits little or no foregone habitat gain was 

forfeited only when the true number of unmapped barriers was comparable. If the true number of 

hidden barriers deviated considerably, foregone habitat gain was comparatively high. In the most 

extreme case, assuming no unmapped barriers were present, foregone habitat gain was 53% 

given a modest $10 million budget. In contrast, the most robust solutions were obtained when we 

assumed an intermediate number of hidden barriers (4250). Under this assumption, foregone 

habitat gains were the lowest on average and never exceeded 9% regardless of the true number of 

unmapped barriers (Fig. 6b). 

 

Discussion 

There is growing international interest in dam removals and road crossing upgrades as a 

means of restoring river connectivity and biodiversity. Our informed optimization model adds to 

the growing literature on barrier prioritization approaches (Garcia de Leaniz & O’Hanley, 2022) 
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by providing a method for boosting conservation outcomes despite incomplete barrier 

inventories (Belletti et al., 2020). Overall, our results showed that accounting for unmapped 

barriers is essential for maximizing river connectivity gains. Critically, improved conservation 

outcomes can be achieved simply by acknowledging that hidden barrier may be present without 

even knowing where they are. Moreover, the importance of accounting for unmapped barriers 

has direct relevance to river conservation practitioners. In particular, as the number of unmapped 

barriers increased, selection of barrier mitigation projects was directed near to the river mouth. 

More broadly, our study demonstrated how ROI frameworks might be modified to 

explicitly account for incomplete data. For many conservation decisions, the threat of extinctions 

and extirpations precludes inaction while more data are acquired (Grantham et al., 2009), which 

means decisions must be made with incomplete data. Furthermore, various studies have shown 

that it is often not cost-effective to acquire more data on species’ distributions, habitats, or 

threats (Grantham et al. 2008, Hermoso et al. 2013). In the absence of additional data, 

conservation decisions rely on spatial models of species’ distributions (Wilson et al. 2005) or 

species’ indicators (Fitzpatrick et al. 2021), habitats (Terrado et al. 2016), and threats 

(Vörösmarty et al. 2010). The effects of these modeled or proxy data on spatial conservation 

priorities and efficiency are well quantified (Wilson et al. 2005, Kujala et al. 2018, La Marca et 

al. 2019), but planning algorithms in spatial conservation planning tools like Marxan (Ball and 

Possingham 2000), Zonation (Lehtomäki and Moilanen 2013), and C-Plan (Pressey et al. 2009) 

do not explicitly account for incomplete data. In contrast, our results demonstrated how 

modifying the spatial planning algorithm itself can improve the ROI of conservation projects. 

We focused on anadromous fish, but future work could extend our modeling approach to 

stream-resident fish and other aquatic organisms (Cote et al., 2009; O’Hanley, 2011; O’Hanley et 
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al., 2013b), fish population dynamics (Paulsen & Wernstedt, 1995; Ziv et al., 2012; Ioannidou & 

O’Hanley, 2019), or spatial dynamics (Fitzpatrick & Neeson, 2018). Enhanced prediction of the 

actual number of unmapped barriers could also be incorporated into our framework and would 

greatly improve the effectiveness of barrier prioritization decisions. Ramos (1999) suggests the 

use of Bayesian models to simulate undercount data, whereas Fader and Hardie (2000) propose 

the use of the beta-binomial/negative binomial distribution.  

Dams and other structures provide many societal benefits (Doyle & Havlick, 2009) and 

deliberations to remove them inevitably involve balancing a diverse set of costs (e.g., reductions 

in water provisioning, recreation, flood control, and hydropower generation) and benefits (e.g., 

ecosystem connectivity improvements and reduced dam failure risk). Our informed optimization 

model could be extended to consider multiple objectives, including dam safety (Zheng et al., 

2013), water storage and hydropower production (Kuby et al., 2005), recreation (Roy et al., 

2018), potential threats from invasive species (Milt et al., 2018), and climate uncertainty 

(Farzaneh et al., 2021). In Maine, hydropower losses from dam removal could be potentially 

offset by solar production on a modest land area (Sharma & Waldman, 2021) or via offsetting 

opportunities (Owen & Apse, 2015; O’Hanley et al., 2020), whereby lost hydropower is 

compensated by hydropower installation or upgrade elsewhere.  

 Our results offer broad lessons for conservation practice. Nearly all conservation 

decisions are made with missing or incomplete data, but data limitations are rarely considered 

when allocating conservation resources among candidate projects. We demonstrated that simply 

acknowledging that data are incomplete – and accounting for this shortcoming during project 

selection – can boost ROI. Given incomplete data on species’ distributions, habitat availability, 
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and threats in ecosystems worldwide, our results highlight the importance of explicitly 

accounting for incomplete data in conservation planning. 
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Table 1. Summary of regression model (Eq. 12) results for predicting effective segment length 

multipliers in Maine watersheds. 

Parameter  Est. SE 

β1  –11.899** 4.432 

β2  –0.465*** 4.47710–4 

β3  –1.001*** 2.25110–6 

β4  0.459*** 8.62110–4 

β5  1.001*** 3.91810–6 

pseudo R2  ~1.000   

* p  0.05, ** p  0.01,*** p  0.001 
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Figure 1. (a) Location of study region (Maine, U.S.A.), (b) fraction of accessible river (i.e., 

effective length multiplier) assuming 4250 unmapped barriers, (c) cumulative passability (aka 

accessibility, A) given recorded river barriers only, and (d) expected accessibility (A) 

considering given recorded and 4250 unmapped barriers (i.e., product of cumulative passability 

and effective length multiplier) (EL, effective length multiplier; A accessibility). 
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Figure 2. (a) Total accessible habitat of Maine coastal rivers as a function of the number of 

unmapped barriers and (b) percent reduction in accessible habitat due to unmapped barriers 

relative to a baseline scenario of no unmapped barriers (dashed red lines, estimated lower and 

upper bounds on the true number of unmapped barriers). 
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Figure 3. (a) Increase in total accessible habitat that could be achieved for a given budget when 

projects are selected using the naïve model and (b) percent reduction in habitat gain resulting 

from a given number of unmapped barriers compared to a baseline scenario of no unmapped 

barriers. 
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Figure 4. Percent increase in habitat gain that could be achieved by selecting barrier mitigation 

projects with the informed model rather than the naïve model. The y-axis is computed as 

Δ𝐻𝑖– Δ𝐻𝑛

Δ𝐻𝑛
×  100, where, for any given budget, Δ𝐻𝑖 is the habitat gain for the informed model 

solution and Δ𝐻𝑛 is the habitat gain for the naïve model solution taking into account unmapped 

barriers post facto. 
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Figure 5. Average distance to river mouth of barrier mitigation projects selected using the 

informed model. 
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Figure 6. (a) Foregone habitat gain resulting from a mismatch between the true number of 

unmapped barriers (horizontal axis) and the estimated number of unmapped barriers used to 

parameterize the informed model and (b) range of potential foregone habitat gain that might 

occur for an assumed number of unmapped barriers. The true number of unmapped barriers is 

unknown but assumed to be between 1875 and 7490. Both panels were calculated with a budget 

of US$10 million. 

 


