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“Não sou nada.  

Nunca serei nada.  

Não posso querer ser nada.  

À parte isso, tenho em mim todos os sonhos do mundo.“ 
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ABSTRACT 

Pain is one of the most persistent and incapacitating symptoms of cancer. In fact, 

unsatisfactory treatment of cancer-related pain or absence of analgesic response has an 

enormous impact on patients’ quality of life. The World Health Organization treatment 

guidelines include opioid analgesics as the drugs of choice, with morphine as the first line 

option for moderate to severe pain. However, wide variations in dose requirement, 

pharmacological efficacy, tolerability and adverse effects have been observed. Age, 

gender, race/ethnicity, mood states and stress are known influencing factors but have 

failed to explain the high degree of interindividual variability. In the last decade, 

pharmacogenetic has been proposed to be an important and influent factor on opioids 

response, especially morphine. Polymorphisms in opioid receptors, transporters and 

metabolizing enzymes are under extensive evaluation, along with genetic variations in 

modulators/suppressors involved in pain perception and transmission.  

The prevalence of cancer-related pain, the unsuccess of the analgesic treatment and the 

potential of tailored-pain treatment in a foreseeable future prompted us to study important 

genetic variations in genes involved in opioids and pain mechanisms, along with a more 

focused study in morphine metabolism. In order to fulfil all the objectives, a method for the 

quantification of morphine and its major metabolites, morphine-3-glucuronide (M3G) and 

morphine-6-glucuronide (M6G), was initially developed. The method revealed to be 

simple, sensitive, precise and accurate to quantify the three compounds in several 

antemortem and postmortem matrices, during animal and human studies.  

Concerning genetic variations studies, important genes related to opioids action were 

selected, as µ-opioid receptor (OPRM1); morphine major metabolizing enzyme UDP-

Glucuronosyltransferase 2B7 (UGT2B7); transporters ATP binding cassette sub family B 

member 1 transporter (ABCB1); and organic anion-transporting polypeptides 1A2 

(OATP1A2), along with pain and inflammation modulators, such as catechol-O-

methyltransferase (COMT) and several cytokines. The first study of this thesis analyzed 

the influence of polymorphisms in OPRM1, COMT and ABCB1 genes. The results 

suggested that COMT Val(108/158)Met polymorphism is associated with  opioid 

requirements, with carriers of Met allele being significantly associated with higher opioid 

doses. Later, an individual approach was performed and the patients with the higher 

(Patient 1, 800 mg/day) and lower (Patient 2, 20 mg/day) morphine requirements were 

analyzed, as Patient 1 reported uncontrolled pain and higher pain intensity. Results of 

genetic analysis has shown that polymorphisms OPRM1 A118G, COMT Val(108/158)Met 

and UGT2B7 C802T and T801A seemed to influence the analgesic effect, with individuals 
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GA, Val/Met and T801C802 being related with  less morphine efficacy and higher doses. 

Also, differences in plasma concentrations of metabolites and metabolic ratios were found 

and correlated with the genetic variances. These observations confirmed the previous 

result but also highlighted the importance of case series analysis. Polymorphisms in 

inflammatory mediators were subsequently analyzed (interleukin (IL) 1α, IL-1β, IL-1 

receptor antagonist (IL-1Ra), IL-2, IL4 receptor (IL-4R), IL-6, IL-10, tumor necrosis α and 

interferon γ). In this study, carriers of TT genotype of the C3954T polymorphism in IL-1β 

were associated with lower levels of IL1-β and lower levels of pain. Also, IL1-β levels were 

related with cancer onset status and metastatic disease. This result pointed out another 

non-opioid system that might be involved in pain sensitivity in cancer pain patients. 

Finally, a relevant animal model was established to study morphine metabolism and its 

influence in the analgesic effect. Guinea pig revealed to be an adequate model, with 

morphine metabolic ratios close to humans. The obtained results showed that morphine 

metabolism induction leads to higher metabolic ratios (M3G/morphine and M6G/morphine) 

and faster and better analgesic effect, after a single morphine intraperitoneal 

administration. On the other hand, opposite results were observed during metabolism 

inhibition. These results demonstrated the importance of morphine pharmacokinetics in its 

final analgesic effect and the animal model developed seems promising for future studies 

concerning morphine metabolism and its implication in clinical practice. 

In conclusion, the results of this thesis suggest that genetic variants in opioid and non-

opioid systems can affect opioids analgesic effect, especially by influencing opioids 

requirements and pain perception. Additionally, further studies on the modulation of 

morphine metabolism might contribute to an improved analgesic effect of morphine, 

increasing patients’ life quality. 

Keywords: cancer pain, morphine, morphine-6-glucuronide, morphine-3-glucuronide, 

pharmacogenetic. 
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RESUMO 

A dor é um dos sintomas mais persistentes e incapacitantes do cancro. De facto, o seu 

tratamento insatisfatório ou ausência de resposta analgésica têm um enorme impacto na 

qualidade de vida dos doentes. As diretrizes de tratamento da Organização Mundial de 

Saúde incluem os analgésicos opioides como os fármacos de escolha, com a morfina 

como opção de primeira linha para a dor moderada a grave. No entanto, têm sido 

observadas grandes variações na dose de opioide necessária, na sua eficácia 

farmacológica, tolerabilidade e efeitos adversos. Alguns fatores que podem contribuir 

para esta variabilidade são a idade, sexo, raça/etnia, estados de humor e stress. Apesar 

da sua influência conhecida, não conseguem explicar o alto grau de variabilidade 

interindividual. Na última década, a farmacogenética tem sido apontada como um fator 

importante e influente na resposta aos opioides, principalmente à morfina, em 

polimorfismos em recetores opioides, transportadores e enzimas de metabolismo, assim 

como em moduladores/supressores envolvidos na perceção da informação nociceptiva . 

A prevalência de dor relacionada com o cancro, o insucesso do tratamento analgésico e o 

potencial desenvolvimento de um tratamento individualizado para a dor num futuro 

próximo motivaram o estudo de variações importantes em genes envolvidos nos 

mecanismos de ação dos opioides e da transmissão/modulação da dor, integrando 

também um estudo mais focado no metabolismo da morfina. Para cumprir todos os 

objetivos foi inicialmente desenvolvido um método de quantificação da morfina e seus 

principais metabolitos, morfina-3-glucoronídeo (M3G) e morfina-6-glucoronídeo (M6G). O 

método revelou ser simples, sensível, preciso e exacto para o doseamento dos três 

compostos em diversas matrizes antemortem e postmortem, e apropriado para aplicação 

durante os estudos em animais e humanos. 

No estudo das variações genéticas, foram selecionados genes envolvidos no mecanismo 

opioide, como recetor opioide μ (OPRM1); UDP-Glucuronosiltransferase 2B7 (UGT2B7), 

a enzima maioritariamente responsável pelo metabolismo da morfina; transportadores, 

como a glicoproteína P (ABCB1) e o transportador de aniões orgânicos 1A2 (OATP1A2). 

Adicionalmente foram também selecionados polimorfismos em moduladores de dor e 

inflamação, como catecol-O-metiltransferase (COMT) e várias citoquinas. O primeiro 

estudo desta tese analisou a influência da variação genética nos genes OPRM1, COMT e 

ABCB1. Os resultados sugeriram que o polimorfismo COMT Val(108/158)Met está 

associado ao requerimento total de opioides, em que os portadores do alelo Met foram 

significativamente associados com doses mais elevadas. Seguidamente, uma abordagem 

individual foi realizada e foram analisados os doentes com a dose mais alta (Doente 1, 

800 mg/dia) e mais baixa (Doente 2, 20 mg/dia) de morfina, tendo em conta que o Doente 
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1 descrevera falhas no alívio da dor e maior intensidade da dor. Os resultados da análise 

genética revelaram que polimorfismos A118G do OPRM1, Val(108/ 158)Met da COMT e 

C802T e T801A da UGT2B7 parecem influenciar o efeito analgésico, com indivíduos 

portadores do genótipo GA, Val/Met e T801C802 relacionados com menor eficácia e 

consumo superior de morfina. Adicionalmente, foram encontradas diferenças nas 

concentrações plasmáticas dos metabolitos e respetivos índices metabólicos e 

correlacionados com as variações genéticas. Estas observações confirmaram o resultado 

previamente encontrado, mas também destacaram a importância da análise de casos de 

estudo. Posteriormente foram também analisados polimorfismos em mediadores 

inflamatórios (interleucina (IL) 1α, IL-1β, antagonista do recetor da IL-1 (IL-1Ra), IL-2, 

recetor de IL-4 (IL-4R), IL-6, IL-10, fator de necrose tumoral-α e interferão γ). Neste 

estudo, os portadores do genótipo TT do polimorfismo C3954T da IL-1β foram associados 

a níveis mais baixos de IL-1β e menor intensidade de dor. Além disso, os níveis de IL-1β 

foram também relacionados com o cancro e doença metastática. Estes resultados 

sugerem o envolvimento de um outro sistema não-opioide na sensibilidade à dor, em 

doentes com dor relacionada com o cancro. 

Por último, foi desenvolvido um modelo animal relevante para o estudo do metabolismo 

da morfina e a sua influência no efeito analgésico. Os cobaios revelaram ser um modelo 

adequado, com rácios metabólicos de morfina e metabolitos próximos aos humanos. Os 

resultados obtidos durante o estudo demonstraram que a indução do metabolismo da 

morfina resulta em concentrações mais elevadas dos seus metabolitos e rácios 

metabólicos (M3G/morfina e M6G/morfina), assim como num aumento do efeito 

analgésico, após uma única administração intraperitoneal de morfina. Por outro lado, 

foram observados resultados opostos durante a inibição do metabolismo. Estes 

resultados demonstram a importância da farmacocinética da morfina no efeito final 

analgésico e a potencialidade do modelo animal desenvolvido para futuros estudos do 

metabolismo da morfina e da sua implicação na prática clínica. 

Em conclusão, os resultados desta dissertação sugerem que a variação em genes 

envolvidos nos sistemas opioides e não-opioides podem afetar o efeito analgésico, 

especialmente ao influenciar a dose necessária e a perceção da dor. Adicionalmente, 

estudos sobre a modulação do metabolismo de morfina parecem contribuir para a 

compreensão da relação da farmacocinética e efeito analgésico da morfina, aumentando 

o seu efeito melhorando a qualidade de vida dos doentes. 

Palavras-chave: dor relacionada com o cancro, morfina, morfina-6-glucuronídeo, 

morfina-3-glucuronídeo, farmacogenética. 
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OUTLINE OF THE THESIS  

 
The thesis is organized in 6 chapters.  

 

Chapter I is an introduction to contextualize the state of art of the key topics within the 

thesis. Aspects of pain categories, perception and transmission are addressed, as well as 

the main treatments for cancer-related pain and major polymorphisms implicated in pain 

sensitivity and morphine analgesia. 

 

Chapter II comprises the aims of the thesis and explains how these articulate with the 

subsequent experimental results presented. 

 

Chapter III contain the main studies performed, including materials, methods, results and 

discussion which are presented in the form of manuscripts published or under submission 

in peer-reviewed journals. For each study, information concerning the journal and date of 

publication (for published papers) / co-authors is provided. 

Chapters IV to VI include a general discussion and main conclusions of the thesis, 

highlighting the most relevant achievements and also the presenting prospects for future 

work. 
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1.1  Pain classification and general concepts 

Pain is an unpleasant feeling and one of the most common reasons for patients to seek 

health care (Fishbain et al., 2010). A high number of people suffer from chronic pain, often 

in multiple anatomic locations simultaneously, and complain of lack of efficacy in the 

treatments prescribed. The World Health Organization (WHO) estimates that the 

prevalence of chronic pain is about 37.3 % in developed countries and 41.4 % in 

developing countries (Tsang et al., 2008). In Portugal the prevalence is around 37 %, with 

68 % of people with chronic pain complaining of moderate-to-severe intensity (Azevedo et 

al., 2012).  This leads to a high degree of dissatisfaction and high economic costs in the 

health sector, increasing the need to study and identify the problems related to pain, its 

treatments, and more recently, the genetic influence. 

Pain is defined by the International Association for the Study of Pain (IASP) as an 

“unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage” (IASP, 1994). With this definition, IASP 

recognizes pain as a subjective phenomenon and that tissue damage is not essential for 

pain to be felt. 

Pain can be categorized in different ways (Figure 1), based in several criteria, as time, 

initiating conditions, underlying mechanisms, location and tissue damage, among others 

(Goucke, 2003; Nicholson, 2006; Kumar and Saha, 2011; Xu and Yaksh, 2011). However, 

there are common concepts in all the classification systems, which are essential to 

understand due to their importance to the evaluation and treatment of pain. 
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Figure 1. Schematic representation of pain categories. 

 

Regarding duration, there are essentially two types: acute and chronic pain. Acute pain is 

defined as a “normal, predicted physiological response to noxious chemical, thermal or 

mechanical stimulus, typically associated with invasive procedures, trauma and disease 

and it is generally time-limited” (FSMB, 2005). Briefly, this kind of pain is characterized by 

a recent onset, short-lasting sensation and identifiable cause, with a variety of current 

therapies available (Friedrich, 2012). Usually, acute pain occurs intermittently or last up to 

several days (Fink and Mata, 2008) and it is considered critical for healthy survival, 

triggering an individual response to potentially harmful stimuli (Fink and Mata, 2008; Mata 

et al., 2008). 

On the other hand, chronic pain is defined as “a state in which pain persists beyond the 

usual course of an acute disease or healing of an injury, or that may or may not be 

associated with an acute or chronic pathologic process that causes continuous or 

intermittent pain over months or years” (FSMB, 2005). Chronic pain is essentially 

characterized by its persistence (minimum of three months) (Fink and Mata, 2008), 

suffering and complicated pathways, involving neurotransmission and electrophysiological 

alterations (peripheral and central sensitization), being considered a major cause of 

morbidity and decreased life quality (Niv and Devor, 2004; Fink and Mata, 2008; Mata et 

al., 2008; Huang et al., 2011; Friedrich, 2012). A usual pain condition in chronic cancer 

pain patients is breakthrough pain, a transitory flare of severe or excruciating pain, over a 

well-controlled baseline pain (Mercadante et al., 2002; Caraceni et al., 2004). This kind of 

pain is usually described in cancer pain patients when interrupts a background pain well 

controlled by opioids (Portenoy et al., 1999). However, its implication in chronic non 

cancer pain has also been described (Manchikanti et al., 2011). 
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Besides the temporal characteristics, an important clinical division concerning its causal 

factor classifies pain in nociceptive, non-nociceptive and mixed (both nociceptive and non-

nociceptive pain). Nociceptive pain is defined as “pain that arises from actual or 

threatened damage to non-neural tissue and is due to the activation of nociceptors” (IASP, 

1994). This concept was designed to contrast with neuropathic pain (normal 

somatosensory nervous system vs. abnormal function) (IASP, 1994), referring to a sharp 

and well localized pain after mechanical, chemical or thermal irritation of peripheral 

sensory nerves (Goucke, 2003). Examples of nociceptive pain include pain after surgery, 

arthritis pain, mechanical low back pain, and pain associated with sports injuries (Goucke, 

2003; Nicholson, 2006). Nociceptive pain can be divided in somatic and visceral pain, 

especially when referring to cancer-pain patients (Carver and Foley, 2000). Somatic pain 

is characterized as well localized, intermittent or constant, and results from the activation 

of peripheral nociceptors. Common causes include bone metastasis and postsurgical pain 

(Carver and Foley, 2000). On the other hand, visceral pain refers to a deep, squeezing, or 

colicky pain, caused by the activation of nociceptors in cardiovascular, respiratory, 

gastrointestinal and genitourinary system. This activation is a result of infiltration, 

compression, extension, or stretching of the thoracic (chest), abdominal, or pelvic viscera 

(Carver and Foley, 2000). 

Non-nociceptive pain is essentially characterized by neuropathic pain. This pain category 

is defined by IASP as “pain caused by a lesion or disease of the somatosensory nervous 

system” (IASP, 1994) and is more considered as a clinical description and not a 

diagnosis. The sensation is generally described as burning, squeezing and shock-like, 

resulting from demonstrable lesion (abnormality or trauma) or a disease (diabetes 

mellitus, vasculites, stroke) (IASP, 1994; Carver and Foley, 2000). In fact, neuropathic 

pain is characterized by spontaneous and induced pain (Figure 2), generally causing 

allodynia, hyperalgesia and hyperpathia (Goucke, 2003) and its features are very different 

from nociceptive pain. Also, neuropathic pain patients usually have higher average pain 

scores, lack of good analgesic efficacy and lower quality of life comparing with non-

neuropathic chronic pain patients (Smith et al., 2007; Torrance et al., 2007; Park and 

Moon, 2010).  
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Figure 2. Characterization of neuropathic pain. 

 

Sympathetic nervous system may also be involved in pain pathogenesis, especially in 

chronic pain syndromes characterized by severe pain, yielding the concept of 

sympathetically maintained pain (Baron et al., 1999; Martinez-Lavin, 2004). This concept, 

which may be considered a subset of neuropathic pain (Gibbs et al., 2008), is based in the 

identification of signs of autonomic dysfunction, as edema, sweating and changes in blood 

flow, and the efficacy of sympatholytic strategies in pain relief (Baron et al., 1999). The 

influence of sympathetic nervous system in pain syndromes has been investigated, 

especially in some neuropathic pain patients (Kingery, 1997; Martinez-Lavin, 2004; Gibbs 

et al., 2008), fibromyalgia (Martinez-Lavin, 2004) and complex regional pain syndromes 

Type I and II (Baron and Maier, 1996; Kingery, 1997; Baron et al., 1999), although clinical 

sympathetically maintained pain model is still a controversial subject (Ochoa and 

Verdugo, 1995; Baron et al., 1999; Martinez-Lavin, 2004). 

Other terms that can be associated to pain division is inflammatory, functional, 

somatoform or existential (Fishbain et al., 2010). Inflammatory pain involves a response to 

inflammatory mediators (Fishbain et al., 2010), while functional pain is related to pain 

during dynamic functional activities as mobility tasks (Vincent et al., 2013). The concept of 

existential pain is difficult to define, but is generally related to strong feelings of anguish 

and anxiety resulting of overstatement of physical pain (Strang et al., 2004; Fishbain et al., 

2010). This existential or spiritual pain commonly promotes opioid addiction due to its 

initial response to opioids (Strang et al., 2004; Fishbain et al., 2010). Somatoform pain 

disorder also has a strong psychological role as the physical complaint is not associated 

with any medical condition or is in excess for what is expected from the physical findings 

(Yoshino et al., 2013).  
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Taking time and causal factor into account, acute pain is mainly nociceptive, and chronic 

pain produced by nociceptive, neuropathic or existential stimuli. However, exceptions and 

mixed stimuli can exist (Fishbain et al., 2010). 

 

1.2  Pain neurophysiology 

Pain involves dysfunction in several neural mechanisms. Although major progress has 

been made, several mechanisms are probably unknown and it is urgent to translate the 

pain research and mechanisms into clinical practice of pain management, to achieve an 

ideal relief with the best drug.  

 

1.2.1  Peripheral pain mechanisms 

Thermal, chemical or mechanical stimuli can trigger the pain process by activating the 

initial structures involved in nociceptive process, the primary afferent nociceptors. These 

nociceptors are peripheral with the cell body located in the dorsal root ganglion (DRG) and 

serve two major functions, transduction of the noxious stimuli in electrochemical impulses 

and subsequent transmission (Julius and Basbaum, 2001; Authors not listed, 2005; Woolf 

and Ma, 2007). Some nociceptors are lightly myelinated, the Aδ fibers, and are classified 

as fast-conducting nociceptive fibers, with rapid conduction of action potential (6-30 m/s). 

However, most are unmyelinated C fibers, with slower conduction (˂ 2m/s) and represent 

the majority of sensory neurons in the peripheral nervous system, being activated by 

thermal, mechanical and chemical stimuli (Woolf and Ma, 2007; Xu and Yaksh, 2011). 

“Fast pain” is usually a result of Aδ fibers activation and described as a short-lasting and 

pricking type of pain. Activation of C fibers leads to “slow pain”, a dull, not well localized, 

burning type of pain. The primary afferent nociceptors conduction leads to the activation of 

supraspinally projecting dorsal horn neurons and the more intense the stimulation, the 

higher the afferent input frequency and the frequency of dorsal horn neurons activation 

(Xu and Yaksh, 2011). 

The stimulation of nociceptive primary afferents neurons results in the release of several 

neuropeptides from its terminals as substance P (SP), calcitonin gene-related peptide 

(CGRP) and neurokinin A (NKA) (Figure 3). Neuropeptides and excitatory transmitters 

(especially glutamate) activate numerous receptors such as kainate, α-amino-3-hydroxy-

5-methyl-4-isoxazoleproprionate (AMPA) and N-methyl-D-aspartate (NMDA), causing 
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rapid depolarization of the secondary afferent neurons in the dorsal horn (Authors not 

listed, 2005). Also, released neuropeptides activate tachykinin receptors leading to 

vasodilatation, edema and hyperalgesia and contributing to peripheral inflammatory 

process (neurogenic inflammation).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Peripheral pain mechanisms and sensitization. AMPA, α-amino-3-hydroxy-5-methyl-4-

isoxazoleproprionate; CCL3, chemokine ligand 3; CGRP, calcitonin gene-related peptide; COX, 

cyclooxygenase; GDNF, glial cell-derived neurotrophic factor; GPCR, G-protein coupled receptor; 

5-HT, 5-hydroxytriptamine;  IL-1β, interleukin 1β; LOX, lipoxygenase; NGF, nerve growth factor; 

NKA, neurokinin A; NMDA, N-methyl-D-aspartate; NO, nitric oxide; PGE2, prostaglandin E2; SP, 

substance P; TGF-β, transforming growth factor β, TNF-α, tumor necrosis factor α. 

 

All these stimuli activate high-threshold nociceptors, which signal transduction 

mechanisms include the transient receptor potential vanilloid (TRPV) family – activated by 

heat and capsaicin, and the acid-sensing receptors (ASIC) – activated by the low pH 

associated with ischemia and inflammation. Also, potassium and ligand-gated ion 

channels are activated, as TWIK-related potassium channel-1 (TREK-1, heat-sensitive 

potassium channels), TRP cation channel subfamily M member 8 (TRPM8, for cold 
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stimuli) or TRP cation channel subfamily A member 1 (TRPA1, intense cold that produces 

burning sensation) (Bandell et al., 2004; Alloui et al., 2006; Dhaka et al., 2006; Bautista et 

al., 2007). However, primary afferent nociceptors can adapt in response to inflammation 

or injury and repeated activation can modify the response to further stimuli, reducing the 

threshold response, which leads to hyperalgesia and allodynia (Woolf and Salter, 2000; 

Scholz and Woolf, 2002; Kumar and Saha, 2011). This neuroplasticity phenomenon is 

designated by peripheral sensitization and is extremely common in clinical pain, especially 

in inflammatory pain, some forms of neuropathic pain and in ongoing nociceptive 

stimulation (Woolf, 2004). 

The release of SP, CGRP and NKA leads to neurogenic inflammation, as already 

mentioned. During this inflammatory process, several inflammatory mediators, 

neuropeptides and catecholamines are activated and released, as cyclooxygenase 

(COX), lipoxygenase (LOX), prostaglandin E2 (PGE2), serotonin (5-hydroxytriptamine, 5-

HT), bradikinin, adrenaline, adenosine, histamine, cytokines, nitric oxide (NO), K+, H+, and 

neurotrophic factors (Woolf and Salter, 2000; Julius and Basbaum, 2001; Scholz and 

Woolf, 2002; Woolf and Ma, 2007; Kumar and Saha, 2011). Many other factors have been 

associated with this phenomenon in the last years, such as transforming growth factor β 

(TGFβ) member activin, tumour necrosis factor α (TNF-α), the chemokine ligand 3 

(CCL3), prokineticins, proteases that activate G-protein coupled receptor (GPCR), glial 

cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) (Zhang et al., 

2005; Jin and Gereau, 2006; Malin et al., 2006; Vellani et al., 2006; Xu and Hall, 2006; Dai 

et al., 2007; Grant et al., 2007; Watson et al., 2008). These sensitizing agents either 

activate the neurons directly or sensitize them for other stimuli and activate second 

messenger cascades, producing intense stimuli and leading to peripheral sensitization 

(Bevan, 1996; Fornasari, 2012). This seems to occur through the phosphorylation of 

transducers and sodium voltage-gated channels (Nav) 1.7 and 1.8. PGE2 can reduce the 

nociceptors threshold by activating adenyl cyclase, leading to an increase in cyclic 

adenosine monophosphate (cAMP), which activates cAMP-dependent protein kinase 

(Woolf, 2004). On the other hand, bradikinin and leukotrienes can directly sensitize 

nociceptors and interleukin (IL)-1β and TNF-α can induce COX-2, that converts 

arachidonic acid to prostaglandin H (PGH) and finally to PGE2 (Woolf, 2004). 

The large number of inflammatory molecules involved can, in part, explain the lack of an 

effective response to the treatment of inflammatory pain and the use of adjuvant 

medication for neuropathic pain besides nonsteroidal anti-inflammatory drugs (NSAIDs), 

as tricyclic antidepressants (TCA), anticonvulsants and antiarrythmics (2005).  
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Peripheral nerve injury can also occur, leading to altered afferent sensory input, 

inflammatory response with production of sensitizing agents, and to persistent pain, with 

hyperalgesia and allodynia (Xu and Yaksh, 2011). In healthy sensory nerve fibers, action 

potentials are a result of stimulation. However, impaired nerve fibers usually have ectopic 

discharges (Schaible and Richter, 2004). The increased spontaneous activity involve 

altered sodium (increased expression of tetrodotoxin-sensitive channels) and potassium 

(reduced) channel expression, increased expression of neuroma and DGR receptors and 

pathological activation by inflammatory mediators (TNF-α, NGF, catecholamines, 

bradikinin). Additional, the migration of non-neuronal inflammatory cells to DRG and 

dorsal horn, loss of inhibition mechanisms [ as γ-aminobutyric acid (GABA)], pathological 

activation of injured nerve fibers by the sympathetic nervous system and altered 

neuropeptide expression may result in spontaneous activity of dorsal horn projection 

neurons (Schaible and Richter, 2004; Xu and Yaksh, 2011). Altogether, changes at the 

nerve injury location and DRG may originate the sharp, shooting and burning pain states 

in diabetic neuropathy, postherpetic neuralgia and peripheral nerve trauma. 

 

1.2.2  Central perspective – dorsal horn mechanisms 

Regardless of peripheral origin, nerve or tissue injury, the terminations of primary afferent 

nociceptors cause an input to the dorsal horns of the medulla and spinal cord, by 

transmitting the information to its neurons (secondary neurons). These synaptic 

transmissions encompass several excitatory (primary afferent nociceptors and neurons of 

spinal cord) and inhibitory (interneurons within the spinal cord and supraspinal sources) 

neurotransmitters and neuromodulators (Fornasari, 2012). Glutamate is the major 

excitatory neurotransmitter and mediates fast transmission by binding to AMPA receptors 

(Fornasari, 2012). Glutamate also interacts with NMDA receptors, but not during 

physiological nociceptive pain transmission, as these receptors remain physically blocked 

by a magnesium ion. However, intense or persistent peripheral stimuli lead to a massive 

release of glutamate and AMPA receptors activation results in the removal of the 

magnesium ion and subsequent NMDA activation (Figure 4) (Fornasari, 2012). These 

alterations play an important role in the central sensitization phenomenon, where low-level 

or subthreshold stimuli can lead to an aberrant response, allodynia, hyperalgesia and 

hypersensitivity (Woolf and Salter, 2000; Authors not listed, 2005; Fornasari, 2012). 

Together with glutamate, several other neuropeptides can be released, such as SP, NKA, 

CGRP and BDNF, acting on GPCR and receptor tyrosine kinases (Fornasari, 2012). 
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Figure 4. Pain transmission, central sensitization and chronic pain, resulting in hyperalgesia and 

allodynia. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate; NK-1, neurokinin 1; NMDA. 

N-methyl-D-aspartate; NOS, nitric oxide synthase; SP, substance P. 

 

Central sensitization is an important phenomenon that especially occurs in neuropathic, 

functional and inflammatory pain, and in three stages: activation, modulation and 

modification (Woolf, 2004; Fornasari, 2012). During the activation stage, massive release 

of glutamate and neuropeptides and activation of AMPA and NMDA take place (Schaible 

and Richter, 2004; Fornasari, 2012). As already mentioned, NMDA is blocked by a 

magnesium ion, but successive synaptic depolarizations of this receptor lead to 

magnesium depletion and subsequent activation of NMDA regulated calcium channel, 

allowing an abnormal influx of calcium into the cell (Schaible and Richter, 2004; Authors 

not listed, 2005). This process is known as “wind-up” and calcium contributes to 

depolarize secondary neurons and act as a second messenger, activating protein kinases, 

which phosporylate receptors as NMDA (Woolf and Costigan, 1999; Costigan and Woolf, 

2000; Schaible and Richter, 2004). This contributes to modify neural transmission and 

amplify the nociceptor response to stimuli, representing the second stage of central 

sensitization – modulation (Woolf and Costigan, 1999; Costigan and Woolf, 2000; 

Fornasari, 2012). The third stage – modification – encompasses the most dramatic 

changes. Within the second-order neurons, protein kinase activation may lead to gene 
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transcription, altered phenotype, changes in synaptic morphology and neural plasticity, 

and may lead to cell death (Woolf, 2004; Fornasari, 2012).  

There is also evidence for interplay between NMDA and nociceptive and inflammatory 

components, as COX, NO synthase (NOS) and prostaglandins, and especially COX-2 

have been shown to be induced in dorsal horn neurons, sustaining inflammatory 

hypersensitivity and neuropathic pain (Vane et al., 1994; Salvemini, 1997; Wong et al., 

2000; Samad et al., 2001; Ma and Eisenach, 2003). These are important evidences to 

support the use of NSAIDs in chronic neuropathic pain.  

 

1.2.3  Interconnections in pain modulation 

After nociceptors stimulation, the transmission of the information can be modulated at all 

levels and, when it reaches the dorsal horn, leads to inhibitory mechanisms, involving 

local inhibitory interneurons and descending pathways, in an attempt to limit the 

subsequent effect of stimulation and impulses. A model of this interaction was proposed 

by Melzack and Wall in 1965 (Melzack and Wall, 1965), designated by “gate theory” of 

pain (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Gate theory of pain. SG, substantia gelatinosa; T, transmission cell [Adapted from 

(Melzack and Wall, 1965; Melzack, 1998)]. 
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According to this, excitatory and inhibitory links and controls would affect the 

“gatekeepers”, i.e., dorsal horn mechanisms that control the flow of nerve impulses from 

peripheral fibers. Then, pain can occur when the degree of sensory input exceeds the 

critical level (Authors not listed, 2005). Both GABA and glicine are involved in tonic 

inhibition and its down-regulation is implicated in neuropathic pain and allodynia. 

However, despite the significant impact of the gate theory in the understanding of pain 

concepts and treatments, it does not complete all the mechanisms and pathways. Some 

revisions were made, suggesting three interactive dimensions (Brown et al., 2002; 

Authors not listed, 2005): 

a) sensory-discriminative dimension (provides information on the location, magnitude, 

space and time of noxius stimuli);  

b) motivational-affective dimension (activities in reticular and limbic structures);  

c) cognitive dimension (neocortical and higher central nervous system process, using 

past experiences to predict outcomes of different responses). 

 

Also, a new model has been thought, named  Neuromatrix Theory, that complements 

previous knowledge with the premise that central brain processes can form the basis of 

pain, not focusing only in peripheral events (Authors not listed, 2005). Briefly, they defend 

the existence of a neurosignature, unique to each person, genetically determined but 

modified by intrauterine and life experience.  

Modulation of spinal sensitization may also have implications in clinical practice. 

Reduction of excitatory amino acids as glutamate (anticonvulsants) may be a strategy, as 

the use of NMDA antagonists, to block initial stages of central sensitization, and NSAIDs.  

 

1.2.3.1 Ascending pathways 

Nociceptive inputs activate nociceptive dorsal horn neurons, especially ascending tract 

neurons, and can target three different supraspinal structures: the thalamus, the amygdala 

and the brain stem [mesencephalic dorsal reticular nucleus, midbrain periaqueductal gray 

(PAG), and rostral ventromedial medulla (RVM)], producing the conscious pain sensation 

(Schaible and Richter, 2004; Ossipov et al., 2010; Quintero, 2013). These three structures 

intensely communicate with each other: thalamus sends projections to the cerebral cortex 

and amygdale and amygdale sends to the cerebral cortex and thalamus, besides 
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receiving from thalamus, spinal cord and also brain stem (Schaible and Richter, 2004). 

The pain sensation here produced has two components. One is the sensory discriminative 

component, with location, duration and intensity from the responsibility of the lateral 

thalamocortical system (neospinothalamic pathway). The second component is the 

affective aspect, as the unpleasant feeling and reactions, which is produced in the medial 

thalamocortical system (paleospinothalamic pathway with the relay nuclei in the central 

and medial thalamus and the anterior cingulated cortex (ACC), insula and prefrontal 

cortex) (Treede et al., 1999; Carver and Foley, 2000; Schaible and Richter, 2004). 

 

1.2.3.2 Descending pathways 

The nociceptive processing can also be modulated by a descending tract, originated in the 

brainstem nuclei, which has the ability to suppress nociceptive information processing 

(Schaible and Richter, 2004). There are essentially three main paths (Millan, 2002):  

a) a circuit cortex / hypothalamus / PAG / medulla / dorsal horn; 

b) a second circuit of cortex / amygdala / PAG / medulla / dorsal horn; 

c) a third path with cortex /PAG / medulla / dorsal horn. 

 

After the cortical inputs reach PAG, projections are sent to the medulla and the spinal cord 

for inhibiting nociception (Ossipov et al., 2010). Medulla includes a region named RVM, as 

already mentioned, whose projections to the dorsal horn can increase or decrease the 

nociceptive input (Schaible and Richter, 2004). Both antinociceptive effects of PAG and 

RVM on the spinal cord are especially mediated by 5-HT, noradrenaline (NA), glycine and 

GABA (Basbaum and Fields, 1978; Cui et al., 1999; Carver and Foley, 2000; Authors not 

listed, 2005). Other compounds involved are enkephalin, β-endorphin and dynorphin, 

known as the most potent inhibitors of nociceptive activity and found in the specific nuclei 

in the brain stem, spinal cord, arcuate nucleus of the hypothalamus and in the pituitary 

(Carver and Foley, 2000). These compounds are endogenous opioid peptides that bind to 

specific receptors, opioid receptors µ (β-endorphin), δ (enkephalin) and κ (dynorphin), 

found in high concentration in cortical, brain stem and spinal cord (Carver and Foley, 

2000).  

Descending modulation is essential to pain discrimination and perception. As already 

mentioned, changes at NMDA receptors are essential for central sensitization. However, 
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loss of endogenous inhibitory mechanisms can also contribute (Scholz and Woolf, 2002). 

This reduced inhibition can result from down-regulation of neurotransmitters, peptides and 

receptors expressed in the dorsal horn (GABA, glycine, catecholamines and opioid 

receptors), but also from cell death of inhibitory interneurons after nerve injury and ectopic 

activity, leading to an increased dorsal horn excitability (Woolf and Decosterd, 1999; 

Authors not listed, 2005). Considering this, clinical pharmacotherapy to central pain may 

use agents for those targets, as TCAs, selective serotonin reuptake inhibitors (SSRIs), 

selective serotonin and noradrenaline reuptake inhibitor (SSNRI), anticonvulsants, 

opioids, α2-agonists and GABA agonists (Authors not listed, 2005). 

 

1.3  Cancer-related pain management 

Cancer is a major world problem and every year millions of new cases are diagnosed. 

Unfortunately, is estimated that 70 to 90 % of patients with advanced cancer suffer 

significant pain (Andersen and Sjogren, 1998; Carver and Foley, 2000; Lötsch et al., 

2010) and around 5 million people are currently suffering from cancer pain with or without 

satisfactory treatment (Carver and Foley, 2000). Cancer-related pain is usually a result 

from tumor infiltration (bones, soft tissues, nerves, viscera, blood vessels), surgery, 

chemotherapy or radiation and is usual to classify it in somatic (the most common), 

visceral and neuropathic (the second most common) (Carver and Foley, 2000). However, 

cancer patients generally complain of mixed pain (Grond et al., 1994; Portenoy et al., 

1994), and are often undertreated or may not respond optimally to the therapy 

(Mercadante, 2011), with an enormous impact on patient’s quality of life. Due to the 

importance and prevalence of cancer-related pain and the lack of good analgesic 

treatment in a large number of patients, we will now focus on the available treatments and 

reasons for its variability.  

Management of cancer-related pain can be made through the use of specific guidelines 

and algorithms (Portenoy et al., 1987; Carver and Foley, 2000; Mercadante, 2011) and, in 

fact, patients treated according to these can experience a significant reduction in pain 

intensity (Du Pen et al., 1999). Most of cancer pain patients are pharmacologically 

managed in accordance with WHO guidelines and its 3-step ladder model (Figure 6) 

(WHO, 1996), that has been extensively validated (Ventafridda et al., 1987; Zech et al., 

1995; Mercadante, 1999). 
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Figure 6. Three-step ladder model for pain management in cancer pain patients as suggested by 

WHO guidelines (WHO, 1996). 

 

This “by the clock” medication approach also allows flexibility in the choice of analgesics 

and adjuvant treatment, and help cancer patients in a cost-effective manner, with its five 

rules (WHO, 1996; Vargas-Schaffer, 2010; Leung, 2012): 

a) oral administration (when possible); 

b) analgesics should be given at regular intervals, not on demand, and adjusted in 

accordance to patient’s level of pain; 

c) the prescription should take into account the assessment of pain intensity; 

d) dosing should be individualized; 

e) patients, family and healthcare staff should be provided with all the necessary 

information about the drugs.  

 

However, this ladder model has some limitations, especially in long-term survival, and 

hospitals-based palliative care approaches and new pain management models are 

welcomed (Kao et al.; Higginson et al., 2002; Bakitas et al., 2009; Ozcelik et al., 2013), 

with continuous patient assessment and follow-up programs, mechanism-based and 

multimodal characteristics, combination therapies and interventions procedures. 

Several modifications to the WHO 3-step ladder have been made, in order to obtain a 

better pain relief in cancer, but also in non-cancer chronic pain patients (Miguel, 2000; 
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Vadalouca et al., 2008; Vargas-Schaffer, 2010). Some authors question the value of the 

ladder second step (Mercadante et al., 1998; Grond et al., 1999; Vielvoye-Kerkmeer et 

al., 2000; Mystakidou et al., 2003; Leung, 2012), but especially an additional fourth step 

based on interventional procedures seems to be required (Figure 7) (Krakowski et al., 

1996; Vargas-Schaffer, 2010). This adapted model has been proposed for adult chronic 

cancer and non-cancer pain, but also for pediatric pain, breakthrough and acute 

emergency pain, and allows a “step up, step down” bidirectional strategy (Krakowski et 

al., 1996; Vargas-Schaffer, 2010).  

 

 

 

 

 

 

 

 

 

Figure 7. Proposed revision of the WHO model: a four-step ladder [adapted from (Vargas-Schaffer, 

2010)]. PCA, Patient-controlled analgesia. 

 

An interesting modified model based on the latest three-dimensional Neuromatrix pain 

theory was also suggested (Leung, 2012). As the cognitive and emotional dimensions 

were incorporated in pain processing, its management should also contain several other 

domains in a platform-based model (Figure 8) (Leung, 2012). This model incorporates 

opioids and non-opioids analgesics, adjuvant agents (anticonvulsants, muscle relaxants, 

antidepressants, cannabinoids), physiotherapy, physical therapy, surgical and 

neurosurgical procedures, cognitive behavioral therapy and psychological counseling, 

interpersonal reinforcement, mind-body integration, hypnosis and relaxation therapy, 

acupuncture, chiropractic and other complementary and alternative medicine (CAM) 

options (Leung, 2012). As in the revised model of bidirectional four-step ladder (Vargas-

Schaffer, 2010), the clinician can move up or down the platforms, but it claims to be 

universally applicable to all pain scenarios (Leung, 2012). 



CHAPTER I 
 

18 

 

 

 

 

 

 

 

 

 

 

Figure 8. Platform model for pain management [Adapted from (Leung, 2012)]. A, Physiotherapy 

and physical therapy; B, Mind–body integration (e.g. yoga, meditation and religious support); C, 

Hypnosis and relaxation therapy; D, Acupuncture; E, Chiropractic; F, External rub/lotions; G, Other 

CAM options (Tai chi, Tui Na); H, Muscle relaxants (e.g. cyclobenzaprine, baclofen and 

dantrolene);  I, Injectable agents (steroids, local anesthetics); J, Interpersonal reinforcement (e.g. 

support group); K, Anticonvulsants (e.g. gabapentin, pregabalin and lamotrigine); L, 

Antidepressants (e.g. tricyclics antidepressants, SSRI, SSNRI); M, Compounds that act 

synergistically with opioids such as cannabinoids (nabilone); N, Cognitive behavior therapy and 

psychological counseling; O, Surgical and neurosurgical procedures (e.g. spinal cord stimulation, 

deep brain stimulation, spinal delivery of opioids, ganglion ablation by phenol or electrofrequency, 

sympathectomy). 

 

Besides the new and revised models, the correct and more actual employ of the WHO 

method with the use of alternative administration routes and the correct pharmacological 

knowledge is still used. In fact, it can give an adequate pain control in most patients with 

advanced cancer and all healthcare workers should be informed and implement the WHO 

guidelines before introducing more recent models, still in validation (Mercadante, 2010). 

Also, a personalized and individual treatment still remains as the key for achieving the 

best pain relief, requiring a profound knowledge of drug characteristics, patient’s 

responses and alternative treatments (Mercadante, 2010). 
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1.3.1  Pain assessment 

One of the most important processes in Hospitals and Palliative Care Units for cancer 

pain management in order to achieve an effective individualized therapy is the regular 

assessment, preferably in all stages of disease. A correct pain assessment should be 

done accordingly to certain rules and guidelines (Ripamonti et al., 2011): 

a) pain must be assessed and re-assessed, identifying its cause, onset, type, site, 

duration, intensity, relief and temporal characteristics, as well as the presence of 

trigger factors and other symptoms or signs, helping to choose the best analgesic, 

which efficacy have also to be assessed;  

b) the patient must also be assessed and re-assessed, with complete physical 

examination, identifying the interference of pain in the patient’s quality of life, the 

impact of the disease and therapy, physical, psychological and functional status and 

the presence of symptoms and adverse effects associated with disease, therapy and 

cancer pain syndromes; 

c) the ability to communicate with the patient and his family should be assessed and re-

assessed, as they all need to understand the disease and therapy and the physician 

needs to understand the patient and family’s requirements.  

 

For an adequate and regular assessment, healthcare professionals are welcomed to use 

some validated assessment tools (Caraceni et al., 2002). Considering the pain 

assessment limited to its intensity, a unidimensional structure can be used. However, 

taking into account that pain is a complex human experience, multidimensional tools have 

also been developed (Caraceni et al., 2002). For a correct measurement and assessment 

of pain, the chosen tool must be valid and appropriate for the purpose. 

The most frequently self-reporting standardized unidimensional scales are the visual 

analogue scale (VAS), the verbal rating scale (VRS) and the numerical rating scale 

(NRS) (Figure 9) (Caraceni et al., 2002), which are well validated in cancer populations, 

with equivalent quality (Wallenstein et al., 1980; Littman et al., 1985; Jensen et al., 1986; 

Caraceni et al., 2002). Also, the Face Pain Scale Revised (FPS-R) can be extremely 

useful in the pediatric population (Hicks et al., 2001). The number of words in the VRS or 

faces in FPS-R can vary (Caraceni et al., 2002), but all the scales can be related to the 

numeric categorization of pain, helping to divide it in mild, moderate or severe and 

integrate the result in the WHO analgesic ladder (Figure 6). These scales can also be 



CHAPTER I 
 

20 

used for measurement of pain relief, but its validity is limited to short-term intervention 

studies (maximum 24 hours) (Caraceni et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Pain intensity rating using four scales: visual analogue scale, verbal rating scale, 

numerical rating scale and faces pain rating scale revised. 

 

Concerning the multidimensional tools, McGill Pain Questionnaire, Brief Pain Inventory 

and Memorial Pain Assessment Card are the most used, with the Brief Pain Inventory 

and the McGiil Pain Questionnaire being the most recommended (Caraceni et al., 2002). 

These questionnaires are intended to collect information about the history, location, 

intensity, and quality of pain, interference of pain in patient’s life and all pain dimensions 
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(Melzack, 1975; Serlin et al., 1995). Additionally, several multidimensional measures and 

questionnaires of health-related quality of life have been developed and validated, 

including assessment of physical, psychological and social functions, along with several 

symptoms and life quality parameters (Hearn and Higginson, 1997; Jordhoy et al., 2007). 

Despite a more comprehensive vision of pain and patient’s status, these questionnaires 

are long and can be difficult to complete (Caraceni et al., 2002). 

As most of these scales and questionnaires depend on patient’s status, older age and 

patients with limited cognitive skills or cognitive impairment may fail to be evaluated. In 

these situations, physicians and health care professionals may observe pain-related 

behaviors and discomfort (facial expressions, vocalization, movements, interactions, 

routine activity) to detect the presence of pain (Kaasalainen, 2007; van Herk et al., 2007). 

In the last decade, improvements in this area are being made and some pain rating 

scales seem to be efficient in adults with cognitive impairment (Ware et al., 2006) and 

several tools are now available for older, non-verbal or with cognitive impairment patients 

(Kovach et al., 2002; Lane et al., 2003; Herr et al., 2006; Mahoney and Peters, 2008).  

 

1.3.2  Pharmacological approaches 

Pain relief can be achieved by several means, but pharmacological approach remains the 

mainstay of cancer pain management, as stated by WHO and its three-step model (WHO, 

1996). Most importantly is the selection of the right analgesic, right dose and regular 

schedule to maximize analgesic effect and minimize adverse effects (Carver and Foley, 

2000). Treating cancer pain with a sequential use of drugs starts with the non-opioid first 

step (e.g. paracetamol, NSAIDs and adjuvant drugs such as antidepressant or 

anticnvulsant drugs). Persisting pain leads to the introduction of an opioid for mild to 

moderate pain (e.g. codeine, hydrocodone, oxycodone, tramadol and 

dextropropoxyphene), with or without non-opioid or adjuvant drugs, and then a strong 

opioid to moderate to severe pain (e.g. morphine, hydromorphone, fentanyl, methadone, 

oxycodone, oxymorphone and levorphanol). 

 

1.3.2.1 Non-opioid analgesics 

Paracetamol and NSAIDs, including acetylsalicylic acid (ASA), are recommended as the 

first step of the WHO analgesic ladder, for mild cancer pain (WHO, 1996; Carver and 
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Foley, 2000; Mercadante, 2011; Ripamonti et al., 2011). These compounds are usually 

administered per os, but their analgesia is limited by the designated “ceiling effect”, in 

which increasing the dose beyond a certain level will not produce an increase in the peak 

effect (Carver and Foley, 2000). 

The mechanism of action of paracetamol has been a controversial subject for many years. 

However, recent studies pointed out that pharmacological action of paracetamol seems to 

result from the peripheral and especially central inhibition of the synthesis of 

prostaglandins from arachidonic acid, by inhibiting COX-1 and COX-2 (Graham et al., 

2013). Each enzyme possesses a cyclooxigenase and a peroxidase activity. Firstly, the 

cyclooxigenase activity occurs, with the oxidation of arachidonic acid to the hydroperoxide 

prostaglandin G2. Subsequently, this species is metabolized by the peroxidase activity to 

PGH2, and then to prostanoids (Graham et al., 2013). Moreover, while the cyclooxigenase 

activity is dependent on the peroxidase function, the latter is independent (Smith et al., 

2000), with paracetamol as a substrate (Harvison et al., 1988). Oxidation of paracetamol 

via peroxidase activity competes with the oxydation of a tyrosine residue to a tyrosine 

phenoxyl radical, considered essential for the cyclooxigenase activity of both COX-1 and 

COX-2 (Boutaud et al., 2002). Due to paracetamol, the essential tyrosine radical becomes 

less available, resulting in the inhibition of cyclooxigenase activity.   

However, there is an apparent COX-2 selectivity of paracetamol, indicated by its poor anti-

platelet activity and good gastrointestinal tolerance, probably due to peroxide 

concentration (Graham et al., 2013). In fact, in the presence of low concentrations of 

arachidonic acid, COX-2 pathway is preferentially activated, explaining the antinociceptive 

and antipyretic action of paracetamol, and the lack of its anti-inflammatory capacity in 

pathologies with high peroxide levels as rheumatoid arthritis and acute gout (Murakami et 

al., 2000; Li et al., 2008; Graham et al., 2013). In addition, paracetamol inhibits other 

peroxidase enzymes, as myeloperoxidase, decreasing the formation of pro-inflammatory 

halogenating oxidants (Koelsch et al., 2010; Graham et al., 2013). Moreover, the 

antinociceptive action seems to be linked to other neuronal systems, as serotoninergic, 

opioid, endocannabinoid and cholinergic, where inhibitors of these systems can also block 

the analgesic effect of paracetamol (Pini et al., 1997; Mallet et al., 2008; Graham et al., 

2013). Paracetamol can also inhibit some nociceptive effects of excitatory 

neurotransmitters or factors, as glutamate, SP and noradrenaline (Choi et al., 2001; 

Miranda and Pinardi, 2004). However, further studies are still required to conclude about 

the relation of therapeutic effect of paracetamol and neuroral systems.    
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Analgesic action of NSAIDs is very well-known and generally results from the peripheral 

inhibition of COX, decreasing prostaglandin synthesis. However, likewise paracetamol, 

analgesic effect of NSAIDs can also be mediated by a central COX inhibition (Malmberg 

and Yaksh, 1992; Graham et al., 2013). In fact, several NSAIDs have demonstrated to 

inhibit SP and glutamate hyperalgesic effect by spinal COX inhibition (Malmberg and 

Yaksh, 1992), with ASA also inhibiting glutamate-induced nociceptive action, but not SP 

(Choi et al., 2001). Moreover, other neuronal systems might also be related with NSAIDs 

antinociceptive effect, as serotoninergic system (Miranda et al., 2003; Graham et al., 

2013). 

The efficacy of these drugs in cancer pain has been reported and a number of non-opioid 

analgesics are available, the choice depending of the local availability and costs, as there 

is no evidence supporting the use of a drug over another (WHO, 1996; McNicol et al., 

2005; Mercadante, 2011; Ripamonti et al., 2011). The combination of paracetamol with 

strong opioids has been reported as an improvement in pain relief and well-being and has 

become a routine in some hospitals (Stockler et al., 2004; Axelsson et al., 2008). 

However, this is used despite the small number of evidences of demonstrable additional 

analgesic effect and was not always confirmed by other studies (McNicol et al., 2005; 

Israel et al., 2010). 

Non-opioid analgesics are especially helpful for pain caused by soft tissue and muscle 

infiltration and NSAIDs are very important for bone metastases-related pain, due to the 

high concentration of prostaglandins produced in the affected bone (WHO, 1996). 

Nevertheless, the long-term use of NSAIDs or COX-2 selective inhibitors needs to be 

monitored and reviewed due to its toxicity, namely gastrointestinal bleeding [aspirin, 

indomethacin, naproxen, sulindac, ketoprophen and piroxicam (Henry et al., 1996)], 

platelet dysfunction, renal failure and risk of thrombotic cardiovascular adverse reactions 

(Ripamonti et al., 2011). Also, risk of allergic phenomena should be taken into account, 

particularly for salicylates. Some adverse effects can be prevented by choosing 

analgesics with fewer or no antiplatelet effects (e.g., choline magnesium trisalicylate, 

paracetamol) or fewer gastrointestinal side effects (e.g., ibuprofen) (Carver and Foley, 

2000). 
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1.3.2.2 Opioid analgesics 

Opioid analgesics, with morphine as the prototype, remain as the mainstay treatment for 

cancer pain, despite their adverse effects and association with tolerance, dependence and 

addition (WHO, 1996). The widespread of opioids in chronic cancer pain is particularly 

related to the strong evidence of their efficacy, an increased knowledge of their clinical 

pharmacology and to the development of guidelines to guarantee a safe use (Geppetti 

and Benemei, 2009).  Also, unlike NSAIDs, strong opioids do not appear to have a dose-

related “ceiling”, and generally a dose increase leads to a better analgesic effect, until the 

minimal effective dose is achieved. 

Opioids exert their action by binding to G protein-coupled opioid receptor [classic µ, δ, κ 

receptors and “non-classic” nociceptin/orphanin FQ peptide (N/OFQ) receptor (NOP)] 

(McDonald and Lambert, 2013). Besides their known location in the nervous system (e.g. 

PAG, medial prefrontal cortex, amygdala, hippocampus, thalamus), opioid receptors are 

also distributed in peripheral organs, such as heart, lung, liver, gastrointestinal and 

reproductive tracts (Feng et al., 2012; Bodnar, 2013). The activation of µ-opioid receptors 

seems to elicit the major behavioral responses, including analgesia, hyperlocomotion, 

respiratory depression, constipation and immunosuppression, as revealed by mice lacking 

µ-opioid receptor (Waldhoer et al., 2004). Additionally, animal studies also revealed the 

important role of this opioid receptor sub-type in the neural circuit of reward (Hall et al., 

2001; Berrendero et al., 2002; Waldhoer et al., 2004). 

Other opioid receptor subtypes also proved to be related to pain perception, stress 

response and affective reward states (Wang et al., 2010; Bodnar, 2013; Zhou et al., 

2013). δ-opioid receptors have shown to exert some analgesic effects, with limited side 

effects (Waldhoer et al., 2004), making it a promising target for new analgesics. These 

receptors have essentially an intracellular localization, rather than on the surface of most 

cells, which might explain the relatively high doses of δ-opioid agonists for analgesia 

(Cheng et al., 1995). Along with analgesic effects, these receptors were also associated 

with the development of morphine dependence and tolerance (Abdelhamid et al., 1991; 

Suzuki et al., 1997) and beneficial effects in affective disorders (Gavériaux-Ruff and 

Kieffer, 2002). Concerning κ-opioid receptors, they have been especially related to 

dysphoria but also to  stress-induced emotional responses (Waldhoer et al., 2004) and the 

possible treatment of visceral pain (Gebhart et al., 2000). On the other hand, NOP 

receptors were associated with anti-analgesic action and tolerance (McDonald and 

Lambert, 2005; McDonald and Lambert, 2011), but also to anxiety, feeding, learning and 

memory and urogenital activity (McDonald and Lambert, 2005). 
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In addition to the more well-known functions, opioid receptors have also been associated 

with ionic homeostasis, cell proliferation, neuroprotection, epileptic seizures, immune 

functions, feeding, obesity, cardiovascular regulation, learning and memory, 

gastrointestinal, renal and hepatic functions, general activity and neurodegenerative 

diseases (Feng et al., 2012; Bodnar, 2013). Also, some studies suggest the existence of 

physical interaction between opioid receptors, which would contribute to their final effect, 

as the enhance of µ-agonists analgesic effect by δ-agonists or the reduction of the 

development of tolerance and dependence by µ-agonists by δ-antagonists (Miaskowski et 

al., 1990; Ananthan, 2006).  

Concerning opioid action in their receptors, especially in pain, the activation results in 

chain reactions that include several second messengers, as cAMP and ion channels such 

as the potassium or calcium (Figure 10) (McDonald and Lambert, 2013). The opioid 

receptors are part of a descending inhibitory system and their activation leads to a 

decrease of calcium entry into the cell and of neurotransmitter release, such as SP and 

CGRP, from primary afferents (Collin et al., 1993; Kondo et al., 2005; Geppetti and 

Benemei, 2009). Also, the potassium efflux in the post-synaptic neuron is enhanced 

leading to hyperpolarization and the nociceptive signal is interrupted (Geppetti and 

Benemei, 2009).  

The main adverse effects patients develop are constipation, nausea, vomiting, urinary 

retention, pruritus and development of dependence, addition and tolerance. Dependence 

is related to the withdrawal symptoms if the opioid is abruptly discontinued or after the 

administration of an antagonist or mixed agonist-antagonist, and the symptoms intensity 

are related to the opioid, dose and duration of treatment. On the other hand, addition is 

related to a behavioral pattern of drug use characterized by continued craving for the 

drugs to obtain other effects than pain relief. Due to this possibility, the attempts of 

physicians and patients to not reach addition usually lead to lack of adequate cancer pain 

management. However, cancer pains chronically receiving opioids usually develop 

dependence but not addition (Porter and Jick, 1980; WHO, 1996; Carver and Foley, 

2000).Tolerance represents the necessity of increasing the dose to provide the same 

effect. In cancer patients, dose escalation can happen due to pharmacologic tolerance but 

especially due to disease progression (Carver and Foley, 2000). One of the first signs of 

tolerance development is the patients’ report of shorter duration of the analgesic effect 

that can be often mistaken as an early sign of addition (Carver and Foley, 2000). 

Switching to alternatives analgesics, adjuvant drugs, anesthetics and interventional 

procedures may be used to manage a tolerant patient (Carver and Foley, 2000).  
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Figure 10. Opioids action in afferent C-fibers and post-synaptic neurons, leading to the analgesic 

effect. AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; NMDA, N-methyl-D-

aspartate; OpR, opioid receptor.  

 

Additionally, signs of central toxicity can appear as drowsiness, cognitive impairment, 

confusion, hallucinations and myoclonic jerks, along with the development of hyperalgesia 

/ allodynia (Carver and Foley, 2000; Ripamonti et al., 2011). These effects can be 

managed by reducing opioid dose and co-administering another analgesic or switching to 

another opioid or route, which would be especially important in cases of opioid-induced 

hyperalgesia / allodynia (Cherny et al., 2001). Moreover, certain drugs can relieve those 

symptoms as antiemetics, laxatives, benzodiazepines (for confusion). In case of (rare) 

severe opioid overdose, a short-acting antagonist, as naloxona, can be administered 

(Carver and Foley, 2000; Ripamonti et al., 2011). 

 

1.3.2.2.1 Mild to moderate pain 

According with WHO step 2, mild to moderate pain should be treated with a weak 

immediate-release opioid (codeine, tramadol, dihydrocodeine, propoxyphene), which may 

have limited analgesic efficacy, plus paracetamol or NSAIDs. As already mentioned, this 

second step is surrounded by controversy and the efficacy and advantages of using this 
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step have been contested (Ventafridda et al., 1987; Eisenberg et al., 1994; Mercadante et 

al., 1998; Grond et al., 1999; Vielvoye-Kerkmeer et al., 2000; Mystakidou et al., 2003; 

Ripamonti et al., 2011; Leung, 2012). Additionally, weak opioids have a dose-related 

“ceiling effect”, as NSAIDs, leading some authors to defend the abolition of this second 

step and start an earlier use of low doses of morphine, but the studies are still 

inconclusive (Marinangeli et al., 2004; Maltoni et al., 2005; Mercadante et al., 2006; 

Ripamonti et al., 2011).  

Codeine is a well-known opioid, however it can be poorly tolerated at higher doses and 

genetic variation of the major metabolic enzyme (cytochrome P450 2D6, CYP2D6) can 

lead to unexpected codeine and morphine concentrations, and therefore to unexpected 

adverse effects (Mikus et al., 1991; Chary et al., 1994). On the other hand, tramadol has 

been considered a safer opioid analgesic for mild to moderate pain, with lower probability 

of dependence and respiratory depression. However, the same genetic consideration of 

codeine has to be made for tramadol, as for dihydrocodeine and oxycodone, since they 

share the same metabolic pathway (O-demethylation) (Mikus et al., 1991).  

 

1.3.2.2.2 Moderate to severe pain 

Strong opioids are definitely the recommended group of drugs for cancer-related pain. 

Morphine is the first-choice drug, the only opioid in WHO essential drug list for adults and 

children with pain and has been used for several years in Palliative Care Units and 

Hospitals, due to its efficacy, tolerance and low costs (Ripamonti et al., 2011). After 

morphine administration, the drug undergoes a variety of metabolic pathways, but is 

extensively metabolized in the liver especially by Uridine 5'-diphospho-

Glucuronosyltransferase 2B7 (UGT2B7) producing two important metabolites, morphine-

6-glucuronide (M6G; 10-15 %) and morphine-3-glucuronide (M3G; 45-55 %), by 

glucuronidation of the 6-OH alcoholic group and the 3-OH phenolic group, respectively 

(Figure 11)  (Carrupt et al., 1991). M6G is a potent opioid receptor agonist with a higher 

analgesic activity than morphine, however M3G has no opioid action, thought it seems to 

have a role in the side-effects usually described, as well as hyperalgesia / allodynia, 

neurotoxicity and an antagonistic effect, decreasing morphine analgesia (Carrupt et al., 

1991; Christrup, 1997; Holthe et al., 2002). As with codeine and tramadol, alterations in 

metabolism ratios might lead to different analgesic and adverse effects, especially in case 

of kidney disease, as both metabolites are especially eliminated by the kidney. 

Nevertheless, morphine has some properties that contribute to be considered a safe drug, 
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especially the linearity of morphine and metabolites pharmacokinetics after repeated 

administration, which probably indicates that its metabolic pathway is not subject to auto-

induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Morphine metabolism in M3G and M6G. M3G, morphine-3-glucuronide; M6G, morphine-

6-glucuronide; UGT, UDP-Glucuronosyltransferase. 

 

Nowadays, several other strong opioids are used across Europe, as methadone, 

oxycodone, hydromorphone, fentanil, alfentanil, buprenorphine, heroin, levorphanol and 

oxymorphone. A recent synthetic opioid is tapentadol, originally developed for moderate to 

severe chronic non-cancer pain (Hoy, 2012). Similarly to tramadol, this opioid has a 

double mechanism: µ-opioid receptor agonist (lower affinity than other strong opioids) and 

inhibition of NA reuptake, with an expected reduction of adverse effects profile and 

intensity (Kress, 2010; Hoy, 2012). Meanwhile, tapentadol efficacy in cancer pain patients 

was also described, but not a different intensity of adverse effects (Mercadante et al., 

2012). More studies are necessary to conclude about tapentadol advantages in cancer-

related pain. 

According to WHO guidelines, opioids should be preferably administered by oral route 

(WHO, 1996). However, in today’s medicine, the chosen route of administration is 
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increasingly dependent on the patients’ condition and pain assessment and patients 

requiring urgent relief should be treated and titrated with parenteral opioids (especially 

subcutaneous or intravenous), taking into account the equivalent dose and the relative 

potency ratio (Ripamonti et al., 2011). Transdermal administration for fentanyl and 

buprenorphine has been increasingly used in patients unable to swallow and with poor 

compliance or tolerance to morphine (Ripamonti et al., 2011). Also, buprenorphine has 

been shown to be a  safe choice in patients with renal impairment and undergoing 

hemodialysis treatment (Boger, 2006). Other alternatives to oral morphine are the 

immediate and modified-release formulations of hydromorphone and oxycodone, and 

methadone, the latter to be used with greater caution (Ripamonti et al., 2011). 

In order to manage constipation, the most common and refractory side effect in cancer 

patients treated with opioids (Holzer et al., 2009), opioid antagonists as naloxone, started 

to appear as an option, as they only affect gastrointestinal receptors, not diminishing 

central analgesic effects (Gaertner and Schiessl, 2013). Naloxone is a peripherally 

operating opioid antagonist, with low bioavailability due to a substantial first-pass hepatic 

metabolism, and often used with oxycodone (Reid et al., 2006). Later on, the efficacy of 

an oxycodone / naloxone prolonged-release combination was reported for chronic non 

cancer pain patients (Simpson et al., 2008; Lowenstein et al., 2010). Studies for cancer-

related pain also took place and the fixed combination seemed a promising approach 

(Ahmedzai et al., 2012; Mercadante and Giarratano, 2013). However, further studies are 

necessary and precaution should be taken in dose escalation, that might increase the 

bioavailability of naloxone, and also in patients with hepatic malfunction, as naloxone will 

not undergo complete hepatic metabolism and might reverse opioid analgesia at the 

central opioid receptors (Gaertner and Schiessl, 2013). 

 

1.3.2.2.3 Breakthrough pain 

Breakthrough pain, as already mentioned, is defined as a transitory increase in pain 

intensity in patients on analgesic treatment regularly administered, with an opioid-

controlled baseline pain. To treat this type of pain it is necessary to establish rescue 

doses of opioids (Mercadante, 2010). The physician can use a rapid onset and short half-

life opioid, as immediate-release morphine, in about 10 – 15 % of the total daily dose, 

every 2 – 3 hours (Mercadante, 2010; Ripamonti et al., 2011). However, more than four 

rescue doses indicate that the baseline opioid treatment has to be adapted (Ripamonti et 

al., 2011). Oral transmucosal administrations, as the new rapid onset formulations of 
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fentanil, can lead to pain relief in a similar way of intravenous morphine (10 – 15 minutes), 

but only in active and collaborating patients (Ripamonti et al., 2011). New effervescent 

buccal tablets, intranasal or sublingual fentanil formulation have emerged, became more 

accepted and the pain relief is achieved similarly (Grape et al., 2010; Davis, 2011).  

1.3.2.3 Adjuvant drugs for analgesia 

According to WHO analgesic ladder, besides opioid and non-opioid analgesics, physicians 

can also employ some adjuvant drugs to enhance the analgesic effect and diminish opioid 

doses (Figure 12). This situation occurs especially for the treatment of cancer-related 

neuropathic pain, generally a result of regional nerve damage from tumor infiltration into 

nerves and plexuses, radiation, fibrosis, chemotoxicity or surgical injury (Portenoy, 1989). 

Another usual situation for the use of adjuvant drugs is bone pain. In both cases, the ideal 

is to choose an individualized, simple but potent combination of drugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Pharmacological modulation with opioids and adjuvant drugs. COX, cyclooxygenase; 

NMDA, N-methyl-D-aspartate; NSAIDs, nonsteroid anti-inflammatory drugs. 
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1.3.2.2.1 Antidepressant drugs 

Antidepressants drugs have been probably the most helpful class of drugs for neuropathic 

pain (Sindrup et al., 2005), despite the few number of studies referring to the use of 

antidepressant agents for treatment of cancer pain (McGeeney, 2008). As already 

mentioned, noradrenergic and serotoninergic systems are involved in pain mechanisms 

and the influence of antidepressants in these two systems, promoting the endogenous 

descending antinociceptive system, can explain their analgesic effect (Carver and Foley, 

2000). Besides their strong adverse effects, TCA seem to be the most effective group, 

particularly amitriptyline, but reports of the efficacy of imipramine and desipramine exist 

(Kishore-Kumar et al., 1990; Max et al., 1992; Zin et al., 2008). Another advantage of TCA 

is related to its sedatives properties, particularly helpful in patients with insomnia 

(McGeeney, 2008). Among SSRI, paroxetine has also demonstrated efficacy, with fewer 

side effects than TCA (Sindrup et al., 1990) and more recent antidepressants as 

venlafaxine and duloxetine seem very promising for cancer-related pain, also with fewer 

adverse effects (McGeeney, 2008; Zin et al., 2008; Mercadante, 2011). 

 

1.3.2.2.2 Anticonvulsant drugs 

Anticonvulsant drugs are the second most well-studied class for neuropathic pain, after 

antidepressants (McGeeney, 2008). Among them, carbamazepine, gabapentin and 

pregabalin represent drugs of choice for trigeminal neuralgia and other neuropathic pain, 

with Food and Drug Administration (FDA) approval (Carver and Foley, 2000; McGeeney, 

2008; Mercadante, 2011). Topiramate, oxcarbazepine and lamotrigine are also used off-

label for different pain syndromes, while phenytoin, phenobarbital, levetiracetam and 

zonisamide are nowadays rarely prescribed (McGeeney, 2008). 

Anticonvulsants are effective adjuvant drugs for cancer-related pain due to their 

mechanism of action, especially by modulating voltage-gated ion channels (sodium and 

calcium) and enhancing GABA mechanism. Gabapentin and pregabalin are structural 

analogues of GABA, however their pharmacological action is accomplished by modulating 

specific voltage-gated calcium channels and calcium influx is reduced (Luo et al., 2001; 

Lesser et al., 2004; Shimizu et al., 2004). There are more evidences supporting their 

efficacy in chronic non-cancer pain (McGeeney, 2008) but major advantages of these 

compounds are the very few drug-drug interactions and the low percentage that binds to 

plasma proteins (McGeeney, 2008). 
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1.3.2.2.3 Oral and local anesthetic agents 

Oral anesthetics have been reported for the management of neuropathic pain, with 

mexiletine being considered the safest drug (Carver and Foley, 2000). Non-systemic 

means, namely topical local anesthetics or capsaicin, can also be used for cancer-related 

neuropathic pain (Carver and Foley, 2000; NCCN, 2006; McGeeney, 2008). Among these, 

lidocaine patch 5 % has been approved by FDA (Galer et al., 2002). The lidocaine patch 

has beneficial effects for the patient by two mechanisms: reduces the ectopic activity in 

NaV channels of damaged nerves, and the patch itself provides a mechanical barrier that 

decreases allodynia (Fields et al., 1998; Sawynok, 2005). The efficacy has already been 

reported, including in cancer pain patients (Rowbotham et al., 1996; Galer et al., 2002; 

Meier et al., 2003; Fleming and O'Connor, 2009; Lopez Ramirez, 2013). 

 

1.3.2.2.4 Bone pain and bisphosphonates 

Bone metastatic disease often implies several skeletal complications, such fracture, spinal 

compression and/or skeletal related events, i.e., bone surgery, inducing serious pain and 

morbidity (Gaertner and Schiessl, 2013). Bisphosphonate drugs (clodronate, pamidronate, 

ibandronate, zoledronic acid) have been reported to reduce skeletal complications, 

particularly severe bone pain associated with bone metastatic disease (Coleman, 2004, 

2005). These compounds are used in patients with bone lesions from solid tumors but 

also in multiple myeloma, with ibandronate and zoledronic acid showing the highest 

potency (Carver and Foley, 2000; Gaertner and Schiessl, 2013; Kmetec and Hajdinjak, 

2013). Some studies also claim that bisphosphonates may be useful for pain and skeletal 

complications but also for improved survival, due to their capacity of inhibit bony 

attachment of cancer cells, decrease cytokine production and induce apoptosis of tumor 

cells (Mercadante, 1997; Pereira et al., 1998). 

Despite the use of bisphosphonates, these drugs cannot avoid skeletal related events in 

about 50 % of patients (Van Poznak et al., 2011). However, the identification of 

osteoprotegerin (OPG) and its ligands [receptor activator of nuclear factor kappa-B ligand 

(RANKL), also known as osteoprotegerin ligands (OPGL)] as critical for bone remodeling 

has opened new pathways for bone pain and skeletal related events (Gaertner and 

Schiessl, 2013) and RANKL inhibition may be helpful. Denosumab, a RANKL inhibitor, 

seems to prevent skeletal related events and cancer pain due to bone metastases better 
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than bisphosphonates (Fizazi et al., 2011; Lipton et al., 2012), but further studies and 

economical costs have to be considered (Gaertner and Schiessl, 2013)  

 

1.3.2.2.5 Corticosteroids 

Corticosteroids are widely used as adjuvant analgesics for pain syndromes associated 

with raised intracranial pressure, acute spinal cord compression, superior vena cava 

syndrome, metastatic bone pain, neuropathic pain due to infiltration or compression by 

tumor, and hepatic capsular distension (Carver and Foley, 2000; Jost, 2005; McGeeney, 

2008). Pain patients with advanced cancer may benefit from steroids administration in 

pain management, with reduced opioid doses and improved quality of life, but also in 

appetite, nausea and mood (Della Cuna et al., 1989; Carver and Foley, 2000; Lauretti et 

al., 2013). 

 

1.3.2.2.6 Cannabinoids 

In the last years, cannabinoids have emerged as a possible new class of adjuvant drugs 

for chronic cancer and non-cancer pain (Pertwee, 2006). The theory behind their use is 

related to the fact that cannabinoids seem to mimic endogenous cannabinoids 

(anandaminde, 2-arachidonoyl glycerol) and bind to cannabinoid receptors (CB), CB1 and 

CB2 (Pertwee, 2006). Pain relief has been described for dronabinol and annabidiol, as 

well as a joint effect of opioids and cannabinoids (Welch and Stevens, 1992; Pertwee, 

2006; Portenoy et al., 2012).  Some authors tried to explain this effect by the location of 

receptors of both classes in the descending pain pathway and the fact that cannabinoids 

seem to elicit the release of endogenous opioid precursors (Gaertner and Schiessl, 2013). 

Recently, nabiximols, a novel cannabinoid formulation with extract of Cannabis sativa that 

has shown an analgesic effect in peripheral neuropathic pain (Nurmikko et al., 2007), was 

studied in cancer pain patients. The results were disappointing, though pointing to some 

advantages in pain intensity at lower doses, showing that the merits of cannabinoids in 

cancer-related pain are yet limited and further studies are necessary (Portenoy et al., 

2012; Gaertner and Schiessl, 2013). 
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1.3.2.2.7 Ketamine and dextromethorphan 

Ketamine has been administered off-label at sub-anesthetic doses for cancer pain, in 

combination with opioids (Kerr et al., 2011). Ketamine is a non-competitive antagonist of 

NMDA receptors that are involved in pain transmission and processing as already 

mentioned. Also, ketamine interrupts cholinergic transmission and inhibits reuptake of NA 

and 5-HT (Gaertner and Schiessl, 2013). The administration of ketamine has not been 

based in clinical and controlled studies, but a multisite, double-blind, randomized, 

placebo-controlled trial made recently by Hardy and collaborators (Hardy et al., 2012) has 

shown disappointing results, with no differences comparing with the placebo group and an 

intense incidence of adverse effects. Dextromethorphan, another non-competitive 

antagonist of NMDA receptors has also been used in combination with morphine, but 

again no clinical benefit was found in cancer pain patients (Dudgeon et al., 2007; 

Mercadante, 2011). Still, NMDA receptor antagonists are studied as an analgesic-target. 

 

1.3.2.4 Other analgesic / adjuvant agents and future perspectives 

Other adjuvant agents are used and several new perspectives are being investigated. 

Ziconotide is a N-type voltage-sensitive calcium channel antagonist that blocks the entry 

of calcium. It was approved by FDA for severe chronic pain by intrathecal administration in 

patients intolerant or refractory to other treatment (Wermeling, 2005). Ziconotide was 

already studied in cancer pain patients, improving pain intensity, but has several possible 

adverse effects, as neurologic impairment and psychiatric symptoms (Staats et al., 2004). 

Given the potential serious risks, evidence of efficacy and advantages of ziconotide in 

cancer pain with unsuccessful treatment history is yet too weak (Mercadante, 2011).  

Intensive efforts are still being made for new drug development, for many potential targets. 

Leconotide, a new calcium channel blocker promises powerful anti-hyperalgesia by 

intravenous administration without the dangerous side effects of its predecessor 

ziconotide (Mercadante, 2011). 

Ralfinamide, a α-aminoamide derivative, is a novel promise for neuropathic pain and 

seems to have a combined mechanism, including inhibition of sodium and calcium 

currents, inhibition of SP release and NMDA antagonism (Yamane et al., 2007). 

Ralfinamide has demonstrated analgesic effects in animal models but further studies are 

required.  
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New targets are also been explored for chronic pain, which can be tested in chronic 

cancer pain later. NGF has shown to contribute to persistent pain and anti-NGF therapies 

are also under study, as this factor seems to be integrally involved in up-regulation, 

sensitization and disinhibition of multiple neurotransmitters, ion channels and receptors in 

the primary afferent nerve and dorsal root ganglia fibers (Hefti et al., 2006). Like-wise, 

TRPA1 receptors and its agonists revealed to be pronociceptives and the block of these 

receptors could be useful. In fact, antagonists of TRPA1 have shown to reduce 

hyperalgesia in animal models and seem promising for neuropathic and inflammatory pain 

(Petrus et al., 2007; Eid et al., 2008). Another approach is the development of selective 

ligands to GABAA receptors, which are involved in pain transmission and have shown an 

antinociceptive activity in experimental models of pain (Hwang and Yaksh, 1997; Kaneko 

and Hammond, 1997). Imidazoline (I2) receptors agonists are also under investigation. 

Despite a little theoretical basis, comparing to the previous targets, ligands of I2 receptors 

have shown to alleviate acute visceral, neuropathic and inflammatory pain and increase 

the antinociceptive effect of opioids (Ferrari et al., 2011).  

Several pharmacological approaches are now in use and under investigation. However, as 

conventional drug treatment has shown several limitations, several other therapies are 

also combined, like psychosocial interventions (Gaertner and Schiessl, 2013), 

radiotherapy (Ripamonti et al., 2011), surgery and interventional approaches (Bhaskar, 

2012). Genetic approaches are also under investigation, as the development of viral 

vectors for gene therapy (Huang et al., 2011), microRNAs (Chen et al., 2013; Kress et al., 

2013) and pharmacogenetic / pharmacogenomic studies. 

 

1.4  Genetic polymorphisms, pain perception and morphine requirements 

Under-treatment of cancer-related pain remains a significant problem, despite the several 

guidelines, opioids, non-opioids and adjuvant drugs. As already mentioned, opioids are 

the mainstay treatment for cancer-related pain, with morphine as first-line drug (WHO, 

1996). However, interindividual variability is becoming a major concern and a possible 

reason for the lack of good analgesic effect. Perception of pain varies greatly among 

people, which implies wide variations in morphine dosage, pharmacological efficacy and 

tolerability (Aubrun et al., 2003; Ross et al., 2005; Shi et al., 2010). Moreover, it is 

estimated that about 30 % of cancer pain patients are non-responders to morphine (Riley 

et al., 2006; Kasai et al., 2008). Although age, gender, race/ethnicity, mood states and 

stress can be pointed as influencing factors (Zhou et al., 1993; Cepeda et al., 2001; Pleym 



CHAPTER I 
 

36 

et al., 2003; Klepstad et al., 2005; Chakrabarti et al., 2010; Sibille et al., 2011), an 

important cause is thought to be of pharmacogenetic nature. In fact, studies on inbred 

strains of laboratory mice have shown that genetic factors explain up to 30 to 76 % of pain 

variance (Mogil et al., 1999; Lariviere et al., 2002). Additionally, twin studies have also 

suggested that heritability estimates up to 70 % for clinical pain conditions and up to 60 % 

for sensitivity for certain stimuli (LaCroix-Fralish and Mogil, 2009; Nielsen et al., 2012). 

Hence, in the past decade, efforts have been made to identify genetic factors, especially 

single nucleotide polymorphisms (SNP) that can explain the interindividual variability in 

pain sensitivity and morphine dose requirements, especially in polymorphisms of opioid 

receptors, transporters and metabolizing enzymes (Belfer et al., 2004; Lötsch and 

Geisslinger, 2006; Kadiev et al., 2008; Kasai et al., 2008; Jannetto and Bratanow, 2010; 

Kleine-Brueggeney et al., 2010; Muralidharan and Smith, 2011), and in 

modulators/suppressors and neurotransmitters involved in perception and processing of 

pain information (Lötsch and Geisslinger, 2006; Shi et al., 2010). We will now focus on the 

major genetic variants that were already associated with pain status. However, rare 

genetic conditions, such as congenital insensitivity to pain or congenital indifference to 

pain, were not considered. Likewise, SNP / molecules related to pain circuits but never 

studied in pain populations were also not subject of study in the present thesis. 

 

1.4.1  Pain transmission and perception  

 
1.4.1.1 Catecholaminergic and serotoninergic systems 

 
1.4.1.1.1 Metabolism: catechol-O-methyl transferase and monoamine oxidases 

The catecholaminergic and serotoninergic systems seem to be involved in pain 

transmission and processing, with several polymorphic candidate genes in the 

biosynthesis, transport and metabolism (Figure 13). 

Catechol-O-methyltransferase (COMT) regulates catecholamines inactivation and the 

influence of the SNP Val(108/158)Met (G1947A) in pain has been subject of investigation 

(Zubieta et al., 2003; Diatchenko et al., 2006; Nackley et al., 2007; Jensen et al., 2009; 

Mobascher et al., 2010; Belfer and Segall, 2011; Hickey et al., 2011; Kolesnikov et al., 

2011). The Val(108/158)Met polymorphism leads to an amino acid substitution, valine 

(Val) by methionine (Met) (Zubieta et al., 2003), which leads to a reduction in its activity 

(Zubieta et al., 2003; Zhang et al., 2009; Shi et al., 2010). Met/Met genotype is associated 
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with the lowest activity of COMT, Met/Val with intermediate and Val/Val with the highest 

(Zubieta et al., 2003). Individuals homozygous for Met allele have been reported to exhibit 

increased pain sensitivity and lower µ-opioid system activation during sustained pain 

(Zubieta et al., 2003; Jensen et al., 2009; Mobascher et al., 2010; Vossen et al., 2010), as 

well as higher sensory and affective ratings and a more negative internal affective state 

(Zubieta et al., 2003). These differences are most felt in patients with chronic pain, and 

could be related with opioid-induced hyperalgesia and tolerance (Jensen et al., 2009). 

Also, the associated increase in pain sensitivity appears to be blocked by β2/3 antagonists, 

revealing the important role of catecholamines in pain sensitivity (Nackley et al., 2007). 

Val(108/158)Met SNP have also been associated with morphine requirements. Carriers of 

Met/Met genotype were unexpectedly associated with lower morphine requirements than 

patients homozygous for the Val allele (Rakvåg et al., 2005; Reyes-Gibby et al., 2007; 

Rakvag et al., 2008), explained by a compensatory increased of µ-opioid receptor density 

and binding potential (Chen et al., 1993; Zubieta et al., 2003). Nevertheless, contradictory 

information has been reported in recent years (Klepstad et al., 2011; Kolesnikov et al., 

2011). 

 

 

 

 

 

 

 

 

 

Figure 13. Schematic representation of the several phases that can be altered by genetic variation: 

biosynthesis, transport, metabolism and receptor activation. COMT, catechol-O-methyltransferase; 

5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; MAO, Monoamine oxidase; NAT, 

noradrenaline transporter; SERT, serotonin (5-HT) transporter; Trp, tryptophan; Tyr, tyrosine. 
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Despite Val(108/158)Met being the most studied COMT SNP, several new functional 

polymorphisms were identified and seems that other SNP, especially rs6269 (A/G), 

rs4633 (C/T) and rs4818 (C/G), can influence enzyme activity and pain sensitivity, along 

with  Val(108/158)Met (G/A). In fact, three common haplotypes defined can determine 

COMT enzymatic activity and account for approximately 11 % of the variability in pain 

response (Diatchenko et al., 2005; Diatchenko et al., 2006), with the ACCG haplotype 

exhibiting the lowest enzymatic activity and protein expression (Nackley et al., 2006). 

Moreover, being heterozygous for ATCA and ACCG haplotypes, it was strongly 

associated with high sensitivity to experimental pain (Diatchenko et al., 2005). In another 

study, COMT haplotypes were constructed, based on 11 SNPs, in a sample of cancer 

pain patients receiving morphine and the most common haplotype was related to lower 

morphine requirements (Rakvag et al., 2008). 

Monoamine oxidases (MAO) isoforms MAO-A (MAOA gene) and MAO-B (MAOB gene) 

are capable of metabolizing 5-HT and NA. SNPs in MAOA were weakly associated with 

female postoperative pain intensity (Kim et al., 2006), but not MAOB. However, a 

polymorphism in intron 13 of MAOB was significantly correlated with male postoperative 

pain intensity (Sery et al., 2006). The correlation of genetic variation of MAO and pain is 

still inconsistent.  

 

1.4.1.1.2 Reuptake transporters 

Reuptake transporters can influence catecholamines and 5-HT concentration, and its 

importance is highlighted by the role of TCAs, SSRI and SSNRIs as analgesic adjuvant 

drugs, that block the NA transporter (NAT) and serotonin transporter (SERT). 

Polymorphisms in the NAT gene, also known as solute carrier family 6 member 2 

(SLC6A2), were only weakly associated with analgesic onset time in patients with 

postoperative pain (Kim et al., 2006) and their real role has to be further studied in clinical 

trials that assess their influence in pain relief produced with TCAs and SNRIs. 

Concerning the SERT gene (also known as 5HTT or SLC6A4), two main functional 

variants are especially known: 5-HTT Linked Polymorphic Region (5-HTTLPR) and  

second intron (STin2) variable number tandem repeat (VNTR) (Gentile et al., 2011). The 

5-HTTLPR variant is a 44-base pair (bp) insertion/deletion that generate a long or short 

allele and was suggested as a risk factor for some painful conditions (fibromyalgia and 

tension-headache), but not migraine (Buskila et al., 2007; Park and Moon, 2010; Schurks 
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et al., 2010). Additionally, the short allele, which results in reduced SERT expression, was 

related to lower heat, cold and pressure pain sensitivity (Lindstedt et al., 2011). The VNTR 

polymorphism represents a 17-bp VNTR in intron 2, producing alleles with 9, 10 or 12 

repeats and seems to be associated with protective phenotypes against migraine 

(Schurks et al., 2010). However, all these preliminary results need further confirmation. 

The dopamine transporter (DAT, also known as SLC6A3) is responsible for the reuptake 

of dopamine and its influence on pain is also being studied. A VNTR polymorphism in the 

3’-untranslated region of DAT1 gene was found to be associated with chronic headache 

(Cevoli et al., 2006) and cold pain tolerance, suggesting that low dopaminergic activity can 

be associated with high pain sensitivity (Treister et al., 2009).  

 

1.4.1.1.3 Receptors 

The effects of catecholamines and 5-HT are a result of their binding to specific receptors, 

and genetic variation in the receptors may affect the response. 5-HT binds to a family of 

receptors and 5-HT1, 5-HT2, 5-HT3 and their subtypes have been implicated in nociception 

(Hoyer et al., 1994). There are three common SNP in 5-HT1B gene, which encodes the 

subtype 5-HT1B: T(-261)G, A161T and G861C. However, clinical studies didn’t yet 

demonstrate an influence of these polymorphisms in pain sensitivity. Concerning 

dopamine, a 48-bp VNTR in exon 3 of the dopamine receptor D4 gene (DRD4), has been 

associated with clinical pain in fibromyalgia and migraine patients (Dan et al., 2004; Cevoli 

et al., 2006). 

 

1.4.1.1.4 Biosynthesis  

Genetic variation in genes involved in catecholamines and 5-HT biosynthesis can also 

influence these neurotransmitters concentration. The enzyme guanosine triphosphate 

cyclohydrolase (GCH1) catalyzes the rate-limiting step in the synthesis of 

tetrahydrobiopterin (BH4) (Figure 14), an essential co-factor for 5-HT and NA 

biosynthesis, and was already reported as upregulated in neuropathic pain (Costigan et 

al., 2002).  
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Figure 14. Tetrahydrobiopterin synthesis and its influence in pain [adapted from (Pasternak and 

Inturrisi, 2006; Clot et al., 2009)]. Arg, arginine; BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; 

GCH1, guanosine triphosphate cyclohydrolase; 5-HT, 5-hydroxytryptamine; 5-HTP, 5-

hydroxytryptophan NO, nitric oxide; Phe, Phenylalanine; PTPS, 6-pyruvoyl tetrahydropterin 

synthase; Trp, tryptophan; Tyr, tyrosine. 

 

An haplotype of 15 SNP in GCH1 gene was already associated with reduced pain 

sensitivity in patients with neuropathic pain (Tegeder et al., 2006) and several SNP were 

associated with reduced upregulation of GCH1 (Tegeder et al., 2006; Antoniades et al., 

2008; Tegeder et al., 2008). Three variants of this haplotype, rs8007267 (G/A), rs3783641 

(A/T) and rs10483639 (C/G) were found to have reliability, specificity and sensitivity for 

the genetic diagnosis of pain sensitivity, replacing the need for testing the 15 variants 

(Lotsch et al., 2007). Later, the influence of the reduced-function haplotype in cancer pain 

therapy was reported, with a longer interval between cancer diagnosis and opioid therapy 

initiation in homozygous carriers of the genetic variants (Lötsch et al., 2010). In fact, the 

reduced upregulation haplotype of GCH1 probably led to a reduced expression of BH4, 

delaying the need for opioid therapy and suggesting partial GCH1 blockade or BH4 

inhibition as targets for the management of cancer pain (Lötsch et al., 2010). 
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Major polymorphisms for catecholaminergic and serotoninergic systems are resumed in 

Table 1: 

Table 1. Major polymorphisms in catecholaminergic and serotoninergic systems that can affect 

opioids requirements, pain transmission and perception. 

Gene 
Polymorphism or 

Haplotype 
Pain Phenotype Reference 

Metabolism 
COMT Val(108/158)Met 

(rs4680) 

Pain sensitivity 

Morphine requirements 

Alteration of µ-opioid 

system in sustained pain 

Influences in sensory and 

affective ratings 

(Zubieta et al., 2003; Rakvåg et 

al., 2005; Reyes-Gibby et al., 

2007; Rakvag et al., 2008; 

Jensen et al., 2009; Mobascher 

et al., 2010; Vossen et al., 

2010; Kolesnikov et al., 2011) 

 Haplotype: rs6269, 

rs4633 and rs4818, 

rs4680 

 

Pain sensitivity 

Morphine requirements 

(Diatchenko et al., 2005; 

Rakvag et al., 2008) 

MAOA rs3788862, 

rs2283724, 

rs1800659, rs979605, 

rs2064070 

 

Pain intensity (Kim et al., 2006) 

MAOB rs1799836 

 (A/G polymorphism in 

intron 13) 

Pain intensity (Sery et al., 2006) 

Transporters    

NAT rs40434 Analgesic onset time (Kim et al., 2006) 

 

SERT rs2066713 Analgesic onset time (Kim et al., 2006) 

 5-HTTLPR Pain syndromes 

Thermal and pressure pain 

sensitivity 

(Gunne, 1963; Buskila et al., 

2007; Park and Moon, 2010; 

Schurks et al., 2010; Lindstedt 

et al., 2011) 

 rs57098334 

(STin2 VNTR) 

Protective phenotype in 

migraine patients 

 

(Schurks et al., 2010) 

DAT1 VNTR polymorphism Headache 

Thermal pain sensitivity 

(Cevoli et al., 2006; Treister et 

al., 2011) 
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Table 1. Major polymorphisms in catecholaminergic and serotoninergic systems that can affect 

opioids requirements, pain transmission and perception (cont.). 

Gene 
Polymorphism or 

Haplotype 
Pain Phenotype Reference 

Receptors 
DRD4 48-bp VNTR Clinical pain in fibromyalgia 

and migraine patients 

(Dan et al., 2004; Cevoli et al., 

2006) 

Biosynthesis 
GCH1 Hapolotype: 

rs8007267, 

rs3783641, 

rs10483639 

Neuropathic pain 

Pain sensitivity 

Interval between cancer 

diagnosis and opioid 

therapy 

(Tegeder et al., 2006; Lotsch et 

al., 2007; Lötsch et al., 2010) 

bp, base pair; COMT, catechol-O-methyltransferase; DAT, dopamine transporter; DRD4,dopamine receptor 4; 

GCH1, guanosine triphosphate cyclohydrolase; 5-HTTLPR, 5-hydroxytriptamine linked polymorphic region; 

MAO, monoamine oxidase; SERT, serotonin transporter; VNTR, variable–number tandem repeat. 

 

1.4.1.2  Other genes affecting pain transmission and perception 

 
1.4.1.2.1 Transient receptor potential channels 

TRP channels are involved in the nociception system, as already mentioned. TRPA1 is 

activated by noxius cold temperature and the SNP rs1198795 (G/T) was associated with 

different cold-withdrawn time (Kim et al., 2006). TRPV, another subfamily, is associated 

with warm and noxius heat sensations and genetic variation in TRPV1 may also influence 

the response to noxius temperature stimuli. The SNP rs8065080 (Ile585Val) have an 

amino acid alteration and were related to longer pain-response time to cold stimuli in 

healthy female (Kim et al., 2004). 

 

1.4.1.2.2 Ion channels 

Voltage-gated ion channels as NaV and potassium (KV) are key regulators of membrane 

potential in excitable tissues as sensory neurons, with opposite actions (Catterall et al., 

2005). Among the NaV subtypes already identified, NaV1.7 has an essential role in 

nociception transmission (Nassar et al., 2004) and the R1150W SNP, a G/A substitution, 
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was correlated with altered pain perception (Reimann et al., 2010). Concerning KV 

channels, potassium voltage-gated channel subfamily S member 1 (KCNS1) gene 

encodes the α-subunit of KV9.1 subtype and was identified as a putative pain gene 

(Costigan et al., 2010). The SNP I489V in KCNS1 has been studied in humans, with the 

valine allele being associated with higher pain intensity, and the SNP was proposed as a 

prognostic indicator for chronic pain risk (Costigan et al., 2010), but additional studies are 

required.  

P2X7 receptor, encoded by the highly polymorphic P2RX7 gene, belongs to the ionotropic 

ATP-gated receptor family and seems to be associated to chronic pain (Chessell et al., 

2005; Sorge et al., 2012). Some SNP were already studied in mice and humans, 

influencing pain behavior and suggesting new targets of pain treatment individualization 

(Sorge et al., 2012). 

 

1.4.1.2.3 Fatty acid amide hydrolase 

Fatty acid amide hydrolase (FAAH) degrades the fatty acid amide family of endogenous 

signaling lipids including the endogenous cannabinoid anandamide, which has been 

implicated in the suppression of pain. Animal studies revealed that mice without the FAAH 

gene had prolonged pain-response latencies to temperature stimuli (Lichtman et al., 

2004). The SNP rs324420 (C385A; Pro129Thr) leads to an amino acid alteration, reducing 

cellular expression of the enzyme in human lymphocytes, which could result in different 

pain sensitivity (Chiang et al., 2004). However, it was not associated with thermal-pain 

response (Kim et al., 2006). Men carrying the variant alleles rs932816 A, rs4141964 C 

and rs2295633 A had increased cold pain intensity and carriers of the rs4141964 C allele 

had shorter cold withdrawal time than non-carriers (Kim et al., 2006). These results could 

be due to an increased enzyme activity and subsequent accelerated endocannabinoid 

degradation (Lotsch and Geisslinger, 2011). 

 

1.4.1.2.4 Melanocortin-1 receptor 

Melanocortin-1 receptor (MCR1) is encoded by the gene MCR1 and is especially known 

for its role in hair and skin pigmentation, with MCR1 variants associated with red hair and 

fair skin. However, in the last decade, some studies claimed a possible association with 

pain, but opposite studies associated inactivating variants to higher tolerance to electrical 
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stimulus (Mogil et al., 2005) and lower tolerance to thermal pain stimulus (Liem et al., 

2005). Opioid analgesia has also been associated with MC1R variants, with women with 

two non-functional alleles related with stronger analgesic effect from pentazocine (Mogil et 

al., 2003). However, analgesic effects mediated by M6G did not produce sex-specific 

analgesia and all individuals with non-functional alleles variants (R151C, R160W, and 

D294H) displayed reduced sensitivity to noxious stimuli and increased analgesic response 

to M6G (Mogil et al., 2005). 

Table 2 resumes polymorphisms that can influence pain transmission, besides 

catecholaminergic and serotoninergic systems. 

Table 2. Other polymorphisms that can influence pain transmission and perception. 

Gene 
Polymorphism or 

Haplotype 
Pain Phenotype Reference 

TRPA1 rs1198795 (G/T)  Thermal pain sensitivity (Kim et al., 2006) 

 

TRPV1 rs8065080 (Ile585Val) Thermal pain sensitivity (Kim et al., 2004) 

 

NaV1.7 rs6746030 (R1150W) Pain perception (Reimann et al., 2010) 

 

KCNS1 rs734784 (I489V) Pain intensity (Costigan et al., 2010) 

 

P2RX7 rs7958311 (G853A) Pain intensity (Sorge et al., 2012) 

 

FAAH rs932816, rs4141964, 

rs2295633 

 

Thermal pain sensitivity (Kim et al., 2006) 

MCR1 rs1805007 (R151C), 

rs1805008 (R160W), 

rs1805009 (D294H) 

Thermal and noxius pain 

sensitivity 

Response to M6G 

Opioids analgesic effect 

(Mogil et al., 2005)  

(Liem et al., 2005) 

(Mogil et al., 2003) 

(Mogil et al., 2005). 

FAAH, Fatty acid amide hydrolase; KCNS1, K+ voltage-gated channel subfamily S member 1; M6G, morphine-

6-glucuronide; MCR1, Melanocortin-1 receptor; NaV1.7, Voltage-gated sodium channel; TRP, Transient 

receptor potential channels. 
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1.4.2  Inflammation 

In the last years,  proinflammatory cytokines as IL 1, 2, 6, 8, 15, 18, interferon γ (IFN-γ) 

and TNF-α appear to have a central role in pain and hyperalgesia and have already 

demonstrated to interfere in the nociceptive transmission, neuropathic pain and 

analgesics efficacy (Hutchinson et al., 2008; Kawasaki et al., 2008; Shi et al., 2010; 

Albulescu et al., 2013). Cancer and its treatments also induce a release of 

proinflammatory cytokines that might contribute to the feeling of pain (Oh et al., 2001) and 

polymorphisms in genes encoding cytokines might interfere in pain perception and 

morphine response. Main polymorphisms in cytokine genes are resumed in Table 3: 

Table 3. Major polymorphisms in cytokines genes related to pain phenotypes. 

Gene Polymorphism or 
Haplotype 

Pain Phenotype Reference 

IL1A rs 1800587  

[C(-889)T] 

Pain intensity 

 

(Solovieva et al., 2004) 

IL1B rs1143634 (C3954T) Pain intensity and duration 

 

(Solovieva et al., 2004) 

IL1RN G1812A Pain occurrence, intensity, 

duration and limitations of daily 

activities 

(Solovieva et al., 2004) 

 86-bp VNTR Postoperative morphine 

requirements 

 

(Bessler et al., 2006) 

IL6 rs1800795 [G(-174)C] Opioid requirements in lung 

cancer patients 

(Reyes-Gibby et al., 2008) 

 rs1800797 [A(-596)G];  

rs1800796 [G(-572)C]; 

rs1800795; 

rs13306435 (T15A) 

(GGGA) 

 

Pain duration in sciatica patients (Karppinen et al., 2008) 

IL8 rs4073 [T(-251)A] Pain intensity in lung and 

adenocarcinoma of the 

pancreas patients 

 

(Reyes-Gibby et al., 2007; 

Reyes-Gibby et al., 2009) 

TNFA rs1800629 G(-308)A Pain intensity in lung cancer 

patients 

(Reyes-Gibby et al., 2008) 

bp, base pair; IL, interleukin; TNF-α, tumor necrosis factor α; VNTR, variable number repeat. 
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IL-1 has been implicated in pain sensitivity (Watkins and Maier, 2002; Gabay et al., 2011) 

and its activity is determined by IL-1α (IL1A gene), IL-1β (IL1B gene), and an 

endogenous competitive inhibitor, IL-1 receptor antagonist (IL-1Ra, IL1RN gene). IL-1β is 

capable of inducing hyperalgesia and allodynia (Falchi et al., 2001), as well as 

decreasing the effect of morphine (Shavit et al., 2005; Mika et al., 2008). IL1A, IL1B and 

IL1RN are mapped to a closely linked area and polymorphisms C(-889)T in IL1A, C3954T 

and C(-511)T in IL1B and an 86-bp VNTR in IL1RN seem to influence IL-1 production (di 

Giovine et al., 1992; Tountas et al., 1999; Hulkkonen et al., 2000; Lacruz-Guzman et al., 

2013). Concerning pain, the simultaneous carriage of IL1A -889T and IL1RN 1812A 

alleles was associated with pain intensity and IL1B C3954T and IL1RN G1812A with 

multiple pain phenotypes, in patients with low back pain (Solovieva et al., 2004). The 86-

bp VNTR was related with higher morphine requirements in postoperative female patients 

(Bessler et al., 2006). 

IL-6 is also implicated in the pathophysiology of pain, with knockout mice demonstrating a 

reduced response and higher tolerance to the analgesic effect of morphine (Bianchi et al., 

1999). The G(-174)C polymorphism is one of the most extensively studied and has been 

related with lower levels of plasma IL-6 in healthy subjects (Fishman et al., 1998) and 

higher opioids requirements in lung cancer patients (Reyes-Gibby et al., 2008). An 

haplotype based in four SNP [A(-596)G, G(-572)C, G(-174)C, T15A) was constructed and 

carriers of GGGA were related with the number of days with pain in sciatica patients 

(Karppinen et al., 2008). 

Another proinflammatory cytokine involved in pain is IL-8, whose up-regulation after 

tissue injury was associated with post-surgery pain intensity (Wang et al., 2009).  

Concerning IL8 SNP, T(-251)A, a common polymorphism in the promoter region, was 

correlated with cytokine levels (Hull et al., 2000) and severe pain in patients with lung 

cancer (Reyes-Gibby et al., 2007) and adenocarcinoma of the pancreas (Reyes-Gibby et 

al., 2009). 

TNF-α is one of the first cytokines formed in inflammatory processes, simultaneously with 

IL-1β, and has been related with hyperalgesia and allodynia in neuropathic pain models 

(Reeve et al., 2000). Also, administration of etanercept or infliximab that neutralize TNF-

α, resulted in decreased mechanical hyperalgesia (Segond von Banchet et al., 2009). A 

widely studied SNP is the G(-308)A, which was already associated with increased TNF-α 

expression (Wilson et al., 1997) and also to pain intensity in lung cancer patients (Reyes-

Gibby et al., 2008). 
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1.4.3  Genetic variants in morphine pharmacodynamics 

1.4.3.1 Opioid receptors  

Along with SNP in important molecules in pain transmission, there are some important 

candidate genes that can be considered to influence morphine response and the 

analgesic effect by affecting its pharmacokinetics or pharmacodynamics (Figure 15).  

 

 

 

 

 

 

 

 

 
Figure 15. Possible candidate genes for genetic variation in morphine pharmacokinetics and 

pharmacodynamics. ABCB1, ATP-binding cassette B1; MRP, multidrug resistance-associated 

proteins; OATP, organic anion-transporting polypeptides; UGT, UDP-Glucuronosyltransferase. 

 

The most studied SNP is the µ-opioid receptor gene (OPRM1). As already mentioned, 

morphine exert its analgesic effect by binding to opioid receptors, and the connection to µ-

opioid receptor seems to be especially important and responsible for the major analgesic 

and adverse effects. A widely studied and frequent polymorphism in Caucasians (10 – 30 

%) is the SNP A118G, with the substitution of an adenosine by a guanine at position 118, 

leading to the loss of the N-glycosylation site (Klepstad et al., 2005; Vuilleumier et al., 

2012). Despite the still existence doubts about the real consequences and mechanisms, 

this SNP became of major interest due to the pharmacological and physiological 

alterations that seems to promote. It was already suggested that the SNP affects the 

binding characteristics (Bond et al., 1998; Kroslak et al., 2007) or mRNA expression levels 
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(Zhang et al., 2005), but the results were not always consistent (Beyer et al., 2004; Oertel 

et al., 2009). Recently, a study with humanized mouse model has shown that in 118GG 

sensory neurons morphine presented a lower efficacy and potency (Mahmoud et al., 

2011). Accordingly, human clinical studies suggest that individuals homozygous for the 

wild-type A allele seem to require less morphine to achieve pain control, including cancer 

pain patients (Klepstad et al., 2004; Reyes-Gibby et al., 2007; Sia et al., 2008; Tan et al., 

2009). However, controversy results have also been described and the real importance of 

this isolated SNP is still an issue (Klepstad et al., 2011).  

Besides A118G, several other SNP of OPRM1 are described and a limited number [G(-

172)T, IVS2+31G>A, IVS2+691G>C, C5433T, C32459T, A50665G, G51325C and 

T80547C) was already studied in cancer patients on morphine (Klepstad et al., 2004; 

Ross et al., 2005), but no significant associations were found. Additionally, the SNP 

S268P in OPRM1 leads to an amino acid change, resulting in altered receptor 

desensitization and signaling, and in vitro decreased morphine potency and efficacy (Koch 

et al., 2000). 

Polymorphisms in δ- and κ-opioid receptor genes have also been described, but were 

especially studied and related to addition behaviors (Zhang et al., 2008).  

 

1.4.3.2 Molecules interfering in opioid signaling pathways 

 
1.4.3.2.1 G-protein-activated inwardly rectifying potassium 

G-protein-activated inwardly rectifying potassium (GIRK) channels are activated by the 

release of β/γ subunits of Gi/o protein, playing a critical role in opioid signaling after their 

binding to the receptors. Four subtypes were already identified in mammals (Wickman et 

al., 1997) and Girk2 (KCNJ6) and Girk3 (KCNJ9) genes appear to be associated with pain 

and morphine effect, as knockout mice revealed hyperalgesia and reduced analgesic 

efficacy of morphine (Marker et al., 2004). Later, the SNPs G(-1250)A and A1032G in 

KCNJ6 gene were analyzed in patients who underwent major open abdominal surgery 

and genotype AA of A1032G SNP and haplotype -1250G/1032A were correlated with 

increased postoperative analgesic requirements. Additionally it was suggested that the 

result for the AA carriers of the A1032G SNP was due to a lower KCNJ6 gene expression 

levels and consequent insufficient analgesic effects (Nishizawa et al., 2009). In another 

study, besides higher opioids requirements for analgesic effect, homozygous individuals 
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for allele A of SNP A1032G were also related with increased opioid requirements in opiate 

substitution therapy (Lotsch et al., 2010). 

 

1.4.3.2.2 β-arrestin 

β-arrestin2, coded by the gene ARRB2, is an intracellular protein that inhibits active 

receptors and is a negative regulator of opioid receptor signaling (Raehal and Bohn, 

2005). Studies in β-arrestin2 knockout mice have shown an enhanced morphine analgesia 

(Bohn et al., 1999) and SNPs (T8622C, A1082G, A8864G, A11143G) in the ARRB2 gene 

seem to be associated with differences between morphine responders and morphine non-

responders, especially T8622C (Ross et al., 2005). 

 

1.4.3.2.3 Signal transducer and activator of transcription 6 

Signal transducer and activator of transcription 6 (Stat6) is a transcription factor that has 

the ability to alter µ-opioid receptor gene expression. The gene encoding Stat6 is highly 

polymorphic and seems that the SNPs C(-1714)T and C9065T might affect the response 

to morphine (Ross et al., 2005). 

 

1.4.4  Genetic variants in morphine pharmacokinetics 

 
1.4.4.1 Morphine metabolism 

Morphine is essentially metabolized by UGT2B7 to the toxic and hyperalgesic M3G and 

the analgesic M6G, as already mentioned (Figure 11) (Christrup, 1997; Holthe et al., 

2002). Due to the different pharmacological activities, variability in metabolites formation 

may influence morphine efficacy and pain relief. The variability of metabolites formation 

has been described, but the correlation with genetic factors was not yet established 

(Klepstad et al., 2005; Innocenti et al., 2008). 

One of the most studied SNP in UGT2B7 gene is the C802T, also known as His268Tyr, 

which is linked with T801A and can cause an enzyme with either histidine (His) or tyrosine 

(Tyr) in the amino acid 268. A homozygous individual for T801C802 produces an enzyme 
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with His268 (UGT2B7*1) and an individual A801T802 produces a Tyr268 (UGT2B7*2) 

(Bhasker et al., 2000; Holthe et al., 2002). Several studies have focused in the SNP 

C802T of UGT2B7 and its influence in morphine and other compounds glucuronidation 

and contradictory results have been described (Holthe et al., 2002; Hirota et al., 2003; 

Sawyer et al., 2003; Saeki et al., 2004; Ross et al., 2005; Levesque et al., 2007; Parmar 

et al., 2011). In addition, a recent study associated UGT2B7*2 genotype to the frequency 

of nausea (Fujita et al., 2010).  

Another well described SNP in UGT2B7 is G(-840)A, located in the promoter region, 

which is linked to five other variants: -1248G, -1241C, -1054C, -268G, and -102C (Duguay 

et al., 2004). The carriers of allele G in the SNP G(-840)A was recently associated with 

reduced glucuronidation of morphine in patients with sickle cell disease, leading to 

variability in morphine hepatic clearance (Darbari et al., 2008). Additionally, heterozygous 

for a genetic variation in the regulatory part of the UGT2B7 gene, the SNP G(-79)A, has 

been related with lower levels of M6G. Several other polymorphisms are present in 

UGT2B7 gene but their role in morphine metabolism is still unknown (Holthe et al., 2003; 

Nagar and Remmel, 2006). 

Despite UGT2B7, other UGT isoforms seem to be involved in M3G formation, like 

UGT1A1, 1A3, 1A6, 1A8, 1A9, and 1A10 (Stone et al., 2003; Ohno et al., 2008). Genetic 

variability in UGT1A1 and UGT1A8 genes appear to influence morphine metabolism and 

metabolic ratios in cancer pain patients, together with clinical factors, but further studies 

are necessary (Fladvad et al., 2013).  

 

1.4.4.2 Transporters 

Opioids absorption, distribution and excretion can be affected by several factors and 

genetic variability in drug transporters can also affect the metabolites concentration and 

consequently morphine analgesic effect. ATP-binding cassette B1 (ABCB1) codes for P-

glycoprotein (Pgp), which regulates the efflux of morphine from the brain (Cordon-Cardo 

et al., 1989; Xie et al., 1999) and reduced Pgp activity/levels may result in enhanced 

analgesia after systemic administration of morphine (King et al., 2001). Polymorphisms in 

the ABCB1 gene frequently alter Pgp transport characteristics or Pgp expression (Gerloff, 

2004). Three of the most frequent and most studied SNPs in ABCB1 are C3435T, C1236T 

and G2677T/A. The C3435T SNP is associated with altered Pgp expression and transport 

function, with homozygous individuals for T allele exhibiting lower mRNA expression 



INTRODUCTION 
 

51 

(Wang et al., 2005). Additionally, this SNP was related with variability in morphine 

analgesic effect in cancer patients (Campa et al., 2007). C1236T was found to be in 

linkage disequilibrium with C3435T and was also related to different opioid doses 

requirements, higher in T allele homozygous  (Kleine-Brueggeney et al., 2010). Moreover, 

cancer pain patients homozygous for 1236T or with TT/TT diplotype at 2677 and 3435 

SNPs were correlated with reduced fatigue (Fujita et al., 2010). 

Also, multidrug resistance-associated proteins (MRP, ABCC) and organic anion-

transporting polypeptides (OATP) are involved in transmembrane movements of a variety 

of substrates, including opioids, especially MRP2, OATP1A2 and OATP1B3 (van de 

Wetering et al., 2007; Kadiev et al., 2008). Genetic variation in genes encoding these 

transporters is described and a study by Lee and collaborators related SNP in OATP1A2 

gene and a reduced uptake capacity of opioids (Lee et al., 2005). However, the role of 

polymorphisms in these transporters in pain is not yet clarified. 

The most important polymorphisms related to of morphine are resumed in Table 4: 
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Table 4. Major polymorphisms affecting morphine pharmacodynamics and pharmacokinetics. 

Gene 
Polymorphism or 

Haplotype 
Pain Phenotype Reference 

Receptor 
OPRM1 rs1799971 (A118G) Morphine efficacy, 

potency and requirements 

(Klepstad et al., 2004; Reyes-

Gibby et al., 2007; Sia et al., 

2008; Tan et al., 2009; 

Mahmoud et al., 2011) 

 

 S268P Morphine efficacy and 

potency (in vitro) 

(Koch et al., 2000) 

Signaling 
Girk2 rs2836016 [G(-1250)A], 

rs2070995 (A1032G) 

 

Opioids requirements (Nishizawa et al., 2009; 

Lotsch et al., 2010) 

ARRB2 rs1045280 (T8622C), 

rs3786047 (A1082G), 

rs2271167 (A8864G), 

rs2036657 (A11143G) 

Morphine responders vs. 

morphine non-responders 

 

(Ross et al., 2005) 

Stat6 C(-1714)T and C9065T Response to morphine (Ross et al., 2005) 

Metabolism 
UGT2B7 hCV32449742 [C802T 

(His268Tyr) + T801A] 

Controversy results in 

morphine metabolism 

Morphine-related 

symptoms 

(Holthe et al., 2002; Hirota et 

al., 2003; Sawyer et al., 2003; 

Fujita et al., 2010) 

 G(-840)A Morphine metabolism (Darbari et al., 2008) 

 rs 7668282 [G(-79)A] M6G concentration (Holthe et al., 2003; Nagar 

and Remmel, 2006) 

 

UGT1A1, 

UGT1A8 

Haplotypes 

UGT1A1/UGT1A8 

Morphine metabolism and 

metabolic ratios 

(Fladvad et al., 2013) 

 

Transporters 
ABCB1 rs1045642 (C3435T), 

rs1128503 (C1236T), 

rs2032582 (G2677T/A) 

Morphine-related 

symptoms  (analgesic and 

adverse effects) 

(Campa et al., 2007; Fujita et 

al., 2010; Kleine-Brueggeney 

et al., 2010) 

ABCB1, ATP-binding cassette B1; ARRB2, β-arrestin2 gene; Girk2, G-protein-activated inwardly rectifying K+ 

2; OPRM1, µ-opioid receptor gene; Stat6, Signal Transducer and Activator of Transcription 6; UGT, UDP 

Glucuronosyltransferase. 
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Numerous genes were already analyzed in several target-molecules, as mentioned, but 

many other polymorphic candidate genes involved in pain mechanisms are waiting to be 

tested. However, human genetic studies are often inconsistent, even with usual and 

widely tested SNPs. Large clinical studies with multiple haplotypes, correctly designed 

and executed are necessary but remain a challenge until today.  Meanwhile, additional 

information can be also obtained by genome-wide association studies and epigenetics, 

and hopefully we will be able to pave the way towards an individualized pain therapy.  
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The overall aim of the present thesis was to search for predictive biomarkers in morphine-

treated patients that may help to introduce a tailored treatment for cancer-related pain.  

Clinical practice of pharmacologic pain therapy faces daily a large inter-individual 

variability of the desired and unwanted effects of administered analgesics. Thus, in most 

cases it is unpredictable to know which patients are likely to develop an appropriate 

response. Genetic factors might affect variations of morphine sensitivity, pharmacokinetics 

and pharmacodynamics. Adequate studies on the relationship between gene 

polymorphisms and response to morphine will contribute to a better understanding of the 

inter-variability in response to morphine treatment and enable personalized pain treatment 

by predicting morphine sensitivity and requirement for each patient, which can be useful 

for clinical application.  

The strategy pursued to achieve the main objective proposed comprised the following 

steps: 

a) To define a pharmacogenomic profile of morphine-treated cancer patients in a clinical 

setting of Oncological Palliative Care, and relate it with pain response and morphine 

sensitivity. 

b) To develop and validate a sensitive and specific high-performance liquid 

chromatography (HPLC) assay for the quantification of morphine and glucuronides in 

several antemortem and postmortem matrices, namely brain, kidneys, liver, urine, plasma 

and whole blood. 

c) To define the pharmacogenomic profile using the detection of genomic variations in 

genes associated with morphine metabolism, drug transporters, opioid receptors and 

perception and processing of pain and correlate with clinical assessment and analytical 

morphine and metabolite concentrations, to understand its functional relevance. 

d) To develop an animal model for the study of pharmacokinetics of morphine and pain 

assessment, in guinea pigs. 

e) To understand the relevance of mechanisms involved in morphine pharmacokinetics in 

analgesia, through the study of the influence of morphine metabolism induction and 

inhibition and pain assessment in an animal model. 
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Abstract 
 

Morphine is one of the most effective agents for the control of significant pain, primarily 

metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). While M6G is a 

potent opioid agonist, M3G has no opioid action and seems to have a role in the side-effects 

usually described. In this study, a reversed-phase high-performance liquid chromatographic 

method with diode-array and electrochemical detection was developed for the simultaneous 

determination of morphine, M3G and M6G in antemortem and postmortem samples (plasma, whole 

blood, urine, liver, kidney and brain). Morphine, glucuronides and internal standard were extracted 

by double solid-phase extraction and the separation was carried out with a Waters Spherisorb® 

ODS2 reversed-phase column and potassium phosphate buffer:acetonitrile containing sodium 

dodecyl sulfate as the mobile phase. The method proved to be specific with good linearity for all 

analytes in a calibration range from 1-600 ng/mL. Limits of detection in the studied matrices ranged 

from 0.4-4.5 ng/mL for morphine, 2.7-6.1 ng/mL for M3G and 0.8-4.4 ng/mL for M6G. Also, the 

method proved to be accurate with adequate precision and recovery. The proposed method can be 

successfully applied to quantify morphine and its metabolites in several biological samples, 

covering the major routes of distribution, metabolism and elimination of morphine. 

 

Keywords: Morphine, morphine-3-glucuronide, morphine-6-glucuronide, metabolism, HPLC-DAD-

electrochemical 

 

 
Introduction 
 
Morphine, an alkaloid present in the poppy 

plant, is one of the most effective agents for 

the short- and long-term control of significant 

pain. Accordingly to World Health 

Organization guidelines, morphine is the 

mainstay of pharmacological treatment for 

moderate-to-severe acute and chronic cancer-

related pain (WHO, 1996; Ross et al., 2005). 

However, despite its widespread clinical use, 

this opioid displays wide variations in its 

pharmacological efficacy and tolerability, 

presenting some side-effects that can 

compromise the patient safety / compliance 

and its analgesic effectiveness. 

Morphine is extensively metabolized in the 

human liver especially by UDP-

Glucuronosyltransferase 2B7 (UGT2B7) 

producing two important metabolites, M6G 

(10-15 %) and M3G (45-55 %), by 

glucuronidation of the 6-OH alcoholic group 

and the 3-OH phenolic group, respectively 

(Figure 1) (Carrupt et al., 1991).  

Other UGT isoforms seem to be involved in 

M3G formation, like UGT1A3, 1A6, 1A8, 1A9, 

and 1A10 (Stone et al., 2003). M6G is a 

potent opioid receptor agonist with higher 

analgesic activity as compared to morphine 

(Carrupt et al., 1991; Osborne et al., 1992). 

M3G has no opioid action and it seems to 

have a role in the side-effects usually 

described, namely hyperalgesia / allodynia, 

neurotoxicity and an antagonistic effect, 

decreasing morphine analgesia (Carrupt et 

al., 1991; Christrup, 1997; Holthe et al., 2002). 



Study I: Morphine quantification in antemortem and postmortem samples 

87 

O
NCH3

HO

HO

O
NCH3

O

HO

O
HO

HO

HOOC

OH

O
NCH3

HO

O
O

HO
HO

HOOC

OH

Morphine

M3G

M6G

UGT2B7

UGT2B7

UGT1A3
UGT1A6

UGT1A8
UGT1A9

UGT1A10

 

 
 
 

 
 
 

 
 

 
 
 
 

 
 

 
 

 
 
 
 

 

Figure 1. Morphine metabolism in M3G and M6G. 
M3G, morphine-3-glucuronide; M6G, morphine-6-
glucuronide; UGT, UDP-Glucuronosyltransferase. 

 

 

A variability of metabolites formation has been 

described in humans (Holthe et al., 2002; 

Sawyer et al., 2003; Klepstad et al., 2005) and 

the different roles played by each compound 

may also account for different pain intensities 

and morphine requirements (Klepstad et al., 

2000). Therefore, the quantification of 

morphine and its glucuronide metabolites and 

calculation of metabolic ratios have become of 

increasingly interest for a better 

understanding of morphine efficacy and side-

effects and also for the interpretation of toxic 

deaths involving heroin or morphine (Staub et 

al., 1990; Bosch et al., 2007). 

Several analytical methodologies have been 

described for the quantification of morphine 

alone or in combination with its metabolites, in 

a variety of biological matrices (Samuelsson 

et al., 1993; Smith et al., 1999; Edwards and 

Smith, 2005; Kudo et al., 2006; Musshoff et 

al., 2006; Bosch et al., 2007; Santos et al., 

2008). Since the direct quantitation of M3G 

and M6G has proved to be unsuccessful by 

gas chromatography accopled with mass 

spectrometry (GC-MS) (Bosch et al., 2007), 

analysing only free and total morphine after 

hydrolysis (Kudo et al., 2006), the majority of 

the quantification methods are based on liquid 

chromatography (LC) accopled with ultraviolet 

(UV)/diode array (DAD) detection (Bourquin et 

al., 1997), electrochemical (Meng et al., 2000; 

Ary and Rona, 2001), fluorescence (Huwyler 

et al., 1995; Beike et al., 1999; Meng et al., 

2000) or mass spectrometry (MS) (Edwards 

and Smith, 2005; Musshoff et al., 2006). As 

MS is still more sensitive and specific than 

UV, DAD, electrochemical or fluorescence, 

LC-MS methods have emerged as the most 

suitable for quantification of morphine 

metabolites, despite their high costs, which 

decreases its availability and utilization. Thus, 

robust methods are required for the 

quantification of morphine, M3G and M6G, 

with lower costs than LC-MS but with similar 

sensitivity and specificity. The coupling of 

detectors can be a strategy for achieving this 

objective. In this study, we use both DAD and 

electrochemical detectors, accordingly with 

other reports (Ary and Rona, 2001; Fujita et 

al., 2010). Electrochemical detection has been 

known as a highly sensitive technique, 

capable of detecting in the fentomol range, 

with a good linear response for several 

analytes (Takata and Muto, 1973; Acworth, 

2011). This sensitivity is a major advantage, 

especially for morphine quantification, usually 

in lower concentration in chronic pain patients.  

Furthermore, it is also of major importance the 

development of methods that can quantify 

simultaneously the three compounds in 

several ante and postmortem matrices making 

the analysis faster and more efficient in both 

circumstances. Besides its interest, few 
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methodologies were described for 

simultaneous quantification of morphine and 

its glucuronides metabolites in postmortem 

fluids and organs. In this work we develop and 

validate an analytical method to quantify 

morphine, M3G and M6G by HPLC-DAD-

electrochemical detection, in six different 

biological matrices, namely plasma, urine, 

whole blood, liver, brain and kidney, covering 

ante and postmortem analysis.  

 
 
Methods 
 
Reagents and Standards 

Morphine hydrochloride, M3G hydrochloride 

and M6G hydrochloride were purchased from 

Lipomed (Arlesheim, Switzerland). Phenacetin 

(internal standard, IS), triethylamine, sodium 

dodecyl sulfate and hydrochloric acid were 

obtained from Sigma-Aldrich (St. Louis, MO). 

Methanol, acetonitrile, sodium dihydrogen 

phosphate and phosphoric acid were acquired 

from Merck (Darmstad, Germany). OASIS® 

weak cation exchange (WCX) cartridges, 60 

mg, 3 mL were obtained from WATERS 

(Milford, MA). Bond Elut® C18 cartridges, 100 

mg, 1mL were purchased from Agilent. All 

chemicals and reagents were of analytical 

grade or from the highest available grade. 

 

Biological specimens 
Antemortem and postmortem (autopsies 

performed 6h after death) negative morphine 

samples (whole blood, plasma, urine, liver, 

brain and kidney) were collected from rodents 

(Cavia porcellus), according to previously 

proposed procedures (Dinis-Oliveira et al., 

2010). This species is considered the ideal 

model for studies involving morphine and its 

metabolites, since the pattern of metabolism 

is the most similar to humans, with an 

average M6G:M3G ratio of 1:4 in Cavia 

porcellus and 1:7 in humans (Kuo et al., 

1991). 

Organ samples were homogenized in ice-cold 

deionized (1:4 w/v, Ultra-Turrax®). The 

homogenate was kept on ice and centrifuged 

at 13000g, 4ºC, 10 min. Aliquots of the 

resulting supernatants were stored (− 80°C) 

for posterior quantification. 

Whole blood (1.5 mL) was diluted with 

phosphate buffer 0.01 M (1:2 v/v), submitted 

to two freeze-thawing cycles and centrifuged 

at 3000 rpm, 4ºC, 10 min. Plasma and urine 

samples were directly subjected to extraction 

by solid phase extraction (SPE).  

 

 

Preparation of standard stock and fortified 
solutions 
Stock solutions of morphine, M3G and M6G 

were prepared in deionized water at the 

concentration of 1 mg/mL. Quality control 

samples were subsequently prepared by 

serial dilutions of the stock solution in each 

matrix to yield the working solutions (1, 10, 

20, 50, 100, 250, 600 ng/mL). A stock solution 

of the IS phenacetin was prepared in 

methanol (10 mg/mL). All the solutions were 

prepared daily and stored at -80°C. 

 

Solid phase extraction 

Morphine, M6G, and M3G were extracted by 

two-step solid-phase extraction (SPE) (Figure 

2) according with Meng and collaborators 

(Meng et al., 2000), with slight modifications. 

Briefly, for the extraction, 30 µL of the internal 

standard phenacetin at 10 mg/mL were added 

to 1.5 mL of plasma and 2 mL of urine/organ 
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1 – Extraction procedure

Bond-Elut® C18 cartridges preconditioned with 2 mL of 
methanol

+
2 mL phosphate buffer 0.01 M

+
1.5 mL of plasma/whole blood or 2 mL of urine/organ 

homogenized
+

Wash with 2 mL of phosphate buffer 0.01 M
+

Elution: 1 mL of methanol with 0.5% of triethylamine
↓

Dry under nitrogen flow and reconstitute with 1 mL of 
80% of acetonitrile in water

2 – Purification procedure

Oasis® WCX cartridges preconditioned with 
4 mL of acetonitrile

+
All the sample extracted in step 1

+
Wash with 4 mL of acetonitrile

+
Elution: 1.5 mL of 80% methanol with HCl 

0.05M in water
↓

Dry in a Labconco® evaporator and 
reconstitute with 50 µL of mobile phase

homogenate or whole blood supernatant. The 

sample was then transferred to C18 

cartridges, which have been previously 

conditioned with 2 mL of methanol and 2 mL 

of phosphate buffer (10 mM, pH = 9.5). The 

cartridge was then washed with 2 mL of 

phosphate buffer (10 mM, pH = 9.5) and 

eluted with methanol with 0.5 % of 

triethylamine. The eluate was dried with a 

nitrogen stream and posteriorly reconstituted 

with 1 mL of 80 % acetonitrile and transferred 

into a weak cation exchange (WCX, Oasis®) 

cartridge, previously conditioned with 4 mL of 

acetonitrile. After washing the cartridge with 4 

mL of acetonitrile, the compounds were eluted 

with 1.5 mL of 80 % methanol containing 0.05 

M HCl. The eluate was dried in a Labconco® 

evaporator. Samples were reconstituted with 

50 µL of mobile phase and 40 µL were 

injected in the HPLC system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sample preparation procedure. (1) Extraction of morphine, its metabolites and the internal standard 

(phenacetin) with SPE. (2) Purification of the sample extracted with a second SPE. 

 

 
Chromatographic conditions 

The HPLC system consisted in a HPLC 

Waters® 2690 system and analytes were 

separated at ambient temperature  in a 

Waters Spherisorb® ODS2 reversed-phase 

column (250 mm x 4.6 mm x 5 µm). The 

mobile phase consisted of 0.01 M potassium 

phosphate buffer:acetonitrile (85:15 v/v) 

containing 0.04 mM sodium dodecyl sulfate 

and the flow rate was 1 mL/min. The eluent 

was filtered through 0.45 µm membrane and 

degassed with nitrogen stream. Quantification 

of M3G was performed in a DAD Waters® 

996, at 210 nm. Quantification of M6G and 

morphine were performed at Coulochem® II 

5200A, with 0.200 V for cell 1, 0.350 V for cell 

2 and 0.400 V for guard cell. The analysis of 

the chromatogram was performed using a 

Waters Millennium32 software.  

 

Method validation 
The validation of the method was performed 

according to the European Medicines Agency 

(EMA) (EMA, 2011), and other studies 

(Gouveia et al., 2012; Costa et al., 2013; 

Pinho et al., 2013). 

 
 



CHAPTER III   

90 

Selectivity 

In order to detect any possible interferences, 

six blank samples (no analyte or IS added) of 

each matrix were extracted as previously 

described and analyzed by HPLC-DAD-

electrochemical to detect possible 

interferences with morphine, M3G or M6G. 

Chromatographic selectivity was evaluated by 

the presence or absence of co-eluting peaks 

at the retention times of the analytes at the 

lower limit of quantification (LLOQ). The 

absence of interfering components is 

accepted when the response is less than 20% 

of the LLOQ for the analyte and 5% for the IS. 

 

Carry-over 

Carry-over was assessed by injecting blank 

samples after a high-concentration standard 

at the upper limit of quantification. Carry-over 

should not be greater than 20 % of the lower 

limit of quantification and 5 % for the IS. 

 

Linearity 

The method linearity was evaluated by the 

regression curves (ratio of analyte peak area 

and IS peak area vs analyte concentration) 

and expressed by the squared correlation 

coefficient (r2). Three independent calibration 

curves (y = mx + b) were obtained using 

different concentrations of morphine and 

metabolites (1, 10, 20, 50, 100, 250, 600 

ng/mL) and the mean slopes were obtained in 

order to calculate the concentration of 

unknown concentrations. In addition, a blank 

sample (processed matrix sample without 

analyte and without IS) and a zero sample 

(processed matrix with IS) were also analyzed 

but not used in the calculation of the 

calibration curve parameters. Linearity was 

accepted if r2 ≥ 0.98. 

Limits of detection and lower limit of 

quantification 

Limit of detection (LOD) and LLOQ were 

determined from the calibration curves data, 

as follows:  LOD = 3σ∕m and LLOQ = 10σ∕m, 

where σ is the standard deviation of the 

response and m is the slope of the calibration 

curve. For LOD, a retention time within ± 0.2 

minutes of the average retention time of 

standards was also considered. For LLOQ, 

imprecision ≤ 20 % was accepted. 

 

Precision and accuracy 

Intra-day precision was determined by 

preparing and analyzing on the same day 3 

replicates of 3 different concentrations (low, 

medium and high: 20, 250, 600 ng/mL) of the 

3 analytes. The inter-day precision was 

evaluated by repeating the intra-day precision 

study in 3 different days for all the 

compounds. Precision was determined by 

calculating the mean, standard deviation and 

coefficient of variation (CV%) of the replicated 

analysis. A CV% value of ≤ 15 % was 

considered satisfactory. 

Accuracy was assessed by spiking blank 

matrix with the same 3 different 

concentrations and through the calculation of 

the percent deviation between the calculated 

value and the nominal value [Accuracy (%) = 

(experimental concentration ∕ theoretical 

concentration) × 100]. A deviation percentage 

of ≤15 % was considered satisfactory. 

 

Recovery 

The recovery was evaluated by analyzing two 

sample groups of the same concentrations 

(20, 250 and 600 ng/mL) in triplicate, but 

differently processed. In the first group, 

morphine, its metabolites and IS were 
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analyzed following the extraction procedure 

mentioned above. In the second group, all the 

four compounds were added to the elution 

solvent before drying. The recovery was 

evaluated by the comparison of the mean 

response of the two groups. The response of 

the unextracted group represents 100 % 

recovery. Analytical recovery between 80 and 

120 % was considered acceptable. 

 

 

Results and Discussion 
 
Method Validation 
Solid-phase extraction, chromatographic 

separation and detection 

The applied double SPE procedure allowed 

the pre-concentration of the analytes but also 

the achievement of a cleaner extract, allowing 

us to develop a more sensitive and specific 

methodology. 

To obtain the best peak resolution and 

separation of all the compounds, several 

parameters were tested, such as different 

mobile phase percentages, flow rate of the 

mobile phase and injection volume. An 

injection volume of 40 µL and the total time of 

analysis was 40 minutes were considered 

optimal. The retention times for M3G, M6G, 

morphine and IS, were respectively 9.8, 15.1, 

25.3 and 35.2 minutes (Figure 3). 

 

Selectivity 

Several blank samples of plasma, whole 

blood, urine, liver, kidney and brain were 

analyzed to evaluate chromatographic 

interferences. No interference peaks were 

detected, either in the retention times of 

morphine and metabolites or in the IS 

retention time, confirming the selectivity of the 

method. Therefore, all standard solutions 

were prepared in the different matrix to mimic 

real conditions.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Chromatogram of morphine and 

metabolites in plasma, at 600 ng/mL. (A) DAD 

detector. (B) Coulometric detector. IS, Internal 

Standard; M3G, morphine-3-glucuronide; M6G, 

morphine-6-glucuronide. 

 

Carry-over 

Each injection of high-concentration 

calibration standard was followed by a blank 

sample injection (mobile phase). The obtained 

carry-over results were ˂20 % of the LLOQ 

and ˂5 % for the IS, which are within the 

proposed acceptance limits (EMA, 2011). 

 

Linearity 

The weighted least squares linear regression 

equations and coefficients of correlation were 

calculated using three independent curves. 

Results are presented as mean ± standard 

deviation and y and x represent the 
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relationship between the peak area ratio and 

the corresponding calibration concentrations, 

respectively. The method was linear at the 

concentration range of 1-600 ng/mL, with 

coefficients higher than 0.99 over the 

concentration range, confirming the linearity of 

the method for each compound (Table 1-3).

 

 
Table 1 - Linear regression analysis of morphine standard solutions in the different biological matrices (1-600 

ng/mL) performed on three different days. 

Sample n =3  y = mx + b r2 LOD 
(ng/mL) 

LLOQ 
(ng/mL) 

Plasma 1 y = 0.0559x + 0.0075 0.9969 0.41 1.24 

 2 y = 0.0567x + 0.0295 0.9977 
  

 3 y = 0.0563x + 0.008 0.9976   
Whole blood 1 y = 0.0112x + 0.0076 0.9958 2.0 6.2 

 2 y = 0.0111x + 0.0158 0.9969   

 3 y = 0.0114x + 0.0019 0.9966   

Urine 1 y = 0.0654x + 0.1127 0.9978 0.5 1.5 

 2 y = 0.0664x + 0.0068 0.9962   

 3 y = 0.0663x + 0.0158 0.9970   
Kidney 1 y = 0.0347x + 0.4287 0.9950 0.7 2 

 2 y = 0.0345x + 0.3247 0.9980   

 3 y = 0.0337x + 0.469 0.9908   
Liver 1 y = 0.0676x + 0.0853 0.9999 4.5 4.4 

 2 y = 0.0675x + 0.0022 0.9986   

 3 y = 0.0673x + 0.0045 0.9986   
Brain 1 y = 0.0714x - 0.2003 0.9960 0.4 1.4 

 
2 y = 0.0722x - 0.1202 0.9928   

  3 y = 0.0758x - 0.2322 0.9952     
LLOQ, lower limit of quantification; LOD, limit of detection 
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Table 2 - Linear regression analysis of M3G standard solutions in the different biological matrices (1-600 

ng/mL) performed on three different days. 

Sample n =3  y = mx + b r2 LOD 
(ng/mL) 

LLOQ 
(ng/mL) 

Plasma 1 y = 0.0101x + 0.0442 0.9984 2.8 8.5 

 2 y = 0.0107x – 0.0213 0.9900   

 3 y = 0.0103x + 0.0206 0.9915   
Whole blood 1 y = 0.005x + 0.0048 0.9974 5.3 16.1 

 2 y = 0.0049x + 0.01 0.9979   

 3 y = 0.005x + 0.0061 0.9975   
Urine 1 y = 0.0022x + 0.0073 0.9985 6.0 18.2 

 2 y = 0.0021x + 0.0006 0.9994   

 3 y = 0.0021x + 0.0043 0.9993   
Kidney 1 y = 0.0038x + 0.0485 0.9998 6.1 18.4 

 2 y = 0.0036x + 0.0873 0.9935   

 3 y = 0.004x + 0.0217 0.9968   
Liver 1 y = 0.0123x + 0.0393 0.9980 2.7 8.0 

 2 y = 0.0124x + 0.0363 0.9983   

 3 y = 0.0125x + 0.0835 0.9995   
Brain 1 y = 0.0036x + 0.0151 0.9991 4.7 14.1 

 2 y = 0.0035x + 0.0119 0.9975   
  3 y = 0.0035x + 0.0191 0.9994     

LLOQ, lower limit of quantification; LOD, limit of detection; M3G, morphine-3-glucuronide
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Table 3 - Linear regression analysis of M6G standard solutions in the different biological matrices (1-600 

ng/mL) performed on three different days. 

Sample n =3  y = mx + b r2 LOD 
(ng/mL) 

LLOQ 
(ng/mL) 

Plasma 1  y = 0.0214x + 0,034 0.9980 1.0 3.2 

 2 y = 0.0211x + 0,0925 0.9989   

 3 y = 0.0219x + 0,0487 0.9986   
Whole blood 1 y = 0.0053x + 0.0103 0.9973 4.4 13.2 

 2 y = 0.0053x + 0.0211 0.9970   

 3 y = 0.0053x + 0.0066 0.9980   
Urine 1 y = 0.0088x + 0.0148 0.9977 2.4 7.4 

 2 y = 0.0088x + 0.0199 0.9971   

 3 y = 0.0088x + 0.0183 0.9968   
Kidney 1 y = 0.019x + 0.1247 0.9991 1.0 3.2 

 2 y = 0.0189x + 0.1204 0.9987   

 3 y = 0.0184x + 0.1105 0.9958   
Liver 1 y = 0.0138x + 0.0427 0.9994 1.6 5.0 

 2 y = 0.0136x + 0.0416 0.9996   

 3 y = 0.0138x + 0.0479 0.9991   
Brain 1 y = 0.0132x - 0.1961 0.9982 0.8 2.3 

 2 y = 0.0127x - 0.1741 0.9984   
  3 y = 0.0133x - 0.1962 0.9980     

LLOQ, lower limit of quantification; LOD, limit of detection; M6G, morphine-6-glucuronide 

 

 

Limit of detection and lower limit of 

quantification 

LOD and LLOQ results are shown in Table 1-

3. The LOD and LLOQ obtained for the three 

compounds in the several matrices are in 

agreement with the ones described for these 

compounds in the literature in real samples.  

 

Precision and accuracy 

Precision and accuracy results are presented 

in Table 4. All the CV% values calculated for 

intra and inter-day precision studies of all 

three compounds did not exceed 15 %, so the 

method was considered precise for morphine, 

M3G and M6G. Regarding accuracy, values in 

the range of 91.7-114.3 % for plasma, 88.9–

111.2 % for whole blood, 89.8–114.8 % for 

urine, 97.3–113.2 % for kidney, 94.7–117.7 % 

for liver and 96.1–114.4 % for brain were 

determined, which are within the proposed 

acceptance limits for this parameter (100 ± 15 

%). Associated with lower CV% (0.2-11.0 %), 

these results suggest that the extraction was 

equally efficient for the three different 

concentrations evaluated (Table 4). 

 

Recovery 

Values for the recovery of all the three 

compounds in the different matrix were in the 

range of 79.9-94.9 % for the three chosen 

concentrations. 
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Conclusions 
 

A selective, precise, accurate and 

reproducible analytical method to quantify 

morphine and metabolites in ante mortem and 

post mortem samples was developed. The 

described method has good sensitivity with 

LOD comparable to LC/MS methodologies (in 

the ng/mL and ng/g range)  (Bosch et al., 

2007), but with a much less expensive 

equipment. Morevover, it was possible to 

validate the assay for different ante mortem 

and post mortem matrices, namely plasma, 

urine, whole blood, liver, brain and kidney. 

The proposed method can be successfully 

applied in the quantification of morphine and 

metabolites, covering the routes of 

distribution, main metabolism and elimination 

of morphine. 
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Abstract  
 

Genetic variability may result in significant differences in the response to opioids. Polymorphisms in 

genes encoding µ-opioid receptor (OPRM1), ATP-binding-cassette-sub-family-B-member-1 

transporter (ABCB1) and catechol-O-methyltransferase enzyme (COMT) may influence 

pharmacokinetics and pharmacodynamics of opioids, as well as the nociception mechanism. Our 

purpose was to investigate the repercussions of the mentioned polymorphisms on pain-related 

parameters in cancer patients. DNA samples from cancer patients were genotyped for the 

polymorphisms in OPRM1 (rs1799971), COMT (rs4680), and ABCB1 (rs1128503,rs1045642) with 

real-time PCR. Doses were re-expressed as oral morphine equivalents. We examined the relation 

between these polymorphisms and opioid dose, pain intensity, performance status, adverse 

effects, age, sex, metastases and breakthrough pain. Total opioid consumption was related to the 

polymorphism Val(108/158)Met in COMT gene. Carriers of Met allele were significantly associated 

with a requirement of higher opioids doses (p = 0.008, Fischer’s exact test), and the same result 

was obtained with logistic regression analysis, adjusted to age and sex (p = 0.013; p = 0.003 using 

Bootstrap analysis). Our results suggest that genetic variation at COMT enzyme may be correlated 

with the dose requirement and/or response to opioids in cancer patients. 

  

Keywords: Catechol-O-Methyl Transferase (COMT), Val(108/158)Met polymorphism, cancer-

related pain, pain management, opioid analgesics. 

 
 
Introduction 

 

The World Health Organization treatment 

guidelines include opioid analgesics as 

mainstay for moderate to severe acute and 

chronic cancer-related pain (WHO, 1996; 

Ross et al., 2005). However, the perception of 

pain varies greatly among people, which 

implies wide variations in opioids dosage, 

pharmacological efficacy and tolerability 

(Aubrun et al., 2003; Ross et al., 2005; Shi et 

al., 2010). An important cause of this 

interindividual variability may be of 

pharmacogenetic nature, due to 

polymorphisms in opioid receptors, 

transporters and metabolic enzymes (Lötsch 

and Geisslinger, 2006; Kasai et al., 2008; 

Kleine-Brueggeney et al., 2010; Muralidharan 

and Smith, 2011). Also, perception and 

processing of pain information involves a 

significant number of modulators/suppressors 

that are also plausible candidates to interfere 

with opioids action (Lötsch and Geisslinger, 

2006; Shi et al., 2010).  

Among the various genes involved in pain, the 

µ-opioid receptor (OPRM1) gene, encoded by 

the genetic locus OPRM1, has been subject 

of investigation for some single nucleotide 

polymorphisms (SNP) that seemed to 

influence opioids binding and activity. The 

SNP A118G (rs1799971) is relatively frequent 

in Caucasians (10-14 %) (Klepstad et al., 

2005) and causes an amino acid alteration 

from asparagine to aspartatic acid in exon 1, 

(Klepstad et al., 2005) which seems to 

influence opioids action. In spite of an 
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increased affinity and potency shown in vitro 

for homozygous G (Bond et al., 1998), clinical 

studies suggest that individuals homozygous 

for the wild-type A allele seem to require a 

lower  morphine dose to achieve pain control 

(Klepstad et al., 2004; Reyes-Gibby et al., 

2007; Sia et al., 2008; Tan et al., 2009). 

However, controversial results have also been 

described (Beyer et al., 2004; Klepstad et al., 

2011).  

Opioids absorption, distribution and excretion 

can be affected by several factors, including 

their transport across biological membranes. 

Among several transport systems, efflux-

carriers of the ATP-binding cassette (ABC) 

family represent a major factor in the 

disposition of drugs and xenobiotics (Gerloff, 

2004). P-glycoprotein (Pgp), the gene product 

of  multidrug resistance protein 1 (MDR1, 

ABCB1), is probably the most studied one 

(Gerloff, 2004). Since opioids are Pgp 

substrates (Xie et al., 1999), polymorphisms 

in the ABCB1 gene might influence the 

pharmacological and toxicological effects of 

these drugs by altering Pgp transport 

characteristics expression (Gerloff, 2004). 

Two of the most frequent SNP in ABCB1 are 

synonymous polymorphisms, C3435T 

(rs1128503) and C1236T (rs1045642). The 

C3435T SNP is associated with altered Pgp 

expression and transport function and 

homozygous individuals for T allele exhibit a 

lower mRNA expression, due to an alteration 

in its stability (Wang et al., 2005). It has been 

reported that C1236T is in linkage 

disequilibrium with C3435T and that is also 

probably related to different opioid doses 

requirements, with higher opioid doses 

needed in T allele homozygous individuals 

(Kleine-Brueggeney et al., 2010). 

The influence of the polymorphic catechol-O-

methyl-transferase (COMT) gene in pain has 

also been subject of investigation (Zubieta et 

al., 2003; Diatchenko et al., 2006; Nackley et 

al., 2007; Mobascher et al., 2010; Ahlers et 

al., 2012; Martínez-Jauand et al., 2013). This 

enzyme is a key modulator of dopaminergic 

and noradrenergic neurotransmission and it is 

postulated to have a role in pain. The 

Val(108/158)Met polymorphism is a 

nonsynonymous SNP, resulting in an amino 

acid substitution, valine (Val) by methionine 

(Met) (Zubieta et al., 2003). This amino acid 

interchange is associated with altered 

thermostability of the enzyme that leads to a 

three-to-four fold reduction in its activity 

(Zubieta et al., 2003; Zhang et al., 2009; Shi 

et al., 2010). Individuals with the Met/Met 

genotype have the lowest activity of COMT, 

heterozygous are intermediate and those with 

Val/Val genotype have the highest activity of 

the enzyme (Zubieta et al., 2003). The 

different COMT activities resulting from this 

SNP may have a serious impact in several 

physiological functions, including pain 

perception (Emin Erdal et al., 2001; 

Diatchenko et al., 2006; DeYoung et al., 

2010). In the last decade, several studies 

have shown an association between the 

Val(108/158)Met SNP and pain sensitivity 

(Zubieta et al., 2003; Jensen et al., 2009; 

Mobascher et al., 2010), relating individuals 

homozygous for Met allele with increased pain 

sensitivity and lower µ-opioid system 

activation during sustained pain (Zubieta et 

al., 2003; Jensen et al., 2009; Mobascher et 

al., 2010; Vossen et al., 2010; Ahlers et al., 

2012; Martínez-Jauand et al., 2013). All the 

effects were opposite in the Val/Val 

individuals. Regarding a possible association 
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of the SNP with opioid dose, carriers of 

Met/Met genotype were unexpectedly 

associated with lower morphine requirements 

than patients homozygous for the Val allele 

(Rakvåg et al., 2005; Reyes-Gibby et al., 

2007; Rakvag et al., 2008). Nevertheless, 

contradictory information has been reported in 

recent years (Klepstad et al., 2011; 

Kolesnikov et al., 2011) and the association of 

the Met allele with lower consumption of 

morphine has not always been verified. An 

association between the Val/Val genotype and 

lower opioids requirements or pain intensity 

would be more consistent with the results 

previously described of a lower µ-opioid 

system activation and increased sensitivity to 

pain in patients with Met allele. These 

controversy results prompted us to an 

investigation in this field. 

Therefore, the aim of our exploratory study 

was to evaluate the role of OPRM1, ABCB1 

and COMT genotypes on several pain-related 

parameters on pain-treated patients, namely 

the opioid dose requirements, pain intensity, 

performance status, adverse effects, age, sex, 

bone or CNS metastases and breakthrough 

pain. 

 

 

Methods 
 
Ethics 
All data were obtained with the informed 

consent of the participants prior to their 

inclusion in the study, according to Helsinki 

Declaration principles. The study was also 

approved by the Hospital (Portuguese 

Institute of Oncology - Porto) Ethical Internal 

Commission. 

 

Subjects 
We conducted a hospital-based study 

analyzing 30 Caucasian individuals admitted 

in the Portuguese Institute of Oncology, Porto, 

Portugal between 2010 and 2011. All the 

patients were in-patients from the Palliative 

Care Unit-Network or followed for pain 

consultation and were recruited according to 

the criteria: expected survival above 1 month, 

with at least 1 week of oral or subcutaneous 

opioid treatment for cancer-related pain, must 

read and write, not in confusional state and 

without cardiovascular, renal or hepatic 

dysfunction. Data concerning time to adverse 

effects associated with opioid therapy (fatigue, 

pruritus, anorexia, perspiration, nausea and 

vomiting, diarrhea, xerostomia, cough, 

dyspnea, insomnia, drowsiness, nervousness, 

sadness and confusion), time to switch for 

another pain-relief regimen due to inadequate 

analgesia or intolerable side effects, overall 

survival time, cancer diagnosis, age, sex and 

ethnicity were obtained from clinical files. 

Daily opioid doses were collected from the 

patients’ ward charts and were re-expressed 

as oral morphine equivalents (OMEQ) 

(Cepeda et al., 2010).  

 

Assessments 

Pain was measured daily, through evaluation 

of average and maximal pain during the last 

24 h using a numeric 11-point scale, where 0 

represents “no pain” and 10 means “worst 

pain possible” (Klepstad et al., 2002). 

Patient’s internal state and side effects 

associated with opioid therapy were assessed 

daily through a 5-point scale: “no”, “mild”, 

“moderate”, “intense”, and “maximum” 

(Aaronson et al., 1993; Laugsand et al., 

2011). Patients’ functional status was 
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evaluated by the Eastern Cooperative 

Oncology Group (ECOG) performance status 

scale (Oken et al., 1982). 

 

Blood samples and pharmacogenetic 
analysis 

Blood samples were collected by 

venipuncture after achieving a stable 

painkilling opioid dose. Genomic DNA was 

extracted from peripheral blood samples by 

using QIAMP DNA Blood Mini kit (QIAGEN®), 

according to the manufacturer’s protocol.  

All genotypes were determined by direct 

allelic discrimination in the ABI Prism Real 

Time PCR System 7300 and TaqmanTM Allelic 

Discrimination. Genotyping of OPRM1 

(rs1799971) (Sia et al., 2008), COMT (rs4680) 

(Mobascher et al., 2010) and ABCB1 

(rs1045642, rs1128503) (Levran et al., 2008) 

were performed as previously 

described. Probe sequences for VIC/FAM are 

described in the Supplementary Table 1. 

Allelic discrimination PCR reactions were 

carried out in 6 µL volumes using 2.5 µL of 

TaqMan® Universal PCR Master Mix (2×), 

0.125 µL of 40× assay mix, 2.375 µL of sterile 

H2O and 1 µL of genomic DNA. Amplification 

of DNA was carried out on an ABI 7300 using 

the following conditions: 95ºC for 10 min, 

followed by 45 cycles of 95ºC for 15s and 

60ºC for 1 min. Data capture and analysis 

were performed through the ABI 7300 Real 

Time PCR System (Applied Biosystems) and 

the Sequence Detection Systems software 

(Applied Biosystems version 1.2.3). Quality 

control included the use of non-template 

controls in all runs and blind replicate 

genotype assessment on 10 % of the 

samples. We observed concordance among 

duplicates.  

Statistical analysis 
Data analysis was performed using the 

computer software Statistical Package for 

Social Sciences (SPSS) for Windows (version 

18.0) and GraphPad Prism® for Windows 

(version 5.0). For the analysis, daily OMEQ 

was divided in four groups, according to 

Edmonton classification (Bruera et al., 1995; 

Bercovitch and Adunsky, 2004): Low (< 60 

mg/24 h), Moderate (60-299 mg/24 h), High 

(300-599 mg/24h) and Very High (≥ 600 

mg/24 h). In a second step, analysis was 

performed comparing two groups accordingly 

to the lower limit of OMEQ: < 60 mg/24 h and 

≥ 60 mg/24 h. Differences in proportions were 

evaluated by univariate comparisons of 

genotype frequencies using the X2 test, 

Fisher’s exact test and bootstrapping analysis, 

and a p<0.05 was considered statistically 

significant. The results of the second analysis 

were also analyzed by logistic regression, 

adjusted to age, gender, and stress and mood 

state. We evaluated the statistical power of 

the sample using EPI6 software.  

 

 

Results  
 
Patients 

Thirty patients receiving chronic opioids for 

cancer-related pain were admitted in this 

study (Table 1). No statistically significant 

association (p > 0.05) was found between the 

patient’s characteristics, pain assessment, 

adverse effects and other symptoms and the 

genotype groups of OPRM1, ABCB1 and 

COMT SNP (data not shown).  
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Table 1: Patients’ data. 

Variable 
Patients 
(n = 30) Variable 

Patients 
(n = 30) 

Sex  Pain category  
Male 15 Visceral pain 3 

Female 15 Nociceptive pain 7 

Age 56.97 ± 12.77 Neuropathic pain 6 

Tumour  Nociceptive + Neuropathic pain 3 

Lung 4 Mixed pain 11 

Urologic 3 Pain Intensity 3.43 ± 2.73 

Breast 6 Maximum Pain 5.04 ± 3.65 

Prostate 3 OMEQ (mg/24 h) 181.41 ±  37.93 

Gastrointestinal 1 Breakthrough pain  

Female 
reproductive organs 

3 Yes 19 

Others 10 No 11 

Metastasis  Rescue opioid (breakthrough pain)  

No 11 No 13 

Liver 6 Morphine 15 

Bone 14 Tramadol 1 

CNS 3 Methadone + Morphine 1 

Lung 7 OMEQ (mg/24 h) for breakthrough pain 48.60 ±  27.48 

Other 5   

ECOG 2.28 ± 1.34   

All numbers are absolute numbers or mean ± SD. No statistically significant differences were observed 

between groups. Categorical data were analyzed using the chi-square test. CNS, central nervous system; 

ECOG, Eastern Cooperative Oncology Group; OMEQ, Oral Morphine Equivalents. 

 

 
Genotype distribution  
Regarding OPRM1 A118G SNP, genotype 

frequencies were: 70 % AA, 23.3 % A/G and 

only 6.7 % GG. For ABCB1 C3435T genotype 

frequencies were: 23.3 % CC, 63.3 % C/T and 

13.3% TT. MDR1 C1236T SNP evidenced a 

distribution of: 26.7 % CC, 56.7 % C/T and 

16.7% TT. Concerning COMT 

Val(108/158)Met SNP genotype frequencies 

were: 30.3 % Val/Val, 56.7 % Val/Met and 

only 10 % Met/Met. In a second examination, 

the Val/Met group was analyzed together with 

the Met/Met group resulting that the Met allele 

was present in 20 patients (66.7 %). Allele 

frequencies and the results of the X2 test 

showed that there was no significant 

departure from Hardy-Weinberg equilibrium. 

 

Daily oral morphine equivalents 
requirements and genotypes 
Considering daily OMEQ requirements, there 

were no significant differences (p > 0.05) 

when comparing the different genotypes of 

OPRM1 and ABCB1 SNP. However, there 

differences were found when comparing the 

different COMT genotypes with opioid 

requirements. It was possible to observe that 

patients with de Val/Val genotype required the 

lower dose (95.08 ± 27.76 mg/24 h) and that 

the presence of the Met allele was related 
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with an increase in morphine dose 

requirements (195.68 ± 45.94 mg/24 h for 

Val/Met genotype and 388.33 ± 258.78 mg/24 

h for Met/Met genotype). Due to the low 

frequency of Met/Met genotype, all the 

analyses were performed with the Val/Val 

group (n = 10) vs. presence of Met allele (n = 

20). Significant differences (p = 0.008, 

Fisher’s exact test for two OMEQ groups) 

were found between the two groups of 

genotypes and morphine dose requirements 

(Table 2 and Figure 1), 95 % patients with Met 

allele in COMT Val(108/158)Met 

polymorphism requiring significantly higher 

daily doses of opioids when compared with 

the Val/Val genotype. 

The same result was obtained for the two 

OMEQ classes by logistic regression, 

adjusted to age and gender (p = 0.013, Fig. 1; 

p = 0.003 using Bootstrap analysis). 

Furthermore, when the adjustment for logistic 

regression was according to stress and mood 

state, results were also significant (p = 0.016; 

p = 0.019 using Bootstrap analysis). The 

evaluation of the power of the sample 

indicated that for an 80 % power/95 % 

confidence will be required 36 cases and for 

80 % power/90 % confidence, at least 30 

cases are required. 

Figure 1. Two OMEQ classes vs COMT 

Val(108/158)Met SNP. Fisher’s exact test (p < 

0.05). Significant differences (p = 0.008) were 

found between the two groups of genotypes and 

morphine dose requirements, which was also 

confirmed by logistic regression, adjusted to age 

and gender (p = 0.013; p = 0.003 using Bootstrap 

analysis) and to stress and mood state (p = 0.016; 

p = 0.019 using Bootstrap analysis). OMEQ, Oral 

Morphine Equivalents. 

 

 

Table 2: Patients’ classification through 4 OMEQ classes for Val(108/158)Met genotype groups. 

OMEQ (mg/24h) 
Patients
(n = 30) 

Val/Val 
(n = 10) 

Met Allele 
(n = 20) 

p value 
(Fisher’s exact test)

Low: < 60 mg/24h 6 5 1 

0.008* 
Moderate: 60-299 mg/24h 18 4 14 

High: 300-599 mg/24h 4 1 3 

Very High: ≥ 600mg/24h 2 0 2 

All numbers are absolute numbers. Fisher’s exact test (p < 0.05): *Model 1 – Low vs. Moderate/High/Very 

High, p = 0.008; Model 2 – Low/Moderate vs. High/Very High, p = 0.326; Model 3 – Low/Moderate/High vs. 

Very High, p = 0.436. 
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Discussion 
 

In the present study we analyzed the 

association of four frequent SNP involved in 

different phases of pharmacokinetics and 

pharmacodynamics of opioids on several 

pain-related parameters of pain-treated 

patients. While the SNP related to OPRM1 

and ABCB1 evidenced no statistically 

significant association with patient’s 

characteristics, opioids requirements, adverse 

effects or pain assessment, the present study 

suggests an association of COMT 

Val(108/158)Met polymorphism with OMEQ 

requirements of patients suffering from 

cancer-related pain. Individuals with Met allele 

were related first with four groups of OMEQ, 

revealing a significant association. Due to the 

low number of cases in some of the groups, 

the variable OMEQ was re-grouped and the 

statistical analysis performed through the 

Fisher’s exact test, enlightening a statistically 

significant result (p = 0.008). Formal 

corrections for multiple comparisons were not 

performed, since this exploratory study 

focuses on only few scientifically sensible 

comparisons. Fisher’s exact test and 

Bootstrap re-sampling strategy were used to 

analyze the results and statistical significance 

of major findings was obtained, suggesting 

that the presence of the Met allele implies 

higher doses of opioids to eliminate pain in a 

small population of patients with cancer-

related pain. 

COMT is a key enzyme for norepinephrine, 

epinephrine and dopamine metabolism. 

Several studies have shown that 

Val(108/158)Met polymorphism affects the 

thermostability of the enzyme (Lotta et al., 

1995; Chen et al., 2004; Zhang et al., 2009) 

and that different levels of COMT activity may 

influence the functions regulated by these 

monoamines, including pain and µ-opioid 

system. Zubieta and collaborators (Zubieta et 

al., 2003) observed, through positron 

emission tomography studies, that 

homozygous Met allele individuals are 

characterized by diminished regional µ-opioid 

system responses to pain, a decreased 

release of endogenous opioids and increased 

sensitivity to pain. These results were 

corroborated by recent studies (Jensen et al., 

2009; Mobascher et al., 2010). No correlation 

was found between the initial response to the 

pain stimulus and COMT Val(108/158)Met 

polymorphism (Kim et al., 2004; Diatchenko et 

al., 2006; Jensen et al., 2009). Nevertheless, 

during sustained pain, the inhibitory pain 

system is continuously challenged and the 

differences become relevant (Jensen et al., 

2009; Loggia et al., 2011). Hence, this 

polymorphism may have an enormous 

importance in chronic pain patients, including 

cancer-related pain. 

The influence of COMT Val(108/158)Met 

polymorphism in pain processing may be 

explained by the higher levels of 

extraneuronal catecholamines in brain. Higher 

synaptic cleft levels of dopamine and chronic 

overactivation of dopamine 2 (D2) receptors 

may result in a potential inhibition of morphine 

analgesia, as it was observed in animal 

studies (Kolesnikov et al., 2011). Additionally, 

animal experiments have shown that 

hyperalgesia can be induced by β2-adrenergic 

stimulation (Khasar et al., 1999) and β2/3-

adrenergic antagonists can block pain 

sensitivity induced by COMT inhibition 

(Nackley et al., 2007). Therefore, 

accumulation of norepinephrine and 
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epinephrine may result in overactivation of the 

nociceptive β2/3-adrenergic pathways. In 

accordance, the effect of propranolol on pain 

reduction (Tchivileva et al., 2010) and opioid-

induced hyperalgesia (Chu et al., 2012) was 

already described in humans.  

Controversial studies describe a possible 

relation between COMT Val(108/158)Met 

polymorphism and morphine requirements. A 

potential association between Met/Met 

genotype and lower doses of morphine 

requirements was suggested (Rakvåg et al., 

2005; Reyes-Gibby et al., 2007; Rakvag et al., 

2008). Although not expected, the results 

were explained by the compensatory 

increased of µ-opioid receptor density and 

binding potential in different brain regions, in 

Met/Met carriers (Chen et al., 1993; Zubieta et 

al., 2003). Nevertheless, we observed the 

opposite effect, since carriers of the Met allele 

required higher doses of opioids. Indeed, 

Met/Met individuals have an increased 

expression of µ-opioid receptor at baseline, 

but during sustained pain they have a 

decreased activation of the µ-opioid system 

(Zubieta et al., 2003; Ross et al., 2008). 

Furthermore, in the study of Jensen and 

colleagues (Jensen et al., 2009) no 

differences in the analgesic effect were found, 

after the injection of the opioid. 

The current study suggests a possible 

association between COMT Val(108/158)Met 

polymorphism and the need of higher doses 

of opioids in cancer patients. However, the 

influence of this polymorphism in the efficacy 

of pain modulation or/and the susceptibility to 

opioid-induced hyperalgesia and tolerance is 

still a matter of debate (Jensen et al., 2009). 

Both situations may lead to the increased pain 

sensitivity reported in Met carriers, although 

the mechanisms involved are different. 

Further studies are necessary to answer this 

question. 

Some limitations may be considered in our 

study. The number of individuals involved is 

small, especially for the Met/Met COMT 

genotype and we had to combine 

heterozygous and homozygous Met carriers. 

Also, it would be important to analyze other 

SNP in COMT gene that may influence the 

activity of the enzyme. On the other hand, the 

COMT Val(108/158)Met polymorphism is a 

functional polymorphism with a well-

documented impact on enzyme activity and 

animal and human physiology. In addition, 

alleles have a similar frequency in a 

Caucasian population (Palmatier et al., 1999), 

helping to overcome the small number of 

patients included (Jensen et al., 2009). 

Furthermore, we think it must be considered 

the importance of exploratory studies in 

different populations and, to the best of our 

knowledge, our study is the first to be reported 

in the Iberian population. 

 The potential interactive effect of other 

polymorphisms in genes encoding opioid 

receptors and transporters was also examined 

and seemed to not influence total opioid 

consumption in this population. However, the 

analysis of these four SNP in a larger number 

of individuals may provide more information 

about this association. 

 

 

Conclusions 
 
Pain is a complex trait and the influence of 

genetics in pain sensitivity and efficacy of 

analgesics is an ongoing challenge. Our 

preliminary results suggest that COMT 
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Val(108/158)Met polymorphism may affect 

chronic opioids dose requirements in cancer 

pain patients. It also highlights the importance 

of non-opioids systems in the nociception 

processes.  
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Supplementary Tables 
 

 Supplementary Table 1: Probe sequences for VIC/FAM 
SNP VIC/FAM sequences 

OPRM1 (rs1799971) GGTCAACTTGTCCCACTTAGATGGC[A/G]ACCTGTCCGACCCATGCG

GTCCGAA 

COMT (rs4680) CCAGCGGATGGTGGATTTCGCTGGC[A/G]TGAAGGACAAGGTGTGC

ATGCCTGA 

ABCB1 (rs1045642) TGTTGGCCTCCTTTGCTGCCCTCAC[A/G]ATCTCTTCCTGTGACACCA

CCCGGC 

ABCB1 (rs1128503) GCCCACTCTGCACCTTCAGGTTCAG[A/G]CCCTTCAAGATCTACCAG

GACGAGT 

SNP, Single Nucleotide Polymorphism  
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Dear Editor, 

Morphine is the mainstay of pharmacological 

treatment for moderate-to-severe cancer-

related pain. However, different analgesic 

response is an important problem in palliative 

care (Muralidharan and Smith, 2011). Genetic 

variations seems to represent an important 

cause of this interindividual variability in 

polymorphisms of opioid receptors, 

transporters and metabolizing enzymes, as 

well as in modulators/suppressors involved in 

perception and processing of pain information 

(Muralidharan and Smith, 2011). Therefore, 

genetic study of outlier cases might be an 

excellent opportunity to analyze the influence 

of some single nucleotide polymorphisms 

(SNP) in nociception and morphine 

requirements. 

Therefore, genetic study of outlier cases might 

be an excellent opportunity to analyze the 

influence of some single nucleotide 

polymorphisms (SNP) in nociception and 

morphine requirements. 

Here we present the study of a genetic profile 

of two cases: one patient considered a low 

responder (Patient 1) and one considered 

sensitive to morphine (Patient 2), requiring 

about 40-fold less morphine. The difference in 

morphine requirements prompted us to study 

SNP that include different phases of analgesic 

response: µ-opioid receptor (OPRM1; 

rs1799971), catechol-O-methyltransferase 

(COMT; rs4680), multidrug resistance protein 

1 (ABCB1; rs1128503, rs1045642), organic 

anion-transporting polypeptides 1A2 

(OATP1A2; rs11568563) and UDP-

Glucuronosyltransferase-2B7 (UGT2B7; 

hCV32449742: rs7439366, rs7438284). 

Plasma concentrations of morphine and major 

metabolites (morphine-3-glucuronide (M3G) 

and morphine-6-glucuronide (M6G)) were also 

determined (Meng et al., 2000) and metabolic 

ratios were calculated. 

The first patient, a 23-year-old female 

presenting an osteosarcoma, bone metastasis 

and complains of mixed pain (nociceptive and 

neuropathic pain), was receiving 800 mg/day 

of morphine. Co-administered drugs were 

gabapentin (1700 mg/day) and prednisolone 

(20 mg/day). Despite medication, the pain 

relief was not adequate and the patient 

complained of high pain intensity (average: 6; 

maximum: 9) and breakthrough pain, requiring 

an extra dose of morphine (100 mg/day). No 

remarkable adverse effects were observed 

and there was no presence of co-morbidity or 

renal and hepatic malfunction. The functional 

status was scored 3 by the Eastern 

Cooperative Oncology Group (ECOG) 

performance status scale. 

The second patient, a 63-year-old male 

presenting a prostate cancer, bone metastasis 

and complains of mixed pain, was receiving 

20 mg/day of morphine. Co-administered 
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drugs were diazepam (18 mg/day), 

omeprazole (20 mg/day) and prednisolone (20 

mg/day). Despite higher levels of sadness and 

anxiety (“maximum” vs. “no” and “intense” vs. 

“no”, respectively), the pain relief was 

adequate, with low pain intensity (average: 3; 

maximum: 5) and no breakthrough pain. No 

remarkable adverse effects were observed 

and there was no presence of co-morbidity or 

renal and hepatic malfunction. The functional 

status was scored 3. 

The results are presented in Table 1 and 

Figure 1. 

 

 

 

 
 

 

Figure 1. A. Pain intensity and morphine requirements for the two cases of patients. In spite of a morphine 

dose 40 times higher, Patient 1 presented higher levels of pain intensity. B. Differences in M3G/Morphine and 

M3G/M6G ratios for the two cases. Patient 1 is a homozygous T801C802 (His268; UGT2B7*1), presenting 

M3G/Morphine and M3G/M6G ratios 10 and 2-fold higher, respectively, than Patient 2. 
  

 
Table 1: Genotyping metabolic ratios of morphine and metabolites. 

  Patient 1 Patient 2 

Genotyping 

     OPRM1 A118G GA AA 

   COMT Val(108/158)Met Val/Met Val/Val 

   ABCB1 C3435T CT CT 

   ABCB1 C1236T CT CT 

   UGT2B7 T801A TT AA 

   UGT2B7 C802T CC TT 

   OATP1A2 A516C AA AA 

Metabolic ratios 

     M3G/Morphine 13.33 1.33 

   M6G/Morphine 3.17 0.5 

   M3G/M6G 4.21 2.65 

All numbers are absolute numbers. ABCB1 ATP-binding cassette, sub-family B; COMT, catechol-O-methyl 

transferase; M3G, morphine-3-glucuronide; M6G, morphine-6-glucuronide; Met, Methionine; OATP1A2, 

organic anion-transporting polypeptides 1A2; OPRM1, µ-opioid receptor; UGT2B7, UDP-

Glucuronosyltransferase-2B7; Val, Valine. 
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The current report describes two cases of 

cancer patients in palliative care: one low 

responder and one sensitive to morphine. 

Both patients were diagnosed with mixed 

pain, similar metastasis and all received 

similar treatment. Besides that, there were 

still major differences in daily morphine 

requirements, breakthrough pain and pain 

intensity (Table 1 and Figure 1A). 

SNP in OATP1A2 and ABCB1 evidenced no 

association with morphine requirements, 

adverse effects or pain assessment. 

However, this study provides insights 

regarding a possible influence of SNP in 

OPRM1, UGT2B7 and COMT (Table 1). 

Concerning OPRM1 A118G SNP, AA 

individuals were already related to lower 

requirements of morphine (Sia et al., 2008). 

We observed that Patient 1 was a 

heterozygous, thus likely to require higher 

dose of opioids, compared to AA individuals 

(Patient 2).  

In relation to COMT Val(108/158)Met SNP, 

the presence of Met allele leads to a 

reduction in the activity of the enzyme 

(Zubieta et al., 2003), diminished regional 

activation of µ-opioid, decreased release of 

endogenous opioids and increased pain 

sensitivity over time, even after 

administration of opioids, and especially 

during sustained pain (Jensen et al., 2009; 

Loggia et al., 2011). We observed that the 

patient with higher morphine requirements 

and pain intensity (Patient 1) was a carrier of 

the Met allele, while Patient 2 was a 

homozygous for Val allele, thus showing 

lower pain intensity and consequently 

needing lower morphine doses.  

Morphine is essentially metabolized by 

UGT2B7 to form M3G and M6G, which have 

different pharmacological activities. 

Differences were found for UGT2B7 C802T 

and T801A, with Patient 1 being a 

homozygous T801C802 (His268; UGT2B7*1) 

and Patient 2 a homozygous A801T802 

(Tyr268; UGT2B7*2). This genetic variation 

has been subject of several studies, with 

contradictory results (Holthe et al., 2002; 

Parmar et al., 2011), but recent studies 

indicate a lower glucuronidation capacity of 

the UGT2B7 Tyr268 isoform (Parmar et al., 

2011). There are also some significant 

differences in the metabolic ratios, which 

varied about 10- and 6-fold for M3G and 

M6G-to-morphine ratios respectively and 2-

fold for M3G/M6G ratio (Table 1; Figure 1B). 

Patient 2 (haplotype UGT2B7*2) received the 

lower dose of morphine and had a better pain 

control. Besides a lower M6G-to-morphine 

ratio, this patient also has a lower M3G-to-

morphine and M3G/M6G ratios. M3G seems 

responsible for some adverse reactions and 

to counteract the analgesic effect of 

morphine (Christrup, 1997; Holthe et al., 

2002). Therefore, a M3G-to-morphine ratio 

higher in Patient 1 can also be a significant 

factor to explain the different analgesic effect. 

As drug administration and blood collection 

were made around the same hour, the major 

differences observed can have a genetic 

cause. 

Taking the data altogether, Patient 1 

presents some genetic differences that can 

help to understand the outstanding 

differences in morphine requirements and 

pain intensity. Being a heterozygous for 

OPRM1 and COMT SNP, this patient is more 

likely to have a decreased analgesic effect 

with morphine and increased pain intensity. 

In addition, differences in UGT2B7 may be 
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part of the cause for variability in morphine 

and metabolites concentrations and ratios. 

The different roles played by each compound 

may also account for different pain intensities 

and morphine requirements.  

This report describes the genetic study of 

outlier cases as an opportunity to analyze the 

influence of some SNP in nociception and 

morphine requirements. However, some 

confounding factors cannot be forgotten. The 

baseline pain severity before morphine 

treatment is unknown, as also the response 

to neuropathic specific medicines 

(gabapentin, prednisolone). The different 

pathology and gender can also influence pain 

control. Nevertheless, both patients were in-

patients of Palliative Care Unit with advanced 

metastatic bone disease, which causes 

severe pain. In addition, the potential 

interactive effect of other polymorphisms in 

genes encoding other opioid receptors, 

transporters, enzymes and modulators 

/suppressors of pain perception should be 

tested in the future. Also, the analysis of 

these SNP in a larger number of individuals 

may provide more information about this 

association. 
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Abstract  
 

Proinflammatory cytokines released during inflammation can cause hyperexcitability in pain 

transmission neurons, leading to hyperalgesia and allodynia. Polymorphisms in interleukin 1 (IL-1) 

family of genes (IL1A, IL1B) and in IL-1 receptor antagonist (IL-1Ra, coded by IL1RN) may 

therefore induce alterations in cytokine levels/effects and pain related response. Our purpose was 

to investigate the influence of polymorphisms in IL1A/B/RN on cytokine serum levels and its 

correlation with pain intensity, performance status, adverse effects, metastases and breakthrough 

pain in Caucasian cancer patients. Serum IL-1α/β levels of 74 cancer patients were measured by 

competitive enzyme immunosorbent assay. All patients were also genotyped for the 

polymorphisms in IL1A (rs17561), IL1B (rs1143634) and IL1RN (rs419598) with Real-Time PCR. 

Results were then correlated to the appearance of bone or CNS metastases and several pain-

related parameters. IL-1β rs1143634 homozygous for T allele were associated with lower levels of 

IL1-β (p = 0.032, Mann-Whitney test) and presented a trend for lower levels of pain (p = 0.06, 

Fisher’s exact test). Also, IL1-β levels were related with cancer onset status, since a four-fold 

increase probability of metastatic disease was observed in high IL-1β individuals (OR = 4.074, p = 

0.010, Pearson χ2 test). Among the female patients presenting metastatic disease and carriers of 

the TT genotype we observed a trend to lower levels of IL1-β (p = 0.053, Pearson χ2 test). Our 

results indicate that genetic variation at IL1-β gene may influence serum levels of IL1-β, with 

proportional consequences in cancer-related pain. 

  

Keywords: Interleukin-1, cancer-related pain, metastatic disease, polymorphisms, C3954T 

 

 
Introduction 

 

The primary goal of palliative care remains in 

adding life quality and, if possible, increase 

the patient’s life time. The World Health 

Organization treatment guidelines include 

opioid analgesics as the mainstay for 

moderate to severe acute pain and chronic 

cancer-related pain (WHO, 1996). However, 

the perception of pain varies greatly among 

patients, which implies wide variations in 

opioids dosage, pharmacological efficacy and 

tolerability (Shi et al., 2010; Oliveira et al., 

2013). Therefore, it is increasingly important 

to study the factors that influence cancer-

related pain, which is one of the most 

persistent and incapacitating symptoms of 

cancer. 

In the last years, evidences of a central role of 

cytokines in pain and hyperalgesia have been 

described (Shi et al., 2010). Proinflammatory 

cytokines as interleukins (IL) 1, 2, 6, 8, 15, 18, 

interferon γ (IFN-γ) and tumour necrosis 

factor-α (TNF-α) have already demonstrated 

to interfere in the nociceptive transmission, 

neuropathic pain and analgesics efficacy 

(Hutchinson et al., 2008; Kawasaki et al., 

2008; Albulescu et al., 2013).  

There is a growing body of evidence of the 

role of IL-1 in pain sensitivity (Watkins and 

Maier, 2002; Gabay et al., 2011), especially 

IL-1α (coded by the gene IL1A) and IL-1β 
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(coded by the gene IL1B), which exert their 

actions through IL-1 receptors (IL-1R). The 

activity of an endogenous competitive 

inhibitor, IL-1R antagonist (IL-1Ra, coded by 

IL1RN), also seems to be important. The 

induction of hyperalgesia and allodynia by IL-

1β has been extensively reported (Falchi et 

al., 2001), as well as a decrease in the 

analgesic efficacy of morphine (Shavit et al., 

2005; Mika et al., 2008). Moreover the 

blockade of IL-1 signalling by IL-1Ra was 

shown to diminish allodynia, hyperalgesia and 

the development of neuropathic pain 

symptoms (Mika et al., 2008; Gabay et al., 

2011), as well as to enhance morphine 

analgesia (Shavit et al., 2005). IL-1β is also 

capable of evoking the production of other 

proinflammatory cytokines as IFN-γ, TNF-α 

and IL-6 (Mika et al., 2013), which can also 

contribute to pain sensitivity.  However, the 

role of IL-1α in pain is still a matter of debate 

and this cytokine seems to have an 

antinociception role in pain under 

inflammatory conditions (Mika et al., 2008).  

As single nucleotide polymorphisms (SNP) in 

cytokine genes have been shown to alter their 

expressions or functions (Qian et al., 2010; 

Lacruz-Guzman et al., 2013), and taking into 

account the important role of IL-1α, IL-1β and 

IL-1Ra in pain sensitivity, correlation between 

SNP, serum levels and clinical data can 

produce valuable information for cancer-

related pain treatment. Given the previous 

reports concerning the possible association 

with inflammation, pain and cancer (Zabaleta 

et al., 2006; Yilmaz et al., 2010; Lozano-

Ondoua et al., 2013; Mika et al., 2013; Wu et 

al., 2013), we studied the influence of the 

SNP IL1A G4845T, IL1B C3954T and IL1RN 

T2018C in IL-1α and IL-1β serum levels, and 

its correlation with the appearance of bone or 

CNS metastases and to several pain-related 

parameters, namely, pain intensity including 

breakthrough pain, opioid dose requirements, 

adverse effects associated with opioid 

therapy, performance status, age, and 

gender. 

 

 

Methods 
 
Ethics commitment 

All data were obtained with the informed 

consent of the participants prior to their 

inclusion in the study, according to Helsinki 

Declaration principles. The study was also 

approved by the Hospital (Portuguese 

Institute of Oncology - Porto) Ethical Internal 

Commission. 

 
Subjects 
We conducted a hospital-based study, 

analyzing 74 Caucasian individuals admitted 

in the Portuguese Institute of Oncology, Porto, 

Portugal, between 2010 and 2012. All the 

patients were in-patients from the Palliative 

Care Unit-Network or followed for pain 

consultation and were recruited according to 

the criteria: expected survival above 1 month, 

with at least 1 week of oral or subcutaneous 

opioid treatment for cancer-related pain, must 

read and write, not in confusional state and 

without renal or hepatic dysfunction. Data 

concerning time to adverse effects associated 

with opioid therapy (fatigue, pruritus, anorexia, 

perspiration, nausea and vomiting, diarrhea, 

xerostomia, cough, dyspnea, insomnia, 

drowsiness, nervousness, sadness and 

confusion), time to switch for another pain-

relief regimen due to inadequate analgesia or 
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intolerable side effects, overall survival time, 

cancer diagnosis, age, gender and ethnicity 

were obtained from clinical files. Daily opioid 

doses were collected from the patients’ ward 

charts and were re-expressed as oral 

morphine equivalents (OMEQ) as previously 

described (Cepeda et al., 2010).  

 

Assessments 
Pain was measured daily, through evaluation 

of average and maximal pain during the last 

24 h using a numeric 11-point scale, where 0 

represents “no pain” and 10 means “worst 

pain possible” (Klepstad et al., 2002). 

Patient’s side effects associated with opioid 

therapy were assessed daily through a 5-point 

scale: “no”, “mild”, “moderate”, “intense”, and 

“maximum” (Aaronson et al., 1993). Patients’ 

functional status was evaluated by the 

Eastern Cooperative Oncology Group 

(ECOG) performance status scale (Oken et 

al., 1982). 

 

Blood samples and pharmacogenetic 
analysis 

Blood samples were collected by 

venipuncture to EDTA tubes after stable 

analgesic opioid doses were achieved. 

Genomic DNA was extracted from peripheral 

blood samples by using QIAMP DNA Blood 

Mini kit (QIAGEN®), according to the 

manufacturer’s protocol.  

All genotypes were determined by direct 

allelic discrimination in the ABI Prism Real 

Time PCR System 7300 and TaqmanTM Allelic 

Discrimination. Genotyping of IL1A (rs17561), 

IL1B (rs1143634) and IL1RN (rs419598) were 

performed as previously described (Gordon et 

al., 2008). Probe sequences for VIC/FAM are 

described in Supplementary Table 1. Allelic 

discrimination PCR reactions were carried out 

in 6 µL volumes using 2.5 µL of TaqMan® 

Universal PCR Master Mix (2×), 0.125 µL of 

40× assay mix, 2.375 µL of sterile H2O and 1 

µL of genomic DNA. Amplification of DNA was 

carried out on an ABI 7300 using the following 

conditions: 95ºC for 10 min, followed by 45 

cycles of 95ºC for 15s and 60ºC for 1 min. 

Data capture and analysis were performed 

through the ABI 7300 Real Time PCR System 

(Applied Biosystems) and the Sequence 

Detection Systems software (Applied 

Biosystems version 1.2.3). Quality control 

included the use of non template controls in 

all runs and blind replicate genotype 

assessment on 10 % of the samples. 

Concordance was consistently observed 

among duplicates.  

 

Cytokines quantification 

Serum cytokines levels were quantified using 

commercially available enzyme 

immunosorbent assay kits (Biolegend® 

Human IL-1α/β ELISA MAX™ Deluxe) in 

accordance with the manufacturer’s 

instructions. 

 

Statistical analysis 
Data analysis was performed using the 

computer software Statistical Package for 

Social Sciences (SPSS) for Windows (version 

18.0) and GraphPad Prism® for Windows 

(version 5.0). Pain evaluation was divided in 

non-severe (0-3) and severe (4-10). Cancer 

diagnosis status was divided into four groups 

according with the frequency: breast, prostate, 

multiple myeloma and others. Furthermore, 

two groups of patients were defined according 

with IL-1β levels: low (IL-1β ˂ 5 pg/mL) and 

high (IL-1β ≥ 5 pg/mL). The patients were also 
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divided according with the presence of 

metastatic disease and gender. Differences in 

proportions were evaluated by univariate 

comparisons of genotype frequencies using 

the Pearson χ2 test, Fisher’s Exact test and 

Mann-Whitney test and a p < 0.05 was 

considered statistically significant. The result 

of the metastatic disease in high IL-1β 

individuals was also confirmed by logistic 

regression, adjusted to age, gender, stress 

and mood state.  

 

 

Results 
 
Patients 

Seventy four patients receiving chronic 

opioids for cancer-related pain were admitted 

in this study (Table 1). No statistically 

significant association was found between the 

patients’ characteristics and the genotype 

groups of IL1A and IL1RA SNP (data not 

shown). The intensities of other symptoms 

and adverse effects associated with morphine 

therapy such as fatigue, pruritus, anorexia, 

perspiration, nausea and vomiting, diarrhea, 

xerostomia, cough, dyspnea, insomnia, 

drowsiness, nervousness, sadness and 

confusion were also similar among all groups 

(data not shown). 

 

Genotype distribution  
IL1RA rs419598 evidenced a distribution of: 

47.8 % TT, 46.4 % TC and 5.8 % CC. 

Regarding IL1A rs17561, genotype 

frequencies were: 63.5 % GG, 33.8 % GA and 

only 2.7 % AA. For IL1B rs1143634, genotype 

frequencies were: 64.9 % CC, 32.4 % CT and 

2.7 % TT. In a second examination, the CT 

group of the IL1B rs1143634 SNP was 

analyzed together with the CC. Allele 

frequencies and the results of the X2 test 

showed no significant departure from Hardy-

Weinberg equilibrium. 
 

IL1B genotype and correlation to cytokine 
levels, pain intensity, metastases and 
cancer diagnosis status 
When comparing the different IL1B genotypes 

with IL-1β serum levels it was possible to 

observe that patients with TT genotype had 

the lower levels (2.12 ± 0.37 pg/mL) and the 

presence of the C allele was related with an 

increase in IL-1β levels (5.76 ± 0.58 pg/mL for 

CT genotype and 5.68 ± 0.47 pg/mL for CC 

genotype). Analysing the TT individuals vs. 

presence of C allele, significant differences 

were found (5.71 ± 0.36 (CC + CT) vs. 2.12 ± 

0.37 pg/mL (TT) p = 0.032, Mann-Whitney 

test; Figure 1). Also, regarding pain intensity, 

we found higher maximum levels of pain in 

the carriers of C allele (5.44 ± 0.35 for C allele 

carriers and 2.00 ± 0.12 for TT genotype), 

with 75.8 % of the C allele carriers presenting 

severe maximum pain (p = 0.06, Fisher’s 

Exact Test; Figure 1).  
 

Figure 1. IL1-β C3954T polymorphism vs. IL1-β 

serum levels and pain intensity. Mann-Whitney test 

(p < 0.05). Significant differences (p = 0.032) were 

found between genotypes and IL1-β levels.
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Table 1: Patients’ data. 

Variable Patients 
(n = 74) Variable Patients 

(n = 30)a 

Gender  Pain category  
Male 28 Visceral pain 3 

Female 46 Nociceptive pain 7 

Age 61.54 ± 12.83 Neuropathic pain 6 

Tumor  Nociceptive + Neuropathic 
pain 

3 

Lung 4 Mixed pain 11 

Urologic 3 OMEQ (mg/24 h) 181.41 ±  37.93 

Breast 32 Breakthrough pain  

Prostate 12 Yes 19 

Multiple Myeloma 8 No 11 

Female reproductive organs 3 Rescue opioid (breakthrough 
pain) 

 

Other 12 No 13 

Metastasis  Morphine 15 

No 19 Tramadol 1 

Liver 6 Methadone + Morphine 1 

Bone 28 OMEQ (mg/24 h) for 
breakthrough pain 

48.60 ±  27.48 

CNS 3   

Lung 7   

Non visceral metastases 
(unknown location) 

15   

Visceral metastases 
(unknown location) 

18   

Pain Intensity 4.30 ± 2.33   

Maximum Pain 5.35 ± 2.81   

Other 5   

ECOG 2.28 ± 1.34   
aVariables accessible only for 30 patients. 

All numbers are absolute numbers or mean ± SD. No statistically significant differences were observed 

between groups. Categorical data were analyzed using the chi-square test. CNS, central nervous system; 

ECOG, Eastern Cooperative Oncology Group; OMEQ, Oral Morphine Equivalents. 

 

Serum IL1-β levels were also correlated with 

cancer diagnosis status and we were able to 

separate our patients into two groups, one 

with lower levels of IL-1β (2.85 ± 0.35 pg/mL) 

and other with higher cytokine levels (6.77 ± 

0.67 pg/mL), the latter including breast, 

prostate and multiple myeloma. In the high IL-

1β group, 83 % of the patients presented 

metastatic disease, in which a four-fold 

increase of the metastatic disease probability 

was observed (p = 0.010, Pearson χ2 test, 

Figure 2). This result was also confirmed by 

logistic regression, adjusted to age, gender, 

stress and mood (p = 0.016). Between the 

metastatic female patients, carriers of the TT 

genotype presented a trend to lower levels of 

IL-1β (6.67 ± 0.52 pg/mL for carriers of the C 

allele, 2.26 ± 0.60 pg/mL for allele T 

homozygous; p = 0.053, Pearson χ2 test; 

Figure 3). No additional statistically significant 
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associations (p ˃ 0.05) were found between 

IL1B rs1143634 SNP and other patient’s 

characteristics, symptoms or adverse effects 

(data not shown). 

 

 

 
 

 

 

 

 

 

 

 

Figure 2. Two classes of IL1-β serum levels vs. 

presence of metastatic disease. Pearson  χ2 test (p 

< 0.05). Significant differences (p = 0.010) were 

found between the two groups with a four-fold 

increase of the metastatic disease probability in 

high IL-1β individuals. 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. IL1-β serum levels vs IL1-β C3954T 

polymorphism among metastatic female patients. 

Carriers of the TT genotype presented a trend to 

lower levels of IL-1β (p = 0.053, Pearson χ2 test). 

Mean ± SEM.  

 

 

 
 

Discussion 
 

The present study analyzed SNP in the major 

elements of the IL-1 family and provides novel 

insights regarding a significant influence of 

IL1B C3954T polymorphism on cytokine 

serum levels, pain intensity, metastases and 

cancer diagnosis status, while the SNP 

related to IL1A and IL1RN have no statistically 

significant association with patient’s 

characteristics, metastases, OMEQ, adverse 

effects or pain sensitivity. 

Expression of IL-1 family is altered in 

inflammatory conditions, influencing pain 

perception (de Oliveira et al., 2011; Mika et 

al., 2013), with IL-1β being especially involved 

in the proinflammatory effect. It is known that 

IL-1β is expressed in nociceptive dorsal root 

ganglion neurons (Copray et al., 2001), 

astrocytes and microglia, and it is one of the 

first cytokines formed in inflammatory 

processes, simultaneously with TNF-α. These 

two cytokines lead to the synthesis of other 

several inflammation effectors (Watkins and 

Maier, 2002), releasing and activating 

important substances for pain perception, like 

substance P and calcitonin-gene related 

peptide (de Oliveira et al., 2011). IL-1β also 

activates B1 and B2 bradikinin receptors, 

induces cyclooxygenase-1 (COX-1), COX-2, 

prostaglandin E2 (PGE2), nitric oxide 

synthase (NOX) and matrix metalloproteases 

(MMPs), increases the activity of N-methyl-D-

aspartate (NMDA) receptor and inhibits γ-

aminobutyric acid (GABA) and glycine 

mechanisms, leading to thermal, chemical, 

mechanical and inflammatory hyperalgesia 

(Buvanendran et al., 2006; Cunha et al., 2007; 

de Oliveira et al., 2011; Paz Aparicio et al., 

2011; Burada et al., 2013). All these 
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proinflammatory and nociceptive properties 

have been highlighted by intrathecal 

administration of IL-1β and IL-1 receptor 

antagonists, leading to hyperalgesia and 

decreased allodynia, respectively (Sweitzer et 

al., 2001; Sung et al., 2004). 

The IL1B C3954T (rs1143634) SNP is a silent 

polymorphic alteration in exon 5 (Phe105Phe) 

that has been related with several 

inflammatory diseases (Zabaleta et al., 2006; 

Cimaz et al., 2007; Solovieva et al., 2009; Paz 

Aparicio et al., 2011) and, like IL-1β, with pain 

(Mika et al., 2013), more specifically with 

cancer-induced bone pain (Lozano-Ondoua et 

al., 2013). Additionally, a decreased analgesic 

effect of morphine by IL-1β has been 

described (Shavit et al., 2005), though no 

correlation was found between the SNP 

C3954T and opioid consumption (Bessler et 

al., 2006). In this study, we observed higher 

intensity of pain in carriers of the C allele, 

associated with higher serum levels of IL-1β in 

the same group of individuals. This fact adds 

to previous data and indicates a special 

vulnerability of these patients to cancer-

related pain. Other studies have also 

evaluated the relation among genetic 

variation, inflammation status and serum 

levels of IL-1β, but the correlation of the SNP 

C3954T and serum levels of IL-1β in pain-

treated cancer patients was now disclosed for 

the first time. A recent study by Lacruz-

Guzmán and collaborators correlated the rare 

allele T with lower serum levels of IL-1β 

(Lacruz-Guzman et al., 2013), which was in 

agreement with previous studies (Santtila et 

al., 1998; Tolusso et al., 2006). Despite 

contradictory results concerning the 

association of this polymorphism with serum 

levels of IL-1β,  the SNP C3954T has also 

been associated with lower C-reactive protein 

(CRP) concentration in healthy individuals 

(Eklund et al., 2003) and end-stage renal 

disease patients (Maruyama et al., 2005) 

carriers of the T allele. These findings are 

consistent with lower IL-1β levels, which 

reinforces the importance of results, showing 

the opposite pattern for the C allele.  

In this study, we also observed different levels 

of serum IL-1β according to cancer diagnosis 

status, with patients diagnosed with breast, 

prostate cancer and multiple myeloma 

presenting the highest levels, and a 

correlation between the levels of the cytokine, 

the degree of metastatic disease and carriers 

of the C allele. In fact, in our study population, 

the individuals with higher levels of serum IL-

1β presented a four-fold increase of the 

metastatic disease probability. Corroborating 

our findings, the association of increased 

levels of IL-1β in cancer was previously 

described, especially in tumour proliferation, 

metastasis and resistance (Liu et al., 2006; 

Albulescu et al., 2013; Burada et al., 2013). In 

addition, several studies report a role of IL-1β 

in pathogenesis and metastatic disease in 

prostate, breast cancer and multiple myeloma 

(Eiro et al., 2012; Vangsted et al., 2012; Liu et 

al., 2013), through direct proliferative effects, 

activation of inflammation and angiogenesis 

signalling (Saijo et al., 2002) and especially 

through induction of MMPs (Eiro et al., 2012). 

Considering our results, these events may be 

exacerbated in carriers of the C allele, and 

therefore these patients may require further 

clinical attention in the disease progression 

and associated pain.   

The present study also analyzed the influence 

of genetic variation in IL1A and IL1RN. IL1A 

G4845T (rs17561) SNP leads to a 



Study IV: Interleukin-1 and cancer-related pain 
 

133 

nonsynonymous mutation (Ala114Ser), which 

was already related to inflammatory 

conditions  (Berger et al., 2002), as well as to 

pain and cancer (Sigurdson et al., 2007; 

Yilmaz et al., 2010). However, no correlation 

among the different genotypes, serum levels 

and clinical data were found in this study. The 

same results were obtained with IL1RN 

T2018C (rs419598) SNP. This polymorphism 

has been related to colorectal (Burada et al., 

2013) and gastric cancer (Crusius et al., 

2008), and to inflammatory conditions (Wu et 

al., 2013), but no variation was found in the 

present study. 

This study has some limitations, such as 

heterogeneity of study population and a 

reduced number of individuals involved. 

Nevertheless, the agreement of the 

biochemistry, molecular biology and clinical 

data demonstrated a consistent association 

between IL-1β genotypes serum levels, pain 

intensity and metastatic disease. Also, the 

potential interactive effect of other 

polymorphisms in genes encoding other 

inflammatory effectors (IL-2, IL-6, IL-10,TNF-

α) was also examined and does not seem to 

influence the studied clinical parameters (data 

not shown). Furthermore, no correlation 

between the levels of IL-1β and TNF-α and IL-

6 was found (data not shown). Therefore, this 

preliminary report encourages the analysis of 

a larger number of individuals, to provide 

more information about this association, along 

with the analysis of other SNP in IL-1α/β/Ra 

and the quantification of IL-1Ra. 

 

 

 

 

 

Conclusions 
 

Pain is a complex trait and the influence of 

genetics in pain sensitivity and efficacy of 

analgesics is an ongoing challenge. Our 

results suggest that IL-1β C3954T SNP can 

affect IL-1β serum levels and maximum pain 

intensity in cancer pain patients and that IL-1β 

is associated with cancer proliferation, 

confirming the role of this cytokine as a pain 

effector and cancer biomarker.  
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Supplementary Tables 
 

Supplementary Table 1: Probe sequences for VIC/FAM  

SNP VIC/FAM sequences 

IL1RA (rs419598) ATCTGAGGAACAACCAACTAGTTGC[C/T]GGATACTTGCAAGGACCAA
ATGTCA 

IL1α (rs17561) ACATTGCTCAGGAAGCTAAAAGGTG[A/C]TGACCTAGGCTTGATGATTT
CTAAA 

IL1β (rs1143634) CATAAGCCTCGTTATCCCATGTGTC[G/A]AAGAAGATAGGTTCTGAAAT
GTGGA 

IL, Interleukin; IL1RN, Interleukin 1 receptor antagonist; SNP, Single Nucleotide Polymorphism. 
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Abstract 
 

Morphine is extensively metabolized to the neurotoxic morphine-3-glucuronide (M3G) and the 

potent opioid agonist morphine-6-glucuronide (M6G). Due to the different roles of both metabolites, 

interindividual variability and co-administration of drugs that interfere with metabolic enzymes may 

lead to differences in analgesic response. The aim of the study was to investigate the 

repercussions of administration of an inducer (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and an 

inhibitor (ranitidine) of glucuronidation in the morphine metabolism and consequent analgesic 

effect, using guinea pigs as a suitable animal model. Thirty male Dunkin-Hartley guinea pigs were 

divided in six groups: control, morphine, ranitidine, ranitidine + morphine, TCDD and TCDD + 

morphine. After previous exposure to TCDD and ranitidine, morphine analgesic effect was 

assessed by an increasing temperature hotplate test (35 – 52.5 °C), during 60 min after morphine 

administration. Then, blood was collected and plasma morphine, M3G and M6G were quantified by 

liquid chromatography with diode array and electrochemical detection. Animals treated with TCDD 

presented faster analgesic effect and 75 % reached the cut-off temperature, comparing with only 

25 % in morphine group. Animals treated with ranitidine presented a significantly lower analgesic 

effect, compared with morphine group (p˂0.05). Moreover, significant differences between groups 

were found in M3G levels and M3G/morphine ratio (p˂0.001 and p˂0.0001), with TCDD animals 

presenting the highest values for M3G, M6G, M3G/morphine and M6G/morphine, and the lowest 

value for morphine. The opposite was observed in the animals treated with ranitidine. Our results 

indicate that modulation of morphine metabolism may result in variations in M3G and M6G 

concentrations, leading to different analgesic responses to morphine, in an animal model that may 

be used to understand and improve morphine effect in clinical practice. 

 

Keywords: Morphine, morphine-3-glucuronide, morphine-6-glucuronide, morphine metabolism, 

pain assessment. 

 

 

Introduction 

 

Morphine is one of the first-line drugs for 

pharmacological treatment of severe 

postsurgical and moderate-to-severe acute 

and chronic cancer-related pain (WHO, 1996). 

However, the set of adverse effects 

associated with morphine and the high 

interindividual variability of morphine dosage, 

efficacy and tolerability (Aubrun et al., 2003; 

Ross et al., 2005; Shi et al., 2010; Oliveira et 

al., 2013) are important limitations to its 

therapeutic effectiveness. Pain perception and 

response to analgesic medications are 

complex processes that involve multiple 

pathways, such as neurotransmission, 

inflammation, drug metabolism and drug 

transport, among others (Carpenter and 

Dickenson, 2002). Therefore, several 

hypotheses have been raised to explain 

morphine’s analgesic variability, including 

genetic variation of opioid receptors, 

transporters and metabolizing enzymes 

(Belfer et al., 2004; Lötsch and Geisslinger, 
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2006; Kadiev et al., 2008; Kasai et al., 2008; 

Jannetto and Bratanow, 2010; Kleine-

Brueggeney et al., 2010; Muralidharan and 

Smith, 2011). 

Variability in morphine metabolism can 

particularly account for different analgesic 

effects. Morphine undergoes extensive human 

hepatic metabolism, especially by UDP-

glucuronosyltransferase 2B7 (UGT2B7), 

producing two main metabolites, morphine-6-

glucuronide (M6G) and morphine-3-

glucuronide (M3G) (Carrupt et al., 1991). M6G 

is a potent opioid receptor agonist with higher 

analgesic activity than morphine (Carrupt et 

al., 1991; Osborne et al., 1992). On the other 

hand, M3G has no opioid action and it seems 

to cause adverse effects, namely 

hyperalgesia / allodynia and neurotoxicity, and 

to exert a functional antagonistic effect, 

decreasing morphine analgesia (Carrupt et 

al., 1991; Christrup, 1997; Holthe et al., 2002). 

Since M6G has been ascribed as an 

important mediator of the analgesic effect of 

morphine (Klepstad et al., 2000; Penson et 

al., 2005), it has been postulated that the 6-

glucuronidation probably increases the 

analgesic effect, in spite of concomitant M3G 

formation. However, the correlation of 

morphine metabolism and M6G concentration 

with analgesic effect is still a matter of 

controversy (Osborne et al., 1992; Portenoy et 

al., 1992; van Dongen et al., 1994; Klepstad 

et al., 2000; Quigley et al., 2003; Penson et 

al., 2005; Ing Lorenzini et al., 2012; Gretton et 

al., 2013), due to the variety of drugs and 

substrates of UGT that can interfere in M3G 

and M6G formation during therapy (Wittwer 

and Kern, 2006), and therefore the real effect 

on analgesic efficacy of morphine metabolism 

inhibition and induction is still unknown. 

Although several species can metabolize 

morphine, remarkable interspecies differences 

have been found in the urinary excretion and 

site-selective glucuronidation of morphine 

(Kuo et al., 1991). On the other hand, the 

guinea-pig presents a M3G:M6G ratio of 4:1 

(Kuo et al., 1991; Aasmundstad et al., 1993), 

very similar to the ratio described for humans 

(Yue et al., 1990; Andersen et al., 2002; De 

Gregori et al., 2012), and therefore represents 

a suitable animal model to clarify the influence 

of morphine glucuronidation in the resulting 

analgesic effects. A number of compounds 

are known to interfere significantly with 

metabolic enzymes, thereby influencing drug 

metabolism. 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) is a potent halogenated 

aromatic hydrocarbon that exerts its biological 

and toxic responses through binding to the 

aryl hydrocarbon receptor (AhR) 

(Santostefano et al., 1998). In addition to 

many other effects, TCDD can induce several 

isoforms of cytochrome P450, UGT and 

glutathione-S-transferase in humans and 

rodents, including guinea pigs (Münzel et al., 

1999; Fletcher et al., 2001; Münzel et al., 

2003; Collier et al., 2006; Erichsen et al., 

2008). Therefore it can be used to induce 

morphine metabolism. Besides morphine 

metabolism induction, its inhibition could also 

be of therapeutic interest. In this particular 

case, in vitro experiments with guinea pig 

cells have shown that ranitidine may 

differentially inhibit morphine glucuronidation, 

causing higher inhibition of the production of 

M3G than that of M6G (Aasmundstad and 

Morland, 1998). Interactions of ranitidine with 

morphine effect and metabolism have also 

been described in mice (Suh et al., 1996) and 

humans (McQuay et al., 1990; Aasmundstad 
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and Storset, 1998), yielding a reduced serum 

M3G/M6G ratio. 

The lack of a good analgesic response in 

some patients, the variability of the relative 

amount of glucuronides formed and 

uncertainty of their contributions on the total 

analgesic effect prompted us to formulate a 

controlled study of both induction, using 

TCDD, and inhibition, using ranitidine, of 

morphine metabolism and pain assessment in 

an adequate animal model, the guinea-pig. 

 

 

Methods 

 

Ethics commitment 

All experimental procedures followed the 

regulations of local authorities in handling 

laboratory animals, as well as the European 

Directive 2010/63/EU and the ethical 

guidelines for the study of pain in 

experimental animals (Zimmermann, 1983). 

The study was also approved by the Ethical 

Internal Commission of Faculty of Medicine of 

University of Porto / São João Hospital. 

 
Reagents and Standards 

Commercially formulations of morphine 

(morphine sulfate, MST® 10 mg) and ranitidine 

(ranitidine hydrochloride, Zantac® 25 mg/mL) 

were obtained in a local pharmacy. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) was 

obtained from Sigma-Aldrich (St. Louis, MO). 

Morphine was dissolved in saline solution and 

TCDD in corn oil (Merck - Darmstad, 

Germany) for the intraperitoneal (IP) 

administrations. For the quantification of 

morphine and metabolites, standards of 

morphine hydrochloride, M3G hydrochloride 

and M6G hydrochloride were obtained from 

Lipomed (Arlesheim, Switzerland). Phenacetin 

(internal standard, IS), triethylamine, sodium 

dodecyl sulfate and hydrochloric acid were 

obtained from Sigma-Aldrich (St. Louis, MO). 

Methanol, acetonitrile, sodium dihydrogen 

phosphate and phosphoric acid were obtained 

from Merck (Darmstad, Germany). OASIS® 

weak cation exchange (WCX) cartridges, 

60 mg, 3 mL were obtained from WATERS 

(Milford, MA) and Bond Elut® C18 cartridges, 

100 mg, 1 mL were obtained from Agilent. All 

chemicals and reagents were of analytical 

grade or from the highest available grade. 

 

Animals and Experimental Design 
Animals 

Thirty male Dunkin-Hartley guinea pigs 

(Harlan Laboratories, Spain) weighing 250–

300 g were used. Animals were kept under 

constant photoperiod conditions (12-hour 

alternating light-dark cycles) at 22 °C and 40-

50 % relative humidity with food and water ad 

libitum. In order to minimize fear-motivated 

behaviors, all animals were handled daily and 

habituated to all testing procedures before the 

onset of the experiments. In all behavioral 

tests, the evaluator was unaware of the 

animal’s experimental group. 

 

Experimental protocol 

Thirty animals were randomly distributed in six 

experimental groups (n = 5): (i) Control (C); (ii) 

Morphine (M); (iii) Ranitidine (R); (iv) 

Ranitidine + Morphine (RM); (v) TCDD (T); (vi) 

TCDD + Morphine (TM) (Table 1). After the 

period of habituation, the experimental 

protocol was held for 3 days (Figure 1 and 

Table 1). The enzymatic inducer was 

administered twice, 48 and 24 h before the 

behavioral assessment, whereas the inhibitor 
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was administered three times (48, 24 and 2 h 

before the hot plate test). Behavioral 

assessment was performed immediately 

before and 15, 30, 45 and 60 min after saline 

or morphine administration. Morphine 

(10 mg/kg), TCDD (1 µg/kg) and ranitidine 

(200 mg/kg) doses were defined according to 

the literature (Collier et al., 1961; Flecknell, 

1984; Olster, 1994; Orishiki et al., 1994; Enan 

et al., 1996) and all solutions were 

administered IP between 9 and 11 A.M.. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the experimental protocol. All drugs were intraperitoneally 

administrated, between 9 and 11 AM. M3G, morphine-3-glucuronide; M6G, morphine-6-glucuronide; TCDD, 

2,3,7,8-Tetrachlorodibenzo-p-dioxin. 

 

 
Table 1. Treatment groups for the experimental protocol 

Treatment group -48 and -24 hours  -2 hours 0 min 

Control Corn oil – Saline 
Morphine Corn oil – Morphine 

10 mg/kg 
Ranitidine Ranitidine 

200 mg/kg 
Ranitidine 
200 mg/kg 

Saline 

Ranitidine + Morphine Ranitidine 
200 mg/kg 

Ranitidine 
200 mg/kg 

Morphine 
10 mg/kg 

TCDD TCDD 
1 µg/kg 

– Saline 

TCDD + Morphine TCDD 
1 µg/kg 

– Morphine 
10 mg/kg 

TCDD was dissolved in corn oil. 
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Assessment of hot plate thermal analgesia 

The hot-plate test was performed in a 

computer-controlled hot/cold plate analgesia 

meter (Bioseb, Vitrolles, France). The animals 

were placed on a metal surface 

(16.5 cm×16.5 cm), surrounded by a 

plexiglass box (36.5 cm height). The initial 

surface temperature was 35 °C and a cut-off 

temperature of 52.5 °C was defined, to 

prevent tissue damage. After a short 

adaptation period (20-30 s), an increasing 

thermal gradient of 9 °C/min was applied. This 

heating rate was chosen in order not to cause 

unnecessary stress in the animals (maximal 

assay duration ca. 2 min, as previously 

described) (Tjolsen et al., 1991). The 

temperature (in °C) to elicit genitalia licking 

was recorded (Leite-Panissi et al., 2001). 

 

Sample collection 

Immediately after the end of the behavior 

assessment, anesthesia was induced with 

isoflurane. Animals were placed in the 

decubito supino position and the thorax was 

opened by two lateral transversal incisions 

and one central longitudinal incision. Blood 

was collected from the heart, with heparinized 

needles, into EDTA containing tubes and then 

centrifuged (2500×g, 4 °C, 10 min). Plasma 

was aliquoted in eppendorf vials and stored 

(−80 °C) until analysis. 

 

Quantification of morphine and metabolites 

Plasma quantification for morphine and 

metabolites was performed according to the 

method previously validated and described 

(Oliveira et al, submitted elsewhere). Briefly, 

morphine, M6G, and M3G were extracted by 

two-step solid-phase extraction (SPE) and 

plasma concentrations were analyzed by high 

performance liquid chromatography (HPLC) 

with sequential diode-array and 

electrochemical detection. For the extraction, 

30 µL of the internal standard phenacetin at 

10 mg/mL were added to 1.5 mL of plasma. 

The sample was then transferred to C18 

cartridges, which have been previously 

conditioned with 2 mL of methanol and 2 mL 

of phosphate buffer (10 mM, pH = 9.5). The 

cartridge was then washed with 2 mL of 

phosphate buffer (10 mM, pH = 9.5) and 

eluted with methanol with 0.5 % of 

triethylamine. After drying the samples with a 

nitrogen stream, they were reconstituted with 

1 mL of 80 % acetonitrile and transferred into 

a WCX cartridge, previously conditioned with 

4 mL of acetonitrile. After washing the 

cartridge with 4 mL of acetonitrile, the 

compounds were eluted with 1.5 mL of 80 % 

methanol containing 0.05 M HCl. The eluate 

was dried in a Labconco® evaporator. 

Samples were reconstituted with 50 µL of 

mobile phase. 

Samples (40 µL) were injected in a HPLC 

Waters® 2690 system and analytes were 

separated using a Waters Spherisorb® ODS2 

reversed-phase column (250 mm × 4.6 mm × 

5 µm) and 0.01 M potassium phosphate 

buffer:acetonitrile (85:15 v/v) containing 

0.04 mM sodium dodecyl sulfate as the 

mobile phase. Detection of M3G was 

performed in a diode-array Waters® 996, at 

210 nm. Detection of M6G and morphine was 

performed at Coulochem® II 5200A, with 

0.200 V for cell 1, 0.350 V for cell 2 and 

0.400 V for guard cell. 

 

Statistical analysis 

Data analysis was performed using the 

computer software GraphPad Prism® for 
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Windows (version 5.0). All data obtained from 

behavior assessment and morphine and 

metabolites quantification were expressed as 

mean ± SEM. Differences between groups 

were evaluated with one-way or two-way 

ANOVA followed by the Bonferroni’s post hoc 

test. Statistical significance was fixed at 

p<0.05 for all analyses. 

 

Results 
 
General observations 

Animals subjected to TCCD or ranitidine 

treatments showed no weight reduction or 

abnormal signs throughout the study (data not 

shown). After morphine administration, 

animals became more prostrated than their 

respective saline controls (at least at the end 

of 60 min), though the onset of this prostration 

was remarkably faster in animals undergoing 

treatment with TCDD. For groups C, R, RM 

and T, a n = 4 was used due to atypical 

behavior or treatment-unrelated death of four 

animals. 

 

Analgesic response 

Baseline hot-plate threshold temperatures 

were recorded before morphine or saline 

administration and then every 15 minutes 

afterwards, until the end of the experiment. 

Since baseline threshold temperatures were 

2 – 3 °C higher in ranitidine-treated animals 

than in other groups, the variations of 

temperature threshold relative to baseline 

thresholds were used for analysis, rather than 

the absolute threshold values (Figure 2).  

The analgesic effect of morphine amounted to 

a > 5 ºC increase in threshold temperature, 

after 60 min. This effect was reduced to ca. 

3.5 ºC in animals subjected to ranitidine 

treatment (p˂0.05). On the other hand, TCDD-

treated animals showed a sharper onset of 

the analgesic effect than both other morphine-

treated groups.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Differences between threshold hot plate 

temperature at each time-point after 

morphine/saline administration and basal threshold 

temperature (ΔT) for the different treatment groups 

(Mean ± SEM). Comparisons between groups were 

performed by repeated measures ANOVA (*p˂0.05 

vs. morphine group). In groups M and TM, some 

animals were withdrawn from the hot plate after 

reaching the cut-off temperature without behavioral 

response. This information is represented in the 

graph as a (+) for each of those animals. M, 

morphine group; RM, ranitidine + morphine group; 

T, TCDD group; TM, TCDD + morphine group. 

 

 

These results demonstrate a more intense 

analgesic effect in the TM group, although a 

parametric statistical analysis cannot be used 

to show significant differences between TM 

and M groups due to the unavailability of 



CHAPTER III    

146 

M RM TM
0

200

400

600

Groups

M
6G

 P
la

sm
a

 C
on

ce
nt

ra
tio

n 
(n

g/
m

L)

M RM TM
0

1000

2000

3000

4000

5000

***

Groups

M
3G

 P
la

sm
a

 C
on

ce
nt

ra
tio

n 
(n

g/
m

L)

M RM TM
0

100

200

300

Groups

M
or

ph
in

e 
Pl

as
m

a
C

on
ce

nt
ra

tio
n 

(n
g/

m
L) A

B

C

effective threshold temperatures for the 

animals which showed no discomfort upon 

reaching the cut-off temperature. No 

significant changes in threshold temperatures 

were observed in any control group. 

 

Plasmatic concentrations of morphine and 
metabolites 

Plasmatic concentrations of morphine, M3G 

and M6G are shown in Figure 3. The highest 

morphine concentrations were found in RM 

group and the lowest in TM (199 ± 42 ng/mL 

(RM) vs. 161 ± 17 ng/mL (M) vs. 96 ± 13 

ng/mL (TM). Conversely, M3G and M6G 

levels were highest in TM animals and lowest 

in the RM group, which strongly supports 

alterations in morphine metabolism: 

1009 ± 181 ng/mL (RM) vs. 1791 ± 372 ng/mL 

(M) vs. 3793 ± 389 ng/mL (TM) for M3G and 

203 ± 48 ng/mL (RM) vs. 224 ± 91 ng/mL (M) 

vs. 466 ± 70 ng/mL (TM) for M6G. The 

differences in the concentrations were also 

evidenced after the calculation of the 

metabolic ratios (Figure 4), with TM group 

presenting the highest M3G/morphine and 

M6G/morphine ratios and RM the lowest. 

Significant differences between groups were 

found for M3G concentration (p˂0.001) and 

M3G/morphine ratio (p˂0.0001). M3G/M6G 

ratios were also calculated, with RM group 

presenting the lowest value (6.5 ± 0.5 (RM) 

vs. 10.4 ± 1.8 (M) vs. 8.4 ± 0.7 (TM)), but no 

statistically significant differences were found.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Plasma morphine and metabolites 

concentration (Mean ± SEM). A – Plasma 

concentration of morphine (ng/mL); B - Plasma 

concentration of M3G (ng/mL). Significant 

differences were found between groups 

(***p˂0.001, TM vs. M/RM treatments); C - Plasma 

concentration of M6G (ng/mL). M3G, morphine-3-

glucuronide; M6G, morphine-6-glucuronide; M, 

morphine group; RM, ranitidine + morphine group; 

TM, TCDD + morphine group. 
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Figure 4. Metabolic concentration ratios (Mean ± 

SEM). A - M3G/Morphine. Significant differences 

were found between groups (***p˂0.0001, TM vs. 

RM/M groups) B - M6G/morphine. M3G, morphine-

3-glucuronide; M6G, morphine-6-glucuronide; M, 

morphine group; RM, ranitidine + morphine group; 

TM, TCDD + morphine group. 

 
 
Discussion 
 
The present study analyzed the influence of 

morphine metabolism in its analgesic efficacy 

and provides novel insights for a possible 

association of metabolism induction and 

inhibition with metabolites concentration and 

consequently different analgesic effects. Upon 

morphine administration, TCDD-treated 

animals (TM) presented higher thermal 

thresholds in behavioral assessment, lower 

morphine and higher M3G and M6G plasma 

concentrations and higher 

metabolite/morphine ratios than morphine-

only treated animals (M), although with similar 

M3G/M6G ratio between M and TM groups. 

On the other hand, in ranitidine-treated 

animals (RM) the morphine analgesic efficacy 

was significantly lower than in TM and M 

groups, plasmatic morphine values were 

higher and M3G and M6G were lower than in 

other morphine-treated groups. Also, values 

for M3G/morphine and M3G/M6G ratios were 

the lowest in ranitidine-treated animals, 

though the M6G/morphine ratio was very 

similar to the M group. 

TCDD, a well known dioxin, binds to AhR and, 

in the presence of the nuclear factor erythroid 

2-related factor 2 (Nrf2), induces the gene 

expression of many enzymes involved in drug 

metabolism, including glucuronidation 

enzymes (Buckley and Klaassen, 2009; 

Yeager et al., 2009). Thus, TCDD-exposure is 

expected to increase the production of both 

major metabolites, M3G and M6G. The latter 

has been subject of several studies, with 

controversial results. Some reported its 

antinociceptive action and importance for pain 

control (Osborne et al., 1992; Portenoy et al., 

1992; Klepstad et al., 2000), while others 

reported no correlation between M6G 

concentrations and pain perception or side-

effects severity (Tiseo et al., 1995; Quigley et 

al., 2003). 

In our work, M3G levels and M3G/morphine 

ratios were significantly increased in TM 

animals, confirming the success of TCDD-

induction of morphine metabolism in guinea 

pigs. M6G concentration and M6G/morphine 

ratio were also tendentially increased, 

although this result was not statistically 

significant. Furthermore, TCDD-treated 

animals presented a faster and more marked 

analgesic effect than other groups, with 75 % 
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of TM animals reaching the temperature cut-

off value at 45 and 60 minutes post-morphine 

injection. Taking all data into account, it is 

possible to hypothesize that a higher 

metabolite production rate led to a better and 

faster analgesic effect, probably through the 

potent opioid action of M6G. This metabolite 

presents a lower affinity to µ-opioid than 

morphine, but a higher efficacy, together with 

a lower affinity to κ-opioid receptor, which 

might explain its analgesic activity with 

reduced tendency to opioid-related adverse 

effects (Kilpatrick and Smith, 2005; Dorp et 

al., 2008). In addition, the pharmacokinetic 

profile of M6G is very different from morphine, 

which in part might explain the slower onset of 

M6G effect but of longer duration than 

morphine (6-fold longer), causing adequate 

and long-lasting pain relief (Suh et al., 1996; 

Kilpatrick and Smith, 2005; Ing Lorenzini et 

al., 2012), but further work is required to fully 

explain the differences between morphine and 

M6G. Despite the reported M3G toxicity and 

the higher levels of this metabolite as a result 

of the induction protocol, no deleterious M3G 

effects were detected in our single morphine 

administration protocol. In fact, the proximity 

of the values of the M3G/M6G ratio in TM and 

M groups indicates that the analgesic potency 

of M6G prevails over the hyperalgesic effect 

of M3G. However, chronic administration 

and/or induction protocols would require 

further studies. 

Unlike morphine and ranitidine, TCDD can 

produce diverse toxic effects including a lethal 

wasting syndrome whose hallmark is 

suppressed hepatic gluconeogenesis (Enan et 

al., 1996). Guinea pigs are particularly 

sensitive, presenting the lowest LD50 for this 

dioxin among rodents (Korkalainen et al., 

2001). Nevertheless, the selected dose 

(1 µg/kg), already tested in this animal model 

(Enan et al., 1996; Enan et al., 1998) and 

described to cause significant weight 

reduction only after 7-14 days after a single-

dose administration, did not cause body mass 

loss or any apparent change in the activity 

and social interaction in our animals, during 

the evaluated period. 

The effects of morphine metabolism inhibition 

by ranitidine were also evaluated in our study. 

Previous studies have suggested that 

ranitidine may interfere with morphine 

metabolism, especially in M3G production, by 

differential inhibition of UGT isoforms 

(McQuay et al., 1990; Aasmundstad and 

Morland, 1998; Aasmundstad and Storset, 

1998). According to these studies, this drug 

could cause not only an increase in plasmatic 

morphine levels but also a decrease in 

M3G/M6G concentration ratios through 

decreased M3G and, sometimes, increased 

M6G levels. In our study, ranitidine decreased 

morphine metabolism in guinea pigs, leading 

to higher morphine, lower M3G and M6G 

values and lower M3G/M6G ratios than the 

other morphine-treated groups. Behaviorally 

assessed, these animals showed significantly 

lower morphine analgesic effect than the other 

morphine-treated groups (M and TM). Our 

results corroborate the differential inhibition of 

morphine metabolism. In fact, although both 

M3G and M6G were diminished, M3G levels 

were more affected, leading to a lower 

M3G/M6G ratio than the M group. However, 

despite this slightly differential inhibition, the 

analgesic effect was not improved, which may 

be explained by the decreased levels of M6G. 

Aasmundstad and collaborators 

(Aasmundstad and Morland, 1998) also 
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reported lower in vitro M3G/M6G 

concentration ratios by increasing ranitidine 

concentration. Additionally, they observed that 

the concentration of morphine and ranitidine 

can affect the rate formation of both 

metabolites, obtaining a reduced formation 

rate of M3G and M6G by increasing ranitidine 

concentration and a less restrained inhibition 

effect when higher doses of morphine were 

used (McQuay et al., 1990)  In another study 

only serum, but not urinary, M3G/M6G ratios 

were altered by ranitidine in humans 

(Aasmundstad and Storset, 1998), which may 

be due to alternative excretion pathways, 

including the biliary excretion. Further studies 

are required to achieve a higher differential 

inhibition and improve morphine analgesic 

effect, through decreasing M3G formation 

while maintaining M6G levels. 

Guinea pig was the selected species for this 

study due to a theoretical production of a 

M3G/M6G average ratio of 4:1, similar to 

humans (5-8.5:1) (Yue et al., 1990; Kuo et al., 

1991; Aasmundstad et al., 1993; Andersen et 

al., 2002; De Gregori et al., 2012). We 

obtained a higher plasmatic ratio in morphine-

treated animals (10:1) one hour after 

administration. However, higher ratios have 

also been reported in guinea-pig (6.3 ± 1.8) 

(Lawrence et al., 1992). In addition, the 

reported ratios were calculated based on the 

urinary concentrations of M3G and M6G (24-

hour urine) and, especially, on in vitro 

experiments, with several and different 

sampling times, which may explain the slight 

differences observed.  

Differences in the physicochemical properties 

and hydrophobicity of the drugs used to 

induce (TCDD) and inhibit (ranitidine) the 

morphine metabolism required the use of 

different vehicles for their administration: 

TCDD (highly hydrophobic) was dissolved in 

corn oil, while ranitidine (hydrophilic) was 

administered in an aqueous solution. 

Therefore, the experiment would require 8, 

instead of 6 experimental groups (morphine- 

and saline-treated TCDD, ranitidine, TCDD-

vehicle control, and ranitidine-vehicle control). 

Furthermore, since we used a commercially 

available injectable formulation of ranitidine, 

we did not have an adequate vehicle to use. 

However, since no changes on pain 

thresholds were detected upon corn oil or 

aqueous saline administration, we decided to 

use only corn oil-treated controls, thus 

reducing the number of guinea pigs used in 

the study as suggested by the Ethical 

Commission. Another uncontrolled-for 

manipulation was the third ranitidine 

administration, two hours before 

morphine/saline administration and behavioral 

evaluation. This could (at least partially) 

explain the higher baseline threshold 

temperatures of R and RM groups. 

Our results, in a controlled in vivo model, have 

shown that inhibition and induction of 

morphine metabolism can influence morphine 

analgesic efficacy. Furthermore, the 

induction/inhibition animal model developed 

seems to be promising for future studies 

concerning morphine metabolism, due to the 

similarity of glucuronidation processes, as 

compared to humans, and the availability of 

inducers and/or inhibitors of glucuronidation, 

as clearly demonstrated. In clinical practice, 

the variability of morphine metabolism, 

efficacy and adverse effects contributes to a 

reduced pain control and quality of life. An 

improved knowledge of the mechanisms 

behind the modulatory influences on morphine 
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metabolism may help the understanding of 

pharmacokinetic interactions of co-

administered drugs and allow the 

manipulation of the production of morphine’s 

metabolites, thus overcoming the therapeutic 

constraints related to genetic variability and 

providing a better pain control and quality of 

life. 
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4.1  Integrated discussion 

Inter-individual variability of opioids is well known by physicians when treating chronic 

cancer and non-cancer pain. The scientific community believes that this unpredictable 

variation might be related with genetic factors, especially SNPs in important molecules, as 

receptors, enzymes and endogenous transmitters. The present thesis aimed to explore 

the role of genetic variants in the analgesic effect of opioids, especially morphine, in order 

to understand and improve the analgesic efficacy in a foreseeable future, particularly in 

cancer pain patients. To achieve this objective we developed a strategy that included i) 

the recruitment of patients from  Palliative Care Units; ii) a revision of the most studied 

and influent SNP (Chapter 1); iii) the analysis of the polymorphisms, by choosing SNPs 

that are involved in the several steps of opioid action and pain processing, together with 

the quantification of morphine and metabolites; and iv) to develop an animal model for the 

study of morphine metabolism and its implication in the analgesic efficacy. 

In the early stages of this work we focused in the recruitment of cancer pain patients in 

IPO-Porto, considered the limiting step of the work, accordingly with the criteria selection 

referred in Study II-IV. The recruitment was conducted through the course of the work but 

due to the narrow criteria, the need to complete a questionnaire, the small size of the 

Palliative Care Units and especially the patients’ status, only 100 samples were collected. 

From these, complete pain and healthcare questionnaires were available only for 75 

patients and complete information about opioid administration (opioid, regular dose, dose 

for breakthrough pain) and other drugs administered concomitantly were only obtained for 

30 patients. Taking this into account, besides morphine, as originally planned, we 

extended the work to patients under treatment with other opioids. Also, the selection of the 

SNPs had to be made carefully in order to include representative variants in opioids 

pharmacodynamics and pharmacokinetics (receptor, metabolizing enzyme and 

transporters) and in pain modulators (COMT and cytokines).  

Along with the recruitment, the developing of the quantification method for morphine and 

major metabolites was initiated, as it was essential to human and animal studies. After 

several attempts in gas chromatography coupled with mass spectrometry, a HPLC 

method with diode array and electrochemical detection was developed and validated as 

can be seen in Study I. Despite the several methods available for morphine and 

metabolites, the presented low-cost methodology proved to be very specific, sensitive, 

precise and accurate, not only for plasma samples, the most common matrix in human 

clinical studies along with serum,  but also for five other matrices, including postmortem. 

The developed technique was a very important step as it enabled the determination of 
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morphine, M3G and M6G in plasma of patients and guinea pigs in the following studies. In 

addition, this technique will also permit ongoing and further studies aiming to quantify 

morphine, M3G and M6G in postmortem samples collected from opioids-related deaths, 

namely in whole blood, urine, liver, kidney and brain. The less positive point of this 

technique is the volume of sample required, mainly plasma (1.5 mL). However, due to the 

limits of detection and quantification achieved it is generally possible to dilute the sample. 

In patients with chronic administration of morphine, as is the case of our sampling, values 

of metabolites are generally higher than those of morphine, especially M3G (mean values 

for morphine, M6G and M3G: 42.9 ng/mL, 63.5 ng/mL and 1026.8 ng/mL, respectively) 

and for all would be possible to use at most 750 µL of sample (limits of quantification for 

morphine, M6G and M3G in plasma: 1.2 ng/mL, 3.2 ng/mL and 8.5 ng/mL, respectively). 

In Study II, the influence of selected SNPs was studied in the samples of 30 Caucasian 

cancer patients. The first SNPs analyzed were related with pharmacodynamics (OPRM1), 

pharmacokinetics (ABCB1) and pain sensitivity (COMT), and daily opioid doses were re-

expressed as oral morphine equivalents (OMEQ). An association between COMT 

Val(108/158)Met genotypes and OMEQ was found, with patients carrying Met allele 

related with higher opioid requirements, although no significant associations were found 

concerning OPRM1 and ABCB1 polymorphisms. The obtained results were in accordance 

to our expectations, as carriers of Met allele were already correlated with lower enzymatic 

activity, higher pain sensitivity, lower µ-opioid system activation during sustained pain, 

higher affective ratings of pain and a more negative internal affective state (Zubieta et al., 

2003; Jensen et al., 2009; Mobascher et al., 2010; Loggia et al., 2011). However, 

controversial information was already reported, concerning the correlation of 

Val(108/158)Met SNP and opioid doses, with the Met allele being associated with lower 

opioids requirements, due to compensatory increase of µ-opioid receptor density and 

binding potential (Chen et al., 1993; Zubieta et al., 2003; Rakvåg et al., 2005; Reyes-

Gibby et al., 2007; Rakvag et al., 2008). In fact, there is an increased expression of µ-

opioid receptor at baseline, but during sustained pain they have a decreased activation of 

the µ-opioid system (Zubieta et al., 2003; Ross et al., 2008). Thus, an association of the 

Met allele with higher pain sensitivity and opioid requirement during sustained pain seems 

to be more consistent. These results also emphasize the importance of non-opioid 

systems in pain processing and opioids analgesic effect. In fact, higher levels of 

catecholamines and modulation of adrenergic receptors were already related to inhibition 

of morphine analgesia and hyperalgesia (Khasar et al., 1999; Kolesnikov et al., 2011), and 

β2/3-adrenergic antagonists can block pain sensitivity induced by COMT inhibition (Nackley 

et al., 2007; Tchivileva et al., 2010; Chu et al., 2012). The reason for finding differences in 
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the population for Val(108/158)Met SNP but not for the other SNPs analyzed may be due 

to a special feature of the  polymorphism itself: in a Caucasian population, the alleles have 

a similar frequency, which helps to overcome the small number of patients. In fact, a 

sampling of only 30 cases is sufficient for 80% power and 90% confidence interval, for the 

Val(108/158)Met SNP.  

When analyzing the patients with a global approach, small differences may not be 

revealed. Therefore, a detailed and individual analysis was performed, focusing in patients 

with the higher and lower opioid doses. Besides the referred SNPs, additional variants 

affecting OATP1A2 and UGT2B7 were analyzed, without significant results in the overall 

sampling (data not shown), together with morphine, M3G and M6G quantification. 

Reviewing all the patients, the individual with the higher opioid dose was receiving 800 

mg/day of morphine (Patient 1, low responder to morphine) and the patient with the lower 

opioid dose was controlled with 20 mg/day of morphine. Both patients presented bone 

metastatic disease, a painful condition, and were under similar treatment (morphine and 

adjuvant drugs). However, Patient 1 required a higher dose of morphine and still 

complained of lack of analgesic effect and breakthrough pain. Genetic differences were 

then analyzed and results are described in Study III. Firstly, the individual approach 

confirmed the previous obtained result for COMT Val(108/158)Met, with Patient 1 carrying 

the Met allele. Secondly, genetic variants in two additional molecules were pointed out, µ-

opioid receptor and UGT2B7. Genetic variants in OPRM1 were already correlated with 

morphine requirements, especially SNP A118G, with individuals carrying the A allele 

requiring lower doses of morphine to achieve a good and controlled analgesic effect 

(Klepstad et al., 2004; Reyes-Gibby et al., 2007; Sia et al., 2008; Tan et al., 2009), as in 

the case of Patient 2. Concerning UGT2B7, controversial results have been reported in 

relation to the linked SNPs C802T (His268Tyr) and T801A and its influence in UGT2B7 

activity (Holthe et al., 2002; Hirota et al., 2003; Sawyer et al., 2003; Saeki et al., 2004; 

Ross et al., 2005; Levesque et al., 2007; Parmar et al., 2011). While Patient 1 was a 

homozygous T801C802 (His268; UGT2B7*1), Patient 2 was a homozygous A801T802 

(Tyr268; UGT2B7*2), probably with lower glucuronidation capacity (Parmar et al., 2011). 

Accordingly, Patient 2 presented lower M3G/morphine and M6G/morphine ratios. As M3G 

and M6G have different and opposing pharmacologic activities, differences in morphine 

metabolism can lead to alterations in morphine analgesic activity. However, the real 

consequences of morphine metabolism variations in patients chronically administered with 

morphine are still unknown. In these specific cases, it seems that genetic variants in 

Patient 1 may lead to higher pain sensitivity, higher morphine requirements and altered 
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metabolism, helping to explain the difference between daily morphine doses and lack of 

analgesic effect.  

This case series also highlight some difficulties related with the study population, as the 

heterogeneity of the diagnosis and lack of previous clinical history, especially concerning 

drugs and doses, baseline pain severity before opioid treatment, titration of opioids and 

response to adjuvant drugs. Therefore, conclusions about tolerance or hyperalgesia 

cannot be taken. These difficulties were also present in Studies II and IV. Nevertheless, 

despite the different diagnosis, these two Patients had some characteristics that helped 

overcome the limitations, as similar conditions of mental and physical status, similar 

painful metastatic disease and being under treatment with the same opioid, but with 

different analgesic responses. Then, individual and more detailed analysis, as this case 

series presented, can contribute to evidence genetic differences that might otherwise go 

unnoticed, especially in such heterogeneous population. 

After the preliminary results of COMT in Study II and COMT, OPRM1 and UGT2B7 in 

Study III, genetic variants in cytokines were analyzed (Study IV). Several polymorphisms 

were analyzed in important pro- and anti-inflammatory molecules [IL-1α, IL-1β, IL-1 

receptor antagonist (IL-1Ra), IL-2, IL4 receptor (IL-4R), IL-6, IL-10, TNF-α and IFN-γ]. A 

significant association between IL1B C3954T SNP and cytokine serum levels, pain 

intensity, metastases and cancer diagnosis status was observed. IL-1β is expressed in 

nociceptive neurons of the dorsal root and, together with TNF-α, is one of the first 

cytokines to be released after injury, leading to the synthesis of several other inflammatory 

effectors, as cytokines, chemokines, prostanoids, neurotrophins, NO, kinins, lipids, ATP 

and members of the complement pathway. Also, this cytokine originates inhibition of 

GABA and glycine mechanisms, activation of bradikinin receptors and increase of AMPA 

and NMDA activity (Buvanendran et al., 2006; Cunha et al., 2007; de Oliveira et al., 2011; 

Paz Aparicio et al., 2011; Burada et al., 2013). All these actions lead to thermal, chemical, 

mechanical and inflammatory hyperalgesia. Additionally, an interference with morphine 

analgesia has been described (Shavit et al., 2005; Mika et al., 2008). 

Concerning the polymorphism C3954T, we found that carriers of C allele were related with 

higher pain intensity and higher serum levels of IL-1β. Additionally, patients diagnosed 

with breast, prostate cancer and multiple myeloma presented the highest levels of the 

cytokine, with a four-fold increase of the metastatic disease probability. Although IL-1β 

lead to the release of other pro-inflammatory cytokines, levels of IL-6, IL-8 and TNF-α 

were not correlated with IL-1β levels. These negative results may be due to the low 

number of individuals and some difficulties in cytokines quantification, especially TNF-α, 
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where the majority of patients had levels below the quantification limit of the test. Despite 

heterogeneity of the population and the small number of individuals (n = 75), the results 

are consistent and there is a high degree of agreement of the biochemistry, molecular 

biology and clinical data. More sensitive methods and an increase in the number of 

patients might reveal other differences within the population. Also, as IL-1α and IL-1Ra 

may have different roles in pain, IL-1Ra quantification should also be done in the future.   

Finally, the last study of this thesis was performed in an animal model (Study V). As it was 

already mentioned, and suggested in Study III, alterations in morphine metabolism might 

lead to different analgesic efficacy, either by drug interactions or genetic variations, but its 

relation is still unknown. Usually, an increase in drug metabolism may lead to a decrease 

of drugs effect; however morphine originates two pharmacologically active metabolites, 

with antagonic actions, making the outcome unpredictable. Thus, an attempt was made to 

study the influence of induction and inhibition of morphine metabolism in its analgesic 

effect in the guinea pig, reported as the best animal model to study morphine metabolism 

due to the similarity with human metabolic ratio (Yue et al., 1990; Andersen et al., 2002; 

De Gregori et al., 2012). The first observation of this study was the effective animal model 

developed. The metabolic ratios were in fact close to those obtained in human, the 

behavioral assessment (hot-plate test) was adequate and differences between the three 

groups (induced, inhibited and regular metabolism) were noticed. This animal model can 

then be used for several further acute/chronic studies of morphine metabolism modulation 

and analgesic effect, helping to understand morphine pharmacokinetics and its implication 

in the clinical practice.  

Second, and concerning the obtained results, it was possible to observe that the induction 

of morphine metabolism with TCDD led to higher metabolites concentration and metabolic 

ratios and higher thermal thresholds in behavioral assessment, while the metabolism 

inhibition assay with ranitidine led to opposite results. TCDD is well-known for its induction 

properties, especially enzymes involved in drug metabolism (Buckley and Klaassen, 2009; 

Yeager et al., 2009), but also for its high degree of toxicity in guinea pigs, which could be 

an influent factor in the behavioral assessment performed. Nevertheless, TCDD toxicity at 

the selected dose (1 µg/kg) is not relevant in short periods of time as the one used in this 

assay (three days) (Enan et al., 1996; Enan et al., 1998). The inducting effect of TCDD 

was demonstrated in this study, as well as a relation between an increase in morphine 

metabolism and an enhanced analgesic effect after a single administration of morphine, 

with 75 % of the TCDD-treated animals reaching the temperature cut-off value.  
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Concerning ranitidine, the chosen inhibitor, its effect on morphine metabolism has already 

been suggested, leading to a higher inhibition of M3G formation than M6G (McQuay et al., 

1990; Aasmundstad and Morland, 1998; Aasmundstad and Storset, 1998). A differential 

inhibition of morphine metabolism could be potentially beneficial for patients under 

treatment with morphine, highlighting the analgesic effect of morphine and M6G and 

reducing the neurotoxic and hyperalgesic effect of M3G. A slightly differential inhibition 

was observed in our experiment, but the overall metabolism was inhibited leading to lower 

metabolic ratios and significantly lower analgesic effect. In view of previous studies, the 

chosen morphine and ranitidine concentration may influence the inhibition effect and the 

rate formation of both metabolites (Aasmundstad and Morland, 1998) , suggesting the 

need of further studies to achieve a higher differential inhibition that may improve the 

analgesic effect instead of decreasing it, as it was observed.  

This in vivo study can help to understand the role and importance of M6G in analgesia, 

which has not always been consistent (Osborne et al., 1992; Portenoy et al., 1992; Tiseo 

et al., 1995; Klepstad et al., 2000; Quigley et al., 2003). Our results allowed us to 

hypothesize that after a single morphine administration, a higher rate of metabolites 

formation can provide a better analgesic effect, probably due to M6G. Also, the toxic 

effects of M3G, such as hyperalgesia, were not detected. However, the results may be 

different in chronic administration, where in a situation of very high levels the hyperalgesic 

effect of M3G may be predominant. This is probably the case of Patient 1 of the case 

series reported in this thesis (Chapter 5). Then, continuous modulation studies in the 

animal model with new acute and chronic administration protocols are required. 

The study of morphine pharmacokinetics seems extremely promising in order to improve 

its analgesic effect, especially by understanding the role of each compound to the final 

effect. Besides the very well-known analgesic effect of morphine and M6G by binding to µ-

opioid receptors, other effects have poorly understood mechanisms, especially the 

hyperalgesic effect of M3G. During persistent pain, several sensitizing agents are 

released, as cytokines. However, morphine and its metabolites can also influence the 

release of sensitizing agents, becoming a “vicious cycle”, which now must also be taken 

into account when studying opioids variability, as can be seen in Figure 16.  
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Figure 16. Global approach of morphine variability: variations in pain sensitivity and morphine 

pharmacodynamics and pharmacokinetics can lead to different final analgesic effects. M3G, 

morphine-3-glucuronide; M6G, morphine-6-glucuronide; NaV, voltage-gated sodium channels; 

NMDA N-Methyl-D-Aspartate; TLR4. 

 

It was already reported that morphine induces pro-inflammatory glial activation that can be 

related to a reduction in the analgesic effect, adverse effects and development of 

tolerance and dependence (Hutchinson et al., 2010). Recently, this pro-inflammatory 

response was suggested to be (at least, partially) via toll-like receptor 4 (TLR4), leading to 

up-regulation or release of pro-inflammatory cytokines (IL-1β, IL6, TNF-α) (Raghavendra 

et al., 2002; Hutchinson et al., 2010; Lewis et al., 2010; Wang et al., 2012). Also, M3G 

seemed to cause pain enhancement and hyperalgesia via TLR4 and IL-1β and enhanced 

NaV channels in sensory neurons, while M6G was devoid of those properties (Hutchinson 

et al., 2010; Lewis et al., 2010; Due et al., 2012). Agonist-activation of TLR4 can also 

enhance the release of CGRP and sensitize the TRPV1 receptor, which are involved in 

pain transmission and sensitization (Chapter 1) (Due et al., 2012), but the overall 

consequences of TLR4 activation by M3G are still unknown. All this mechanisms help to 

understand the very important role of M6G in acute morphine administration, as 

demonstrated in the study of Study V, and the hyperalgesic role that M3G can evidence in 

chronic administration, as hypothesized in the case series of Study III. Additionally, 
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Patient 1 of this case series also presented higher IL-6 and TNF-α (data not shown), 

which could be due to the very high dose of morphine and subsequent formation of M3G.  

The results obtained during this thesis highlight the important role that genetic variation in 

pain mechanisms can have in cancer-related pain relief. Moreover, it is necessary to 

realize the importance of observing all the results individually but also integrating them in 

a global view (Figure 16), analyzing SNPs linked to several phases of pain processing, in 

the same population, and performing additional in vivo studies that can replicate certain 

phenotypes, in order to obtain an overall perspective and predict the final analgesic effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTEGRATED DISCUSSION 
 

163 

4.2 References 

Aasmundstad TA, Morland J. Differential inhibition of morphine glucuronidation in the 3- 
and 6-position by ranitidine in isolated hepatocytes from guinea pig. Pharmacol 
Toxicol 1998; 82 (6): 272-9. 

Aasmundstad TA, Storset P. Influence of ranitidine on the morphine-3-glucuronide to 
morphine-6-glucuronide ratio after oral administration of morphine in humans. Hum 
Exp Toxicol 1998; 17 (6): 347-52. 

Andersen G, Christrup LL, Sjøgren P, Hansen SH, Jensen N-H. Changing M3G/M6G 
Ratios and Pharmacodynamics in a Cancer Patient During Long-Term Morphine 
Treatment. J Pain Symptom Manage 2002; 23 (2): 161-64. 

Buckley DB, Klaassen CD. Induction of mouse UDP-glucuronosyltransferase mRNA 
expression in liver and intestine by activators of aryl-hydrocarbon receptor, 
constitutive androstane receptor, pregnane X receptor, peroxisome proliferator-
activated receptor alpha, and nuclear factor erythroid 2-related factor 2. Drug Metab 
Dispos 2009; 37 (4): 847-56. 

Burada F, Dumitrescu T, Nicoli R, Ciurea ME, Angelescu C, Mixich F, et al. IL-1RN 
+2018T>C polymorphism is correlated with colorectal cancer. Mol Biol Rep 2013; 40 
(4): 2851-7. 

Buvanendran A, Kroin JS, Berger RA, Hallab NJ, Saha C, Negrescu C, et al. Upregulation 
of prostaglandin E2 and interleukins in the central nervous system and peripheral 
tissue during and after surgery in humans. Anesthesiology 2006; 104 (3): 403-10. 

Chen JF, Aloyo VJ, Weiss B. Continuous treatment with the D2 dopamine receptor 
agonist quinpirole decreases D2 dopamine receptors, D2 dopamine receptor 
messenger RNA and proenkephalin messenger RNA, and increases mu opioid 
receptors in mouse striatum. Neuroscience 1993; 54 (3): 669-80. 

Chu LF, Cun T, Ngai LK, Kim JE, Zamora AK, Young CA, et al. Modulation of remifentanil-
induced postinfusion hyperalgesia by the β-blocker propranolol in humans. PAIN 
2012; 153 974-81. 

Cunha TM, Verri WA, Jr, Fukada SY, Guerrero ATG, Santodomingo-Garzón T, et al. TNF-
α and IL-1β mediate inflammatory hypernociception in mice triggered by B1 but not 
B2 kinin receptor. Eur J Pharmacol 2007; 573 (1–3): 221-29. 

De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M. Morphine 
metabolism, transport and brain disposition. Metab Brain Dis 2012; 27 (1): 1-5. 

de Oliveira CM, Sakata RK, Issy AM, Gerola LR, Salomao R. Cytokines and pain. Rev 
Bras Anestesiol 2011; 61 (2): 255-9, 60-5, 137-42. 

Due M, Piekarz A, Wilson N, Feldman P, Ripsch M, Chavez S, et al. Neuroexcitatory 
effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J 
Neuroinflammation 2012; 9 (1): 200. 

Enan E, El-Sabeawy F, Overstreet J, Matsumura F, Lasley B. Mechanisms of gender-
specific TCDD-induced toxicity in guinea pig adipose tissue. Reprod Toxicol 1998; 
12 (3): 357-69. 

Enan E, Overstreet JW, Matsumura F, VandeVoort CA, Lasley BL. Gender differences in 
the mechanism of dioxin toxicity in rodents and in nonhuman primates. Reprod 
Toxicol 1996; 10 (5): 401-11. 

Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, et al. Sequence variability and 
candidate gene analysis in two cancer patients with complex clinical outcomes 
during morphine therapy. Drug Metab Dispos 2003; 31 (5): 677-80. 



CHAPTER IV   
 

164 

Holthe M, Klepstad P, Zahlsen K, Borchgrevink PC, Hagen L, Dale O, et al. Morphine 
glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and 
UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur J 
Clini Pharmacol 2002; 58 (5): 353-6. 

Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, et al. 
Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav 
Immun 2010; 24 (1): 83-95. 

Jensen KB, Lonsdorf TB, Schalling M, Kosek E, Ingvar M. Increased sensitivity to thermal 
pain following a single opiate dose is influenced by the COMT Val158Met 
polymorphism. PLoS ONE 2009; 4 (6): e6016. 

Khasar SG, McCarter G, Levine JD. Epinephrine Produces a β-Adrenergic Receptor-
Mediated Mechanical Hyperalgesia and In Vitro Sensitization of Rat Nociceptors. J 
Neurophysiol 1999; 81 (3): 1104-12. 

Klepstad P, Kaasa S, Borchgrevink PC. Start of oral morphine to cancer patients: effective 
serum morphine concentrations and contribution from morphine-6-glucuronide to the 
analgesia produced by morphine. Eur J Clin Pharmacol 2000; 55 (10): 713-9. 

Klepstad P, Rakvåg TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC, et al. The 
118 A > G polymorphism in the human µ-opioid receptor gene may increase 
morphine requirements in patients with pain caused by malignant disease. Acta 
Anaesthesiol Scand 2004; 48 (10): 1232-39. 

Kolesnikov Y, Gabovits B, Levin A, Voiko E, Veske A. Combined catechol-O-
methyltransferase and μ-opioid receptor gene polymorphisms affect morphine 
postoperative analgesia and central side effects. Anesth Analg 2011; 112 (2): 448-
53. 

Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. 
The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the 
pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy 
volunteers. Clin Pharmacol Ther 2007; 81 (3): 392-400. 

Lewis SS, Hutchinson MR, Rezvani N, Loram LC, Zhang Y, Maier SF, et al. Evidence that 
intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like 
receptor 4/MD-2 and interleukin-1beta. Neuroscience 2010; 165 (2): 569-83. 

Loggia ML, Jensen K, Gollub RL, Wasan AD, Edwards RR, Kong J. The catechol-O-
methyltransferase (COMT) val158met polymorphism affects brain responses to 
repeated painful stimuli. PLoS ONE 2011; 6 (11): e27764. 

McQuay HJ, Carroll D, Faura CC, Gavaghan DJ, Hand CW, Moore RA. Oral morphine in 
cancer pain: influences on morphine and metabolite concentration. Clin Pharmacol 
Ther 1990; 48 (3): 236-44. 

Mika J, Korostynski M, Kaminska D, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, et 
al. Interleukin-1 alpha has antiallodynic and antihyperalgesic activities in a rat 
neuropathic pain model. Pain 2008; 138 (3): 587-97. 

Mobascher A, Brinkmeyer J, Thiele H, Toliat M, Steffens M, Warbrick T, et al. The 
val158met polymorphism of human catechol-O-methyltransferase (COMT) affects 
anterior cingulate cortex activation in response to painful laser stimulation. Mol Pain 
2010; 6 (1): 32. 

Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol-O-
methyltransferase inhibition increases pain sensitivity through activation of both β2- 
and β3-adrenergic receptors. PAIN 2007; 128 (3): 199-208. 



INTEGRATED DISCUSSION 
 

165 

Osborne R, Thompson P, Joel S, Trew D, Patel N, Slevin M. The analgesic activity of 
morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34 (2): 130-8. 

Parmar S, Stingl JC, Huber-Wechselberger A, Kainz A, Renner W, Langsenlehner U, et 
al. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant 
epirubicin treatment in breast cancer. Breast Cancer Res 2011; 13 (3): R57. 

Paz Aparicio J, Fernandez Bances I, Lopez-Anglada Fernandez E, Montes AH, Paz 
Aparicio A, Pena Vazquez J, et al. The IL-1beta (+3953 T/C) gene polymorphism 
associates to symptomatic lumbar disc herniation. Eur Spine J 2011; 20 (Suppl 3): 
383-9. 

Portenoy RK, Thaler HT, Inturrisi CE, Friedlander-Klar H, Foley KM. The metabolite 
morphine-6-glucuronide contributes to the analgesia produced by morphine infusion 
in patients with pain and normal renal function. Clin Pharmacol Ther 1992; 51 (4): 
422-31. 

Quigley C, Joel S, Patel N, Baksh A, Slevin M. Plasma concentrations of morphine, 
morphine-6-glucuronide and morphine-3-glucuronide and their relationship with 
analgesia and side effects in patients with cancer-related pain. Palliat Med 2003; 17 
(2): 185-90. 

Raghavendra V, Rutkowski MD, DeLeo JA. The Role of Spinal Neuroimmune Activation in 
Morphine Tolerance/Hyperalgesia in Neuropathic and Sham-Operated Rats. J 
Neurosci 2002; 22 (22): 9980-89. 

Rakvag T, Ross J, Sato H, Skorpen F, Kaasa S, Klepstad P. Genetic variation in the 
Catechol-O-Methyltransferase (COMT) gene and morphine requirements in cancer 
patients with pain. Mol Pain 2008; 4 (1): 64. 

Rakvåg TT, Klepstad P, Baar C, Kvam T-M, Dale O, Kaasa S, et al. The Val158Met 
polymorphism of the human catechol-O-methyltransferase (COMT) gene may 
influence morphine requirements in cancer pain patients. PAIN 2005; 116 (1–2): 73-
78. 

Reyes-Gibby CC, Shete S, Rakvåg T, Bhat SV, Skorpen F, Bruera E, et al. Exploring joint 
effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and 
COMT gene. PAIN 2007; 130 (1–2): 25-30. 

Ross JR, Riley J, Taegetmeyer AB, Sato H, Gretton S, du Bois RM, et al. Genetic 
variation and response to morphine in cancer patients. Cancer 2008; 112 (6): 1390-
403. 

Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, et al. Clinical response to 
morphine in cancer patients and genetic variation in candidate genes. 
Pharmacogenomics J 2005; 5 (5): 324-36. 

Saeki M, Saito Y, Jinno H, Tanaka-Kagawa T, Ohno A, Ozawa S, et al. Single nucleotide 
polymorphisms and haplotype frequencies of UGT2B4 and UGT2B7 in a Japanese 
population. Drug Metab Dispos 2004; 32 (9): 1048-54. 

Sawyer MB, Innocenti F, Das S, Cheng C, Ramirez J, Pantle-Fisher FH, et al. A 
pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in 
patients receiving morphine. Clin Pharmacol Ther 2003; 73 (6): 566-74. 

Shavit Y, Wolf G, Goshen I, Livshits D, Yirmiya R. Interleukin-1 antagonizes morphine 
analgesia and underlies morphine tolerance. Pain 2005; 115 (1-2): 50-9. 

Sia AT, Lim Y, Lim ECP, Goh RWC, Law HY, Landau R, et al. A118G Single Nucleotide 
Polymorphism of Human mu-Opioid Receptor Gene Influences Pain Perception and 
Patient-controlled Intravenous Morphine Consumption after Intrathecal Morphine for 
Postcesarean Analgesia. Anesthesiology 2008; 109 (3): 520-26. 



CHAPTER IV   
 

166 

Tan E-c, Lim E, Teo Y-y, Lim Y, Law H-y, Sia A. Ethnicity and OPRM variant 
independently predict pain perception and patient-controlled analgesia usage for 
post-operative pain. Mol Pain 2009; 5 (1): 32. 

Tchivileva IE, Lim PF, Smith SB, Slade GD, Diatchenko L, McLean SA, et al. Effect of 
catechol-O-methyltransferase polymorphism on response to propranolol therapy in 
chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, 
crossover pilot study. Pharmacogenet Genomics 2010; 20 (4): 239-48. 

Tiseo PJ, Thaler HT, Lapin J, Inturrisi CE, Portenoy RK, Foley KM. Morphine-6-
glucuronide concentrations and opioid-related side effects: a survey in cancer 
patients. Pain 1995; 61 (1): 47-54. 

Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, et al. Morphine 
activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U 
S A 2012; 109 (16): 6325-30. 

Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD. Introducing the "TCDD-inducible 
AhR-Nrf2 gene battery". Toxicol Sci 2009; 111 (2): 238-46. 

Yue Q, von Bahr C, Odar-Cederlof I, Sawe J. Glucuronidation of codeine and morphine in 
human liver and kidney microsomes: effect of inhibitors. Pharmacol Toxicol 1990; 66 
(3): 221-6. 

Zubieta J-K, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, et al. COMT val158met 
genotype affects µ-opioid neurotransmitter responses to a pain stressor. Science 
2003; 299 (5610): 1240-43. 

 



 

 

 

 

 

 

 

 

CHAPTER V 
 

CONCLUSIONS 

 
O

NCH3

HO

HO

Morphine



 

 

 
 
 
 
 



CONCLUSIONS 
 

169 

After an overall analysis of this thesis results, several conclusion can be drawn: 

 

a) The construction of an accurate database for cancer pain patients was initiated, with 

clinical history and pain questionnaire; 

 

b) A simple, sensitive, precise and accurate method for the quantification of morphine, 

M3G and M6G in several antemortem and postmortem matrices was developed; 

 

c) Exploratory studies were made, based on several SNPs in important genes as opioid 

receptors (OPRM1), metabolizing enzymes (UGT2B7), transporters (MDR1) and pain 

modulators (COMT and several cytokines). The important contribution of non-opioid 

systems to opioid requirements was concluded, based on the influence of COMT 

genetic variation; 

 
d) The influence of proinflammatory mediators was also observed, with genetic variation 

in IL1B being correlated with cytokine levels, pain intensity and cancer diagnosis 

status, suggesting this cytokine as a pain effector and cancer biomarker; 

 

e) The relevance of case reports/series was also evidenced as an important tool to 

unveil masked differences and formulate new hypothesis in the population. Also, with 

the individual analysis, the contribution of genetic variants in µ-opioid receptor and 

UGT2B7 was observed, as well as the importance of additional morphine and 

metabolites quantification; 

 

f) A successful animal model was developed, allowing the study of morphine 

metabolism and behavioral assessment; 

 
g) Induction and inhibition of morphine metabolism was correlated with morphine 

analgesic effect: 

 
- TCCD inductive effect led to an improve of the analgesia, after a single morphine 

administration, highlighting the important role of M6G on pain relief; 
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- Differential inhibition was slightly obtained with ranitidine, but the overall 

metabolism inhibition was predominant, diminishing morphine analgesic effect 

after single administration. 

 

 

i) The modulation of morphine metabolism has shown to influence its analgesic effect in 

guinea pigs, suggesting the importance of genetic variants or co-administered drugs 

that can alter morphine analgesic effect and the importance of this developed model 

for further studies in order to improve morphine analgesia in clinical practice. 
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Future studies are required in order to confirm and understand these initial results. 

Regarding human clinical studies, the recruitment of patients must continue, as a larger 

number of individuals are necessary to confirm the preliminary positive and negative 

results and to allow multiple testing along the several SNPs. New polymorphisms should 

also be analyzed, especially those related with catecholaminergic and serotoninergic 

systems, morphine metabolism and other pain modulators, as TRP channels. Concerning 

the developed animal model, its future implications are attractive. Metabolites 

quantification in animals’ organs should be performed, along with a more detailed study of 

the inhibition and induction mechanisms. Further new acute and chronic studies should be 

performed to understand the roles of each metabolite, which ultimately could represent a 

new independent drug. Additionally, new and promising drugs could be tested in order to 

modulate morphine metabolism and achieve a differential inhibition or induction or to 

enhance morphine analgesia by diminishing pain sensitivity (e.g. drugs that can modulate 

the catecholaminergic system). 

Pain transmission and perception along with opioids action are very complex traits. 

Continuous research can lead to a better understand of the interindividual variability in 

response to opioids and how to improve the pain management, selecting the best opioid 

and dose adjustment to the therapy. Finally, the aim would be to improve patients’ quality 

of life by applying a tailored-pain treatment.   

 

 

 

 

 

 

 

 

 

 

 



 

 

 


