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1 CNRS FR3636, Université Paris Descartes, Paris, France, 2 Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal,

3 Department of Sciences, Advanced Institute of Health Sciences – North (ISCS-N), CESPU, CRL, Gandra, Portugal, 4 Molecular Oncology GRP and Virology LB, Instituto

Português de Oncologia-Porto, Porto, Portugal, 5 Departamento de Medicina Legal e Ciências Forenses, Faculdade de Medicina, Universidade do Porto, Porto, Portugal,
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Abstract

Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human
primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were
infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases
of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of
effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel
lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the
production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the
frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population
expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B
cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling
the production of specific IgG. However, at chronic infection these populations contracted impacting the production of
parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host
and a mechanistic basis for the inefficient humoral response during VL.

Citation: Rodrigues V, Laforge M, Campillo-Gimenez L, Soundaramourty C, Correia-de-Oliveira A, et al. (2014) Abortive T Follicular Helper Development Is
Associated with a Defective Humoral Response in Leishmania infantum-Infected Macaques. PLoS Pathog 10(4): e1004096. doi:10.1371/journal.ppat.1004096

Editor: Guido Silvestri, Emory University, United States of America

Received May 11, 2013; Accepted March 12, 2014; Published April 24, 2014

Copyright: � 2014 Rodrigues et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by an ANR (Agence Nationale de la Recherche) grant (LeishApo) and the Seven Framework Programme (KINDReD) to JE. JE
thanks the Canada Research Chair program for financial assistance. VR is supported by a doctoral fellowship from FCT (Fundação para a Ciência e Tecnologia);
code SFRH/BD/64064/2009. RS is supported by Programa Ciência – financed by Programa Operacional Potencial Humano POPH – QREN– Tipologia 4.2 –
Promocão do Emprego Cientı́fico, co-funded by Fundo Social Europeu and National funding from Ministry of Science, Technology and Higher Education (MCTES).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rleal@ibmc.up.pt (RS); estaquier@yahoo.fr (JE)
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Introduction
Visceral leishmaniasis (VL) is a chronic and potentially fatal

infectious disease caused by the protozoan parasite Leishmania

infantum/chagasi or L. donovani. The generalized spread of the parasite

to the reticuloendothelial system (spleen, liver and bone marrow)

results in a clinical picture including weight loss, cyclic fever, hepatos-

plenomegaly, anemia and hypergammaglobulinemia [1]. Studies in

murine models revealed that recovery from VL is crucially dependent

on the development of a robust cellular-mediated immunity, with the

production of cytokines such as IFN-c and TNF as central

components of the protective response [2]. In contrast, parasite

persistence and chronicity are associated with the induction of

immune suppressive mediators, such as IL-10 and TGF-b [3,4].

Inbred mice strains invariably control infections with viscerotropic

Leishmania species and develop a life-long latent infection [5],

contrasting with the potentially fatal human VL in which progressive

illness develops, even in the presence of detectable levels of IFN-c
and TNF in lesional tissue [3,6–8]. Therefore, despite the notable

usefulness of murine models, new insights into the immunopatho-

genesis of VL would potentially benefit from a more frequent

employment of alternative animal models [9]. Non-human primates

(NHP) constitute powerful experimental models for understanding

host-pathogen interactions that are not directly observable in human

patients, particularly the early events after infection which are usually

poorly characterized in humans [10–12]. Concerning leishmaniasis,

the Asian rhesus macaque has already been shown to mimic human

VL [13], and NHP models are routinely used for pre-clinical

evaluation of novel drug and vaccine candidates [14].

The role played by antibodies and B cells during leishmaniasis

has always been contentious. High titers of both Leishmania-specific
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and non-specific antibodies are a recurrent finding in patients [15],

implying the development of strong humoral response during

infection. While several reports in mice models have revealed an

increased resistance to infection upon B cell depletion [16–18],

others have proposed protective roles for B cells and/or antibodies

[19,20].

Upon binding and internalization of specific antigen, B cells

generally depend on cognate interactions with CD4 T cells to

differentiate into antibody-producing plasma cells (PCs) [21]. The

activated B cell can either follow the follicular pathway and form a

germinal center (GC), or differentiate into an extra-follicular focus

of immunoglobulin (Ig)-secreting PCs. While the GC pathway

generates long-lived memory B cells as well as PCs that produce

antibodies with high affinity for the antigen, the extra-follicular

pathway is generally associated with short-lived plasmablasts and

PCs that secrete antibodies of modest affinity, but nevertheless

provides an early source of antibody that might be critical during

infection [21,22]. Recent studies have greatly increased our

knowledge on the biology of GC-associated CD4 T cells, also

known as T follicular helper cells (Tfh). Tfh cells are phenotyp-

ically characterized by expression of the follicular-homing

chemokine receptor CXCR5, the transcriptional repressor Bcl-6

and an array of surface molecules that include ICOS, CD40L and

PD-1 [23,24]. These cells produce high levels of IL-21, a crucial

mediator in the development of affinity-matured and class-

switched B cells, as well as in the differentiation of long-lived

plasma cells [21,25]. In contrast, much less is known about the

functional and phenotypic characteristics of the CD4 T cell

helpers associated with extra-follicular antibody responses. Fur-

thermore, infections with several types of pathogens, including

Leishmania spp., induce strong polyclonal B cell activation, in a

process independent of T cell help, that results in copious secretion

of non-specific and potentially auto-reactive antibody [26].

Despite the strong humoral response that is usually associated

with VL, the mechanisms underlying antibody production remain

poorly explored.

To address these questions we performed a detailed immuno-

logical analysis in rhesus macaques infected with L. infantum.

Tracking the CD4 T cell responses overtime revealed that parasite

containment in visceral compartments during the acute phase was

associated with the differentiation of splenic CD4 T cells and their

increased expression of Th1-related transcripts. The acute

expansion of a splenic CD4 T cell population expressing CXCR5

and Bcl-6, but not PD-1, was associated with the differentiation of

activated memory B cells and production of parasite-specific IgG.

These cells were localized in B cell areas and closely paralleled the

development of germinal centers. In the chronic phase, parasite

dissemination and growth were concomitant with IL10 mRNA

accumulation in lymphoid tissues. Furthermore, the splenic

CXCR5+Bcl-6+ CD4 T cell population contracted, which was

paralleled by loss of the activated memory B cells, impacting the

production of parasite-specific antibodies, despite the chronic

persistence of hypergammaglobulinemia.

Results

Parasite load dynamics and pathology in L. infantum-
infected rhesus macaques

First, we monitored over time the progression of a variety of

parameters in our model of rhesus macaques intravenously

infected with a high dose of L. infantum promastigotes. Parasite

load was assessed during the course of infection employing a

quantitative PCR (qPCR) assay [27]. Parasite clearance was

evident in the blood during the first weeks of infection, with a

steady decrease in parasitemia from about 400 parasites per

million of host cells at day 7 post-infection (pi), to less than 20 at

day 28 (Fig. 1A). Yet, blood parasite numbers rebounded as the

infection progressed towards late stages, being, by day 250 pi, at a

level comparable to that of day 7 and significantly higher than at

day 28 pi (Fig. 1A, P,0.05).

Parasites were hardly detectable in lymph nodes (LNs) during

the first weeks of infection (Fig. 1B). However, a significant

increase in the parasite burden occurred during the chronic phase

(P,0.001), revealing a pattern of parasite growth and/or infected

cell migration to the LNs during chronic infection (Fig. 1B). In the

bone marrow (BM), the parasite load kinetics was reminiscent of

that found during the early weeks in peripheral blood, with an

apparent early clearance phase resulting in a scarcity of parasites

by day 28 pi. Similarly to the situation in LNs, a significant

increase in parasite burden was found as the infection advanced

towards the chronic phase (P,0.001; Fig. 1C).

In the spleen and liver the parasite burden remained relatively

constant during the acute phase (Fig. 1D–E). Yet, during chronic

infection we found an increase in parasite numbers in these

organs, albeit not statistically significant (Fig. 1D–E).

Weight loss and intermittent fever were not observed in infected

animals during the time-course of our experiments (not shown).

Yet, the animals developed a transient state of anemia during the

first weeks after inoculation, with a reduction in erythrocyte

number (Fig. 2A), hematocrit values and blood hemoglobin (Fig.

S1A–B). Additionally, an early and transient neutrophilia was

detected (Fig. 2B), accompanied by increased levels of serum

markers of acute phase response such as C-reactive protein (CRP;

Fig. 2C) and the complement factors C3 and C4 (Fig. 2D–E).

Hepatocellular damage was detected at late stages of infection, as

revealed by elevated serum levels of alanine transaminase (ALT;

Fig. 2F), albeit without any signs of biliary tract disease, as

indicated by normal levels of c-glutamil-transaminase (Gamma-

GT) and total bilirubin (TBil, Fig. S1C–D) or the absence of

hepatic synthetic function abnormalities (normal levels of serum

albumin and total serum protein; (Fig. S1E–F).

Author Summary

We introduced a non-human primate model for visceral
leishmaniasis by intravenous injection of L. infantum
promastigotes in rhesus macaques and followed the
animals for a period of eight months. In this model,
parasites dock to the liver and spleen shortly after
inoculation and remain in these visceral compartments
during all the acute phase of infection. However, at the
chronic phase, additional body locations appeared colo-
nized (lymph nodes, bone marrow). During the acute
phase, a Th1-polarized CD4 T cell response develops in the
spleen, but, and concomitant with parasite growth, it
waned at the chronic phase. Furthermore, we observed
the acute expansion of a splenic T follicular helper (Tfh) cell
population, a CD4+ T cell subset specialized to assist B cells
in the production of antigen-specific antibody. These cells
were localized in close association with B cell follicles but,
interestingly, the Tfh population is lost at the chronic
phase. Nevertheless, there was a close association
between the development of Tfh cells and the differen-
tiation of B cells that produce L. infantum-specific IgG.
Thus, our results suggest that Tfh cells are important in
instructing B cells to produce parasite-specific antibodies
during VL, but their abortive differentiation precludes the
continuous production of specific-IgG.

Tfh Cells during Visceral Leishmaniasis
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Figure 1. Kinetics of parasite load in L. infantum-infected rhesus macaques. Parasite kinetoplast DNA was quantified during the course of
infection by qPCR in the (A) blood, (B) lymph nodes, (C) bone marrow, (D) spleen and (E) liver of infected macaques. Data presented as mean 6 SEM
of 4–8 (blood) or 2–4 (tissues) macaques per time-point. Statistics performed using a one-way analysis of variation (ANOVA) followed by a
Bonferroni’s post-hoc test.
doi:10.1371/journal.ppat.1004096.g001

Figure 2. L. infantum infection elicits an acute phase response and chronic hepatocellular damage in rhesus macaques. (A–B) Blood
samples were collected for cellular enumeration at the indicated time points using a Coulter LH 500 hematology analyzer; (A) erythrocytes, (B)
neutrophils. (C–F) Serum samples from rhesus macaques were collected at the indicated time points and the following analytes quantified; (C) c-
reactive protein (CRP), (D) complement component 3 (C3), (E) complement component 4 (C4) and (F) alanine transaminase (ALT). Each dot represents
an individual macaque. Statistics performed using one-way ANOVA followed by a Bonferroni’s post-hoc test.
doi:10.1371/journal.ppat.1004096.g002

Tfh Cells during Visceral Leishmaniasis
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Figure 3. CD4 T cell dynamics in L. infantum-infected rhesus macaques. Flow cytometry was employed to determine the percentage of
CD3+CD4+ T cells in the (A, left panel) spleen, (B) blood and (C) lymph nodes. (A, right panel) Total number of splenic CD3+CD4+ T cells. (D)
Representative plots depicting the expression of CD62L and CD45RA in splenic CD3+CD4+ T cells during infection. (E) Histograms present the mean 6
SEM percentage during infection of naı̈ve (CD45RA+CD62L+), central memory (CD45RA2CD62L+), effector memory (CD45RA2CD62L2) and terminally
differentiated (CD45RA+CD62L2) CD3+CD4+ T cells in the spleen (upper panel), blood (middle panel) and lymph node (lower panel) CD4 T cells. (F)
Graphics show the mean 6 SEM of CD95 surface expression (white bars) and the percentage of annexin-positive CD3+CD4+ T cells after treatment
with Fas ligand, 100 ng/ml (closed triangles), or vehicle (closed squares) in the spleen (upper panel), blood (middle panel) and LNs (lower panel). Plots
present data from 4–8 (blood) or 2–4 (spleen, lymph node) macaques per time-point. Statistical analysis performed using one-way ANOVA followed
by a Bonferroni’s post-hoc test.
doi:10.1371/journal.ppat.1004096.g003

Tfh Cells during Visceral Leishmaniasis
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Collectively, our data point to a time-dependent and organ-

specific establishment of L. infantum in rhesus macaques, with early

parasite colonization of visceral compartments and posterior

migration and/or growth in LNs.

L. infantum infection of rhesus macaques drives the
expansion and differentiation of splenic CD4 T cells

CD4 T cells are crucial mediators of both protective and

pathological immune responses during VL [2]. In rhesus

macaques infected with L. infantum, the percentage of CD4 T

cells in the spleen was significantly increased 11 days after

infection (Fig. 3A, P,0.05), which resulted in a 3-fold increase in

their total numbers that were thereafter maintained at constant

levels (Fig. 3A). Despite the drastic increase in splenic CD4 T cells,

the occurrence of splenomegaly was not evident in infected

animals during the course of the experiments (not shown). In

contrast, no significant variations occurred in the total numbers

(not shown) or frequencies of CD4 T cells in the blood (Fig. 3B)

and LNs (Fig. 3C).

By assessing the differentiation phenotype of CD4 T cells we

observed that, in the spleen, L. infantum infection induced a

significant decrease in the percentage of naı̈ve (CD62L+

CD45RA+) CD4 T cells, at days 28 and 250 pi (Fig. 3D–E upper

panel, P,0.05). This was paralleled by an increase in the

percentage of CD4 T cells with an effector memory phenotype

(CD62L2 CD45RA2, P,0.05), while the frequencies of terminal

effector (CD62L2 CD45RA+) and central memory (CD62L+

CD45RA2) CD4 T cells remained roughly constant throughout

infection (Fig. 3D–E, upper panel). In contrast, no significant

alterations were detected in the differentiation phenotype of CD4

T cells in the blood or LNs during both acute and chronic stages of

infection (Fig. 3E middle and lower panels).

T cell differentiation is usually associated with increased

susceptibility to Fas-mediated apoptosis [28]. By quantifying

annexin V binding, we observed that the susceptibility of splenic

CD4 T cells to undergo apoptosis, upon exposure to exogenous

FasL, increased significantly at days 28 and 250 pi (Fig. 3F, upper

panel, P,0.05). Interestingly, the surface expression of CD95 (Fas

receptor) was found to parallel the susceptibility to FasL-mediated

death (Fig. 3F, upper panel, P,0.05). As expected, no significant

alterations were found in the sensitivity of blood and LNs CD4 T

cells to FasL-mediated apoptosis or in their CD95 expression

(Fig. 3F, middle and lower panels). Despite the differentiation and

increased sensitivity of splenic CD4 T cells to FasL-mediated

apoptosis, splenic, blood or LN CD4 T cells of infected macaques

were not more prone to apoptotic death in the absence of the

apoptotic stimulus (Fig. 3F). This suggested the inexistence of

death-receptor signaling in vivo, prompting us to analyses the levels

of FasL in infected macaques. In agreement, neither the serum

FasL levels, nor its splenic or LN transcript were found increased

after infection (Fig. S2A–C). Globally, the results presented point

to an early expansion and differentiation of the splenic CD4 T cell

pool towards an effector memory phenotype after L. infantum

infection.

A Th1-polarized cytokinic profile is induced in the spleen
early after infection, but converts to an IL10-dominated
environment during the chronic phase

We evaluated the gene expression levels of a panel of cytokines

and transcription factors in total splenic mononuclear cells

(SMCs). The qPCR analysis demonstrated a biphasic response

with induction of Th1-related transcripts during the acute phase

that converted to an IL10-enriched environment during the

chronic phase (Fig. S3A–I). In agreement with previous studies

[3,8], we did not observe any modification in the transcript levels

of the genes encoding the Th2-related cytokines IL-4 and Il-13 or

the Th2 master regulator GATA-3 (Fig. S3D–F).

Given the prominent expansion and differentiation of CD4 T

cells in the spleen of L. infantum-infected macaques (Fig. 3D–E), we

evaluated the expression of the same genes in sorted splenic CD4

T cells. We detected significant 3- and 2.5-fold elevations for IFNG

and TBX21 (T-bet) transcripts, respectively and a non-significant

2-fold increase in TNF expression at day 28 pi (Fig. 4A–B,

P,0.05), indicating CD4 T cells as a source of these Th1-

associated factors during the acute phase. This molecular signature

was found to be transient and the expression of IFNG and TBX21

declined during the chronic phase (Fig. 4A–B). As before, no

significant modifications were observed in the transcript levels of

Th2-associated transcripts, in sorted splenic CD4 T cells, even

though non-significant 2-fold increases in IL4 and GATA3

occurred at day 28 pi (Fig. 4D–F).

Emerging evidence has associated increased lymphoid expres-

sion of the immunosuppressive IL-10 and TGF-b cytokines as

underlying factors responsible for parasite persistence and

chronicity in leishmaniasis [29–31]. We observed a significant

2.5-fold increase in the IL10 transcript in sorted splenic CD4 T

cells at day 250 after infection (P,0.05), with no changes in the

expression of TGFB1 (Fig. 4H). Moreover, we failed to detect any

significant modification in the expression levels of FOXP3, the

master transcription factor for Treg differentiation, suggesting a

FoxP3 negative phenotype for the splenic IL-10-producing CD4 T

cells during VL in NHP, as previously suggested in both

experimental mice models and natural human infections [31–33].

In LNs, we failed to detect any significant changes in the mRNA

levels of Th1 or Th2-related cytokines or transcription factors in

both total and sorted CD4 T cells during infection (Fig. 4A–F and

Fig. S3A–F). Interestingly, a significant 2-fold increase on the

expression of IL10 occurred at day 250 pi in total LN cells (Fig.

S3G, P,0.05), concomitant with the parasite multiplication in

these organs (Fig. 1B). We further observed a marginally non-

significant increase in the transcript of TGFB1 during the chronic

phase (Fig. S3H, P = 0.058). However, in sorted LN CD4 T cells

none of these transcripts underwent significant induction at the

chronic phase (Fig. 4G–H). Finally, we observed an increase, albeit

not-statistical, in the FOXP3 transcript both in total LN cells and

sorted CD4 T cells (Fig. 4H–I and Fig. S3H–I). An environment

enriched in IL-10 and TGF-b may provide a safe niche for the

parasite, hence explaining the ramping increase in parasite load in

LNs during chronic infection.

L. infantum infection of rhesus macaques induces the
production of non-specific IgG concomitant with
defective B cell maturation and curtailed development of
germinal centers

To further characterize the immune events in L. infantum-

infected rhesus macaques we quantified the serum levels of total

and L. infantum-specific IgM and IgG (Fig. 5A–B). A non-

significant increase in total serum IgM occurred during acute

infection, with the levels falling back to steady state by day 60 pi

(Fig. 5A). This was paralleled by a significant increase of L.

infantum-specific IgM up to the 11th day pi (Fig. 5A), which

subsequently decreased to pre-infection levels. The total levels of

serum IgG were significantly elevated at every time point

evaluated after infection (Fig. 5B), demonstrating that the classical

hypergammaglobulinemia observed during VL [1] rapidly devel-

ops upon infection. Nevertheless, this does not reflect the

Tfh Cells during Visceral Leishmaniasis
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development of a sustained L. infantum-specific IgG response, as

only modest increases were observed in the serum levels of L.

infantum-specific IgG, and these were confined to the early stages of

infection (Fig. 5B). Importantly, during the chronic phase, while

total IgG remained high, the levels of L. infantum-specific IgG

returned to pre-infection levels, indicating a weak production of

parasite-specific IgG.

Given that the spleen was colonized by parasites during both

early and late stages of infection (Fig. 1C) and that it is the major

organ of B cell differentiation [34], we sought to explore in detail

the splenic B cell dynamics during the course of infection. No

significant variations occurred in the total number of splenic B

cells during infection (Fig. 5C). Next, we discriminated four

distinct B cell populations, based on their differentiation status,

Figure 4. Gene expression profile of CD4 T cells in the spleen and LNs during L. infantum infection of rhesus macaques. The relative
transcript levels in sorted CD4 T cells from the spleen (upper panels) and LNs (lower panels) were determined by qPCR in non-infected animals and
after 11, 28 and 250 days of infection. Results are shown as mean 6 SEM of the fold change over the non-infected samples. (A) IFN, (B) TBX21, (C) TNF,
(D) IL4, (E) IL13, (F) GATA3, (G) IL10, (H) TGFB1 and (I) FOXP3. Plots present data from 2–4 animals per time-point. Statistics performed by one-way
ANOVA followed by a Bonferroni’s post-hoc test.
doi:10.1371/journal.ppat.1004096.g004

Tfh Cells during Visceral Leishmaniasis
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[35,36] and followed their dynamics throughout infection. A

significant decrease in the percentage of naı̈ve (CD21+CD272)

splenic B cells was observed at days 28 and 250 after infection

(P,0.05; Fig. 5D–E). This decrease was accompanied by increases

in the frequencies of immature (CD212CD272) and effector

memory (CD212CD27+) B cells (Fig. 5D–E). Interestingly, during

the chronic phase only the immature population remained

significantly elevated when compared with the level at t = 0

(P,0.05), while the effector memory population contracted

(Fig. 5D–E). Finally, no significant variations occurred in the

resting memory (CD21+CD27+) subset of B cells throughout

infection (Fig. 5D–E).

Loss of CD45RA expression in B cells is an early marker of B

cell activation and differentiation into an Ig-secreting cell [37,38].

Indeed, we observed a significant increase in the percentage of

splenic B cells having lost CD45RA expression after infection

(Fig. 5F). We thus addressed the expression of CD45RA in the

previously defined B cell subsets. In the naı̈ve and resting memory

B cell subsets, no significant loss of CD45RA was observed

throughout infection (not shown). On the other hand, a marked

downregulation of CD45RA occurred after infection in the

immature and effector memory subsets (Fig. 5G–H). Overall,

among the total splenic B cell pool, L. infantum infection induced a

significant increase in the frequency of immature/activated B cells

(here defined as CD212CD272CD45RA2) that persisted during

chronic infection. In contrast, the activated/memory

(CD212CD27+CD45RA2) B cell population peaked at day 28

pi but declined at the chronic phase. We found a significant

positive correlation between the levels of L. infantum-specific serum

IgG and the frequency of CD212CD27+CD45RA2 splenic B cells

(Rs = 0.9291, P = 0.0001) (Fig. 5I), but not with the percentages of

CD212CD272CD45RA2 B cells (Fig. 5I). Thus, our results

suggest that a failure to maintain the activated memory B cell

population may underlie the poor production of parasite-specific

IgG.

As increased expression of CD27 in splenic B cells is considered

an indication of GC experience [39], we performed tissue

immunofluorescence in splenic sections retrieved from naı̈ve,

acutely and chronically-infected monkeys to explore the dynamics

of GC development during infection (Fig. 6). The visualization of

B and T cell areas as well as GC morphology and numbers during

the course of infection was achieved by multiparametric analysis of

splenic sections stained for CD3, CD20, IgD and Ki-67 [40]. The

number and relative size of the GCs observed in naı̈ve animals

increased shortly after infection (Fig. 6A–B and 6E–F), peaking by

one month after parasite inoculation (Fig. 6C, 6E–F and S4). At

this time point, the increase in GC size was clear as noted by the

enlarged central area harboring Ki-67+ proliferating cells and the

peripheral localization of IgD+ naı̈ve B cells that are excluded from

the ongoing GC reaction (Fig. 6C). At the chronic phase, we

observed a moderate remodeling of splenic architecture with less

defined T and B cell areas (Fig. 6D). Additionally, we observed an

increased number of Ki-67+ cells scattered throughout both B and

T cells areas, suggestive of widespread immune activation.

Overall, the decrease in the frequency of splenic activated memory

B cells (CD212CD27+CD45RA2) at the chronic phase (Fig. 5H)

was paralleled by a decrease in the number and average size of

germinal centers (Fig. 6D and 6E).

Contrasting with the spleen, in lymph nodes, B cell differenti-

ation was negligible with essentially all cells maintaining a naı̈ve

CD21+CD272CD45RA+ phenotype throughout infection (Fig.

S5). Accordingly, tissue immunofluorescence and GC quantifica-

tion revealed no relevant changes in the number, size or

morphology of lymph node-associated GCs (Fig. S6).

L. infantum infection induces transient expansion of a
CXCR5+BCL6+ splenic CD4 T cell population associated
with parasite-specific antibody production

The shortened duration of the Leishmania-specific antibody

response associated with defective differentiation of the splenic B

cell pool and curtailed development of germinal centers (Fig. 5)

prompted us to explore the dynamics of Tfh-associated factors in

the spleen of L. infantum-infected rhesus macaques. The transcript

levels of CXCR5 and BCL6 were significantly augmented in sorted

splenic CD4 T cells at day 28 pi, with CXCR5 levels remaining

elevated during the chronic phase (Fig. 7A, P,0.05), while no

variation was observed in expression of the PDCD1 gene (PD-1;

Fig. 7A). We further observed a 5-fold increase in the transcript

levels of IL21 in sorted splenic CD4 T cells at day 28 pi (Fig. 7A,

P,0.05) followed by a decrease in the chronic phase. Interestingly,

the serum levels of IL-21 were found persistently elevated, from

the 11th day after infection until the chronic phase (Fig. S7A) and

qPCR analysis of SMCs revealed increased abundance of the IL21

transcript as early as day 11 pi (Fig. S7B), thus suggesting that

additional populations may produce IL-21 in the early acute phase

as well as in the chronic phase.

Flow cytometric analysis indicated a significant increase in the

frequency of splenic CD4 T cells expressing CXCR5 at days 28

(P,0.01) and 250 pi (P,0.05) and of Bcl-6 at day 28 pi (P,0.05;

Fig. 7B–C). However, no significant variations were observed in

surface PD-1 expression throughout infection (Fig. 7B–C),

consistent with qPCR analysis. Additionally, the percentage of

splenic CD4 T cells expressing both CXCR5 and Bcl-6 peaked at

day 28 pi and decreased at chronic infection (P,0.05; Fig. 7B and

D). Interestingly, we failed to detect any significant variation in the

expression of PD-1 among the CXCR5+ or CXCR5+Bcl-6+ CD4

T cell populations (Fig. 7B–D). Significant positive correlations

were found when plotting the frequency of the DP CXCR5+Bcl-6+

splenic CD4 T cell population against the activated memory

splenic B cell population (Fig. 7E, Rs = 0.8091, P = 0.0039) and the

serum levels of L. infantum-specific IgG (Fig. 7F, Rs = 0.8055,

P = 0.0039).

To gain additional insight into the spatial dynamics of Tfh

differentiation, splenic tissue sections were stained for CD4, PD-1

Figure 5. Humoral response and splenic B cell dynamics in L. infantum-infected rhesus macaques. (A–B) Serum levels of total (left panel)
and L. infantum-specific (right panel) IgM (A) and IgG (B) during infection. (C) Total splenic B cell number was calculated from the frequency of
CD32CD20+ cells and the total number of SMCs. (D) Representative flow cytometry dot plots illustrating the expression of CD21 and CD27 in splenic
B cells during infection. (E) Graphics depict the mean 6 SEM for each B cell subset: naive (CD21+CD272), resting memory (CD21+CD27+), effector
memory (CD212CD27+) and immature (CD212CD272), as defined in panel (D). (F) Percentage (mean 6 SEM) of CD32CD20+CD45RA2 splenic cells
during infection. (G) Representative histograms depicting the expression of CD45RA in effector memory (CD212CD27+) and immature B cells
(CD212CD272) during the course of infection. (H) Percentage (mean 6 SEM) of the activated memory (CD212CD27+CD45RA2) and activated
immature (CD212CD27+CD45RA2) among the total splenic B cell pool. (I) Correlation between the frequency of CD212CD27+CD45RA2 splenic B cells
(left panel) or the frequency of CD212CD272CD45RA2 splenic B cells (right panel) with the serum levels of L. infantum-specific IgG. (A–B, I) Each dot
represents an individual macaque. (C–H) Data obtained from 2–4 animals per time point. Significant differences were assessed by a one-way ANOVA
followed by a Bonferroni’s post-hoc test and the Spearman’s rank test was used for correlations.
doi:10.1371/journal.ppat.1004096.g005
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and CxCR5 (Fig. 8). In our hands, no commercially available Bcl-

6 antibody was able to detect the protein by immunofluorescence

in rhesus macaques (not shown). As expected, in naı̈ve macaques

very few CD4 T cells were seen infiltrating CxCR5 areas that

define the B cell follicle (Fig. 8A). By day 11 pi, and paralleling the

development of GCs (Fig. 6B), an increased number of CD4 T

cells were present inside the follicle, with a few expressing PD-1 in

addition to CxCR5 (Fig. 8B). CD4 T cells progressively

accumulated inside follicles as acute infection progressed. By one

month after parasite inoculation, hence at the peak of the GC

response, increased numbers of CD4 T cells could be visualized in

B cell areas (Fig. 8C). Interestingly, some of the follicle-infiltrating

CD4 T cells were expressing PD-1, but not CxCR5 and,

conversely, follicle-associated CD4 T cells expressing CxCR5 did

not express PD-1 (Fig. 8C and Fig. 8E). Spatially, CD4+ PD-1+

CxCR52 cells occupied a more central position in the follicle,

relative to the peripheral localization of CD4+ CxCR5+ PD-12

cells (Fig. 8C and Fig. 8E). Finally, and consistent with the

dynamics of GC development, CxCR5+ areas were largely devoid

of CD4 T cells by day 250 pi, despite continuous parasite presence

(Fig. 8D).

The expression of the Tfh classical markers CxCR5 and PD-1

in lymph node CD4 T cells increased progressively after infection

at the transcript (Fig. S8A) and protein levels (Fig. S8B–D), though

without statistical value. Expression of Bcl-6 in lymph node CD4 T

cells was negligible (S8B–D) and no changes were observed at the

transcript level (Fig. S8A). Tissue immunofluorescence revealed

the presence of some CD4 T cells in follicular areas, particularly at

one month after infection and during the chronic phase. The

majority of these cells appeared to express PD-1 but not CxCR5,

with only a minute number expressing both surface markers (Fig.

S9C–E).

Overall, our results point to a model in which L. infantum

infection induces an acute expansion of a CXCR5+Bcl-6+ CD4 T

cell population in the spleen associated with the production of

parasite-specific IgG. The kinetics of expansion and contraction of

the double positive CxCR5+Bcl-6+ CD4 T cell population closely

paralleled the development and resolution of germinal centers in

the spleen. Hence, we provide a detailed description of the

immune events underlying the suboptimal parasite-specific

humoral response in rhesus macaques infected with L. infantum.

Discussion

The lack of efficient vaccines or immune therapies for human

VL highlights the need for alternative animal models able to

complement the extensive research performed in rodents over the

past 30 years. In this study, we show that L. infantum infection of

rhesus macaques drives an early expansion and differentiation of

splenic CD4 T cells with a Th1 molecular signature that is

concomitant with parasite containment in visceral compartments.

Furthermore, we provide evidence of the lack of a robust Tfh

response throughout infection, which possibly underlies the poor

and short-lived production of Leishmania-specific antibodies.

Finally, the emergence of an immunosuppressive environment

may facilitate parasite dissemination and/or growth in additional

niches during chronic infection. In a general manner, the non-

human primate model introduced here confirmed some previous

observations made in murine models and, more importantly, in

human patients. Particularly, the expansion of the CD4 T cell pool

associated with a Th1 polarization during the acute phase and the

chronic persistence of the parasite associated with augmented

expression of IL-10. More importantly, we provided evidence that

defects in B cell and T follicular helper differentiation comprise the

mechanistic basis for the occurrence of hypergammaglobulinemia

and inefficient specific humoral response during VL.

The acute stage of infection is characterized by rapid parasite

clearance from the blood and BM, with parasite containment in

the spleen and liver. Studies in mice evidenced that half of the

intravenously inoculated parasites are eliminated in splenic

phagocytes within 24 hours after infection [41]. We propose that

a rapid decrease in parasite numbers may occur in a similar

manner in rhesus macaques, providing large quantities of parasite

antigens to initiate an adaptive response. Indeed, we observed that

the acute phase of infection is characterized by expansion and

differentiation of splenic CD4 T cells towards effector memory

phenotypes associated with increased levels of Th1-related factors

(IFN-c and T-bet). This differentiation of the splenic T cell pool is

consistent with increased susceptibility to FasL-mediated apopto-

sis. However, in the absence of FasL, these cells are not prone to

die. Thus, the higher levels of T cell apoptosis previously reported

in VL [42] may be the consequence of T cell differentiation/

activation processes rather than being the direct cause of

pathogenesis. In LNs, which were minimally colonized during

the acute phase, no changes were observed in the extent of T cell

differentiation and of level of apoptosis. Altogether, our results

denote a mobilization of the immune system early after infection

associated with elimination or at least containment of the parasite

in visceral organs.

In the chronic phase, we observed increased parasite loads in

the spleen and liver, associated with signs of hepatocellular

damage (elevated serum levels of ALT), as well as evidence of

parasite growth in previously low-colonized organs such as the

LNs. These changes were associated with an immune context

distinct from the one observed during the acute phase. Splenic

CD4 T cells maintained an effector-memory phenotype, but

shifted from an IFN-c-producing phenotype towards enrichment

in IL-10. The expression of the latter has long been associated with

chronicity and disease progression in VL [43,44]. Importantly,

conventional Th1 cells have recently been identified as the main

source of IL-10 during VL, in a regulatory mechanism that

presumably becomes operative to avoid excessive damage

associated with pro-inflammatory cytokine secretion [31–33,45].

In striking contrast with the spleen, the increased parasite load

detected in the LNs during the chronic phase does not result in the

differentiation of the CD4 T cell pool, a phenotype that can be

ascribed to the presence of immunosuppressive cytokines - IL-10

and TGF-b. Accordingly, the anergic behavior of lymph node

CD4 T cells during chronic infection was shown, in a hamster

model of VL, to result from the activity of macrophage-derived

TGF-â [4]. Thus, our results are strongly suggestive of compart-

Figure 6. Dynamics of splenic germinal center development in macaques infected with Leishmania infantum. (A–D) Splenic tissue
sections were stained with antibodies against Ki-67 (white), IgD (green), CD3 (blue) and CD20 (red) and imaged by confocal microscopy. Shown are
representative pictures of a naı̈ve animal (A) and at 11 (B), 28 (C) and 250 (D) days after infection. (E) Splenic tissue sections were stained with an
antibody against Ki-67 by immunohistochemistry and germinal centers were counted in naı̈ve macaques (n = 3), and at days 11 (n = 2), 28 (n = 2) and
250 (n = 4) after infection. Three distinct sections per animal were examined. Bars depict mean 6 SEM. (F) Quantification of GC area in Ki-67-stained
splenic tissue sections from naı̈ve and infected macaques at the indicated time points. Statistical analysis was performed by one-way ANOVA,
followed by a Bonferroni’s post-hoc test.
doi:10.1371/journal.ppat.1004096.g006
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Figure 7. Abortive differentiation of splenic Tfh cells in L. infantum-infected rhesus macaques. (A) The relative transcript levels of CXCR5,
BCL6, PDCD1 and IL21 in sorted splenic CD4 T cells were quantified by qPCR. Results are shown as fold change 6 SEM over non-infected samples. (B)
Representative density plots depicting the expression of CXCR5 and Bcl-6 (upper panels) or CXCR5 and PD-1 (lower panels) in splenic CD4 T cells
during the course of infection. (C) Expression (mean 6 SEM) of CXCR5, Bcl-6 and PD-1 among splenic CD4 T cells during the course of infection. (D)
Percentage (mean 6 SEM) of expression of the double positive CXCR5+Bcl-6+ or CXCR5+PD-1+ populations and the triple positive CXCR5+Bcl-6+PD-1+

population among splenic CD4 T cells. (E–F) Correlation between the frequency of CXCR5+Bcl-6+ splenic CD4 T cells and the frequency of
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mentalized immune responses, underlying the complexity of the

immune response in NHPs, which is reminiscent of VL in humans.

A dysfunctional humoral immune response has long been

recognized in VL [46,47]; however the mechanisms behind such

dysregulation remain poorly studied. In L. infantum-infected rhesus

macaques we observed a dramatic increase in the circulating levels

of total IgG. Such increased is not paralleled by the serum levels

parasite-specific IgG, which peak at one month after infection and

decrease thereafter. While the decline in the levels of specific IgG

may reflect the loss of the GC and Tfh responses, as discussed

below, it may also be a consequence of accelerated decay in the

serum of the infected animals. Although we have not examined the

occurrence of proteinuria, there is ample evidence of renal

involvement in VL associated with tubular and glomerular

damage that may lead to accelerated clearance [48]. Splenic B

cells are activated and exhibit differentiation towards two main

subsets: an immature subset that persists throughout infection and

an activated memory subset that peaks at day 28 and declines in

the chronic phase. Tissue imaging revealed that splenic germinal

centers initially develop, peak in number and size by one month

after infection, but ultimately fail to be maintained at the chronic

phase, hence closely paralleling the kinetics of memory B cell

frequency. Interestingly, B cell differentiation in the lymph nodes

was minimal. Additionally, we detected a non-significant increase

in the number of lymph node-associated germinal centers,

suggesting a minor contribution of these organs to the production

of parasite-specific IgG.

The transient expansion of a splenic CD4 T cell population

expressing CXCR5 and Bcl-6 correlates with the emergence of

activated memory B cells and the levels of parasite-specific IgG.

Concomitant with the expansion of the CXCR5+Bcl-6+ CD4 T

cell population is an increase in the transcript levels of IL21 in

splenic CD4 T cells. IL21 mediates production of high affinity

antibodies and also plays an essential role in the differentiation of

plasma and memory B cells [49]. Interestingly, we observed that

the serum levels of IL-21 remained elevated during the chronic

phase, despite the decline in the IL21 transcript in splenic CD4 T

cells, suggesting that additional immune populations may produce

the transcript. Moreover, elevated serum levels of IL-21 are a

biomarker for the risk of developing autoimmunity [50] and the

presence of autoantibodies is a recurrent finding in VL patients

[51,52].

GC-associated Tfh cells have classically been defined by their

follicular localization and simultaneous expression of CXCR5,

Bcl-6 and PD-1 [23]. We observed the transient expansion of CD4

T cells expressing CXCR5 and Bcl-6, but lacking PD-1.

Interestingly, a recent report has identified IL-21-producing, Bcl-

6+PD-1low CD4 T cells, located at the interface between the T cell

zone and the follicle, as providers of B cell help in T-dependent

extra-follicular B cell responses [53]. These cells were named pre-

GC Tfh cells as they appear early after immunization and are

progressively replaced by Bcl-6+PD-1hi CD4 T cells that locate

within GCs [53]. Furthermore, recent studies have proposed that

full expression of the Tfh differentiation program depends on

cognate interactions between primed CD4 T cells and antigen-

activated B cells [25,54,55]. In this sense, B cells play a crucial role

for the survival of Tfh cells and commitment to the Tfh lineage

[25]. In the absence of B cells, Tfh cells are still developed, albeit

in significantly lower numbers that fail to express PD-1 [54]. We

observed an augmentation in the serum level of total, but not

specific, IgG as early as day 7 pi, as well as the expansion of an

immature/activated splenic B cell population detected at day 11.

Thus, it is conceivable that L. infantum infection induces an early

skewing of the B cell pool favoring the inappropriate differenti-

ation of plasma cells from low-affinity B cells, and preventing the

entry of a sufficient number of activated B cells in the follicle to

sustain the Tfh response. Indeed, several Leishmania-derived factors

have been identified as polyclonal activators of B cells [56,57] and,

in a murine intradermal model of VL, an early polyclonal B cell

response was associated with disease progression [17]. Similarly,

infection of mice with the related parasite Trypanosoma cruzi induces

a massive extra-follicular splenic B cell response associated with

the production of non-specific antibodies [58]. In this sense, the

CXCR5+Bcl-6+PD-12 CD4 T cell population that we detect at

the end of the acute phase may represent a pre-GC-Tfh state that

does not mature to a bona fide Tfh population due to the lack of

cognate interactions with B cells. It is however worth referring that

confocal imaging revealed the presence of some CxCR5+ PD1+

CD4 T cells inside B cell areas, at early time points after infection,

suggesting that some bona fide Tfh cells might engage into the GC

pathway, even though their numbers appear compromised. We

also observed that some follicle-associated CD4 T cells expressed

PD-1 but not CxCR5, particularly by one month after infection in

the spleen, and at the chronic phase in lymph nodes. Given their

clearly atypical phenotype, considering the current definition of

Tfh cells, further studies would be required to completely elucidate

their nature.

Interestingly, the results we present here concerning L. infantum

infection are clearly distinct from recent findings regarding SIV/

HIV infections, in which a pathological accumulation of Tfh cells

occurs that accounts for the abnormalities in the B cell

compartment observed during infection [59–61].

In the chronic phase, the decline of CXCR5+Bcl-6+ CD4 T cells

may also be related to increased IL-10, as it was shown to regulate

the expression of Bcl-6 and IL-21 in CD4 T cells [62].

Additionally, IL-10 enhances proliferation of activated human B

lymphocytes and induces secretion of high amounts of immuno-

globulin [63]. Thus, an IL-10-enriched environment combined

with the early skewing of the B cell response may represent a

biased environment that precludes maintenance of a Tfh response

and production of specific-IgG, while sustaining the production of

non-specific antibodies. We could not unfortunately provide

definitive evidence for the presence of extrafollicular plasmablasts

in the spleen due the absence of a clear phenotypic definition in

non-human primates. Nevertheless, the global picture points to a

humoral response dominated by low-affinity or irrelevant

antibodies produced by polyclonally or extrafollicularly-activated

B cells. Although the contribution of specific antibodies to a

protective response against an intracellular pathogen such as

Leishmania remains under debate, some studies have suggested that

specific antibodies are required for an efficient uptake of the

parasite [20], and protection, in an experimental vaccine against

L. infantum [64]. Furthermore, the formation of a functional

germinal center and IL-21 production were associated with lesion

resolution in a model of cutaneous leishmaniasis [65]. Thus, one

may envision that the loss of parasite-specific antibodies observed

in the chronic phase may facilitate parasite dissemination and

promote chronicity.

CD212CD27+CD45RA2 splenic B cells (E) or the serum levels of L. infantum-specific IgG (F). (A–D) Data obtained from 2–4 animals per time point. (E–
F) Each dot represents an individual animal. Statistical analysis was performed by one-way ANOVA, followed by a Bonferroni’s post-hoc test. The
Spearman’s rank test was used for correlations.
doi:10.1371/journal.ppat.1004096.g007
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Figure 8. Follicular helper T cells infiltrate B cells follicles during the acute phase of L. infantum infection of rhesus macaques but the
Tfh response is not sustained until the chronic phase. (A–D) Splenic tissue sections were stained with antibodies against CxCR5 (blue), CD4
(green) and PD-1 (red) and imaged by confocal microscopy. Shown are representative pictures of a naı̈ve animal (A) and at 11 (B), 28 (C) and 250 (D)
days after infection. (E) Inset from figure 8C as defined by the white square.
doi:10.1371/journal.ppat.1004096.g008
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In conclusion, we used here a NHP model to decipher the

immune events associated with parasite establishment and

chronicity in VL. Our results indicate that despite the differen-

tiation of effector memory CD4 T cells in the main parasitized

organs early after infection, the establishment of an IL-10 enriched

environment in the chronic phase and the absence of a fully

maturated and sustained Tfh response may participate in the

immunodeficiency associated with VL chronicity.

Materials and Methods

Animal, parasites and infections
Eleven colony-outbred young adult (3–5 kg) rhesus macaques

(Macaca mulatta) of Chinese origin, seronegative for STLV-1

(Simian T Leukemia Virus type-1), SRV-1 (type D retrovirus),

herpes-B viruses and SIVmac were used in this study. A group was

left as non-infected control (n = 3) and the remaining animals were

inoculated intravenously via the saphenous vein with 26107

stationary-phase L. infantum promastigotes (clone MHOM/MA/

67/ITMAP-263) per kg of body weight. Subgroups of infected

animals were euthanized at three time points after infection

covering both acute and chronic phases (n = 2 for days 11 and 28

pi and n = 4 for day 250 pi). Peripheral blood and internal organs

(axillary and inguinal lymph nodes, spleen, liver and bone marrow)

were recovered for cellular analysis. Blood sampling was

performed at additional time points before and after infection.

For each blood-sampling point, a hemogram was elaborated using

a LH750 hematology analyzer (Beckman Coulter).

Parasite quantification
DNA was extracted from cell pellets of blood or organs using

the QIAamp DNA Mini Kit (QIAGEN). A TaqMan-based qPCR

assay for detection and quantification of L. infantum kinetoplastid

DNA was adapted from a described protocol [27]. Reaction

mixtures were composed of ABI TaqMan PCR 26 (Applied

Biosystems), 375 nM of direct primer (CTTTTCTGGTCCT-

CCGGGTAGG), 375 nM of reverse primer (CCACCCGGCCC-

TATTTTACACCAA), 250 nM of hydrolysis probe (59FAM-T-

TTTCGCAGAACGCCCCTACCCGC-39TAMRA) and 100 ng

of sample DNA. Thermocycling settings consisted of one hold of

10 min at 95uC followed by a two-step temperature (95uC for 15 s

and 60uC for 60 s) over 40 cycles in an ABI Prism 7900 HT

(Applied Biosystems). A standard curve was established corre-

sponding to a range of 50.000 to 0.01 parasites.

Sample normalization was performed by quantifying a host

gene (macaque albumin), in 10 mL parallel reactions consisting of

SYBR Green ROX Mix 26 (Thermo Scientific), 100 nM of

forward primer (CCATTGGTGAGACCAGAGGT), 100 nM of

reverse primer (GAGGCAGGCAGCTTTATCAG), 100 ng of

DNA and the same thermal profile used for parasite quantifica-

tion. A calibration curve ranging from 10.000 to 0.1 cells was

established and parasite load expressed as the number of parasites

per million of host cells.

Quantification of serum analites
Quantification of ALT, CRP, C3, C4 and total IgG and IgM

were all performed on an AutoAnalyzer (PRESTIGE 24i, PZ

Cormay S.A.). The detailed protocols employed are described in

the Supporting Material and Methods section.

ELISA for L. infantum-specific immunoglobulins
The relative titters of L. infantum-specific antibodies in the serum

of infected macaques were quantified adapting a protocol

described elsewhere [66]. Briefly, 96-well plates were coated

overnight with 10 mg/mL of soluble axenic amastigote Leishmania

antigen (prepared as described before [66]) and blocked with

200 mL of PBS/low-fat-milk 5%/FCS 5%. Sera from individual

macaques were analyzed at a 1:200 dilution. Horseradish

peroxidase-conjugated anti-macaque IgG (1:5,000) and anti-

macaque IgM (1:10,000) was then added to each well and the

tetramethyl benzidine substrate solution was used to detect

antigen-specific antibody by absorbance at 492 nm.

Immunophenotyping
Fresh cell suspensions were prepared from macaque spleen and

LNs (a pool of axillary and inguinal LNs). Peripheral blood was

collected to EDTA-coated tubes. Cells were stained with a panel of

monoclonal antibodies. The fluorochrome-conjugated antibodies

used are provided in Supporting Table 1 (Table S1). After lysing

erythrocytes in a hypotonic solution, fifty thousand events

corresponding to mononuclear cells were acquired in a Cytomics

FC500 (Beckman Coulter) and further analyzed using FlowJo

software (Tree Star, Inc.). Intracellular Bcl-6 staining was

performed after fixing and permeabilizing the cells with the

FoxP3 staining buffer set (eBiosciences).

Ex-vivo apoptosis
Peripheral blood was recovered to heparin-coated tubes.

PBMCs and SMCs were isolated by density gradient centrifuga-

tion using LymphoPrep (PAA Laboratories). PBMCs, SMCs and

LN cells were cultured overnight in complete media in the

presence of FasL, 100 ng/ml, or vehicle (control). The percentage

of apoptotic CD4 T cells was determined by flow cytometry after

surface staining with FITC-labeled annexin-V combined with

surface staining for CD4 and CD3, as described previously [67].

Quantitative-PCR
Approximately 500,000 CD4 T cells from SMCs or LN cell

suspensions were sorted using a FACS Aria II cell sorter (BD

Biosciences), lysed in RLT buffer (RNeasy Micro Kit, QIAGEN)

and stored at 280uC until further use. A similar number of total

SMCs or total LN cells were lysed and stored. RNA was purified

and reverse transcribed using the AffinityScript QPCR cDNA

synthesis kit (Stratagene). Gene expression was analyzed by qPCR

in 10 mL reactions, using 100 ng of cDNA. The thermal profile

consisted of a hold of 15 min at 95uC, followed by 40 cycles of

denaturation (95uC, 15 sec), annealing (60uC, 30 sec) and

extension (72uC, 30 sec). Ct values were normalized by quanti-

fying the levels of two macaque reference genes, GAPDH and

RPS14 and results expressed as fold change in gene expression

relative to non-infected samples. Macaque-specific primers were

designed using the AutoPrime software. A list of sequences, gene

accession numbers and predicted amplicon size of the oligonucle-

otides used is provided in Table S2. The obtained sizes for the

PCR products are depicted in Fig. S10.

Immunofluorescence confocal microscopy of tissue
sections

Optimal cutting temperature compound (OCT)-embedded

tissues (spleen and peripheral lymph nodes) were sectioned

(7.5 mm thickness) in a frozen cryostat and stored unfixed at

280uC until use. A double fixation procedure was employed and

consisted of 4% PFA (15 minutes at room temperature) followed

by acetone (20 minutes at 220uC). Slides were saturated in

blocking solution (5% normal goat serum, 0.3% triton X-100) for

1 hour at RT. Fluorochrome-conjugated antibodies were diluted

in antibody dilution buffer (1% BSA, 0.3% triton X-100) and
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incubated overnight with tissue sections at 4uC. Table S1 provides

detailed information on the antibodies used for tissue immunoflu-

orescence. After washing, slides were mounted with antifade

mounting medium. Sections were imaged in a Zeiss LSM 710

confocal microscope. Tiled Z-stacks were acquired with a 206
objective and stitched using the Image J stitching plugin [68].

Average intensity projections were obtained from the stitched tiles

using built-in Image J tools. Images were further analyzed and

processed using Image J and Adobe Photoshop.

Quantification of germinal centers by tissue
immunohistochemistry

Splenic and peripheral lymph node sections were fixed in 4%

PFA (15 minutes at RT) and saturated in blocking solution.

Sections were incubated for one hour at room temperature with

Ki-67 antibody (clone MIB-1, 1/50 dilution in antibody incuba-

tion buffer). After washing, sections were incubated with HRP-

coupled secondary antibody for 1 hour at RT and the 3,3-

diaminobenzidine (DAB) substrate added for revelation. Germinal

centers were identified as Ki-67+ cell aggregates and manually

counted under a magnifying glass coupled to a digital camera and

normalized to the number of GCs per 50 mm2 of area. For

determination of germinal center area, micrographs at 406
magnification were acquired and the average area of each GC,

defined by Ki-67 staining, was quantified manually using Image J.

Two micrographs from two distinct animals per time point were

analyzed and the results pooled. Representative micrographs are

show in Figure S4.

Statistical analysis
Statistics were performed with the GraphPad Prism 5 software.

Data is presented as means 6 SEM. A one-way analysis of

variance (ANOVA) followed by a Bonferroni’s post hoc test was

employed for comparison between naı̈ve and infected animals at

different time points after infection. A Spearman’s rank test was

employed for correlations.

Ethics statement
All the animal experiments described in the present study were

conducted at the MIRcen platform according to the European

Union guidelines for the handling of laboratory animals (http://ec.

europa.eu/environment/chemicals/lab_animals/home_en.htm). The

animal care and use protocol issued by the IACUC/ethics committee

(MIRcen, CAJ–10–30) that approved the study.

Supporting Information

Figure S1 (A–B) Blood samples from rhesus macaques were

collected for cellular enumeration at the indicated time points

using a Coulter LH 500 analyzer; (A) hematocrit, (B) concentra-

tion of blood hemoglobin. (C–F) Serum samples from rhesus

macaques were collected at the indicated time points and the

following analytes quantified using an automated analyzer; (C) c-

glutamyl transpeptidase (Gamma-GT), (D) total bilirubin (TBil),

(E) albumin and (F) total serum protein. Statistics assessed by one-

way ANOVA followed by a Bonferroni’s post-hoc test.

(TIF)

Figure S2 (A) Serum levels of Fas ligand were quantified using a

commercial ELISA assay. (B–C) The relative transcript levels of

Fas ligand in the spleen and lymph nodes were determined by

qPCR. Results are shown as fold change 6 SEM over non-

infected samples.

(TIF)

Figure S3 Gene expression profile in total spleen mononuclear

cells (SMCs) and total lymph node cells during L. infantum infection

of rhesus macaques. The relative transcript levels from total SMCs

(upper panels) and total lymph node cells (lower panels) were

determined by qPCR in non-infected animals and after 11, 28 and

250 days of infection. Results are shown as mean 6 SEM of the

fold change over the non-infected samples, which were attributed

a normalized value of 1. (A) IFNG, (B) TBX21, (C) TNF, (D) IL4,

(E) IL13, (F) GATA3, (G) IL10, (H) TGFB1 and (I) FOXP3.

Statistics assessed by one-way ANOVA followed by a Bonferroni’s

post-hoc test.

(TIF)

Figure S4 Representative micrographs of Ki-67-stained splenic

tissue sections from naı̈ve (A) and days 11 (B), day 28 (C), day 250

(D), used for quantification of germinal center number and area.

(TIF)

Figure S5 Lymph node B cell dynamics in L. infantum-infected

rhesus macaques. (A) The percentage (mean 6 SEM) of lymph

node B cells was determined by flow cytometry. (B) Representative

flow cytometry dot plots illustrating the expression of CD21 and

CD27 in lymph node B cells during infection. (C) Histograms

depict the mean 6 SEM for each B cell subset: naive

(CD21+CD272), resting memory (CD21+CD27+), effector mem-

ory (CD212CD27+) and immature (CD212CD272), as defined in

panel (B). (D) Percentage (mean 6 SEM) of CD32

CD20+CD45RA2 cells throughout infection. Data obtained from

2–4 animals per time point. Significant differences were assessed

by a one-way ANOVA followed by a Bonferroni’s post-hoc test

and the Spearman’s rank test was used for correlations.

(TIF)

Figure S6 Dynamics of lymph node germinal center develop-

ment in macaques infected with Leishmania infantum. (A–D) Lymph

node sections were stained with antibodies against Ki-67 (white),

IgD (green), CD3 (blue) and CD20 (red) and imaged by confocal

microscopy. Shown are representative pictures of a naı̈ve animal

(A) and at 11 (B), 28 (C) and 250 (D) days after infection. (E)

Lymph node tissue sections were stained with an antibody against

Ki-67 by immunohistochemistry and germinal centers were

quantified in naı̈ve macaques (n = 3), and at days 11 (n = 2), 2

(n = 2) and 250 (n = 4) days after infection. Three distinct sections

per animal were examined. Bars depict mean 6 SEM. Statistical

analysis was performed by one-way ANOVA, followed by a

Bonferroni’s post-hoc test.

(TIF)

Figure S7 (A) Serum levels of IL-21 were quantified using a

commercial ELISA assay. Each dot represents sera from an

individual animal (B) The relative transcript levels of IL-21 in total

spleen mononuclear cells, shown as fold change 6 SEM (n = 2–4)

over non-infected samples, were determined by qPCR.

(TIF)

Figure S8 Dynamics of Tfh cell differentiation in the lymph

nodes of L. infantum-infected rhesus macaques. (A) The relative

transcript levels of CXCR5, BCL6, PDCD1 and IL21 in sorted

lymph node CD4 T cells were determined by qPCR. Results are

shown as fold change 6 SEM over non-infected samples. (B)

Representative density plots depicting the expression of CXCR5

and Bcl-6 (upper panels) or CXCR5 and PD-1 (lower panels) in

lymph node CD4 T cells during the course of infection. (C)

Expression (mean 6 SEM) of CXCR5, Bcl-6 and PD-1 among

splenic CD4 T cells during the course of infection. (D) Percentage

(mean 6 SEM) of expression of the double positive CXCR5+Bcl-

6+ or CXCR5+PD-1+ populations and the triple positive
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CXCR5+Bcl-6+PD-1+ population among lymph node CD4 T

cells. Statistical analysis was performed by one-way ANOVA,

followed by a Bonferroni’s post-hoc test.

(TIF)

Figure S9 Follicular helper T cell imaging in lymph nodes

during L. infantum infection of rhesus macaques. (A–D) Lymph

node tissue sections were stained with antibodies against CXCR5

(blue), CD4 (green) and PD-1 (red) and imaged by confocal

microscopy. Shown are representative pictures of a naı̈ve animal

(A) and at 11 (B), 28 (C) and 250 (D) days after infection. (E) Inset

from figure S8D as defined by the white square.

(TIF)

Figure S10 QPCR products were separated in a 2% agarose gel.

The 100 bp DNA markers are shown alongside the bands.

(TIF)

Material and Methods S1 Detailed description of the protocols

employed for quantification of serum analytes.

(DOCX)

Table S1 Information related to the antibodies used in flow

cytometry and tissue immunofluorescence studies.

(DOCX)

Table S2 Sequence, PCR product size and accession number of

the primers used in this study.

(DOCX)
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