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Abstract 17 

In 1994, Hunt published the ‘postural feeding hypothesis’ — a seminal paper on the origins of 18 

hominin bipedalism—founded on the detailed study of chimpanzee positional behavior and the 19 

functional inferences derived from the upper and lower limb morphology of the Australopithecus 20 

afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential 21 

selective pressures on hominins, made robust, testable predictions based on Au. afarensis 22 

functional morphology, and presented a hypothesis that aimed to explain the dual functional 23 

signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize 24 

what we have learned about Au. afarensis functional morphology and the dual functional signals 25 

of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba 26 
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and StW 573 ‘Australopithecus prometheus’). We follow this with a discussion of three research 27 

approaches that have been developed for the purpose of drawing behavioral inferences in early 28 

hominins: 1) developments in the study of extant apes as models for understanding hominin 29 

origins; 2) novel and continued developments to quantify bipedal gait and locomotor economy in 30 

extant primates to infer the locomotor costs from the anatomy of fossil taxa; and 3) novel 31 

developments in the study of internal bone structure to extract functional signals from fossil 32 

remains. In conclusion of this review, we discuss some of the inherent challenges of the 33 

approaches and methodologies adopted to reconstruct the locomotor modes and behavioral 34 

repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism 35 

in early hominins. 36 

 37 

Keywords: Australopithecus; Bone functional adaptation; Trabecular bone; Cortical bone; 38 

African apes  39 
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1. Introduction 40 

Since the discovery of numerous Australopithecus afarensis postcranial remains at Hadar, 41 

Ethiopia, in the early 1970s (Taieb et al., 1974; Johanson and Taieb, 1976; Bush et al., 1982; 42 

Johanson et al., 1982), which built upon a collection of australopith fossils already uncovered in 43 

South Africa (e.g., Dart, 1925; Broom and Schepers, 1946; Broom and Robinson, 1949; Straus, 44 

1948; Robinson, 1972), paleoanthropologists have increasingly focused on the inferences of 45 

posture and locomotion that can be drawn from fossil hominin (i.e., humans and their fossil 46 

relatives) skeletons. This focus on functional morphology led to contentious debates but also the 47 

development of new hypotheses, analytical approaches, and methods. Functional inferences have 48 

typically centered on understanding the form of bipedalism in which australopiths engaged and 49 

the relative importance of arboreality in their positional repertoire (e.g., Lovejoy, 1985; Stern 50 

and Susman, 1983; Susman et al., 1984; Senut and Tardieu, 1985; Latimer, 1991). 51 

Reconstructions of australopith locomotion and posture were made within the broader context of 52 

two foundational and longstanding evolutionary aims of paleoanthropology, 1) the identification 53 

of the primary locomotor behavior from which bipedalism evolved; and 2) understanding the 54 

evolutionary or selective process(es) leading to the establishment of hominin bipedal 55 

dependence. Multiple hypotheses about the primary locomotor behavior from which bipedalism 56 

evolved (e.g., Keith, 1923; Tuttle, 1969; Richmond and Strait, 2000) and the selective drivers of 57 

bipedalism have been proposed (e.g., Lovejoy, 1981; Darwin, 1987; Wheeler, 1991; Hunt, 1994), 58 

which remain contentious due to a paucity of Late Miocene and Early Pliocene hominin fossils 59 

and the virtual absence of an African ape fossil record (Crompton et al., 2008; Harcourt-Smith, 60 

2010; Wood and Harrison, 2011; Andrews, 2020; Almécija et al., 2021; but see McBearty and 61 

Jablonski, 2005; Pickford et al., 2008). In the absence of fossil evidence near the time of the 62 
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hominin-panin divergence, these hypotheses have traditionally relied heavily on functional 63 

interpretation of australopith anatomy, observations of extant primate postural and locomotor 64 

behaviors, and the influence of phylogeny. One such hypothesis is the ‘postural feeding 65 

hypothesis’ proposed by Hunt (1994) in “The evolution of human bipedality: Ecology and 66 

functional morphology” (see also Hunt, 1996). In this review, we use Hunt’s (1994) seminal 67 

paper on the origins of hominin bipedalism as inspiration for how the australopith postcranium 68 

has influenced our hypotheses about the selective pressures surrounding hominin bipedalism and 69 

the value of living primate models and ecological context in our interpretation of hominin 70 

functional morphology. We start, with a brief review of the historical context in which Hunt’s 71 

(1994) ‘postural feeding hypothesis’ was developed. We then further review some of the new 72 

australopith fossils discovered and new methods developed since 1994 that have helped 73 

paleoanthropologists to gain a better understanding of australopith diversity and make more 74 

informed functional inferences of the fossil morphology.  75 

 76 

1.1.  Historical context of australopith locomotion and the emergence of hominin bipedalism 77 

Hypotheses about the locomotor or postural behavior from which bipedalism emerged range 78 

from terrestrial knuckle-walking to arboreal vertical clinging or brachiation and from pronograde 79 

to orthograde postures (see reviews in Richmond et al., 2001; Harcourt-Smith and Aiello, 2004; 80 

Crompton et al., 2008; Senut et al., 2018). Keith (1903, 1923) was the first to explicitly propose 81 

hominoid-like, orthogradeancestor based on morphological features of the upper limb that are 82 

shared between humans and suspensory apes. Keith (1923) proposed three stages of hominoid 83 

evolution: a hylobatid-like (‘hylobatian’) ancestor that evolved into a larger-bodied African ape-84 

like (‘troglodytian’) ancestor capable of orthograde climbing and terrestrial knuckle-walking, 85 
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which in turn evolved into a bipedal (‘plantigrade’) hominin (see also Morton, 1926). Tuttle 86 

(1969, 1975, 1981; Tuttle et al., 1974) further developed Keith’s ‘brachiating’ hypothesis 87 

through the study of great ape hand postures and anatomy, highlighting the lack of anatomical 88 

evidence for a knuckle-walking phase in hominin evolution. Tuttle (1969:p. 960) proposed “that 89 

the ancestors of [hu]man probably engaged in some form of suspensory posturing and that they 90 

assumed bipedal postures very soon after venturing to the ground.” It is important to note that 91 

neither Keith nor Tuttle at this time had a conception of hominoid phylogeny [although the 92 

seminal research on hominid proteins by Goodman (1962, 1963) was published]. Tuttle (1969) 93 

supported a closer evolutionary relationship between Pan and Gorilla (and, in fact, grouped 94 

gorillas within in the Pan genus) to the exclusion of humans. Thus knuckle walking could be 95 

considered a synapomorphic behavior of African apes in his hypothesis that human bipedalism 96 

evolved from a suspensory ancestor. 97 

With greater evidence and acceptance of the phylogenetic relationship between Pan and 98 

humans (Goodman, 1963; Sarich and Wilson, 1967; Miyamoto et al., 1987), Washburn (1967:p. 99 

23) proposed, albeit with little morphological evidence, that hominin bipedalism evolved from a 100 

terrestrial knuckle-walking ancestor because it offers a logical ‘intermediate condition’ in which, 101 

as bipedalism is positively selected, the long upper limb can be used less and less. The terrestrial 102 

knuckle-walking hypothesis continued to gain support through comparative anatomy, notably 103 

synapomorphic features of the upper limb, wrist, and hand shared between humans and African 104 

apes (Marzke, 1971; Corruccini, 1978; Shea and Inouye, 1993; Gebo, 1992; 1996; Begun, 1993, 105 

1994; Richmond and Strait, 2000; Richmond et al., 2001) and the identification of ‘knuckle-106 

walking features’ in australopiths (McHenry, 1983; Richmond and Strait, 2000). Parsimony also 107 

played a key supporting role with the sentiment that knuckle-walking locomotion is too unusual 108 
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to have evolved independently in Pan and Gorilla (Gebo, 1992, 1996; Begun, 1994; Richmond 109 

and Strait, 2000; Richmond et al., 2001). Although other hypotheses on the locomotor or postural 110 

origin of hominin bipedalism emphasize arboreality, most notably a vertical climbing origin 111 

supported by biomechanical similarities between primate vertical climbing and human 112 

bipedalism (Prost, 1980; Fleagle et al., 1981; Stern and Susman, 1981; Ishida et al., 1985; Senut, 113 

1988), the terrestrial knuckle-walking hypothesis envisions a locomotor repertoire that also 114 

includes arboreal climbing and some suspension (Richmond et al., 2001). 115 

The role of arboreality has been central in the debate over early hominin functional 116 

morphology, and particularly that of australopiths, since the early 1980s, following the 117 

publication of the Au. afarensis fossils from Hadar (Taieb et al., 1974; Johanson and Taieb, 118 

1976; Bush et al., 1982; Johanson et al., 1982). This debate stems from the duality of the Au. 119 

afarensis, and that of australopiths more generally, postcranium that can be broadly summarized 120 

as possessing human-like lower limbs and ape-like upper limbs. The functional interpretation of 121 

Au. afarensis morphology is typically divided into two camps that differ in the significance they 122 

grant to the ape-like morphological features, as aptly summarized by Daegling (2022; see also 123 

Ward, 2002). In the ‘efficiency camp’ researchers focused on human-like (i.e., derived) 124 

morphological features and biomechanical data to support the hypothesis that Au. afarensis had a 125 

bipedal gait similar to that of humans i.e., striding gait with extended hip and knee (Lovejoy et 126 

al., 1973; Lovejoy, 1975, 1978, 1988; Day and Wickens, 1980; White, 1980; Latimer, 1983, 127 

1991; Ohman, 1986; Latimer et al., 1987; Latimer and Lovejoy, 1989, 1990; Crompton et al., 128 

1998; Kramer, 1999). In this camp, Au. afarensis was reconstructed as fully committed to 129 

bipedalism because energetically costly bipedalism would not be positively selected, thus 130 
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compromising any ability to climb competently. Arboreal behaviors were viewed as a trivial 131 

component of australopith positional repertoire. 132 

In contrast, researchers in the ‘compromise camp’ incorporated both basal and derived 133 

morphology as well as biomechanical data to support the hypothesis that Au. afarensis engaged 134 

in a bipedal gait that was unlike that of modern humans and, instead, was compliant (i.e., bent 135 

hip and bent knee) and energetically costly (Senut, 1980; Stern and Susman, 1981, 1983, 1991; 136 

Feldesman, 1982; Jungers, 1982, 1991; Jungers and Stern, 1983; Schmid, 1983; Rose, 1984, 137 

1991; Susman et al., 1984; Deloison, 1985, 1991, 1992; Tardieu 1986a, b; Susman and Stern, 138 

1991; Duncan et al., 1994; Stern, 2000). This energetically costly bipedalism allowed Au. 139 

afarensis to be arboreally competent because trees were essential to, for example, foraging and 140 

avoiding predation (Susman et al., 1984; Preuschoft and Witte, 1991; Rak, 1991; Cartmill and 141 

Schmitt, 1996; MacLatchy, 1996; Schmitt et al., 1996, 1999; Ruff, 1998; Stern, 1999; also see 142 

below)  143 

Numerous hypotheses have also been offered regarding the selective drivers underlying the 144 

origin of bipedalism (Rose, 1991, and references therein). These hypotheses are dependent not 145 

only on the functional interpretation of australopith morphology and on the form of positional 146 

behavior from which bipedalism evolved, but also the paleoecological context in which early 147 

hominins may have been living. Many of the initial hypotheses linked the origin of bipedalism to 148 

a savanna landscape, either the traditional view of an open, grassland savanna or a savanna-149 

mosaic that includes areas of woodland (see review in Domínquez-Rodrigo, 2014). In an open 150 

landscape, bipedalism may have been an effective means of long-distance travel (Sinclair et al., 151 

1986) or moving through patches of open terrain to reach woodland habitats (Rodman and 152 

McHenry, 1980; Isbell and Young, 1996; Potts, 1998). Others focused on the use of bipedalism 153 
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for feeding in terrestrial, savanna-dwelling primates as a potential model for the selective driver 154 

of hominin bipedalism, all of which were grouped under the umbrella of the ‘terrestrial feeding 155 

hypothesis’ (Jolly, 1970; Rose, 1976, 1984; Wrangham, 1980). Jolly’s (1970) ‘seed-eater’ model 156 

is particularly relevant to Hunt’s (1994) ‘postural feeding hypothesis’ as it was the first time 157 

bipedal posture, rather than locomotion, was proposed as the selective target (see also Du Brul, 158 

1962; Prost, 1980; Wrangham, 1980). 159 

 160 

2.   Hunt (1994) and the ‘small-tree postural feeding’ hypothesis 161 

Within the historical context described above, Hunt (1994) recognized that feeding behavior 162 

is a logical selective target for changes in hominin positional behavior, but none of the 163 

previously proposed feeding hypotheses adequately accounted for the dual functional nature of 164 

the Au. afarensis postcranium. Hunt, instead, proposed the ‘small-tree postural feeding 165 

hypothesis’ based on extant chimpanzees as behavioral models to interpret the selective 166 

pressures on the early hominin postcranium (see also Hunt, 1996). The foundation of his 167 

hypothesis was the behavioral and ecological study of 26 habituated adult chimpanzees from the 168 

Mahale Mountains and Gombe of western Tanzania. Similar to studies of baboons (Rose, 1976, 169 

1984, 1991), Hunt (1994) found that bipedalism was rare in comparison to other locomotor and 170 

postural behaviors, but when used, it was most often adopted as a posture during feeding (80% of 171 

bipedal bouts) rather than as as locomotior behavior for traveling. Bipedalism was used both on 172 

the ground and in trees, but when foraging for fruit from short trees while on the ground, 173 

chimpanzees were able to reach higher fruits, use both hands for fruit gathering, and to eat the 174 

fruits faster. 175 
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Hunt’s (1994, 1996) postural feeding hypothesis aimed to reconcile the presumed 176 

contradictory functional signals across the Au. afarensis skeleton: an ape-like upper body 177 

advantageous for arboreal arm-hanging and more human-like lower body that he interpreted as 178 

indicating habitual but ‘less than optimal’ bipedal locomotion (i.e., more energetically costly) 179 

compared with humans. Although the modern human bipedal economy (i.e., a low energetic cost 180 

during bipedalism) is not necessarily the appropriate benchmark (Daegling, 2022), Hunt (1994, 181 

1996) highlighted the importance of considering the energetic economy (or what Hunt often 182 

called ‘energetic efficiency’) of bipedalism, both postural and locomotor (see also Rodman and 183 

McHenry, 1980; Steudel, 1996). The postural feeding hypothesis aimed to explain Au. afarensis 184 

morphology holistically as ‘fully-evolved’ hominins adapted for a unique positional repertoire 185 

rather than as intermediate, ‘half-evolved’ bipeds (Hunt, 1994:p. 199) (of course, these terms 186 

used by Hunt (1994) were not meant as teleological or to imply evolution is goal-oriented). In 187 

doing so, Hunt (1994, 1996) synthesized two of the arguably most plausible hypotheses at the 188 

time for the origin of bipedalism: the hylobatid hypothesis and the terrestrial feeding hypothesis. 189 

We find Hunt’s (1994) paper to be inspiring because it 1) uses the careful study of extant ape 190 

behavior as a model for understanding potential selective pressures on hominins, 2) makes robust 191 

predictions based on functional morphology, biomechanics, and locomotor economy that can be 192 

(and since have been) tested, and 3) presents a hypothesis that aims to explain the dual functional 193 

signals of the Au. afarensis and, more generally, early hominin postcranium; all of which are just 194 

as relevant, if not more so, today as they were nearly 30 years ago. 195 

Here we review the key questions regarding functional interpretation of the australopith 196 

postcranium, what we have learned about Au. afarensis functional morphology since Hunt’s 197 

paper was published, and the dual functional signals of two new australopith discoveries with 198 
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relatively complete skeletons (Australopithecus sediba and StW 573, referred to by some as 199 

Australopithecus prometheus). We follow this with a discussion of the advances in three research 200 

approaches used to draw inferences about early hominin behavior (and the past more generally): 201 

1) the study of extant apes as models for understanding hominin origins; 2) measurement of 202 

bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the 203 

anatomy of fossil taxa; and 3) the study of internal bone structure to extract functional signals 204 

from fossils. We end with a summary of the current challenges in paleoanthropology for 205 

reconstructing (locomotor) behaviors, including (but not only) the evolution of hominin 206 

bipedalism. 207 

 208 

3. New fossil evidence: The early years 209 

Over 40 years of debate about the reconstructed positional behavior of Au. afarensis (i.e., the 210 

‘efficiency camp’ vs. ‘compromise camp’; see above) has been driven, at least in part, by 211 

differences in the functional importance one attributes to ape-like vs. human-like features found 212 

throughout the australopith postcranium (Stern, 2000; Ward, 2002, 2013; Daegling, 2022; Fig. 213 

1). In a simplified scenario, derived, human-like features of the australopith lower limb offer 214 

clear phylogenetic polarity and a direct biomechanical link to function (Lauder, 1996), which 215 

reveals their biological role for bipedal movement (Bock and van Wahlert, 1965; Weishampel, 216 

1995). These derived features, or their biological role—in this case, bipedal posture and 217 

locomotion— can be inferred to have conferred fitness benefits to those individuals better able to 218 

deal with the mechanical demands of terrestrial bipedality. On the contrary, primitive, ape-like 219 

features can be considered 1) selectively neutral or stabilized retentions from an ape-like 220 

ancestor that are not directly linked to function (e.g., retained via pleiotropy or other ontogenetic 221 
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mechanisms), 2) positively-selected retentions that are functionally significant and play a 222 

biological role—in this case, arboreality; or 3) positively-selected exaptations that are 223 

functionally significant for a new biological role, such as manipulation (Fig. 1). In the 1980s and 224 

1990s, interpreting the functional significance of Au. afarensis morphology was done largely 225 

within the comparative context of extant great apes, modern humans and, less frequently, 226 

geologically younger fossil hominins (e.g., Jungers, 1982; Stern and Susman, 1983; Susman et 227 

al., 1984; Latimer and Lovejoy, 1990), making phylogenetic polarity of features and their 228 

functional interpretation more challenging. Older (putative) hominins with postcranial remains 229 

prior to 4.0 Ma were not uncovered until mid-1990s or later (e.g., Leakey et al., 1995; Senut et 230 

al., 2001; Lovejoy et al., 2009a; White et al., 2009; Macchiarelli et al., 2020; Daver et al., 2022; 231 

but see Patterson and Howells, 1967), and thus debates about the functional significance of 232 

certain aspects of australopith morphology were fueled by a ‘black box’ of hominin evidence 233 

between 4–7 Ma. Below we briefly review (putative) fossil hominin evidence prior to the first 234 

appearance of Au. afarensis that has been uncovered since 1994. 235 

The earliest species of australopith, Australopithecus anamensis (4.2–3.8 Ma), was announced 236 

in 1995 based on fossils from Kanapoi, Kenya (Leakey et al., 1995) with additional specimens 237 

also from Allia Bay, Kenya (Leakey et al., 1998, Ward et al., 1999, 2001, 2013) and Asa Issie, 238 

Ethiopia (White et al., 2006). Although there are few postcranial remains, all can be generally 239 

described as being similar in morphology to Au. afarensis, but larger in absolute size (Ward et 240 

al., 1999, 2001; White et al., 2006). The proximal and distal tibia show several features 241 

distinctive to bipedal locomotion, including an expanded proximal end with concave condyles 242 

and a vertical tibial shaft that is orthogonal to the talar joint (Leakey et al., 1995; Ward et al., 243 

1999). The femoral shaft lacks a linea aspera, similar to the morphology found in Au. afarensis 244 
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A.L. 288-1, and has remarkably thick cortical bone (White et al., 2006). The distal humerus lacks 245 

morphology specific to African apes and although some have noted distinctive Homo-like 246 

features (Senut and Tardieu, 1985; Baker et al., 1998; Senut, 1999), more detailed studies show 247 

the most morphological similarities to Au. afarensis (Feldesman, 1982; Lague and Jungers, 248 

1996). Like the femur, the humerus also has notably thick cortical bone (Ward et al., 2001). The 249 

radius is long, suggesting elongated forelimb proportions similar to those of Au. afarensis 250 

(Heinrich, 1993; Ward et al, 2001). A dorsal ridge on the distal radius has been interpreted as 251 

limiting radiocarpal joint extension, implying evidence of a knuckle-walking origin for hominin 252 

bipedalism (Richmond and Strait, 2000; but see Ward et al., 2001). The capitate has a 253 

radioulnarly broad proximal head with a large lunate articulation, similar to some other 254 

australopiths, but the radially-facing second metacarpal facet is similar to that of extant African 255 

apes and unlike that of other hominins (McHenry, 1983; Leakey et al., 1998, Ward et al., 2001; 256 

Lovejoy et al., 2009b, Macho et al., 2011). Australopithecus anamensis manual phalanges are 257 

curved to a similar degree as Au. afarensis (Ward et al., 1999), but the intermediate phalanx from 258 

Asa Issie is described as being longer for its breadth than those from Hadar (White et al., 2006). 259 

Insert Figure 1 here 260 

 261 

Ardipithecus (5.8–4.4 Ma) is currently the best known (putative) hominin prior to Au. 262 

afarensis (White et al., 1994, 1995, 2009; Haile-Selassie, 2001; Haile-Selassie and 263 

WoldeGabriel, 2009; Lovejoy et al., 2009a, b, c; Simpson et al., 2019). There are two species: 264 

the older Ardipithecus kadaba (5.8-5.2 Ma; Haile-Selassie, 2001; Haile-Selassie and 265 

WoldeGabriel, 2009) and Ardipithecus ramidus (4.4 Ma; White et al., 2004; 2009), of which the 266 

ARA-VP-6/500 partial skeleton provides the most informative postcranial evidence. ARA-VP-267 
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6/500 is remarkably complete but unfortunately does not preserve the articular ends of most long 268 

bones and the pelvic bones are highly fragmented. The lower body morphology shows several 269 

features associated with bipedalism, including shorter and medially-rotated iliac blades, a well-270 

developed anterior inferior iliac spine, a shortened greater trochanter, thinner cortex on the 271 

superior margin of the femoral neck, lateral midfoot rigidity, and evidence of regular 272 

dorsiflexion at the metatarsal-phalangeal joints (White et al., 2009; Lovejoy et al., 2009c). This 273 

morphology is combined with several features considered advantageous for arboreality: a 274 

grasping hallux with no dorsal doming, a long ischium, long, curved manual and pedal 275 

phalanges, as well as several features described as distinct from extant apes and more like Early 276 

Miocene apes, including short metacarpals but relatively long pollex, a simple ‘carpometacarpal 277 

complex’, and long tarsus (Lovejoy et al., 2009b; Selby et al., 2016; Simpson et al., 2019). 278 

Collectively, this suite of postcranial features is interpreted as indicating facultative, terrestrial 279 

bipedalism combined with the primitive retention of arboreal capabilities including palmigrade 280 

above-branch quadrupedalism and ‘careful climbing’ (White et al., 2009; Lovejoy et al., 2009b, 281 

c). Critically, the initial interpretations highlighted a distinct absence of any great ape-like 282 

morphology related to orthogrady, suspension, vertical climbing, and knuckle-walking, implying 283 

that shared morphologies among extant great apes must be homoplasies (White et al., 2009; 284 

2015; Lovejoy et al., 2009a). 285 

Recent studies, however, have questioned the original functional interpretations of the Ar. 286 

ramidus morphology and the subsequent evolutionary implications. For example, Prang et al. 287 

(2021) demonstrated that the Ar. ramidus hand is most similar to chimpanzees and bonobos with 288 

morphology advantageous for suspensory locomotion. Similarly, Prang (2019) interpreted the 289 

Ar. ramidus foot as most similar to chimpanzees and gorillas, and suggested that the elongated 290 
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tarsus could have increased propulsion during bipedalism. A morphological and cladistic 291 

analysis of foot morphology by DeSilva et al. (2019) further highlighted distinct morphs within 292 

the Ardipithecus sample (see also Simpson et al., 2019) as well as the Burtele foot (Haile-293 

Selassie et al., 2012) and StW 573 (Kidd and Oxnard, 2005; Crompton et al., 2021; see below), 294 

which they interpreted as evidence of different hominin taxa engaging in different forms of 295 

bipedal walking or arboreality. This conclusion is further supported by morphometric and 296 

kinematic modeling of the hominin pelvis showing that Ar. ramidus had human-like hip 297 

extension for bipedal walking but also powerful, ape-like hip extension for vertical climbing, 298 

while Au. afarensis and Au. africanus had a reduced mechanical advantage for climbing (Kozma 299 

et al., 2018). Multiple forms of bipedality (and climbing) in early hominins further complicate 300 

interpretations of trait polarity and functional significance in reconstructions of australopith 301 

bipedalism. 302 

Orrorin tugenensis (6 Ma) from Lukeino Formation, Kenya preserves three femora, a distal 303 

humerus and manual phalanges (Senut et al., 2001; Gommery and Senut, 2006). The two most 304 

preserved femora show features interpreted as indicators of habitual bipedality, including a 305 

femoral neck that is elongated and anteroposteriorly compressed, and has thicker cortex 306 

inferiorly than superiorly, the presence of an obturator externus groove, and a well-developed 307 

gluteal tuberosity (Senut et al., 2001; Pickford et al., 2002; Galik et al., 2004). These 308 

morphological features were originally inferred to suggest Orrorin was a habitual, and perhaps 309 

obligate biped, but with upper limb morphology that indicated effective climbing abilities (Senut 310 

et al., 2001). The preserved external shape of the Orrorin proximal femur has been described as 311 

more hominin-like rather than ape-like but the asymmetric cortical bone distribution in the 312 

femoral neck has received particular attention as arguably one of the key traits indicative of 313 
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bipedality in Orrorin (Pickford et al. 2002, Galik et al. 2004; Richmond and Jungers, 2008). 314 

Some have questioned the methodology employed and the quality of the CT scans used to 315 

demonstrate the inferiorly thicker femoral neck cortex of Orrorin (Ohman et al. 2005, White 316 

2006), while others have criticized the usefulness of the trait in general, regardless of its presence 317 

in Orrorin, as an indicator of habitual or obligate bipedality (Andrews and Harrison, 2005). A 318 

more recent study of the cortical thickness topographic distribution of the Orrorin femoral shaft 319 

confirms a human-like cortical distribution consistent with habitual terrestrial bipedalism 320 

(Puymerail et al., 2017). 321 

Arguably the most controversial of the early putative hominins, Sahelanthropus tchadensis 322 

(~7 Ma) from Toros-Menalla, Chad, was inferred to be bipedal based initially on basicranial 323 

morphology (Brunet, 2002, Brunet et al., 2005; Zollikofer et al., 2005) and only recently on 324 

postcranial evidence (Daver et al., 2022). In their analyses of the external and internal 325 

morphology of the Sahelanthropus femoral shaft, Daver et al. (2022) show an anteroposteriorly 326 

compressed femoral neck, the presence of a linea aspera and calcar femorale, and human-like 327 

cross-sectional geometry of the diaphysis. The ulnae, however, show a suite of morphological 328 

features reflecting arboreality, including high degree of shaft curvature and orangutan-like cross-329 

sectional geometry (Daver et al., 2022). Taken together, Daver et al. (2022) concluded that 330 

Sahelanthropus engaged in habitual bipedalism, likely on the ground, and arboreal ‘cautious 331 

climbing’ behaviors. However, others have questioned the association of the postcrania with the 332 

Sahelanthropus cranium (Beauvilain, 2008). Independent analyses of the external morphology 333 

and cross-sectional shape reveal greater similarities with Pan and features that are distinct from 334 

the femoral shaft morphology of Orrorin or later hominins (Macchiarelli et al., 2020). Moreover, 335 

a calcar femorale can be present in extant great apes and absent in some bipedal hominins, 336 
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indicating that this feature is not necessarily indicative of bipedal locomotion (Cazenave et al., 337 

2022). At ~7 Ma, so close to the panin-hominin divergence, a full suite of bipedal features in 338 

Sahelanthropus is an unrealistic expectation, creating an unclear threshold of ‘how many bipedal 339 

features does one need to be considered a fully terrestrial biped or a hominin’? This fundamental 340 

problem is further confounded by the challenge of identifying bipedalism in a potential hominin 341 

with a different body plan, which would elicit distinct, site-specific biomechanics and therefore 342 

distinct internal bone structure response. As Macchiarelli et al. (2020) highlight, even if 343 

Sahelanthropus is not bipedal, it does not diminish its importance in our understanding of 344 

hominid evolution. 345 

Although a minority of researchers view some of the above hominin taxa as ‘chronospecies’ 346 

leading to Au. afarensis (White, 2003; White et al., 2006, 2009), most paleoanthropologists 347 

recognize a far bushier and perhaps reticulated hominin evolutionary tree (e.g., Holliday, 2003; 348 

Harrison, 2010; Wood and Harrison, 2011; Strait et al., 2015; Wood and Boyle, 2016; Slon et al., 349 

2018). Importantly, paleoanthropologists must acknowledge that some or all of these early, 350 

putative hominins could instead fall within the panin clade or any number of extinct clades, and 351 

that homoplasy will undoubtedly be rampant and confounding (Wood and Harrison, 2011; 352 

Daegling, 2022). Thus, although there are now many more fossils within the 7–4 Ma ‘black box’ 353 

than there were at the time of Hunt’s (1994) functional interpretation of Au. afarensis 354 

postcranium, any potential clarity on the polarity or functional significance of australopith 355 

morphology is overshadowed by new and complex questions about early hominin evolution and 356 

phylogenetic relationships. As Wood and Harrison (2011:p. 348) aptly question: “Should the 357 

discovery of a purported fossil hominin overturn predictions about an ancestral morphotype 358 

based on a wealth of comparative data from extant taxa, or should one defer to the hypothetical 359 
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morphotypes that best fit the comparative evidence and critically reassess the phylogenetic 360 

placement of fossil taxa that contradicts such an hypothesis?” 361 

 362 

4. New fossil evidence: Australopiths in a complex taxonomic context 363 

As highlighted by Hunt (1994), inferences about positional behaviors and their energetic costs 364 

in fossil taxa are only possible for species represented by sufficient postcranial remains. 365 

However, the rarity of unambiguously associated craniodental and postcranial remains 366 

complicates the already difficult task of drawing functional inferences from fragmentary and/or 367 

incomplete axial or appendicular skeletal remains (e.g., Susman et al., 2001; Wood and 368 

Constantino, 2007; Domínguez-Rodrigo et al., 2013; Hlusko et al., 2015; Lague, 2015; Wood 369 

and Boyle, 2016). This is especially true in the Plio-Pleistocene in which hominin taxic diversity 370 

has increased and become more complex with recent fossil discoveries (e.g., Berger et al., 2010; 371 

Wood and Boyle, 2016; Clarke and Kuman, 2019; Zipfel et al., 2021), and which possibly may 372 

be underestimated (e.g., Cofran and Thackeray, 2010; Zanolli et al., 2019; Pickering et al., 2021; 373 

Zipfel et al., 2021). Nonetheless, intense fieldwork has unveiled relatively complete hominin 374 

skeletons or sufficient associated remains to satisfactorily reconstruct a body plan and to provide 375 

more robust functional inferences (e.g., Brown et al., 2004; Alemseged et al., 2006; Berger et al., 376 

2010, 2015; Haile-Selassie et al., 2010; Clarke and Kuman, 2019; see sections 4.2 and 4.3). 377 

These relatively complete hominin skeletons each reflect committed bipedalism, but also 378 

differing mosaics of anatomical features that suggest biomechanical variation in bipedal gait, and 379 

that arborealism or climbing continued to be a significant component of behavior for some 380 

hominins, including into the Pleistocene (e.g., Stern, 2000; Ward, 2002, 2013; Larson et al., 381 

2009; Lovejoy et al., 2009a,b,c; Haile-Selassie et al., 2012; Barak et al., 2013; Berger et al., 382 
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2015; Kivell et al., 2015; Harcourt-Smith, 2016; Ruff et al., 2016, 2018; Zeininger et al., 2016; 383 

McNutt et al., 2021). This new evidence departs from Hunt’s (1994) vision of a single, unique, 384 

adaptive morphotype for both terrestrial and arboreal bipedal foraging in hominins that may have 385 

remained relatively unchanged even in Homo habilis. However, Hunt’s (1994) hypothesis 386 

accommodated the arboreal features of the Au. afarensis upper body because he considered them 387 

functionally significant (i.e., via stabilizing selection), with the underlying assumption of  388 

correspondence between the presence of a morphology and the use of that morphology in a 389 

biological role. New fossil discoveries and new analyses of old fossils have revealed that Hunt’s 390 

(1994) functional interpretation remains valid. We outline this evidence below. 391 

 392 

4.1. What we have learned about Australopithecus afarensis since Hunt (1994) 393 

 394 

The Au. afarensis hypodigm currently includes more than 400 specimens collected from 395 

multiple sites in eastern Africa, which are thoroughly reviewed by Kimbel and Delezene (2009; 396 

see also Drapeau et al., 2005 and Ward et al., 2012). Therefore, here we do not aim to reproduce 397 

their work and instead focus on functional inferences derived from more recent morphological 398 

studies of the partial skeleton A.L. 288-1 ‘Lucy’ and Au. afarensis more generally (Fig. 2a). 399 

One of the anatomical features highlighted by Hunt (1994) was the presence of six lumbar 400 

vertebrae in Au. afarensis, indicating a longer, more flexible lower back than that of humans and 401 

African apes, and that australopiths were likely not adapted to vertical climbing or leaping. 402 

However, a recent re-analysis of the A.L. 288-1 lumbar vertebrae found that one vertebra (A.L. 403 

288-1am) exhibited morphology that is absent in extant hominoids but common in large-bodied 404 

extant papionins, indicating that this vertebra is not hominin (Meyer et al., 2015). Moreover, a 405 
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reassessment of the A.L. 288-1 sacral vertebrae suggests that ‘Lucy’ possessed five sacral 406 

vertebrae as in modern humans (Russo and Williams, 2015), rather than four as previously 407 

interpreted (Lovejoy et al., 2009d; McCollum et al., 2010). The juvenile Au. afarensis partial 408 

skeleton (DIK-1-1) from Dikika, Ethiopia provides further insights into the full vertebral column, 409 

preserving the only known complete early hominin cervical and thoracic vertebral column 410 

(Alemseged et al., 2006; Ward et al., 2017). DIK-1-1, at 3.3 Ma, preserves the earliest evidence 411 

of 12 thoracic vertebrae, rather than 13 in African apes, but a thoracolumbar transition at the 11
th

 412 

thoracic segment, a distinctive transitional pattern found in other early hominins but that is 413 

higher than in modern humans and extant apes (Ward et al., 2017). Collectively, this new 414 

evidence has important implications for reconstructing the trunk and lower back morphology in 415 

early hominin evolution (see reviews in Williams et al., 2016; Williams and Pilbeam, 2021). 416 

Hunt (1994) focused on differing functional signals derived from the upper vs. lower body in 417 

Au. afarensis. Researchers agree that the derived traits of the australopith lower limb (and 418 

postcranial skeleton overall) are the result of selection for bipedality (reviewed in Ward, 2002, 419 

2013). However, there has been enduring debate over australopith bipedal gait and kinematics, in 420 

particular whether they used a human-like, extended-limb striding bipedalism or a compliant, 421 

bent-hip/bent-knee gait (reviewed in Schmitt, 2003; Carey and Crompton, 2005). The recently 422 

discovered Au. afarensis partial skeleton (KSD-VP-1/1) from Woranso-Mille, Ethiopia (3.58 423 

Ma) confirms key bipedal features, including a long tibia, an elliptical lateral femoral condyle, 424 

and a well-developed patellar lip that together is coherent with human-like bipedalism with a 425 

valgus knee (Haile-Selassie et al., 2010). In addition, a complete Au. afarensis fourth metatarsal 426 

(A.L. 333-160) recently recovered from Hadar, Ethiopia, was also interpreted as having 427 

morphology consistent with a human-like bipedal gait (Ward et al., 2011). This morphology 428 
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includes torsion of the metatarsal shaft, a feature thought only to be observed in modern humans, 429 

and suggesting Au. afarensis possessed modern human-like transverse and longitudinal arches, 430 

which are critical to committed, terrestrial bipedalism (Ward et al., 2011). Morphological 431 

comparisons of A.L. 333-160 with a larger comparative sample show similarities between 432 

hominins and cercopithecids in torsion of the fourth metatarsal, reflecting the presence of 433 

transverse arches in terrestrial cercopithecids as well (Drapeau et al., 2013; Mitchell et al., 2012). 434 

Furthermore, other aspects of metatarsal morphology highlighted by Ward et al. (2011) are also 435 

similar to other great apes and/or highly variable, bringing into question the significance of these 436 

features for inferring midfoot stiffness and the interpretation that Au. afarensis was a habitual 437 

terrestrial biped, at least from its fourth metatarsal morphology alone (Mitchell et al., 2012).  438 

Nonetheless, there are several other features of the Au. afarensis foot that are surprisingly 439 

human-like, especially in light of new australopith discoveries (see below; Zipfel et al., 2011; 440 

McNutt et al., 2018; DeSilva et al., 2019). These features include a robust calcaneal tuberosity 441 

and an expanded, plantarly-positioned lateral plantar process, both of which are found in the 442 

modern human heel and suggest the Au. afarensis foot was well adapted for incurring high forces 443 

during heel-strike (Prang, 2015a; McNutt et al., 2018). Au. afarensis tali have a human-like, 444 

plantarly-oriented talar head (Prang, 2016a) and more human-like overall shape relative to other 445 

australopiths (Sorrentino et al., 2020). An associated Au. afarensis forefoot (A.L. 333-115) 446 

demonstrates human-like dorsal doming of the lateral metatarsal heads, but the kinematics of toe 447 

push-off during the bipedal gait are interpreted as differing from that of humans based on a more 448 

mediolaterally narrow first metatarsal head compared to modern humans (Latimer et al., 1982; 449 

Latimer and Lovejoy, 1990; Fernandez et al., 2016). Moreover, the nearly completely juvenile 450 

foot from Dikika, Ethiopia (DIK-1-1f) offers a rare opportunity to assess how function and 451 
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behavior may have changed throughout ontogeny in Au. afarensis (Alemseged et al., 2006; 452 

DeSilva et al., 2018). Compared to adult Au. afarensis specimens, the hallux was more mobile 453 

and the calcaneus more gracile, indicating selection for foot grasping abilities in juveniles 454 

combined with habitual bipedality (DeSilva et al., 2018). 455 

For Au. afarensis, functional information from postcranial morphology can be combined with 456 

biomechanical inferences derived from the Laetoli footprints (3.66 Ma; Leakey, 1978; Leakey 457 

and Hay, 1979; White and Suwa, 1987). Novel analyses of the ‘G’ and ‘S’ tracks using extant 458 

human bipedal biomechanics as a model suggest Au. afarensis walked with an extended hip and 459 

knee (Raichlen et al., 2010) but potentially with a slightly more flexed limb at foot strike than 460 

that of modern humans (Hatala et al., 2016; but see McNutt et al, 2021). Comparisons of the 461 

Laetoli footprints to younger (1.5 Ma) hominin footprints from Ileret, Kenya, imply that the 462 

Laetoli hominins had a shallower and wider instep and potentially different foot proportions 463 

relative to later hominins (Bennett et al., 2009). 464 

Regarding the Au. afarensis upper limb, recent analyses of the scapula support Hunt’s (1994) 465 

functional interpretation of the importance of arboreality in australopiths. The Dikika partial 466 

juvenile skeleton preserves both scapulae showing cranially-oriented glenoid fossae and 467 

obliquely-oriented scapular spines, similar to that of great apes, and suggesting an African ape-468 

like ontogenetic trajectory (Green and Alemseged, 2012; Young et al., 2015). Shared 469 

morphology between juvenile and adult Au. afarensis scapulae indicates that arboreal locomotion 470 

was an important behavior throughout adulthood as well (Green and Almeseged, 2012). In 471 

contrast, others have suggested that the KSD-VP-1/1 adult partial scapula is more human-like 472 

(Haile-Selassie et al., 2010) and potentially reflects use of the upper limbs for tool-use while 473 

engaging in committed terrestrially (Melillo, 2016). 474 
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Several studies have focused on the functional inferences that can be drawn from Au. 475 

afarensis hand morphology, particularly in relation to the estimated intrinsic hand proportions, 476 

but these studies have typically focused on potential manipulative abilities rather than locomotor 477 

behaviors. The composite hand of Au. afarensis includes second to fifth metacarpals (Mc 2–5) 478 

that most likely belong to a single individual, combined with a first metacarpal and phalanges 479 

from different A.L. 333 localities (Marzke, 1983; Alba et al., 2003). The estimated intrinsic hand 480 

proportions (i.e., relative length of the thumb to the finger[s]) range from Gorilla-like (Rolian 481 

and Gordon, 2013) to human-like (Alba et al., 2003). Experimental evidence of human 482 

participants using simulated stone tools instrumented with force sensors highlights the high joint 483 

forces acting on the thumb, which has implications for early hominin tool use (Rolian et al., 484 

2011; also see Williams et al., 2012; Key and Dunmore, 2015; Williams-Hatala et al., 2018). As 485 

such, some researchers suggest that Au. afarensis lacked the ability to produce precision grips 486 

with the same proficiency as modern humans (Rolian and Gordon, 2013) and that the gracile first 487 

metacarpal morphology could not effectively dissipate the high stress that occurs during stone 488 

tool behaviors (Rolian et al., 2011). In contrast, others have inferred a human-like pad-to-pad 489 

precision grip ability in response to or as an exaptation for a variety of manipulative behaviors, 490 

not just lithic or non-lithic tool-use (Alba et al., 2003; Almécija and Alba, 2014; Feix et al., 491 

2015; Prang et al., 2021). These functional interpretations, however, took on new relevance with 492 

the discovery of cut marks and percussion marks in the Dikika assemblage at 3.4 Ma (McPherron 493 

et al., 2010) and the Lomekwi tool technology in Kenya at 3.3 Ma (Harmand et al., 2015) that 494 

are, at least potentially, associated with Au. afarensis (but see Sahlea et al., 2017; Domínguez-495 

Rodrigo and Alcalá, 2019). 496 
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Hunt’s (1994) hypothesis aimed to accommodate the contrasting functional signals within the 497 

Au. afarensis upper and lower limbs. The new discoveries and analyses since this time continue 498 

to confirm the dual nature of the functional signals reflected in its postcranial morphology. New 499 

evidence suggests that the bipedal gait of Au. afarensis may have been more human-like and 500 

energetically economical than some researchers previously posited (e.g., Crompton et al., 1998; 501 

Wang et al., 2003; Carey and Crompton, 2005; Lovejoy and McCollum, 2010; Raichlen et al., 502 

2010), and, interestingly, more human-like than other roughly contemporary or more recent 503 

australopiths (Harcourt-Smith and Aiello, 2004; Zipfel et al., 2011, DeSilva et al., 2018; see 504 

below). Although some debate still remains over the significance of arboreality in Au. afarensis, 505 

evidence of perimortem fractures throughout the A.L. 288-1 skeleton is interpreted as consistent 506 

with a vertical fall from a tree, unusual evidence of arborealism in Au. afarensis (Kappelman et 507 

al., 2016). Moreover, in contrast to previous assumptions (e.g., Marzke, 1983, 1988; Latimer, 508 

1991; Marzke et al., 1992; Alba et al., 2003; Tocheri et al., 2008), recent hominin discoveries 509 

suggesting the possibility that Au. afarensis was a lithic stone tool user and/or capable of forceful 510 

precision dexterity are not incompatible with a significant reliance on arboreal locomotion 511 

(Kivell et al., 2015; Feuerriegel, 2016). We highlight some of this new comparative context 512 

below. 513 

 514 

4.2. Recently-discovered australopiths and anatomical evidence of locomotor behaviors 515 

 516 

Since 1994, several new australopith discoveries have expanded australopith taxic diversity 517 

(e.g., Asfaw et al., 1999; Berger et al., 2010; Haile-Selassie et al., 2012; 2015; Clarke and 518 

Kuman, 2019; reviewed in Wood and Boyle, 2016). Here we synthesize the functional 519 
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morphology of partial skeletons from two Australopithecus species recently found in South 520 

Africa, focusing on the locomotor signals within the lower and upper limb: StW 573 from 521 

Sterkfontein caves, dated to as old as 3.67 Ma (Granger et al., 2015; Bruxelles et al., 2019) and 522 

referred to as Australopithecus prometheus (Clarke and Kuman, 2019), and Australopithecus 523 

sediba Malapa Hominin 1 (MH1) and Malapa Hominin 2 (MH2) from Malapa (Berger et al., 524 

2010), dated to 1.977 Ma (Pickering et al., 2011). 525 

The StW 573 partial skeleton is remarkably well preserved, including relatively complete 526 

upper and lower limbs from both sides with a complete, semi-articulated hand, as well as a 527 

thorax and partial pelvis (Stratford and Crompton, 2021; Fig. 2b). Many features of the lower 528 

limb bones, including developmentally plastic features that only form during repeated use of 529 

bipedal gaits (Frost, 1990; Duren, 1999; Hamrick, 1999; Tardieu, 2010), suggest clear evidence 530 

of habitual terrestrial bipedality (Heaton et al., 2019; Crompton et al., 2021). For example, the 531 

StW 573 femur has a relatively large head, an intertrochanteric crest reflecting a strong 532 

iliofemoral ligament, a well-developed patellar lip, flattened and asymmetrical femoral condyles, 533 

and a high bicondylar angle indicating stabilized hip and knee joints during bipedal walking 534 

(Heaton et al., 2019; Crompton et al., 2021). These features are found in combination with a 535 

more ape-like tibia morphology and fibulotalar articulation indicating greater ankle mobility than 536 

that of extant humans (Heaton et al., 2019; Crompton et al., 2021). The StW 573 foot bones were 537 

originally described as having a mosaic of features, including a human-like talus and a medially-538 

oriented medial cuneiform-first metatarsal joint implying a more abducted hallux compared to 539 

extant humans, which would have facilitated arboreality (Clarke and Tobias, 1995). In contrast, 540 

more recent morphological studies suggest an ape-like talus and lack of hallux opposability in 541 

StW 573 (Harcourt-Smith, 2002; Crompton et al., 2021). 542 
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Morphology of the StW 573 upper limb indicates that climbing and/or suspension continued 543 

to be a part of its locomotor repertoire (Heaton et al., 2019; Carlson et al., 2021; Crompton et al., 544 

2021). The long clavicles, the African ape-like shape of the scapulae, including a cranially-545 

oriented glenoid fossa, as well as low humeral torsion, suggest a high, dorsally-positioned 546 

scapula that would have facilitated above-head upper limb use and body weight support (Heaton 547 

et al., 2019; Carlson et al., 2021), as well as hand-assisted bipedalism (Hunt, 1994; Thorpe et al., 548 

2007). The humeri have widely-flaring lateral supracondylar ridges and large epicondyles that, in 549 

apes, reflect a well-developed brachioradialis muscle and long wrist and digital flexor muscles, 550 

facilitating climbing (Heaton et al., 2019; Crompton et al., 2021). StW 573 also preserves a 551 

complete (apart from one missing phalanx), articulated left hand. It has been described as having 552 

modern human-like intrinsic hand proportions (Clarke, 1998, 2002; Crompton et al., 2021) and 553 

having a Gorilla-like ridge on the first metacarpal facet that would help to stabilize the thumb in 554 

abducted pinch grips (Crompton et al., 2021). However, to date no quantitative analyses or 555 

detailed descriptions of any of the StW 573 hand anatomy have been published. Although the 556 

hand remains articulated within the breccia, making morphological analyses more challenging, 557 

our own study of the fossils based on caliper linear measurements (taken by T.L.K.) estimates 558 

thumb length (including the metacarpal and proximal phalanx) at 68 mm and third digit length 559 

(including the metacarpal and proximal and intermediate phalanges) as 128 mm, indicating a 560 

thumb length that is approximately 53% the length of the third digit. Thus, StW 573 indeed does 561 

have similar intrinsic hand proportions to those of modern humans (mean 54%), but shorter than 562 

Homo naledi (Hand 1, 58%) and, especially, Au. sediba (MH2, 61%; Kivell et al., 2011, 2015). 563 

The first metacarpal facet of the trapezium shows strong dorsopalmar convex curvature like that 564 

of African apes and unlike humans, but no ridge is present (T.L.K., pers. observ.). 565 
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The remarkable preservation of StW 573 offers a rare opportunity to reliably assess limb 566 

proportions in an early hominin, and like other early hominins for which these can be assessed, 567 

the StW 573 limb indices are intermediate and roughly equidistant from those of African apes 568 

and modern humans (Heaton et al., 2019). As reported by Heaton et al. (2019), the StW 573 569 

intermembral index (85.5) is almost identical to that of A.L. 288-1 (85.6), indicating that 570 

variation in upper and lower proportions is less influenced by allometry than previously thought 571 

(Holliday and Franciscus, 2012). The humerofemoral index (86.6) in StW 573 is also similar to 572 

A.L. 288-1, as well as Ardipithecus (both 84.3), indicating a relatively shorter femur than that of 573 

modern humans (Heaton et al., 2019). The StW 573 brachial index shows a surprising degree of 574 

bilateral asymmetry (82.8 and 86.2) and is similar to that of Gorilla (mean 80.6) and Au. sediba 575 

(~84) but lower than A.L. 288-1 (88.6; Heaton et al., 2019). 576 

Crompton et al. (2021) concluded that StW 573 morphology reflects active selection for both 577 

arboreal and terrestrial locomotion. They argued that relatively short upper limb length compared 578 

with African apes would have reduced its energetic economy for arboreal locomotion but would 579 

have been more economical than humans (Crompton et al., 2021). The ape-like aspects of the 580 

pectoral girdle have also been interpreted as reflecting greater selection for suspensory activities 581 

rather than enhanced manipulation (Carlson et al., 2021). The human-like bipedal morphology of 582 

the lower limb combined with relatively shorter length compared to modern humans suggest 583 

selection for walking short-to-medium distances and that bipedalism would have been used 584 

within an arboreal context as well (Crompton et al., 2021). This behavioral interpretation is also 585 

consistent with the morphology of the vestibular apparatus suggesting that StW 573 was adapted 586 

to utilizing environments requiring maintenance of head/visual stability in a variety of postures 587 

such as three-dimensionally (3D) complex arboreal environments (Beaudet et al., 2019). 588 
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The two associated partial skeletons of Au. sediba, one likely representing a subadult male 589 

(MH1) and the other an adult female (MH2), show a mosaic of ape-like and human-like 590 

morphology as well, but a different mosaic relative to that of StW 573 and Au. afarensis (Fig. 2c; 591 

Kibii et al., 2011; Kivell et al., 2011; Williams, 2011, 2012; Zipfel et al., 2011; Berger, 2013; 592 

Churchill et al., 2013; 2018; de Ruiter et al., 2013, 2017; DeSilva et al., 2013; Schmid et al., 593 

2013; Williams et al., 2013, 2018, 2021; Prang, 2015a, b, 2016a, b; Meyer et al., 2017; Rein et 594 

al., 2017; Dunmore et al., 2020a). Partial pelvic and sacral remains from both MH1 and MH2 595 

share several features with other australopiths, including a long pubis, relatively small sacral and 596 

acetabular joints, and a wide bi-acetabular diameter (Kibii et al., 2011; Churchill et al., 2018). 597 

However, the overall architecture of the pelvis is more similar to modern humans, including 598 

more sagittally-oriented iliac blades (i.e., less flared) with a sigmoid curvature, robust iliac pillar 599 

(acetabulo-cristal buttress, at least in MH1) and short ischium (Kibii et al., 2011; Churchill et al., 600 

2018). Importantly, Au. sediba demonstrates that the derived pelvic features of Homo can evolve 601 

in the absence of brain encephalization (Kibii et al., 2011; Churchill et al., 2018). Newly 602 

recovered lumbar vertebrae of MH2 demonstrate morphology consistent with lumbar lordosis 603 

and other adaptations to bipedalism, although features of the vertebrae themselves show a mix of 604 

human-like and more ape-like aspects (Williams et al., 2021). 605 

The Au. sediba lower limb shows a unique combination of morphologies unlike any other 606 

known australopith. As in other australopiths (Ward et al., 2015), the femoral neck is long and 607 

anteroposteriorly compressed (DeSilva et al., 2013, 2018) and, when combined with the pelvic 608 

morphology, would likely increase both the contractile force of the abductors and the hip joint 609 

reaction force that would, in turn, increase the mediolateral bending moments around the 610 

proximal femoral shaft (Ruff, 1995). The MH2 distal femur possesses australopith-like condyles, 611 
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an unusually well-developed lateral patellar lip that is Homo-like, but lacks the anterior 612 

projection of the patellar surface (DeSilva et al., 2013, 2018). The distal tibia of MH2 (and MH4) 613 

has an ape-like mediolaterally thick medial malleolus that is thicker than other australopiths but 614 

has a human-like articulation with the talus (Zipfel et al., 2011; Desilva et al., 2018). 615 

The Au. sediba foot bones, some of which were found in articulation, each reveal their own 616 

mix of human-like and ape-like features not observed in other fossil hominins. For example, the 617 

MH2 talus is human-like in having a flat trochlea, but ape-like in having a talar head and subtalar 618 

joint morphology that suggests high mobility (Prang, 2015b; 2016a; Zipfel et al., 2011). In both 619 

MH1 and MH2, the calcaneal tuberosity is gracile with an ape-like dorsally-positioned lateral 620 

plantar process, a morphology that is more basal than that characterizing Au. afarensis (Latimer 621 

and Lovejoy, 1989; Zipfel et al., 2011; Prang, 2015b; DeSilva et al., 2018). 622 

Taken together, the unusual morphology of the Au. sediba lower limb indicates that it was 623 

clearly adapted to habitual bipedalism, but with distinct biomechanics compared with other 624 

hominins (DeSilva et al., 2013). DeSilva et al. (2013) suggest a hyperpronating bipedal gait, in 625 

which heel strike occurs on the lateral edge of an inverted foot (e.g., reflecting a gracile calcaneal 626 

tuberosity), followed by extreme pronation that would internally-rotate the tibia and femur (e.g., 627 

reflecting a well-developed patellar lip). Moreover, pronation is also an important motion during 628 

ape climbing (Stern and Susman, 1983) and thus the particular mosaic of features and gait 629 

mechanics in the Au. sediba lower limb may also have been advantageous for arboreal 630 

locomotion (DeSilva et al., 2013). 631 

The overall morphology of the Au. sediba upper limb bones (both MH1 and MH2) is similar 632 

to other australopiths (Churchill et al., 2013, 2018). The short length and joint orientations of the 633 

clavicle, low humeral torsion, and a cranially-oriented glenoid fossa of the scapula, suggest the 634 
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scapula was positioned laterally and high on the thorax and that the upper limb was habitually 635 

used in overhead arm postures (Churchill et al., 2013). The morphology of the elbow is also 636 

similar to other australopiths, with well-developed epicondyles and an elongated brachioradialis 637 

crest at the distal humerus, a well-developed insertion for the biceps brachii on the radius, and 638 

ape-like morphology of the ulnar trochlea that generally reflect powerful arm, wrist, and digital 639 

flexion that is advantageous for climbing (Churchill et al., 2013; Rein et al., 2017). 640 

The relatively complete MH2 hand shows mosaic carpal morphology, including a 641 

radioulnarly narrow lunate, that suggests a greater range of abduction at the radiocarpal joint and 642 

perhaps less central-axis loading of the radiocarpal and midcarpal joints than is interpreted for 643 

other fossil hominins (Kivell et al., 2011, 2018a). The metacarpals are relatively gracile, 644 

including the first metacarpal, that in combination with the radial carpometacarpal region, 645 

suggests limited force production by the thumb. However, intrinsic hand proportions reveal a 646 

thumb that is surprisingly long relative to the fingers, and longer than that found in modern 647 

humans, which would have facilitated opposition of the thumb to the fingers and pad-to-pad 648 

precision gripping that is typical of later Homo (Kivell et al., 2011, 2018a). The MH2 proximal 649 

phalanges show moderate curvature and, unusually, both the proximal and intermediate 650 

phalanges have well-developed flexor sheath ridges that, in combination with a palmarly-651 

projecting hamate hamulus, suggest powerful flexion and that some degree of arboreality may 652 

have been a functionally important part of the Au. sediba locomotor repertoire (Kivell et al., 653 

2011, 2018a; Syeda et al., 2021). 654 

Finally, we can assess some limb proportions in Au. sediba. The complete right upper limb of 655 

MH2 has a brachial index similar to A.L. 228-1, with a forearm relatively shorter than 656 

Ardipithecus but longer than modern humans (Churchill et al., 2013). Interlimb comparisons 657 
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show that the upper limb articular size is smaller than those of the lower limb, which is typical of 658 

bipedal hominins, but the intermembral index remains intermediate between that of African apes 659 

and modern humans (Holliday et al., 2018). Relative to other hominins, Au. sediba joint 660 

proportions are most similar to Au. africanus, as well as H. habilis and Homo floresiensis, and 661 

are more ape-like than Au. afarensis (Prabhat et al., 2021). 662 

Taken together, the Au. sediba postcrania indicate active selection for habitual, terrestrial 663 

bipedalism, albeit with a unique bipedal gait relative to other hominins, and for short to medium 664 

distances given that the lower limb is not as elongated as in early Homo (Kibii et al., 2011; 665 

DeSilva et al., 2013; Holliday et al., 2018). However, there likely remained stabilizing selection 666 

for arboreal competency, as indicated by the upper limb and hand morphology associated with 667 

over-head arm support that includes developmentally plastic features associated with climbing 668 

and suspension (i.e., keeled ulnar trochlear facet and curved phalanges) and mobile foot joints 669 

that are advantageous for climbing (Holliday et al., 2018; Churchill et al., 2013; DeSilva et al., 670 

2013; Rein et al., 2017; Williams et al., 2021). We can also combine these locomotor inferences 671 

with a remarkably long thumb that would increase dexterity in Au. sediba, but would also 672 

enhance arboreal grasping in a hominin with relatively short fingers (Kivell et al., 2011, 2018a).  673 

Hunt (1994) reiterated the dual-behavioral signal of A.L. 288-1 upper and lower limbs 674 

highlighted by previous analyses (e.g., Senut, 1980; Tuttle, 1981; Jungers, 1982; Jungers and 675 

Stern, 1983; Stern and Susman, 1983) and current fossil evidence still supports this functional 676 

interpretation, not only for Au. afarensis, but also for StW 573 and Au. sediba. However, the 677 

suite of anatomical features in each of these species is different, suggesting subtly or, in some 678 

cases, dramatically different locomotor biomechanics for each taxon. Although the retention of 679 

arboreal features in these early hominins, as well as other Middle to Late Pleistocene hominins 680 
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(Larson et al., 2009; Berger et al. 2015), lends strong evidence to active selection for forelimb-681 

dominated locomotion, questions remain over how frequent and significant these behaviors were 682 

in the day-to-day life of a given hominin. How do we better understand how these hominins were 683 

interacting with different paleoenvironments and how can we better infer behavior during a 684 

hominin lifetime? 685 

 686 

5. Advances in methodological approaches for extracting functional information from 687 

hominin fossils  688 

 689 

5.1. Behavioral studies of wild, habituated great apes 690 

 691 

The foundation of Hunt’s (1994) small-tree postural feeding hypothesis is rooted in his 692 

observations of when, where, and for which purpose Mahale and Gombe chimpanzees used 693 

bipedalism and the functional link between bipedalism and arm-hanging. Although additional 694 

comprehensive locomotor studies of great apes since then are limited (Remis, 1994, 1998; 695 

Doran, 1997; Thorpe and Crompton, 2006; Manduell et al., 2011; Sarringhaus et al., 2014), we 696 

have gained a greater appreciation of behavioral variation within and between great ape species, 697 

populations, and different ecological settings. Moreover, we have recognized the relevance of the 698 

variation in African ape behavior, locomotor and otherwise, to our understanding of hominin 699 

evolution (e.g., Pruetz et al., 2015; Luncz et al., 2018; Thompson et al., 2018; Wessling et al., 700 

2018). 701 

Since Hunt’s (1994) study, more recent positional behavioral investigations of chimpanzees at 702 

other sites confirm their infrequent use of bipedalism (Doran, 1997; Stanford, 2006; Sarringhaus 703 
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et al., 2014; Drummond-Clarke et al., 2022). For example, in adult chimpanzees of Ngogo, 704 

Uganda, bipedalism represents less than 2% of all locomotor time and they most frequently use 705 

hand-assisted, flexed-hindlimb, bipedal walking (Sarringhaus et al., 2014). However, the 706 

behavioral context of chimpanzee bipedalism (e.g., feeding, vigilance) has only been further 707 

studied in the chimpanzees of Bwindi Impenetrable National Park, Uganda (Stanford, 2006). 708 

Bipedalism in Bwindi chimpanzees was almost always postural and arboreal, and was most 709 

commonly used during foraging, similar to Hunt’s (1994, 1996) results. However, Stanford 710 

(2006) highlighted bipedal use in an arboreal, rather than a terrestrial, context for the potential 711 

emergence of bipedalism in hominins. 712 

Based on subtle anatomical differences between chimpanzees and bonobos (e.g., more curved 713 

phalanges, longer and narrower scapula), bonobos were hypothesized to engage in more 714 

suspensory locomotion and bipedalism (Zihlman et al., 1978, 1996). Initial studies of bonobo 715 

positional behavior confirmed this hypothesis, highlighting a greater frequency of arboreality in 716 

bonobos compared with chimpanzees, including higher frequencies of leaping, arboreal 717 

bipedalism (Susman et al., 1980; Susman, 1984), and suspension (Doran, 1992, 1993). However, 718 

these initial studies focused largely on comparisons of arboreal behaviors only (i.e., without 719 

terrestrial data) and were conducted on bonobo populations (Lomako and Wamba, Democratic 720 

Republic of the Congo, DRC) that the researchers acknowledged were less habituated than their 721 

chimpanzee comparators, potentially inflating the frequency of arboreality (Susman et al., 1980; 722 

Susman, 1984; Doran, 1993). A more recent study of a habituated population (Lui Kotole, DRC), 723 

however, suggests that bonobos (when sexes are pooled) are no more arboreal than chimpanzees 724 

(56% of locomotor time on the ground and 44% in the trees) and suspensory locomotion is 725 

extremely rare (<0.1% of locomotor time; Ramos, 2014). 726 
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Bonobo bipedalism varies by population: at Lomako, bipedal locomotion ranged between 1–727 

2% (Doran and Hunt, 1994) and 6–8% (Susman et al., 1980; Susman, 1984) of their arboreal 728 

locomotor time, whereas at Wamba bonobos rarely used bipedal postures, even during feeding 729 

(Kano and Malavwa, 1984; Hunt, 1991). At Lui Kotole, bipedalism, primarily postural, was used 730 

6% of time spent in the trees but represented only 0.2% of total positional behavior (Ramos, 731 

2014). Bipedal standing with arm-hanging—the foundation of Hunt’s (1994) hypothesis—was 732 

rare in Lui Kotole bonobos (<0.01% of all postural time) and was used in the trees, rather than on 733 

the ground, for feeding (Ramos, 2014). 734 

Compared with chimpanzees, investigation of orangutan (Pongo pygmaeus) positional 735 

behavior has also highlighted their slightly more common use of bipedal postures (7% of 736 

arboreal time vs. 0.3% in Mahale/Gombe chimpanzees) and bipedal walking (7% of arboreal 737 

locomotion vs. 7% in Mahale/Gombe chimpanzees and 3% in Taï chimpanzees; Thorpe and 738 

Crompton, 2006). However, unlike the flexed hindlimbs of chimpanzees, orangutans typically 739 

use extended hindlimbs during bipedalism, making them a potentially better model for the 740 

ecological context in which bipedalism evolved in the panin-hominin ancestor (Thorpe and 741 

Crompton, 2006; Thorpe et al., 2007; but see Begun et al., 2007). 742 

The value of studying extant chimpanzees is also derived from the diverse landscapes they 743 

inhabit, ranging from dense, closed forest, to open, dry woodland savanna, allowing researchers 744 

to observe how locomotor (and other) behaviors may change in response to the habitat 745 

(Lindshield et al., 2021). In particular, behavioral changes as a result of a more open and dry 746 

environment are thought to have played a key role in hominin evolution and speciation 747 

(Behrensmeyer, 2006). Previous comparisons of positional behavior in bonobos and 748 

chimpanzees from different habitats, ranging from woodland/deciduous forest (Gombe, 749 
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Tanzania) to evergreen rainforest (Taï, Ivory Coast) showed that there was far less variation in 750 

positional behavior between chimpanzee habitats (and subspecies) than between chimpanzees 751 

and bonobos (Doran and Hunt, 1994; see also Doran, 1996). However, as highlighted by van 752 

Leeuwen et al. (2020), the chimpanzee populations used in this comparative study all lived in 753 

forested habitats. Chimpanzees living in dry, open savanna landscapes
1
 like Fongoli, Senegal 754 

(Pruetz and Bertolani, 2009; Wessling et al., 2018), Mt. Asserik, Senegal (McGrew et al., 1981), 755 

and Issa Valley, Tanzania (Fig. 3; Piel et al., 2017; Drummond-Clarke et al., 2022) represent 756 

particularly informative models for interpreting the evolutionary pressures that potentially 757 

affected hominins. 758 

Although the anatomy and ‘Bauplan’ of hominins differed from those of extant apes, 759 

chimpanzees (and other primates) offer the opportunity to test hypotheses about how a large-760 

bodied, semi-arboreal ape may adapt its physiology or behavior to ecological constraints 761 

similarly faced by hominins. For example, Fongoli chimpanzees experienced more physiological 762 

stress due to heat and dehydration compared with fluctuating seasonal availability in food, 763 

suggesting the importance of thermoregulatory selective pressures on hominins living in similar 764 

environments (Wessling et al., 2018). A preliminary study of postural and locomotor bipedalism 765 

at Fongoli found that bipedalism is still rare in Fongoli chimpanzees but they do it more often 766 

(2.3% of all positional behavior time) than chimpanzees at Taï (1.2%, Doran, 1993), as well as 767 

Mahale, Gombe and Bwindi, and used bipedalism most often during feeding, both in arboreal 768 

and terrestrial contexts (Tourkakis, 2009). Issa chimpanzees living in a mosaic environment of 769 

savanna woodland and riparian forest also change the frequencies of their locomotor behaviors 770 

and substrate use in their different habitats (Drummond-Clarke et al., 2022). Interestingly, 771 

                                            
1
 These include trees with a mostly open canopy, as defined by Lindshield et al. (2021) and van Leeuwen et al. 

(2020). 
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however, Issa chimpanzees do not increase their frequency of bipedalism in the open savanna 772 

woodland, and in fact use just as much arboreal locomotion in the savanna woodland as 773 

chimpanzees living in densely-forested habitats, contrary to expectations based on hominin 774 

evolutionary models (Drummond-Clarke et al., 2022). Variation in habitat has also been shown 775 

to influence orangutan locomotor behavior, including higher frequencies of bipedalism in dry, 776 

lowland forests (Ketambe, Sumatra) compared with peat swamp forests (Suaq Balimbing, 777 

Sumatra and Sabangau, Borneo; Manduell et al., 2012). These studies highlight how a large-778 

bodied semi- (or highly) arboreal ape may change the frequency of different positional behaviors 779 

and context in which they are used (e.g., feeding, vigilance) based on. variation in habitat, both 780 

across seasons and sites, which can help make more refined inferences of behavior in hominins. 781 

  782 

5.2. Australopith locomotor economy 783 

 784 

Given that Au. afarensis pelvic and lower limb morphology differs from that of later Homo, 785 

Hunt (1994) suggested that early hominin bipedal locomotion was less efficient (i.e., consumed 786 

more energy and caused greater muscle fatigue) relative to both modern human bipedalism and 787 

ape quadrupedalism. Over nearly the past five decades, the locomotor economy of australopith 788 

morphology has been inferred through experimental and comparative work in locomotor 789 

energetics involving humans and chimpanzees (Rodman and McHenry, 1980; Pontzer and 790 

Wrangham, 2004; Sockol et al., 2007; Pontzer et al., 2009, 2014; Pontzer, 2017). Mechanical 791 

studies have demonstrated that the long hind limbs and straight-legged walking gait of humans 792 

have greatly reduced the cost of transport during walking compared to chimpanzee 793 

quadrupedalism and bipedalism (Sockol et al., 2007; Pontzer et al., 2014). In fact, human 794 
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walking is nearly twice as economical compared to that of chimpanzees (Pontzer, 2017). 795 

Researchers have further expanded this experimental research to assess the energetic cost of 796 

humans walking with bent hips and bent knees (Carey and Crompton, 2005) and crouched 797 

postures (Johnson et al., 2022) to provide more informed inferences of early hominin bipedal 798 

economy. 799 

How does this recent experimental evidence fit with Hunt’s (1994) hypothesis? Hunt (1994) 800 

focused on Au. afarensis lower body anatomy reflecting less efficient bipedal locomotion (i.e., 801 

consumed more energy) compared with that of modern humans, which is not surprising given 802 

that modern human bipedal functional morphology has had an additional three million years to 803 

be positively selected and refined for energetic economy. Given the similarities in chimpanzee 804 

bipedal gait kinematics compared to other nonhuman primates (D’Aout et al., 2004; Vereecke et 805 

al., 2006; Demes, 2011), it is reasonable and parsimonious to assume that the locomotor costs of 806 

the panin-hominin last common ancestor would have been similar to those of chimpanzees 807 

(Pontzer et al., 2014). Based on knowledge at the time (Ishida, 1991), Hunt (1994) suggested that 808 

early hominin bipedal locomotion would have been less economical than ape quadrupedalism. 809 

However, energetically costly does not mean a particular gait or behavior was not possible, or 810 

that it doomed a species to extinction; as Daegling (2022:p. 125) highlighted, since all bipedal 811 

traits did not appear simultaneously, “[t]here must have been a phase of hominin evolution that 812 

involved a highly inefficient manner of bipedal progression.” Susman et al. (1984:p. 113) 813 

creatively articulated the same view: “Must not there have been a period of time when both the 814 

trees and the ground served as important areas for life’s activities, as they do today for living 815 

great apes? Must not there have been a period of time when the human ancestor was neither as 816 

good at moving on two legs as it could become, nor as good at scrambling in the trees as it once 817 
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had been? We expect that such a period of time did exist”. In addition, given the similarity in 818 

locomotor costs between chimpanzee quadrupedal and bipedal walking (Sockol et al., 2007; 819 

Pontzer et al., 2009, 2014), increasing the frequency of bipedal locomotion in early hominins 820 

would not necessarily have increased the costs of bipedalism (Pontzer et al., 2009, 2014) and, 821 

indeed, early hominin bipedalism could have been less costly than non-bipedal behaviors 822 

(Sockol et al., 2007). 823 

The mechanics of early hominin bipedalism, as highlighted by Hunt (1994), are key to 824 

inferring locomotor costs. Recent studies of Au. afarensis bipedal gait from preserved 825 

morphology using a variety of modeling methods and parameters, generally agree that the 826 

energetic costs of bipedal locomotion in Au. afarensis were more economical than chimpanzee 827 

locomotion (Thompson et al., 2015) and potentially similar to those of modern humans 828 

(Crompton et al., 1998; Nagano et al., 2005; Sellers et al., 2005). Indeed, a slightly longer 829 

(relative to African apes) and extended hind limb paired with a stiff, non-grasping foot, and, 830 

although mediolaterally broad, a more human-like pelvis in Au. afarensis (Stern, 2000; Jungers, 831 

2009), are all consistent with human-like locomotor economy (Nagano et al., 2005; Sellers et al., 832 

2005). 833 

Furthermore, even though Hunt’s (1994) hypothesis is still consistent with recent studies of 834 

great apes using (hand-assisted) bipedal postures and locomotion within small, terminal branches 835 

for feeding (Stanford and Nkurunungi, 2003; Thorpe et al., 2007; Crompton et al., 2008), recent 836 

research suggests that the retention of arboreal adaptations within the Au. afarensis forelimb may 837 

not have been more energetically economical compared to habitual bipedalism, as Hunt (1994) 838 

hypothesized. The energetics of rock climbing in mondern humans showed that variation in 839 

human limb proportions or body mass have minimal effects on the climbing costs of transport 840 
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(Kozma and Pontzer, 2021) and that human costs of climbing are similar to those of other 841 

primates (Hanna et al., 2008; Hanna and Schmitt, 2011). Experimental research on humans and 842 

nonhuman primates suggests that arboreal postcranial adaptations, such as longer forelimbs or 843 

curved digits, do not substantially decrease climbing costs (Hanna et al., 2008; Kozma and 844 

Pontzer, 2021). Thus, although the potential energetic costs and savings of the Au. afarensis 845 

upper and lower body may not be what Hunt (1994) originally predicted, the dual functional 846 

signals of the australopith postcranium are consistent with Sylvester’s (2006) ‘decoupling 847 

hypothesis’ positing that early hominins should require efficient forms of both terrestrial and 848 

suspensory locomotion. That being said, energy expenditure is only one possible performance 849 

attribute among others that selection can act upon (Pontzer and Wrangham, 2004). 850 

 851 

5.3. The study of internal bony structure  852 

 853 

Hunt’s (1994) functional interpretation of the Au. afarensis postcranium also included 854 

inferences about the associated bone stresses, particularly those incurred at the hip joint, during 855 

locomotion. Since that time, a considerable amount of research has been dedicated to developing 856 

analytical tools, many of which are virtual (Pandolfi et al., 2020), to improve our inferences of 857 

behavior in hominin taxa from skeletal morphology (e.g., Sellers et al., 2005; Gross et al., 2014; 858 

Dunmore et al., 2018; Karakostis et al., 2018; Ruff, 2018; DeMars et al., 2021; Profico et al., 859 

2021). Here we discuss advancements in one of these virtual tools, namely, the analysis of 860 

internal bone structure based on the concept of bone functional adaptation, within a comparative 861 

extant primate context (Cowin, 2001; Currey, 2006; Ruff et al., 2006). Both cortical and 862 

trabecular bone model and remodel throughout life to adjust structurally to the local loading 863 
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environment (Martin et al., 1998; Lieberman et al., 2003; Ruimerman et al., 2005; Currey, 2006; 864 

Ruff et al., 2006; Bonewald and Johnson, 2008; Gosman et al., 2011; Allen et al., 2014; Barak, 865 

2020). Because trabecular bone is more metabolically active (Huiskes, 2000; Jacobs, 2000; 866 

Currey, 2006) and (re)models faster (~25% annual bone turnover) than cortical bone (~2–3%) in 867 

adults (Eriksen, 1986, 2010), it can be more responsive to changes in load magnitude, direction, 868 

or frequency (reviewed in Kivell, 2016; but see Lovejoy et al., 2003). 869 

While many questions remain concerning the functional relationship between the ‘container’ 870 

(the cortical shell) and the ‘contents’ (the inner structural organization), both bone structures 871 

have been experimentally shown to provide functional information about site-specific loading 872 

conditions during one’s life (van der Meulen et al., 1993, 1996; Ruff et al., 1994, 2006; van der 873 

Meulen and Carter, 1995; Biewener et al., 1996; Guldberg et al., 1997; Robling et al., 2002; 874 

Mittra et al., 2005; Pontzer et al., 2006; Carlson and Judex, 2007; Polk et al., 2008; Barak et al., 875 

2011; Harrison et al., 2011; Carlson and Marchi, 2014; Christen et al., 2014). For example, 876 

experimental research on the human female tibia showed that diaphyseal cortical bone geometry 877 

in young adults retained signals of childhood/adolescent loading regardless of adult activity 878 

(Murray and Erlandson, 2021). By contrast, distal tibial trabecular bone density was found to 879 

reflect post-menarcheal loading, regardless of pre-menarcheal loading patterns (Murray and 880 

Erlandson, 2021). The last two decades have seen several technological advances in high-881 

resolution 3D imaging (as well as access to this technology) and methods for quantifying and 882 

statistically comparing variation in internal bone structure (e.g., Pahr and Zysset, 2009; Bondioli 883 

et al., 2010; DeMars et al., 2021; Profico et al., 2021; Veneziano et al., 2021; Bachmann et al., 884 

2022), while limiting risk to fossil specimens (e.g., Macchiarelli and Weniger, 2011; Weber, 885 

2015; but see Le Cabec and Toussaint, 2017). This has led to a substantial increase in the number 886 
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of studies investigating the potential functional signals within internal bone structure, and 887 

particularly trabeculae, in fossil hominin remains and extant hominid taxa, that can help 888 

paleontologists better distinguish ecophenotypic features from basal retentions (e.g., Puymerail 889 

et al., 2012a, b, 2013; Cazenave et al., 2017, 2019, 2021; Tsegai et al., 2013, 2018; Dunmore et 890 

al., 2019; 2020a, b; Bird et al., 2021; Su and Carlson, 2017; Georgiou et al., 2018, 2019, 2020; 891 

Sukhdeo et al., 2020; Bird et al., 2022; see Kivell, 2016 and references therein). 892 

Analysis of internal bone structure in different associated elements of the skeleton, especially 893 

concurrently from the upper and lower limbs, can reveal complementary evidence essential to 894 

reconstructing actual habitual behavior of early fossil hominins characterized by a mosaic 895 

postcranium. However, such analyses are rare for several reasons, including: 1) the paucity of 896 

associated, relatively complete skeletons in the early hominin fossil record, 2) the inherent 897 

methodological challenges of accessing imaging technology, especially high-resolution imaging, 898 

and the time-consuming nature of some analyses (e.g., segmentation of bone from matrix or the 899 

computational power required to quantify complex internal structures in 3D), and 3) lack of 900 

access to particular fossil specimens or, when accessible, the lack of adequate preservation of 901 

internal structures. Below we consolidate the functional inferences that have been drawn from 902 

analysis of the cortical or trabecular structures in gracile and robust australopiths (Fig. 4) to 903 

highlight the value that internal analyses can bring to understanding the dual nature of the upper- 904 

and lower-limb external morphology that Hunt’s (1994) hypothesis aimed to accommodate. 905 

Australopithecus afarensis Relative differences in cortical bone cross-sectional geometry 906 

between the upper and lower limb bones can provide information about the significance of 907 

forelimb-dominated vs. bipedal locomotion. Analysis of the cross-sectional geometry of A.L. 908 

288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between 909 
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those of chimpanzees and modern humans, indicating more mechanical loading of the forelimb 910 

than in humans, which is consistent with significant use of arboreal locomotor behaviors (Ruff et 911 

al., 2016). Moreover, relative femoral head size, femoral neck cortical bone distribution, and 912 

cross-sectional shape of the proximal shaft suggest a bipedal gait involving more lateral 913 

deviation of the body’s center of mass over the support limb than is typical of a modern human 914 

gait, which would have increased the costs of terrestrial locomotion (Ruff et al., 2016). 915 

Trabecular analysis of Au. afarensis metacarpals also shows a pattern of trabecular 916 

distribution that is intermediate between that of modern humans and other extant apes, and 917 

distinct from other australopiths, suggesting the use of powerful flexed-fingered grasping during 918 

both arborealism and manipulation (Kivell et al., 2018b; Dunmore et al., 2020b). Future analyses 919 

of other Au. afarensis skeletal elements will likely provide a more refined reconstruction of Au. 920 

afarensis behavior, although preservation of internal bone structures in the Pliocene remains of 921 

East Africa is limited. 922 

Australopithecus africanus The internal structure of the Au. africanus lower limbs has been 923 

thoroughly investigated, providing subtle, complementary information to the external 924 

morphology that can be used to reconstruct the locomotor behavior in this taxon. One of the first 925 

analyses used a series of calibrated radiographs to comparatively describe the trabecular 926 

architecture of several adult and juvenile Au. africanus ilia (Macchiarelli et al., 1999, 2001). The 927 

trabecular structures suggest that the Au. africanus pelvis underwent a loading regime 928 

commensurate with a bipedal gait, but somewhat different from that typical of modern humans 929 

(Macchiarelli et al., 1999, 2001). A volume-of-interest analysis of the trabecular structure within 930 

multiple Au. africanus femoral head specimens revealed a pattern more similar to that of modern 931 

humans and Pleistocene Homo than to the typical extant ape condition, which is also consistent 932 
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with a human-like bipedal gait, including the habitual use of a more extended hip (Ryan et al., 933 

2018). Similarly, a ‘whole-bone’ analysis of the trabecular structure in Au. africanus femoral 934 

head specimen StW 522 also revealed a human-like pattern of loading at the hip joint and that 935 

Au. africanus likely did not climb (i.e., habitually load its hip joint in a flexed posture) at the 936 

frequencies seen in extant nonhuman apes or other Sterkfontein hominins (Georgiou et al., 937 

2020). 938 

In line with these results, the cortical distribution at the femoral neck confirmed a bipedal gait 939 

in Au. africanus, but somewhat different from that typical of modern humans. Sterkfontein Au. 940 

africanus specimens have relatively more symmetric superior and inferior femoral neck cortices 941 

at the mid-neck than modern humans, but a more human-like pattern at the base of the neck, 942 

suggesting greater superioinferior bending loads during bipedal locomotion in Au. africanus 943 

(Ruff and Higgins, 2013; Ruff et al., 2016). The orientation of trabecular struts in Au. africanus 944 

distal tibiae indicates that Au. africanus primarily loaded its ankles in a relatively extended 945 

posture (plantarflexed) like that of modern humans and unlike chimpanzees, indicating a human-946 

like gait with an efficient, extended lower limb (Barak et al., 2013). Indeed, the trabecular bone 947 

orientation of the distal tibia implies the use of talocrural joint plantarflexion, which humans use 948 

at the end of the push-off phase—a distinctive feature of the biomechanics of bipedalism (Sockol 949 

et al., 2007; Pontzer et al., 2009; Barak et al., 2013). 950 

While the investigation of the ilium, femur, and tibia internal bone structure generally agree 951 

that Au. africanus engaged in habitual, terrestrial bipedalism with a slightly altered gait 952 

compared with modern humans, the results of the trabecular and cortical distribution in the foot 953 

bones are more puzzling. For example, Au. africanus tali show that trabecular strut orientation in 954 

the antero-medial region is ape-like, implying that this hominin may not have had the derived 955 
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human-like medial weight shift during the last half of stance phase (Su and Carlson, 2017). 956 

Trabecular bone density distribution in the calcaneum (StW 352) suggests that the Au. africanus 957 

heel experienced more variable loading than modern humans but less so than African apes, 958 

consistent with a large range of foot movements with locomotor kinematics that are unlike those 959 

of extant humans or apes (Zeininger et al., 2016). Finally, the cortical diaphysis of the Au. 960 

africanus fifth metatarsal shows a human-like dorsoplantar reinforcement for resisting 961 

dorsoplantar loading, but which is achieved via cortical thickening rather than increased 962 

dorsoplantar external dimensions, as seen in extant humans (Dowdeswell et al., 2016). 963 

Reconstruction of the locomotor behavior in Au. africanus from upper limb internal bone 964 

structure has focused on the humerus and hand bones. Functional inferences from the trabecular 965 

structure within the Au. africanus StW 328 humeral head are limited due to the fragmentary 966 

preservation of this specimen, but its high trabecular bone volume and more isotropic trabecular 967 

structure is most similar to nonhuman hominoids (Kivell et al., 2018c). This pattern indicates 968 

higher magnitude and more diverse loading of the humeral head than that of modern humans and 969 

suggests Au. africanus may still have used its forelimbs for arboreal locomotion (Kivell et al., 970 

2018c). Australopithecus africanus metacarpal trabecular structure shows a pattern that is 971 

intermediate between that of humans and other apes (Skinner et al., 2015; Dunmore et al., 972 

2020b). Although the metacarpals show a high Pan-like trabecular density, the asymmetrical 973 

distribution of trabeculae within the metacarpal heads is similar to that of modern humans, 974 

suggesting habitual, and potentially forceful, opposition of the thumb towards the fingers 975 

(Skinner et al., 2015). However, an analysis of the cortical bending stiffness of the Au. africanus 976 

StW 418 first metacarpal relative to that of the ulnar rays was more similar to great apes 977 

(Dunmore et al., 2020b). Future study of the Au. africanus distal humerus (Arias-Martorell et al., 978 
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2021), and radius and ulna internal bone structure, will provide further clarity on arm loading 979 

and use in this taxon.  980 

Paranthropus robustus and Paranthropus boisei Investigation of internal bone structure in 981 

Paranthropus shows that it presents a similar picture to that outlined above for Au. africanus. 982 

Indeed, many studies have grouped gracile and robust australopiths together because the 983 

functional signals are similar, including in the ilium (Macchiarelli et al., 1999, 2001), femoral 984 

head (Ryan et al., 2018), femoral neck (Ruff and Higgins, 2013; Ruff et al., 2016), and first 985 

metacarpal (Skinner et al., 2015). Functional interpretations from P. robustus lower limb cortical 986 

and trabecular structure confirm habitual, terrestrial bipedal locomotion but with a slightly 987 

different gait compared with modern humans (Macchiarelli et al., 1999, 2001; Bleuze, 2010; 988 

Ruff and Higgins, 2013; Ruff et al., 2016), including a more limited range of habitual hip joint 989 

postures (Ryan et al., 2018) and increased mechanical loading of the proximal femoral diaphysis 990 

(Ruff et al., 1999). 991 

However, recent studies of cortical distribution and trabecular organization of the femoral 992 

neck in five P. robustus specimens from Swartkrans reveal distinct internal features in P. 993 

robustus that are not observed in modern humans or Pan (Cazenave et al., 2019, 2021). The 994 

functional significance of this specific configuration in the P. robustus femoral neck or their 995 

presence in other australopiths may support a somewhat different locomotor repertoire in P. 996 

robustus compared with Au. africanus, a hypothnesis that requires further investigation. Analysis 997 

of the trabecular distribution throughout the femoral head in two Sterkfontein specimens, one 998 

attributed to Au. africanus (StW 522) and one possibly attributed to P. robustus (or Homo; StW 999 

311), indicates distinctly different loading regimes despite overall similarity in external 1000 

morphology (Georgiou et al., 2020). The possible P. robustus specimen shows an ape-like 1001 
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pattern of femoral head loading in both flexed- and extended-hip postures, consistent with 1002 

regular bouts of climbing and terrestrial bipedalism (Georgiou et al., 2020). 1003 

Trabecular structure within the P. robustus (TM 1517) and presumed P. boisei tali (KNM-ER 1004 

1464) show a human-like pattern in the antero-medial subregion (in contrast to the ape-like 1005 

pattern in Au. africanus), suggesting Paranthropus may have had a human-like medial weight 1006 

shift during the last half of stance phase (Su et al., 2013; Su and Carlson, 2017). This is one of 1007 

the few studies identifying functional differences between P. robustus and Au. africanus (see 1008 

also Beaudet et al., 2019; Braga et al., 2021). The trabecular structure of the P. robustus first 1009 

metatarsal (SKX 5017 from Swartkrans Member 1) suggests hyper-dorsiflexion at the 1010 

metatarsophalangeal joint, which is distinct from the trabecular pattern found in SK 1813, 1011 

another (juvenile) first metatarsal from Swartkrans that is not attributed to a specific taxon 1012 

(Komza and Skinner, 2019). Evidence for consistent loading in hyper-dorsiflexion in SKX 5017 1013 

suggests terrestrial bipedal gait with a toe-off that is beyond the range of motion typically found 1014 

in modern humans (Komza et al., 2019). Like Au. africanus, the P. robustus fifth metatarsal also 1015 

shows dorsoplantar cortical thickening to resist human-like dorsoplantar loading but does not 1016 

exhibit distal shaft tapering in cortical thickness, which is found in modern humans and Au. 1017 

africanus (Dowdeswell et al., 2016). 1018 

For the upper limb, only the internal structure of the distal humerus of Paranthropus has been 1019 

investigated, showing a clear dichotomy between P. robustus and modern humans and Homo 1020 

erectus in the morphology and cortical bone distribution, including thicker cortex in P. robustus 1021 

(Cazenave et al., 2017). The distal humerus of P. boisei also shows high bending strength 1022 

comparable to that of extant great apes (as well as Au. afarensis and H. habilis) and considerably 1023 
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higher than that observed in later Homo, indicating powerful upper limbs and habitual climbing 1024 

behavior (Lague, 2019). 1025 

 1026 

6. Where is the field and future directions 1027 

 1028 

What have we learned about australopiths since Hunt (1994)? Over the last two and half 1029 

decades, more paleoanthropologists have accepted that australopiths were both committed bipeds 1030 

and adept climbers. This greater consensus has stemmed from additional fossil evidence that has 1031 

made clear that the dual-functional signal of the Au. afarensis skeleton is common to all known 1032 

australopiths (and other hominins). Moreover, this dual-functional signal comprises different 1033 

combinations of anatomical features across australopiths, the consequences of which are 1034 

biomechanical variation in bipedal posture and gait and likely overall positional behavior. Thus, 1035 

the australopith ‘lower-body biped’ and ‘upper-body arborealist’ (be it arm-hanging or climbing) 1036 

‘Bauplan’ that was the anatomical basis for Hunt’s (1994, 1996) postural feeding hypothesis is 1037 

still upheld, but with greater variation across all regions of the skeleton and perhaps greater 1038 

variation temporally than originally imagined. Indeed, recent fossil evidence and new analyses 1039 

suggest Au. afarensis had more human-like morphology and was a more committed terrestrial 1040 

biped than geologically younger australopiths (e.g., Au. africanus, Au. sediba) and even some 1041 

Homo taxa (e.g., Ward et al., 2011; Prang et al., 2015a,b, 2016b; Boyle et al., 2018; DeSilva et 1042 

al., 2019; Prabhat et al., 2021). Current debates are perhaps less divisive than in the 1980s since 1043 

new fossil discoveries urged more researchers to move closer to the ‘compromise camp’ 1044 

approach. Instead, debates center on more detailed biomechanical implications of australopith 1045 

anatomical variation, including the specifics of bipedal gait or climbing strategy, within and 1046 
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between species. Such debates will likely continue as future fieldwork will undoubtedly reveal 1047 

more surprise morphologies in temporal periods or geographical regions we currently would not 1048 

predict. A greater understanding of human and great ape anatomy, positional behavior, and 1049 

locomotor kinematics and kinetics, as well as a greater appreciation of anatomical and 1050 

biomechanical variability within extant taxa, has allowed researchers to better test functional 1051 

hypotheses about fossil hominin morphology and offer more refined locomotor reconstructions.  1052 

  1053 

6.1. Are extant primates good models for reconstructing past behaviors and, in turn, hominin 1054 

evolution? 1055 

 1056 

As Washburn (1967:p. 21) aptly summarized, “[t]he understanding of human evolution comes 1057 

from three different sources: from general evolutionary theory, from the fossils, and from the 1058 

behavior and biology of the living primates”. Over the last 50+ years, we have improved our 1059 

knowledge of all three sources and, in turn, have a much deeper appreciation of the complexity 1060 

of human evolutionary history. Hypotheses about the origins of bipedalism are contingent on the 1061 

reconstructed positional behavior of the panin-hominin last common ancestor and that of early 1062 

hominins, for which there are two general approaches; one which directly relies on 1063 

morphofunctional interpretations of the fossil record (i.e., the ‘bottom-up’ or ‘worm’s eye’ 1064 

approach) and the other founded in the behavior and biomechanics of living primates, notably 1065 

Pan (i.e., the ‘top-down’ or ‘bird’s eye’ approach; e.g., Diogo et al., 2017; Pilbeam and 1066 

Lieberman, 2017; Almécija et al., 2021). Each approach offers valuable, complementary 1067 

information and both are needed to understand the earliest stages of human evolution, as well as 1068 

those of African apes. However, the hominid fossil record of the Late Miocene and earliest 1069 
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hominin radiation is both scanty and heterogeneous, especially for the postcranial elements. In 1070 

addition, extant apes represent a restricted and biased sample of a much larger Middle-to-Late 1071 

Miocene ape radiation that very likely displayed a much greater variety of locomotor solutions 1072 

(e.g., Pina 2016; Böhme et al., 2019). 1073 

Thus, any additional information we can learn about how African apes, and primates in 1074 

general, adapt, behave, or interact within their varying ecological settings provides potential 1075 

natural experimental evidence for improving our understanding of the behavior and selective 1076 

pressures in the past (in addition to improved conservation efforts to ensure we have more time 1077 

to learn from the many endangered primate species). We support the perspective of Pontzer et al. 1078 

(2014:p. 79) that understanding the relationship between locomotor form and function in African 1079 

apes “is important, not because Pan is a perfect model of the earliest hominins, but because it 1080 

enables us to test biomechanical models of locomotor performance in a large-bodied semi-1081 

arboreal primate”. This perspective reaches beyond biomechanical models and beyond just 1082 

chimpanzees: it is only through the (ethical) investigation of living primates that we can test 1083 

hypotheses of how behavior is reflected in external and internal bone structure to more 1084 

accurately interpret past behavior. Although we must remember that modern humans and extant 1085 

great apes are not ideal models with which to compare fossil hominin taxa (Daegling, 2002), 1086 

experimental or behavioral studies of primates in captivity (e.g., Schmitt, 2003; Hanna et al., 1087 

2008; Pontzer et al., 2014; O’Neill et al., 2015; Samuel et al., 2018) or in natural settings (e.g., 1088 

DeSilva, 2009; Thompson et al., 2018; Neufuss et al., 2018; Ostrofsky et al., 2019; Thompson et 1089 

al., 2018;Wessling et al., 2018), 3D imaging of human bone structure (e.g., Schipilow et al., 1090 

2013; Macintosh et al., 2017; Pomeroy et al., 2019), and recent advances in primate archaeology 1091 

(e.g., Luncz et al., 2016; Proffitt et al., 2016, 2018) are excellent examples of the utility of 1092 



 49 

studying living primates and their impact on our interpretation of the hominin paleontological or 1093 

archaeological record.  1094 

 1095 

6.2. Do we need more fossils? 1096 

 1097 

In 2000, White questioned: “[w]ill our textbooks ever be illustrated with skeletons rather than 1098 

scraps?” (White, 2000:p. 290). Many others have recognized the need to find more, and more 1099 

complete, fossil evidence. For instance, Wood and Leakey (2011:p. 264) stated that “[t]he early 1100 

hominin fossil record is too meager to do anything other than offer very provisional statements 1101 

about hominin taxonomy and phylogeny”. Foley et al. (2016:p. 6) concluded that “[i]t might 1102 

seem that modeling, ancient genomes and three-dimensional morphometrics are the keys to the 1103 

future, but all these depend on the continuing accumulation of new fossils and the discovery of 1104 

new archaeological and palaeontological sites”.  1105 

In 2022, this review has highlighted only a few of the many incredible paleontological 1106 

discoveries of the last two decades, including several near-complete skeletons of different 1107 

hominin species (e.g., White et al., 1994; Brown et al., 2004; Lordkipanidze et al., 2007; Berger 1108 

et al., 2015; Williams et al., 2018; Stratford and Crompton, 2021) that have challenged previous 1109 

knowledge based on isolated and/or more fragmentary specimens. These discoveries allow us to 1110 

robustly estimate body proportions or the overall Bauplan and to provide more holistic functional 1111 

inferences about behavior, including from both the upper and lower limbs. These discoveries 1112 

have also brought to light intriguing combinations of morphologies in hominin individuals that 1113 

paleoanthropologists could not have predicted (e.g., Brown et al., 2004; Berger et al., 2010, 1114 

2015; Stratford and Crompton, 2021). But to interpret these morphologies, these discoveries also 1115 
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highlight the importance of using and developing new tools that allow us to extract more 1116 

accurate and refined functional information from the fossils themselves. These discoveries show 1117 

that we will always need more fossils, ideally representing both sexes and a variety of 1118 

ontogenetic stages, and that each will add both clarity and complexity to our understanding of 1119 

hominin evolution. 1120 

Evolutionary questions, however, inherently rely on the phylogenetic relationships among 1121 

fossils. Therefore, more fossils will not necessarily or automatically provide better resolution of 1122 

evolutionary questions. Chronology alone cannot be used as a proxy for phylogeny as fossils 1123 

sample only snap-shots in time, older lineages can persist through time and retain ancestral 1124 

character states, and homoplasy (via parallelisms or reversals) will be pervasive. With each fossil 1125 

discovery, new hominin phylogenetic reconstructions and the subsequent interpretations that are 1126 

drawn from them should be considered one of many possible hypotheses and homoplasy is a 1127 

given (Wood and Harrison, 2011; Daegling, 2022). 1128 

 1129 

6.3. Do we need more tools to investigate the fossil record? 1130 

 1131 

The need for more fossils is undeniable and when we find them, there are few opportunities to 1132 

appropriately extract the specimens and to exhaustively document their immediate context before 1133 

irrevocably altering the ‘crime scene’ (e.g., Flannery, 1982; White, 2000; Foley, 2016). New 1134 

developments in geochemistry (e.g., Passey et al., 2010), paleoproteomics (e.g., Welker et al., 1135 

2016), and ancient DNA (e.g., Massilani et al., 2022) have demonstrated that valuable 1136 

evolutionary information can be derived from sources that only a few years ago would have 1137 

likely been discarded or ignored. Thus, any methodological effort to improve or preserve the 1138 
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resolution of fossils in situ should be encouraged, especially in anticipation of future 1139 

methodological developments to answer functional and evolutionary questions. 1140 

Regarding the reconstruction of behavior in the past, recent advances in biomechanical 1141 

modeling, including musculoskeletal modeling and the use of finite element analysis (e.g., 1142 

O’Higgins et al., 2017), have provided more nuanced interpretations of fossilized morphology. 1143 

These methods are time-consuming and require living participants (e.g., O’Neill et al., 2015) or 1144 

anatomical specimens (Synek et al., 2019) to ensure models are biologically realistic, but they 1145 

have the potential ability to more accurately infer function from variation in form (e.g., O’Neill 1146 

et al., 2015; Püschel and Seller, 2016; Püschel et al., 2018; Bucchi et al., 2020; Pina et al., 2020; 1147 

Synek et al., 2020). 1148 

Paleoanthropological research has also greatly benefited from the development of 1149 

nondestructive investigative technologies based on high-resolution computed tomography (𝜇CT) 1150 

and synchrotron radiation microtomography that are able to render at micrometric scale the 1151 

external and internal structures of the mineralized tissues for detailed quantitative analyses. 1152 

Importantly, the recent use of neutron microtomography for high-resolution imaging of highly-1153 

mineralized fossil specimens has been able to reveal internal structures that were not accessible 1154 

via 𝜇CT X-rays (e.g., Zanolli et al., 2020). It is thus probable that future analyses will 1155 

increasingly combine information derived from both the external and internal fossil morphology. 1156 

Although access to high-resolution imaging technology and freeware development  offer 1157 

researchers the ability to analyse the ‘hidden evidence’ from inside fossils, there is still a long 1158 

way to go in terms of the infrastructure and accessibility of these resources in the countries for 1159 

which almost all hominin fossils are discovered. Moves toward greater open-access data sharing 1160 
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in ways that support the curatorial institutions are a welcome improvement (e.g., The Human 1161 

Fossil Record and Morphosource.org). 1162 

 1163 

7.0 Moving forward 1164 

Despite the advances described above, some enduring questions remain. Even if most researchers 1165 

now recognize that commitment to bipedalism does not require the full abandonment of 1166 

arboreality (c.f. e.g., Latimer and Lovejoy, 1990), determining the frequency of climbing or 1167 

suspensory behaviors in the day-to-day life of a hominin is still a challenging, if not impossible, 1168 

quest. The complete anatomy of any given organism does not map directly to its most frequent 1169 

behavior(s), infrequent behaviors that are mechanically demanding or have a higher negative 1170 

impact on fitness also influence morphology, and any given morphology can be used for a 1171 

multitude of behaviors. All paleontologists must work under the assumption that morphology 1172 

reflects behavior, but identifying the evolutionary significance of behavioral differences within 1173 

(e.g., sex differences in positional behavior) and between hominin species will always be 1174 

challenging. Such endeavors will likely require fossil samples of multiple individuals and 1175 

differing ontogenetic stages, osteological or molecular data on sex (e.g., Stewart et al., 2017), 1176 

independent (and detailed) ecological information (e.g., local landscape, diet), a combination of 1177 

methodological approaches (e.g., biomechanical modeling, analyses of internal bone structure, 1178 

extant analogues), and potentially archaeological evidence (lithic or organic; e.g., Luncz et al., 1179 

2020) to reach a robust understanding of how a particular hominin species interacted in its 1180 

paleoenvironment. Advances along all of these lines of evidence make this goal more attainable.  1181 
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Figure captions 

Figure 1. List of human-like derived features and ape-like features in the upper limb and axial 

skeleton (orange) as well as pelvic girdle and lower limb (blue) in Australopithecus afarensis 

(A.a.), ‘Australopithecus prometheus’ (partial skeleton StW 573; A.p.) and Australopithecus 

sediba (A.s.). Note that if there is no specific mention of a species for a feature, it means either 

that the feature is absent or non-identifiable in this species for preservation and taphonomical 

reasons. 
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Figure 2. Partial skeletons of a) Australopithecus afarensis A.L. 288-1 adult female, b) StW 573 

‘Australopithecus prometheus’, likely an adult female (courtesy of Paul Myburgh), and c) 

Australopithecus sediba MH2 adult female. Images sourced from Ruff et al. (2016), Williams et 

al. (2018), and Palakovic (2021). Reproduced with permission of The Licensor through 

RightLinks. 
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Figure 3. Chimpanzees (Pan troglodytes schweinfurthii) of Issa Valley, Tanzania that live in a, 

b) a savanna-mosaic habitat of miombo woodland and c) riparian forest similar to reconstructed 

paleoenvironments of early hominins. Contrary to expectations based on hominin evolutionary 

models, Issa chimpanzees engage more frequently in bipedalism in the forest than in the more 

open woodland, and use just as much arboreal locomotion in the open woodland as chimpanzees 

that live in more densely-forested habitats (Drummond-Clarke et al., 2021). Photo credit to 

Rhianna Drummond-Clarke. 
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Figure 4. Cortical and trabecular bone preservation and structure of different skeletal remains 

likely attributed to Australopithecus africanus, Paranthropus robustus, and Paranthropus boisei. 

Images sourced from Macchiarelli et al. (1999), Barak et al. (2013), Su et al. (2013), Zeininger et 

al. (2016), Cazenave et al. (2017, 2021), Su and Carlson (2017), Kivell et al. (2018c), Ryan et al. 

(2018), Komza et al. (2019), and Lague (2019). Reproduced with permission of The Licensor 

through RightLinks. 

 

 


