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Abstract In programming, protocols are everywhere. Protocols describe the pattern of interaction (or com-
munication) between software systems, for example, between a user-space program and the kernel or be-
tween a local application and an online service. Ensuring conformance to protocols avoids a significant class
of software errors. Subsequently, there has been a lot of work on verifying code against formal protocol spec-
ifications. The pervading approaches focus on distributed settings involving parallel composition of processes
within a single monolithic protocol description. However we observe that, at the level of a single thread/pro-
cess, modern software must often implement a number of clearly delineated protocols at the same time which
become dependent on each other, e.g., a banking API and one or more authentication protocols. Rather than
plugging together modular protocol-following components, the code must re-integrate multiple protocols into
a single component.

We address this concern of combining protocols via a novel notion of ‘interleaving’ composition for pro-
tocols described via a process algebra. User-specified, domain-specific constraints can be inserted into the
individual protocols to serve as ‘contact points’ to guide this composition procedure, which outputs a sin-
gle combined protocol that can be programmed against. Our approach allows an engineer to then program
against a number of protocols that have been composed (re-integrated), reflecting the true nature of applica-
tions that must handle multiple protocols at once.

We prove various desirable properties of the composition, including behaviour preservation: that the com-
posed protocol implements the behaviour of both component protocols. We demonstrate our approach in the
practical setting of Erlang, with a tool implementing protocol composition that both generates Erlang code
from a protocol and generates a protocol from Erlang code. This tool shows that, for a range of sample proto-
cols (including real-world examples), a modest set of constraints can be inserted to produce a small number
of candidate compositions to choose from.

As we increasingly build software interacting with many programs and subsystems, this new perspective
gives a foundation for improving software quality via protocol conformance in a multi-protocol setting.
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A theory of composing protocols

1 Introduction

Protocols are everywhere. Whenever two entities need to communicate (perhaps via
function calls, or messages sent over a channel), a protocol can be used to ensure that
both parties effectively exchange information. Protocols can be seen as a specification
of communication, and as such have been leveraged for the purposes of verification
in programming languages, e.g., session types [22, 23, 7, 24], choreographies [11, 12,
36], typestate [39], behavioural types in general [27, 19], and more. There may be
many protocols that a program has to conform to, capturing different interactions
between different parts of a system. Here we use the term protocol to denote a
specification of the interaction patterns between different system components. For
example, when considering distributed systems, a protocol may describe the causalities
and dependencies of the communication between processes. To give a more concrete
intuition, an informal specification of a protocol for an e-banking system may be as
follows: The banking server repeatedly offers a menu with three options: (1) request a
banking statement, which is sent back by the server, (2) request a payment, after which
the client will send payment data, or (3) terminate the session. We elaborate on this
example later, using it as a motivating example.
Much of the work on systematising the process of programming against a specifica-

tion assumes a monolithic view of protocols: a protocol is often given for the entire
system, explaining the communication between all parties involved. This up-front,
single point of definition runs contrary to the human aspects of real-world program-
ming, in which a programmer gradually pieces together their code, perhaps heavily
leveraging libraries, to reach their intended goal; programs are gradual compositions.
A view that is globally defined once does not reflect the real process of software
composition. In contrast, a view that defines lots of local protocols or sub-protocols
places the burden of configuring their interaction on the programmer: programmers
must themselves work in a situation where they have to consider many smaller pro-
tocols and work out how they want dependencies between them to be resolved.
Instead, we propose that a flexible, non-monolithic notion of protocol composition
(and possibly recomposition, when a piece of code is refactored and rewritten, or
reused) is needed to support the engineering of protocol-dependent code. Ideally,
such a notion should support well-founded semi-automated protocol composition and
support implementation with formal guarantees.
This work lays a foundation for compositional protocol engineering based on a notion

of interleaving composition of protocols. An interleaving composition of two protocols
‘weaves’ them together into a single unified protocol. This differs from sequential
composition, in which one protocol follows the other or one’s inputs are coupled to the
other’s outputs. It differs from parallel composition, which traditionally (e.g., in CCS or
CSP) describes a semantic interleaving of programs; our approach calculates a single
syntactic protocol specification. We address, in general terms, the question of what a
correct protocol composition is, and introduce a syntactic definition of composition
that characterises finite sets of correct interleaving compositions, each representing
a ‘good way’ to interleave the component protocols with respect to domain-specific
user-specified constraints. The resulting approach gives a theoretical basis for protocol
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(re-)engineering based on a process calculus with constraint annotations. Interleaving
composition has the purpose of enhancing the awareness (of programmers) of what
a protocol means, as well as facilitating reasoning about its properties. We give an
algorithmic implementation of interleaving composition supporting the process of
defining protocols and inspecting the generated compositions, and code generation
for Erlang producing skeletons of processes following a given protocol (composite
or not). Code generation is based on Erlang/OTP gen_statem behaviour [2] allowing
code to be migrated in subsequent compositions and reused. Correspondence of our
protocol language with Finite State Machines (FSM) (via directed graphs) yields a
straightforward link between protocols and FSM-structured code.
A related line of work defines composition as run-time weaving, for example apply-

ing principles of aspect-oriented programming to protocol composition [40]. Unlike
Tabareau et al. [40], we statically derive protocol compositions that enable (human/au-
tomated) reasoning and verification of their properties. Another related line of work
is automata composition [18, 43, 20]. Team Automata [18, 43] provide several means
of composing machines via synchronization on their common actions, and give a
formal framework for composition. Unlike Team Automata, we express composition
constraints orthogonally to communication: instead of synchronization on common
actions, we use ‘asserts’/‘requires’ as contact points for composition, and reason about
the properties of a composite protocol from the perspective of the application logic.
The resulting composition relation given in this work is not characterizable as one of
the synchronizations of Team Automata (discussed further in Section 6).
Unlike in aforementioned works, our protocols (including the composite ones) are

mono-threaded. This is not unusual in literature, e.g., session types are essentially
mono-threaded [22, 23, 7]. Also real-world protocols, such as POP2 and SMTP, are
described in their RFCs as single state machines and have been modelled, without
parallel composition, as session types [9, 26]. Still, one could use parallel composition
as a basis for defining protocol compositions (as in Team Automata), and this would
yield general and syntactically concise concurrent specifications. These concurrent
specifications, with all their interleavings, would be harder for a human to understand
than a well-specified interleaving composition. We explore an unusual approach to
composition, with the purpose of supporting a process of human understanding of
what protocol composition should be. Our novel approach is also reflected in the tool.
The code for the composition of two protocols is not the composition of the existing
implementations (plus some adaptor code) – as one would expect. The tool generates
new code via: (1) automated generation of a stubs of the new composite protocol,
and (2) migration of relevant parts of the old code – besides the stub infrastructures
– into the new code. This yields simple mono-thread implementations that are still
close to the protocol’s structure.

1.1 Motivating example

The banking protocol discussed earlier in this section can be formally specified as SB in
Figure 1 using a process calculus notation. SB repeatedly (via a fixed point µt) offers
(denoted &) three options: option statement is followed by a send action (denoted !)
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SB := µt .&







statement : !statement.t
payment : ?details.t
logout : end







SA := ?pin.⊕







ok : µr.!id.?tan.⊕
�

ok : r
fail : r

�

fail : end







Figure 1 Banking (SB) and PIN/TAN authentication (SA) protocols. The arrows show the
desired dependencies: entering the loop in SB requires correct PIN authentication
(i.e., at ok, first occurrence in SA) and each payment iteration in SB requires TAN
authentication. (i.e., at ok, second occurrence in SA).

of a message with the bank statement, option payment is followed by a receive action
(denoted ?) with details of the payment, and option logout is followed by termination
of the protocol (denoted end). After each of the first two options, the control flow
goes back to the initial state (via t).
Assume now that we want to extend SB with two-level authentication: one level for

accessing the service and one additional level for each payment transaction. Concretely,
we wish to compose SB with the PIN/TAN (Personal Identification Number/Transaction
Authentication Number) protocol modelled in Figure 1 as SA which offers two-stage
authentication. The first stage is pin authentication: the server receives a pin and
decides (⊕) whether to continue (i.e., ok) or terminate (i.e., fail). If ok is chosen,
the protocol enters a loop (i.e., µr) that manages multiple TAN authentications,
supporting multiple transactions requiring an additional level of security. In the loop,
the server sends an identifier id for which the client must send back a tan. The server
notifies the client about the correctness of the tan with either ok or fail.
We want to compose the banking and authentication protocols into a single proto-

col where their actions follow a specific interleaving: access to the banking service
requires a PIN authentication, and each payment instance/iteration requires an extra
TAN authentication (see dotted arrows in Figure 1). This specific interleaving entails
an authorization property, which we later express and ensure by using assertion anno-
tations. Moreover, we want tools that facilitate engineering of programs implementing
interleaving compositions. For example, we want to obtain a skeleton implementation
for the banking and PIN/TAN protocol, and in a second stage we want to reuse the
code when composing banking with a different multi-factor authentication protocol,
e.g., offering other options besides TAN, such as keycard authentication.

1.2 Contributions

In Section 2, we define a process-calculus-based notation for protocols with ‘assertions’.
Assertions specify contact points and constraints between component protocols, to
be checked statically. In Section 3, we define interleaving composition. Interleaving
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composition is defined relationally as there may be many possible valid interleaved
protocols (or even none). In Section 3.1.1 we provide two less restrictive definitions
of interleaving composition via two additional rules, weak branching and correlating
branching that capture more scenarios but enjoy a weaker fairness properties. In Sec-
tion 4, we prove that our composition relation returns correct interleaving compositions,
namely: (behaviour preservation) interleaving compositions only perform sequences
of actions that may be performed by either of the component protocols; (fairness) in-
terleaving compositions eventually execute the next available action of each protocol;
(well-assertedness) interleaving compositions always satisfy requirements prescribed
by the assertions in the protocols being composed. Thus, we establish that the compo-
sition relation produces sets of correct-by-construction protocol compositions. Our
definition is sound but not complete, as discussed in Section 4.4. In Section 5, we
introduce a tool for protocol engineering in Erlang, which implements interleaving
composition, generation and protocol extraction to/from Erlang gen_statem code.
Section 6 discusses related work.

2 Asserted Protocols

We introduce a language of protocol specifications to abstractly capture essential
features of sequential computation: sequencing, choice, and looping. Our protocol
language somewhat resembles Milner’s CCS [35] or the π-calculus [38], but without
parallel composition or name restriction, and has some relation to Kleene algebras [31]
but we provide more general patterns of recursion via recursive binders rather than a
single closure operator. Generally, two protocols can be composed in several ways,
each reflecting a possible interleaving of the actions of the two protocols. Not all such
interleavings are meaningful depending on the scenario or domain. The protocol
language therefore includes a notion of ‘assertions’ which can be used to capture the
behavioural constraints of a protocol to guide interleaving composition in a meaningful
way; they act as a specification of minimal ‘contact points’ between protocols akin to
pre- and post-conditions. Following an explanation of the syntax and various examples,
we give an operational model to the protocol language which serves to explain both
the program semantics which it abstracts, and the meaning of the assertion actions.

Definition 1 (Asserted protocols) Asserted protocols, or just protocols for short, are
ranged over by S and are defined as the following syntax rules:

S ::= p.S action prefix
| +{li : Si}i∈I branching
| µt.S fixed-point
| t recursive variable
| end end
| assert(n).S assert (produce) �

assertion fragment| require(n).S require
| consume(n).S consume
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where p ∈ P ranges over prefixing actions, l ∈ L ranges over labels used to label each
branch of the n-ary branching construct, t ranges over protocol variables for recursive
protocol definitions, and n ∈ N ranges over names of logical atoms used by assertions.
The sets of actions P , labels L , and names N are parameters to the language and thus
can be freely chosen. Furthermore + ranges over a set of operators O used to represent
branching choice and thus can also be instantiated.

The prefixing action provides sequential composition (in the style of process calculi).
Branching is n-ary, taking the form of a set of protocol choices with a label li for each
choice. Looping behaviour is captured via the recursive protocol variable binding µt,
which respects the usual rules of binders, and recursion variables t. Protocols can be
annotated with assertions to introduce guarantees assert(n), requirements require(n),
and linear requirements consume(n): assert(n) introduces a true logical atom n into
the scope of the following protocol, require(n) allows the protocol to proceed only
if n is in the scope (basically consume(n) presupposes require(n)), and consume(n)
removes the truth of logical atom n from the scope of the following protocol.
We assume variables to be guarded in the standard way (they only occur under

actions or branching). To simplify the theory, we assume that: (1) nested recursions
are guarded, ruling out protocols of the form µt.µt′.S, with no loss of generality
since µt.µt′.S is behaviourally equivalent to µt.S[t/t′], and (2) in µt.S variable t
occurs free at least once in S, with no loss of generality since e.g., µt.?pay.end is
behaviourally equivalent to ?pay.end. Unless otherwise stated, we consider protocols
to be closed with respect to these recursion variables.

Remark 1 (Language instantiation) In the examples we often instantiate the prefixing
actions P to sends !T and receives ?T capturing interaction with some other concurrent
program, i.e., p ∈ {!T, ?T} where T is a type (e.g., integers, strings), and instantiate
choice + to a pair of polarised choice operators: + ∈ {⊕, &}, either offering of a choice
⊕ or selecting from amongst some choices &. This yields a session types-like syntax like
the one of Dardha et al. [16].

Examples often colour assertions green and labels purple for readability.

2.1 Assertion examples

Consider a payment process ?pay.end that receives a payment and terminates, and a
dispatch process !item.end that sends a product link and terminates. We can interleave
these two protocols in two ways: ?pay.!item.end (payment first) or !item.?pay.end
(dispatch first). By using assertions, we can require that payment happens before
dispatch: below, I1 asserts the logical atom paid as a post-condition to receiving
payment while in I2 the sending action depends on the logical atom paid as a pre-
condition, and in doing so consumes it.

I1 =?pay.assert(paid).end I2 = consume(paid).!item.end

The only interleaving composition of I1 and I2 that satisfies the constraints posed by
the assertions is: ?pay.assert(paid).consume(paid).!item.end.
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Linear constraint consume(n) models a guarantee that can be used once, whereas
non-linear constraint require(n) does not consume n. Using a mix of linear and non-
linear constraints, we can model a prepaid buffet scenario where a payment remains
valid (hungry) for several iterations until the meal ends (end):

µt.&{hungry : require(paid).!food.t, end : consume(paid).end}

Example 1 (Asserted banking and PIN/TAN) The informal requirement on the bank-
ing and PIN/TAN example discussed in the introduction can be modelled using assertions.
An asserted version of the banking protocol, given below as S′B, uses require(pin) to ensure
a successful PIN authentication before accessing the banking menu; consume(tan) to
require one successful TAN authentication for each iteration involving a payment; and
consume(pin) to remove the PIN guarantee when logging out. Assertions assert(pay) and
consume(pay) ensure TAN authentication only happens in case of payment.

S′B = require(pin).µt.&







statement : !statement.t
payment : assert(pay).consume(tan).?details.t
logout : consume(pin).end







In the asserted authentication protocol S′A below, assert(pin) and assert(tan) provide
guarantees of successful PIN and TAN authentication, respectively:

S′A = ?pin.⊕







ok: assert(pin).µr.consume(pay).!id.?tan.⊕
�

ok: assert(tan).r
fail: r

�

fail: end







2.2 Protocol semantics

The semantics of a protocol is given in Definition 2 in terms of an environment that
keeps track of guarantees, and lets protocols progress only if stated guarantees can
be met by the environment. The semantics is up to the structural equivalence rules
given below, where S[µt.S/t] is the one-time unfolding of µt.S.

µt.S ≡ S (where t 6∈ fv(S)) µt.S ≡ S[µt.S/t]

Definition 2 (Operational semantics) The semantics of protocols is defined by a la-
belled transition system (LTS) over configurations of the form (A, S) where A ranges
over environments A ⊆ N (sets of logical atoms), with transition labels ` ::= p | +l |
assert(n) | require(n) | consume(n) and the transition rules below:

(A, p.S)
p
−→ (A, S) 〈Inter〉

(A,+{li : Si}i∈I )
+lj
−→ (A, S j) ( j ∈ I) 〈Branch〉

(A,assert(n).S)
assert(n)
−−−−→ (A∪ {n}, S) 〈Assert〉

(A, require(n).S)
require(n)
−−−−−→ (A, S) (n ∈ A) 〈Require〉

(A, consume(n).S)
consume(n)
−−−−−−→ (A \ {n}, S) (n ∈ A) 〈Consume〉

(A, S)
`
−→ (A′, S′)

(A,µt.S)
`
−→ (A′, S′[µt.S/t])

〈Rec〉
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Rules 〈Inter〉 and 〈Branch〉 always allow a protocol to proceed with some action,
resulting in the appropriate continuation, without any effect to the environment.
Rule 〈Assert〉 adds atom n to the environment. Rules 〈Require〉 and 〈Consume〉
both require the presence of atom n in the environment for the protocol to continue.
Although 〈Require〉 leaves the environment unchanged, 〈Consume〉 consumes the
atom n from the environment. In 〈Rec〉, S′[µt.S/t] means that the recursive protocol
is unfolded by substituting µt.S for t in S′.

We write: (A, S) 6→ if (A, S)
`
−→ (A′, S′) for no `, A′, S′; (A, S)

~̀
−→ (A′, S′) for a vector

~̀ = `1, . . . ,`n if (A, S)
`1−→ . . .

`n−→ (A′, S′). We say that (A′, S′) is reachable from (A, S) if

(A, S) = (A′, S′) or (A, S)
~̀
−→ (A′, S′) for a vector ~̀. We omit labels and target states

where immaterial.

Definition 3 (Stuck state & progress) State (A, S) is stuck if S 6≡ end and (A, S) 6→.
A protocol S enjoys progress if every state (A′, S′) reachable from (;, S) is not stuck.

A protocol may reach a stuck state when it does not have sufficient pre-conditions in
its environment A. In Example 1, S′B does not enjoy progress because the pre-condition
expressed by require(pin) cannot be met; similarly, S′A does not enjoy progress because
of unmet pre-condition consume(pay).

2.3 Well-assertedness

Assertions are key to generating meaningful compositions of protocols. Following the
labelled transitions semantics, we define a judgement which captures the pre- and
post-conditions of a protocol implied by its assertions. We use the notation A {S}A′

reminiscent of a Hoare triple where A and A′ are pre- and post-conditions of S.

Definition 4 (Well-assertedness) Let A be a set of names. Well-assertedness of a
protocol S with respect to A is defined below, as an inference system on judgements of the
form A {S}A′ , where A′ is the set of names (logical atoms) resulting after the execution
of S given the set of names A.

A {S}A′

A {p.S}A′
[act]

∀i ∈ I . A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai
[bra]

A∪ {n} {S}A′

A {assert(n).S}A′
[assert]

A∪ {n} {S}A′

A∪ {n} {require(n).S}A′
[require]

A \ {n} {S}A′ n ∈ A
A {consume(n).S}A′

[consume]

A {S}A∪ A′

A {µt.S}A∪ A′
[rec]

−
A {end}A

[end]
−

A {t}A
[call]

We write A {S}when A {S}A′ for some A′ (i.e., when the post-condition is not of interest).
We say that S is very-well-asserted if ; {S}. We say that a state (A, S) is well-asserted if
S is well-asserted with respect to A.

Protocols S′A and S′B in Example 1 are not very-well-asserted but they are well-asserted
with respect to {pin, tan} and {pay}, respectively.
We now consider some properties of well-asserted protocols. Proofs are in Ap-

pendix D. Firstly, protocols that do not contain assertions are very-well-asserted:
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Proposition 1 (Very-well-assertedness) If S is generated by the grammar in Defini-
tion 1 without the assertion fragment then it is very-well-asserted.

Next, well-asserted protocols can have their environment weakened, akin to pre-
condition weakening in Hoare logic:

Proposition 2 (Environment weakening) If A {S} and A ⊆ A′ then A′ {S}. Hence,
; {S} implies A {S} for all A.

Next, Lemma 1 states that the redux of a well-asserted state is well-asserted, more-
over the postconditions are not weakened by reduction:

Lemma 1 (Reduction preserves well-assertedness) If A {S}A′ and there is a reduc-
tion (A, S)

`
−→ (A′′, S′) then ∃A′′′ ⊇ A′. A′′ {S′}A′′′ .

Lemma 2 (Well-asserted protocols are not stuck) If A {S} and S is closed with re-
spect to recursion variables (fv(S) = ;) then (A, S) is not stuck.

Next, Lemma 3 shows that if a protocol “gets stuck”, this is because it does not have
enough preconditions to proceed. Thus, the protocol needs assumptions that may be
provided by other protocols it could be composed with. Lemma 3 follows by induction
on the length of a protocol’s execution, combined with Lemmas 1 and 2.

Lemma 3 (Progress of very-well-asserted protocols) If S is very-well-asserted (i.e.,
; {S}) and closed then it exhibits progress.

We next introduce protocol composition, which produces protocols that are mean-
ingful with respect to their assertions (i.e., that exhibit progress).

3 Interleaving Compositions

We compose protocols by computing syntactic interleavings.We derive the ‘interleaving
composition’ (IC) of two protocols S1 and S2 via a relation with judgements of the
form: TL; TR; A ` S1 ◦ S2 . S where S is the resulting composed protocol, and A
is the set of names (i.e., assertions) provided by the environment to S. We let T
range over recursion environments, defined as possibly empty lists of distinct protocol
variables t. Lists are concatenated via the , (comma) operator, which is overloaded to
extend a list with a single element, e.g., written T,t. In the judgements, we use two
recursion environments TL and TR to keep track of the free protocol variables in S1

and S2 respectively in order to handle composition of recursive protocols. We use an
underlining annotation t to denote variables that were used to merge two recursive
protocols into one recursive IC, and predicate unused(T) that is true if all variables in
T are not used (i.e., not underlined), and false otherwise. The ‘used’ annotation t is
instrumental in handling composition of nested recursions, as explained later.

Definition 5 (Interleaving composition) IC is defined by the judgements in Figure 2.
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TL; TR; A ` S1 ◦ S2 . S
TL; TR; A ` p.S1 ◦ S2 . p.S

TR; TL; A ` S2 ◦ S1 . S
TL; TR; A ` S1 ◦ S2 . S

[act/sym]

TL; TR; A∪ {n} ` S1 ◦ S2 . S
TL; TR; A∪ {n} ` require(n).S1 ◦ S2 . require(n).S

[require]

TL; TR; A \ {n} ` S1 ◦ S2 . S n ∈ A
TL; TR; A ` consume(n).S1 ◦ S2 . consume(n).S

[consume]

TL; TR; A∪ {n} ` S1 ◦ S2 . S
TL; TR; A ` assert(n).S1 ◦ S2 . assert(n).S

[assert]

∀i ∈ I TL; TR; A ` Si ◦ S2 . S′i
TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈I

[bra]

TL ,t1; TR; A ` S1 ◦ µt2.S2 . S A {µt1.S}
TL; TR; A ` µt1.S1 ◦ µt2.S2 . µt1.S

A {µt.S} fv(µt.S) = ;
TL; TR; A ` µt.S ◦ end . µt.S

[rec1/rec3]

TL; T1,t, T2; A ` S1[t/t1] ◦ S2 . S unused(T2)

TL; T1,t, T2; A ` µt1.S1 ◦ S2 . S
[rec2]

t ∈ TL ∨ t ∈ TR

TL; TR; A ` t ◦ t . t
−

TL; TR; A ` end ◦ end . end
[call/end]

Figure 2 Rules for iterleaving composition of protocols

In Figure 2, rule [act] is for prefixes, [sym] is the commutativity rule, and [end]
handles a terminated protocol. By combining [act] and [sym] one can obtain all
interleavings of two sequences of actions.
Rule [require] includes the continuation of a protocol only if a required assertion

n is provided by the environment. Rule [consume] is similar except the assertion
is removed in the precondition’s environment. Conversely, [assert] adds assertion n
to the environment of the precondition. Rules [require], [assume], and [consume]
may enforce a particular order in actions of an interleaving. For example, the reader
can verify that the composition of ?pay.assert(p).end and consume(p).!item.end pro-
duces (only) one interleaving ?pay.assert(p).consume(p).!item.end that is obtained
by applying [act], [assert], [sym], [consume], [act], and [end].
Rule [bra] is similar to [act] but the continuations are composed with each branch.

For example the composition +{l1 : end, l2 : end} ◦ !Int.end with initially empty
environment produces the following two interleavings:

+{l1 :!Int.end, l2 :!Int.end} (applying [bra], [sym], [act], [end])
!Int.+ {l1 : end, l2 : end} (applying [sym], [act], [act], [sym], [bra], [end])

Rules [rec1] and [rec2] allow two recursive protocols to be composed. The composition
of two recursive protocols, say µt1.S1 and µt2.S2, yields a recursive protocol where
the recursion body is the composition of the two recursion bodies, and only one of

6:10



Laura Bocchi, Dominic Orchard, and A. Laura Voinea

the two protocol variables is used, either t1 or t2. For example, the composition of
µt1.!p1.t1 and µt2.!p2.t2 yields e.g.,

µt1.!p1.!p2.t1 (applying [rec1], [act], [sym], [rec2], [act], [call])
µt2.!p2.!p1.t2 (applying [sym], and proceeding as above)

Rule [rec1] picks t1 as name for the interleaving composition, records t1 as the end of
the TL list and continues with the composition of the recursion body S1 with µt2.S2.
The premise A {µt1.S} ensures well-assertedness of the arbitrary repetition of S, that is
µt1.S (the composition rules only check that S is well-asserted). Rule [rec2] completes
the merge of two recursions, with calls to t2 in this instance being redirected to t1 (via
a substitution). Variable t1 is in the right recursion environment T1,t1, T2, namely a
list of protocol variables, followed by unused t1, followed by a list of unused protocol
variables T2, yielding a protocol with just one recursion. In the premise of [rec2], t1

in this instance becomes used.
In [rec2], condition unused(T2) prevents erroneous ‘flattening’ of nested recursions.

For instance, in the composition of S1 = µt.p.t and S2 = µt1.q.µt2.+ {l1 : t1, l2 : t2},
merging twith both t1 and t2 would yield the undesirable derivation S = µt.p.q.+{l1 :
t, l2.t} where S does not preserve the behaviour of S2. Behaviour preservation is
formally defined later on; for now, observe that S2 permits successive choices of the
label l2 without any intervening actions, whereas S requires an intervening q action
(and p action) between any succesive choices of label l2. See Example 7 in Appendix A
for some derivations of interleaving compositions of S1 and S2. The requirement that t
precedes only unused variables T2 (captured by predicate unused(T2)) also prevents
‘criss-cross’ substitutions when composing two protocols with nested recursions which
can also violate behaviour preservation in similar ways to the case observed above.
Consider now the composition of a recursive protocol with a non-recursive one

e.g., S1 = µt.p1.t with S2 = p2.end. We do not want to derive the following protocol:
S = µt.p1.p2.t The problem with S is that it allows execution p1, p2, p1, p2, . . . where
action p2 is repeatedly executed, while S2 only prescribes one instance of p2. Such a
derivation would not preserve the behaviour of S2. Our rules do not allow derivation
of S above because rule [call] checks that the component protocols share protocol
variable t (i.e., they are both recursive and correctly merged).
Another undesirable composition of S1 = µt.p1.t and S2 = p2.end is one where S1

‘comes first’ yielding S′ = µt.p1.t which, morally, behaves as S2 after an infinite loop.
If this were a composition, it would violate a second property we discuss formally later,
fairness, requiring each component protocol to be able to proceed until it terminates.
S′ is not derivable thanks to [rec3], which only allows a recursive protocol to be
introduced in an interleaving composition when the non-recursive component has
already been all merged (i.e., it is end). We can, e.g., derive the following composition
of S1 and S2, where the terminating protocol S2 comes first (hence satisfying fairness):

p2.µt.p1.t (applying [act], [sym], [rec3]).

The premise fv(µt.S) = ; of [rec3] prevents it being used inappropriately in case
of nested recursion, e.g., to prevent composition of µt1.p1.µt2.p2.t1 and q.end to
produce (via [rec1], [act], [sym], [rec3]) µt1.p1.q.µt2.p2.t1, which violates behaviour
preservation (discussed later) by repeating an action q from a non-recursive context.
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3.1 Variations on the branching rule

The branching rule of interleaving composition can be viewed as a distributivity
property: sequential composition after a control-flow branch can be distributed inside
the branches. Algebraically, we can informally describe this distributivity exhibited
by the branching rule as follows, for a 2-way branch (sans labelling): (S1 + S2) ◦ T ≡
(S1◦T )+(S2◦T ). Such a property is familiar in Kleene algebra models of programs and
program reasoning [31] and monotone dataflow frameworks in static analysis [29].
Since interleaving composition generates a set of possible protocols it would be more
accurate to express this property in terms of set membership rather than equality (for
simplicity of the analogy, this elides the fact that each composition ◦ is itself a set):

(S1 + S2) ◦ T 3 (S1 ◦ T ) + (S2 ◦ T ) (distributivity)

In this section we consider two variants of this distributive behaviour for composition
called (1) ‘weak branching’ and (2) ‘interchange branching’ which can be summarised
via the algebraic analogy as variants of distributivity, respectively:

(S1 + S2) ◦ T 3 (S1 ◦ T ) + S2 ∧ (S1 + S2) ◦ T 3 S1 + (S2 ◦ T ) (weak)
(S1 + S2) ◦ (T1 + T2) 3 (S1 ◦ T1) + (S2 ◦ T2) (interchange)

In (weak), composition distributes inside one branch but not the other. In (inter-
change), composing branches with branches has a ‘merging’ effect on the branches
rather than distributing within. (The ‘interchange’ terminology comes from similar
properties in category theory [30]).
We motivate and discuss each variation from the protocol perspective. In the rest of

this section we introduce two additional composition rules: [wbra] for weak branching,
and [cbra] for interchange branching (which we will refer to as correlating branching as
it better reflects the effects of the rule on the protocols). Note that these two variations
grow the set of possible interleavings, rather than shrinking it: they provide more
general composition behaviours but do not exclude the more specialised behaviours.
For generality of the theory, the derivation of interleaving composition can apply any
branching ([bra], [wbra], [cbra]). For practicality, our tool allows engineers to choose
the kind of branching to use in any specific scenario (as shown in Section 5).

3.1.1 Weak branching for “asymmetric” guarantees
Weak branching allows partial execution of some protocols being composed even if
there are not sufficient assertions to continue, as long as all protocols are completely
executed in some execution path. For example, protocol SB below needs assertion n
to proceed. Assume we want to compose SB with a protocol SA, which can provide n
in only one of its branches ok. Protocol SA may be an authentication server, granting
or blocking access to SB depending on a password pwd. That is, for some S′:

SA ::= ?pwd.⊕ {ok : assert(n). end, ko : end} SB ::= require(n).S′

Since we want the actions of SB not to be executed after selection of label ko, we want
interleaving composition to generate the following protocol:

SAB = ?pwd.⊕ {ok : assert(n).require(n).S′, ko : end}
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Protocol SAB is not attainable using the rules of Definition 5: the derivation blocks com-
posing require(n).S′ with the second branch’s end in the empty environment.1 Instead,
we introduce a ‘weak branching’ composition rule to allow asymmetric guarantees:

Definition 6 (Weak branching) Weak branching composition of protocols is derived
using the judgements in Definition 5 and the additional rule [wbra]:

I = IA∪ IB IA∩ IB = ; IA 6= ;
∀i ∈ IA. TL; TR; A ` Si ◦ S . S′i ∀i ∈ IB. TL; TR; A ` Si ◦ S 6 . ∧ A {Si}

TL; TR; A ` +{li : Si}i∈I ◦ S .+{li : S′i}i∈IA
∪ {li : Si}i∈IB

Precondition IA 6= ; ensures that each protocol’s actions are executed in at least one
execution path, and is key to the fairness property introduced in Definition 9. Hereafter
we denote with .s derivations obtained using the judgements in Definition 5 only and
.w for derivations with the additional rule [wbra].

Example 2 (Weak IC of banking and PIN/TAN) Consider the banking and PIN/TAN
protocols in Example 1 (p. 7). Interleaving composition of S′A and S′B using .s returns an
empty set. When using .w instead, we can derive the following interleaving composition
modelling a banking/authentication protocol that satisfies the requirements specified in
Section 1.1.

SBA =?pin.⊕















ok : assert(pin).require(pin).µr.&







payment : STAN,
statement : !statement.r,
logout : consume(pin).end







fail : end















STAN = assert(pay).consume(pay).!id.?tan.⊕







ok : assert(tan). consume(tan).
?details.r,

fail : r







3.1.2 Correlating branching
Correlating branching allows two protocols to be composed by ‘correlating’ each branch
of one with at least one branch of the other.
Consider two branching protocols: S1 offering two services s1 and s2, and S2 offering

two kinds of payment p1 and p2. When composing S1 and S2, we can correlate s1
with p1, and s2 with p2, using assertions:

S1 = ⊕{s1 : assert(one).end, s2 : assert(two).end}
S2 = ⊕{p1 : consume(one).end, p2 : consume(two).end}

We would like to obtain the following composition:

S12 = ⊕
�

s1 : ⊕{p1 : assert(one).consume(one).end},
s2 : ⊕{p2 : assert(two).consume(two).end}

�

1 If we start from a non-empty environment {n} we can derive ?pwd. ⊕ {ok :
assert(n).require(n).S′, ko:require(n).S′}. However, initial assumption {n}means that access
to SB is granted regardless of the authentication outcome.
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Composition rule [bra] is too strict and returns an empty set for S1 and S2. Weak
branching [wbra] is also not useful in this case, producing the interleaving below,
which does not capture the intended correlation:

⊕
�

p1 : ⊕
�

s1 : assert(one).consume(one).end, s2 : assert(two).end
	

,
p2 : ⊕

�

s1 : assert(one).end, s2 : assert(two).consume(two).end
	

�

Definition 7 introduces a further rule [cbra], to allow for correlating compositions.

Definition 7 (Correlating branching) Correlating branching composition is derived
using the judgement in Definition 5 with the addition of rule [cbra] below:

∀i ∈ I . Ji 6= ; ∧
⋃

i∈I Ji = J
∀ j ∈ Ji TL; TR; A ` Si ◦ S′j . Si j ∀ j ∈ J \ Ji TL; TR; A ` Si ◦ S′j 6 .

TL; TR; A ` +{li : Si}i∈I ◦ +′{l′j : S′j} j∈J .+{li : +′{l′j : Si j} j∈Ji
}i∈I

The first premise requires that: (1) each branch of the first protocol can be correlated
with at least one branch of the second protocol (Ji 6= ;), and (2) each branch of
the second protocol can be correlated with at least one branch of the first protocol
(
⋃

i∈I Ji = J). This precondition is critical to ensure the fairness property we introduce
in Section 4 (Definition 9). Rule [cbra] allows us to obtain S12 as the interleaving
composition of S1 and S2 above, modelling the intended correlation.

.w

⊂ ⊂
.s .wc
⊂ ⊂
.c

Hereafter we denote with .c (resp. .wc) derivations ob-
tained using the judgements in Definition 7 with the addition
of rule [cbra] (resp. [cbra] and [wbra]). The inclusion relation
between the different kinds of judgement is shown on the right
(with .s and .wc being the most and least strict, respectively).

4 Properties of interleaving composition

In this section, we give the main properties of interleaving compositions. First, we give
some general properties of well-assertedness and algebraic/scoping properties (i.e.,
sanity checks). Then, we give behaviour preservation and fairness, both formulated
using a semantics of ‘protocol ensembles’ (a semantic counterpart of syntactic compo-
sition). Hereafter, we will denote with . any kind of judgement in {.s, .w, .c , .wc}.

4.1 Well-assertedness of compositions

Critical for the validity of our approach is that interleaving compositions preserve the
constraints of assertions:

Proposition 3 (Validity) If TL; TR; ; ` S1 ◦ S2 . S then S is very-well-asserted.

A corollary of Proposition 3 and Lemma 3 (progress of very-well-asserted protocols)
is that interleaving compositions enjoy progress:

Corollary 1 (Progress) If TL; TR; ; ` S1 ◦ S2 . S then S enjoys progress.
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4.2 Algebraic and scoping properties

We consider algebraic properties and notions of open and closed protocol with respect
to recursion variables.
Composing closed recursive protocols yields closed protocols. This property is a

corollary of a more general property, that free variables are preserved by composition:

Proposition 4 If TL; TR; A ` S1 ◦ S2 . S then fv(S1)∪ fv(S2) = fv(S).

That is, the free variables of a composed protocol are exactly the union of the free
variables of the protocols being composed.

Corollary 2 (Composition preserves closedness) For all A, S and closed protocols
S1, S2, if TL; TR; A ` S1 ◦ S2 . S then S is a closed protocol.

A useful algebraic property is that composition has end protocols as units:

Proposition 5 (Interleaving composition has left- and right-units) For a protocol
S where A {S} ∧ fv(S) = ; then TL; TR; A ` S ◦ end . S and TL; TR; A ` end ◦ S . S.

4.3 Behaviour preservation and fairness of protocol ensembles

In Section 3, we gave a syntactic definition of interleaving composition, which enacts
the dependencies implied by assertions in protocols, and provides a blue-print of
an implementation. In this section, we consider ‘protocol ensembles’, which can
be understood as the semantic compositions of two asserted protocols. Semantic
compositions have a behaviour that is similar to parallel composition (e.g., as in
CCS), but unlike parallel composition the two asserted protocols cannot communicate
with each other, i.e., there are no internal τ actions. All interactions in a semantic
composition are directed towards other endpoints. Semantic composition provides a
more general and somewhat familiar notion of composition, which we will use as a
reference to analyse the properties of interleaving compositions.
Protocol ensembles, ranged over by C , are defined as follows:

C ::= S | S ||S

By defining C as either asserted protocols S (which may be interleaving compositions)
or semantic compositions S ||S, we obtain a common LTS for comparing the behaviour
of interleaving and semantic compositions. For simplicity we limit the theory to the
composition of two protocols. The extension to n protocols is straightforward e.g.,
based on labelling each protocol and its actions with a unique identifier.
The LTS for protocol ensembles extends the LTS for asserted protocols: it is defined

over states of the form (A, C), transition labels ` (as for asserted protocols), and by
the rules in Definition 2 plus the following two rules:

(A, S1)
`
−→ (A′, S′1)

(A, S1 ||S2)
`
−→ (A′, S′1 ||S2)

〈Com1〉
(A, S2)

`
−→ (A′, S′2)

(A, S1 ||S2)
`
−→ (A′, S1 ||S′2)

〈Com2〉

6:15



A theory of composing protocols

We write (A, C)→ if (A, C)
`
−→ (A′, C ′) for some `, A′, C ′. Protocols in C do not commu-

nicate internally, but may affect each other by changing or checking A.

Behaviour preservation Fix an LTS for protocol ensembles (Q, L,−→) defined on the
set Q of states s of the form (A, C) and labels L. We use the standard notion of
simulation [38] to compare protocols of interleaving compositions and protocol en-
sembles, using protocol ensembles as a correct general model to which interleaving
compositions need to adhere.

Definition 8 (Simulation) A (strong) simulation is a relation R ⊆ Q ×Q such that,
whenever s1Rs2: ∀` ∈ L, s′1 : s1

`
−→ s′1 implies ∃s′2 : s2

`
−→ s′2 and s′1R s′2.

We call ‘similarity’ the largest simulation relation. We write s1 ® s2 when there exists
a simulation R such that s1Rs2. We say that C1 preserves the behaviour of C2 with
respect to A if (A, C1)® (A, C2).

Theorem 1 (Behaviour preservation of compositions - closed)

;; ;; A ` S1 ◦ S2 . S ⇒ (A, S)® (A, S1 ||S2)

Therefore, interleaving compositions will only show behaviour that would be allowed
by a protocol ensemble. Clearly, protocol ensembles allow more possible executions
than an interleaving composition, which is only one of the possible interleavings. The
proof of Theorem 1 is by induction on the derivation of S and, although the statement
assumes closed protocols, some inductive hypotheses in the proof (e.g., premises of
[rec1] or [rec2]) require reasoning about open protocols. The proof hence relies on a
property (Lemma G.7 – Appendix G) on open protocols: (roughly) given two protocols
and one of their interleaving compositions, any action of the interleaving composition
is matched by an action of the ensemble of the two protocols, and this property is
preserved upon transition. Note that, while environments TL and TR are trivially empty
in Theorem 1 (closed protocols), they have a key role in proving Lemma G.7 (open
protocols): they include the variables of each component protocol that have been
bound in a derivation, and give critical information of the scope and structure of the
original component protocols in that derivation.

Fairness Fix an ensemble of two protocols S0 ||S1 and any of their interleaving
compositions S. By fairness, each action of S0 (resp. S1) can be observed in at least
one execution of S, possibly after a finite sequence of other actions by S1 (resp. S0).
In the following, we write (_ , S) to denote (A, S) when A is immaterial.

Definition 9 (Fairness) S is fair w.r.t. S0 and S1 on A, if ∀i ∈ {0,1} and any transition
(_ , Si)

`
−→ (_ , S′i) there exists ~r such that: 1) (A, S|1−i|)

~r
−→ (_ , S′|1−i|), 2) (A, S)

~r`
−→ (A′, S′),

and 3) S′ is fair with respect to S′i and S′|1−i| on A′.

Theorem 2 (Fairness of compositions) If ;; ;; A ` S0 ◦ S1 . S then S is fair w.r.t. S0

and S1 on A.
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A key aspect of fairness (Definition 9) is that it fixes ` and then requires at least one
execution in which ` is eventually executed by S. This implies that although not all
possible future branches include all parts of the protocols being composed, some will.

Definition 10 (Strong fairness) S is strongly fairw.r.t. S0 and S1 on A, if any i ∈ {0, 1}

and all transitions (_ , Si)
`
−→ (_ , S′i) and (A, S|1−i|)

~r
−→, there exist ~r ′, ~r ′′ with (A, S|1−i|)

~r ′
−→

(_, S′|1−i|) and either:

1) ~r ′ ~r ′′ = ~r (i.e., ~r ′ is a prefix of ~r), or
2) ~r ′ = ~r ~r ′′ (i.e., ~r is an ex prefix of ~r ′)

such that (A, S)
~r ′`
−→ (A′, S′) and S′ is strongly fair w.r.t. S′i and S′|1−i| on A′.

By Definition 10 any action of a composition can be matched by an action of the
protocols being composed, and this property is preserved by transition. Vectors ~r,
~r ′, and ~r ′′ are used to universally quantify on ~r and yet allow for the cases where `
comes before (1) or after (2) ~r in the composition. It follows a stronger fairness result
for compositions using only [bra] that only holds for .s judgements.

Theorem 3 (Strong fairness of compositions with .s ) If ;; ;; A ` S0 ◦ S1 .s S then
S is strongly fair with respect to S0 and S1 on A.

Example 3 (Fairness and weak branching) Consider a simpler variant of the proto-
cols in Section 3.1.1 (omitting password exchange and continuation):

SA = ⊕{ok : assert(n).end, ko : end} SB = require(n). end
SAB = ⊕{ok : assert(n).require(n).end, ko : end}

Observe ;; ;; ; ` SA ◦ SB 6 .sSAB and ;; ;; ; ` SA ◦ SB .w SAB. We show that SAB is a fair
composition w.r.t. SA and SB on ;, but it is not a strongly fair one.
First focus on fairness. SA can move with either label ⊕ok or ⊕ko. In either case (;, SAB)

can immediately make a corresponding step with ~r empty. If SB moves, that is by label
require(n), then for some environment {n}:

({n}, SB)
require(n)
−−−−−→ (;,end) (1)

There exists a sequence of transitions with labels ~r = ⊕ok,assert(n) such that

(;, SB)
⊕ok,assert(n)
−−−−−−−→ ({n},end) (;, S)

⊕ok,assert(n)
−−−−−−−→ ({n}, require(n).end)

require(n)
−−−−−→ (;,end)

and ;; ;; ; ` end ◦ end .w end. In the case above, we could select a ‘good’ path of SA

and SAB that allows the transition with label require(n) to happen.
Focus now on strong fairness and again, consider the step in Equation (1) by SB. Now

we can pick an arbitrary ~r, say, ⊕ok, such that (;, SB)
⊕ko
−−→ (;,end). Looking at SAB,

there is no prefix nor extension of ~r = ⊕ok that allows a require(n) step by SAB once the
branch ko is taken. Therefore, SAB is not strongly fair with respect to SA and SB on ;.
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4.4 Completeness

We discuss completeness of our composition rules: for every ‘good’ execution of S1 ||S2

(i.e., non-terminating or reaching state end ||end), can we obtain an interleaving
composition of S1 and S2 that yields that execution? At present the answer is negative.
For example, Sa and Sb below produce no interleavings (not even with .w)

Sa = ?pwd.assert(login).?quit.assert(n).consume(login).end
Sb = µt.&{balance : require(login).!bal.t, finish : consume(n).end}

while it may be desirable to obtain:

?pwd.assert(login).µt.&

¨

balance : require(login).!bal.t,

finish :?quit.assert(n).consume(n).consume(login).end

The IC above cannot be derived because [rec1] prevents composition of recursive with
non-recursive protocols. A simplistic modification of [rec1] to allow composition of
t1.S1 and S2 (with Top(S2) = ;) would produce µt.?pwd.assert(login).&{. . .} which
is not behaviour preserving (the password request is repeated). Similar tweaks to
[rec2] have the same problem. With more complex rules, we may possibly allow
weak composition of Sa with Sb only for syntactic subterms of Sb that terminate
(e.g, after the finish branch). Extending our rules in this direction, and investigating
completeness, is future work. At present using .c we can still compose Sb with a
modified Sa, e.g.

?pwd.assert(login).µta.&{void : ta, quit :?quit.assert(n).consume(login).end}

5 Implementation

To illustrate the proposed approach, we have implemented a tool for Erlang that offers
interleaving composition of protocols, code generation, and protocol extraction.
Interleaving composition is defined as a function producing zero or more protocol

compositions, giving an algorithmic implementation of the relation in Definition 5.
Following the variations on the branching rule, the tool offers strong, weak, correlating,
and weak/correlating (denoted All in the table) composition. The user can select the
kind of branching they wish to use. Looking at Example 1, the strong composition of
banking and authentication protocols returns an empty set as expected. When opting
for weak composition instead, the tool outputs one IC, equivalent to Example 2:

1 bank_pintan() ->
2 {act,r_pin, {branch, [{ok, {assert, pin, {require, pin, {rec, "r",
3 {branch, [{payment, {assert, pay, {consume, pay, {act,s_id, {act,r_tan,
4 {branch, [{ok, {assert, tan, {consume, tan, {act, r_details, {rvar, "r"}}}}},
5 {fail, {rvar, r}}]}}}}}},
6 {statement, {act, s_statement, {rvar, "r"}}},
7 {logout, {consume, pin, endP}}]}}}}},
8 {fail, endP}]}}

Listing 1 PIN/TAN Banking Protocol rendered in our Erlang AST for protocols
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Table 1 Number of compositions for branching rule variations; running example in grey.

№ Protocols Strong Weak Correlating All
1 service(), login() 0 1 0 1
2 s1(), s2() (Section 3.1.2) 0 1 2 3
3 i1(), i2() (Section 2.1) 1 1 1 1
4 http(), aws_auth() (from [25]) 0 6 0 6
5 login(), booking() 0 1 0 1
6 pin(), tan() 0 1 0 1
7 pintan(), bank() 0 1 0 1
8 resource(), server() 1 1 1 2
9 userAgent(), agentInstrument() 0 0 2 2
10 bankauthsimple(), keycard() 0 1 0 1
11 auth_two_step(), email() 0 9 0 9
12 sa(), sb() (Section 4.4) 0 12 2 14

Offering all four composition options (corresponding to .s, .w, .c, .wc in the theory)
instead of offering only the less restrictive weak/correlating branching .wc, may
improve relevance of the compositions returned. As observed in Section 3.1.2, using
[wbra] in a context where we need to correlate branches likely returns irrelevant
compositions (e.g. row 12). Currently, the user selects one branching option for whole
composition. In future work, we may allow annotation of different branching instances
with different options. This would further increase relevance of the returned results,
at the price of a more complex setup. Another way, already supported, to reduce the
number of irrelevant compositions, is to introduce more assertions. In fact, one of the
aims of the tool is to support step-wise understanding of the protocol via progressive
insertion of assertions. Table 1 shows the number of interleaving compositions obtained
for each variation of the branching rule for a suite of examples. The suite includes:
ad-hoc examples to validate the theory (rows 1 - 3, 7, 12), examples from literature,
such as the HTTP example from [25] (row 4), and other examples inspired from real-
world applications such as Gmail’s two-steps authentication (row 11). By appropriately
selecting composition options and assertions, the tool returns a small number of
interleaving compositions. The number of compositions increases in examples with
recursions, especially nested recursions as can be seen in rows 4, 11, which would
require some additional assertions to choose among the interleavings.
Code generation takes a protocol definition and produces an Erlang stub. Protocol

structures (action, sequence, choice) can be represented as a directed graph and then
as finite state machines that transition based on the messages received. The finite
state machines are used to generate a stub that uses the Erlang/OTP gen_statem [2],
a generic abstraction which supports the implementation of finite state machine
modules. Not only is it convenient to represent the protocol as a state machine, but
gen_statem offers some useful features. Internal events from the state machine to itself
are a good way to represent branches that make a selection among some choices.
‘Postponing events’ and timeouts provide functionality for further implementation of
the generated code stubs. Actions and branches are represented as events that trigger
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a state transition. We use function declarations to represent incoming events, and
function applications to represent outgoing events. Each state has its own handler
function used to send an event to the state machine. When the event is received the
corresponding state function is called and the transition to the next state is made.
The default generated event is an asynchronous communication (called a ‘cast’ in
Erlang/OTP parlance). For sending actions and selecting branches, the event type is
internal, an event from your state machine to itself. End is represented by the terminate
function of a gen_statemmodule, whilst the fixed-point and the recursive variables dictate
the control flow of the state machine. State variables must be declared by including
them in a record definition — Data. Following Frama-C [15], we represent assertions
as specially formatted comments. For example: {assert, pay} is represented as an Erlang
comment %assert pay. These comments are positioned before code that implements the
state to which this assertion acts as a pre-condition in the protocol. Listing 2 shows
an excerpt of the code generated for the PIN/TAN Banking protocol, bank_pintan(),
containing the states generated for the first action and branch.

1 state1(cast, Pin, Data) -> {next_state, state2, Data}.
2 %assert pin
3 %require pin
4 state2(cast, ok, Data) -> {next_state, state3, Data};
5 state2(cast, fail, Data) -> {stop, normal, Data}.
6 %assert pay
7 %consume pay
8 state3(cast, payment, Data) -> {next_state, state4, Data};
9 state3(cast, statement,Data) ->{next_state, state10,Data};
10 %consume pin
11 state3(cast, logout, Data) -> {stop, normal, Data}.

Listing 2 PIN/TAN Banking State Machine

Protocol extraction and migration. Protocol extraction generates protocols from code
via a static analysis of Erlang modules implemented as state machines using either
gen_statem, or gen_fsm behaviour. When assertions are expressed using the comments
illustrated above, they are also extracted. The obtained protocol can be annotated
with extra assertions as necessary and composed with another to obtain a more
complex protocol. The extraction option preserves pre-existing local code that can be
automatically migrated when generating a new stub. For example, starting out from
an existing implementations of banking, we can use the tool to extract the protocol SB

(in this case manual introduction of assertions may be needed), obtain an interleaving
composition with SA, and generate a new implementation where pre-existing code for
the banking code can be migrated.
If we wanted to re-engineer the banking/authentication server to include an option

for keycard authentication (in addition to TAN authentication) we could further
compose the PIN/TAN Banking Protocol with a keycard option protocol such as
the one below. Assertions ensure that the branching for choosing TAN or keycard
authentication is plugged in (using assertion keyp) to the payment option of the
PIN/TAN protocol, and that TAN authentication in PIN/TAN protocol is plugged only
in the tan branch of the keycard protocol (using assertion otp):

1 keycard() -> {rec, "y", {require, keyp, {branch, [{tan, {assert, otp, {rvar, "y"}}},
2 {keycard, {rvar, "y"}}]}}}.

Listing 3 Keycard Option Protocol
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By adding an assertion of keyp and a consume of otp at the beginning of the branch
payment of the PIN/TAN Protocol one would obtain the desired extension as an inter-
leaving composition, using the weak composition option. Our tool can then be used
to generate a stub for the extended protocol and migrate reusable code from the
implementation of the PIN/TAN Banking Protocol to the new implementation.
Together these features satisfy the requirements laid out in Section 1.1, facilitating

program re-engineering driven by the composition of protocols. We can obtain skeleton
implementations for banking and PIN/TAN protocol, extract the protocol and reuse the
code when composing with a different protocol. For additional details and examples,
see our artifact with the complete benchmark [10].

6 Related Work and Conclusion

There is a vast literature on protocol specification (both theory and practice, e.g.
see the survey of Lai [33]). Most techniques provide a monolithic view of protocols.
We studied protocol composition using ‘assertions’ to specify contact points and
constraints between the protocols. We have given correctness in terms of behaviour
preservation, fairness and well-assertedness, and shown that all compositions enjoy it.
There are three main lines of research that relate to our work.
Firstly, software adaptors give typed protocol interfaces between software compo-

nents [44]. The idea is similar to the structured view of communication in session
types [23], with the notion of duality capturing when opposite sides of a protocol
are compatible. Composition in these works is about sound composition of protocol
implementations, whereas we address the (upfront) creation of composite protocols.
Secondly, protocol composition has been studied as the run-time ‘weaving’ of compo-

nent actions. Barbanera et al. study such a composition in the setting of communicating
finite state machines [3, 4]. Participants in two communicating systems can be trans-
formed into coupled ‘gateways’, forming a composite system. A compatibility relation
is based on dual behaviour of the two gateways. Safety of the resulting system is by this
compatibility, along with conditions of ‘no mixed states’ and determinism for sends and
receives. Building from this idea, later work studies synchronous CFSMs, and replaces
the two coupled gateways with a single one [6], and composition/decomposition on
global types in the setting of multiparty session types [5]. Montesi and Yoshida study
composition in the setting of choreographies [37]. Their composition relies on the
use of partial choreographies, which can mix global descriptions with communication
among external peers. Inspired by aspect-oriented programming, Tabareau et al. [40]
support protocol extensions with ‘aspectual’ session types, that allow messages in
session types to be matched and consequently introduce new behaviour in addition
to, or in place of, the matched messages. Unlike the above approaches, we focus
on a syntactic, statically derivable notion of composition. We use process calculi to
model protocols as simple (i.e., mono-thread) objects that can be used by humans
to reason about the desired application logic and generate/engineer modular code.
Krishnamurthi et al. [32] look at composition of aspects and modular verification of
aspect-oriented programs, focussing on maintaining a relationship between models
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and aspects. Various works look at composition of features into coherent software
systems [13, 21, 28, 45], focussing on resolving conflict stemming from feature inter-
actions. Instead, we focus on establishing primitives for humans to reason on what a
composite protocol should be, and support code generation.
The third pertinent thread in the literature defines syntactic compositions in the

form of Team Automata [18, 43, 42] or related calculi [43]. These works define
different ways of composing machines, primarily based on synchronising machines via
common actions. In contrast, our means of composition is via assertions (orthogonal to
actions) which express directional (i.e., rely-guarantee-style) dependencies. Our use of
assertions aims to reflect programming practice. Assertions are kept in our generated
code and can be used to enable protocol extraction and re-engineering, and as code
documentation. Our composition cannot capture the whole range of synchronisations
offered by Team Automata. Conversely, Team Automata cannot capture the range
of compositions in our approach. One can encode some interleaving compositions
as Team Automata, by modelling each assert(n)-require(n) or assert(n)-consume(n)
pair as a common synchronisation action. However, the options offered by Team
Automata (e.g., ‘free’, ‘state indispensable’, or ‘action indispensable’) do not capture
our requirement that synchronisation (i) always happens on assertion-actions and (ii)
never happens on communication actions (these are a separate syntactic and semantic
entity). Furthermore, our assertions do not imply immediate synchronisation: an
assert(n) can occur in a protocol some way before a require(n). Thus an attempted
encoding of Team Automata into our protocols, encoding synchronisation actions
as unique assert(n)-consume(n) pairs, would not preserve the behaviour of Team
Automata for all possible compositions (just those where ‘annihilating’ pairs appeared
contiguously). Thus, Team Automata and our approach overlap in some synchronising
behaviours, but not all. A formal study of such overlap is further work.
Unlike team automata approaches to safe communication [42], and other works dis-

cussed above, we do not focus on safe communications as such, which is an orthogonal
concern for us. However, as discussed in Appendix B, our parameterisable protocol
language allows us to inherit communication-safety properties from session types by
instantiating our protocol language to a session type syntax (e.g. that of Dardha et
al. [16]), even with asynchronous communications [14] and multiparty sessions [8]
We can model higher-order messages by instantiating prefixes to incorporate the
entire protocol language itself, preventing use of delegated channels using assertions.
We are working on a factorisation function that decomposes protocols, as a kind of

algebraic inverse to composition. This would allow us to ‘close the loop’, factorizing
protocols into simple components for later (re)composition. We plan to extend recur-
sion to model quantified recursion and assertion environments as multisets. (e.g., to
quantify on rely and guarantees).
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A Illustrative examples of IC derivations

Example 4 (Composition with [act] and [sym] rules) Consider the protocols !Int.end
and !String.end. By combining [act] and [sym] one can obtain all interleavings of two
sequences of actions, !Int.!String.end and !String.!Int.end, as shown with the two
example derivations below:

- [end];; ;; ; ` end ◦ end . end [act]
;; ;; ; `!String.end ◦ end . !String.end

[sym]
;; ;; ; ` end◦ !String.end . !String.end

[act]
;; ;; ; `!Int.end◦ !String.end . !Int.!String.end

− [end];; ;; ; ` end ◦ end . end [act]
;; ;; ; `!Int.end ◦ end . !Int.end [sym]
;; ;; ; ` end◦ !Int.end . !Int.end [act]

;; ;; ; `!String.end◦ !Int.end . !String.!Int.end
[sym]

;; ;; ; `!Int.end◦ !String.end . !String.!Int.end

Example 5 (Composition with assertions) Let I2 = consume(p).!item.end.

− [end];; ;; ; ` end ◦ end . end [act]
;; ;; ; `!item.end ◦ end . !item.end [consume]

;; ;; {p} ` consume(p).!item.end ◦ end . consume(p).!item.end[sym]
;; ;; {p} ` end ◦ I2 . consume(p).!item.end

[assert]
;; ;; ; ` assert(p).end ◦ I2 . assert(p).consume(p).!item.end

[act]
;; ;; ; `?pay.assert(p).end ◦ I2 . ?pay.assert(p).consume(p).!item.end

Example 6 (Composition with [rec1] and [rec2] rules)

t1 ∈ t1
[call];; t1; ; ` t1 ◦ t1 . t1

[act]
;; t1; ; `!p2.t1 ◦ t1 . l2 : t1

[rec2]
;; t1; ; ` µt2.!p2.t2 ◦ t1 . l2 : t1 [sym]
t1; ;; ; ` t1 ◦ µt2.!p2.t2 . l2 : t1 [act]

t1; ;; ; ` q.t1 ◦ µt2.!p2.t2 . q.l2 : t1 [rec1]
;; ;; ; ` µt1.q.t1 ◦ µt2.!p2.t2 . µt1.q.l2 : t1

Example 7 (Composition of nested recursion with weak branching) The following
are just two or the possible derivations, given as illustration. They use weak branching
introduced in Section 3.1.1. In the second derivation below, note that t could be substituted
to t1 instead of t2 (yielding a different derivation).
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t ∈ t
[call]

t2; t; ; ` t ◦ t . t (only the first branch derives)
[wbra]t2; t; ; ` +{l1 : t, l2 : t2} ◦ t .+{l1 : t, l2 : t2} [act]

t2; t; ; ` +{l1 : t, l2 : t2} ◦ t .+{l1 : t, l2 : t2} [rec1]
;; t; ; ` µt2.+ {l1 : t, l2 : t2} ◦ t . µt2.+ {l1 : t, l2 : t2} [act]
;; t; ; ` q.µt2.+ {l1 : t, l2 : t2} ◦ t . q.µt2.+ {l1 : t, l2 : t2} [rec2]

;; t; ; ` µt1.q.µt2.!p2.+ {l1 : t1, l2 : t2} ◦ t . q.µt2.+ {l1 : t, l2 : t2} [sym]
t; ;; ; ` t ◦ µt1.q.µt2.+ {l1 : t1, l2 : t2} . q.µt2.+ {l1 : t, l2 : t2} [act]

t; ;; ; ` p.t ◦ µt1.q.µt2.+ {l1 : t1, l2 : t2} . p.q.µt2.+ {l1 : t, l2 : t2} [rec1]
;; ;; ; ` µt.p.t ◦ µt1.q.µt2.+ {l1 : t1, l2.t2} . µt.p.q.µt2.+ {l1 : t, l2 : t2}

t2 ∈ t1,t2
[call]

t1,t2; ;; ; ` t2 ◦ t2 . t2 (only the second branch derives)
[wbra]t1,t2; ;; ; ` +{l1 : t1, l2 : t2} ◦ t2 .+{l1 : t1, l2 : t2}

[sym]
;; t1,t2; ; ` t2 ◦ +{l1 : t1, l2 : t2} .+{l1 : t1, l2 : t2}

[act]
;; t1,t2; ; ` p.t2 ◦ +{l1 : t1, l2 : t2} . p.+ {l1 : t1, l2 : t2}

[rec2]
;; t1,t2; ; ` µt.p.t ◦ +{l1 : t1, l2 : t2} . p.+ {l1 : t1, l2 : t2} [sym]
t1,t2; ;; ; ` +{l1 : t1, l2 : t2} ◦ µt.p.t . p.+ {l1 : t1, l2 : t2} [rec1]

t; ;; ; ` µt2.+ {l1 : t, l2 : t2} ◦ µt.p.t . µt2.p.+ {l1 : t1, l2 : t2} [act]
t1; ;; ; ` q.µt2.+ {l1 : t1, l2 : t2} ◦ µt.p.t . q.µt2.p.+ {l1 : t1, l2 : t2} [rec1]

;; ;; ; ` µt1.q.µt2.+ {l1 : t1, l2 : t2} ◦ µt.p.t . µt1.q.µt2.p.+ {l1 : t1, l2 : t2}

B Examples with alternative instantiations of the protocol language

The protocol language given in Section 2 is parametric on the set of action/branching
prefixes and branching labels and our results hold regardless of the specific instan-
tiation used. Instantiation allows us to apply our framework to different scenarios.
Many of the examples in this paper are in the context of concurrency or distribution,
yet protocols are pervasive in monolithic sequential code, e.g., for interacting with an
operating system or libraries. A classic example is the stateful protocol of file handling
in which files must be opened and closed, and only read and written to according
to their permissions between those two actions. Our protocol language can easily
model such situations, with interleaving composition providing a range of choices
to a developer about how to combine and interact multiple stateful protocols. In
this section we provide a more concrete discussion of a few use cases focussing on
interaction and communication, providing hints at possible synergies between our
framework and techniques already studied for specific formalisms.

B.1 Protocols for communicating processes

Interaction structures of a communicating process can be characterised using process
calculi such as CCS [35]. For example, a CCS process S = com.S + out.0 can be
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understood as a protocol prescribing the interactions supported by a server: repeatedly
receive commands (com is a receive action) or decide to logout (out is a send action)
and terminate. The CCS notation can be expressed in our protocol language by
instantiating

P = {a, a | a ∈ Names} + ∈ {+} L =P

where a (resp. a) models a receive (resp. send) action on channel a, and Names is a
set of channel names. Hence, S above can be represented in our framework as the
process below µt.+ {com : t, out : end}.

B.2 Protocols as session types

As mentioned in Remark 1 we often used a session types-like syntax in our examples.
In this section we show how to use our framework in combination with session
types techniques. In Example 2 we have used interleaving composition to generate a
banking/authentication protocol SBA using a session types-like syntax, and in Section 5
we have shown that our tool can generate a stub implementation of SBA, which one
can then extend with local (i.e., non communication-related) behaviour. Assume this
implementation, say bank_pt.erl, is published as a web API. SBA can be published as
part of the API specification (as a behavioural API [1]).
So far, our framework has provided assurances on the relationship between compo-

nent protocols and their interleaving composition (which pertains to the engineering
within one node in a distributed system – in this case the banking/authentication
server). Session types serve an orthogonal purpose: to provide assurances about
the inter-relations of the protocols implemented in different nodes, e.g., given a
well-defined banking/authentication server, how to derive a suitable client?
Anyone willing to develop a client for the banking/authentication service can use

SBA to algorithmically derive a client protocol by using the notion of duality of Session
Types [22, 41, 23]. The dual of a protocol is obtained alghorytmically, by swapping the
‘direction’ of each action and branching: ! with ?, ⊕ with &, and vice-versa. We let SBA
denote the dual of SBA, omitting the assertions for readability.

SBA =!pin.&



























ok : µr.⊕











payment : ?id.!tan.&

�

ok : !details.r
fail : r

�

statement : ?statement.r
logout : end











fail : end
logout : consume(pin).end



























Our tool can be used again to generate a stub for SBA (e.g., file co_bank_pt.erl).
Session types duality and communication structuring (e.g., determinism, no mixed
choices) yields a safe distributed system, resulting from, say, the concurrent and possi-
bly distributed execution of bank_pt.erl and co_bank_pt.erl. In this context, safe
means no deadlock and no communication mismatches even when communications
are asynchronous [14] as in Erlang.
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B.3 Interleaving Composition and Multiparty Session Types

Consider a protocol, modelled using the session types syntax, that specifies the possible
interactions between a user U and a remote instrument I (e.g., a camera). Below,
SI is the protocol specified from the perspective of I , which offers a menu with two
choices: set or get. In case of set, I receives coordinates to update its own state, and
in case of get, I sends a picture from the current coordinates. Protocol SU is the dual
of SI (i.e., specified from the perspective of U).

SI = µt.&
�

set: ?coord.t, get: !snap.t
	

SU = µt.+
�

set: !coord.t, get: ?snap.t
	

The protocols above may have been designed top-down or extracted using our tool out
of an existing system. Assume we need to modify the scenario above by introducing a
proxy agent A, so that U and I will only interact via A. We need to: (1) express the
protocols so that it is clear which roles are involved in each interaction, and (2) define
the protocol for A. We address (1) by using a different instantiation of the protocol
language to make roles explicit. For example, by fixing a set Roles of protocol roles, a
set T of datatypes, and letting L ⊂ N and:

P = {ab#T | a, b ∈Roles,# ∈{!, ?}, T ∈T } + ∈{ab# | a, b ∈Roles,# ∈{+, &}}

Then we obtain protocols in a multiparty session type syntax (e.g., local types
in [8]), where ab! (resp. ab?) denotes a send action by a (resp. receive action by b)
in an asynchronous interaction from a to b. Similarly for branching and selection.
This instantiation allows us to model the following multiparty versions of SI and SU ,
respectively:

SAI = µt.AI &

¨

set : AI ?coord.t,

get : IA!snap.t
SUA = µt.UA +

¨

set : UA!coord.t,

get : AU ?snap.t

We would like A to act as a server for U and as a client for I . Concretely, we could
generate the protocol for A as a specific ‘forwarding’ interleaving of the dual of SAI and
the dual of SUA. We use assertions to ensure that A sends I a menu choice only after
having received one from U (and this must be the same choice received by U), and then
A must reflect the behaviour of I following the given choice. The asserted protocols to
be composed into the protocol for A are given below, where assert(set)/consume(set)
and assert(get)/consume(get) express the desired correlation between branches, and
assert(f)/consume(f) model the forwarding pattern:

µt. AI +

�

set : consume(set). consume(f). AI !coord.t,
get : consume(get). AI ?snap.assert(f).t

�

µt. UA&

�

set : assert(set). UA?coord.assert(f).t,
get : assert(get). consume(f). AU !snap.t

�
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Using interleaving composition with correlating branching (Section 3.1.2) on the
two protocols above we obtain the following interleaving composition specifying the
protocol for A, where we omit the assertions for readability:

SUAI = µt. UA&

¨

set : AI + {set : UA?coord. AI !coord.t},
set : AI + {get : IA?snap. AU !snap.t}

Now that we have the protocols of the extended multiparty system we can use our
tool to generate code for SUAI , SAI , and SUA. Thanks to the extraction/migration
functionality of our tool, pre-existing local code for U and I can be reused in the
new code for U and I , where the specific endpoints for communication can be added
manually. The tool does not yet support syntax for specifying roles, so in the case
of an agent communicating with several parties such as SUAI the direction of the
communication would need to be specified manually.
In the multiparty scenario, correctness of the interaction structures can be checked

using multiparty compatibility [17] and verification techniques [34].

C Basic properties of protocols

We first define some additional results in this appendix which are used for some of
the key lemmas of this section. We have the following set of inversion lemmas on
well-assertedness:

Lemma C.1 (Prefix well-asserted inversion) ∀A, A′, S. A {p.S}A′ =⇒ A {S}A′ .

Proof 1 There is only one rule that provides the well-assertedness of prefixing:

A {S}A′

A {p.S}A′

Lemma C.2 (Branch well-asserted inversion) ∀A, A′, I , {Si}i∈I .

A {+{li : Si}i∈I}A′ =⇒ A′ ≡ ∃{Ai}i∈I .
⋂

i∈I

Ai ∧ ∀i ∈ I . A {Si}Ai

Proof 2 There is only one rule that provides the well-assertedness of branching:

∀i ∈ I . B {Si}Bi

B {+{li : Si}i∈I}
⋂

i∈I Bi)

Given the antecedent of this lemma, we then have that {Ai}i∈I = {Bi}i∈I and A′ =
⋂

i∈I Bi

then the premise provides the consequent of the lemma, ∀i ∈ I . A {Si}Ai .

Lemma C.3 (Assert well-asserted inversion) ∀A, A′, n, S. A {assert(n).S}A′ =⇒ A∪
{n} {S}A′.
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Proof 3 There is only one rule that provides the well-assertedness of assert:

A∪ {n} {S}A′

A {assert(n).S}A′

Lemma C.4 (Require well-asserted inversion) ∀A, A′, n, S. A {require(n).S}A′ =⇒
A {S}A′ ∧ n ∈ A.

Proof 4 There is only one rule that provides the well-assertedness of require:

B∪ {n} {S}B′

B∪ {n} {require(n).S}B′

Thus we have that A = B∪ {n} and so n ∈ A and A′ = B′ thus the premise provides the
consequent of this lemma.

Lemma C.5 (Consume well-asserted inversion) ∀A, A′, n, S. A {consume(n).S}A′ =⇒
n ∈ A∧ A \ {n} {S}A′ .

Proof 5 There is only one rule that provides the well-assertedness of consume:

B {S}B′ n ∈ (B∪ {n})
B∪ {n} {consume(n).S}B′

Thus let A= B∪{n} and A′ = B′ and therefore n ∈ A. The (first) premise of this rule then
provides the consequent of this lemma.

Lemma C.6 (Recursion well-asserted inversion) ∀A, A′, n, S. A {µt.S}A′ =⇒ A {S}A′∧
A ⊆ A′.

Proof 6 There is only one rule that provides the well-assertedness of recursion:

B {S}B∪ B′

B {µt.S}B∪ B′

Thus we let A = B and A′ = B ∪ B′ yielding (A ⊆ A′) and then premise provides the
consequent of this lemma.

Lemma C.7 (Well-asserted unfolding extension) For all

A {S[µt.S/t]}A′ ⇒ A {S[µt.e.S/t]}A′

where e ranges over p, require(n),assert(n), consume(n),µt′ (in the last case then .
becomesa scoping rather than a prefixing, by overloading).
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Proof 7 (act) S = p.S′. Assuming A {p.S′[µt.p.S′/t]}A′ then by inversion (Lemma C.1)
this yields A {S′[µt.p.S′/t]}A′ .
By induction then A {S′[µt.e.p.S′/t]}A′ , which then allows us to derive:

A {S′[µt.e.p.S′/t]}A′

A {p.S′[µt.e.p.S′/t]}A′
[act]

which equals our goal
A {(p.S′)[µt.e.p.S′/t]}A′

by the definition of syntactic substitution.
(bra) S = +{li : Si}i∈I then by inversion (Lemma C.2) this yields A {Si}Ai for all i ∈ I .
with A′ ≡ ∃{Ai}i∈I .

⋂

i∈I Ai.
By induction on each then we have A {Si[µt.e. + {li : Si}i∈I/t]}A′i allowing us to
re-derive branching well-assertedness:

A {Si[µt.e.+ {li : Si}i∈I/t]}A′i
A {+{li : Si[µt.e.+ {li : Si}i∈I/t]}i∈I}A′

[bra]

which equals our goal by the definition of syntactic substitution:

A {(+{li : Si}i∈I)[µt.e.+ {li : Si}i∈I/t]}A′

(assert) S = assert(n).S′. Assuming A {assert(n).S′[µt.assert(n).S′/t]}A′ then by
inversion (Lemma C.3) this yields A∪ {n} {S′[µt.assert(n).S′/t]}A′ .
By induction then A∪{n} {S′[µt.e.assert(n).S′/t]}A′ , which then allows us to derive:

A∪ {n} {S′[µt.e.assert(n).S′/t]}A′

A {assert(n).S′[µt.e..S′/t]}A′
[assert]

which equals our goal

A {(assert(n).S′)[µt.e.assert(n).S′/t]}A′

by the definition of syntactic substitution.
(require) S = require(n).S′. Assuming A {require(n).S′[µt.require(n).S′/t]}A′ then
by inversion (Lemma C.4) this yields A {S′[µt.require(n).S′/t]}A′ (with n ∈ A).
By induction then A {S′[µt.e.require(n).S′/t]}A′ , which then allows us to derive:

A {S′[µt.e.require(n).S′/t]}A′ n ∈ A
A {require(n).S′[µt.e.require(n).S′/t]}A′

[require]

which equals our goal

A {(require(n).S′)[µt.e.require(n).S′/t]}A′

by the definition of syntactic substitution.
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(consume) S = consume(n).S′. Assuming A {consume(n).S′[µt.consume(n).S′/t]}A′

then by inversion (Lemma C.5) this yields A \ {n} {S′[µt.consume(n).S′/t]}A′ (with
n ∈ A).
By induction then A \ {n} {S′[µt.e.consume(n).S′/t]}A′ , which then allows us to
derive:

A \ {n} {S′[µt.e.consume(n).S′/t]}A′ n ∈ A
A {consume(n).S′[µt.e.consume(n).S′/t]}A′

[consume]

which equals our goal

A {(consume(n).S′)[µt.e.consume(n).S′/t]}A′

by the definition of syntactic substitution.
(rec) S = µt′.S′ Assuming A {(µt′.S′)[µt.(µt′.S′)/t]}A′ then by inversion (Lemma C.6)
this yields A {S′[µt.(µt′.S′)/t]}A′ (with A ⊆ A′).
By induction then A {S′[µt.e.(µt′.S′)/t]}A′ , which then allows us to derive:

A {S′[µt.e.(µt′.S′)/t]}A′

A {µt′.S′[µt.µt′.S′/t]}A′
[rec]

(note the post-condition here satisfies ∃A′′.A∪ A′′ = A′ since A ⊆ A′).
The conclusion equals our goal

A {(µt′.S′)[µt.µt′.S′/t]}A′

by the definition of syntactic substitution and uniquness of binders property.
(end) S = end Assuming A {end[µt.end/t]}A′ .
Since end[µt.end/t] = [µt.e.end/t] then this holds trivially from the assumption.
(call) S = t′. Assuming A {t′[µt.t′/t]}A′ .

– t= t′ then t′[µt.t′/t] = t[µt.t/t] = µt.t Such a protocol is not allowed by the
syntactic guardness requirement, so this case is trivial (ex falso quodlibet).

– t 6= t′ then t′[µt.t′/t] = t′ Then the goal hoalds trivially here as from the
assumption we get A {t′[µt.e.t′/t]}A′ .

Lemma C.8 (Well-asserted unfolding extension under branch) For all

A {Si}A′ ∧ A {+{li : Si}i∈I}A′ ⇒ A {Si[+{li : µt.Si}i∈I/t]}A′

Proof 8 By induction over the structure of Si.
In each case, we proceed by induction, rebuilding well-assertedness (exactly as in the

proof of Lemma C.7). The key case is when we have a recursion variable that we are
substituting into, t′.

t′ ≡ t then we substitute here: t′[+{li : µt.Si}i∈I/t] = +{li : µt.Si}i∈I and so well-
assertedness holds by the second conunct of the premise.
t′ 6= t′ then trivially A {t′}A′ since t′[+{li : µt.Si}i∈I/t] = t′
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Lemma C.9 (Well-asserted unfolding) For all sets of names A, A′ and protocols S,
then:

A {S}A′ =⇒ A {S[µt.S/t]}A′

Proof 9 By induction on the structure of terms S:
(act) S = p.S′ with assumption A {p.S′}A′ . By Lemma C.1 (inversion) we then have
A {S′}A′ .
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma C.7 then this gives us A {S′[µt.p.S′/t]}A′ which we can use to build the
well-assertedness derivation:

A {S′[µt.p.S′/t]}A′

A {p.S′[µt.p.S′/t]}A′
[act]

which yields our goal by the definition of syntactic substitution.

(bra) S = +{li : Si}i∈I with assumption A {+{li : Si}i∈I}A′ .
By inversion (Lemma C.2) this yields A {Si}Ai for all i ∈ I . with A′ ≡ ∃{Ai}i∈I .

⋂

i∈I Ai.
By induction on each i ∈ I then we have that A {Si[µt.Si/t]}A′ . Applying Lemma C.8
on each then this give us: A {Si[+{li : µt.Si}i∈I/t]}A′ which we can then use to build
the well-assertedness derivation:

∀i ∈ I . A {Si[µt.+ {li : Si}i∈I/t]}Ai

A {+{li : Si[µt.+ {li : Si}i∈I/t]}i∈I}
⋂

i∈I Ai

which by the definition of syntactic substitution yields the goal:

A {(+{li : Si}i∈I)[µt.+ {li : Si}i∈I/t]}
⋂

i∈I

Ai [bra]

(require) S = require(n).S′ with assumption A {require(n).S′}A′ .
By Lemma C.4 (inversion) we then have A {S′}A′ and n ∈ A.
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma C.7 then this gives us A {S′[µt.require(n).S′/t]}A′ which we can use to
build the well-assertedness derivation:

A {S′[µt.require(n).S′/t]}A′

A {require(n).S′[µt.require(n).S′/t]}A′
[require]

(where ∃A′′.A = A′′ ∪ {n} sinch n ∈ A). which yields our goal by the definition of
syntactic substitution.

(consume) S = consume(n).S′ with assumption A {consume(n).S′}A′ .
By Lemma C.5 (inversion) we then have A \ {n} {S′}A′ and n ∈ A.
By induction on this judgment we have that A \ {n} {S′[µt.S′/t]}A′ .
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By Lemma C.7 then this gives us A \ {n} {S′[µt.consume(n).S′/t]}A′ which we can
use to build the well-assertedness derivation:

A \ {n} {S′[µt.consume(n).S′/t]}A′ n ∈ A
A {consume(n).S′[µt.consume(n).S′/t]}A′

[consume]

which yields our goal by the definition of syntactic substitution.

(assert) S = assert(n).S′ with assumption A {assert(n).S′}A′ .
By Lemma C.3 (inversion) we then have A \ {n} {S′}A′ and n ∈ A.
By induction on this judgment we have that A∪ {n} {S′[µt.S′/t]}A′ .
By Lemma C.7 then this gives us A∪ {n} {S′[µt.assert(n).S′/t]}A′ which we can use
to build the well-assertedness derivation:

A \ {n} {S′[µt.assert(n).S′/t]}A′

A {assert(n).S′[µt.assert(n).S′/t]}A′
[assert]

which yields our goal by the definition of syntactic substitution.

(rec) S = µt′.S′ with assumption A {µt′.S′}A′ .
By Lemma C.6 (inversion) we then have A {S′}A′ and A ⊆ A′.
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma C.7 then this gives us A {S′[(µt.(µt′.S′))/t]}A′ which we can use to build
the well-assertedness derivation:

A {S′[µt.µt′.S′/t]}A′

A {µt′.S′[µt.µt′.S′/t]}A′
[rec]

(leveraging A ⊆ A′) which yields our goal by the definition of syntactic substitution.

(end)
−

A {end}A
Trivial since end[µt.end/t] = end.

(call) S = t′ with assumption A {t′}A′ thus A≡ A′.
Case
– t= t′ thus t′[µt.t′/t] = µt.t. Then we can apply construct well-assertedness by
the derivation:

A {t}A
A {µt.t}A

[rec]

– t 6= t′ then t′[µt.t′/t] = t′ therefore using the assumption we have A {t[µt.t′/t]}A′ .

D Proof of Lemmas 1, 2, 3 on well-assertedness and progress

Lemma 1 (Reduction preserves well-assertedness) If A {S}A′ and there is a reduc-
tion (A, S)

`
−→ (A′′, S′) then ∃A′′′ ⊇ A′. A′′ {S′}A′′′ .
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Proof 10 By induction on the structure of A {S}A′ .

(act)
A {S}A′

A {p.S}A′

Then the only possible reduction is 〈Inter〉:

(A, p.S)
p
−→ (A, S)

Therefore we can conclude with the premise of A {S}A′ which shows that S is well-
asserted (and trivially A ⊇ A).
(bra)

∀i ∈ I . A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai

Then the only possible reduction is 〈Branch〉:

(A,+{li : Si}i∈I)
+lj
−→ (A, S j) ( j ∈ I)

Therefore we can conclude with the premise A {S j}A j which shows that S j is well-
asserted (and A j ⊇

⋂

i∈I Ai since j ∈ I).
(require)

A∪ {n} {S}A′

A∪ {n} {require(n).S}A′

Then the only possible reduction is 〈Require〉 with:

(A∪ {n}, require(n).S)
require(n)
−−−−−→ (A∪ {n}, S) (n ∈ (A∪ {n}))

(note the trivial satisfaction of the side condition here). Therefore we can conclude with
the premise A∪ {n} {S}A′ which shows that S is well-asserted (and trivially A′ ⊇ A′).
(consume)

A {S}A′

A∪ {n} {consume(n).S}A′

Then the only possible reduction is 〈Consume〉:

(A∪ {n}, consume(n).S)
consume(n)
−−−−−−→ ((A∪ {n}) \ {n}, S) (n ∈ (A∪ {n}))

Thus since (A∪{n})\{n}= A we can conclude with the premise A {S}A′ showing that
S is well-asserted (and trivially A′ ⊇ A′).
(assert)

A∪ {n} {S}A′

A {assert(n).S}A′

Then the only possible reduction is 〈Assert〉:

(A,assert(n).S)
assert(n)
−−−−−→ (A∪ {n}, S)

Thus we can conclude with the premise A∪ {n} {S}A′ showing that S is well-asserted
(and trivially A′ ⊇ A′).
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(rec)

A {S}A∪ A′

A {µt.S}A∪ A′

Then the only possible reduction is 〈Rec〉:

(A, S)
`
−→ (A′′, S′)

(A,µt.S)
`
−→ (A′′, S′[µt.S/t])

(*)

We now proceed by an inner induction on the structure of S to prove that ∃A′′′ ⊇
A∪ A′. A′′ {S′[µt.S/t]}A′′′ .

– (prefix) S = p.S1 thus A {p.S1}A∪ A′ , and thus (∗) must be the reduction:

(A, p.S1)
p
−→ (A, S1)

〈Inter〉

(A,µt.p.S1)
p
−→ (A, S1[µt.p.S1/t])

〈Rec〉

thus A′′ = A.
By lemma C.9 on A {p.S1}A∪ A′ then A {p.S1[µt.p.S1/t]}A∪ A′ (**)
Then by the definition of substitution and lemma C.1 (inversion of prefix well-
assertedness) on (**) we get: A {S1[µt.p.S1/t]}A ∪ A′ providing the goal with
A′′′ = A∪ A′.

– (branch) S = +{li : Si}i∈I thus A {+{li : Si}i∈I}A ∪ A′ , and thus (∗) must be the
reduction:

(A,+{li : Si}i∈I)
+lj
−→ (A, S j) ( j ∈ I)

〈Branch〉

(A,µt.p.+ {li : Si}i∈I)
p
−→ (A, S j[µt.+ {li : Si}i∈I/t])

〈Rec〉

thus A′′ = A.
By lemma C.9 on A {+{li : Si}i∈I}A∪ A′ and unfolding the definition of syntactic
substitution then A {+{li : Si[µt.+ {li : Si}i∈I/t]}i∈I}A∪ A′ (**)
Then by the definition of substitution and lemma C.2 (inversion of branch well-
formendess) on (**) we get: ∃{Ai}i∈I .A ∪ A′ ≡

⋂

i∈I Ai ∧ ∀i ∈ I . A {Si[µt.+ {li :
Si}i∈I/t]}Ai .

Then taking i = j we get A {S j[µt.+ {li : Si}i∈I/t]}A j providing the goal of this
lemma with A′′′ = A j and A j ⊇ A∪ A′ =

⋂

i∈I Ai since j ∈ I .
– (assert) S = assert(n).S1 thus A {assert(n).S1}A ∪ A′ , and thus (∗) must be the
reduction:

(A,assert(n).S1)
assert(n)
−−−−−→ (A∪ {n}, S1)

〈Assert〉

(A,µt.assert(n).S1)
assert(n)
−−−−−→ (A∪ {n}, S1[µt.assert(n).S1/t])

〈Rec〉

thus A′′ = A∪ {n}.
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By lemma C.9 on A {assert(n).S1}A∪ A′ then (unfolding substitution)
A {assert(n).S1[µt.assert(n).S1/t]}A∪ A′ (**)
Then by the definition of substitution and lemma C.3 (inversion of assert well-
assertedness) on (**) we get: A∪ {n} {S1[µt.assert(n).S1/t]}A∪ A′ providing the
goal with A′′′ = A∪ A′.

– (require) S = require(n).S1 thus A {require(n).S1}A∪A′ , and thus (∗) must be the
reduction:

(A, require(n).S1)
require(n)
−−−−−→ (A, S1)

〈Require〉 (n ∈ A)

(A,µt.require(n).S1)
require(n)
−−−−−→ (A, S1[µt.require(n).S1/t])

〈Rec〉

and thus A′′ = A.
By lemma C.9 on A {require(n).S1}A∪ A′ then (unfolding substitution)
A {require(n).S1[µt.require(n).S1/t]}A∪ A′ (**)
Then by the definition of substitution and lemma C.4 (inversion of require well-
assertedness) on (**) with n ∈ A we get:
A {S1[µt.require(n).S1/t]}A∪ A′ matching the goal with A′′′ = A∪ A′.

– (consume) S = consume(n).S1 thus A {consume(n).S1}A∪ A′ , and thus (∗) must
be the reduction:

(A, consume(n).S1)
consume(n)
−−−−−−→ (A \ {n}, S1)

〈Consume〉 (n ∈ A)

(A,µt.consume(n).S1)
consume(n)
−−−−−−→ (A \ {n}, S1[µt.consume(n).S1/t])

〈Rec〉

and thus A′′ = A \ {n}.
By lemma C.9 on A {consume(n).S1}A∪ A′ then (unfolding substitution)
A {consume(n).S1[µt.consume(n).S1/t]}A∪ A′ (**)
Then by the definition of substitution and lemma C.5 (inversion of consume well-
assertedness) on (**) with n ∈ A we get:
A \ {n} {S1[µt.consume(n).S1/t]}A∪ A′ matching the goal with A′′′ = A∪ A′.

– (rec) S = µt1.S1 thus A {µt1.S1}A∪ A′ , and thus (∗) must be the reduction:

(A, S1)
`
−→ (A1, S′1)

(A,µt1.S1)
`
−→ (A1, S′1[µt1.S1/t1])

(A,µt.µt1.S1)
consume(n)
−−−−−−→ (A1, S′1[µt1.S1/t1][µt.µt1.S1/t])

〈Rec〉

and thus A′′ = A1.
By lemma C.9 on A {µt1.S1}A∪ A′ then (unfolding substitution and since t 6= t1)
A {µt1.S1[µt.µt1.S1/t]}A∪ A′ (**)
Then by the definition of substitution and lemma C.6 (inversion of consume well-
assertedness) on (**) with A ⊆ A∪ A′ by usual set theory laws, then we get:
A {S1[µt.µt1.S1/t]}A∪ A′ matching the goal with A′′′ = A∪ A′.

Thus by this sublemma we conclude that ∃A′′′ ⊇ A∪ A′. A′′ {S′[µt.S/t]}A′′′ .
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(call)

−
A {t}A

A recursive variable on its own cannot reduce thus this case holds trivially since the
premise is false.
(end)

−
A {end}A

The terminated process end cannot reduce thus this case holds trivially since the
premise is false.

Lemma 2 (Well-asserted protocols are not stuck) If A {S} and S is closed with re-
spect to recursion variables (fv(S) = ;) then (A, S) is not stuck.

Proof 11 We proceed by structural induction on the derivation of well-assertedness
A {S}A′ (and thus simultaneously on the structure of S since every syntactic construction
has one well-assertedness rule):

S = end there are no further reductions possible and the thesis trivially holds: we
conclude with the first conjunct of the definition 3.
S = t then progress is trivial since the premise is that the S is closed.
S = p.S′ with:

A {S′}A′

A {p.S′}A′
[act]

Thus S can reduce by 〈Inter〉 as (A, p′.S′)
p
−→ (A, S′)

S = +{li : Si}i∈I with:

∀i ∈ I . A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai)
(2)

where A′ =
⋂

i∈I Ai. Thus, S can reduce by 〈Branch〉 to (A, S j) for any j ∈ I .
S = assert(n).S′ with

A∪ {n} {S′}A′

A {assert(n).S′}A′

Thus S can reduce by 〈Assert〉 to (A∪ {n}, S′)
S = consume(n).S′ with

A \ {n} {S′}A′ n ∈ A
A {consume(n).S′}A′

Thus S can reduce by 〈Consume〉 to (A \ {n}, S′) since well-assertedness gives us that
n ∈ A. to give us the side condition of this reduction rule.

6:41



A theory of composing protocols

S = require(n).S′ with

A∪ {n} {S′}A′

A∪ {n} {require(n).S′}A′

Thus S can reduce by 〈Require〉 to (A∪ {n}, S′) since well-assertedness gives us that
n ∈ (A∪ {n}) to give us the side condition of this reduction rule.
S = µt.S′ with:

A {S′}A′

A {µt.S′}A′
(3)

By induction on the first premise we get that S′ = end or (A, S′)→ (A′′′, S′′).

– In the case of S′ = end then we have S = µt.end which by structural congruence
(Section 2.2) then means S = end.

– In the case of (A, S′)→ (A′′′, S′′) this provides the premise of the 〈Rec〉 rule such
that S can reduce to (A′′′, S′′[µt.S′/t]).

Below we write:

(A, S)→n (A′, S′) if

(

n= 1 ∃`.(A, S)
`
−→ (A′, S′)

n> 1 ∃`.(A, S)
`
−→ (A′′, S′′)∧ (A′′, S′′)→n−1 (A′, S′)

Lemma 3 (Progress of very-well-asserted protocols) If S is very-well-asserted (i.e.,
; {S}) and closed then it exhibits progress.

Proof 12 We proceed by induction on the length of the reduction sequence n and prove a
stronger lemma:
If S is closed (fv(S) = ;) and very-well-asserted (∃A′.; {S}A′ ) then S has progress,

i.e., ∀A, n, S′ if (;, S) →n (A, S′) then (S′ = end ∨ (∃A′′, S′′.(A, S′) → (A′′, S′′) and
∃A′′′. A′′ {S′′}A′′′ ).

n= 0.
Thus, A= ; and S′ = S.
By lemma 2, with ; {S}A′ then we get that S = end∨ ∃A′′, S′′.(A, S)→ (A′′, S′′).
In the latter case (of a reduction), we then apply lemma 1 to get that ∃A′′′. A′′ {S′′}A′′′ .
n= k+ 1
Then we have the assumption that (;, S) →k+1 (Ak+1, S′k+1) and thus there exists
(;, S)→k (Ak, S′k)→ (Ak+1, S′k+1).
We can apply the lemma inductively on (;, S)→k (Ak, S′k) (i.e., the n= k case) to get
that S′k = end (not possible because of the k+ 1 reduction here) or ∃A′′, S′.(Ak, S′k)→
(A′k+1, S′′k+1) and that ∃A1. A′k+1 {S

′′
k+1}A1 .

Since reduction is deterministic we have that: (Ak+1, S′k+1) = (A
′
k+1, S′′k+1).

The goal here is to show that either S′k+1 = end or that ∃Ak+2, S′k+2.(Ak+1, S′k+1)→
(Ak+2, S′k+2) where ∃A2. Ak+2 {S′k+2}A2 .

By lemma 2 (local progress) with A′k+1 {S
′
k+1}A1 then we have that (S′k+1 = end)∨

∃Ak+2, S′k+2.(Ak+1, S′k+1)→ (Ak+2, S′k+2). In the case of the left disjunct we are done. In
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the case of the right disjunct, we then have the remaining piece of evidence via lemma 1
(reduction preserves well-assertedness) with the A′k+1 {S

′
k+1}A1 and (Ak+1, S′k+1)→

(Ak+2, S′k+2) which gives us that ∃A2. Ak+2 {S′k+2}A2 .
Thus we are done.

E Proof of Proposition 3 on validity of composition

Proposition 3 (Validity) If TL; TR; ; ` S1 ◦ S2 . S then S is very-well-asserted.

Proof 13 Proposition 3 follows immediately from Lemma 5, given in this section, setting
A = ;. The proof of Lemma 5 relies on an auxiliary lemma, Lemma 4, given below.
Lemma 4 makes use of environment weakening (Proposition Proposition 2) given in
earlier sections.

Lemma 4 If A0 {S}A and A {S′} then A0 {S[S′/end]} .

Proof 14 The proof is by induction on the size of S, proceeding by case analysis on the
syntax of S.

Base cases There are two base cases: S = end and S = t. If S = end, by [end] A0 = A.
The thesis follows then immediately from the hypothesis A {S′} since end[S′/end] = S′

If S = t the thesis follows immediately by hypothesis A0 {S}A since S[S′/end] = S.

Inductive cases The inductive cases are analyzed below:
Case S = p.S′′. By [act] on hypothesis A0 {p.S′′}A follows (as premise)

A0 {S′′}A (4)

By induction, Equation (4) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (5)

By applying rule [act] to Equation (5) obtain A0 {p.S′′[S′/end]} as required.
Case S = require(n).S′′. By [assume] on hypothesis A0 {require(n).S′′}A follows (as
premise)

A0 {S′′}A (6)

with n ∈ A0. By induction, Equation (6) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (7)

By applying rule [assume] to Equation (7) – observe that n ∈ A0 – obtain

A0 {require(n).S′′[S′/end]}

as required.
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Case S = consume(n).S′′. By [consume] on hypothesis A0 {consume(n).S′′}A follows
(as premise) n ∈ A0 and

A0 \ {n} {S′′}A (8)

By induction, Equation (8) and hypothesis A {S′} follows

A0 \ {n} {S′′[S′/end]} (9)

By applying rule [consume] to Equation (9) obtain A0 {consume(n).S′′[S′/end]} as
required.
Case S = assert(n).S′′. By [assert] on hypothesis A0 {assert(n).S′′}A follows (as
premise)

A0 ∪ {n} {S′′}A (10)

By induction, Equation (10) and hypothesis A {S′} follows

A0 ∪ {n} {S′′[S′/end]} (11)

By applying rule [assert] to Equation (11) obtain A0 {assert(n).S′′[S′/end]} as re-
quired.
Case S = µt.S′′. By [rec] on hypothesis A0 {µt.S′′}A follows (as premise)

A0 {S′′}A (12)

By induction, Equation (12) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (13)

By applying rule [rec] to Equation (13) obtain A0 {µ.S′′[S′/end]} as required.
Case S = +{li : Si}i∈I . By [bra] on hypothesis A0 {+{li : Si}i∈I}A follows (as premise)

∀i ∈ I . A0 {Si}Ai (14)

for some {Ai}i∈I . Since by [bra] applied in Equation (14)
⋂

i∈I Ai = A then

∀i ∈ I . A ⊆ Ai (15)

By Proposition 1 (environment weakening), Equation (14), and Equation (15), follows

Ai {Si} for all i ∈ I . (16)

By induction, Equation (14) and Equation (16) give

∀i ∈ I . A0 {Si[S
′/end]} (17)

By applying Equation (17) as a premise of [bra] obtain A0 {+{li : Si}i∈I[S′/end]} as
required.

Lemma 5 If TL; TR; A ` S1 ◦ S2 . S then A{S}.

Proof 15 The proof is by induction on the derivation, proceeding by case analysis on the
last rule (Definition 5) applied.
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Base cases. There are two base cases: the last application was rule [end] or [call]. If
the last (and only) rule applied was [end] in Definition 5 then S = end and by rule [end]
in Definition 4 A {end} as required. If the last (and only) rule applied was [call] in
Definition 5 then S = t and by rule [call] in Definition 4 A {t} as required.

Inductive cases. We show below the inductive cases.
Case last rule is [act]. The conclusion is on the form TL; TR; A ` p.S′1 ◦ S2 . p.S′ with
premise

TL; TR; A ` S′1 ◦ S2 . S′ (18)

By induction, from Equation (18) it follows:

A {S′} (19)

By applying rule [act] in Definition 4 to Equation (19) it follows A {p.S′} as required.
Case last rule is [sym]. The conclusion is on the form TL; TR; A ` S1 ◦ S2 . S with
premise

TL; TR; A ` S2 ◦ S1 . S (20)

By induction, from Equation (20) it follows that A{S} as required.
Case last rule is [require]. The conclusion is on the form

TL; TR; {n} ∪ A′ ` require(n).S′1 ◦ S2 . require(n).S′

with premise

TL; TR; {n} ∪ A′ ` S′1 ◦ S2 . S′ (21)

By induction, from Equation (21) follows {n} ∪ A′ {S′} . By using {n} ∪ A′ {S′} as
a premise for rule [require] in Definition 4 we obtain {n} ∪ A′ {require(n).S′} as
required.
Case last rule is [consume]. The conclusion is on the form

TL; TR; {n} ∪ A′ ` consume(n).S′1 ◦ S2 . consume(n).S′

with premise

TL; TR; A′ ` S′1 ◦ S2 . S′ (22)

By induction, from Equation (22) it follows

A′ {S′} (23)

By applying Equation (23) as a premise for rule [consume] in Definition 4 obtain
{n} ∪ A′ {consume(n).S′} as required.
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Case last rule is [assert]. The conclusion is on the form

TL; TR; A ` assert(n).S′1 ◦ S2 . assert(n).S′

with premise

TL; TR; A∪ {n} ` S′1 ◦ S2 . S′ (24)

By induction, from Equation (24) it follows

A∪ {n} {S′} (25)

By applying rule [act] in Definition 4 to Equation (19) it follows A {assert(n).S′} as
required.
Case last rule is [bra] (without weakening). The conclusion is on the form

TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈I

with premise

∀i ∈ I . TL; TR; A ` Si ◦ S2 . S′i (26)

By induction, from Equation (26) it follows:

∀i ∈ I . A {S′i} (27)

By applying Equation (27) as premise of [bra] in Definition 4 it follows A {+{li :
S′i}i∈I} as required.
Case last rule is [bra] (with weakening). The conclusion is on the form

TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈IA
∪+{li : Si}i∈IB

with premises IA∪ IB = I , IA∩ IB = ; and IA = ;, and

∀i ∈ IA. TL; TR; A ` Si ◦ S2 . S′i (28)

∀i ∈ IB. A {Si} (29)

By induction, from Equation (28) it follows:

∀i ∈ IA. A {S′i} (30)

By applying Equation (29) and Equation (30) as premise of [bra] in Definition 4 it
follows A {+{li : S′i}i∈IA

∪+{li : Si}i∈IB
} as required.

Case last rule is [rec1]. The conclusion is of the form

TL; TR; A ` µt1.S′1 ◦µt2.S′2 . µt1.S

with premise

TL ,t1; TR; A ` S′1 ◦µt2.S′2 . S A {µt1.S}

The thesis follows by condition A {µt1.S} in the premise above.

6:46



Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Case last rule is [rec2]. The conclusion is of the form

TL; T1,t, T2; A ` µt1.S′1 ◦ S′2 . S

with premise

TL; T1,t, T2; A ` S′1[t/t1] ◦ S′2 . S unused(T2)

By induction A {S1} which is the thesis.
Case last rule is [rec3]. Immediate by hypothesis.

F Proof of Algebraic and Scoping Properties

Definition 11 (Substituting for end) Given two protocols S and S′ then S[S′/end] is
defined:

(p.S)[S′/end] = p.S[S′/end]
(+{li : Si}i∈I)[S

′/end] = +{li : Si[S
′/end]}i∈I)

(assert(n).S)[S′/end] = assert(n).S[S′/end]
(consume(n).S)[S′/end] = consume(n).S[S′/end]
(require(n).S)[S′/end] = require(n).S[S′/end]

(µt.S)[S′/end] = (µt.S[S′/end])
t[S′/end] = t

end[S′/end] = S′
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Lemma F.1 Given TL; TR; A ` S1 ◦ S2 . S where TL ∩ TR = ; then the following hold:
1. t ∈ TL =⇒ t ∈ fn(S1)∨ (t 6∈ fn(S1)∧ t 6∈ fn(S))
2. t ∈ TR =⇒ t ∈ fn(S2)∨ (t 6∈ fn(S2)∧ t 6∈ fn(S))

Proof 16 (act)

TL; TR; A ` S′1 ◦ S2 . S

TL; TR; A ` p.S′1 ◦ S2 . p.S

By induction and where t ∈ fn(S′1) implies t ∈ fn(p.S′1) for part (1) and (t 6∈ fn(S
′
1)∧

t 6∈ fn(S)) implies (t 6∈ fn(p.S′1)∧ t 6∈ fn(p.S)).
and part (2) follows directly.
(sym)

TR; TL; A ` S2 ◦ S1 . S
TL; TR; A ` S1 ◦ S2 . S

By induction and swapping parts (1) and (2) in the induction to get the thesis.
(require)

TL; TR; A∪ {n} ` S1 ◦ S2 . S
TL; TR; A∪ {n} ` require(n).S1 ◦ S2 . require(n).S

Similar to the case for (act) since require(n) does not affect recursion variables.
(consume)

TL; TR; A \ {n} ` S1 ◦ S2 . S n ∈ A
TL; TR; A ` consume(n).S1 ◦ S2 . consume(n).S

Similar to the case for (act) since consume(n) does not affect recursion variables.
(assert)

TL; TR; A∪ {n} ` S1 ◦ S2 . S
TL; TR; A ` assert(n).S1 ◦ S2 . assert(n).S

Similar to the case for (act) since assert(n) does not affect recursion variables.
(bra)

∀i ∈ I TL; TR; A ` Si ◦ S2 . S′i
TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈I

By induction (over each premise i ∈ I) where any t ∈ fn(Si) implies that t ∈ fn(+{li :
Si}i∈I) and otherwise if all t 6∈ fn(Si) then t 6∈ +{li : S′i}i∈I and part (2) follows directly
since it is unchanged.
(rec1)

TL ,t1; TR; A ` S1 ◦ µt2.S2 . S A {µt1.S}
TL; TR; A ` µt1.S1 ◦ µt2.S2 . µt1.S

For part (1), assuming t ∈ TL from the implication, then we also have t ∈ (TL ,t1) and
since all bound variables are fresh we have that (TL ,t1)∩ TR = ; which we apply on
the inductive argument to get t ∈ fn(S1)∨ (t 6∈ fn(S1)∧ t 6∈ fn(S)) which we case split
on:
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– t ∈ fn(S1) thus t ∈ fn(µt1.S1) following the assumption of all bound variables
being initial fresh (and not overlapping T).

– (t 6∈ fn(S1)∧ t 6∈ fn(S)) which then implies (t 6∈ fn(µt1.S1)∧ t 6∈ fn(µt1.S)).
Part (2) follows directly by induction since that side of ◦ is unmodified in the premise.
(rec2)

TL; T1,t′, T2; A ` S1[t′/t1] ◦ S2 . S unused(T2)

TL; T1,t′, T2; A ` µt1.S1 ◦ S2 . S

Part (1). Assuming t ∈ TL. Case split on whether t= t′ or not:
– t= t′ which contradicts the premise that TL ∩ TR = ;.
– t 6= t′ then by induction on the premise we have that t ∈ fn(S1[t′/t1]) ∨ (t 6∈
fn(S1[t′/t1])∧ t 6∈ fn(S)) on which we case split:

* t ∈ fn(S1[t′/t1]) therefore t ∈ fn(µt1.S1) since no variable capture is possible.

* (t 6∈ fn(S1[t′/t1])∧ t 6∈ fn(S)) therefore (t 6∈ fn(µt1.S1)∧ t 6∈ fn(S)).
Part (2) follows directly by induction since S2 remains an unchanged and there is only
a chance of annotation in TR which does not affect the meaning.
(rec3)

A {µt′.S} fv(µt′.S) = ;
TL; TR; A ` µt′.S ◦ end . µt′.S

Part (1), for all t ∈ TL the goal is t ∈ fn(µt′.S)∨ (t 6∈ fn(µt′.S)∧ t 6∈ fn(µt′.S)).
Either t ∈ fv(µt′.S) satisfying the goal or t 6∈ fv(µt′.S) also satisfying the goal here.
Part (2), for all t ∈ TR then t 6∈ fv(end) and t 6∈ fv(µt′.S) by the side condition of the
rule.
(call)

t′ ∈ TL ∨ t′ ∈ TR

TL; TR; A ` t′ ◦ t′ . t′

Part (1), case on whether t= t′

– t= t′ - then trivially t ∈ fn(t′) as t= t′

– t 6= t′ - then trivially t 6∈ fn(t′) (first conjunct) and t 6∈ fv(t′) (second conjunct)
Part (2) is as above for Part (1) due to the symmetry in this rule.
(end)

−
TL; TR; A ` end ◦ end . end

For both part (1) and (2) we trivially have that for all t ∈ TL (and t ∈ TR) then
t 6∈ fv(end) satisfying the goal here.

Proposition 4 If TL; TR; A ` S1 ◦ S2 . S then fv(S1)∪ fv(S2) = fv(S).

Proof 17 By induction on TL; TR; R ` S1 ◦ S2 . S:
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(act)

TL; TR; A ` S′1 ◦ S2 . S

TL; TR; A ` p.S′1 ◦ S2 . p.S

By induction and then that fv(p.S) = fv(S).
(sym)

TL; TR; A ` S2 ◦ S1 . S
TL; TR; A ` S1 ◦ S2 . S

By induction and commutativity of ∪ on sets.
(require)

TL; TR; A∪ {n} ` S′1 ◦ S2 . S

TL; TR; A∪ {n} ` require(n).S′1 ◦ S2 . require(n).S

By induction and then fv(require(n).S) = fv(S) (recall free variables are with respect
to recursion variables rather than assertion names).
(consume)

TL; TR; A \ {n} ` S′1 ◦ S2 . S n 6∈ A

TL; TR; A ` consume(n).S′1 ◦ S2 . consume(n).S

By induction and then fv(consume(n).S) = fv(S).
(assert)

TL; TR; A∪ {n} ` S′1 ◦ S2 . S

TL; TR; A ` assert(n).S′1 ◦ S2 . assert(n).S

By induction and then fv(assert(n).S) = fv(S).
(bra)

∀i ∈ I TL; TR; A ` Si ◦ S2 . S′i
TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈I

By induction we have that fv(Si) ∪ fv(S2) ⊇ fv(S′i) then since
⋃

i∈I fv(S
′
i) = fv(+{li :

S′i}i∈I) and
⋃

i∈I fv(Si) = fv(+{li : Si}i∈I) we get that fv(+{li : S′i}i∈I) ∪ fv(S2) ⊇
fv(+{li : S′i}i∈I).
(rec1)

TL ,t1; TR; A ` S1 ◦ µt2.S2 . S A {µt1.S}
TL; TR; A ` µt1.S1 ◦ µt2.S2 . µt1.S

By induction fv(S1)∪ fv(S2) = fv(S). Since fv(µt1.S1) = fv(S1)\{t1} and fv(µt1.S) =
fv(S) \ {t1} then fv(µt1.S1)∪ fv(S2) = fv(µt1.S) as desired.
(rec2)

TL; T1,t, T2; A ` S1[t/t1] ◦ S2 . S unused(T2)

TL; T1,t, T2; A ` µt1.S1 ◦ S2 . S

By induction we have that fv(S1[t/t1])∪ fv(S2) = fv(S).
We case split on whether t1 ∈ fv(S1).
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– If t1 6∈ fv(S1) then S1[t/t1] = S1 and thus fv(µt1.S1) = fv(S1) = fv(S1[t/t1]) and
so fv(µt1.S1)∪ fv(S2) = fv(S);

– If t1 ∈ fv(S1) then we have t ∈ fv(S1[t/t1]).
In this case, by binding semantics and definition of substitution, then fv(µt1.S1) =
fv(S1[t/t1]) \ {t}.
By lemma F.1, we have t ∈ fv(S2) hence we proceed by the following reasoning:

fv(S)
{i.h.} = fv(S1[t/t1])∪ fv(S2)

{lemma F.1 on premise} = fv(S1[t/t1])∪ {t} ∪ fv(S2)
{(A\ B)∪ B = A∪ B} = (fv(S1[t/t1]) \ {t})∪ {t} ∪ fv(S2)

{binding + substitution } = fv(µt1.S1)∪ {t} ∪ fv(S2)
{lemma F.1 on conclusion} = fv(µt1.S1)∪ fv(S2)

QED.
(rec3) Since S1 = µt.S′ here, and the result of composition is S = µt.S′, then fv(S1) =
fv(S) as required.
(call)

t ∈ TL ∨ t ∈ TR

TL; TR; A ` t ◦ t . t

Thus fv(t)∪ fv(t) = fv(t) trivially.
(end)

−
TL; TR; A ` end ◦ end . end

Trivial since fv(end) = ;.

Corollary 2 (Composition preserves closedness) For all A, S and closed protocols
S1, S2, if TL; TR; A ` S1 ◦ S2 . S then S is a closed protocol.

Proof 18 Simple corollary of proposition 4 since ;= fv(S).

Proposition 5 (Interleaving composition has left- and right-units) For a protocol
S where A {S} ∧ fv(S) = ; then TL; TR; A ` S ◦ end . S and TL; TR; A ` end ◦ S . S.

Proof 19 We split the proposition into two parts. First proving the right unit, then the
left unit.
For the right unit, we proceed by induction on the derivation of A {S}:
S = p.S′

A {S′}A′

A {p.S′}A′

Then by induction on S′ we have that TL; TR; A ` S′ ◦ end . S′ and thus by (act) we
get TL; TR; A ` p.S′ ◦ end . p.S′
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S = +{li : Si}i∈I

∀i ∈ I . A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai

By induction on the premise for each Si we get that TL; TR; A ` Si ◦ end .Si. Applying
all these as the premises of (bra), we get that:

TL; TR; A ` +{li : Si}i∈I ◦ end .+{li : Si}i∈I

Satisfying the goal.
S = require(n).S′

A′ ∪ {n} {S′}A′′

A′ ∪ {n} {require(n).S′}A′′

thus A= A′ ∪ {n}
By induction on the premise with S′ then we have TL; TR; A′ ∪ {n} ` S′ ◦ end . S′.
Applying this to (require) for interleaving composition then gives us:

TL; TR; A′ ∪ {n} ` require(n).S′ ◦ end . require(n).S′

Satisfying the goal.
S = consume(n).S′

A \ {n} {S′}A′ n ∈ A
A {consume(n).S′}A′

By induction on the premise with S′ then we have TL; TR; A \ {n} ` S′ ◦ end . S′.
Applying this to (consume) for interleaving composition (with the side condition of
n ∈ A from the well-assertedness rule) then gives us:

TL; TR; A ` consume(n).S′ ◦ end . consume(n).S′

Satisfying the goal.
S = assert(n).S′

A∪ {n} {S′}A′

A {assert(n).S′}A′

By induction on the premise with S′ then we have TL; TR; A∪ {n} ` S′ ◦ end . S′.
Applying this to (assert) for interleaving composition then gives us:

TL; TR; A ` assert(n).S′ ◦ end . assert(n).S′

Satisfying the goal.
S = µt.S′

A {S′}A∪ A′

A {µt.S′}A∪ A′

If fv(µt.S) = ; then we apply (rec3) and obtain the thesis. If fv(µt.S) 6= ; the
hypothesis does not hold hence done.
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S = end

−
A {end}A

We can then conclude with our goal via the (end) rule of interleaving composition:
TL; TR; A ` end ◦ end . end.
S = t

−
A {t}A

In this case fv(S) = {t} 6= ; which contradicts the hypothesis hence done.
Thus we have proved the right unit property of interleaving composition: that for all S
we have TL; TR; A ` S ◦ end . S.
To prove the left unit property we can then compose the above result with the (sym)

rule of interleaving composition:

TL; TR; A ` S ◦ end . S
TL; TR; A ` end ◦ S . S

[sym]

giving the left-unit property. �

G Proof of behaviour preservation (Theorem 1)

We recall the theorem for convenience.

Theorem 1 (Behaviour preservation of compositions - closed)

;; ;; A ` S1 ◦ S2 . S ⇒ (A, S)® (A, S1 ||S2)

Proof 20 By Lemma 6 derivation ensures behaviour preservation of one transition step,
and also ensures that derivability of S is preserved by transition possibly upon unfolding
of S1 or S2. The thesis follows by observing that (A, Si) for i ∈ {1, 2} is behaviourally
equivalent to its unfoldings.

G.1 Behaviour preservation - auxiliary de�nitions and lemmas

Lemma G.1 If (A, S1)
`
−→ (A′, S′1) and t 6∈ fn(S1) then t 6∈ fn(S′1).

Proof sketch. The proof is by induction observing that no reduction rule adds free
names.

Lemma G.2 (A, S1[t/t1])
`
−→ (A′, S′1) ∧ t 6∈ fn(S1) =⇒ (A, S1)

`
−→ (A′, S′1[t1/t]).
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Proof sketch. The proof is by induction on the proof of
`
−→. All cases are base cases

(trivial) except 〈rec〉. For 〈rec〉 we consider two cases:
1. S1 = µt1.S1. In this case µt1.S1[t/t1] = µt1.S1 and by 〈rec〉

(A, S1)
`
−→ (A′, S′1)

µt1.S1
`
−→ (A′, S′1[µt1.S1/t1])

The thesis is by observing that S′1[µt1.S1/t1] = S′[µt1.S1/t1][t1/t] since
t 6∈ fn(µt1.S1) by hypothesis;
t 6∈ fn(S′1[µt1.S1/t1]) by Lemma G.1.

2. S1 = µt2.S1. By hypothesis (and rule 〈rec〉)

(A, S1[t/t1])
`
−→ (A′, S′1)

µt2.S1[t/t1]
`
−→ (A′, S′1[µt2.S1[t/t1]/t2])

(31)

By induction using the premise of equation (31)

(A, S1)
`
−→ (A′, S′1[t1/t])

The above used as premise of 〈rec〉 gives

(A,µt2.S1)
`
−→ (A′, S′1[t1/t][µt2.S1/t2]) (32)

Looking at equation (31), we need to prove that S′1[µt2.S1[t/t1]/t2][t1/t] is equal
to S′1[t1/t][µt2.S1/t2] from equation (32). We show this below.

S′1[µt2.S1[t/t1]/t2][t1/t]
= S′1[t1/t][µt2.S1[t/t1][t1/t]/t2] (distribution of substitution)
= S′1[t1t][µt2.S1/t2] (since t 6∈ fn(S1) then S′1[t/t1][t1/t] = S′1)

As desired.

Lemma G.3

A{S} ∧ A′{S′}A⇒ A′{S′[S/t1]}

Proof 21 By induction on the syntax of S′

Base cases
If S′ = t then A′{t}A. If t 6= t1 then thesis is by hypothesis. If t = t1 then A′{t1}A
and A′ = A by [call] so A{t1}A hence hypothesis A{S1} yields the thesis.
If S′ = end then A′{end}A and the thesis is the hypothesis as t1 6∈ fn(end).
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Inductive cases
If S′ = p.S′′ then by well-formedness rule [act]

A′{S′′}A
A′{p.S′′}A

By induction A′{S′′[S/t1]}A which, by [act] gives A′{p.S′′[S/t1]}A as desired.
If S′ = consume(n).S′′ then by well-formedness rule [consume]

A′ \ {n}{S′′}A
A′{consume(n).S′′}A

By induction A′ \ {n}{S′′[S/t1]}A which by [consume] gives

A′{consume(n).S′′[S/t1]}A

as desired.
The cases for assert, assume, and branching are similar to consume.
If S′ = µt.S′′ then by well-formedness rule [rec]

A′S′′A∪ A′′

A′µt.S′′A∪ A′′

We have two cases: if t = t1 then A′{µt1.S′′[S/t1] = µt1.S′′}A ∪ A′′ hence done;
if t 6= t1 then by induction A′S′′[S/t1]A ∪ A′′ which used as premise of [rec] gives
A′{µt.S′′[S/t1]}A∪ A′′.

Lemma G.4 (Environment Unfolding 1)

;; ;; Â ` µt1.Ŝ1 ◦ Ŝ2 . µt1.Ŝ (33)

and

TL; TR; A ` S1 ◦ S2 . S t1 ∈ TL (34)

and

A{S}Â (35)

imply

TL \ t1; TR; A ` S1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S[µt1.Ŝ/t1]

Proof 22 The proof focusses on proving .wc which is the most general case; the other
cases can be obtained by simply omitting the inductive cases for rules not used by that
kind of composition (e.g., for .s omit the [wbra] and [cbra] case). The proof by induction
on the derivation of S by case analysis on the last rule used.
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[rec1] - S1 = µt.S′1 and S = µt.S′. By hypothesis (showing the last rule application)

TL ,t; TR; A ` S′1 ◦ S2 . S′ A{µt.S′}
TL; TR; A ` µt.S′1 ◦ S2 . µt.S′

(36)

By induction, considering the premise of equation (36)

TL ,t \ t1; TR; A ` S′1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S′[µt1.Ŝ/t1] (37)

By hypothesis equation (35) A{µt.S′}Â and by hypothesis equation (33) Â{S}, hence
by Lemma G.3

A{µt.S′[µt1.Ŝ/t1]} (38)

Then I can use equation (37) and equation (38) as premise of [rec1] obtaining the thesis

TL \ t1; TR; A ` µt.S′1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . µt.S′[µt1.Ŝ/t1]

as required.

[rec2] - S1 = µt2.S′1 By hypothesis (showing the last rule application by [rec2])

TL; T1,t, T2; A ` S′1[t/t2] ◦ S2 . S unused(T2)

TL; T1,t, T2; A ` µt2.S′1 ◦ S2 . S
(39)

By induction

TL \t1; T1,t, T2; A ` S′1[t/t2][µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S[µt1.Ŝ/t1] unused(T2)

Because [rec2] a variable in the right recursion environment can be used/substituted
at most once, hence the occurrences of t in µt2.S′1[µt1.Ŝ1/t1] are all and only those
occurrences that were formerly substituted occurrences of t2. There exists, therefore, a
substitution of t with t that yields S2. By applying the above as a premise of [rec2] we
obtain

TL \ t1; T1,t, T2; A ` µt2.S′1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S[µt1.Ŝ/t1] (40)

as required.

[call] If S′1 = t the thesis is immediate as t[µt1.Ŝ1/t1] = t[µt1.Ŝ/t1] = t[S1/t1] = t.
If S′1 = t1 then the thesis is equivalent to hypothesis.

[consume] - S1 = consume(n).S′1 By hypothesis

TL; TR; A ` S′1 ◦ S2 . S

TL; TR; A∪ {n} ` consume(n).S′1 ◦ S2 . S

By induction, considering the premise of the derivation above:

TL \ t1; TR; A ` S′1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S[µt1.Ŝ/t1]

by using the above as a premise of [consume] we obtain

TL \ t1; TR; A∪ n ` consume(n).S′1[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S[µt1.Ŝ/t1]

as desired.
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[wbra] - S1 = +{li : Si}i∈I By hypothesis

∀i ∈ IA TL; TR; A ` Si ◦ S2 . S′i
∀i ∈ IB A{Si} ∧ TL; TR; A ` Si ◦ S2 6 .S′i

TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈IA
∪ {li : Si}i∈IB

(41)

By induction:

∀i ∈ IA TL \ t1; TR; A ` Si[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] . S′i[µt1.Ŝ/t1] (42)

and by second premise of equation (41), used as a prefix still preserves the negative result
in the derivation below (it worth nothing if t1 is removed by the environment):

∀i ∈ IB TL \ t1; TR; A ` Si[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] 6 . (43)

By applying equation (42) and equation (43) as premise of [wbra] we obtain

TL \ t1; TR; A ` +{li : Si[µt1.Ŝ1/t1]}i∈I ◦ S2[Ŝ2/t1] .
+{li : S′i[µt1.Ŝ/t1]}i∈IA

∪ {li : Si[µt1.Ŝ/t1]}i∈IB

which by definition of substitution is equivalent to

TL \ t1; TR \ {t1,t1}; A ` +{li : Si}i∈I[µt1.Ŝ1/t1] ◦ S2[Ŝ2/t1] .
(+{li : S′i}i∈IA

∪ {li : Si}i∈IB
)[µt1.Ŝ/t1]

as desired.

[bra] - S1 = +{li : Si}i∈I This case is a special case of [wbra] above with IB = ;.

We denote with unfold(S,t) the one-time unfolding of S with respect to t. Namely,
if there exists term µt.Ŝ occurring syntactically in S, unfold(S,t) = S[Ŝ.µt.Ŝ/µt.Ŝ],
otherwise unfold(S,t) = S.

Lemma G.5 (Environment Unfolding 2)

;; ;; Â ` µt1.Ŝ1 ◦ S2 . µt1.Ŝ (44)

and

TL; TR; A ` S1 ◦ S2 . S t1 ∈ Top(S1)∩ Top(S) (45)

and

A{S}Â (46)

imply there exists t such that

TL; TR; A ` S1[µt1.Ŝ1/t1] ◦ unfold(S2,t) . S[µt1.Ŝ/t1]

Proof 23 Proceeds similarly to the proof of Lemma G.4. The only report the interesting
cases:
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[rec1] - S1 = µt.S′1 and S = µt.S′. By hypothesis (showing the last rule application)

TL ,t; TR; A ` S′1 ◦ S2 . S′ A{µt.S′}
TL; TR; A ` µt.S′1 ◦ S2 . µt.S′

(47)

By induction, considering the premise of equation (36) there exists t in S2 such that

TL ,t; TR; A ` S′1[µt1.Ŝ1/t1] ◦ unfold(S2,t) . S′[µt1.Ŝ/t1] (48)

By hypothesis equation (46) A{µt.S′}Â and by hypothesis equation (44) Â{S}, hence
by Lemma G.3

A{µt.S′[µt1.Ŝ/t1]} (49)

Then I can use equation (48) and equation (49) as premise of [rec1] obtaining the thesis.

[rec2] - S1 = µt2.S′1 This case is not possible since hypothesis Top(S) = t2 cannot hold
due to the assumption that the component protocols use different protocol variables,
hence t2 does not appear in S2, not it can appear in S1[t/t2]. By inspection of the rules,
observe that S only has protocol variables that occur in either component protocols.

G.2 On the relation R1

Definition 12 (Folding)

� (p.S, t) = p.� (S, t)
� (assert(n).S1, t) = assert(n).� (S, t)
� (consume(n).S1, t) = consume(n).� (S, t)
� (require(n).S1, t) = require(n).� (S, t)
� (+{li : Si}i∈I , t) = +{li :� (Si , t)}i∈I

� (µt.S1, t) = t
� (µt′.S1, t) = µt′.� (S1, t)
� (end, t) = end
� (t′, t) = t′

Definition 13 (Top)

Top(S) =

¨

t if S = µt.S′

; otherwise

We say that S is free from unguarded nested recursions if
either Top(S) = ; or S = µt.S′ and Top(S′) = ;, and
all syntactic subterms of S are free from unguarded nested recursions.

As noted in the commentary of Definition Definition 1, we assume without loss of
generality that protocols are free from unguarded nested recursions.

Lemma G.6 If S1 and S2 have guarded nested recursions and TL; TR; A ` S1 ◦ S2 .µt.S
then Top(S) = ;
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Proof sketch. Can be proved by induction on the proof of µt.S. Observe that the
composition rules never concatenate recursions from the same protocol (by assumption
that S1 is free from unguarded nested recursions) or from different protocols (by
assumption that S1 is free from unguarded nested recursions and by the fact that µt1

and µt2 are not sequentially composed in [rec2]).

Lemma G.7 (Preservation - open protocols) If TL; TR; A ` S1 ◦ S2 . S and (A, S)
`
−→

(A′, S′) for some `, A′, S′ then one of the following holds:

1. (A, S1)
`
−→ (A′, S′1) and TL; TR@; A′ `� (S′1, Top(S1))@ ◦ S2 .� (S′, Top(S)), for some

@ substitution of t′ ∈ Top(S1) \ fn(S′) with t ∈ TR and @ substitution of t with t.

2. (A, S2)
`
−→ (A′, S′2) and TL@; TR; A′ ` S1 ◦ � (S′2, Top(S2))@ . � (S′, Top(S)), for

some @ substitution of t′ ∈ Top(S2) \ fn(S′) with t ∈ TL and @ substitution of t with
t.

3. (A, Si)
+l
−→ (A′, S′i) with i ∈ {1,2} and S′ = S[S/Top(S)] and S′i = S[Si/Top(Si)] for

some S

Proof 24 This lemma holds for all variants of composition: .s, .w, .c, and .wc (recall
that notation . is used to refer to any of the aforementioned composition judgments).
The proof focusses on proving .wc which is the most general case; the other cases can
be obtained by simply omitting the inductive cases for rules not used by that kind of
composition (e.g., for .s omit the [wbra] and [cbra] case).
By induction on the derivation of S by case analysis on last rule used.

[end] The hypothesis does not hold since (A,end) 6→ hence done.

[call] The hypothesis does not hold since (A,t) 6→ hence done.

[consume] - S = consume(n).Ŝ The top of the derivation is of the following form:

TL; TR; A ` Ŝ1 ◦ S2 . Ŝ

TL; TR; A∪ {n} ` consume(n).Ŝ1 ◦ S2 . consume(n).Ŝ
(50)

By hypothesis

(A∪ {n}, consume(n).Ŝ)
`
−→ (A, S′)

Since the only transition rule applicable to (A∪ {n}, consume(n).Ŝ) is 〈consume〉 then
`= consume(n) and S′ = Ŝ

(A∪ {n}, consume(n).Ŝ)
consume(n)
−−−−−−→ (A, Ŝ)

Similarly, by 〈consume〉

(A∪ {n}, consume(n).Ŝ1)
consume(n)
−−−−−−→ (A, Ŝ1)

The thesis (item 1) follows immediately by the premise of (equation (50)) observing
that Top(S1) = ; and Top(S) = ; and @ is the empty substitution.
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Cases [pref], [assume], [assert] are similar to the case for [consume].

Cases [wbra] By hypothesis

IA∩ IB = ; IA∪ IB = I IA 6= ;
∀i ∈ IA TL; TR; A ` Si ◦ S2 . S′i
∀i ∈ IB A{Si} TL; TR; A ` Si ◦ S2 6 .

TL; TR; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈IA
∪+{li : Si}i∈IB

(51)

S = +{li : S′i}i∈IA
∪+{li : Si}i∈IB

can only move by 〈Branch〉 with `= l j and either j ∈ IA

or j ∈ IB.

Case j ∈ IA. (A,+{li : S′i}i∈IA
∪+{li : Si}i∈IB

)
+li−→ (A, S′j). Similarly, by 〈Branch〉 on S1

(A,+{li : Si}i∈I)
+l j
−→ (A, S j)

The thesis hold (item 1) as it is the premise in (equation (51)) for i = j ∈ IA observing
that Top(+{li : S′i}i∈I) = ; and Top(+{li : Si}i∈I) = ; and @ is the empty substitution.

Case j ∈ IB . (A,+{li : S′i}i∈IA
∪+{li : Si}i∈IB

)
+li−→ (A, S j). Similarly, by 〈branch〉 on S1

(A,+{li : S′i}i∈I)
+l j
−→ (A, S j)

Thesis holds (item 3) with S = S j since fn(S j) \ fn(S) = fn(S j) \ fn(S1) = ;.

Cases [bra] As the case [wbra] assuming IB = ;.

Cases [cbra] By hypothesis

∀i ∈ I Ji 6= ;
⋃

i∈I Ji = J
∀ j ∈ Ji TL; TR; A ` Si ◦ S′j . Si j

∀ j ∈ J \ Ji TL; TR; A ` Si ◦ S′j 6 .

TL; TR; A ` +{li : Si}i∈I ◦ +′{l′j : S′j} j∈J .+{li : +′{l′j : Si j}i∈Ji
}i∈I

(52)

S = +{li : +′{l′j : Si j}i∈Ji
}i∈I can only move by 〈Branch〉 with `= li as follows:

(A,+{li : +′{l′j : Si j}i∈Ji
}i∈I)

+li−→ (A,+′{l′j : Si j}i∈Ji
)

Similarly, by 〈Branch〉 on S1

(A,+{li : Si}i∈I)
+li−→ (A, Si)

The first premise in (equation (51)) can be applied as axiom in the derivation below to
obtain the thesis (item 1) and observing that Top(+{li : S′i}i∈I) = ; and @ is the empty
substitution:

TL; TR; A ` Si ◦ S′j . Si j
[sym]

TR; TL; A ` S′j ◦ Si . Si j
[bra]

TR; TL; A ` +′{l′j : S′j} j∈J ◦ Si .+′{l′j : Si j}i∈Ji [sym]
TL; TR; A ` Si ◦ +′{l′j : S′j} j∈J .+′{l′j : Si j}i∈Ji
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Case [sym] The last rule applies is of the following form:

TL; TR; A ` S2 ◦ S1 . S
TL; TR; A ` S1 ◦ S2 . S

By hypothesis (A, S)
`
−→ (A′, S′).

By induction one of the following holds:

1. if (A, S2)
`
−→ (A′, S′2) then TL; TR; A′ `� (S′2, Top(S2))@ ◦ S1 .� (S′, Top(S)) which

yields the thesis when applied as a premise of [sym]. The case for

2. if ` ∈ {⊕l,&l} and (A, S1)
`
−→ (A′, S′1) and S′ = S[S/fn(S)\fn(S)] and S′1 = S[S1/fn(S)\

fn(S1)] for some S then the thesis (item 3) holds after applying [sym].

3. if ` ∈ {⊕l,&l} and (A, S2)
`
−→ (A′, S′2) the case is similar to case (2).

4. if (A, S1)
`
−→ (A′, S′1) the case is similar to case (1).

Case [rec1] - S = µt1.Ŝ By hypothesis

TL ,t1; TR; A ` Ŝ1 ◦ µt2.Ŝ2 . Ŝ

TL; TR; A ` µt1.Ŝ1 ◦ µt2.Ŝ2 . µt1.Ŝ
(53)

and

(A, Ŝ)
`
−→ (A′, S′)

(A,µt1.Ŝ)
`
−→ (A′, S′[µt1.Ŝ/t1])

(54)

By induction, considering the premise of equation (53) we have one of the following three
cases:

Case S1 moves and composition is preserved. If (A, Ŝ1)
`
−→ (A′, S′1) and

TL ,t1; TR; A′ `� (S′1, Top(Ŝ1))@ ◦ S2 .� (S′, Top(Ŝ))

Since µt1.Ŝ1 is free from unguarded recursion we have Top(Ŝ1) = ; hence @ is empty
substitution and we get

TL ,t1; TR; A′ ` S′1 ◦ S2 . S′ (55)

By 〈rec〉, (A,µt1.S1)
`
−→ (A′, S′1[µt1.S1]). The thesis to prove is therefore

TL; TR; A′ `� (S′1[µt1.S1/t1], Top(Ŝ1))@ ◦ S2 .� (S′[µt1.S/t1], Top(Ŝ))

Observing that Top(S1) = t1, the derivation above is equivalent to

TL; TR; A′ `� (S′1[µt1.S1/t1], t1)@ ◦ S2 .� (S′[µt1.S/t1], t1)

that is

TL; TR; A′ ` S′1@ ◦ S2 . S′

Observing that @ is the empty substitution since in Top(S1) = t1 and t1 ∈ fn(S′) the
above follows immediately by equation (55).

6:61



A theory of composing protocols

Case S2 moves and composition is preserved. If (A, S2)
`
−→ (A′, S′2) and

TL ,t1; ;; A′ ` Ŝ1 ◦ � (S′2, Top(S2))@ .� (S′, Top(Ŝ))

then by Lemma G.6, Top(S) = ; and @ is empty. Therefore, the above is equivalent to

TL ,t1; TR; A′ ` Ŝ1 ◦ � (S′2, Top(S2)) . S′ (56)

The thesis

TL; TR; A′ ` µt1.Ŝ1 ◦ � (S′2, Top(S2))@ .� (S′[µt1.Ŝ/t1], Top(S))

is equivalent to equation (56) since: Top(S) = t1, � (S′[µt1.Ŝ/t1], t1) = S′ and @
is the empty substitution (fn(S′) = t1 which is not a name in S2 as we assume bound
names of S1 and S2 to be disjoint).

Case ` ∈ {⊕l,&l} and composition is not preserved. By induction either S1 or S2 makes
a transition with label `. We show the case in which S1 moves, as the case in which
(A, Ŝ2)

`
−→ (A′, S′) is symmetric.

Assume by induction (A, Ŝ1)
`
−→ (A′, S′). Then: (1) since Top(Ŝ1) = ; then fn(S′) \

fn(Ŝ1) = ;, and (2) by Lemma G.6 Top(Ŝ1) = ; then S = S′ and fn(S′) \ fn(Ŝ) = ;. So,
by 〈rec〉

(A,µt1.S1)
`
−→ (A′, S′[µt1.S1/t1] (A,µt1.S)

`
−→ (A′, S′[µt1.S/t1])

with fn(S′) \ fn(µt1.Ŝ) = t1 and fn(S′1) \ fn(µt1.Ŝ1) = t1 hence the thesis.

Case [rec2] - S = µt1.Ŝ By hypothesis

TL; T1,t, T2; A ` Ŝ1[t/t1] ◦ S2 . S unused(T2)

TL; T1,t, T2; A ` µt1.Ŝ1 ◦ S2 . S
(57)

and

(A, Ŝ)
`
−→ (A′, S′)

(A,µt1.Ŝ)
`
−→ (A′, S′[µt1.Ŝ/t1])

(58)

By induction on the premise of equation (57) we have one of the following cases:
1. First, assume

(A, Ŝ1)
`
−→ (A′, S′1) (59)

and

TL; T1,t, T2; A′ `� (S′1, Top(Ŝ1[t/t1]))@ ◦ S2 .� (S′, Top(S)) unused(T2) (60)
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By assumption of freeness from unguarded recursions we have Top(S1) = ; hence
Top(S1[t/t1]) = ;. It follows that @ is empty and equation (60) is equivalent to

TL; T1,t, T2; A′ ` S′1 ◦ S2 .� (S′, Top(S)) (61)

By 〈rec〉 with premise equation (59)

(A,µt1.Ŝ1[t/t1])
`
−→ (A′, S′1[µt1.Ŝ1[t/t1]/t1])

By the transition above and Lemma G.2

(A,µt1.Ŝ1)
`
−→ (A′, S′1[t1/t][µt1.Ŝ1/t1]) (62)

We need to prove

TL; T1,t, T2; A′ `� (S′1[t1/t][µt1.Ŝ1/t1], Top(µt1.Ŝ1))@◦S2 .� (S′, Top(S)) unused(T2)

(63)

which, since Top(µt1.Ŝ1) = t1 and applying the folding, is equivalent to

TL; T1,t, T2; A′ ` S′1[t1/t]@ ◦ S2 .� (S′, Top(S)) (64)

In equation (64), @ = [t/t1] and @ = [t/t], hence equation (64) is equivalent to
equation (61) as required.

2. Second, assume

(A, S2)
`
−→ (A′, S′2) (65)

By induction on the premise of equation (57)

TL; T1,t, T2; A′ ` Ŝ1[t/t1]◦ � (S′2, Top(S2))@ .� (S′, Top(S)) (66)

for some @. Applying equation (66) as premise of [rec2] we obtain the thesis

TL; T1,t, T2; A′ ` µt1.Ŝ1 ◦ � (S′2, Top(S2))@ .� (S′, Top(S))

as desired.
3. Finally, assume ` ∈ {⊕l,&l}. By induction we have (A, Ŝ1)

`
−→ (A′, S′) with fn(S′) \

fn(Ŝ) = ; (the case in which (A, Ŝ2)
`
−→ (A′, S′) is symmetric). So, by 〈rec〉

(A,µt1.S1)
`
−→ (A′, S′[µt1.S1/t1])

Recall also that

(A, S)
`
−→ (A′, S′)

The thesis hold for S = S′ since fn(S′) \ fn(S) = ;, fn(S′1) \ fn(µt1.Ŝ1) = t1.
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Recall, we denote with unfold(S,t) the one-time unfolding of S with respect to
t. Namely, if there exists term µt.Ŝ occurring syntactically in S, unfold(S,t) =
S[Ŝ.µt.Ŝ/µt.Ŝ], otherwise unfold(S,t) = S.

Lemma 6 (Preservation - closed protocols) Assume ;; ;; A ` S1 ◦ S2 . S. For all
`, A′, S1 such that (A, S)

`
−→ (A′, S′) either

1. (A, S1)
`
−→ (A′, S′1) and ;; ;; A ` S′1 ◦ S′2 . S′ (S′2 = unfold(S2, t̂) for some t̂), or

2. (A, S2)
`
−→ (A′, S′2) and ;; ;; A ` S′1 ◦ S′2 . S′ (S′1 = unfold(S′1, t̂) for some t̂), or

3. ` ∈ {⊕l,&l} and (A, Si)
`
−→ (A′, S[S1/fn(S)\fn(S1)])with i ∈ {1,2} and S′ = S[S/fn(S)\

fn(S)] for some S

Proof 25 The proof focusses on proving .wc which is the most general case; the other
cases can be obtained by simply omitting the inductive cases for rules not used by that kind
of composition (e.g., for .s omit the [wbra] and [cbra] case). We proceed by induction
on derivation of S proceeding by case analysis on the last rule used.

Case [sym] The last rule applies is of the following form:

;; ;; A ` S2 ◦ S1 . S
;; ;; A ` S1 ◦ S2 . S

By induction either (A, S2)
`
−→ (A′, S′2) and ;; ;; A′ ` S′2 ◦ S1 . S′ which applied as a

premise of [sym] yields the thesis (item 2) ;; ;; A′ ` S1 ◦ S′2 . S′, or (A, S1)
`
−→ (A′, S′1)

and ;; ;; A′ ` S2 ◦ S′1 . S′ which applied as a premise of [sym] yields the thesis (item 1)
;; ;; A′ ` S′1 ◦ S2 .S′. Alternatively, case (3) applies by induction and yields the thesis as
item 3 is symmetric (i ∈ {1, 2}).

Case [consume] - S = consume(n).Ŝ proceeds as the corresponding case in Lemma G.7.
The top of the derivation is of the following form:

;; ;; A ` Ŝ1 ◦ S2 . Ŝ

;; ;; A∪ {n} ` consume(n).Ŝ1 ◦ S2 . consume(n).Ŝ

By 〈consume〉

(A∪ {n}, consume(n).S)
consume(n)
−−−−−−→ (A, S)

and

(A∪ {n}, consume(n).S1)
consume(n)
−−−−−−→ (A, S1)

The thesis holds as it is identical to the the premise of equation (50).

Cases [pref][assume][assert] are similar to [consume].
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Case [wbra] Proceeds as the corresponding case in Lemma G.7. By hypothesis

I = IA∪ IB IA∪ IB 6= ;
∀i ∈ IA.;; ;; A ` Si ◦ S2 . S′i
∀i ∈ IB.;; ;; A ` Si ◦ S2 6 . ∧ A{Si}

;; ;; A ` +{li : Si}i∈I ◦ S2 .+{li : S′i}i∈IA
∪ {li : S′i}i∈IB

By 〈bra〉, picking i ∈ IA which is not empty by premise of the derivation above

(A,+{li : Si}i∈I)
+l j
−→ (A, S j)

and

(A,+{li : S′i}i∈I)
+l j
−→ (A, S′j)

The thesis holds as it is identical to the the premise of the derivation above for j ∈ IA.

Case [bra] This follows by [wbra] setting IB = ;.

Case [cbra] By hypothesis

∀i ∈ I Ji 6= ;
⋃

i∈I Ji = J
∀ j ∈ Ji ;; ;; A ` Si ◦ S′j . Si j

∀ j ∈ J \ Ji ;; ;; A ` Si ◦ S′j 6 .

;; ;; A ` +{li : Si}i∈I ◦ +′{l ′j : S′j} j∈J .+{li : +′{l ′j : Si j} j∈Ji
}i∈I

(67)

By 〈bra〉, picking i ∈ I

(A,+{li : +′{l ′j : S′j} j∈Ji
}i∈I)

+li−→ (A,+′{l ′j : Si j} j∈Ji
)

and similarly

(A,+{li : Si}i∈I)
+li−→ (A, Si)

By applying [sym] to the second premise of equation (67):

∀ j ∈ ji +
′ {l ′j : S′j} j∈Ji

◦ Si .+
′{l ′j : Si j} j∈Ji

(68)

By applying equation (68) as premise of [bra] and then [sym] we obtain the thesis
(1):

;; ;; A ` Si ◦ +′{l ′j : S′j} j∈Ji
.+′{l ′j : Si j} j∈Ji
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Case [rec1] - S = µt1.Ŝ and TR = ; By hypothesis

t1; ;; A ` Ŝ1 ◦ S2 . S A{µt1.S}
;; ;; A ` µt1.Ŝ1 ◦ S2 . µt1.Ŝ

(69)

and

(A, Ŝ)
`
−→ (A′, S′)

(A,µt1.Ŝ)
`
−→ (A′, S′[µt1.Ŝ/t1])

(70)

By Lemma G.7 we have one of the following three cases:

1. (A, Ŝ1)
`
−→ (A′, S′1) hence by 〈rec〉

(A,µt1.Ŝ1)
`
−→ (A′, S′1[µt1.Ŝ/t1])

and

{t1}; ;; A′ `� (S′1, Top(S1)) ◦ S2 .� (S′, Top(S)) (71)

By assumption of nested guardedness Top(Ŝ1) = ; and by Lemma G.6 Top(S) = ;.
Hence by equation (71) we obtain, with @ being the empty substitution:

{t1}; ;; A′ ` S′1 ◦ S2 . S′ (72)

By premise of equation (69) [rec1] A{µt1.S} which looking at the well formedness
rule [rec] can be written as

A{µt1.S}A∪ A′′ (73)

for some A′′. By Lemma 1 equation (73) and equation (70) imply

A′{S′1[µt1.Ŝ1/t1]}A′′′ such that A′′′ ⊇ A∪ A′′ (74)

By Lemma G.5 since equation (69) and equation (72) and equation (74) we obtain
that there exists t̂ such that

;; ;; A′ ` S′1[µt1.S1/t1] ◦ unfold(S2, t̂) . S′[µt1.S/t1]

as desired.
2. (A, Ŝ2)

`
−→ (A′, S′2) and

t1; ;; A′ ` S1 ◦ � (S′2, Top(S2)) .� (S′, Top(Ŝ)) (75)

By Lemma G.6, Top(Ŝ) = ; hence equation (75) is equivalent to

t1; ;; A′ ` S1 ◦ � (S′2, Top(S2)) . S′ (76)

We proceed by inner induction on the syntax of S2.
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If S2 = p.Ŝ2 then S′2 = Ŝ2, and Top(S2) = 0 hence and @ is the empty substitution.
Therefore, equation (76) is equivalent to the thesis t1; ;; A′ ` S1 ◦ S′2 .S′ as desired;
If S2 = a.Ŝ2 with a ∈ {assert(n), consume(n), require(n)} the case is similar to the
prefix case above;
If S2 = end or S2 = t then (A, S2) 6→ hence done.
If S2 = µt2.Ŝ2 (interesting case) then S′2 = Ŝ′2[µt2.S2/t2] with (A, Ŝ2)→ (A′, Ŝ′2) as
premise of 〈rec〉. Since Top(S2) = t2 and fn(S′) 63 t2 then @= [t1/t2]. Therefore,
� (S′2, Top(S2))@= S′2[t1/t2] and substituting this in equation (76) we obtain

{t1}; ;; A′ ` S1 ◦ S′2[t1/t2] . S′

By applying Lemma G.4 to the above we get

;; ;; A′ ` S1[µt1.Ŝ1/t1] ◦ S′2[t1/t2][µt2.Ŝ2/t1] . S′[µt1.Ŝ/t1]

which is equivalent to

;; ;; A′ ` S1[µt1.Ŝ1/t1] ◦ S′2[µt2.Ŝ2/t2] . S′[µt1.Ŝ/t1]

as desired.
By Lemma G.7 either S1 or S2 makes a transition with label ` and

(A,µt1.S1)
`
−→ (A′, S′[µt1.S1/t1]) (A,µt1.S)

`
−→ (A′, S′[µt1.S/t1])

with fn(S′) \ fn(µt1.Ŝ) = t1 and fn(S′1) \ fn(µt1.Ŝ1) = t1 hence the thesis.

Case [rec2] S = µt1.Ŝ Contradicts the hypothesis (TR 6= ;) hence done.

H Proofs of fairness

Definition 14 Define the following context:

C[ · ] = g.C[ · ] g ∈ {p,assert(n), consume(n), require(n)}
| +{l : C[ · ]} ∪ {li : Si}i∈I

| µt.C[ · ]
| [ · ]

Write S = C[ · ] if S = C[S′ ] for some S′. Write C ′ ∈ C (resp. C ′ 6∈ C) is there exists (resp.
there exists no) C1, C2 such that C = C1[C ′[C3[ · ] ] ]. Define the following functions:

clab(g.S) = {g} clab(+{li : Si}i∈I) = {+li}i∈I clab(µt.S) = clab(S)

and

V(g.C[ · ]) = g,V(C[ · ]) V([ · ]) = ε V(µt.C[ · ]) = V(C[ · ])
V(+{l j : C[ · ]} ∪ {li : Si}i∈I\ j) = +l j ,V(C[ · ])
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Lemma H.1 If (A, S)
`
−→ (A′, S′) then (A, S[Ŝ/t])

`
−→ (A′, S′[Ŝ/t])

Proof 26 (sketch) Mechanical by induction on the transition, by case analysis on the
last rule used to make step `.

Lemma H.2 If TL; TR; A ` S0 ◦ S1 . S and S1 = end then S0 = S

Proof 27 (sketch) By induction on the proof of S proceeding by case analysis on the last
rule used, observing that the last rule used cannot be [rec1] or [rec2] as the only axiom
that can be used if [end] (i.e., not [cal l]) due to the form of S1.

Lemma H.3 If (A, S)
`
−→ then ` ∈ clab(S).

Proof 28 (sketch) Mechanical by induction on the derivation of transition
`
−→ proceeding

by case analysis on the last transition rule used.

Lemma H.4 If (A, S)
~r
−→ then S = C[S′] for some S′ and V(C) = ~r.

Proof 29 (sketch) First prove that (A, S)
r
−→ implies S = C[S′] for some S′ and V(C) = r

by induction on the transition proceeding by case analysis on the last transition rule used.
Then by induction on the size of ~r based on the fact that contexts compositionality.

Lemma H.5 If S = C[S′ ], A{S}, and ` ∈ clab(S′), then (A, S)
~r
−→

`
−→ for some (possibly

empty) vector ~r of transition labels such that V(C) = ~r.

Proof 30 By induction on the syntax of C .
Case C = [ · ] (and hence V(C) is the empty vector of labels). We show the case for
S′ = consume(n).S′′ and hence clab(S) = {consume(n)}. By well-assertedness of S,
which in this case last applies rule [consume], n ∈ A, then by semantic rule 〈consume〉
we have

(A, consume(n).S′)
consume(n)
−−−−−−→ (A \ {n}, S′)

as desired. The cases for S′ ∈ {require(n).S′′,assert(n).S′′, p.S′′} are similar.
If C = consume(n).C ′[ · ] then we proceed with a generic S′. By well-assertedness of S
which last applies rule [consume] we have n ∈ A hence by semantic rule 〈consume〉
we have

(A, consume(n).C ′[S′])
consume(n)
−−−−−−→ (A \ {n}, C ′[S′])

By Lemma 1 (well-assertedness is preserved by transition) we have

A \ {n}{C ′[ Ĉ[S′ ] ]}

By induction (A \ {n}, C ′[S′ ])
~r
−→

`
−→ with ` ∈ lab(S′) and V(C ′) = ~r hence

(A, consume(n).C ′[S′])
consume(n)
−−−−−−→

~r
−→

`
−→

with ` ∈ lab(S′) and V(C) = consume(n),V(C ′) = consume(n),~r as desired.
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The other cases for C = g.C ′[·] are similar to the case above.
If C = +{l : C ′[·]} ∪ {li : Si}i∈I . By semantic rule 〈branch〉 we have

(A,+{l : C ′[S′]} ∪ {li : Si}i∈I)
+l
−→ (A, C ′[S′])

By Lemma 1 (well-assertedness is preserved by transition) we have

A{C ′[S′ ]}

By induction (A, C ′[S′ ])
~r
−→

`
−→ with ` ∈ clab(S′) and V(S′) = ~r hence

(A,+{l : C ′[S′]} ∪ {li : Si}i∈I)
+l
−→

~r
−→

`
−→

with ` ∈ clab(S′) and V(C) = +l,V(C) = +l,~r as desired.
If C = µt.C ′[·] then by well-assertedness of A{S}. In this case the last rule applied
is [rec]. We have by premise of [rec], A{C ′[S′ ]}. Hence, by Lemma 2 (well-asserted
protocols are not stuck)

(A, C ′[S′ ])
`′

−→ (A′, C ′′[S′ ]) (77)

for some C ′′ and by Lemma 1 A′{C ′′[S′ ]}. By induction

(A′, C ′[S′ ])
`′

−→
~r
−→

`
−→ ` ∈ clab(S′) `′,~r = V(C ′[ · ]) (78)

By 〈Rec〉 with as premise the first transition of equation (78):

(A,µt.C ′[S′ ])
`
−→ (A′, C ′′[S′ ][µt.C ′[S′ ]/t])

By Lemma H.1 and equation (78)

(A′, C ′′[S′ ][µt.C ′[S′ ]/t])
~r
−→

`
−→

hence

(A,µt.C ′[S′ ])
`′

−→
~r
−→

`
−→ ` ∈ clab(S′)

V(µt.C ′[ · ]) = V(C ′[ · ]) and by induction V(µt.C ′[ · ]) = `′,~r as desired.

Lemma H.6 If TL; TR; A ` S0 ◦ S1 .S then ∀` ∈ clab(S1)∃C[ · ], C0[ · ], S′, S′0 such that
1. S = C[S′ ] and S0 = C0[S′0 ]

2. V(C[ · ]) = V(C0[ · ])

3. ` ∈ clab(S′)

Proof 31 We proceed by induction on the proof of S, proceeding by case analysis of the
last rule applied.
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Case [end] In this case clab(S1) = ; hence done.

Case [call] In this case clab(S1) = ; hence done.

Case [act] Fix ` ∈ clab(S1). In this case S0 = p.S′0 and S = p.S′ then

TL; TR; A ` S′0 ◦ S1 . S′

TL; TR; A ` p.S′0 ◦ S1 . p.S′

By induction there exists C[S′′ ] = S′ and C0[S′′0 ] = S′0 such that V(C[ · ]) = V(C0[ · ])
and ` ∈ clab(S′′). Hence there exists p.C and p.C0 such that C[S′′0 ] = S0 and p.C[S′′ ] =
p.S′ = S and p.C0[S′′0 ] = p.S′0 = S0. Moreover, since V(C[ · ]) = V(C0[ · ]) then p,V(C[ · ]) =
p,V(C0[ · ]) and hence V(p.C[ · ]) = V(p.C0[ · ]). Finally, still ` ∈ clab(S′′) as desired.

Case [consume] [assert], [require] Are similar to [act].

Case [wbra] Fix ` ∈ clab(S1). In this case S = +{li : S′i}i∈IA
∪ {li : Si}i∈IB

, S0 = +{li :
Si}i∈I and

IA∪ IB = I IA∩ IB = ;
∀i ∈ IA. TL; TR; A ` Si ◦ S1 . S′i
∀i ∈ IB. A{Si} TL; TR; A ` Si ◦ S1 6 .

TL; TR; A ` +{li : Si}i∈I ◦ S1 .+{li : S′i}i∈IA
∪ {li : Si}i∈IB

By induction ∀i ∈ IA with IA 6= ; there exist Ci[ Ŝi ] = Si and C ′i [ Ŝ
′
i ] = S′i such that

V(Ci[ · ]) = V(C ′i [ · ]) and ` ∈ clab(Ŝ
′
i).

Hence, there exists C0[ Ŝi ] = +{li : Ci[ Ŝi ]} ∪ {l j : S j} j∈I\{i} and C[ Ŝ′i ] = +{li :
C ′i [ Ŝ

′
i ]}∪{l j : S′j} j∈IA\{i}∪{li : Si}i∈IB

. Moreover, V(Ci[ · ]) = V(C ′i [ · ]) implies li ,V(Ci[ · ]) =
li ,V(C ′i [ · ]) and hence V(C0[ · ]) = V(C[ · ]). Finally, still ` ∈ clab(Ŝ′i) as desired.

Case [bra] As the case [wbra] assuming IB = ;.

Case [cbra] Fix ` ∈ clab(S1). In this case S = +{li : +′{lj : Si j} j∈Ji
}i∈I , S0 = +{li : Si}i∈I

and

∀i ∈ I Ji 6= ;
⋃

i∈I Ji = J
j ∈ Ji . TL; TR; A ` Si ◦ S j . Si j

∀ j ∈ J \ Ji TL; TR; A ` Si ◦ S j 6 .
TL; TR; A ` +{li : Si}i∈I ◦ +′{lj : S j} j∈J .+{li : +′{lj : Si j} j∈Ji

}i∈I

By induction ∀i ∈ I there exist Ci[ Ŝi ] = Si and C ′i [ Ŝi j ] = Si j such that V(Ci[ · ]) =
V(C ′i [ · ]) and ` ∈ clab(Ŝi j).
Hence, forall l j ∈ clab(S0) (which is non empty since I 6= ;) there exist j ∈ Ji,

C1[ Ŝi ] = +{li : Ci[ Ŝ′i ]} ∪ {l j : S j} j∈I\{ j} and C[ Ŝi j ] = +{li : C ′i [ Ŝi j ]} ∪ {l j : Si j} j∈Ji\{i},
V(C0[ · ]) = V(C[ · ]) = li ,V(Ci[ · ]) = li ,V(C ′i [ · ]) and still ` ∈ clab(Ŝi j).
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Case [rec1] Fix ` ∈ clab(S1). In this case S0 = µt.S′0, S = µt.S′ (and for simplicity
we leave the recursive form of S1 implicit as it is immaterial here). By composition rule
[rec1]:

TL ,t; TR; A ` S′0 ◦ S1 . S′

TL; TR; A ` µt.S′0 ◦ S1 . µt.S′

By induction there exist C[ Ŝ′ ] = S′ and C0[ Ŝ′0 ] = S′0 such that V(C[ · ]) = V(C0[ · ])
and ` ∈ clab(Ŝ′). Hence there exists µt.C[ Ŝ′ ] = S and µt.C0[ Ŝ′0 ] = S0. Moreover,
since by induction V(C[ · ]) = V(C0[ · ]) and hence V(µt.C[ · ]) = V(µt.C0[ · ]) (since
V(µt.C[ · ]) = V(C[ · ]) and V(µt.C0[ · ]) = V(C0[ · ]) by definition of V()). Finally, still
` ∈ clab(µt.Ŝ′) as desired.

Case [rec2] Fix ` ∈ clab(S1). In this case

TL; T1,t′, T2; A ` S′0[t
′/t] ◦ S1 . S unused(T2)

TL; T1,t′, T2; A ` µt.S′0 ◦ S1 . S

By induction there exists C[ Ŝ′ ] = S and C0[ Ŝ′0 ] = S′0[t
′/t] such that V(C[ · ]) =

V(C0[ · ]) and ` ∈ clab(Ŝ′).
Hence there exists C[ Ŝ′ ] = S and µt.C0[t/t′][ Ŝ′0[t/t

′] ] = S0. By induction V(C0) =
V(C) and by definition of V() (observing that t′ does not affect the returned value),
V(µt.C0[t/t′]) = V(C0[t/t′]) and V(C0[t/t′]) = V(C0). Hence V(C[ · ]) = V(µt.C0[t/t′])
and still ` ∈ clab(µt.Ŝ′) = clab(Ŝ′).

Case [sym] In this case

TL; TR; A ` S1 ◦ S0 . S
TL; TR; A ` S0 ◦ S1 . S

(79)

Assume that [sym] is applied only once. If [sym] it is applied multiple (but finite) times
subsequently, say n times, then if n is even the thesis is immediate by hypothesis, and
if n is odd then the case is equivalent to the one where the rule is applied once. Fix
` ∈ clab(S1). If clab(S0) 6= ; then by induction there exists C[S′ ] = S and C1[S′1 ] such
that V(C[ · ]) = V(C1[ · ]) and ` ∈ clab(S′). From V(C[ · ]) = V(C1[ · ]), C[S′ ] = S and
C1[S′1 ] it follows that S and S1 have the same first prefix hence

` ∈ clab(S)

hence the thesis with contexts [ · ] for S and S0 and trivially V([ · ]) = V([ · ]). If clab(S0) =
; then either S0 = end or S0 = t. In either case S1 = S: by lemma H.2 if S0 = end and
by [call] if S0 = t. Hence with contexts [ · ] for S and S0 trivially clab(S1) = clab(S)
and hence ` ∈ clab(S) and V([ · ]) = V([ · ])

Lemma H.7 is a stronger version of Lemma H.6 where quantification over contexts
is universal rather than existential, and holds only for strong composition (not for
weak one).
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Lemma H.7 If TL; TR; A ` C0[S0 ] ◦ S1 .s S and clab(S1) 6= ;, then either:
1. there exist C ′0, C ′′0 , C[S′] = S such that

C0[ · ] = C ′0[C
′′
0 [ · ] ], and

V(C ′0[ · ]) = V(C[ · ]), and

clab(S′) = clab(S1), or

2. there exist C ′0[S
′
0], C[S′] = S such that

C0[C ′0[S
′ ] ] = S0, and

V(C0[C ′0[ · ] ]) = V(C[ · ]), and

clab(S′) = clab(S1)

Proof 32 We proceed by induction on the syntax of C0.

Case C0[ · ] = p.Ĉ0[ · ] By hypothesis

TL; TR; A ` Ĉ0[S0 ] ◦ S1 .s S

TL; TR; A ` p.Ĉ0[S0 ] ◦ S1 .s p.S

By induction either of the following holds:
1. there exist C ′0[C

′′
0 [ · ] ] = Ĉ0[ · ] and C[S′] = S such that V(Ĉ ′0[ · ]) = V(C[ · ]) and

clab(S′) = clab(S1). Therefore there exist p.C ′0[C
′′
0 [ · ] ] = C0[ · ] and p.C[S′] =

p.S such that V(C ′0[ · ]) = p,V(Ĉ ′0[ · ]) = p,V(C[ · ]) = V(p.C[ · ]) and clab(S′) =
clab(S1).

2. there exist C ′0[S
′
0], C[S′] = S such that Ĉ0[C ′0[S

′ ] ] = S0, V(Ĉ0[C ′0[ · ] ]) = V(C[ · ]),
and clab(S′) = clab(S1). Therefore there exist C ′0[S

′
0], p.C[S′] = S such that p.Ĉ0[C ′0[S

′ ] ] =
p.S0, V(p.Ĉ0[C ′0[ · ] ]) = p,V(Ĉ0[C ′0[ · ] ]) = p,V(C[ · ]) = V(p.C[ · ]) and clab(S′) =
clab(S1).

The cases for consume, assert, and require are similar to the prefix case above.

Case C0[ · ] = +{l j : Ĉ0[ · ]} ∪ {li : Si}i∈I\{ j} By hypothesis

∀i ∈ I \ { j} TL; TR; A ` Si ◦ S1 .s S′i
Ĉ0[ Ŝ j] = S j TL; TR; A ` Ĉ1[ Ŝ j] ◦ S1 .s S′j

TL; TR; A ` +{l j : Ĉ0[ Ŝ j ]} ∪ {li : Si}i∈I\{ j} ◦ S1 .s +{li : Si}i∈I

By induction either of the following holds:
1. there exist C ′0[C

′′
0 [ · ] ] = Ĉ0[ · ] and C[S′′j ] = S′j such that V(C ′0[ · ]) = V(C[ · ]) and

clab(S′′j ) = clab(S1). Therefore there exist+{l j : C ′0[C
′′
0 [ · ] ]}∪{li : Si}i∈I\{ j} = C0[ · ]

and +{l j : C[S′′j ]} ∪ {li : Si}i∈I\{ j} = +{li : Si}i∈I such that V(+{l j : C ′0[ · ]} ∪ {li :
Si}i∈I\{ j}) = l j ,V(C ′0[ · ]) = V(+{l j : C[ · ]} ∪ {li : S′i}i∈I\{ j}) and clab(S′j) = clab(S1).
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2. there exist C ′0[S
′′′
j ], C[S′′j ] = S′j such that C0[C ′0[S

′′′
j ] ] = S j, V(Ĉ0[C ′0[ · ] ]) = V(C[ · ]),

and clab(S′) = clab(S1). Therefore there exist Ĉ0[C ′0[S
′′′
j ] ], +{l j : C[S′′j ]} ∪ {li :

Si}i∈I\{ j} = +{li : Si}i∈I such that V(C0) = l j ,V(Ĉ0[C ′0[ · ] ]) = l j ,V(C[ · ]) = V(+{l j :
C[ · ]} ∪ {li : Si}i∈I\{ j}) and clab(S′) = clab(S1).

Case C0[ · ] = µt.Ĉ0[ · ] By induction observing that V(µt.Ĉ0[ · ]) = V(Ĉ0[ · ]).

Case C0[ · ] = [ · ] Immediate by induction.

Theorem 2 (Fairness of compositions) If ;; ;; A ` S0 ◦ S1 . S then S is fair w.r.t. S0

and S1 on A.

Proof 33 Immediately from Lemma H.8.

Lemma H.8 (Fairness) Let ;; ;; A ` S0 ◦ S1 . S. Then ∀i ∈ {0, 1} and any transition
(Ai , Si)

`
−→ (A′i , S′i) there exists ~r such that: (1)

(A, S|1−i|)
~r
−→ (A′|1−i|, S′|1−i|)

(A, S)
~r`
−→ (A′′, S′)

;; ;; A′′ ` S′0 ◦ S′1 . S′.

Proof 34 Assume (A, S1)
`
−→ (A′1, S′1). By Lemma H.3 ` ∈ clab(S1) so, by Lemma H.6,

there are two contexts C0 and C such that the hypothesis can be rewritten as

;; ;; A ` C0[S
′
0 ] ◦ S1 . C[S′ ]

with

V(C0[ · ]) = V(C[ · ]) (80)

and

` ∈ clab(S′) (81)

By equation (80), equation (81) and Lemma H.5

(A, S0)
~r
−→ (A′0, S′0) (for some A′0, S′0)

(A, S)
~r`
−→ (A′, S′) (for some A′′, S′)

(82)

It remains to prove that

;; ;; A′′ ` S′0 ◦ S′1 . S′ (83)

For every transition r ∈ ~r, by case (1) of Lemma 6 the composition relation is preserved.
More precisely, let ~r = r0, . . . , rn:

;; ;; A ` S0 ◦ S1 . S ∧ (A, S0)
r0−→ (A1, S1

0) ∧ (A, S)
r0−→ (A1, S1)⇒ ;; ;; A1 ` S1

0 ◦ S1 . S1

. . .

;; ;; An ` Sn
0 ◦ S1 . Sn ∧ (An, Sn

0 )
rn−→ (A′, S′0) ∧ (A

n, Sn)
rn−→ (A′, Sn+1)⇒ ;; ;; An+1 ` S′0 ◦ S1 . Sn+1
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Note that, when using Lemma 6, case (1) of Lemma 6 can always apply (case 2 applies
for the symmetric case in which S0 moves first). Assume by contradiction that only case
(3) applies (the case where continuations are not preserved), then S0 and S would move
to a state in which they are both Ŝ. By taking any S0 (and hence S) that does not include
any ` action we have a counter-example for equation (82) (second row) already proved
above. Hence case (1) must always be applicable. Hence done.
Assume now that (A, S0)

`
−→ (A′, S′0). Then by applying [s ys] after the last composition

rule in the hypothesis we obtain

;; ;; A ` S1 ◦ S0 . S′

and the case is then identical to the one where S1 moves, proved above.

Theorem 3 (Strong fairness of compositions with .s ) If ;; ;; A ` S0 ◦ S1 .s S then
S is strongly fair with respect to S0 and S1 on A.

Proof 35 Immediately from Lemma H.9.

Lemma H.9 Let ;; ;; A ` S0 ◦ S1 .s S. Then ∀i ∈ {0, 1} and all transitions (_ , Si)
`
−→

(_ , S′i) and (A, S|1−i|)
~r
−→, there exist ~r ′, ~r ′′ with (A, S|1−i|)

~r ′
−→ (_, S′|1−i|) with either

1. ~r ′ ~r ′′ = ~r ( ~r ′ is a prefix of ~r), or
2. ~r ′ = ~r ~r ′′ (~r is an ex prefix of ~r ′)

such that (A, S)
~r ′`
−→ (A′, S′) and ;; ;; A′ ` S′0 ◦ S′1 .s S′.

Proof 36 We fix i = 1. By Lemma H.3 if (A, S1)
`
−→ (A′, S′1) then ` ∈ clab(S1) and hence

clab(S1) 6= ;. Fix any ~r such that (A, S0)
~r
−→. By Lemma H.4 we can rewrite S0 as C0[S′′0 ]

with V(C0[ · ]) = ~r. By Lemma H.7, since clab(S1) 6= ;, for C0 either
1. there exist C ′0, C ′′0 , C[S′′] = S such that

C0[ · ] = C ′0[C
′′
0 [ · ] ], and

V(C ′0[ · ]) = V(C[ · ]), and

clab(S′′) = clab(S1), or

2. there exist C ′0[S
′
0], C[S′′] = S such that

C0[C ′0[S
′′ ] ] = S0, and

V(C0[C ′0[ · ] ]) = V(C[ · ]), and

clab(S′′) = clab(S1)
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In case (1) above, we can write S0 as C ′0[S
′′′
0 ] for some S′′′0 , ~r ′ = V(C ′0), and ~r ′′ = V(C ′′0 ).

By Lemma H.4

(A, C ′0[S
′′′
0 ])

~r ′
−→ (_, S′0)

for some S′0. Since clab(S
′′) = clab(S1) then ` ∈ clab(S′′). Since A{S} by hypothesis

(it is a composition) and ` ∈ clab(S′′) then by Lemma H.5

(A, C[S′′ ])
~r ′`
−→ (A′, S′)

for some A′ and S′.
In case (2) above, we set ~r ′ = V(C0[C ′0[ · ] ]) and we can write S0 as C0[C ′0[S

′′′
0 ] ] for

some S′′′0 . By Lemma H.4

(A, C0[C
′
0[S

′′′
0 ] ]

~r ′
−→ (_, S′0)

for some S′0. Since clab(S
′′) = clab(S1) then ` ∈ clab(S′′). Since A{S} by hypothesis

(it is a composition) and ` ∈ clab(S′′) then by Lemma H.5

(A, C[S′′ ])
~r ′`
−→ (A′, S′)

for some A′ and S′.
In both case (1) and case (2) above, it remains to prove that

;; ;; A′ ` S′0 ◦ S′1 .s S′

For every transition r ∈ ~r, by Lemma 6 (1) the composition relation is preserved; this can
be shown proceeding as in Lemma H.8.
The case for i = 1 is symmetric (proceeds similarly, thanks to symmetric rules of

composition and transition of protocols ensembles).
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