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This article considers the functional linear quantile regression which models the conditional quantile of a scalar re-
sponse given a functional predictor over a two-dimensional domain. We propose an estimator for the slope function
by minimizing the penalized empirical check loss function. Under the framework of reproducing kernel Hilbert
space, the minimax rate of convergence for the regularized estimator is established. Using the theory of interpo-
lation spaces on a two- or multi-dimensional domain, we develop a novel result on simultaneous diagonalization
of the reproducing and covariance kernels, revealing the interaction of the two kernels in determining the optimal
convergence rate of the estimator. Sufficient conditions are provided to show that our analysis applies to many
situations, for example, when the covariance kernel is from the Matérn class, and the slope function belongs to
a Sobolev space. We implement the interior point method to compute the regularized estimator and illustrate the
proposed method by applying it to the hippocampus surface data in the ADNI study.

Keywords: Functional linear regression; multi-dimensional domain; quantile regression; rate of convergence;
reproducing kernel Hilbert space; simultaneous diagonalization

1. Introduction

Functional linear models are widely used in functional data analysis to associate response and covariate
variables. They can be viewed as an extension of the traditional multiple linear regression models
to situations involving functional objects (Ramsay and Dalzell, 1991, Ramsay and Silverman, 2005,
Wang, Chiou and Müller, 2016). Types of functional regression models are classified by whether the
response or covariate is functional or scalar, including functional predictor regression (Cai and Hall,
2006, Cardot, Ferraty and Sarda, 2003, Crambes, Kneip and Sarda, 2009, Hall and Horowitz, 2007,
Yuan and Cai, 2010), functional response regression (Liu, Li and Morris, 2020, Zhang et al., 2022),
and function-on-function regression (Sun et al., 2018, Yao, Müller and Wang, 2005). See also Morris
(2015) for a comprehensive review. Our focus in this article is the functional linear quantile regression
model where a scalar response is paired with a functional predictor on a two-dimensional domain.

Since proposed in the seminal work by Koenker and Bassett (1978), quantile regression has drawn
great attention in statistical research and applications because of its appealing features. While ordinary
least squares regression models the conditional mean of the response given the covariates, quantile re-
gression offers a more comprehensive analysis of the conditional distribution by estimating conditional
quantiles at various levels (Koenker, 2005). Moreover, quantile regression imposes no assumption on
the error distribution, like Gaussian, and thus provides a more flexible and robust methodology. Com-
pared to the large literature on functional linear mean regression, the interest in developing quantile
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regression methods for functional data is still growing. Recent works include functional linear quan-
tile regression (Kato, 2012, Li et al., 2021, 2022), function-on-scalar quantile regression (Liu, Li and
Morris, 2020), and partially functional quantile regression (Ma et al., 2019, Yao, Sue-Chee and Wang,
2017).

Most methods in functional data analysis focus on stochastic processes defined over a bounded in-
terval. Recently, in many applications including neuroscience, climate science, and chemometrics, it
becomes common to collect functional data over higher dimensional domains, such as images and time-
space surfaces (Morris, 2015). There is emerging interest in developing an advanced methodology for
modeling the multi-dimensional functional data generated from random fields over multi-dimensional
domains, see, for example, principal component analysis (Shi et al., 2022, Zhou and Pan, 2014), co-
variance function estimation (Wang, Wong and Zhang, 2022), and functional regression (Arnone et al.,
2019, Morris et al., 2011).

In this article, we study the functional linear quantile regression which models the conditional quan-
tile of a scalar response given a functional predictor over a two-dimensional domain. The estimator of
the slope function is obtained by minimizing the penalized check loss function (Koenker, 2005). The
non-differentiability of the check loss function makes the theoretical analysis more challenging than in
the functional linear regression. We establish the minimax optimal rate of convergence of the regular-
ized estimator in two steps. First, a minimax lower bound is derived from a prediction perspective by
evaluating the expected squared prediction error similar to the excess prediction risk in Cai and Yuan
(2012). A key observation is that the check loss function is related to the likelihood of the asymmetric
Laplace distribution (Koenker and Machado, 1999). It helps characterize the packing property among
joint distributions indexed by different slope functions, which in turn leads to an upper bound for the
metric entropy in terms of the Kullback-Leibler divergence. The Yang-Barron version of Fano’s method
then yields the minimax lower bound (Wainwright, 2019, Yang and Barron, 1999). Second, we show
that despite the check loss function is not differentiable at the origin, its expected counterpart behaves
like a quadratic functional in a neighborhood of the true conditional quantile. Using some empirical
processes technique, we prove that the proposed estimator can indeed achieve the rate of convergence
in the lower bound, and is thus rate optimal. Moreover, the representer theorem allows us to find the op-
timal solution to the penalized objective function within a finite-dimensional although the estimation
of the slope function is intrinsically an infinite-dimensional problem. We implement the state-of-art
interior point algorithm (Koenker, 2005, Koenker et al., 2017) to efficiently compute the regularized
estimator, which is further illustrated by analyzing the hippocampus surface data in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study.

One major contribution of this paper is to rigorously investigate the so-called simultaneous diag-
onalization of the reproducing kernel and the covariance kernel of the functional predictor defined
over a two-dimensional or multi-dimensional domain. In one-dimensional case, Yuan and Cai (2010)
requires the Sacks-Ylvisaker conditions (Ritter, Wasilkowski and Woźniakowski, 1995) to ensure that
the simultaneous diagonalization holds. However, it is largely unknown if an extension of the Sacks-
Ylvisaker conditions to a higher dimensional domain is possible. Using the concept of interpolation
spaces (Adams and Fournier, 2003, Steinwart and Scovel, 2012), we show that under mild assump-
tions the reproducing kernel Hilbert space (RKHS) in which the slope function lies is isomorphic to a
power space of the RKHS associated with the covariance kernel. Such an isomorphism leads to some
useful results, such as common basis expansion and norm equivalence, serving as building blocks for
our theoretical analysis. We also present a sufficient condition for the covariance kernel and show that
some concrete examples satisfy the regularity assumptions. For example, our analysis holds when the
covariance kernel is from the Matérn class (Rasmussen and Williams, 2006), and the slope function
belongs to a Sobolev space. To our knowledge, this simultaneous diagonalization result is novel for
multi-dimensional functional data analysis, providing a powerful machinery to study the minimax rates
of convergence of the regularized estimator in functional data analysis.
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There are some earlier works on functional linear quantile regression (Kato, 2012, Li et al., 2021,
2022) and partial functional linear quantile regression (Ma et al., 2019, Yao, Sue-Chee and Wang, 2017).
We would like to highlight our contributions in the context of this literature. Kato (2012) studied the
estimation of the slope function in functional linear quantile regression using the functional principal
components (FPC). A series of papers (Cai and Yuan, 2012, Yuan and Cai, 2010) on functional linear
models have pointed out that the success of the FPC approach hinges on an unrealistic assumption that
the leading components explaining the most variability of the functional predictor are also effective in
representing the slope function. To deal with this limitation of using FPC in the context of functional
linear quantile regression, we assume that the slope function resides in an RKHS and unify both the
estimation and prediction problems in the RKHS framework. We show that the statistical properties of
our regularized estimator are jointly determined by the reproducing kernel and the covariance kernel of
the functional predictor and establish its optimal rate of convergence under weaker conditions than Kato
(2012). For example, the adequate spacing between adjacent eigenvalues of the covariance function
(Assumption (A3), Kato, 2012) is no longer required since our method does not involve estimating the
FPCs. Recently, Li et al. (2021) extended the RKHS-based approach to the functional linear quantile
regression over a bounded interval. Their analysis requires that the eigenvalues of a composite kernel
related to both the reproducing and covariance kernels decay polynomially at a rate. However, this
assumption is difficult to verify even in the one-dimensional case, let alone on a multi-dimensional
domain. In contrast, we develop the simultaneous diagonalization result revealing deeper connections
between the reproducing and covariance kernel. Our analysis can be extended to a multi-dimensional
domain with minor modifications, although our current presentation focuses on a two-dimensional
domain. For partial functional linear quantile regression, the FPC-based approach is still prevalent in
recent works (Ma et al., 2019, Yao, Sue-Chee and Wang, 2017).

The rest of this article is organized as follows. Section 2 introduces the functional linear quantile
regression model and the regularized estimator. Section 3 presents the main theoretical results along
with the proofs, including the simultaneous diagonalization of the reproducing and covariance kernel
functions, the properties of the check loss function, and consequently the rates of convergence for
our proposed estimator. We discuss implementation issues in Section 4, including the interior point
algorithm and selection of the penalty parameter. In Section 5, we apply the proposed method to the
hippocampus surface data in the ADNI study.

2. Functional linear quantile regression in RKHS

Let Y ∈ R be the scalar response. The functional predictor X = (X(t), t ∈ T ), is a square integrable
random field over a compact domain T ⊆ R2. Let QY |X (·|X) denote the conditional quantile function of
Y given X . Fix τ ∈ (0,1) as the quantile level of interest and denote η0(X) =QY |X (τ |X), the conditional
quantile of Y given X at level τ. We assume that this conditional quantile is a linear functional of X ,
that is,

η0(X) = α0 +

∫
T

X(t)β0(t) dt, (1)

where α0 ∈ R is the intercept, and β0(·) is an unknown function which will be referred to as the slope
function. We omit the dependence of η0, α0 and β0 on the quantile level τ in our notation, for the sake
of brevity. We also assume that E(X(t)) = 0 for simplicity. This is without loss of generality, since in
practice, we can always center the data before applying the method presented in this paper.



FLQR on a two-dimensional domain 1803

Let ρτ(u) = u{τ− I(u < 0)} be the check loss function. It is known in the quantile regression literature
that the conditional quantile η0(X) minimizes the expected loss

�∞(η) = E{ρτ(Y − η(X))},

where minimization is over all η that has the form η(X) = α +
∫
T X(t)β(t) dt (Koenker and Bassett,

1978). Given an i.i.d. sample from the joint distribution of (X,Y ), denoted as {(Xi,Yi)}ni=1, define the
empirical risk function as

�n(η) =
1
n

n∑
i=1

ρτ (Yi − η(Xi)) .

It is obvious that �∞(η) = E{�n(η)}. Since minimization of the empirical loss function over all η with
the form η(X) = α +

∫
T X(t)β(t) dt may lead to overfitting, we shall adopt the regularized estimation

technique well-known in the smoothing spline literature (Wahba, 1990).

2.1. Regularized estimation

To define our regularized estimator, we first need to define a quadratic penalty functional of the slope
function β. Let N0 be the set of non-negative integers. For a multi-index m = (m1,m2)� ∈ N2

0, define the
length of m as |m| =m1 +m2 and the factorial as m! =m1!m2!. Denote by Dm = Dm1

1 Dm2
2 the differen-

tial operator of order |m|, where D1 and D2 are the (weak) partial differential operators, respectively.
For a fixed integer r > 1, the thin-plate penalty functional (Duchon, 1977, Wahba, 1990) of order r is
defined as

J(β) =
∑
|m |=r

r!
m!

‖Dmβ‖2
L2(T). (2)

It is also known as the squared Beppo-Levi seminorm (Definition 10.37, Wendland, 2005).
Using the thin-plate penalty functional given in (2), the regularized estimators of the intercept α0 and

the slope function β0 are defined as the solution to the following penalized empirical risk minimization
problem,

(α̂, β̂) = arg min
α∈R,β∈L2(T)

1
n

n∑
i=1

ρτ

(
Yi − α −

∫
T

Xi(t)β(t) dt
)
+ λJ(β), (3)

where λ is a penalty parameter that controls the trade-off between the fidelity to the data and the
roughness of function estimation. We omit the dependence of α̂ and β̂ on n and λ for notation brevity.

Set H = {β ∈ L2(T ) : J(β) <∞}. The space H is identical as a set to the Sobolev space of order r
on T , which is defined as

Wr
2 (T ) = {β ∈ L2(T ) : Dm(β) ∈ L2(T ) for 0 ≤ |m| ≤ r} , (4)

and is equipped with the squared norm

‖β‖2
Wr

2 (T) =
r∑

|m |=0

‖Dmβ‖2
L2(T). (5)

For later use, we remark that Sobolev spaces with a non-integer order can be defined by using Besov
spaces and the real interpolation method (Definition 7.32 and Remark 7.33, Adams and Fournier, 2003).
More precisely, for q > 0 and a sufficiently regular domain T , the Sobolev space Wr

2 (T ) is defined
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as the interpolation space Wq
2 (T ) = [L2(T ),Wr

2 (T )]q/r ,2, where r is an integer larger than q. The
Sobolev embedding theorem (Remark 7.33 and Theorem 7.34(c), Adams and Fournier, 2003) guar-
antees that when q > 1, the Sobolev space Wq

2 (T ) is compactly embedded in C(T ), the space of
continuous functions on T . In particular, Wq

2 (T ) ∩ C(T ) is the set of continuous representatives of
functions in Wq

2 (T ).

2.2. The representer theorem

Let H0 = {β : J(β) = 0} be the null space of the quadratic functional J and assume that H0 is a finite-
dimensional linear subspace of H with basis {ξk : 1 ≤ k ≤ m}. Consider the direct sum decomposition
H =H0 ⊕ H1. The space H1 is a reproducing kernel Hilbert space with J(β) a well-defined squared
norm restricted in H1 (Theorem 10.42, Wendland, 2005). Denote by K1(·, ·) the reproducing kernel of
H1.

The regularized estimator β̂(t) in (3) is formulated as the minimizer of a penalized criterion in an
infinite-dimensional space. The following representer theorem (see, e.g., Kimeldorf and Wahba (1971),
Li, Liu and Zhu (2007), Schölkopf, Herbrich and Smola (2001)) suggests that it suffices to search for
the minimizer within a finite-dimensional space.

Theorem 2.1. There exist vectors e = (e1, . . . ,em)� and c = (c1, . . . ,cn)� such that:

β̂(t) =
m∑
k=1

ekξk(t) +
n∑
i=1

ci

∫
T

K1(s, t)Xi(s) ds. (6)

According to Theorem 2.1, we need only to search over β’s with the expression given on the right
hand side of (6) when solving (3). For such β’s,∫

T
X(t)β(t)dt =

m∑
k=1

ek

∫
T

X(t)ξk(t)dt +
n∑
i=1

ci

∫
T

∫
T

X(s)K1(s, t)Xi(t) dsdt .

Let T be the n × m matrix with

Tik =
∫
T

Xi(t)ξk(t) dt,

where i = 1, . . . ,n and k = 1, . . . ,m. Denote by Σ the n × n matrix with its (i, j)th entry being

Σi j =

∫
T

∫
T

Xi(s)K1(s, t)Xj (t) dsdt .

The reproducing property of K1(·, ·) leads to

J(β) =
n∑
i=1

n∑
j=1

cicj

∫
T

∫
T

Xi(s)K1(s, t)Xj (t) dsdt = c�Σc.

Therefore, problem (3) reduces to minimizing the following objective function with respect to α ∈
R,e ∈ Rm and c ∈ Rn,

1
n

n∑
i=1

ρτ (Yi − α − Tie − Σic) + λc�Σc, (7)

where Ti and Σi are the ith rows of matrices T and Σ, respectively.
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Note that the objective function (7) is convex in (α,e,c), so its every local minimum is a global one.
However, since (7) is not necessarily strictly convex, the minimum may not be unique, and according
to the subgradient optimality condition (Rockafellar, 1997), the minimum is the set of all points where
zero is a subgradient of the objective function. When there is no penalization, i.e., λ = 0, this phe-
nomenon is well-known in the quantile regression literature (e.g., Koenker, Ng and Portnoy, 1994).
Since c�Σc is strictly convex on the set of c such that Σc � 0, the inclusion of the penalty term substan-
tially reduces the possibility of non-uniqueness of the minimizer. That penalization can help alleviate
the non-uniqueness problem in quantile regression which has been confirmed in our numerical studies
and also observed in the literature, e.g., Li, Liu and Zhu (2007).

3. Theoretical properties

We now present our main results on the asymptotic properties of the regularized estimator. Subsections
3.1 and 3.3 respectively present and discuss assumptions on the covariance function of the random
field predictor X and the smoothness assumptions on the unknown slope function. Subsection 3.2 gives
some properties of the check loss function. Subsection 3.4 presents the results on rates of convergence.

We refer the reader to Chapter 4 of Steinwart and Christmann (2008) for the necessary background
of reproducing kernel Hilbert spaces. Suppose T , the domain on which the functional predictor X is
observed, is a non-empty, bounded open set with Lipschitz boundary.

3.1. Covariance function

Denote the covariance function of the random field X(t) by

C(t, t ′) = E([X(t) − E{X(t)}][X(t ′) − E{X(t ′)}]).

We assume that C is continuous on T ×T and satisfies
∫
T C(t, t) dt <∞. Since the covariance function

C is positive definite, there is a unique reproducing kernel Hilbert space (RKHS), denoted as HC ,
with C as its reproducing kernel. The inclusion map IC : HC →L2(T ) is continuous and, its adjoint
operator is the integral operator LC : L2(T )→HC defined by

LC( f )(·) =
∫
T

C(t, ·) f (t) dt, f ∈ L2(T ),

which is Hilbert-Schmidt. Since C is the kernel of the integral operator LC , C is also referred to as a
covariance kernel. For later use, define the inner product associated with C as

〈 f ,g〉C = 〈LC( f ),g〉L2 =

∫
T

f (t)C(t, t ′)g(t ′) dtdt ′, f ,g ∈ L2(T ) (8)

and the induced norm is ‖ f ‖C = 〈 f , f 〉1/2
C

.
The operator L∗

C
LC is compact, positive, and self-adjoint, and hence the spectral theorem for self-

adjoint compact operators shows that, there exists a sequence of orthonormal eigenfunctions {φk }∞k=1
and a sequence of non-increasing non-negative eigenvalues {μk }∞k=1 such that L∗

C
LC(φk ) = μkφk .

Moreover, Mercer’s theorem yields

C(t, t ′) =
∞∑
k=1

μkφk(t)φk(t ′), t, t ′ ∈ T , (9)



1806 N. Zhang et al.

where the convergence is absolute and uniform. Therefore, {μk, φk } is also an eigen-system of C. The
random field X admits the Karhunen–Loève expansion X(t) =

∑∞
k=1 Zkφk(t), where Zk’s are uncorre-

lated random variables satisfying E(Zk) = 0 and E(Z2
k
) = μk for k ≥ 1.

The sample path properties of the random field X(t) is determined by its covariance function C. We
next impose a regularity assumption on C through its associated RKHS. We use Ws

2 (T ) ∩ C(T ) to
denote the set of the continuous representatives of functions in the Sobolev space Ws

2 (T ), equipped
with the Sobolev norm. Two metric spaces are said to be isomorphic if the two sets coincide and the
norms of the two spaces are equivalent.

Assumption 1. For some constant s > 1, HC is isomorphic to Ws
2 (T ) ∩ C(T ).

We next present a sufficient condition for Assumption 1 and show that some commonly used co-
variance functions satisfy the condition. When the covariance function is stationary, we can write
C(t, t ′) =Φ(t − t ′). The Fourier transform of Φ, defined as Φ̂(ω) = (2π)−1

∫
R2 Φ(r)e−ir

�ω dr for ω ∈ R2,
is known as the spectral density corresponding to the covariance function. It follows from Corollaries
10.13 and 10.48 of Wendland (2005) that the following is a sufficient condition for Assumption 1.

Assumption 1′. There exist two positive constants c1 ≤ c2 such that

c1(1 + ‖ω‖2
2 )

−s ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2
2 )

−s, ω ∈ R2.

Assumption 1′ essentially requires the tail of the spectral density of C decays as (1 + ‖ω‖2
2 )

−s when
‖ω‖ →∞. This requirement is satisfied by the Matérn class of covariance functions (Stein, 1999) which
is given by

C(t, t ′) = 21−ν

Γ(ν)

(√
2ν‖t − t ′‖

l

) ν
Bν

(√
2ν‖t − t ′‖

l

)
, (10)

with positive smoothness and scale parameters ν and l, where Bν is a modified Bessel function of
the second kind. The Matérn class is widely used in spatial statistics, machine learning, and image
analysis. It is a broad class that includes the exponential kernel as a special case and the Gaussian
kernel as a limiting case. Stein (1999) recommended it as a canonical class of covariance kernels
for modeling spatial random field that works reasonably well in a wide range of circumstances. The
corresponding spectral density function is Cν,l(2νl−2+4π2ω2)−ν−1, where Cν,l is a constant depending
only on ν and l (Section 4.2, Rasmussen and Williams, 2006). It follows that Assumption 1′ and
therefore Assumption 1 holds with s = ν + 1.

Lemma 3.1. Under Assumption 1, the eigenvalues of C satisfy μk � k−s for k ≥ 1.

Proof. Recall the definitions of the inclusion operator IC : HC →L2(T ) and its adjoint operator LC =

I∗
C

given in Section 3.1. It is a standard result from functional analysis that the self-adjoint operators
L∗
C

LC and LCL∗
C
= I∗

C
IC have the same set of non-zero eigenvalues {μk : k ≥ 1}. Equation 4.4.12

of Carl and Stephani (1990) shows that the kth eigenvalue of LCL∗
C
= I∗

C
IC is equal to the squared

approximation number a2
k
(IC ) for k ≥ 1. Therefore, μk = a2

k
(IC ) for k ≥ 1.

On the other hand, let ak(id) denote the kth approximation number of the natural embedding id :
W2

s (T ) → L2(T ). It follows from Theorem 3.3.4 of Edmunds and Triebel (1996) that ak(id) � k−s/2

(assuming that T has a C∞ boundary).
By the isomorphism under Assumption 1, ak(IC ) � ak(id) � k−s/2. We conclude that μk � k−s for

k ≥ 1.
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3.2. The check loss function and the asymmetric Laplace distribution

The check loss function ρτ(u) is not everywhere differentiable in u, making it more challenging to
derive the theoretical properties of the regularized estimator defined in (3). Nonetheless, the following
Knight’s identity (Knight, 1998) presents a useful property of the check loss function. Let ψτ(u) =
τ − I(u < 0).

Lemma 3.2 (Knight’s identity). It holds for all u,v ∈ R that

ρτ(u − v) − ρτ(u) =
∫ v

0
{I(u ≤ w) − I(u ≤ 0)} dw − vψτ(u).

We use Knight’s identity to show that the expected loss �∞(η) behaves like a quadratic functional
locally around η0. Denote W =Y −η0(X) and Δ = η(X)−η0(X). Applying Knight’s identity with u =W
and v = Δ and taking expectation, we obtain that

�∞(η) − �∞(η0) = Eη0

[∫ Δ

0
{I(W ≤ w) − I(W ≤ 0)} dw − Δψτ(W)

]
. (11)

Here, we use the subscript in Eη0 to indicate the dependence of the joint distribution of (X,Y ) on η0.
Let FW |X (w |x) denote the conditional distribution of W given X . Then by the definition of conditional
quantile, Eη0 {ψτ(W)|X} = 0 and FW |X (0|X) = τ. Using these results when conditioning on X inside
the expectation on the right hand side of (11), we obtain

�∞(η) − �∞(η0) = Eη0

[∫ Δ

0
{FW |X (w |x) − τ} dw

]
. (12)

Assumption 2. There exist constants C1 and C2 such that

|FW |X (w |x) − FW |X (0|x)| ≥ C1 |w |, for |w | ≤ C2, all x.

Assumption 2 guarantees that the conditional distribution cannot be too “flat” at the quantile of
interest. A sufficient condition for Assumption 2 is to require that the conditional density is uniformly
bounded away from zero in a neighborhood of the conditional quantile of interest, i.e., there exist
constants C1 > 0 and C2 > 0 such that uniformly in x, the conditional density fW |X (w |x) ≥ C1 holds
whenever |w | ≤ C2. This sufficient (thus stronger) condition is a standard assumption in the literature
of quantile regression (e.g., Kato, 2012, Li et al., 2021, Lv et al., 2018, Sherwood and Wang, 2016,
Volgushev, Chao and Cheng, 2019).

Assumption 3. For any square integrable function f defined on T ,

E
[∫

T
X(t) f (t) dt

] 4

≤ C3

(
E

[∫
T

X(t) f (t) dt
] 2) 2

.

Assumption 3 essentially requires that the kurtosis of the random variable
∫
T X(t) f (t) dt is uni-

formly bounded for all square integrable f . It is valid with C3 = 3 when X is a Gaussian process. This
assumption has been used in the literature on functional linear models (e.g., Cai and Yuan, 2012, Yuan
and Cai, 2010). A stronger assumption that X is sub-Gaussian was used in Li et al. (2021), where it is
required that for all f ∈ L2(T ) and ζ ∈ R, E exp{ζ

∫
T X(t) f (t) dt} ≤ exp[ζ2E{

∫
T X(t) f (t) dt}2/2].
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Lemma 3.3. Under Assumptions 2 and 3,

�∞(η) − �∞(η0) ≥
C1

4
E{[η(X) − η0(X)]2} (13)

holds for η(X) = α +
∫
T X(t)β(t) dt and η0(X) = α0 +

∫
T X(t)β0(t) dt satisfying E{[η(X) − η0(X)]2} ≤

C2
2/(16C3).

This result says that the expected loss �∞(η) is lower bounded by a quadratic functional in a neigh-
borhood of the true conditional quantile η0. The proof is given at the end of this section.

The check loss function can be viewed as the negative log-likelihood for an asymmetric Laplace
distribution (Koenker and Machado, 1999). Let Pη0 denote the joint distribution of (X,Y ), where the
conditional density of W = Y − η0(X) given the functional predictor X is independent of X and given
by the following asymmetric Laplace distribution

fW |X (w) = τ(1 − τ) exp{−ρτ(w)}, w ∈ R. (14)

Let Pη be defined in the same way but with η0 replaced by η. The Kullback-Leibler divergence between
Pη0 and Pη is

K(Pη0,Pη) = Eη0 {log(Pη0/Pη)} = �∞(η) − �∞(η0), (15)

where the expectation is taken with respect to Pη0 .

Lemma 3.4. K(Pη0,Pη) ≤ τ(1 − τ)E{[η(X) − η0(X)]2}.

The proof is given at the end of this section. This result bounds the Kullback-Leibler divergence of
two distributions by the L2 norm of the corresponding conditional quantiles. It is used as a tool to derive
the asymptotic minimax lower bound later in Theorem 3.6. We remark that the asymmetric Laplace
distribution assumption used in Lemma 3.4 is only imposed to establish the minimax lower bound,
because any lower bound for a specific case immediately leads to a lower bound for the general case
(Wainwright, 2019). This restricted distribution assumption is not needed when applying our proposed
regularized estimators and studying their asymptotic rates of convergence (upper bound).

Proof of Lemma 3.3. Assumption 2 implies that∫ Δ

0
{FW |X (w |x) − FW |X (0|x)} dw ≥ C1

2
|Δ|2I(|Δ| < C2). (16)

Recall that

Δ = η(X) − η0(X) = (α − α0) +
∫
T

X(t)(β(t) − β0(t)) dt .

Using the inequality (a + b)4 ≤ 8(a4 + b4) and Assumption 3,

E(Δ4) ≤ 8
[
(α − α0)4 + E

{∫
T

X(t)(β(t) − β0(t)) dt
}4

]

≤ 8C3

[
(α − α0)4 +

(
E

{∫
T

X(t)(β(t) − β0(t)) dt
}2) 2

]
.



FLQR on a two-dimensional domain 1809

Noticing E(X(t)) = 0 and a2 + b2 ≤ (a + b)2 for a,b > 0, we have that

E(Δ4) ≤ 8C3

[ (
(α − α0)2 + E

{∫
T

X(t)(β(t) − β0(t)) dt
}2) 2

]

≤ 8C3

[ (
E

{
α − α0 +

∫
T

X(t)(β(t) − β0(t)) dt
}2) 2

]
= 8C3{E(Δ2)}2.

Therefore,

E{|Δ|2I(|Δ| ≥ C2)} ≤ C−2
2 E(Δ4) ≤ 8C3C−2

2 {E(Δ2)}2,

and thus

E{|Δ|2I(|Δ| < C2)} ≥ E(Δ2) − 8C3C−2
2 {E(Δ2)}2.

Therefore, if E(Δ2) ≤ C2
2/(16C3), then E{|Δ|2I(|Δ| < C2)} ≥ E(Δ2)/2. Combine this with (12) and (16)

to obtain the desired result.

Proof of Lemma 3.4. It follows from (12) and (15) that,

K(Pη0,Pη) = Eη0

[∫ Δ

0
{FW |X (w |x) − τ} dw

]
. (17)

When the conditional density is the asymmetric Laplace given in (14), the cumulative distribution
function of W conditional on X is

FW |X (w |x) =
{
τ + (τ − 1){exp(−τw) − 1}, w > 0,
τ exp{(1 − τ)w}, w ≤ 0.

By calculation,∫ Δ

0
{FW |X (w |x) − τ} dw =

{
τ−1(1 − τ){exp(−τΔ) + τΔ − 1}, Δ > 0,
τ(1 − τ)−1[exp{(1 − τ)Δ} + (τ − 1)Δ − 1], Δ ≤ 0.

Using the fact that exp(−z) + z − 1 ≤ z2 for any z ≥ 0, we obtain that∫ Δ

0
{FW |X (w |x) − τ} dw ≤ τ(1 − τ)Δ2,

which together with (17) leads to the desired result.

3.3. Smoothness assumption on the slope function

In the literature of nonparametric function estimation, it is customary to assume that the unknown
function belongs to a Sobolev space of functions. While function in a Sobolev space is only defined
almost everywhere, we restrict attention to the continuous version of a function. We make the following
assumption on the unknown slope function β0.

Assumption 4. For some r > 1, β0 ∈Wr
2 (T ) ∩ C(T ).
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Note that H =Wr
2 (T ) ∩ C(T ), equipped with the norm ‖ f ‖H = ‖ f ‖Wr

2
, is an RKHS. To see this,

we need only to verify continuity of the evaluation functional [t] f = f (t) for t ∈ T (Section 4.2, Stein-
wart and Christmann, 2008). The Sobolev embedding theorem implies that |[t] f | ≤ supt∈T | f (t)| =
‖ f ‖C0 ≤ C‖ f ‖Wr

2
=C‖ f ‖H , and thus the continuity of evaluation functionals follows. We call H the

Sobolev RKHS of order r .
Next, using the concept of interpolation spaces introduced by Steinwart and Scovel (2012), the next

theorem shows that the Sobolev RKHS H is isomorphic to a power space of the RKHS HC . As a result,
any β ∈ H admits a basis expansion using the eigen-functions of the covariance kernel C appearing in
(9). Moreover, both of the norms ‖β‖H and ‖β‖C can be characterized as weighted sums of coefficients
in the basis expansion.

Theorem 3.5. Under Assumptions 1 and 4, H is isomorphic to Hr/s
C

, the (r/s)-power space of HC ,
which is defined as

Hr/s
C
=

{
f =

∞∑
k=1

ak μ
r/(2s)
k

φk : ‖ f ‖2
Hr/s

C

=

∞∑
k=1

a2
k <∞

}
,

equipped with the inner product〈 ∞∑
k=1

ak μ
r/(2s)
k

φk,

∞∑
k=1

bk μ
r/(2s)
k

φk

〉
Hr/s

C

=

∞∑
k=1

akbk .

Any β ∈ H can be expanded by the eigenfunctions of C such that

β =

∞∑
k=1

bk μ
r/(2s)
k

φk, bk = μ
−r/(2s)
k

〈β,φk〉L2,

where the convergence is in the absolute sense. Furthermore,

‖β‖2
C =

∞∑
k=1

μ
(r+s)/s
k

b2
k,

and there exist universal constants c1,c2 > 0 such that

c1

∞∑
k=1

b2
k ≤ ‖β‖2

H ≤ c2

∞∑
k=1

b2
k . (18)

Proof. First, we show that H � Hr/s
C

where the symbol � stands for isomorphism between metric
spaces. Choose q > 1 be an arbitrary real number satisfying q > max{s,r} and let HQ =Wq

2 (T ) ∩
C(T ) be the Sobolev RKHS space with the measurable and bounded reproducing kernel Q. Suppose
Q admits the spectral representation

Q(s, t) =
∞∑
k=1

�k ζk (s)ζk (t),
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where �1 ≥ �2 ≥ · · · ≥ 0 are the eigenvalues, and {ζk }∞k=1 are the eigenfunctions. According to Stein-
wart and Christmann (2008, Theorem 4.51), the Mercer representation of the RKHS HQ is

HQ =

{
f =

∞∑
k=1

ak �
1/2
k
ζk : ‖ f ‖2

HQ
=

∞∑
k=1

a2
k <∞

}
.

For α ≥ 0, the α-power RKHS is defined by

Hα
Q =

{
f =

∞∑
k=1

ak �
α/2
k

ζk : ‖ f ‖2
Hα

Q
=

∞∑
k=1

a2
k <∞

}
.

For 0 < α < 1, the α-power space Hα
Q

is characterized in terms of the interpolation spaces of the real
method, specifically, Hα

Q
� [L2(T ),HQ]α,2 (Theorem 4.6, Steinwart and Scovel, 2012).

By considering Sobolev spaces as special cases of Besov spaces, we can apply the interpolation
property (Theorem 7.31, Adams and Fournier, 2003) to obtain that Ws

2 (T ) � [L2(T ),Wq
2 (T )]s/q,2

holds for real numbers q > s > 0. According to Assumption 1, we may identify Wq
2 (T ) as HQ by using

the continuous function as the representer in each equivalence class in Wq
2 (T ). Therefore, we obtain

that

HC �Ws
2 (T ) � [L2(T ),Wq

2 (T )]s/q,2 � [L2(T ),HQ]s/q,2 �H
s/q
Q

.

A similar argument yields H �Wr
2 (T ) ∩ C(T ) �H r/q

Q
. On the other hand, it follows from the defi-

nition of power RKHSs that

H r/q
Q
=

{
f =

∞∑
k=1

ak �
r/(2q)
k

ζk : ‖ f ‖2
Hs/q

Q

=

∞∑
k=1

a2
k <∞

}
=

[
H s/q

Q

] r/s
.

Consequently, we have shown that H � Hr/s
C

, which is an important relation of representing H as a
power of the RHKS HC .

Using the eigenfunctions of C, the isomorphism between H and Hr/s
C

leads to the basis expansion

of β ∈ H . Moreover, the Mercer representation of Hr/s
C

implies that ‖β‖2
Hr/s

C

=
∑∞

k=1 b2
k
. The lower

and upper bounds of ‖β‖2
H follows from the norm equivalence of H and Hr/s

C
. On the other hand, the

eigenfunctions of C form an orthonormal basis in L2(T ), and thus

‖β‖2
C = 〈LC β, β〉L2 =

〈 ∞∑
k=1

bk μ
r/(2s)
k

LC(φk),
∞∑
k=1

bk μ
r/(2s)
k

φk

〉
L2

=

∞∑
k=1

μ
(r+s)/s
k

b2
k .

The proof is complete.

3.4. Rates of convergence

We take a prediction perspective to evaluate the performance of the regularized estimator. Let X∗ =
(X∗(t), t ∈ T ) be an independent copy of X , which can be interpreted as a future observation of the
random field predictor X . Then η̂(X∗) = α̂ +

∫
T X∗(t)β̂(t) dt is a prediction of the true conditional



1812 N. Zhang et al.

quantile η0(X∗) = α0 +
∫
T X∗(t)β(t) dt when the functional predictor is X∗. We define the expected

squared prediction error (PE) as

PE(η̂) = EX∗ {η̂(X∗) − η0(X∗)}2 , (19)

where the expectation is taken over X∗. It is also referred to as excess risk in the regression setting (Cai
and Yuan, 2012). Using the assumption that E(X(t)) = 0, we obtain that

PE(η̂) = (α̂ − α0)2 + EX∗

{∫
T

X∗(t)β̂(t) dt −
∫
T

X∗(t)β0(t) dt
}2

. (20)

The PE defined in (20) can be expressed using the norm induced by the inner product defined in (8),
which uses the covariance function of X . It is easy to see that

PE(η̂) = (α̂ − α0)2 + ‖ β̂ − β0‖2
C .

To simplify the presentation of our theoretical results and the proofs, throughout the rest of this
section, we assume that α0 = 0 and remove the α term in the definition of the estimator in (3). Under
this simplification, PE(η̂) reduces to ‖ β̂− β0‖2

C
. This simplification is without loss of generality. When

α0 � 0, the results hold true by replacing ‖β − β0‖2
C

with (α − α0)2 + ‖β − β0‖2
C

. The same argument
goes through with some complications of notation.

Theorem 3.6. Fix B > 0. If Assumptions 1, 2 and 4 hold, we have that

lim
a→0

lim
n→∞

inf
β̃

sup
β0∈H:‖β0 ‖H ≤B

P(‖ β̃ − β0‖2
C ≥ an−(r+s)/(r+s+1)) = 1,

where the infimum is taken over all possible estimators β̃ based on the observed data {(Xi,Yi) : 1 ≤ i ≤
n}.

Theorem 3.6 gives the minimax lower bound of convergence. It says that, with high probability, for
any estimator β̃, one can always find a β0 ∈ B with ‖β0‖H ≤ B such that ‖ β̃ − β0‖2

C
converges to zero

at a rate that cannot be faster than n−(r+s)/(r+s+1).

Theorem 3.7. Fix B > 0. Suppose Assumptions 1, 2, 3 and 4 hold true, and λ =O(n−(r+s)/(r+s+1)). We
have that

lim
A→∞

lim
n→∞

sup
β0∈H:‖β0 ‖H ≤B

P(‖ β̂ − β0‖2
C ≥ An−(r+s)/(r+s+1)) = 0.

Theorem 3.7 gives the minimax upper bound of convergence rate of the regularized estimator β̂ of
the slope function, as defined in (3). It says that ‖ β̂ − β0‖2

C
goes to zero in probability at a rate not

slower than n−(r+s)/(r+s+1). Since the minimax upper bound matches the lower bound, we say that our
regularized estimator achieves the optimal rate of convergence.

3.5. Proofs of results on rates of convergence

Proof of Theorem 3.6. We apply the Yang-Barron version of Fano’s method to establish the minimax
lower bound (Yang and Barron, 1999). Here, we follow the description given in Section 15.3.5 of
Wainwright (2019).
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Without loss of generality, consider B = 1, so we can focus on the unit ball in H , denoted as B(H) =
{β ∈ H : ‖β‖H ≤ 1}. Note that any lower bound for a specific case immediately leads to a lower bound
for the general case. It therefore suffices to consider the case that W = Y −

∫
T X(t)β0(t) dt follows

the asymmetric Laplace distribution with the density given in (14). Let Pβ be the joint distribution of
{(Xi,Yi) : i = 1, . . . ,n} when the true slope function β0 = β. Denote by P the collection of probability
distributions Pβ when the slope function β ∈ B(H). Let NKL(ε,P) denote the ε-covering number of
P under the square-root Kullback-Leibler divergence. Let M(δ,B(H), ‖ · ‖C) be the δ-packing number
of B(H) under the ‖ · ‖C -norm. Following the two-step procedure given on page 513 of Wainwright
(2019), we obtain the minimax lower bound by finding a pair (εn, δn) as follows. In the first step, we
choose εn > 0 such that

ε2
n ≥ log NKL(εn,P) (21)

is satisfied. In the second step, given this choice of εn, the minimax lower bound (in the ‖ · ‖C -norm)
is given by the largest δn > 0 such that

log M(δn,B(H), ‖ · ‖C) ≥ 4ε2
n + 2 log 2. (22)

We start with calculating the covering number of B(H) using the ‖ · ‖C-norm. Based on the norm
equivalence of RKHSs H and Hr/s

C
shown in Theorem 3.5, we can express B(H) with the eigen-

system of C as

B(H) =
{ ∞∑
k=1

bk μ
r/(2s)
k

φk :
∞∑
k=1

b2
k ≤ 1

}
,

and ‖β‖2
C
=

∑∞
k=1 μ

(r+s)/s
k

b2
k
, where we omit the universal constants appearing in the norm-equivalence

(18) between the RKHSs H and Hr/s
C

. By reparameterizing with ak = bk μ
(r+s)/(2s)
k

, we can show that
B(H) equipped with ‖ · ‖C is isometrically isomorphic to the ellipsoid in �2(N){

(ak )∞k=1 :
∞∑
k=1

μ
−(r+s)/s
k

a2
k ≤ 1

}
,

equipped with the usual ‖ · ‖�2(N) norm. On the other hand, Assumption 1 and Lemma 3.1 show that
μk � k−s . It then follows from the result of Example 5.12 in Wainwright (2019) that B(H) scales as

log N(ε,B(H), ‖ · ‖C) � ε−2/(r+s). (23)

Next, since the packing number shares the same scaling with ε as the covering number, we can find
an ε-packing set {β1, . . . , βM } for B(H) such that ‖β j − βk ‖C ≥ ε for any 1 ≤ j � k ≤ M , and the
packing number M = M(ε,B(H), ‖ · ‖C ) satisfies

log M(ε,B(H), ‖ · ‖C) � ε−2/(r+s). (24)

Moreover, by Lemma 3.4, the Kullback-Leibler divergence between Pβ and Pβ′ can be upper
bounded as K(Pβ,Pβ′) ≤ nτ(1− τ)‖β− β′‖2

C
; here, the presence of factor n is because the distributions

in consideration are for an i.i.d sample of size n. This together with (23) yields

log NKL(ε,P) ≤ log N(ε/
√

nτ(1 − τ),B(H), ‖ · ‖C ) � (ε/
√

n)−2/(r+s). (25)
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Finally, we put all these together. It follows from (25) that the choice of ε2
n � n1/(r+s+1) satisfies

ε2
n ≥ log NK(εn,P). Second, for this choice of εn, it follows from (24) that

log M(δn,B(H), ‖ · ‖C) � δ−2/(r+s)
n ≥ c{n1/(r+s+1) + 2 log 2}

holds, provided that δ2
n � n−(r+s)/(r+s+1). Comparing these with (21) and (22), we conclude that this δn

is the desired minimax lower bound under the ‖ · ‖C-norm.

Proof of Theorem 3.7. Note that, viewed as a linear functional of X , η(X) =
∫
T X(t)β(t) dt is deter-

mined by β. With a slight abuse of notation, in this proof, we denote the empirical and expected loss
functional as �n(β) and �∞(β) = E�n(β), and the penalty functional as J(β).

Because of the convexity of the penalized empirical loss functional �n(β) + λJ(β) to be minimized,
we need only to establish the rate of convergence of any local minimizer in the region ‖β − β0‖H ≤ 1,
still denoted as β̂ below. If this local minimizer is not on the boundary of the region, then it is also a
global minimizer.

We apply Theorem 3.4.1 of van der Vaart and Wellner (1996). (The consistency of β̂ is not needed
when the two displayed conditions below are valid for all δ.) Denote by Hδ = {β ∈ H : δ/2 < ‖β −
β0‖C ≤ δ, ‖β − β0‖H ≤ 1} for any constant δ > 0. According to the cited theorem, if we can show that

inf
β∈Hδ

{�∞(β) − �∞(β0)} � δ2, (26)

and

E

{
sup
β∈Hδ

√
n | (�n − �∞)(β − β0)|

}
� ϑn(δ), (27)

for a function ϑn(δ) satisfying that δ−γϑn(δ) is decreasing for some γ < 2, then it follows that ‖ β̂ −
β0‖C =Op(r−1

n ), where rn satisfies that r2
nϑn(r−1

n ) ≤
√

n, and β̂ satisfies that �n(β̂) ≤ �n(β0)+Op(r−2
n ).

Lemma 3.3 immediately implies that the condition (26) holds for δ ≤ (C2/
√

16C3). It remains to
verify the condition (27), which can be done by investigating the modulus of continuity for the process√

n(�n − �∞). The derivation of the modulus involves the empirical process indexed by the class of
functions Gδ = {gβ : β ∈ Hδ} where gβ(X,Y ) = ρτ

(
Y − 〈X, β〉L2

)
− ρτ

(
Y − 〈X, β0〉L2

)
. Using the

notations as in van der Vaart and Wellner (1996), we denote by P the joint probability distributions
of (X,Y ) and by Pn the empirical distribution of {Xi,Yi}ni=1, respectively. Let Gn =

√
n(Pn − P) and

‖Gn‖Gδ = supg∈Gδ
|Gng |. Then, the term in the curly brace of the left hand side of (27) can be rewritten

as

sup
β∈Hδ

√
n | (�n − �∞)(β − β0)| = ‖Gn‖Gδ .

Let {Ui}ni=1 be an independent and identically distributed sequence of Rademacher variables. The clas-
sical symmetrization technique (Lemma 2.3.1, van der Vaart and Wellner, 1996) leads to

E(‖Gn‖Gδ ) ≤ 2
√

nE

(
sup
β∈Hδ

�����1n
n∑
i=1

Uigβ(Xi,Yi)

�����
)

≤ 8
√

nE

(
sup
β∈Hδ

�����1n
n∑
i=1

Ui 〈Xi, β − β0〉L2

�����
)
,

(28)
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where the last inequality follows from the contraction inequality for the Rademacher complexity
(Proposition 5.28, Wainwright, 2019) together with the fact that��ρτ (

Y − 〈X, β〉L2

)
− ρτ

(
Y − 〈X, β0〉L2

) �� ≤ 2
��〈X, β − β0〉L2

�� ,
by Knight’s identity in Lemma 3.2.

To handle the inner product 〈X, β − β0〉L2 on the right hand side of (28), we appeal to the eigen-
system of C because X admits the Karhunen–Loève expansion and β ∈ H � Hr/s

C
. Recall that C

admits the spectral representation (9). On the one hand, for the square integrable stochastic process
X with zero mean and the covariance function C, its Karhunen–Loève expansion is X =

∑∞
k=1 Zkφk ,

where random variables Zk’s are uncorrelated with each other satisfying E(Zk) = 0 and E(Zk)2 = μk
for k ≥ 1. On the other hand, by the norm equivalence between the RKHSs H and Hr/s

C
, we can

express Hδ as

Hδ =

{ ∞∑
k=1

bk μ
r/(2s)
k

φk : δ2/4 <
∞∑
k=1

μ
(r+s)/s
k

(bk − b0k )2 ≤ δ2,

∞∑
k=1

(bk − b0k)2 ≤ 1

}
,

where β =
∑∞

k=1 bk μ
r/(2s)
k

φk , β0 =
∑∞

k=1 b0k μ
r/(2s)
k

φk , and we omit the universal constants appearing

in the norm-equivalence (18). Write ωk =max{δ−2μ
(r+s)/s
k

,1}, and it is clear that Hδ is contained in
the rescaled ball { ∞∑

k=1

bk μ
r/(2s)
k

φk :
∞∑
k=1

ωk (bk − b0k)2 ≤ 2

}
.

Combining the above facts together, we have for β ∈ Hδ ,

〈X, β − β0〉L2 =

∞∑
k=1

(bk − b0k)μr/(2s)k
Zk,

and the Cauchy-Schwarz inequality further implies that 〈X, β − β0〉2
L2

≤ 2
∑∞

k=1ω
−1
k
μ
r/s
k

Z2
k
. Then, it

follows that

E

(
sup
β∈Hδ

�����1n
n∑
i=1

Ui 〈Xi, β − β0〉L2

�����
) 2

≤ 2
n

E

( ∞∑
k=1

ω−1
k μ

r/s
k

Z2
k

)
=

2
n

∞∑
k=1

min{δ2, μ
(r+s)/s
k

},

where the last equality uses the definition of ωk and the fact that E(Zk)2 = μk for k ≥ 1. By Lemma 3.1,
μk � k−s . We can derive that

E

(
sup
β∈Hδ

�����1n
n∑
i=1

Ui 〈Xi, β − β0〉L2

�����
)
≤

(
2
n

∞∑
k=1

min{δ2, μ
(r+s)/s
k

}
) 1/2

� n−1/2δ1−1/(r+s).

Therefore, we conclude from (28) that E(‖Gn‖Gδ ) � δ1−1/(r+s). In (27), we can choose ϑn(δ) =
δ1−1/(r+s), which satisfies that δ−γϑn(δ) is a decreasing function for γ = 1. Condition (27) has now
been verified.

Finally, choose r2
n = n(r+s)/(r+s+1) such that r2

nϑn(r−1
n ) ≤

√
n holds for every n. By definition, β̂ is the

minimizer of the penalized empirical loss function (�n + λJ)(β) such that

�n(β̂) + λJ(β̂) ≤ �n(β0) + λJ(β0).
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Recall the definition of the penalty functional J(·), and the fact that ‖β0‖H = ‖β0‖Wr
2

, ‖β0‖H ≤ B

implies that J(β0) ≤ cB for some constant c. Since λ = O(n−(r+s)/(r+s+1)), we rearrange the above
display to obtain that

�n(β̂) ≤ �n(β0) + λJ(β0) − λJ(β̂) ≤ �n(β0) +Op(n−(r+s)/(r+s+1)).

Therefore, we conclude that

‖ β̂ − β0‖2
C =Op(n−(r+s)/(r+s+1))

by applying Theorem 3.4.1 of van der Vaart and Wellner (1996).

4. Implementation

4.1. Computation: Interior point algorithm

Using Theorem 2.1, the penalized empirical risk minimization problem (3) defined in an infinite-
dimensional function space can be reduced to the problem (7) defined in a finite-dimensional vector
space. Numerical computation of the solution of the problem (7) faces several challenges. First, since
the check loss function is not differentiable, gradient-based optimization methods cannot be applied.
Second, the number of parameters that need to be optimized is usually large in practice, e.g., in our
medical imaging application. To be specific, the number of parameters is n + M + 1, while the sample
size is n. Third, the matrix Σ involves calculation of 4-dimensional numerical integrals for n2 times.

For the spatial function-on-scalar quantile regression, Zhang et al. (2022) developed an iterative
ADMM algorithm (Boyd et al., 2011) to obtain the parameters and showed that each individual update
has an explicit expression. We can similarly derive an ADMM algorithm for solving the problem (7).
However, due to the additional constraint T�

i c = 0 (induced by the thin-plate spline), there is no explicit
expression for each individual update in the ADMM iteration. Therefore, the ADMM algorithm is not
a feasible approach in our context, and it is necessary to consider an alternative.

We rewrite the problem (7) as follows:

arg min
α,e,c

n∑
i=1

ρτ (Yi − α − Tie − Σic) + λ′ c�Σc,

subject to [T�
1 ,T

�
2 , . . . ,T

�
n ]c = 0M×1, i = 1, . . . ,n,

(29)

where λ′ = nλ. Denote Yi − α − Tie − Σic = εi . We can write

εi = ui − vi,

ui =max(0,εi) = |εi |I(εi > 0),

vi =max(0,−εi) = |εi |I(εi < 0).

As a consequence, we can rewrite (29) as the following quadratic programming problem:

arg min
u,v,c

τu�1 + (1 − τ)v�1 + λ′c�Σc,

subject to Yi − α − Tie − Σic = ui − vi,

ui ≥ 0,vi ≥ 0, i = 1, . . . ,n,

[T�
1 ,T

�
2 , . . . ,T

�
n ]c = 0M×1,

(30)
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where u = [u1, . . . ,un]�, v = [v1, . . . ,vn]�, and 1 = [1, . . . ,1]� are n × 1 column vectors.
In order to transform (30) into a standard form of quadratic programming, we further introduce 6

slack variables, defined as α+ = max(0,α), α− = max(0,−α), e+ = max(0,e), e− = max(0,−e), c+ =
max(0,c), c− =max(0,−c). Let

x = [α+,α−,e+,e−,c+,c−,u,v]�,

b = [01×1,01×1,01×M ,01×M ,01×n,01×n, τ11×n,(1 − τ)11×n]�,

Σ̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
04×4 04×1 04×1 04×2
01×4 2λ′Σ 2λ′Σ 01×2
01×4 2λ′Σ 2λ′Σ 01×2
02×4 02×1 02×1 02×2

⎤⎥⎥⎥⎥⎥⎥⎦
,

A =
[

1n×1 −1n×1 [T1, . . . ,TM ] −[T1, . . . ,TM ] [Σ1, . . . ,Σn] −[Σ1, . . . ,Σn] In×n In×n
0M×1 0M×1 0M×M 0M×M [T1, . . . ,TM ]� −[T1, . . . ,TM ]� 0M×n 0M×n

]
,

Ỹ = [Y1, . . . ,Yn,01×M ]�.

Then the problem (30) becomes:

arg min
x

1
2

x�Σ̃x + b�x,

subject to Ax = Ỹ,x ≥ 0,
(31)

which is a quadratic programming problem in the standard form.
To solve the problem (31), we apply the interior point algorithm (Bertsimas and Tsitsiklis, 1997),

which is an attractive approach for solving linear programming, nonlinear programming, and quadratic
programming, due to its outstanding efficiency and broad applicability. Roughly speaking, the interior
point algorithm iteratively approaches to the optimal value of the objective function from the interior
of the feasible regression. One advantage of the interior point algorithm is that it has a polynomial
time complexity bound for linear programming (Karmarkar, 1984), which is remarkably faster than
the simplex method (Lustig, Marsten and Shanno, 1994). This algorithm was introduced for quantile
regression by Portnoy and Koenker (1997), and they showed that the interior point method for solving
the linear programming problem for quantile regression can achieve 10- to 100-fold improvement in
computational speed, compared with simplex-based methods. For quadratic programming problems,
interior point algorithm is also able to exploit problem efficiently and can lead to improved computa-
tional complexity bounds (Pearson and Gondzio, 2017, Potra and Wright, 2000).

4.2. Penalty parameter selection

A properly chosen penalty parameter λ is critical to balance the data fidelity and smoothness of the
regularized estimator. One natural approach is the widely used leave-one-out cross-validation, but it is
not feasible for our problem due to the computation burden of our problem. Another approach is the
Generalized Approximate Cross Validation (GACV) criterion developed by Yuan (2006) for choosing
the penalty parameter of smoothing splines for nonparametric quantile regression. However, Reiss and
Huang (2012) found that GACV often severely overfits for extreme quantiles. Here we use the multifold
cross-validation proposed by Zhang (1993), which can avoid the heavy computation of leave-one-out
cross validation and do not rely on the approximations of GACV.
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The detailed procedure for cross validation is as follows. We first divide the n observation cases
into k validation sets Z1, . . . ,Zk of (roughly) the same size. Then define the k-fold cross-validation
criterion as

CV(λ) = 1
n

k∑
j=1

∑
i∈Zj

ρτ

(
Yi −

∫
T

Xi(t)β̂
[−Zj ]
λ (t) dt

)
, (32)

where β̂[−Zj ]
λ (t) is the estimate based on the observations that exclude Zj . Generally, a smaller k will

produce downward-biased prediction error, while a larger k will increase computational burden as well
as produce results that are more variable. The common choice is k = 5 or 10, and we use the 5-fold
cross validation in our implementation.

5. Application to hippocampus surface data in the ADNI study

We applied the proposed method to analyze the hippocampus surface data in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study. The ADNI study was started in 2004 and was sponsored by the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies as well as some
nonprofit organizations. The primary goal of the ADNI study is to test whether MRI, PET, other biolog-
ical biomarkers, clinical and neuropsychological assessments can be combined to measure the process
of normal ageing to early mild cognitive impairment (MCI), to late mild cognitive impairment, to de-
mentia or Alzheimer’s disease (AD) (Beckett et al., 2015). The data used in this paper were obtained
from the Laboratory of Neuro Imaging’s Data Archive (https://ida.loni.usc.edu).

Traditional ways to test cognitive impairment is the Mini-Mental State Examination (MMSE), which
has been widely used to screen for dementia. The range of MMSE score is 0–30, a score of 20–24 in-
dicates mild cognitive impairment, and a score lower than 20 suggests moderate and severe dementia
(Galea and Woodward, 2005). In our study, we analyzed the hippocampus substructure extracted from
the baseline T1-weighted MRI scans from the ADNI data set. It is known that the MRI-based measures
of atrophy for the hippocampus are strongly correlated with declining cognitive performance (mea-
sured by MMSE score), indicating that the hippocampus can serve as the biomarker of AD (Thompson
et al., 2004). While other structures can also serve as the biomarkers, such as the whole brain, en-
torhinal cortex, and ventricular enlargement, hippocampal atrophy is detectable 3 to 5 years before
diagnosis (Barnes and Fox, 2014), making it an appealing biomarker. Early diagnosis and intervention
of Alzheimer’s disease is important since it allows the patient to minimize the disease-related compli-
cation as well as to improve quality of life (Santacruz and Swagerty, 2001).

There are many ways to measure the outcome of hippocampal atrophy. Recent studies have shown
that surface-based analysis may offer some advantages over other measures such as volume (Qiu et al.,
2010). We employed the surface fluid registration-based hippocampal subregional analysis package
(Wang et al., 2007, 2009), which left two holes at the front and the back of the hippocampus, and
represented the hippocampus as a cylinder such that it can be conformally mapped to a rectangle. As a
result, the original 3D surface registration problem degenerated into a 2D surface registration problem.
We used radical distance as the outcome measure since it is linked powerfully with the MMSE score at
both baseline and follow-up (Riekkinen et al., 1995, Thompson et al., 2004).

The MMSE score has a left-skewed distribution, suggesting that a model focusing on the condi-
tional mean may be not ideal. Applying the popular log transformation on the MMSE score before

https://ida.loni.usc.edu
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fitting the conditional mean is not appropriate, since if the original data is left-skewed, then the
log transformation will make the original data more left-skewed (Changyong et al., 2014). There-
fore, we standardized individual MMSE scores so that they have zero sample mean and unit stan-
dard deviation. The standardization has changed the range of the MMSE score from (6,20) to
(−3.4852,1.4006).

We applied the proposed method based on (1) and (3), to the hippocampus surface data. In this
functional linear quantile regression model (referred to as FLQR), the response variable is the (stan-
dardized) MMSE score, and the functional covariate is the two-dimensional hippocampus image. The
data set contains 798 subjects which belong to three groups, namely, individuals who have AD or Mild
Cognitive Impairment (MCI), and healthy controls. Here we only report results of analyzing the healthy
controls (denoted as the normal group). A similar analysis has been done for other groups but results
are not shown to save space. The normal group has a sample size of n = 224. Our focus was on the right
hippocampal surface.

We compared our method with the one based on the following least squares problem:

(α̂LS, β̂LS) = arg min
α∈R,β∈L2(T)

1
n

n∑
i=1

(
Yi −

∫
T

Xi(t)β(t) dt
) 2

+ λJ(β), (33)

where λ is a penalty parameter that controls the trade-off between the fidelity to the data and roughness
of function estimation. We name β̂LS as the FLR (functional linear regression) estimate.

The penalty parameter was selected using the 5-fold cross-validation. We found that both FLQR and
FLR are not very sensitive to the choice of λ within certain range. Figure 1 shows the estimated slope
surface β̂(t1, t2) for both FLR and FLQR. In this figure, we presented the heatmap using a 50 × 50
grid. We observed that the fitted slope surfaces for FLR and for FLQR at three different quantile lev-
els (τ = 0.25,0.5,0.75) are very different. In particular, the range of the fitted slope surface in the
domain of interest is [−0.721,0.498] for FLR, while for FLQR, it is [−0.363,0.096], [−0.449,0.363],
[−0.203,0.816] for τ = 0.25,0.5,0.75, respectively. The range of the fitted slope surface by FLR is sig-
nificantly wider than that by FLQR at all three quantile levels. To further facilitate the comparison, Fig-
ure 2 plots the fitted slope surface β̂(t1, t2) at several selected fixed values of t1, t1 = 0.2,0.4,0.6,0.8,1,
showing as functions of t2. The presented functions clear show the differences between the results from
FLR and FLQR at different quantile levels.

These comparison results indicate that the conditional mean is not enough in capturing hippocam-
pus substructure for the Alzheimer’s disease, i.e., the changing pattern varies among different patient
cohort, even for the healthy control group. As a comparison, the quantile regression has the potential
to provide a whole picture for diagnosis, with respect to the whole patient group.

6. Discussion

In this article, we study the scalar-on-function quantile regression model where the functional pre-
dictor is defined over a two-dimensional domain. We prove that the proposed regularized estimator
achieves the minimax optimal convergence rate in terms of prediction risk. Some research directions
worth further investigation. First, our result on the simultaneous diagonalization of the reproducing and
covariance kernels is of independent interest for multi-dimensional functional data analysis. Existing
RKHS-based approach can be adapted to various functional regression models, such as function-on-
scalar and function-on-function regression. Second, there are recent advances in penalty parameter
selection for scalar-on-scalar quantile regression (Fasiolo et al., 2021, Geraci, 2019, Muggeo et al.,
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Figure 1. Heatmaps of estimated slope surfaces β̂(t1, t2) by applying the FLR (Functional Linear Regression) and
FLQR (Functional Linear Quantile Regression) on the normal group in the hippocampus surface data. t1 and t2
stand for the grid points in plotting β̂(t1, t2). τ represents the quantile level, λ is the penalty parameter selected by
the 5-fold cross-validation, ‘Range’ means the range of the β̂(t1, t2) evaluated at the 50 × 50 grid points.

2021). It is shown that replacing the check loss function with a rounded surrogate loss can be beneficial
in particular for more extreme quantile levels. An extension of that approach to functional data analysis
can be a promising alternative to the cross validation criterion adopted in this paper.
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Figure 2. Plots of estimated slope surfaces β̂(t1, t2) as functions of t2 for selected t1 by applying the FLR (Func-
tional Linear Regression) and FLQR (Functional Linear Quantile Regression) on the normal group in the hip-
pocampus surface data. The selected t1 = 0.2,0.4,0.6,0.8 and 1, correspond to grid points 10, 20, 30, 40, and 50
in Figure 1 (shown as vertical lines in magenta color).
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