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Abstract
In this article, a decentralized tracking control scheme is proposed for a class of
nonlinear interconnected systems with uncertainties using sliding mode tech-
nique. Both matched nonlinear uncertainty and mismatched known nonlinear
interconnections are considered. Under the condition that the nominal isolated
subsystems have relative degrees, a geometric transformation is applied to trans-
fer the interconnected system into a new nonlinear interconnected system with
a special structure to facilitate the system analysis and design. Then, a composite
sliding surface is designed in terms of tracking errors, and decentralized con-
trollers are proposed to drive the system states to the designed sliding surface
in finite time and maintain a sliding motion on it thereafter. A set of condi-
tions are developed to guarantee that the output tracking errors converge to
zero asymptotically while all system state variables are bounded. The consid-
ered interconnected systems are nonlinear and it is not required that either
the isolated subsystems or the isolated nominal subsystems are linearizable.
The desired output signals are allowed to be time-varying. Finally, the devel-
oped results are applied to an inverted coupled-pendulum system. Simulation
demonstrates that the proposed control scheme is effective.

K E Y W O R D S

decentralized control, nonlinear interconnected systems, output tracking, robust control, sliding
mode control

1 INTRODUCTION

With the advancement of modern technology, there comes a need to deal with more complex systems, which may be
large-scale, meeting practical engineering requirements. Large-scale interconnected systems are usually composed of a
set of dynamical subsystems which might be distributed over large space.1,2 The communications between those differ-
ent subsystems may become difficult or expensive due to the data transfer over large distances. In particular, when the
data-transformation paths connecting various subsystems are broken or blocked, some data may be lost, or in the worst
case, no data from the other subsystems may be available at all. Centralized control will not work in this case. Conversely,
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This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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2 DING et al.

decentralized control needs local information only, and it does not require any of the other subsystems’ state information.
Thus it provides high reliability for the control of large-scale interconnected systems in reality.

During the past few decades, many results have been obtained for interconnected systems.3 A fuzzy controller based
on a reduced-order observer is designed for interconnected systems using integral sliding mode technique in Reference 4.
Mahmoud proposed a decentralized control strategy for interconnected time-delay systems in Reference 5 where the con-
sidered system is linear. A finite-time control strategy is presented for nonlinear interconnected systems with dead-zone
input in Reference 6, and robust controllers are designed for an interconnected multimachine power system using output
feedback sliding mode techniques in Reference 7. Also, a decentralized control scheme is proposed for fully nonlinear
interconnected system with time delay in Reference 8. Recently, a decentralized predictor method based controller is
designed for large-scale systems in Reference 9 where the considered interconnected systems are linear and strong lim-
itation on the interconnections between subsystems is required. It should be noted that most of the existing results are
focused on stabilization instead of tracking control using either state feedback or output feedback control. Compared with
the stabilization, tracking problem is more difficult, and thus the results obtained for tracking control are much limited,
particularly for the large-scale nonlinear interconnected systems using decentralized control.

It is well known that tracking problem is a very interesting topic in engineering control. Most of existing work related
to tracking control is focused on centralized control (see, e.g., References 10-12). Although decentralized tracking control
for interconnected systems is studied in References 13 and 14, and distributed tracking control for interconnected systems
with communication constraints is considered in Reference 15, it is required that the isolated subsystems of the consid-
ered interconnected systems are linear in References 13-15. Narendra and Zhang study a class of linear interconnected
systems in Reference 16 where model reference tracking control is focused. Tracking control for interconnected systems
is considered in Reference 17 using integral reinforcement learning. However, it is required that the interconnected terms
are matched. More recently, Han and Yan propose an observer-based adaptive tracking control of large-scale stochastic
nonlinear systems in Reference 18 which increases the dimension of the closed-loop system and thus it will increase the
computational load required for implementation. It should be pointed out that most of the existing results about track-
ing control for interconnected systems are not decentralized, which implies the communication between each controller
of one subsystem and all the other subsystems is essential with unobstructed channel for data transfer. This is not con-
venient for practical implementation. Li, Tong, and Yang proposed a decentralized event-triggered control scheme in
Reference 19 using observer based feedback control, which guarantees that both the tracking performance and the stabil-
ity of the closed-loop interconnected system but may increase the computation load greatly. Decentralized event-triggered
tracking control is also designed for nonlinear interconnected systems with unknown interconnections in Reference 20.
However, it is required, in References 19 and 20, that all of the isolated subsystems have a triangular structure. It should be
mentioned that sliding mode control, as a popular method due to its high robustness,21,22 has been widely applied to deal
with tracking problems (see, e.g., References 23-26). However, the results on decentralized tracking control using sliding
mode techniques for nonlinear interconnected systems are very few specifically when the desired signal is time-varying,
and the tracking errors are convergent to zero asymptotically. An adaptive fuzzy control based on dynamic surface slid-
ing mode technique is designed for prescribed output tracking in Reference 27 which can only be applied to the specific
multi-machine power systems and unfortunately the designed controller is not decentralized.

In this article, a class of nonlinear interconnected systems is considered where both the matched uncertainty in the
isolated subsystems and the mismatched interconnections are considered. A nonlinear coordinate transformation is intro-
duced to explore the nominal isolated subsystems’ structure, which transfers the interconnected systems to the required
form, facilitating the system analysis and control design by using the structure of interconnections. The sliding surface
is designed based on the tracking errors, and the sliding mode stability is achieved as well. A decentralized sliding mode
control scheme is proposed to drive the nonlinear interconnected systems to the designed sliding surface in finite time.
Compared with adaptive control approaches, there is a less restriction on the uncertainty bound and the structure when
using sliding mode control, which means the uncertainty is allowed to have a more general form. The main contributions
in this article can be summarized as follows:

• The designed controller is decentralized and the desired output signals are time-varying. This is in comparison with
the existing work for interconnected system which needs either the other subsystems information available for design
or the desired signals are constant.

• The developed result guarantees that the system outputs can track the desired outputs asymptotically while the system
states are bounded.
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DING et al. 3

• The considered interconnected systems are nonlinear with nonlinear disturbances which are bounded by nonlinear
functions. It is not required that the nominal isolated subsystems are linearizable.

• The interconnection terms are mismatched, and the developed results has a high robustness.

Finally, the obtained results are applied to a coupled-pendulums system, and the simulation demonstrates that the
method proposed in this article is effective.

2 SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

Consider a nonlinear large-scale interconnected system formed by N subsystems as follows

ẋi = fi(xi) + gi(xi)
(

ui + 𝜑i(xi)
)
+ pi(xi)𝜓i(x),

yi = hi(xi) i = 1, 2, … ,N, (1)

where xi ∈ Πi ⊂ Rni , ui ∈ R, and yi ∈ R are the states, input and output of the ith subsystem respectively, Πi are neigh-
borhoods of the origin, x = col(x1, x2, … , xN) ∈ Π, and Π ∶= Π1 × · · · × ΠN ∈ R

∑N
i=1ni . The terms 𝜑i(xi) ∈ R are matched

uncertainties. The terms pi(xi)𝜓i(x) ∈ Rni represent the interconnection of the ith subsystem where pi(xi) ∈ Rni are known
used to describe the structure of the interconnections, and the terms 𝜓i(x) ∈ R are known which is used to describe the
interconnections for i = 1, 2, … ,N. All of the nonlinear terms are assumed to be smooth enough in their arguments to
guarantee the existence and uniqueness of the system solutions.

In this article, the local case will be considered, and the considered domain may not be specified in the
subsequence unless it is necessary. It should be noted that each subsystem in system (1) is assumed to be
single-input and single-output for simplifying the analysis. The following definitions are introduced firstly for readers’
convenience.

Definition 1. Consider system (1). The system

ẋi = fi(xi) + gi(xi)
(

ui + 𝜑i(xi)
)

yi = hi(xi) i = 1, 2, … ,N (2)

is called the ith isolated subsystem of the system (1), and the system

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi) i = 1, 2, … ,N (3)

is called the ith nominal isolated subsystem of the system (1).

Definition 2. Consider system (1) with desired output signals yid(t) for i = 1, 2, … ,N. If the controller ui of the ith
subsystem depends on the time t, the state xi and the desired output signal yid(t) of the ith subsystem only, that is,

ui = ui(t, xi, yid) i = 1, 2, … ,N, (4)

then (4) is called decentralized static state feedback tracking control.

The objective of this article is, for a given desired output signal yid(t), to design a decentralized control such that the
output yi(t) can track the desired signal yid(t) asymptotically, that is,

lim
t→∞

|yi(t) − yid(t)| = 0, (5)

for i = 1, 2, … ,N, while all the state variables of the interconnected system (1) are bounded.
To deal with the tracking problem stated above, some assumptions on the considered system (1) are introduced

at first.
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4 DING et al.

Assumption 1. There exist known continuous functions 𝜌i(xi) in domain Πi such that for xi ∈ Πi with i = 1, 2, … ,N.

|𝜑i(xi)| ≤ 𝜌i(xi).

Remark 1. Assumption 1 implies that the uncertainties 𝜑i(xi) in the system (1) are required to be bounded for i =
1, 2, … ,N, and the bounds are known. The bounds on the uncertainties will be used to design a decentralized controller
later to cancel the effects of the corresponding uncertainties to enhance the robustness.

Assumption 2. For system (1), the triple (fi, gi, hi) has an uniform relative degree ra
i in the domainΠi, the triple (fi, pi, hi)

has an uniform relative degree rb
i in the domain Πi, and ra

i = rb
i for i = 1, 2, … ,N. Furthermore, both distributions

generated by the column vectors of function matrices gi(xi) and pi(xi) respectively, are involutive in the domain Πi for
i = 1, 2, … ,N.

Remark 2. The definition of the relative degree for a nonlinear control systems is available in Reference 28. The uniform
relative degree in Assumption 2 implies that, for any point xi ∈ Πi, the system has relative degree, and the relative degree
is independent of xi ∈ Πi. For further discussion about the relative degree, see Reference 28.

Remark 3. Assumption 2 is the limitation to both the structure of the nominal isolated subsystems (3) and the structure
of the distribution of the interconnections of system (1). It should be pointed out that the methodology developed in this
article can be directly extended to the case ra

i < rb
i . Here, the condition ra

i = rb
i is imposed on system (1) in Assumption 2

just for simplification of the later analysis and description. Similar limitation has been employed in Reference 29.

Assumption 3. The desired output signals yid(t) and their time derivatives up to the ra
i th order are smooth, known and

bounded for all t ∈ [0,∞).

Remark 4. Assumption 3 is the limitation to the desired signals. It requires that the ideal output signals yid(t) are differ-
entiable for sufficient times. This assumption is quite standard in tracking control and usually is satisfied in most cases
in reality. However, if the desired signal yid(t) is not continuous in reality due to some engineering limitation, this work
may not be applied.

3 SYSTEM STRUCTURE ANALYSIS

Consider the nonlinear interconnected system in (1). Under Assumption 2, it follows from Reference 28 that there exist
diffeomorphisms zi = Ti(xi) defined in Πi, described by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi,1

xi,2

⋮

xi,(ra
i −1)

xi,ra
i

xi,(ra
i +1)

⋮

xi,ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

zi=Ti(xi)−−−−−→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

zi,1

zi,2

⋮

zi,(ra
i −1)

zi,ra
i

zi,(ra
i +1)

⋮

zi,ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜉i,1

𝜉i,2

⋮

𝜉i,(ra
i −1)

𝜉i,ra
i

𝜂i,(ra
i +1)

⋮

𝜂i,ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

and the feedback transformation

ui = 𝜛−1
i (xi)(−𝜍i(xi) + vi), (7)

where 𝜍i(xi) and 𝜛i(xi) are defined by

𝜍i(xi) = Lra
i

fi
hi(xi), (8)

𝜛i(xi) = Lgi L
ra

i −1
fi

hi(xi), (9)
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DING et al. 5

where vi is the new controller to be designed later, and the notation Lgi L
ra

i −1
fi

hi(xi) denotes Lie derivative (see e.g.,
Reference 28).

In the new coordinates zi, the terms 𝜍i(xi) and 𝜛i(xi) in (8) and (9) are, respectively, denoted by

𝛼i(zi) = 𝜍i(xi)|xi=T−1
i (zi),

𝛽i(zi) = 𝜛i(xi)|xi=T−1
i (zi).

Then, under the diffeomorphism (6) and the feedback transformation (7), it follows from Reference 28 that in the new
coordinates zi, the system (1) can be described by

̇

𝜉i,1 = 𝜉i,2,

̇

𝜉i,2 = 𝜉i,3,

…
̇

𝜉i,(ra
i −1) = 𝜉i,ra

i
,

̇

𝜉i,ra
i
= vi(t) + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z),

�̇�i,(ra
i +1) = qi,(ra

i +1)(zi) + Γi,(ra
i +1)𝛿i(z),

…
�̇�i,ni

= qi,ni(zi) + Γi,ni𝛿i(z),

yi = 𝜉i,1, (10)

where zi ∶= col(𝜉i, 𝜂i) with 𝜉i ∶= col(𝜉i,1, 𝜉i,2, … , 𝜉i,ra
i
) and 𝜂i ∶= col(𝜂i,(ra

i +1), … , 𝜂i,ni), z = col(z1, z2, … , zN), and

𝜏i(zi) = 𝜑i(xi)|xi=T−1
i (zi), (11)

𝛾i(zi) = Lpi L
rb

i −1
fi

hi(xi)|xi=T−1
i (zi), (12)

𝛿i(z) = 𝜓i(x)|x=T−1(z). (13)

The system (10) can be expressed in a compact form as

̇

𝜉i = Ai𝜉i + Bi[vi + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z)], (14)

�̇�i = qi(𝜉i, 𝜂i) + Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N), (15)

yi = Ci𝜉i i = 1, 2, … ,N, (16)

where zi = col(𝜉i, 𝜂i) with 𝜉i ∈ Rra
i and 𝜂i ∈ R(ni−ra

i ). The triple (Ai,Bi,Ci) with appropriate dimensions has a standard
Brunovsky form as follows

Ai =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1
0 0 0 … 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

Ci =
[

1 0 0 … 0
]
, (18)
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6 DING et al.

qi(𝜉i, 𝜂i) and Γi(𝜉i, 𝜂i) are the last ni − ra
i rows of the vectors

[
𝜕Ti

𝜕xi
fi(xi)

]

xi=T−1
i (zi)

and
[
𝜕Ti

𝜕xi
pi(xi)

]

xi=T−1
i (zi)

,

respectively.

Remark 5. It should be pointed out that the diffeomorphism zi = Ti(xi) = col(𝜉i, 𝜂i) = col(𝜉i,1, 𝜉i,2, … , 𝜉i,ra
i
,

𝜂i,(ra
i +1), … , 𝜂i,ni) given in (6) is not unique. From Reference 28, a way to choose the diffeomorphism can be given as

follows: 𝜉i = col(hi(xi),Lfi hi(xi), … ,Lra
i

fi
hi(xi)), for i = 1, 2, … ,N. 𝜂i = col(𝜂i,(ra

i +1), … , 𝜂i,ni) where 𝜂ij can be obtained by
solving the equations Lgi𝜂ij = 0 for i = 1, 2, … ,N and j = ra

i + 1, … ,ni.

Remark 6. However, from (14)–(16), it is clear to see that in this article, it is not required that the nominal subsys-
tems of system (1) are feedback linearizable. If the relative degree ra

i = ni, then the system (10) will have the following
form

̇

𝜉i,1 = 𝜉i,2,

̇

𝜉i,2 = 𝜉i,3,

…
̇

𝜉i,(ni−1) = 𝜉i,ni ,

̇

𝜉i,ni
= vi(t) + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z),

yi = 𝜉i,1. (19)

In this case the nominal isolated subsystem of interconnected system (14) is completely feedback linearizable and thus
the nonlinear part relating to the dynamics of variables 𝜂i in system (15) disappears.

4 DECENTRALIZED OUTPUT TRACKING CONTROL

In the subsequence, the nonlinear interconnected systems (14)–(16) are to be focused. The main results will be presented
in this section. Firstly, a sliding surface in terms of tracking errors will be proposed. Then, a decentralized controller based
on sliding mode technique will be designed to implement the output tracking, and the boundedness of the considered
interconnected system will be discussed.

4.1 Sliding surface design

It is assumed that the desired output signals yid(t) satisfy Assumption 3. For (16), the output tracking errors ei are
defined by

ei = yi(t) − yid(t) i = 1, 2, … ,N. (20)

The following sliding functions are introduced

Si(⋅) = e(r
a
i −1)

i + ai,1e(r
a
i −2)

i + · · · + ai,(ra
i −2)e(1)i + ai,(ra

i −1)e(0)i , (21)

where e(r
a
i −1)

i , e(r
a
i −2)

i , … , and e(1)i denote the (ra
i − 1)th order, (ra

i − 2)th order, … , and the 1st order derivatives of ei(t)
respectively, e(0)i ∶= ei(t), and ai,1, ai,2, … , ai,(ra

i −1) are a set of design parameters, which are chosen such that the following
polynomials

𝜆

ra
i −1 + ai,1𝜆

ra
i −2 + · · · + ai,(ra

i −2)𝜆 + ai,(ra
i −1) (22)
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DING et al. 7

are Hurwitz stable for i = 1, 2, … ,N. Then, the composite sliding surface for interconnected system (14)–(16) can be
described by

{S = col(S1, S2, … , SN)| Si = 0, i = 1, 2, … ,N}, (23)

where Si are defined in (21). From the design above, it is clear to see that when Si = 0,

lim
t→∞

|ei(t)| = 0.

This implies that when sliding motion occurs,

lim
t→∞

|yi(t) − yid(t)| = lim
t→∞

|ei(t)| = 0, (24)

that is, the outputs yi(t) of system (1) can track the ideal signal yid(t) asymptotically for i = 1, 2, … ,N. The following
result is now ready to be presented:

Theorem 1. Consider the interconnected system (14)–(16). Under Assumption 3, when the system (14)–(16) is limited to
moving on the sliding surface (23), the following results hold:

(i) lim
t→∞

|yi(t) − yid(t)| = lim
t→∞

|ei(t)| = 0 for i = 1, 2, … ,N
(ii) The state variables 𝜉i in (14) are bounded for i = 1, 2, … ,N.

Proof. The result in (i) has been shown above (see (24)). The remains are to prove that the result in (ii) holds.
When system (14)–(16) is constrained to the sliding surface (21), it follows that

Si = e(r
a
i −1)

i + ai,1e(r
a
i −2)

i + … + ai,(ra
i −2)e(1)i + ai,(ra

i −1)e(0)i = 0.

Then,

e(r
a
i −1)

i = −ai,1e(r
a
i −2)

i − … − ai,(ra
i −2)e(1)i − ai,(ra

i −1)e(0)i .

Let

ei,1 ≜ e(0)i = ei.

Then, the following error dynamics are obtained

ėi,1 = e(1)i ≜ ei,2,

ėi,2 = e(2)i ≜ ei,3,

…

ėi,(ra
i −2) = e(r

a
i −2)

i ≜ ei,(ra
i −1),

ėi,(ra
i −1) = −ai,1ei,(ra

i −1) − · · · − ai,(ra
i −2)ei,2 − ai,(ra

i −1)ei,1.

Therefore the sliding mode dynamics of system (14)–(15) are given by the following equation by rewriting the system
above in a compact form

�̇�i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋱ ⋮

0 0 0 … 1
− ai,(ra

i −1) −ai,(ra
i −2) −ai,(ra

i −3) … −ai,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ei

𝜖i, (25)
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8 DING et al.

where 𝜖i = col(ei,1, ei,2, … , ei,(ra
i −1)). It should be noted that the entries of the last row of matrix Ei: ai,1, ai,2, … , ai,(ra

i −1)
forms the Hurwitz polynomial (22). Therefore, system (25) is Hurwitz stable which implies that

lim
t→∞

|𝜖i(t)| = 0. (26)

Further, from (24) and (26)

lim
t→∞

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

𝜉i,1 − y(0)id

𝜉i,2 − y(1)id

⋮

𝜉i,(ra
i −1) − y(r

a
i −2)

id

𝜉i,ra
i
− y(r

a
i −1)

id

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

= 0.

From Assumption 3, the desired output signal yid(t) and its derivatives: y(1)id , y
(2)
id , … , y(r

a
i −1)

id are bounded in t ∈ [0,∞]. It
follows that the state variables 𝜉i,1, 𝜉i,2, … , 𝜉i,ra

i
are bounded and thus the states 𝜉i in (14) are bounded when the states of

the system are limited to the sliding surface (23).
Hence, the result follows. ▪

Remark 7. It is well known that the sliding mode is a reduced-order system. Section 4.1 shows that for system (14)–(16)
with the sliding surface given in (23), the corresponding sliding mode dynamics are system (25). Theorem 1 shows that
the sliding mode is asymptotically stable and the partial of state variable 𝜉i is bounded. Next, the decentralized con-
trollers are to be designed to guarantee the reachability, and the boundedness of the partial states 𝜂i will be discussed
as well.

4.2 Decentralized sliding mode controller design

Now, the objective is to design a decentralized state-feedback controller based on sliding mode technique such
that the states of the controlled system (14)–(16) can be driven to the designed sliding surface (21) in finite
time.

Since zi = Ti(xi) is a diffeomorphism, from Assumption 1 and definitions of 𝜏i(zi) and 𝛿i(z) in (11) and (13)
respectively, it follows that there are continuous functions 𝜌′i(zi) such that in the considered neighborhood of the
origin

|𝜏i(zi)| ≤ 𝜌′i(zi), (27)

where 𝜌′i(⋅) depends on the transformation zi = Ti(xi) and 𝜌i(⋅) in Assumption 1. Since 𝜌i(⋅) are known, the bound 𝜌′i(⋅)
can be obtained from zi = Ti(xi).

For system (14)–(16), the following control law is proposed

vi = − ̇Si + y(r
a
i )

i −
(

Ki(zi) + |𝛽i(zi)|𝜌′i(zi) +
1
2
|𝛾i(zi)|2

)
sgn(Si) i = 1, 2, … ,N, (28)

where the function Ki(zi) is the feedback gain to be designed later. Si(⋅) is given in (21) and sgn(⋅) is the sign function. It is
clear that the controllers vi in (28) are decentralized.

Remark 8. From the structure of the control (28), it follows that only the variables zi, yi, y
(ra

i )
i and yid(t) are used

in the ith control vi, which are available locally. Specially from (10), y(r
a
i )

i is actually the first order derivative
of the state xi,ra

i
, which totally depends on the local state xi,ra

i
. Therefore, from the coordinate transformation

zi = Ti(xi) and the relationship between ui and vi in (7), it is straightforward to see that the designed controllers are
decentralized.
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DING et al. 9

Theorem 2. Under Assumptions 1 and 3, the nonlinear interconnected system (14)–(16) is driven to the sliding surface (21)
in finite time by the controller (28) if the control gain Ki(zi) satisfies

N∑

i=1
Ki(zi) >

1
2

N∑

i=1
|𝛿i(z)|2 + 𝜎i, (29)

where 𝜎i is a positive constant.

Proof. The closed-loop system obtained by applying control law (28) into system (14)–(16) can be described by

̇

𝜉i = Ai𝜉i + Bi[− ̇Si + y(r
a
i )

i −
(

Ki(zi) + |𝛽i(zi)|𝜌′i(zi) +
1
2
|𝛾i(zi)|2

)
sgn(Si) + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z)], (30)

�̇�i = qi(𝜉i, 𝜂i) + Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N), (31)

yi = Ci𝜉i. i = 1, 2, … ,N. (32)

With the special structure of the triple (Ai,Bi,Ci) in (14)–(16), it follows

yi = 𝜉i,1,

y(1)i = 𝜉i,2,

…

y(r
a
i −1)

i = 𝜉i,ra
i
,

y(r
a
i )

i = ̇

𝜉i,ra
i
= − ̇Si + y(r

a
i )

i −
(

Ki(zi) + |𝛽i(zi)|𝜌′i(zi) +
1
2
|𝛾i(zi)|2

)
sgn(Si) + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z). (33)

From the last equation in (33),

̇Si = −
(

Ki(zi) + |𝛽i(zi)|𝜌′i(zi) +
1
2
|𝛾i(zi)|2

)
sgn(Si) + 𝛽i(zi)𝜏i(zi) + 𝛾i(zi)𝛿i(z). (34)

Then, from (27)–(34), and according to the basic inequality ab ≤ 1
2
(a2 + b2),

S⊤ ̇S =
N∑

i=1
Si ̇Si

=
N∑

i=1

(
−
(

Ki(zi) + |𝛽i(zi)|𝜌′i(zi) +
1
2
|𝛾i(zi)|2

)
|Si| + 𝛽i(zi)𝜏i(zi)Si + 𝛾i(zi)𝛿i(z)Si

)

≤

N∑

i=1

(
−Ki(zi)|Si| −

1
2
|𝛾i(zi)|2|Si| +

1
2
(|𝛾i(zi)|2 + |𝛿i(z)|2)|Si|

)

=
N∑

i=1

(
−Ki(zi) +

1
2
|𝛿i(z)|2

)
|Si|. (35)

It follows from (35), (29) and the basic inequality
(∑N

i=1|Si|
)2
≥

∑N
i=1|Si|2 that

ST
̇S < −𝜎

N∑

i=1
|Si| ≤ −𝜎||S||, (36)

where 𝜎 ∶= mini{𝜎i} > 0 due to 𝜎i > 0 for i = 1, 2, … ,N, meaning that the reachability condition holds for the
closed-loop interconnected system (30)–(31). Hence, the result follows. ▪
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10 DING et al.

Remark 9. Based on the analysis above and from the feedback transformation (28), it follows that the decentralized
controller

ui = 𝜛−1
i (xi)

[
−𝜍i(xi) − ̇Si + y(r

a
i )

i −
(

Ki(Ti(xi)) + |𝜛i(xi)|𝜌i(xi) +
1
2
|Lpi L

rb
i −1

fi
hi(xi)|2

)
sgn(Si)

]
(37)

can drive the system (1) to the corresponding sliding surface in finite time, where pi = pi(xi), fi = fi(xi) and Si is defined
in (21).

4.3 The boundedness of system states

In this subsection, the boundedness of the closed-loop system (30)–(31) is analyzed. The following assumptions are
needed.

Assumption 4. The functions qi(𝜉i, 𝜂i) in system (30)-(31) satisfy the Lipschitz condition with the Lipschitz constants Lqi

uniformly for 𝜂i in the considered domain. Moreover, there exists a Lyapunov function Vi0(𝜂i) such that

𝜒i1||𝜂i||2
≤ Vi0(𝜂i) ≤ 𝜒i2||𝜂i||2

,

𝜕Vi0

𝜕𝜂i
qi(0, 𝜂i) ≤ −𝜒i3||𝜂i||2

,

‖‖‖‖
𝜕Vi0

𝜕𝜂i

‖‖‖‖
≤ 𝜒i4||𝜂i||, (38)

where 𝜒i1, 𝜒i2, 𝜒i3, and 𝜒i4 are positive constants for i = 1, 2, … ,N.

Remark 10. The Assumption 4 implies that

||qi(𝜉i, 𝜂i) − qi(0, 𝜂i)|| ≤ Lqi ||𝜉i − 0||. (39)

Assumption 4 is the limitation to the nonlinear term qi(𝜉i, 𝜂i) in (30)–(31). It also implies that the zero dynamics �̇�i =
qi(0, 𝜂i) of the nominal system of system (30)–(31) is asymptotically stable.

Assumption 5. There exist positive constants 𝜅1j and 𝜅2j such that

||Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N)|| ≤
N∑

j=1
(𝜅1j||𝜉j|| + 𝜅2j||𝜂j||), (40)

for i = 1, 2, … ,N.

Remark 11. Assumption 5 will hold if the inequalities ||Γi(𝜉i, 𝜂i)|| ≤ 𝜅1i||𝜉i|| + 𝜅2i||𝜂i|| hold for i = 1, 2, … ,N.

Theorem 3. Under Assumptions 3–5, the states of the closed-loop system (30)–(31) are bounded if the matrix W T +W is
positive definite where the matrix W is defined as

W ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜒13 − 𝜒14𝜅21 −𝜒14𝜅22 … −𝜒14𝜅2N

−𝜒24𝜅21 𝜒23 − 𝜒24𝜅22 … −𝜒24𝜅2N

⋮ ⋮ ⋱

−𝜒N4𝜅21 −𝜒N4𝜅22 … 𝜒N3 − 𝜒N4𝜅2N

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (41)

where 𝜒ij and 𝜅lj satisfy the Assumptions 4 and 5 for i = 1, 2, … ,N, j = 1, 2, 3, 4 and l = 1, 2.

Proof. From Theorem 1, it follows that the variables 𝜉i = col(𝜉i,1, 𝜉i,2, … , 𝜉i,ra
i
)with i = 1, 2, … ,N are bounded when the

sliding motion occurs if Assumption 3 holds. Theorem 2 shows that the interconnected system can be driven to the sliding
surface in finite time. From Theorems 1 and 2, it follows that the variables 𝜉i = col(𝜉i,1, 𝜉i,2, … , 𝜉i,ra

i
) with i = 1, 2, … ,N
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DING et al. 11

are bounded. Therefore, there exist constants Ci > 0 such that in the considered domain,

||𝜉i|| ≤ Ci i = 1, 2, … ,N. (42)

The remain is to prove that the variables 𝜂i in the closed-loop system (30)–(31) are bounded for i = 1, 2, … ,N.
It should be noted that from (42), the variables 𝜉i in the system (31) are bounded and can be considered as parameters

defined in a compact set. For this system, consider the following Lyapunov candidate function

V(𝜂1, 𝜂2, … , 𝜂N) =
N∑

i=1
Vi0(𝜂i),

where Vi0(𝜂i) is defined in Assumption 4. Then, the time derivative of the Lyapunov function V(⋅) along the trajectories
of system (30)–(31) is given by

̇V(𝜂1, 𝜂2, … , 𝜂N)

=
N∑

i=1

𝜕Vi0(𝜂i)
𝜕𝜂i

[
qi(𝜉i, 𝜂i) + Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N)

]

=
N∑

i=1

[
𝜕Vi0(𝜂i)
𝜕𝜂i

qi(0, 𝜂i) +
𝜕Vi0(𝜂i)
𝜕𝜂i

(qi(𝜉i, 𝜂i) − qi(0, 𝜂i))
]
+

N∑

i=1

𝜕Vi0(𝜂i)
𝜕𝜂i

[Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N)] . (43)

Further, from (44) and Assumptions 4 and 5, it follows

̇V(𝜂1, 𝜂2, … , 𝜂N)

≤

N∑

i=1

(
−𝜒i3||𝜂i||2 + 𝜒i4LqiCi||𝜂i|| +

|||
|||
𝜕Vi0(𝜂i)
𝜕𝜂i

|||
|||||Γi(𝜉i, 𝜂i)𝛿i(𝜉1, 𝜂1, … , 𝜉N , 𝜂N)||

)

≤

N∑

i=1

(

−𝜒i3||𝜂i||2 + 𝜒i4LqiCi||𝜂i|| + 𝜒i4||𝜂i||
N∑

j=1
(𝜅1j||𝜉j|| + 𝜅2j||𝜂j||)

)

≤

N∑

i=1

(

−𝜒i3||𝜂i||2 + 𝜒i4LqiCi||𝜂i|| +
N∑

j=1
𝜒i4𝜅1jCi||𝜂i|| +

N∑

j=1
𝜒i4𝜅2j||𝜂i||||𝜂j||

)

= −

( N∑

i=1
𝜒i3||𝜂i||2 −

N∑

i=1

N∑

j=1
𝜒i4𝜅2j||𝜂i||||𝜂j|| −

N∑

i=1

N∑

j=1
𝜒i4Ci(Lqi + 𝜅1j)||𝜂i||

)

= −1
2

(
||𝜂1||, … , ||𝜂N ||

)
(W +W T)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

||𝜂1||

||𝜂2||

⋮

||𝜂N ||

⎞
⎟
⎟
⎟
⎟
⎟
⎠

+
N∑

i=1

N∑

j=1
𝜒i4Ci(Lqi + 𝜅1j)||𝜂i||

≤ −1
2
𝜆min(W +W T)‖𝜂‖2 +

N∑

i=1

N∑

j=1
𝜒i4Ci(Lqi + 𝜅1j)||𝜂i||

= −1
2
𝜆min(W +W T)

N∑

i=1
||𝜂i||2 +

N∑

i=1

N∑

j=1
𝜒i4Ci(Lqi + 𝜅1j) ‖𝜂i‖

= −1
2

N∑

i=1

{

𝜆min(W +W T)||𝜂i|| −
N∑

j=1
𝜒i4Ci(Lqi + 𝜅1j)

}

‖𝜂i‖

≤ 0, (44)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6467 by T

est, W
iley O

nline L
ibrary on [02/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 DING et al.

where ||𝜂|| ∶= ||
(
||𝜂1||, ||𝜂2|| , … , ||𝜂N ||

)T||, if

‖𝜂i‖ ≥

∑N
j=1𝜒i4Ci(Lqi + 𝜅1j)

𝜆min(W)
.

Then, from theorem 4.18 in Reference 30, the variables 𝜂i are bounded for i = 1, 2, … ,N.
Hence, the result follows. ▪

Remark 12. From Remark 6, if ra
i = ni, the considered system can be fully linearized and thus the dynamical equation (31)

disappears. In this case, Assumptions 4–5 are unnecessary, and the interconnection terms are completely matched. This
can be regarded as a special case of the results developed in this article.

5 SIMULATION EXAMPLE

Consider two inverted pendulums connected by a spring as shown in Figure 1. Each pendulum is controlled by a ser-
vomotor which provides a torque input ui at the pivot. It is assumed that 𝜃i and ̇

𝜃i represent the angular position and
velocity of the pendulums respectively for i = 1, 2. The model which describes the motion of the pendulums is given by
(see, Reference 31)

ẋ1,1 = x1,2,

ẋ1,2 =
u1

J1
+ 𝛽1(x1)𝜏1(x1) + 𝛾1(x1)𝛿1(x) +

kr
2J1

(l − b),

y1 = x1,1, (45)

and

ẋ2,1 = x2,2,

ẋ2,2 =
u2

J2
+ 𝛽2(x2)𝜏2(x2) + 𝛾2(x2)𝛿2(x) −

kr
2J2

(l − b),

y2 = x2,1, (46)

where x1,1 = 𝜃1, x2,1 = 𝜃2, x1,2 = ̇

𝜃1, and x2,2 = ̇

𝜃2 are system states. It is assumed that x1,1 and x2,1 are measurable, which
are system outputs.

F I G U R E 1 Two inverted pendulums connected by a spring
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DING et al. 13

It should be pointed out that system (45)–(46) above has already been in the form of system (14) where

𝛽1 =
m1gr

J1
− kr2

4J1
, 𝛽2 =

m2gr
J2

− kr2

4J2
,

𝜏1(x1) = sin(x1,1), 𝜏2(x2) = sin(x2,1),

𝛾1(x1) =
kr2

4J1
, 𝛾2(x2) =

kr2

4J2
,

𝛿1(x) = sin(x2,1), 𝛿2(x) = sin(x1,1).

From Reference 31, the parameters are chosen as m1 =2 kg and m2 = 2.5 kg represent the end masses of the pendulum.
J1 = 0.5 kg m2 and J2 = 0.625 kg m2 are the moments of inertia. g= 9.81 m/s2 is the gravitational acceleration. k= 100 N/m
is the spring constant of the connecting spring. r = 0.5 m is the pendulum height and l = 0.5 m is the natural length of
the spring. The distance between the pendulum hinges is b = 0.5 m, where b = l.

By direct calculation

|𝜏1(x1)| = |sin(x1,1)| ≤ 1 = 𝜌1(x1),

|𝜏2(x2)| = |sin(x2,1)| ≤ 1 = 𝜌2(x2).

Here, both the value of 𝜎i for i = 1, 2 are designed as 0.1. It can be verified that the relative degree ra
i = rb

i = 2 for i = 1, 2.
The nominal subsystems can be feedback linearized. For simulation purposes, the initial states are chosen as x1,1(0) = 1
and x2,1(0) = −0.8. And the desired output signals yid(t) are chosen as

y1d = 0.5 sin(t), y2d = 5e−t
. (47)

It is clear that Assumption 3 is satisfied. Let

e1 = y1 − y1d, e2 = y2 − y2d,

ė1 = ẏ1 − ẏ1d, ė2 = ẏ2 − ẏ2d,

S1 = ė1 + a1 ⋅ e1, S2 = ė2 + a2 ⋅ e2, (48)

where the sliding function parameters are chosen as a1 = 2 and a2 = 3. Then from (28), the control laws can be
described by

u1 = J1

(
− ̇S1 + y(2)1 − K1(x1)sgn(S1)

)
(49)

and

u2 = J2

(
− ̇S2 + y(2)2 − K2(x2)sgn(S2)

)
, (50)

where, based on (29), the value of the control gain Ki(⋅) is chosen as 19.72 for i = 1, 2. By direct calculation,
Assumptions 4–5 as well as the conditions of Theorems 1–3 are satisfied. Therefore, the outputs of the closed-loop
system formed by applying controllers (49)–(50) to the system (45)–(46) can track the desired signals in (47)
asymptotically.

The tracking results are shown in Figure 2 with a good tracking performance as expected. Each angular position yi
of the subsystem can track the ideal reference yid for i = 1, 2, at around 2 seconds despite the interactions between the
subsystems. The time responses of the states of the system (45)–(46) are presented in Figure 3 where the system states are
bounded. The simulation demonstrates that the results developed in this article are effective and in consistence with the
theoretical results.
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F I G U R E 2 Time responses of system’s output, the desired output (upper), and controller inputs of system (45)–(46)
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F I G U R E 3 Evolution of state variables of system (45)–(46)

6 CONCLUSIONS

A decentralized sliding mode control scheme for output tracking of a class of nonlinear interconnected systems has been
proposed in this article. The developed results can guarantee asymptotic output tracking performance while the bounded
state variables are maintaining across the closed-loop systems. The designed controllers are decentralized and the desired
reference signals are time-varying. It is not required that either the interconnected system or the isolated subsystems of
the interconnected systems are linearizable. Also, the developed results can be extended to the case when the isolated
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subsystems have multiple-input and multiple-output. Thus, the method developed in this article is suitable for a wide
class of large-scale nonlinear interconnected systems.
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