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Abstract
Precise and accurate estimates of abundance and demographic rates are primary quan-
tities of interest withinwildlife conservation andmanagement. Such quantities provide
insight into population trends over time and the associated underlying ecological
drivers of the systems. This information is fundamental in managing ecosystems,
assessing species conservation status and developing and implementing effective con-
servation policy. Observational monitoring data are typically collected on wildlife
populations using an array of different survey protocols, dependent on the primary
questions of interest. For each of these survey designs, a range of advanced statistical
techniques have been developed which are typically well understood. However, often
multiple types of data may exist for the same population under study. Analyzing each
data set separately implicitly discards the common information contained in the other
data sets. An alternative approach that aims to optimize the shared information con-
tained within multiple data sets is to use a “model-based data integration” approach,
or more commonly referred to as an “integrated model.” This integrated modeling
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approach simultaneously analyzes all the available datawithin a single, and robust, sta-
tistical framework. This paper provides a statistical overview of ecological integrated
models, with a focus on integrated population models (IPMs) which include abun-
dance and demographic rates as quantities of interest. Four main challenges within
this area are discussed, namely model specification, computational aspects, model
assessment and forecasting. This should encourage researchers to explore further and
develop new practical tools to ensure that full utility can be made of IPMs for future
studies.

Keywords Abundance · Ecological insight · Integrating data · Multiple surveys

1 Introduction

A key goal in the study of wildlife populations is often to estimate abundance and
important demographic rates (e.g., recruitment and survival) of species and how these
variables change over space and time.Accurate and precise estimates of such quantities
lay the foundation of determining abundance trends and the ecological dynamics of
species and thus are necessary for effective conservation planning and management in
the face of ongoing global change [1]. For example, inferences demonstrating changes
in a population’s abundance, and the mechanisms behind such change, can aid in
decisions on how to halt declines or manage the invasion of deleterious species [2–4].
As inferences on wildlife population parameters need to take into account a variety
of processes, including imperfect detection of species, extreme heterogeneity in and
among environments, and the movement and clustering of individuals, a variety of
data collection and analysis frameworks have been developed over the last century to
provide the relevant and necessary metrics on wildlife populations [5–7].

A range of data are collected on wild populations with the specific biological
questions, as well as logistical constraints, shaping the distinct types of data that
are collected. Often, several types of data are collected on a single population or
species within close proximity, as different researchers may be interested in multiple
aspects of a particular study system. Historically, each data set would be analyzed
separately, with perhaps estimates from one analysis being used in another or biolog-
ical interpretations compared, again depending on the questions of interest and data
types available. However, separate analyses of available data sources discard valuable
information that could improve the estimation of the biological quantities of interest,
for example, by increasing the precision of parameter estimates [8], permitting the
estimation of confounded parameters [9], and/or correcting for sampling biases in one
or more data sources [10].

An alternative approach, which optimizes the shared information contained within
multiple data sets, is to use “model-based data integration.” Model-based data inte-
gration (or data integration, for short) is an umbrella term that refers to any modeling
technique that simultaneously analyze all available data within a single, robust, statis-
tical framework (e.g., data fusion, integrated data models). The development of data
integration methods over the last three decades has grown almost exponentially [11–
13], as these approaches can greatly reduce uncertainty of parameter estimates [14],
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make possible the estimation of parameters that are inestimable from a single data
source (e.g., emigration and mortality [15]), and expand the spatiotemporal scope of
inference [16]. Of note is that an individual data set may provide no additional infor-
mation on the particular quantity of primary interest; however, by providing direct
information on other model parameters, this can, in turn, lead to the ability to estimate
a previously confounded parameter and/or an improved estimate of the quantity of
interest [17].

In this paper, the ideas associated with integrated modeling are described and
several associated outstanding statistical challenges discussed, with a specific focus
on integrated population models (IPMs). While data integration approaches aim to
estimate a variety of population processes (e.g., species distributions, abundances),
IPMs specifically focus on the simultaneous estimation of both population abundance
and demographic rates within a single analytical framework. IPMs may integrate
across many types of data, typically including (but not limited to): 1) abundance,
counts, and/or census data to inform temporally varying population sizes and/or
trends, 2) productivity data to inform (annual) reproduction rates (e.g., nest records),
and 3) capture-recapture-recovery-type data used to inform (seasonal, annual, and/or
stage/age) survival.

[1, 18] provide an overview of common types of available data included in IPMs
and associated component models that may be applied. Suchmodels may be improved
via the inclusion of environmental covariate data [19, 20]. IPMs have also recently
been developed combining data sets (possibly the same type of data) across different
species [21–23], although this work is fairly new and still under development.

The first use of integrated approaches within ecology were applied to stock assess-
ments within the fisheries industry [12]. However, IPMs gained prominence in the
wider ecological community over two decades ago [7, 19, 24] when the approaches
were applied to terrestrial species, usually birds. This early work combines state-space
modeling of census data with the analysis of capture-recapture-recovery-type data,
exploiting the shared demographic parameters between the two modeling techniques.
There has been substantial advancement over the last decade in particular expanding
analyses to populations of birds,mammals, and amphibians [25].However,widespread
adoption of IPMs by the ecological community is hindered by technical statistical and
implementation challenges. The aim of this paper is to provide a statistical overview
of IPMs, including the identification of many outstanding statistical challenges within
this area, which in turn will encourage researchers to investigate these issues and
develop innovative and practical approaches to ensure that IPMs are able to reach
their full potential within ecological studies.

2 Integrated Data

The fundamental concept of an integrated data approach is to estimate the ecological
parameters of interest using all available information within a single and robust anal-
ysis. In particular, it is envisaged that there are multiple data sources that each provide
information on the given ecological system/population of interest. For example, this
may relate to multiple data sets collected on the same species but using different data
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collection survey techniques, or data sets relating to (potentially interacting) multiple
species within the same geographical location, or even data sets that are separated
geographically and/or temporally. In all cases, it is assumed that the different data sets
provide information, either directly or indirectly, on somemechanismwithin the given
ecosystem of interest.

Mathematically, suppose there are n distinct data collection surveys, leading to
associated data sets xi , for i = 1, . . . , n. Combining these data sets leads to the
integrated data x = {x1, . . . , xn}. Given an associated model for these data, the
associated global likelihood of the observed data is written as fG(x; θ), here θ denotes
the set of all model parameters across the different data collection processes. The form
of this likelihood is now considered in more detail, assuming different dependent
structures for the observed data.

2.1 Conditionally Independent Data

Assuming that the different data sets are independent of each other, conditional on the
associated model parameters, the global likelihood, fG(x; θ) can simply be expressed
as,

fG(x; θ) =
n∏

i=1

fi (xi ; θ),

where fi (xi ; θ) denotes the likelihood of the observed data xi , i = 1, . . . , n. In
general, this substantially simplifies the model specification, since each likelihood is
constructed independently for each data set. In practice, it is assumed that there are
some model parameters that are common across the different data sets, motivating
an integrated data analysis approach. Conversely, if the model parameters are non-
overlapping across the different data collection processes, so that θ = {θ1, . . . , θn},
where θ i ∩ θ j = ∅ for i �= j , the likelihood reduces to,

f (x; θ) =
n∏

i=1

f (xi ; θ i ).

In this special case, analyzing the joint likelihood is equivalent to simply analyzing
each data set independently of each other, and there is no benefit gained in consid-
ering an integrated approach. Thus, for the remainder of the paper it is assumed that
the likelihood does not decompose into independent individual components, but the
individual likelihoods for the different data sets share (at least) some parameters.

The conditional independence structure of the global likelihood also has an inter-
esting interpretation within a Bayesian analysis. Without loss of generality suppose
there are two independent data sets, so that n = 2. The posterior distribution can be
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expressed as,

π(θ | x) ∝ fG(x; θ)p(θ)

= f1(x1; θ) f2(x2; θ)p(θ)

(since x1 and x2 are independent given model parameters, θ)

∝ f1(x1; θ)π(θ | x2). (1)

In other words, the posterior distribution of the parameters given all the available
data can be re-expressed as the posterior distribution of the parameters given data
set x1, with an associated prior distribution equal to the posterior distribution of the
parameters, given data set x2. This observation has practicalmodel-fitting implications
(see Sect. 3.2) and immediately extends to a more general number of data sets, n > 2.

2.2 Dependent Data

In most cases, individual data sources are not independent of each other. Conse-
quently, the joint likelihood of the dependent data sets, fG(x; θ), cannot be simplified.
In the presence of both dependent data sets (x1, . . . , xk) and independent data sets
(xk+1, . . . , xn), the joint likelihood of all available data can be expressed in the form,

fG(x; θ) = fg(x1, . . . , xk; θ)

n∏

i=k+1

fi (xi ; θ),

where fg(x1, . . . , xk; θ) denotes the joint likelihood over the dependent data sets.
Dependent data may arise due to the same individuals being studied in the given
data collection surveys and hence resulting data sets. For example, this occurs in
the case of capture-recapture and tag-recovery data. The same individuals appear in
both the capture-recapture and tag-recovery data (e.g., following individuals being
marked they may be observed at future periods both alive and dead), and the joint
capture-recapture-recovery likelihood needs to be considered [26–30]. Alternatively,
and particularly for populations that are geographically closed, census data combined
with marked individuals (such as capture-recapture data) will often involve the same
individuals in both sets of survey data [31]. As a final dependent data example, data
may be collected on multiple interacting species within an area (and possibly data
from different monitoring schemes) [21–23].

In practice, data sets may be assumed to be approximately (conditionally) inde-
pendent within an analysis, even when it’s not strictly the case, as this dramatically
simplifies the likelihood expression, i.e., the global likelihood can be decomposed into
the product of the individual likelihoods for each data set. The impact of assuming inde-
pendence between dependent data sets has been examined using simulation, see for
example [32–34]. From their studies, which combined count data with demographic
data, they concluded that the amount of information contained in the demographic
data relative to the survey data influenced the magnitude of the effect of violating
the independence assumption. In particular, the simplest and most immediate effect
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was an inflated level of precision on the model parameters, with biases also observed
in some cases, albeit generally small. As described in [32], such explorations have
typically focused on specific types of data being combined and the outcomes are often
used as justification that dependence has little effect on parameter estimates. However,
a more general exploration of this area is required, especially as the types of data being
included in IPMs are rapidly expanding.

To avoid the issues of potential bias and/or over-confidence in the precision of the
parameter estimates that may arise due to the same individuals appearing in multiple
data sets (so that the data are non-independent), one approach has been to partition
the individuals into the different data sets, so that they only belong to a single data
set. This removes the dependence as individuals are no longer common to multiple
data sets, but reduces the amount of information in each individual data set due to the
reduced sample size. For example, [35] consider this approach for combining constant
effort (mist-netting) count data and capture-recapture data, where the same individuals
are recorded in both survey methods. The data were partitioned at the geographical
site level, with approximately half the sites allocated to the constant effort data; and
the other half for the capture-recapture data. Within their application, they concluded
that the split data integrated analysis led to substantially improved precision of the
parameter estimates compared to the analysis of only the constant effort data; and only
marginally wider credible intervals compared to considering an integrated analysis
assuming the data were independent. However, we note that in many situations, data
may be limited, and the approach requires some knowledge relating to their overlap
or dependence (e.g., individuals may be uniquely identifiable). In practice, there is a
trade-off between the removal of potential dependence and the associated reduction
of information with the data. A sensitivity analysis, using different data components,
may help gain some insight into this trade-off. Further, and in general, the robustness
of the results to splitting the data can be assessed by considering different data splits,
which for [35] appeared to be minimal for their application.

3 Integrated PopulationModels

Ecological time-series data of species abundance are a very common input within
IPMs, as they provide direct information on abundance as well as the (indirect) demo-
graphic processes. State-space models provide a structured way of describing such
time series data and can be viewed as a special case of a wider class of models known
as hidden process models [18, 36–39]. These models can be described via two sepa-
rate processes: (i) the state process that describes the evolution of the true underlying
(unobserved) state-vector corresponding to true abundance over time; and (ii) the
observation equation that links the elements of the state vector to the observed data
at each time point. Given the prominence of these data within IPMs, their general
structure of them is briefly described.

Suppose observed data correspond to a multivariate time series over discrete time
events, t = 1, . . . , T , which are denoted by y = { yt : t = 1, . . . , T }, with each
observation yt a vector containing K elements. The observed data are related to an
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m × 1 vector, αt , known as the state vector via the observation equation,

yt = Ztαt + εt ,

for t = 1, · · · , T , where Zt denotes an K × m matrix and εt an K × 1 vector corre-
sponding to the observation error. In general, the elements of αt are not observable, but
are assumed to be first-order Markovian, such that the state equation can be expressed
in the form,

αt = T tαt−1 + ηt ,

where ηt denotes an m × 1 vector corresponding to the system process error.
For ecological applications, the state vector, αt , often relates to the number of indi-

viduals in particular age (and/or state) classes. The matrix, T t , governs the evolution
of the state-vector from occasion t to occasion t + 1, and is typically expressed as a
function of demographic parameters, such as the survival probabilities, fecundity rates
and/or migration rates. The formation of T t can be fairly straightforward for state vec-
tors of small dimension; however, it is often useful to decompose the formation of T
into intermediate sub-processes, such as survival, aging, recruitment etc [37, 40].

Example: Following [19], consider a two-age class population. Let
α1,t denote the number of individuals in their first-year of life and αa,t

denote the number of individuals older than 1 year (i.e., “adults”) at
time t . A possible state-equation for this population is given by

(
α1
αa

)

t+1
=

(
0 ρφ1
φa φa

)

t

(
α1
αa

)

t
+ ηt+1,

for t = 1, . . . , T − 1, where φ1,t denotes the probability of first-
year survival, φa,t denotes the probability of adult survival and ρt
denotes the productivity parameter at time t . The system process
error (often referred to as demographic stochasticity [41]), ηt+1, will
typically assumed to have mean zero, with some error structure, such
as Poisson for age 1 and Binomial for those older than 1 year.
If only adult individuals are observed during a census count, the cor-
responding observation equation may be expressed as,

yt = (0 1 )

(
α1
αa

)

t
+ εt ,

for t = 1, . . . , T , with εt ∼ N (0, σ 2), and observation error param-
eter σ 2.

A closedform likelihood for state-space models is only available when specifying
either (i) a linear and Gaussian model, or (ii) where the state vector is discrete-valued,
leading to a hidden Markov model (HMM). See [39] for further discussion. The infor-
mation contained within the temporal abundance data alone may be relatively weak, in
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Table 1 Table summarizing four practical challenges associated with the application of IPMs to ecological
data, the existing work which addresses them and the future avenues of research

Challenge Existing work Future avenues

Model specification Ecological knowledge (system
process); Sampling methods
(observation process); Dependence
structure; Parameter interpretation;
Confounded parameters.

New forms of data; Accounting for
variability in quality/quantity of
different datasets; Dealing with
data across different
geographical/temporal scales;
Model identifiability and parameter
redundancy; Multi-species and
associated issues.

Computational Optimization of computational times
for each component separately
through likelihood marginalization
and approximation; Formulation of
IPMs as HMMs and use of
associated machinery.

Approximate likelihood approaches;
Scalability of algorithms; General
and easy-to-use computational
solutions; Alternative software
solutions for IPM implementation
(besides Jags).

Model assessment Step-wise model selection; most
informative data set; posterior
model probabilities; RJMCMC;
diagnostic goodness-of-fit tests;
Bayesian p-values; calibrated
simulation

Regularization methods; HMM
methodology; forecast variance;
approximate likelihood
approaches; software development.

Forecasting Time-series methods; Population
viability analysis; Climate
projections; Ensemble models

Quantifying and reducing
uncertainty; Optimizing sampling
design; Combining IPM with
ensemble models; Coupling IPMs
with integral projection models
(IPM2).

terms of the demographic parameters, which may be strongly correlated and/or even
confounded. Thus, such abundance data are often integrated with additional forms of
data that provide information on more of the demographic parameters. For example,
capture-recapture-type data may be used to provide information on survival probabili-
ties; or nest-record data for productivity rates. For such data, the associated likelihood
functions may often be expressed in closed form. However, combining these different
forms of data within an integrated modeling approach leads to a number of additional
challenges and modeling considerations. Four practical challenges associated with
the application of IPMs to ecological data are summarized in Table 1. Existing work
that begins to address some of these challenges is discussed in Sects. 3.1–3.4 before
discussing potential avenues for further research in Sect. 4.

3.1 Challenge 1: Model Specification

For any given data set, and specified ecological question or hypothesis, the first step
in the data analysis pipeline involves specifying a statistical model to describe the
observed data. This requires knowledge of both the data collection process and asso-
ciated ecological system being studied. This information permits the construction of
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the statistical model, given appropriate assumptions, and the associated likelihood
function to be derived [1, 42–44]. However, for IPMs, there are multiple observation
processes, each associated with the different datasets, and typically either multiple
system processes (which may interact with each other) and/or more complex system
processes. Consequently, IPMs lead to additional considerations within the model
specification. One such consideration has already been discussed in Sect. 2 in relation
to the specification of the joint likelihood function of the data and whether the data
sets can be regarded as independent, conditional on the associated model parame-
ters. However, due to the combining of the different data sets, further care is needed
in terms of the interpretation (or equivalence) of the parameters associated with the
system process(es).

For multiple data sets, the relationship between the parameters associated with each
data set needs to be considered with some care. In practice, there will be some parame-
ters for which there is direct information from only one data set; and other parameters
for which there is direct information from two (or more) data sets. For example, sup-
pose that there are n = 2 data sets. The set of parameters can be decomposed as
follows: θ = {θ1, θ2, θ1,2}, where θ j corresponds to the parameters uniquely asso-
ciated with the model for data component j = 1, 2; and θ1,2 denotes the parameters
for which there is direct information contained in both data sets. For simplicity, the
parameters for which there is direct information from multiple data sets (i.e., θ1,2 in
this example) are referred to as the common parameters across the given data sets. For
example, consider integrated count data with ring-recovery data (x1 = count data; x2 =
ring-recovery data) with model parameters θ corresponding to demographic survival
probabilities, φ, and fecundity rates, ρ; and associated observation process parameters
corresponding to recovery rates, λ (for the ring-recovery data), and observation error
variance, σ 2 (for the count data). Then, θ1 = {ρ, σ 2}; θ2 = λ and θ1,2 = φ (see, for
example, [19] for further discussion in relation to this particular example). Note that
for the special case of conditionally independent data sets, the joint likelihood (for
n = 2) can be written as,

f (x; θ) = f1(x1; θ1, θ1,2) f2(x2; θ2, θ1,2),

with the immediate extension for n ≥ 3 data sets.
In considering the general model construction and parameter specification, there

are two particular points to emphasize:

1. The parameters that are common to different data sets must have the same inter-
pretation across these different data sets; and

2. Considering the joint likelihood of the integrated model may permit the estimation
of previously confounded parameters.

The first point requires knowledge of the different data sets and associated modeling
assumptions. In particular, parameters that appear to be common to multiple data
sets may have slightly different (possibly nuanced) definitions. For example, consider
two data sets which each provide information on the survival probabilities of the
species of interest. However, there may still be assumed differences in relation to
the interpretation of these survival parameters. For example, true survival (i.e., non-
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mortality) as opposed to apparent survival allowing for other departures from the study
site, such as permanentmigration [30]; or where the survival probabilities are specified
over different geographical locations and/or temporal periods [45]. In practice, it may
be of ecological interest whether given parameter(s) are equal across the different
data sets, providing ecological insight into the systems, leading to potential model
selection (or hypothesis testing) within the statistical analysis (see Sect. 3.3). Given
the parameter is common across data sets, applying an integrated modeling approach
typically leads to improved precision of the parameter, due to the increased information
available on the parameter [45].

Note that, perhaps somewhat ironically, having “similar” but distinct parameters for
the different data sets (as for true and apparent survival above), can be very useful in
IPMs as this can lead to the estimation of parameters that are confounded when only
considering the individual data sets. To illustrate this mathematically, return to the
simple two data set example. Suppose the model processes for data set, x1, are a func-
tion of a true survival probability S, and for data set, x2, this is a function of apparent
survival probability, φ, which is confounded with permanent migration from the study
site. Let γ denote the probability of permanently migrating from the study site, so that
φ = (1−γ )S. Then S ∈ θ1,2 and γ ∈ θ2, with φ now a derived parameter, calculated
as a function of these terms [15, 30, 46]. More generally, however, parameters that
are confounded when considering a single data set, may be estimable when combined
with additional, relevant information. For example, fledgling survival and first-year
survival are confounded for ring-recovery data if rings are applied to chicks in the nest
and rings are recorded at the (coarse) annual level. However, additional nest record
data may provide direct information on the fledgling survival, which when combined
with the ring-recovery data permits direct estimation of the first year (post-fledgling)
survival [47]. Alternatively, count data is often focused on the number of (adult) breed-
ing birds, often leading to the associatedmodel with first year survival and productivity
confounded. An IPM, incorporating additional capture-recapture/ring-recovery data,
permits the estimation of first-year survival, and hence the estimation of productivity
rates [7, 19, 48]; or additional nest-record data provides data on productivity rate, and
in turn the first-year survival rates [49].

3.2 Challenge 2: Computational Aspects

To combine data sources together, as previously discussed, IPMs typically require a
more indepth and/or complexmodel structure than the analysis of data sources individ-
ually.While eachmodel component of an IPM taken independentlymay be easily fitted
to data in a standard framework, their integrationwith abundance data expressedwithin
a state-space modeling framework often leads to additional computational challenges
[39]. This increased complexity leads to greater computational requirements in terms
of algorithm complexity, run times and memory load. For example, standard MCMC
(data augmentation) techniques that are widely used in practice can require days or
even weeks to run IPMs on desktop computers using dedicated black-box software,
such as JAGS [50]. The computational burden is such that it becomes difficult—if not
impossible—to go through the usual modeling strategy of starting simple and adding
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complexity, or to fit several models and compare corresponding ecological hypotheses
(see Sect. 3.3). Note that the most recent software like Nimble [51] allows choosing
and customizing MCMC algorithms which may help optimizing time computation
for specific components of IPMs. Here we describe two alternative strategies that are
often applied to address the computational model-fitting challenges.

3.2.1 Consideration of Separate IPM Components

When building IPMs, for the case of conditionally independent data sets, it is com-
mon practice to go through building each data component separately before combining
them [52]. This approach focuses on each individual component in turn and provides
a natural approach to identifying the associated computational burden by identifying
a possible bottleneck, and optimizing the fitting of the corresponding component. A
bottleneck most naturally occurs when the model is specified via unobserved (latent)
variables, such as state-space models for abundance/count data (with unobserved pop-
ulation sizes, possibly over several (st)ages); multi-state capture-recapture models
(such that states are unknown when an individual is unobserved); or individual het-
erogeneity model (with unobserved random effect terms).

More generally, several approaches have been developed to improve computational
times for individual model components. This often involves implementing strategies
that lead to faster evaluations of the likelihood function. For example, [53] marginalize
the likelihood, removing the latent states from themodel, and hence decreases the num-
ber of parameters to be estimated. Similarly, for multi-state capture-recapture models
[29, 54] marginalize the likelihood to provide closedform expressions via efficient
sufficient statistics, further facilitating its efficient calculation. These marginalization
approaches lead to more complex (observed-data) likelihood functions, compared
to the augmented (complete-data) likelihood with additional latent variables. The
marginal likelihood can be maximized directly within a frequentist framework; or
needs to be evaluated substantially fewer times when using a Bayesian Markov chain
Monte Carlo (MCMC) implementation leading to faster computational time and typi-
cally better mixing, compared to a latent variable data augmentation implementation.

Alternatively, approximate likelihood approaches may be applied to different mod-
eling components. For example, state-space models, using linear and/or Gaussian
approximations for the system and observation processes, permits the use of the fast
and efficient Kalman filter algorithm [55] to evaluate the likelihood function. Alter-
natively, (at least for system processes of low dimension), a coarse discretization (or
“binning” approach) may be applied to the system states, leading to an HMM approx-
imation [56–58]. In particular, [59, 60] used binning to deal with the large number of
possible states for the state vector of population abundance and showed that this numer-
ical approximation performs well compared to the Kalman filter approximations and
MCMC simulations. Further [60] proposed a semi-complete data likelihood approach
[61] to improve computational efficiency of fitting more complex state-space models
using a combined data augmentation and numerical integration scheme. They also
demonstrated improved computational efficiency using a binning approach, with min-
imal impact on the estimation of the parameters. Overall, dealing with an intractable
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likelihood for general state-spacemodels limits computational model-fitting tools, and
more research is needed in that direction [39, 62].

3.2.2 Full IPM Likelihood Evaluation

An alternative to considering the separate IPM components is to optimize the evalua-
tion of the full IPM likelihood. Note that this is, in general, necessary when the data
are dependent, as the likelihood cannot be factored into the separate components, but
can also be applied to the conditionally independent case. In general, this process may
also involve optimizing the evaluation of each separate data component as well. One
general approach for the likelihood specification is to formulate the IPM (possibly
via a suitable approximation) as an HMM, with multiple observation processes, and
potentially multiple system processes [63]. Formulating the IPM in this framework
opens access to the available toolbox of efficient algorithms to fit HMMs that have
been specifically developed to improve computational efficiency. See [64] for further
discussion of pitfalls and opportunities of HMM approximation to general state-space
population dynamics models.

Exploring another possibility, [65] proposed an efficient methodology for fitting
IPMs in a Bayesian framework. In particular, they exploited the integrated model
structure to reduce the computational cost of the algorithm by reducing the number of
times the likelihood needed to be evaluated. More specifically, a delayed acceptance
approachwas implemented,where the computationally intensive part of the likelihood,
corresponding to the state-space model for the count data, was only evaluated if the
proposed parameter value in theMCMCalgorithmwas evaluated to be “good” in terms
of the fast data likelihood component relating to the capture-recapture-recovery-type
data.

For data sets that are conditionally independent, a further step-wise process can
be applied when considering the full IPM likelihood. Recall that the joint posterior
distribution of the parameters can be expressed as the product of the likelihood of a
single data set, say x1, with prior equal to the posterior distribution of the parameters
given the other data sets [Eq. (1). For this case, where the associated prior is of standard
form, the model-fitting is simplified to consideration of data set x1, given the posterior
distribution of the parameters given the other data sets. This approach has been adopted
by, for example, [66] and [67] where x1 corresponded tomulti-state capture-recapture-
recovery data and x2 to multi-state radio-tagging data, with the common parameters
between the data sets the survival and state-transition probabilities. However, in many
cases, the posterior distribution π(θ |x2)may not be of standard distributional form. In
this case, the posterior distribution may be approximated, for example, by specifying
(independent) distributions with parameters determined using a moment-matching
approach with the posterior summary statistics.

3.3 Challenge 3: Model Assessment

Assessment for ecological models, encompassing both relative goodness-of-fit using
model selection/comparison strategies, and absolute goodness-of-fit are both well
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grounded with standard procedures available in a practitioner’s toolkit. However,
model assessment for IPMs, combining multiple data sets within the same model-
fitting process, is relatively underdeveloped.

3.3.1 Model Selection

The potential model space for integrated models can be very large. For example,
demographic parametersmaybe timeor state dependent and/or dependupon individual
or time-varying covariates. In addition, error structures within a state-space model
for longitudinal time series can vary over time and/or space. The combination of
different parameter dependencies and/or error structures often leads to a large number
of possible models that may be fitted to the data. Individually fitting all such possible
models to data can be time-consuming or even simply infeasible, in practice. This
typically leads to the use of a step-wise search algorithm over the model space [45].
Due to the lack of robust model selection approaches for IPMs, ad-hoc step-wise
model selection approaches are often applied separately to the different modeling
components, either at the parameter level or data set level. For example, the structure
of an IPMmay be investigated step-wise using the data set(s) which contains the most
information about a parameter (in terms of precision). This approach is applied by
[19] when combining ring-recovery and count data, with the model selected using the
ring-recovery component for the survival component (common to both data sets); with
subsequent parameter dependence for the productivity for the countmodel determined,
conditional on the survival dependence already selected. Implementing such search
algorithm strategies, however, can lead to different results when compared to model
selection conducted on the global, integrated, model and a suboptimal model being
selected [68].

For some forms of data, such as capture-recapture-recovery-type data, model selec-
tion using standard information criteria (or adaptations of information criteria to
account for small sample sizes or overdispersion) generally appears to work well [69].
However, information criteria do not appear to perform aswell for HMMs and/or state-
space models, particularly where competing models differ in terms of the dimension
of the (unobserved) state vector. For example, information criteria have been shown
to overestimate the number of states within HMMs [70]. Information criteria within
the Bayesian framework have also been applied to IPMs, such as the DIC [14, 71] and
WAIC [72]. Although easy to compute, there has been no formal evaluation of the
performance of these criteria for IPMs. Specific information criteria for state-space
models have been proposed (see for example [73]); however, these are computationally
intensive and their extension to state-space models when integrated with other models,
as in an IPM, has not been investigated. As an alternative, [74] propose a step-wise
approach to determine the dimension of the state vector (representing the age-structure
of the population), and hence number of states required in the state vector, within an
IPM framework and provides a starting-point for further research in this area.

Within the Bayesian framework, there are a number of standard model selection
tools (see [75] and [76] for general guidance) which can be implemented in an IPM
setting. Models can be quantitatively compared via posterior model probabilities, or
Bayes Factors [77]. There are typically two particular challenges in their use relating to
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(i) their estimation; and (ii) their sensitivity to prior distributions specified on themodel
parameters. To estimate posteriormodel probabilities, reversible jump (RJ)MCMChas
been applied in relation to the dependence structure of parameters, such as time and/or
covariate dependence [48, 76]. One particular attraction of RJMCMC is that only a
singleMCMCchain needs to be run, as theMCMCchain is able tomoveover themodel
space. However, the RJMCMC algorithm can be difficult to implement in the general
case and requires bespoke code, limiting its application in practice; although for the
special case of variable selection, such as covariate selection for given demographic
parameters, an indicator variable approach can be applied [51, 76, 78]. Alternatively,
for state-space models, [65] considered an approach using sequential Monte Carlo
samplers that permitted the calculation of posterior model probabilities across a set of
different IPMs.

Approaching model selection separately for each component of an IPM is attractive
for its simplicity since bespokemodel selection approacheswhich have been optimized
for a particular data type can be used. However, identifying a model as being the best
from a candidate model set does not mean that the model actually fits the data well,
and for IPMs in particular, even if individual components of the IPM fit well this
does not necessarily mean that the overall IPM fits well. Therefore, assessment of
fit of the overall IPM (as well as assessment of the appropriateness of any modeling
assumptions made) is an essential step in an IPM analysis.

3.3.2 Absolute Goodness-of-Fit

Absolute goodness-of-fit tests for ecological models can be particularly useful for
understanding disparities between the simplifying statistical model for a given system
and the associated dynamics of the population under study. Gaining insight into poten-
tial lack of fit can provide ecological understanding and lead to improved ecological
models. However, techniques for assessing absolute goodness-of-fit typically differ
across the types of data (and models) available. For example, absolute goodness-of-fit
techniques for capture-recapture-recovery-type models are fairly advanced, including
diagnostic goodness-of-fit tests which link the detection of lack of fit with a deter-
mination of the likely biological underlying cause of the inadequacy of the model
[79–81]. However, goodness-of-fit assessment for ecological state space models is
substantially more limited. The appropriateness of the Gaussian assumptions made
underlying the use of Kalman filter recursions can be investigated through diagnos-
tic checks of normality of the prediction errors arising from the recursions, but are
unlikely to help guide adaptation of the model to improve fit [19]. To date, where such
goodness-of-fit tests do exist, they are considered separately for each type of data and
not at the integrated level.

One approach, often referred to as posterior predictive checks, is to consider the
evaluation of a discrepancy measure between the observed data and data simulated
from the fitted model. For example, in a Bayesian framework, this leads to the idea of
a Bayesian p-value, where multiple data sets are simulated from the posterior distri-
bution of the model and compared to the observed data to see if these are “similar.”
See [82] for further discussion, and additional Bayesian approaches. Similarly, in a
frequentist setting, the idea of calibrated simulation has been proposed, which imple-
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ments a parametric bootstrap to obtain simulated data sets which are subsequently
compared to the observed data via a given discrepancy measure [83]. In general,
Bayesian p-values and calibrated simulation rely on the specified discrepancy mea-
sure, and conclusions may vary dependent on the specific measure used. Further, for
different types of data sets, one may wish to consider different discrepancy measures,
which leads to further challenge when combined within an integrated framework.

3.4 Challenge 4: Forecasting

Forecasting ecological population sizes or trends is of particular interest within con-
servation management and, driven by the ecological incentive, there exist tools for
forecasting across wide-ranging time scales. For instance, short-term forecasting tools
are typically used in the regular management and conservation of a species, for exam-
ple, in the fisheries industry to regulate annual harvest capacity of waters [84, 85].
In contrast, long-term forecasting tools are especially useful for prioritizing vulnera-
ble species for conservation intervention [86], evaluating the viability of a population
of a reintroduced species [87, 88], and in projecting the minimum effort needed to
locally eradicate an invasive species [2]. Despite the rapid growth in technological
tools for measuring, monitoring and analyzing species data, robust methods of eco-
logical forecasting are still an underdeveloped area [84]. One of the biggest hindrances
to forecasting the future trajectories of animal populations (regardless of time scale)
is the limited amount of data available for precise inference on how environmental
variables influence demographic parameters. High precision on estimates of covariate
effects is critical for prediction, since forecast errors will magnify over time. Thus,
when parameter precision is poor, forecasts will be rendered effectively useless ([89]
demonstrate this point with climate predictions). However, by increasing the amount
of data available for inference via integrated modeling techniques, it is possible to
improve the precision of demographic parameters and their relationships to covariates
and thus alleviate some uncertainty in species’ projections [3, 90].

Various time-series methods have been applied to ecological data to inform
decision-making on short-term time scales (days to years), such as random-walk,
autoregressive (AR-1) and moving average (MA-1) models [91–93]. However, such
standard time-series techniques often require large datasets, which may be available
for example for finance and climate, but rare in ecological settings and particularly so
in newly established research or conservation initiatives.

Long-term forecasting is often used to assess the possible fates of populations. Such
forecasts underpin population viability analysis (PVA), a procedure of estimating
the probability that a species will persist for a certain amount of time [94–96]. By
coupling IPMs with PVA, predictions of demographic parameters can be improved by
specifically incorporating multiple sources of uncertainty in a unified framework. This
may be particularly usefulwhen forecasting populations ofmultiple interacting species
with disparate data types. For example, this has been used to identify components of
multi-species population cycles and evaluate the efficacy of different management
strategies such as assessing how removals of one species may affect the population
viability of the other [3]. Other work that has used IPMs within a PVA include, but are
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not limited to, forecasting future salmon populations in response to fishery exploitation
[85], and predicting the population effects after environmental trauma such as large
oil-spills [97].

An emerging area in ecological forecasting couples population models with cli-
mate projections to forecast populations over a number of decades [98, 99]. The main
assumption behind such approaches is that species will respond to future climate con-
ditions similarly to their responses in the past. This is particularly useful for providing
evidence for practitioners of how populations may respond to certain climate sce-
narios and enables long-term risk assessment of species status. For example, [100]
provided projections of the monarch butterfly population based on a range of climate
change scenarios. However, while these environmental-based techniques provide use-
ful insights into the future, they are not without their issues [101]. As the projection
duration increases so does uncertainty in the parameter estimates and forecasts, espe-
cially if the future climate scenario is significantly different from the past and current
[102]. Further, these forecasting methods simply involve iterating the process model
for as long a time as needed past the observation period. However, when a population is
rapidly changing and/or available retrospective data sets contain relatively short time
frames of data, methods of iterating forward may not be very meaningful since the
parameter estimates may be estimated from unstable or rapidly changing populations
(for example, when reintroducing a species). Thus, there is a need for dynamic models
that can incorporate statistical non-stationarity [103].

In general, one of the main reasons for inaccurate forecasting is a lack of available
data and ofmethods accounting formultiple sources of uncertainty. IPMsmay alleviate
these issues, thus improving forecasts, by pooling information across data sources. In
other words, the precision of parameter estimates in relatively data-poor sources can
be improved by borrowing information from richer data sources [85].

4 Discussion

IPMs provide a statistically robust approach for integrating multiple sources of data,
making use of all available information. Understanding the dependence between the
multiple different forms of data sets and associated relationships will continue to
lie at the interface of ecological data science. Close collaboration between ecolo-
gists and statisticians is essential in order to construct biologically meaningful and
statistically robust models. Further, there are additional challenges in relation to inter-
preting meaningful results, including rigorous goodness-of-fit assessment, and use
of the associated model outputs to inform conservation management, for example,
via future predictions that include propagating the associated parameter uncertain-
ties. Further, efficient computational algorithms and user-friendly software are critical
for the models to be widely applied in practice. The outstanding challenges of the
different aspects of applying and interpreting IPMs relating to: model specification;
computational aspects; model assessment; and forecasting are discussed before final
concluding remarks are provided.
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4.1 Model Specification

A range of challenges arise in the different components of the model specification.
In particular, the form of available data is continually evolving, particularly with
advances in technology [104]. For example, citizen science data collection continues
to grow in popularity [105, 106] and eDNA data collection is increasingly being
used due to its capability to detect multiple species from water or air samples [107].
Remote sensing technology such as drones are providing finer-scale aerial survey
data of animals [108], satellite earth observation data over fine scales of 30–50cm are
becoming available across larger geographical areas and acoustic recording technology
is enabling monitoring of elusive marine species [109], from which machine learning
techniques can provide population count estimates [110]. The associated statistical
models and tools are being developed for these new forms of data, but additional
issues arise with incorporating such data into IPMs due to differences, for example, in
relation to quality, quantity and scale [111, 112]. New challenges arise relating to how
data of potentially very different geographical scales may be integrated. For example,
where a large data set of “poor” quality (i.e., low information content)maybe combined
with small data set(s) of “high” quality within a robust and rigorous framework; and
how the relative information can be computed across varying scales and levels of
missing/incomplete data. Simple evaluation of the relative information in component
data sets within an IPMhas been proposed through evaluation of generalized variances
[113].However, there is a need for exploration ofwhether likelihood components could
be weighted to reflect the varying quality of the available data.

Considering multi-species predator–prey models provides new insight into the
dynamics of the wider ecosystem, as opposed to an individual single-species study
[22, 23]. However, it is necessary for equilibrium conditions to be assessed for valid
interpretation of output from such models [114]. Understanding how more complex
models such as these can be incorporated within the general IPM framework will pro-
vide greater flexibility and potential for such data integration, with direct implications
for wildlife management and conservation.

Further, as different forms of data are collected, and combined within IPMs, addi-
tional statistical models will be constructed. Even for relatively well-studied types
of data and associated “standard” biologically sensible models, due to the specific
observed data, this may lead to identifiability issues and confounded parameters
that cannot be reliably estimated. Such issues are increasingly likely to arise with
increasingly complex data. Analytic tools exist to determine if the model is parameter
redundant and if so the estimable parameters of a model [115]. However, these typi-
cally only consider each individual (independent) model component associated with a
particular type of data. Identifying parameter redundancy increases in complexity as
themultiple types of data are combinedwithin an IPM, so that analytic techniquesmay
quickly become computationally infeasible and unable to scale to complex models.
Formal determination of estimable parameters has been identified for the combination
of count and ring-recovery data [9], but more practical exploration of identifiability,
potentially with the use of numerical techniques [78, 116] may be required in practice.
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4.2 Computational Aspects

Modern model-fitting to data typically reduces to a computational problem: either a
numerical optimization problem to obtain the MLE of the parameters; or an MCMC
sampling problem, in order to be able to obtain an estimate of the posterior distribu-
tion of interest. Additional issues arise, for example, when an associated likelihood
component is not available in closed form (as for general state-space models or in
the presence of missing data), or where the likelihood is computationally expensive
to evaluate. Such computational challenges often lead to specialized algorithms being
developed. However, in general, this requires additional coding experience and is
bespoke to the particular problem being addressed. More general and easy-to-use
computational solutions that can be applied to a wide suite of integrated models and
applications are required for wider dissemination and impact.

Approximate likelihood approaches are an interesting alternative that can alleviate
the computational expense of IPM components. For example, constructing capture-
recapture-recovery-type likelihoods in terms of maximum-likelihood estimates and
corresponding variance-covariance matrix using a multivariate normal approxima-
tion has been shown to work well in an IPM framework [117]. This provides a
potential mechanism for specialized (optimized) computer packages to be applied
to specific data types, which can then be combined with other data sets within an
IPM framework. This has been extended further for an IPM combining census data
with capture-recapture-type data. In this case, a further approximation was made,
assuming independence between the estimated MLEs of the parameters from the
capture-recapture data (i.e., assuming a diagonal variance–covariance matrix) within
the multivariate model approximation [45]. This suggests that published model esti-
mates may be more widely used within an integrated framework, to reduce the
computational burden and widen the potential application of IPMs, and the Bayesian
framework through informative priors seems like a natural solution to do so. How-
ever, the application of such approximations to date has been relatively limited, with
further investigation required to more fully explore their potential and also associated
limitations (see also additional model assessment challenges).

As data sets increase in size and/or models become more complex additional
efficient computational optimization or sampling algorithms may be required. For
example, by making use of structural properties of the likelihood function that may
lead to improved optimization algorithms; or reducing the size of the data set by con-
sidering subsamples of the data and correcting the associated posterior estimates [118].
Further, it may be possible to take advantage of the flexibility of Bayesian black-box
software such as Stan [119] and Nimble [120] which permit customization of the
algorithms. This approach requires more intricate knowledge of the software, but the
effort can substantially improve the model-fitting process [121, 122] and is usually
more accessible than alternatives such as C(++) [123]. Understanding the relationship
between the different components of an IPMmay suggest potential techniques for effi-
cient model-fitting [65]. Alternatively, general likelihood-free approaches have been
developed for fitting complex models, such as approximate Bayesian computation

123



Journal of Statistical Theory and Practice             (2023) 17:6 Page 19 of 28     6 

(ABC; [124]) and synthetic likelihood [125]. Exploring how such techniques may be
applied to IPMs is a potentially interesting avenue of future research.

4.3 Model Assessment

Various model selection approaches have been implemented for IPM analyses, includ-
ing the use of standard information criteria [45], andmodel structure being determined
by the most informative data set [19]. However, these approaches are limited since
they have only comparedmodels with the same length of state vector. [74] proposed an
approach for selecting the appropriate age-structure for given model parameters in an
IPM, which requires comparison of models with state vectors of different dimensions.
However, this study was limited to selecting only age-structure and so extending the
ideas to additional dependence structures such as time, state and/or covariate depen-
dence is as yet largely untested.

Further, simultaneously considering the multiple types of dependencies (for exam-
ple, age, time, covariate etc.) on the different model parameters is an additional
challenge, both increasing the number of combinations of possible models that may
be considered and also potentially the complexity of the models under consideration.
Additionally, the performance of standard statistical approaches has not been fully
explored for IPMs. This suggests potential avenues, including, for example, inves-
tigating regularization methods for model selection (such as Lasso), and the use of
weakly informative priors [126]. Similarly, for absolute goodness-of-fit assessments,
the calibrated simulation approach discussed in Sect. 3.3 may be applied for detect-
ing a lack of fit within IPMs. [127] investigated the calibrated simulation approach
and existing diagnostics goodness-of-fit tests for capture-recapture data to detect spe-
cific departures from the fitted model and the diagnostic tests performed well when
under scenarios of substantial departure from model assumptions and large sample
size (e.g., density-dependence, immigration, capture heterogeneity). However, where
data are more sparse there was less power to detect mis-specified IPMs.

More generally, many ecological models, including longitudinal counts over time
and demographic data such as capture-recapture-recovery-type data, can be expressed
within an HMM framework [18]. Such models naturally extend to IPMs as demon-
strated by [59]. Thus, model assessment techniques developed for HMMs may be
considered more generally for such IPMs. In particular, [70] investigated different
techniques for determining the number of latent states within HMMs which could
assist model selection for IPMs, in relation to determining the age-dependence struc-
tures, for example. Alternatively, [128] developed a diagnostic goodness-of-fit test to
determine whether the proposed latent structure in an HMM for partially-observed
capture-recapture data was appropriate based on the observed data. The specification
of components of IPMs all within the related state-space modeling framework also
potentially suggests the use of forecast variance for goodness-of-fit assessment [129].
Developing these approaches, and in particular extending them tomultiple observation
and/or systemprocesses, provide future directions for the associatedmodel assessment
challenges of IPMs.
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Approximate likelihoods for different model components of IPMs may be used to
deal with the computational challenges, or where the raw data may not be available.
However, when using estimates and their associated variance-covariance matrix to
approximate the likelihood function as a component within an IPM it is not possible
to change the structure of the parameters within that approximate likelihood function.
Therefore, the potential model space is restricted due to the use of the approximate
likelihood and hence it would seem sensible that such a restriction should potentially
be penalized for within the model selection of an IPM. However, no formal evaluation
has yet been conducted to address what penalties should be imposed.

New statistical developments for model assessment of IPMs need to be practi-
cal, in terms of feasibility when the computational time for fitting an IPM is taken
into account, and accessible to the wide user-community of IPMs. Thus, any new
approaches developed need to be compatible with software that individuals are using
to fit IPMs and users need to be aware of potential limitations of what the methods
can be used to diagnose. Additionally, considerable effort needs to be made toward
disseminating research and encouraging uptake from wider audiences.

4.4 Forecasting

One major avenue of future research within forecasting is the quantification and
reduction of prediction uncertainty. Failure to account for uncertainty when making
decisions in ecology can lead to poor management and policy decisions. In short-term
forecasts, reduction in uncertainty may be possible by iteratively updating forecasts in
light of new data by gaining feedback, assessing effectiveness, and adapting models
[84, 130, 131]. Long-term forecasting tools which use climatic data to predict abun-
dance [100, 132] can experience a nonlinear increase in uncertainty as the projection
duration increases and their predictive skill can often vary because of the complex
interactions between climate and population dynamics [133]. By decomposing the
sources of uncertainty, [98] determined that the largest contributor was sampling vari-
ance. However, this can be easily reduced through larger sample sizes, or combining
data sources, i.e., through the use of an IPM. In addition, [101] suggests that param-
eter uncertainty can be reduced, over the near and long term, by collecting targeted
data to better understand mechanistic links. Another possibility, which is useful when
resources are limited, is to optimize sampling design by investigating the cost-benefit
of certain data collection methods, i.e., assessing whether the benefit of using more
expensive monitoring methods are worth their possible reduction in uncertainty. Cur-
rently, there exists literature on optimizing sampling design of specific data types such
capture-recapture [134] and occupancy studies [135]. However, optimizing sampling
design in studies where multiple data types are integrated is a relatively unexplored
area.

For multi-species systems, ensemble ecosystem modeling (EEM) [136, 137] pro-
vides a quantitative method for forecasting abundances in the future. EEM integrates
species interaction networks and simulations of population models using the Lotka–
Volterra equations as a standard predator–prey model. This technique is specifically
designed for predicting the abundance of interacting species after a predator reintro-
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duction and is useful for assessingwhether therewill likely be any significant change in
species abundance between pre- and post-reintroduction estimates. While this allows
for assessing large-scale species networks, it can be computationally challengingwhen
a network exceeds 10 species. Long-term forecasting EEM can typically only provide
suggestions of possible scenarios and future states of system with associated risk and
it does so with uncertainty; however, EEM presents these uncertainties in a systematic
waymaking it easier for end-users to make decisions [138]. One interesting possibility
of future research could be to use the techniques of EEM within an IPM framework.
For example, by using the species interaction networks of EEMwithin an IPM to fore-
cast populations in multi-species systems. Conversely, it would also be worthwhile
investigating whether the use of IPMs within an EEM framework helps to improve
estimates.

Finally, emerging work combining integrated population models with integral pro-
jection models (referred to as IPM2) allows individual heterogeneity in demographic
rates to be included within an IPM [139]. This improves forecasting accuracy by
allowing subtle individual-level mechanics to drive population dynamics. Further
development and investigation of such approaches provide interesting avenues of
research in this area.

4.5 Conclusion

With the recent advances in data collection technology, it is now possible to collect
data at a range of spatial and/or temporal scales as well as from individual-based data
collection toward community-level data collection. The IPM framework provides an
adaptable and flexible approach that can accommodate the different scales and upscale
to provide a community-level statistical modeling approach. Overcoming the different
statistical challenges for IPMs presented within this paper will ensure that appropriate
statistical methods are available for extracting intricate-level information from the
available data sets. As data collection technology and ecological theory continues
to evolve, it is essential that the associated statistical developments keep pace and,
crucially, are made accessible to a wide range of users. Raising awareness and utility
of such tools will permit rigorous data-driven conservation decision-making.
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