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Abstract

We classify and explicitly construct the irreducible graded representations of anti-spherical
Hecke categories which are concentrated one degree. Each of these homogeneous represen-
tations is one-dimensional and can be cohomologically constructed via a BGG resolution
involving every (infinite dimensional) standard representation of the category. We hence
determine the complete first row of the inverse parabolic p-Kazhdan—Lusztig matrix for an
arbitrary Coxeter group and an arbitrary parabolic subgroup. This generalises the Weyl-Kac
character formula to all Coxeter systems (and their parabolics) and proves that this generalised
formula is rigid with respect to base change to fields of arbitrary characteristic.

Keywords Hecke categories - p-Kazhdan-Lusztig polynomials - Weyl-Kac character
formula

Introduction

The discovery of counterexamples to the expected bounds of Lusztig’s conjecture was an
earthquake in representation theory. It marked the beginning of a new era of Lie theory,
in which diagrammatic Hecke categories play centre stage in our attempts to understand
the structure of algebraic groups in terms of parabolic “p-Kazhdan—Lusztig polynomials".
There are precious few general results concerning either the simple representations of these
diagrammatic Hecke categories, or the underlying combinatorics of parabolic p-Kazhdan—
Lusztig polynomials.

We let k denote an algebraically closed field of characteristic p > 2. Given W an arbitrary
Coxeter group and P an arbitrary parabolic subgroup, we classify and construct the homoge-
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neous (simple) representations of the anti-spherical Hecke category Hﬂf,\w (note that Hﬂf,\w
is ak-linear graded category and so this notion makes sense) constructed from the “geometric
realisation" of W. We prove that a Hﬂf,\w—module is homogeneous if and only if it is one-

dimensional if and only if it is the simple L (1 p\w ) labelled by the identity coset 1 p\w € Pw
(and we provide a basis of L(1p\w) by way of Libedinsky’s light leaves construction).

Theorem A The anti-spherical Hecke category Hﬂﬁ,\w admits a unique homogeneous simple
module, L(1p\w), labelled by the identity coset 1p\w. This simple module is a one-
dimensional quotient of the infinite-dimensional standard Hﬂf,\w-module A(lp\w).

Concurrently, we provide a cohomological construction of the unique homogeneous
Huﬁ\w—module by way of a BGG resolution. Within this BGG resolution, every one of the

(infinite-dimensional) standard Hu,‘,\w-representations A(w) for w € P W appears in degree
as dictated by the length function on the underlying Hecke algebra. Our BGG resolutions
allow us to calculate the complete first row of the inverse parabolic p-Kazhdan—Lusztig
matrix for W an arbitrary Coxeter group and P an arbitrary parabolic subgroup. This pro-
vides the first family of explicit (inverse) p-Kazhdan—Lusztig polynomials to admit a uniform
description across arbitrary Coxeter groups and their parabolic subgroups. In the case that
W is an affine Weyl group and P is the maximal finite parabolic subgroup this gives new
character formulas for representations of the corresponding algebraic groups through [1, 2].

Theorem B Associated to the unique homogeneous simple Huf,\w -module, L(1 p\w), we have
a complex Co(1p\w) = @D crw Aw) (€(w)) with differential given by an alternating sum
over all “simple reflection homomorphisms". This complex is exact except in degree zero,
where Hy(Co(1p\w)) = L(1p\w). We hence conclusively generalise the Weyl-Kac charac-
ter formula to all (parabolic) Coxeter systems via the formula

[Lpw)]= > () [Aw)]
wefw
and thus conclude that the first row of the inverse parabolic p-Kazhdan—Lusztig matrix has
entries (—v)*™ regardless of the characteristic p # 2.

Specialising to the case of (affine) Weyl groups, our character formulas and resolutions
have a long history. For finite Weyl groups, Bernstein—Gelfand—Gelfand constructed their
eponymous resolutions in the context of finite dimensional Lie algebras [8]. For Kac—-Moody
Lie algebras these were the subjectAof Kac—Kazhdan’s conjecture [34] (over C) which was
verified by Wakimoto (for W = &, [46]), Hayashi (for classical type [25]) and Feigin,
Frenkel, and Ku (in full generality [22, 36]) and was extended to arbitrary fields by Mathieu
[40] and subsequently reproven by Arakawa using W -algebras [3, 4]. For parabolic subgroups
of finite Weyl groups, our resolutions were first constructed in [37] and went on to have
spectacular applications in the study of the Laplacian on Euclidean space [15]. For the
infinite dihedral Weyl group with two generators, these resolutions were generalised to the
Virasoro and blob algebras of algebraic statistical mechanics [21, 23, 41]. For W the finite
symmetric group and P a maximal parabolic, these resolutions were one of the highlights of
Brundan-Stroppel’s founding work on categorical representation theory [10, 11]. For W the
affine symmetric group and P the maximal finite parabolic and k = C, Theorem B proves
a recent conjecture of Berkesch—Griffeth—Sam [5] concerning BGG resolutions of unitary
modules for Cherednik algebras.

Kazhdan—Lusztig conjectured that much of combinatorial Lie theory should generalise
beyond the realm of Weyl groups (where our resolutions admit the geometric realisations
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discussed above) to arbitrary Coxeter groups. Hecke categories provide the structural per-
spective in which the Kazhdan—Lusztig conjecture was finally proven [19] and serve as the
archetypal setting for studying all Lie theoretic objects. In this light, Theorem B provides the
prototype for all the aforementioned BGG resolutions and vastly generalises their construc-
tion to all parabolic Coxeter systems (which are poorly understood in general, but include
for example the finite, affine, compact, paracompact, hypercompact, and Lorentzian Coxeter
groups) and to fields of positive characteristic — the instances for Lie groups, Kac—Moody
Lie algebras, and their parabolic analogues are merely the examples for which a classical
geometric structure exists.

Our proof is surprisingly elementary, the key idea is to exploit the the inductive nature
of the light leaves construction. This plays off both the monoidal structure and the highest-
weight structure of the Hecke category, which are compatible with certain truncated restriction
functors. Our proof is more compact than many of the proofs for (affine) Weyl groups cited
above and should be accessible to those who are new to the research area.

p-Kazhdan-Lusztig polynomials

The anti-spherical Kazhdan-Lusztig polynomials for crystallographic Coxeter systems were
first studied in the language of Hecke categories by Libedinsky—Williamson over the complex
numbers [38]. The authors remark that their localisation methods do not carry over to fields
of positive characteristic and so they do not define p-Kazhdan—-Lusztig polynomials (or light
leaves bases) in their paper. In this paper we make the (rather trivial) observation that one
does not need such localisation methods in order to define p-Kazhdan—Lusztig polynomials
(or light leaves bases). In Sect. 1.6 we discuss under what circumstances one can restrict to
Z C C and hence obtain light leaves bases by “reduction modulo p". In this manner, we
define the p-Kazhdan-Lusztig polynomials for arbitrary (parabolic) Coxeter systems.

With this machinery in place, we note that Theorem B provides the first instance of a
complete row/column of the (inverse) (p-)Kazhdan—Lusztig matrix to be calculated for all
Coxeter groups (and their parabolics). This is especially noteworthy considering just how
difficult it is to calculate p-Kazhdan—Lusztig polynomials — for example, the current state-
of-the-art “billiards conjecture” of Jensen—Lusztig—Williamson describes an infinitesimally
small region of the p-Kazhdan-Lusztig matrix in type Az\Xz [31, 39]. The only other
examples of p-Kazhdan-Lusztig polynomials which are explicitly known are the famous
“torsion explosion" counter examples to the Lusztig conjecture [47]. Therefore we expect
our examples of (characteristic-free) p-Kazhdan—Lusztig polynomials to be of wide interest
in their community, as they provide the most general family of these polynomials calculated
to date.

1 The diagrammatic Hecke categories

We begin by recalling the basics of diagrammatic Hecke categories. Almost everything from
this section is lifted from Elias—Williamson’s original paper [20] or is an extension of their
results to the parabolic setting [38].

Remark 1.1 The cyclotomic quotients of (anti-spherical) Hecke categories are small cate-
gories with finite-dimensional morphism spaces given by the light leaves basis of [20, 38].
Working with such a category is equivalent working to with alocally unital algebra, as defined
in [12, Section 2.2], see [12, Remark 2.3]. Throughout this paper we will work in the latter
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setting. The reader who prefers to think of categories can equivalently phrase everything in
the this paper in terms of categories and representations of categories.

1.1 Coxeter systems

Let (W, S) be a Coxeter system: W is the group generated by the finite set S subject to the
relations (o 7)" " = 1 for m,, € N U {oo} satisfying m,, = m,, and that m,, = 1 if and
onlyifoc =7 € S.Let £ : W — N be the corresponding length function. Let £ = Z[v, v™!]
be the ring of Laurent polynomials with integer coefficients in one variable v.

Consider Sp € S an arbitrary subset and (P, Sp) its corresponding Coxeter group. We
say that (P, Sp) is the parabolic subgroup corresponding to the set Sp C S. We denote by
PW C W the set of minimal coset representatives in P\W.

Given an expression w = ojo2---0¢ foro; € W forl < i < £, we let w be the
corresponding element of W. We define a subword of w tobe asequencet = (¢, 2, ..., ) €
{0, 1}¢ and we set wt := crf1 02'2 . ~Ué‘ and we emphasise that s? = ly € W. We write
y < w if for some (or equivalently, every) reduced expression w there exists a subword t and
a reduced expression y such that w' = y. We let expf, (w) denote the set of all expressions
w = o102 --- 0 of w of length ¢ such that oy ...0% € PW foreach 1 < k < £, we let

expp(w) = ngoexp‘}, (w), and expft, = Uwewexpﬁ, (w). We set rexpp (w) := expfg(w)(w).

1.2 Bi-coloured quantum numbers and Cartan matrices

We define the x- and y- bicoloured quantum numbers as follows. First set

and then inductively define
2lclkly = [k + 1] + [k — 1] [2]y[k]x = [k + 1]y + [k = 1];. (1.2)

When k is odd, [k], = [k],. The following definition allows one to speak of Cartan matrices
of Coxeter groups.

Definition 1.2 Let k be a complete local ring in which 2 is invertible. A balanced Cartan
matrix of (W, S) over k is an |S| x |S|-matrix (do ) res such that

(1) for all o € S we have a,, = 2;
(2) for all distinct o, T € S such that m,, < 0o, setx = —a,, and y = —a,,. We require
that

[mocly = [mnr]y =0 [moe — 1]x = [mor — l]y =1 (13)

1.3 Soergel graphs

Let (W, S) denote an arbitrary Coxeter system with S finite. Given o € S U {{J} we define
the monochrome Soergel generators to be the framed graphs

Tp = 1, = spot? = T fork?, =

and given any o, t € S with ms; = m < 0o we have the bi-chrome generator
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braid}? (m) =

; braid 7 (m) =

T

for m odd, or even respectively. Here the northern edges are coloured with the sequence

7070 ...0T 7070 ...T0

m times m times

for m odd or even respectively and the southern edges are coloured

oToT...TO OTOT...0OT

m times m times

for m odd or even respectively. We define the northern/southern reading word of a Soergel
generator (or its dual) to be word in the alphabet S obtained by reading the colours of the
northern/southern edge of the frame respectively (ignoring any # symbols). Pictorially, we
define the duals of these generators to be the graphs obtained by reflection through their
horizontal axes. Non-pictorially, we simply swap the sub- and superscripts. We denote this
duality by *. For example, the dual of the fork generator is pictured as follows

fork?? = = (fork? )*. (1.4)

Given any two (dual) Soergel generators D and D’ we define D ® D’ to be the diagram
obtained by horizontal concatenation (and we extend this linearly). The northern/southern
colour sequence of D ® D' is the concatenation of those of D and D’ ordered from left to
right. Given any two (dual) Soergel generators, we define their product D o D’ to be the
vertical concatenation of D on top of D’ if the southern reading word of D is equal to the
northern reading word of D’ and to be zero otherwise. Finally, we define a Soergel graph
to be any graph obtained by repeated horizontal and vertical concatenation of the Soergel
generators and their duals.

1.4 Some specific graphs
For w = 07 .. .0y an expression, we define

1ﬂ:101®162®"'®10[ (1.5)

and given k > l and o, 7 € S we set

* =1,01,01,01,... (1.6)

to be the alternately coloured idempotent on k strands (so that the final strand is o- or -
coloured if k is odd or even respectively). Given o, T € § with m,, = m even, let

W=prepp(OT - OT) Pkt Pe W= 1o (10 - T0) Pkt - pe(1.7)

be two reduced expressions for w € W. We say that w and w are adjacent and we set

braidts = 1, ® -+ ® 1, ® braid? (m) ® ..., ® - ® 1, (1.8)

@ Springer



2212 C.Bowman et al.

Fig. 1 The fork-braid and Jones—Wenzl relations for my; = 3

Fig.2 The Zamolodchikov relation for A3

(similarly for m odd). Now, given a sequence of adjacent reduced expressions,
w=w w? L w?=w (1.9)
and the value ¢ is minimal such that this sequence exists, then we set
(P)
braidiy = [] braid”., e Hj. (1.10)
1<p<q o

While this element is not uniquely defined, only the minimality will matter for our purposes
(Fig. 1).

Example 1.3 The left and righthand diagrams depicted in Fig. 2 are both of the form braid%
for N

w = poprorpotr and W=710pTOT. (1.11)
The corresponding sequences of adjacent reduced expressions are recorded in the Zamolod-

chikov relation pictured in Fig. 2.

1.5 The diagrammatic Hecke categories

Let (W, S) be a Coxeter system with a balanced Cartan matrix (ds1)s,res. Suppose o, 7 € S
with m = m,, < oo. In order to save space, we set

w7 = (1o ®spoty ® 1,)(fork] , ® 1) wj2?? = (1, ® fork]”)(1, ® spot‘f ®1,)
(1.12)

We are now ready to inductively define the Jones—Wenzl projector JW?,’“T“ to be the element

WZE @ 1o + gl OWSE @ 1) (13572 @ i) (W © 155) (12572 @ wig I OWE! @ 10)

@ Springer



The modular Weyl-Kac character formula 2213

and the Jones—Wenzl projector JW[z,kT to be the element

W @1+ B oW @ 1) (123 @ jwi T HOWE 2 @ 1) (1 P @ wil HowE T @ 1),

We remark that in each case the leftmost strand is coloured with o and the second term has
coefficient equal to a ratio of x-bicoloured quantum integers. The pictorial version of the first
recursion (for 2k 4+ 1 odd) is as follows

I T | 1J
Wzt
2k — 1],
Jwzktt = Jwzk +l4§H7L' Jwzkt \1\
wx )

The elements JW2 and JW*+! are the same as the above except with the inverted colour
pattern and coefficients equal to y-bicoloured quantum integers. Specifically, we set JW%’;“
to be the element

2k—1]y — . — - .
W @1+ S oW @102 2 @ jwifHOWE T @ 1.0 (% @ Wil HUW @ 1)

and we set JW?X to be the element

_ 2k—2]y _ _ . _ _ . _
WA @15 + e W @ 1) (1% @ Jwgi5) (W2 © 150) (12677 ® WiZZ )W @1,).

Finally, we define JW,. and JW., to be the evaluation of the diagrams JW?'_ and JW”

oT
respectively at x = —a,, and y = —a,,.! The Jones-Wenzl relation for m = 3 is pictured in

Fig. 2.

Definition 1.4 Let k be an arbitrary commutative ring. Let (W, S) be a Coxeter system with
a balanced Cartan matrix (a,)s,-cs Over a commutative ring k. We define H“‘ﬁv to be the
locally-unital associative Z-graded k-algebra spanned by all Soergel-graphs, with duality *,
and multiplication given by vertical concatenation of diagrams modulo the following local
relations and their duals.

o1, =850 1o 1yl, =0 12 =1y
1gspot? 1, =spot?  1,fork? 1,, =fork?, 1™ braid’? (m) 1" = braid’? (m)
For each o0 € § we have monochrome relations
(spot? ® 1,) fork?® =1, (1o ® fork? ) (fork?” ® 1,) = fork?“ fork? .
fork? , fork’” =0 (spotgspotg) ® 1, +1, ®( spotgspotg) =2( spotgspotg)

For every ordered pair (0, 7) € S? with o # 7, the bi-chrome relations: The two-colour
barbell,

(spot‘fspoté) 1, -1, ® (spot?spoté) =a,.(( spotgspotg) -1, ® (spotg spoty)).

! Here we are using the fact that Jones—Wenzl projectors can be can be computed “generically” [16, Theo-
rem 6.13].
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2214 C.Bowman et al.

If m = m,, < oo we also have the fork-braid relations

braid’? 7 (fork?, ® 1"~1)(1, ® braid?"17) = (1"! ® fork’ ) (braid’? 7" @ 1.)

TO0T
braid’? " 7 (fork?, ® 1"~1(1, ® braid? " 7%) = (1" ® fork?, ) (braid 727 ® 1,)

for m odd and even, respectively. We require the cyclicity relation,
ar e (spotgforkgo))(h ® braid?; (m) ® 15)((fork;" spoty) ® 17',) = braid 7.7,
(1" ® (spot’fork’ ))(1, ® braid?. (m) ® 1,)((fork"spotj) ® 1™,) = braid7::17.
for m odd or even, respectively. We have the Jones—Wenzl relations

(1mfl ® spot?)braidff; (m) = (Spot? ® 1’;1(:1)JW01'

T0

(1"~! @ spot?)braid’ (m) = (spot? ® 1"~ IW,,,

for m odd or even, respectively. For (o, 7, p) € $3 with Moy =My =2and my, = m, we
have

(braid % (m) ® 1,)braid’ 72 = braid’7.""?(1, ® braid.7 (m)).

pPOT0 pPTO T

We have the three Zamolodchikov relations: for a type A3 triple o, 7, p € S with m,, =
3 =myp and m., = 2 we have that

braid?? % braid??? t°braid’ 7 " braid? L2 " braid? L7 *? T braid 2 TP T

opoTop opTOTP oTPOPT oTOpPOT TOTPOT TOpPTOT
_ s PO PTOP s OO T PO P s PO TO PO s JPTOT PO s JTPOPTO s JTOPOTO
= braldpgwwbraldp(,mm braldpwwI brald,p(,pm braldmp(m, braldmmm.

For a type Bj triple o, 7, p € S such that m,, =4, m., =2, ms; = 3, we have that

braid??PToTPOT KraidP PO LI PIT ypaid? POPTO PO T Kraid? PO TP PIT [ypaidd POTI POPT o

POPOTOPOT TpoPTOPOT TpoTPOPOT opoTOPOPT TpPTOTPOPT
braid} 223 braid 1 braidy 5/ fbraid 2 12 braid 217/
= braid): 2 braid)5 5 hi braid 7 7 braid 2 braid? 71 x
braid 7175/, braid i1 braid; 00 7 braid 711707 braid 2 7/

and for a type Hj triple o, 7, p € S such that m,, = 2, m,, =5, m,, = 3, we have a final
H3 relation?, for which we refer to [20, Definition 5.2]. Further, we require the bifunctoriality
relation

((D1o1w) ®(D2014))((1woD3) ® (1y0D4)) = (D1 01y 0D3) ® (Dy 0 1, 0 Dy)
(1.13)

and the monoidal unit relation
1y®D;=D; =D ® 1y

for all diagrams Dy, Dy, D3, D4 and all words w, x. Finally, we require the (non-local) cyclo-
tomic relation

spotgspotg ® 1, =0 forall w € exp(w),w € W,andall o € S.

The Z-grading on the algebra Huév is defined on the generators (and their duals) as follows:

deg(1p) =0 deg(1,) =0 deg(spot?,) =1 deg(fork],)=—1 deg(braid?, (m)) =0

2 To the authors’ knowledge, this relation has not been explicitly determined (but can be given more computing
power). We invite the reader to either believe that this can be written down (as is now standard in this area) or
to read all results in this paper “modulo” any Coxeter group W with a parabolic subgroup of type H3.
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The modular Weyl-Kac character formula 2215

for o, v € § arbitrary and m > 2.

Remark 1.5 The cyclotomic relation amounts to considering diagrammatic Soergel modules
instead of diagrammatic Soergel bimodules, or equivalently, to considering finite dimensional
k-modules rather than modules of finite rank over the polynomial ring, R, generated by the
“barbells”, spotg spot’, for o € S.If we omit the cyclotomic relation in the above definition
of Hw we obtain a diagrammatic Bott—Samelson category Hps for W (viewed as a locally
unital associative k-algebra).

Diagrammatic Bott—Samelson categories are normally defined using a reflection repre-
sentation h = (V, {e) : 0 € S}, {as : 0 € S}) of the Coxeter group W called a realisation.
Our construction of Hps implicitly uses the universal realisation of W with respect to the
balanced Cartan matrix (ds)s, res, defined as follows. Abusing notation slightly, let V*
be a free k-module with basis {&, : o € S}, and let V = (V*)*. For each 0 € § define
a) € V by setting («Y, a;) = a,, for all T € S. The Coxeter group W acts on V* via
o(B) =B —(a),B)a, forallo € S and B € V* If Hyg is the Bott—Samelson category
for another realisation of W with the same Cartan matrix, then there is a unique monoidal
functor Hps — Hpg, Which descends to an isomorphism after taking cyclotomic quotients
(cf. [45, Lemma 11.2]).

Definition 1.6 Given Sp C S we define the anti-spherical Hecke category H“},\W to be the
quotient of HH§V by the homogeneous (non-local) relation

1, ®1,=0

forallo € Sp € Sand w € exp(w) forw € W.

1.6 Parabolic light leaves tableaux and cellular bases

We now recall the combinatorics of cellular bases for diagrammatic Hecke categories. This
is well known in the non-parabolic setting (see e.g. [20, §6.1] or [17, Chapter 10.4]); a
good reference for this material in the parabolic setting is [38, §5]. Our notation is closely
analogous to that in previous work of the first and second authors ( [7] and [6]) and Ryom—
Hansen [44]. In particular, we will use the language of tableaux (rather than words in the
Coxeter generators) to describe the indexing sets for our cellular bases. We provide extended
examples after the definitions see Examples 1.16 and 1.19 (in particular, we highlight the
role played by the parabolic in these examples).

‘We will consider certain truncations of Hﬂﬁ,\w, and to that end we define, forany w € Pw,
a poset

Pew =1{x|xePWandx < w) (1.14)

partially ordered by the Bruhat order. Fixw = o7 ...0¢ € exp‘}, (w) (notnecessarily reduced).
Given t a subword of w € expﬁ, (w), we define Shape, (t) = 01” oztz ... a,i" e Wiorl <k <
£. In the non-parabolic case, the set of tableaux of shape x and weight w will then be given
by

Std<y, (x) = {t | Shape,(t) = x}
and we define the set of parabolic tableaux of shape x and weight w to be

Std?, (x) = {t | Shape; ()orr1 € "W for 0 < k < £ and Shape,(t) = x} € Std<y (x).
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2216 C.Bowman et al.

Finally, we take the union over all possible weights to obtain the set of all parabolic tableaux

sif)= | sl ). s’ =[Jsd? ).
wef'w >0
yeexpﬁ,(w)

Given x < x7 and t € StdZ,, (x), we define
th =@, ..., 15, 1) € Stdey: (x7),  t = (t1,...,14,0) € Stdy (x)

and this will be the backbone of how we grow the cellular bases. We can decompose the
diagrammatic anti-spherical Hecke category in the following manner,

k k
HP\W = @ 1RHP\W1Q
veexpp (v)
weexpp (w)
v,weWw

and hence regard this algebra as a locally unital associative algebra in the sense of [12, Section
2.2]. Each one of these finite-dimensional pieces 1 RHﬂf’\W‘I w is the space of morphisms
between the Bott—Samelson objects labelled by v and w.

Recall that given w = o102---0¢ and t = (t1,t2,...,1) € {0, 1}¢, we set wt :=
of'o)? - -aé‘. We define

Tew= > Ty
te{0,1}¢

In particular, we will wish to consider the subalgebras
1 émHﬂf)\W <w

in order to understand H“;,\W. We will construct a spanning set of 15£Hﬂ1§\w1 <w in an
iterative fashion. For any fixed expression w € expp(w), we have an embedding

TewHp\wlzw = (< @ 1)HS y(1<w ® 10) (1.15)

given by D — D ® 1. Note that the image of this embedding lies inside an idempotent
truncation of 1<y, HH;\W1 <wr. We consider each of these embeddings in turn (for all = € S)
in order to provide the iterative construction of the “anti-spherical light leaves" elements of
He -

We now inductively construct the light leaves basis. For t € Std<y,, (1), we formally set
ct = 1y and we recall that t* and t~ are defined in equation(1.36). If yr > y, then for any
y €rexpp(y), X+ € rexpp(y7), y~ € rexpp(y) and t € Std<y (y) we define

t -
cer = braidy; (¢t ® 1) ¢ = braidy (¢t ® spot?). (1.16)

If yt =y’ < y, then we let X/T be a reduced expression for y. For any X+ € rexpp(y),
Yy~ erexpp(yr) and t € Std<, (y'7) we define
. _
Cr+ = braidi,r(ur ®forkl )(ct®1;) ¢ = braidi, (12' ® spotgforkﬁr)(ct ®1,).
(1.17)
Fix a choice of reduced expression x for x € P<,, and construct elements cs, ¢t for s, t €

Stdgw (x). We set cst := (c3)ct.
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The definition of the anti-spherical Hecke category Hﬂf,\w is extremely general, making
sense over arbitrary rings and Coxeter systems. In order for it to be well behaved we will
make the following (very mild) assumption.

Assumption 1.7 The anti-spherical light leaves elements
{est s, teSdl, (x), x € P<y} (1.18)
are k-linearly independent in 1 EwHﬂ,‘,\W1 <w-

Theorem 1.8 ([20, Section 6.4] and [38, Theorem 5.3]) If Assumption 1.7 holds, then the
algebra ISKHH;\W 1<y is finite-dimensional with graded cellular basis (1.18) with respect to

the Bruhat ordering on P<,, and anti-involution . Fork a field, we have that 7§£HH§\W T<w
is quasi-hereditary.

Proof In the proof of [38, Theorem 5.3] it is proven that (1.18) always spans, so Assumption
1.7 implies that it is in fact a basis. Cellularity is not mentioned explicitly, but follows in
a completely analogous fashion to [20, Section 6.4]. The only point of the theorem which
is not explicitly stated in [20, Section 6.4] and [38, Theorem 5.3] is that the algebra is
quasi-hereditary. However, this is immediate from the fact that each layer of the cellular basis
contains (at least one) idempotent css = 1, fors the unique tableau in Std<, (x) € Std<y, (x).

]

Remark 1.9 We note that when Assumption 1.7 does not hold, the analogue of Soergel’s
categorification theorem for HHI‘,\W is false [38, Theorem 6.2]. In this instance it is debatable

whether Hﬂfg\w should even be called the “anti-spherical Hecke category”! The following
result is our attempt to give a reasonably general condition for when Assumption 1.7 holds.

Theorem 1.10 ([38, Theorem 5.3]) Let O be a complete local ring in which 2 is invertible,
and let (af?T)U,TEs be a balanced Cartan matrix for W over O. If the universal realisation
for W with respect to (af?r)(,,res is faithful, then Assumption 1.7 holds for Hg\w’ the anti-

spherical Hecke category defined over O with respect to (af?r)(,,fE s. Moreover, if there is
a ring homomorphism O — k such that (a,:)s, res is the image in k of (af?r)mres, then
Assumption 1.7 holds for Hﬂf,\w.

Proof Assumption 1.7 is preserved by base change, so the second statement follows immedi-
ately from the first. The special case where O = R and (af?r)n,fes is the “geometric” Cartan
matrix for W over R is proved in [38, Proposition 5.5]. In fact this proof is valid for any
universal realisation over a complete local ring in which the “parabolic property” [38, 2.3]
holds, including faithful realisations. O

There are two incredibly important realisations upon which we now focus our attention.

Example 1.11 Let p be an odd prime.

(1) Letk be any field of characteristic p and let W be a crystallographic Coxeter group. Let
A be a generalised Cartan matrix for W, and let (a,:)s,-cs be the image of A over k.
Set O = Z,, take (ag)mres to be the image of A over O. The universal realisation for
W with respect to A is faithful (see e.g. [33, Chapter 3]), so the same holds true over O.
Thus Assumption 1.7 holds for HH;\W by Theorem 1.10.
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(2) Letkbe afield of characteristic p which contains the algebraic integers 2 cos(7 /m, ;) for
allo, v € S, and define the “geometric” Cartan matrix by setting a,, = —2 cos(w/my+).
As mentioned above, it is known that the universal realisation with respect to this Cartan
matrix over R is faithful, so the same holds true over O = Z[2 cos(w/my.) | o, 7 € S].
Thus Assumption 1.7 holds for HE,‘)\W by Theorem 1.10.

Remark 1.12 Typically the realisations in Example 1.11 do not satisfy the parabolic property
over k. For example, suppose W is an affine Weyl group, (d,+)o,res is the (image in k of the)
associated affine Cartan matrix, and P is the finite Weyl subgroup. Then the corresponding
realisation from Example 1.11(1) does not satisfy the parabolic property [26, Lemma 1.11].
This is also discussed in [38, Sections 2.3 and 3.1].

Remark 1.13 Inparticular, we note that ifk is algebraically closed and of odd (or infinite) char-
acteristic then Assumption 1.7 holds for the geometric Cartan matrix (by Example 1.11(2)).
Thus the reader unfamiliar with realisations can focus on just this case.

Remark 1.14 We have assumed that p # 2 as we do not wish to discuss the technicalities of
Demazure surjectivity. Demazure surjectivity sometimes fails for the natural and geometric
realisations in characteristic 2 (even for crystallographic types). One can fix this technicality,
but the details are tedious and are often glossed over entirely in the literature (see for example
the B, and C, examples for p = 2 [32]).

Fix x € PW and x a reduced word. We define right “cell" ideals
Hpvw =1<xHpw My = Hpvy Nkles |5, te S’ (). y <x}. (1.19)
We define the standard H“;\W-module, Appy (%), as follows:

Apipy (¥) = Hpty /Hpvy = {cs + Hpyy |'s € Sd” (x). (1.20)

We will almost always drop the subscript and simply write A(x) 1= Apyp,y, (x). We recall

that the cellular structure allows us to define, for each x € W, a bilinear form (, ) on
A(x) which is determined by

cstcuy = {ct, cu) ey (mod H;%W) (1.21)

for any s, t,u,v € Sud? (x). When k is a field, we obtain a complete set of non-isomorphic
simple H“;\W-modules L(x) for x € PW via exact sequences as follows:

0 — rad({, ) > A(x) = L(x) — 0. (1.22)

We will not discuss projective indecomposable Hﬂ}‘)\w-modules3. The right 1§£HE§,\W 1<y-
modules

Acy(x) =A<y  Lep®) =L)<y (1.23)

for x € P~y provide complete sets of non-isomorphic standard and simple modules
respectively. The projective indecomposable IS&H“;\W 1 <y-modules P<y,(x) are the direct
summands

LewHMipwl<w = @ dimy(L<y (1)) P<y (x). (1.24)

xX<w

3 “That whereof we cannot speak, thereof we must remain silent", Wittgenstein.
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Fig.3 The Coxeter and weak
Bruhat graphs for 63 < &3. The
weak Bruhat graph can be
thought of as a hexagonal-tiling
of a sixth of the plane

Assumption 1.15 For the remainder of the paper, we will assume that k is a field of charac-
teristic p # 2.

Example 1.16 Let W be the affine symmetric group @3 with generators s1, 52, 53 and let P
be the maximal finite parabolic generated by s> and s3. The Coxeter graph and Bruhat graphs
are depicted in Fig. 3. For w = 51525357, the algebra 15£H“§\W1 <w has graded dimension

Prw+D)2+0+D)?2+@0+D>+@*+4+3+0v D24+ 202 +3v+1)°

where the sum is over the squares of the graded dimensions of the standard modules, which
have labels

51525351 515253 5152 5153 S Lp\w

respectively. For example, the basis of the 9-dimensional standard module has basis

e v i Lt

(1.25)
We have that H p\w is the quotient of Hy by the 2-sided ideal
J={1,®1y |0 €Sp,w e exp(w) forw € W). (1.26)
We have a functor
7w : Hw—mod — Hp\w—mod
T:M— M/IM. (1.27)
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We have that

Appy (x) forx € PW
0 otherwise

Lypy (x) forx € W

T (Apy () = { T (Lyy (X)) = {

0 otherwise
(1.28)

This is simply because every basis element of the standard module is killed by taking this
quotient (this is mentioned explicitly in the proof of [38, Theorem 5.3]).

Example 1.17 We continue with Example 1.16, we note that 515, € Pw and that 51575, €
P. For those unfamiliar with anti-spherical light leaves, we now illustrate the manner in
which a basis element of ’Hﬂ‘j, will die when we take the quotient Hﬂﬁ,\w. We have that the
1551'\3“[7-[“‘%,1 <s159555;-module A<, (5152) is (v 4 2v 4 1)-dimensional and spanned
by the diagrams

(1.29)

e Ly L1y [

however the 1<y, 5,5, H“;,\W1 <s15253s; -module A< ¢, (5152) 1s (v + 1)-dimensional mod-
ule with basis

(1.30)

!

We illustrate how this works with the second diagram in (1.29). We rewrite the second diagram
using the Jones—WenzI relation (depicted explicitly in Fig. 1) as follows

We recall that 5, € P; therefore the first diagram is now zero by the 1, ® D = 0 relation
and the second diagram belongs to the 2-sided cell-ideal generated by 1, .

In fact, no diagram in (1.30) has a rightmost s;-strand. In more detail, we have s;5, <
s15251 ¢ PW, so for any tableau t of shape 515, and weight ending in s1, the light leaf c;
factors through 15, ® spot;, . By the above reasoning ¢t must therefore vanish in Hp\w.

More generally, if y < y7 ¢ ©'W then there are no parabolic tableaux of shape y and weight
ending in 7. This illustrates an important aspect of the restriction functors we will define in
the next section, and we will refer back to this example in the proof of Corollary 1.18.

1.7 Branching rules for standard modules

We define the 7-restriction functor
Reséf : 1§MHE§,\W1EM —mod — 1§£Hﬂ§,\w15£—mod
M= res(M(1<y ® 14)) (1.32)
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where
res : 1§£THE§,\W1SM —mod — 15&Hu§,\w1§w—mod (1.33)

denotes the ordinary restriction functor defined by the embedding of equation (1.15). While
we use the term restriction for Resf%r, we emphasise that this functor does not preserve the
underlying vector space. This is because the inclusion 1.15 is the non-unital inclusion of an
idempotent subalgebra, so restriction kills the complementary idempotent.

Theorem 1.8 has the following immediate corollary.

Corollary 1.18 Let x = yt > y, withx, y € Y W. We have that
0 — kicp+ |t € Std=y(»)}) — ResSy (A<w: (¥)) = kicp | t € Std<y(x)} — 0 (1.34)
and
0 — kicr | t € Stdy(y)} = ResZy (A<y: (1) = kicr- |t € Std=y(x)} — 0 (1.39)

where the submodule is isomorphic to A<y (y) (respectively A<y (y)(1)) and the quotient
module is isomorphic to A<y (x)(—1) (respectively A<y, (x)). Finally, if y < yt =x ¢ Py,
then

<wrt

Res—, (A<y:(y) =0. (1.36)

Proof We have that the maps
Acy(y) = ResTy (Acuc(x) ¢ o> @1, (1.37)
Acuw(y) = ResZy (Acu:(y) ¢ :ex > ¢t @ spot! (1.38)

for t € Std<,,(y) are injective (1<, ® 1T)HH§\W( 1<w ® 1;)-homomorphisms by construc-
tion. Similarly, the maps

Acy(x) — Resif(Agy ()/P(A<w() e (e ®@1)(Ty @fork:”)  (1.39)
Acy(x) — Resif(Agy MN/P(A<w() et (e ®1:)(1y @ (fork; “spoty)

(1.40)

for t € Std<y (x) are (1<, ® 1T)Hﬂf,\w(1§& ® 1.)-isomorphisms by construction (as we
have simply multiplied on the right by an element of the algebra). On the other hand, if
y < yr = x ¢ PW, then A<y (¥)(T<w ® 1;) = 0 by the light leaves construction, so
Resiﬁr (A<wr () = 0. We refer back to Example 1.17 for an illustrative example. O

Example 1.19 We continue with the notation of Example 1.16. We consider the restriction
functor Resifﬁ foroc = s; € W and x = 515253 (note that xo = w for w as in Example
1.16). The southern reading words of the first three diagrams in Eq. 1.25 are not of the
form yo for some y < x and therefore these diagrams are sent to zero by the restriction
functor. The remaining diagrams in the first row of Eq. 1.25 form a submodule, isomorphic
t0 A<y, 5,55 (1 p\w), the isomorphism is depicted on basis elements in Fig. 4. The diagrams
from the second row of Eq. 1.25 form a quotient module, isomorphic to A<, s, (s1), the
isomorphism is depicted on basis elements in Fig. 5.

The reader will notice that this sequence is non-split. To see this, note that the monochrome
diagrams from the first row of Eq. 1.25 are both obtained from the monochrome diagram in
the second row as follows:

1, = fork, (spotj ® 1,) and  (spot? ® 1,) = fork?, (spotjspot’ @ 1,).

@ Springer



2222 C.Bowman et al.

Fig.4 The isomorphism

ASA\‘I.\'E.\'}(IP\W) = {Ct+ [te ®1,
Stdfﬂ\zs} (lP\W)} as in ) — 3
Example 1.19. The T : T

righthand-side forms the
subrgodule of

5157838 .
Resg‘.i \5\:,3 N(A<ssps3s5 (51)) in
the short exact sequence of 1.34

e s e R Y

Fig.5 The isomorphism A <, 5,55 (51) = {c+ | t € Std<y, 5,5, (s1)} as in Example 1.19. The righthand-side
forms the quotient module of Resiiig‘:z” (A<s) 57535, (s1)) in the short exact sequence of 1.34

Whereas, there does not exist any D € 1<y, ., Hﬂf)\W1 <s1505; such that either

1o(D®1,) = fork],  or (spoty ® 1,)(D® 1,) = fork] .

1.8 p-Kazhdan-Lusztig polynomials

The categorical (rather than geometric) definition of the p-Kazhdan—Lusztig polynomials is
given via the diagrammatic character of [20, Definition 6.23]. In the language of this paper,
the definition of the anti-spherical p-Kazhdan-Lusztig polynomial, 7n, ,(v) forx, y € Py,
is as follows,

Py (v) i= ) dimy(Homy_pge 3 (Pa(), A<w() = D [A<uw(y) : Lew@ k)"
keZ keZ
(1.41)

forany x,y < wandx € rexp(x),y € rexp(y), w € rexp(w) are arbitrary (note that the
definition of these polynomials is independent of w). The anti-spherical p-Kazhdan-Lusztig
polynomials are recorded in the |” W| x | P W|-matrix

Dp\w = (pnx,y(v))x,yePW (1.42)
and we set
—1 -1
Dy = (an,y(v))x,ye,,w (1.43)

to be the inverse of this matrix (which exists, as Dp\w is lower uni-triangular). The non-
parabolic (p-)Kazhdan—Lusztig polynomials are obtained by setting P = {1y} < W.

2 The classification and construction of homogeneous H”;‘,\W-modules

Itis, in general, a hopeless task to attempt to understand all p-Kazhdan—Lusztig polynomials
or to understand all simple Hﬂ;‘,\w-modules. In particular, it was shown in [47] that one
can embed certain number-theoretic questions (for which no combinatorial solution could
possibly be hoped to exist) into the p-Kazhdan—Lusztig matrices of affine symmetric groups.
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Thus we restrict our attention to classes of modules which we can hope to understand.
Over the complex numbers, the first port of call would be to attempt to understand the unitary
modules; for Lie groups this ongoing project is Vogan’s famous Atlas of Lie groups. Over
arbitrary fields, the notion of unitary no longer makes sense; however, for graded algebras
the homogeneous representations seem to provide a suitable replacement. For quiver Hecke
algebras, the homogeneous representations were classified and constructed by Kleshchev—
Ram [35]. For (quiver) Hecke algebras of symmetric groups, the notions of unitary and
homogeneous representations coincide over the complex field [9, Theorem 8.1] and the
beautiful cohomological and structural properties of these (homogeneous) representations
are entirely independent of the field [9, 35].

In this section, we fix W an arbitrary Coxeter group and fix P an arbitrary parabolic
subgroup and we classify and construct the homogeneous representations of the diagrammatic
Hecke category H p\w . We first provide a cohomological construction of the module L (1 p\w)
via a BGG resolution. This cohomological construction allows us to immediately deduce a
basis-theoretic construction of L (1 p\w ), from which we easily read-off the fact that L(1 p\w)
is homogeneous. We then prove that L(w) is inhomogeneous for any 1 # w € PW.

Definition 2.1 Given w, y € PwW, we say that (w, y) is a Carter-Payne pair if y < w and
£(y) = £(w) — 1. We let CP, denote the set of Carter—Payne pairs (w, y) with £(w) = £ € N.

For P C W an affine Weyl group an its maximal finite parabolic subgroup, the following
family of homomorphisms were first considered (in the context of algebraic groups) by
Carter—Payne in [13].

Theorem 2.2 For (w, y) € CPy, pick an arbitrary reduced expression w = o ...oy and
suppose that y = oy ... Op—10p0p+1 - .. 0¢ is the subexpression of y obtained by deleting
precisely one element o, € S. We have that

Homygy | (A(w). A())

is v!-dimensional. Given choices of w and y as above this homomorphism space is spanned
by the map

w

Qﬂy (ct) = (1(71---(71,_1 ® SPOtgp ® 7(7p+1---(71{)ct
fort € Std(w).

Proof Since P<, is a co-saturated subset of PW, we can truncate to the algebra
1§wHﬂfn\w1 <w by [14, Appendix A3.13]. We have that

A1y = Spany{Toy.c, | POty @ To,,1.00}

by Theorem 1.8, as there is a unique tableau t with shape y [28, Theorem 5.8]. Moreover this
space is of strictly positive degree, namely v!'. Whereas, the character of the simple head,
L(y) of A(y), is invariant under swapping v and v~! by [27, Proposition 2.18]. Therefore

A(y) 1y =rad(A(y)1,) and L(y)1, = 0. 2.1)

By our assumption that (w, y) is a Carter—Payne pair, there does not exist an x € W such
that y < x < w. We now apply this assumption twice. Firstly, we note that [A<y, (y) :
L<y(x)] # 0 implies that y < x < w. Putting this together with Eq. 2.1 we have that
rad(A<y (y)) = L<y(w)(1) and the graded decomposition number is equal to

dimy (Hom,_yx 1 (Peu(W). Ay () = k%mﬂ(y) L) ()] =",
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Now applying our assumption again, we conclude that this homomorphism factors through
the projection P<,,(w) — A<y (w) by highest weight theory and so we have
C(Azw@), Acy()),

dimU(H0m1§£Hﬂ;\W1Sy(Psw(w)’ Acy(y)) = dimU(Homng“},\WL

and thus the result follows. ]

We set Py = {w € PW | &(w) = £} for each £ € N. Following a construction going
back to work of Bernstein—Gelfand—Gelfand and Lepowsky [8, 24], we are going to define a
complex of graded H”;,\W-modules

N V. N NN PN | ) 2.2)
where
Ar:i= @ Aw)(tw)). (2.3)

wePy

We will refer to this as the BGG complex. We momentarily assume that P = 1 < W
is the trivial parabolic (so that Pw = w). Suppose w, z € W such that £(w) = £(z) + 2
and w > z in the Bruhat ordering. By [8, Lemma 10.3] there exists a unique pair of distinct
elements x, y € W such that w > x, y > z. We refer to the quadruple w, x,y,z € W as a
diamond and we have homomorphisms of Hﬂ‘fv-modules

y g’\?}

A(w) A(2) 24

given by our Carter—Payne homomorphisms. By a generalization of [8, Lemma 10.4] to
arbitrary Coxeter groups (see [28, §6.17]), it is possible to pick a sign €(«, 8) for each
Carter—Payne pair (e, 8) such that for every diamond the product of the signs associated to
its four arrows is equal to —1. We can now define the Hnév—differential 8¢ 1 Ay — Ap_y for
£ > 1 to be the sum of the maps

e, Bog : Ale)(€) > AB)(L—1) 2.5)

over all Carter—Payne pairs (¢, 8) € CPy. We let Co(1w) = EBZZQ Ay (€) together with the
differential (8¢)¢>0.

A(x)

Lemma 2.3 We have that ¢}’ ¢} = <p;f’(pzy.

Proof We truncate to consider a subalgebra 1<, ’Hﬂév 1<y forw = 0107 - - - oy afixed reduced
expression of w € W. Since £(x) = £(y) = £ — 1 there are unique subexpressions x, y for
x, y respectively inside w. Similarly there are unique subexpressions for z inside x, y, which
induce subexpressions z, z for z inside w. On the other hand, there is a unique diagram in
A<y (2)1y of maximal degree equal to £(w) — £(z) = 2, this diagram is equal to

(Noyeeopy @ SPOLE @ g,y @ SPOLE @ oy o)
for some 1 <t < u < {. The corresponding reduced expression

01...0t—10¢0¢41...0y—1040y+1...0¢
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is equal to (at least) one of the expressions z . or Z,- Without loss of generality, we suppose
it is 2,5 this implies that
QY02 (c) = (Ioycy_y ® SPOLY, ® Vg, 10, ® SPOLY, @ 1o, o )Ct.

We now consider the other composition ¢’¢Y. Let 1 < p < g < £ denote the indices
of the terms o, and o, which are deleted from w to obtain z,. If z # z y then x =

O1...04—1040¢+1 ...0¢, whereas oy ...0,_10p0p41 ...0¢ is a non-reduced expression.
It follows from Humphrey’s Deletion condition [28, Section 5.8] that there exists some
q¢' < p < q and that the subexpression 7’ = 01 ...04_10y0441...0,_10p0p1] -..0¢

is also a reduced expression for z. By applying a sequence of braids we may assume that
q¢' = p—1and g = p + 1 (so that the cancellation in the non-reduced expression involves
two adjacent reflections); thus we can apply the (local) relation

1l

+

1l

(opopy ® spotgp ®lo,imoy 1 ® spot?q ® o,y y0p)

= (lgjo,y_, ® spotgq, ® Vo, 0p1 @ spotgp ® lo,,10,) (mod Hy)

to see that

(Any diagram with less than £(z) propagating strands is zero; thus the second term in Eq.
2.6 is immediately zero and the third term is zero by the barbell and cyclotomic relations.)
Now we consider the expression obtained from w by deleting o. If it is reduced, then by
uniqueness of maximal degree basis elements, the expression obtained by deleting o, and
o, must be z , and we are done. Otherwise, we can repeat the above process. This must
eventually terminate, as the indices of the deleted generators get smaller with each step at
which point, we deduce that

10y 1 ® SPOL) ® 1o,y ® SPOLS, © Toyy)
= (loyo,_, ® Spot?,t ® Topyyouy ® spot?,u ® loypio) (mod HyF
and the result follows, as we are working in the standard module A(z) = Hﬁf / vaz. ]
Corollary 2.4 We have that Tm(8¢+1) C ker(8¢), in other words Co(1w) is a complex.

Proof We have defined the differential (via the scalars € (w, z)) so that the composition §¢8¢—1
restricted to a given diamond is equal to ¢}’ ¢} — (p)lf’ @7 and so the result follows from Lemma
2.3. O

Now, we apply the quotient functor : Hy—mod — Hp\w—mod to Cq(1w) and hence
obtain Co(1p\w) = 69230 A¢(£) together with the differential (8¢)¢>0. (We have abused
notation slightly by identifying the differentials for H p\w- and Hy -modules.)

Proposition 2.5 We have that Co(1p\w) is a complex.

Proof For arbitrary P < W, we note that H p\w is the quotient of Hw by the parabolic
annihilation relation (1.14). Taking quotients preserves complexes and so the result follows
from Corollary 2.4. O
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Remark 2.6 In the quotient, diamonds can “collapse”. For example, if y ¢ ©W then we

obtain
y ¢\§}

A(w) A(z) 2.7)
\ O /

in which case, we have that ¢"¢; = 0. (To see this, simply note that the equality ¢"¢; =

A(x)

@y @) continues to hold, but that the righthand-side of the equality factors through the zero
module). For example, this happens in Example 1.16 with w = 5150, x = 51, ¥ = 572, and
z=lw.

We have already encountered one drawback of the 7-restriction functors from the previous
section: they kill any standard module A<, (x) such that x < x7 ¢ PW (and therefore the
simple head is also killed). To remedy this, we define slightly larger algebras

TeHpwlze for Tog= Y 1, (2.8)

cgeexpl; (w)
0<k<t
weW

and we define Res?rl : 15g+1Hﬂ§,\W1§g+] — 1557-[“},\”,15{ to be the functor

<
Resf’l = @ Resgf. (2.9)
Qeexpﬁ.

=N

Lemma2.7 Letlp\w # x,w € PW and suppose that x < w. We have that

<wr

ResZ, (L<y:(x)) #0

for some v € S and w € expp(w). Therefore Resfé“(L(x) T<¢t1) = 0 implies x = 1p\w.

Proof For 1p\w # x € "W, there exists some 7 € S, x" € PW such that x = x’ < x.In
which case, x = x't is a reduced expression for x and 1,/, € L(x). Our assumption that
xt = x' < x < w < wr implies that the preimage of 1x; € 1<y Hp\w 1<w: under the
map of (1.15) is equal to 1,7 € 1<,y Hp\w 1<y and so the result follows. ]

We are now ready to prove that Co(1p\w) is a BGG resolution of the Huf)\w—module
L(1p\w). For W the affine symmetric group, P the maximal finite parabolic and k = C,
the existence of these BGG resolutions was conjectured by Berkesch—Griffeth-Sam in [5].
This conjecture was proven by way of the KZ-functor in the context of the quiver Hecke
algebras of type A (by the first and third authors with José Simental, [9]). In type A, the
diagrammatic Hecke categories and (truncations of) quiver Hecke algebras were recently
shown to be isomorphic in [6]. Thus the following theorem generalises the BGG resolutions
[5, 9] to all Coxeter groups, W, and all parabolic subgroups, P, and arbitrary fields, k.

Theorem 2.8 Fix W an arbitrary Coxeter group and fix P an arbitrary parabolic subgroup.
The Hﬂf,\w-complex Co.(1p\w) is exact except in degree zero, where Ho(Co(1p\w)) =
L(1p\w). Moreover, we have that

L(1p\w) =k{cs | Shapey(s) = T1p\w forall k > 1)}.
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Proof By applying the restriction functor to Proposition 2.5, we have that
Resi ™ (Ca(1p\w) 12441 (2.10)

forms a complex of 1 SgHH}\W1 <¢-modules. Moreover, we can idempotent-truncate

DS (1 pyw) = Resg ™ (111 Call pyw)) (1< @ 10) 2.11)

and hence obtain a complex of 1§£HH§,\W1§£-modules (through the identification of
T<wHPpAWl<w = T<wHp\wl<w) Letx,y € Pw withx = yr > y.Fory € YW, we
have that already seen that

0 — e+ | t € Stdy ()} — ResZy (A<y: (¥) = {cpr |t € Stdy(¥)} = 0 (2.12)
and
0— {ce- [teStdey(y)} — Resif(Aggf () = {ee- [teStd<y(x)} = 0 (2.13)

where in both cases the submodule is isomorphic to A<, (y) and the quotient module is
isomorphic to A <, (x). Since x = yt, we have that

(pj‘, (ctr) =01y ® spoty)cer = c- (2.14)
for any t € Std<y (x) ort € Std<,, (y) by definition. Therefore, we have that

(ResZy" o @}) = id (1) +id, (1) (2.15)
forx,y e PW where

id; (1) € Hom, _ 12 B=w (@), A<w (2)(E(2) + 1)) (2.16)

k
wHp\w

is simply the graded shift of the identity map for z = x, y for x, y € W. This implies that

DU pw) = @ (AMEG)) ® AWML + 1) (2.17)
cyT>y
y<w
with differential
ResZy o8 = Y (idy(l)+idy(1N+ > (Reszy o¢)). (2.18)
(x,y)€CPy (s,1)eCPy
X=yt SELT

Thus we have that
Hj(ResZy (Coll ) (1 ® 1)1 <41) =0 (2.19)
forall j > 0. Now, summing overall 7 € S, w € W,and w € expl}, (w) we deduce that
Res; " (Ca(1p\w) 1<e41) (2.20)

forms a complex with zero homology in every degree. By Lemma 2.7, we have that restriction
kills no simple Hﬂ;\w—module L(w) for 1 # w € PW. Moreover,

Head(A(1p\w)1<e11) = L(Lp\w)T<e41 € Im(3)) 2.21)
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and [To41A(w) : Teri L(Ap\w)]l = 0 for lpyw # w € Py simply because the highest
weight structure on H p\w is given by the Bruhat order. Therefore

Lpw)l<er1 ifj=0

) (2.22)
0 otherwise.

Hi(Co(lp\w)l<ey1) = {

Finally, we have proven that L(1 p\w) is killed by multiplication by the idempotent 1. at the
£th point for any £ > 1 and for any 7 € S. Thus L(1p\w) is spanned by cs for s the empty
tableau, as required. O

We immediately deduce the following corollary, which is new even for the classical
(inverse) parabolic and non-parabolic Kazhdan—Lusztig polynomials (in other words, for
k the complex field). Indeed, this seems to be the first non-trivial family of parabolic (p-
)Kazhdan—Lusztig polynomials which admits a uniform construction across all Coxeter
groups and all parabolic subgroups.

Corollary 2.9 (The Weyl-Kac character formula for Coxeter groups) In the graded
Grothendieck group of Hp\w, we have that

[Lapw]= Y (=)™ [Aw)]
wefw

Thus the complete first row of the inverse p-Kazhdan—Lusztig matrix is given by
pnl—}’u — (_v)é(w)
forallw e PW.

Theorem 2.10 The module L(1p\w) is both the unique homogeneous Hui‘,\w—module and the

unique 1-dimensional Hﬂf,\w-module.

Proof That the module L(1p\w) is homogeneous is clear (as it is 1-dimensional). We now
prove the converse, namely for any 1 # w € © W we show that L (w) is inhomogeneous and
of dimension strictly greater than 1. Let 1 # w € ©W and choose 7 such that wr = w’ < w.
By Theorem 1.8, the elements

Ty ®@spot! ® 1. 1, ® fork!, (2.23)

span A<y - (w). The former is homogeneous of degree 41 and the latter is homogeneous of
degree —1. We have that

(1w @ fork! )( 1, @ spoty @ 1.) = 1y (2.24)

and

<w

Ty ® spot? ® 1)y ®spot; @1,) =1y ® spot‘fspot[} ® 1, =0 (mod HPTWBWT)
(2.25)

since the degree of this element is 42 (whereas the degree of the idempotent spanning the
weight space of the cell module is, of course, of degree 0) and

(1 @ fork? ) (1, ® forkly) = 0.

Therefore the Gram matrix for this weight space of the cellular form is the 2 x 2-matrix with
0Os on the diagonal and 1s off the diagonal. This matrix has rank 2 and so neither element in
(2.23) belongs to the radical of the cellular form. Therefore both elements in (2.23) belong
to L <y (w) and the result follows. O
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Remark 2.11 We recall from the introduction that the conjecture of Berkesch—Griffeth—Sam
(or rather, its equivalent formulation for homogeneous representations of quiver Hecke alge-
bras) follows immediately from Theorem B. This might be surprising to the reader familiar
with the homogeneous representations of quiver Hecke algebras. In [35] it is shown that
there are up to e — 1 distinct homogeneous representations of any block of the quiver Hecke
algebras (and for sufficiently large rank, there are precisely e — 1 such representations for a

“regular block"). Whereas, in this paper we have seen that there is precisely one homogeneous
representatlon of H¥% P\W forG,=PC W= Gh for i € N. Therefore, one might think that
there are “more" homogeneous representations of the quiver Hecke algebra. However, for
each 1 < h < e there is an isomorphism between a finite truncation of Hu}\w and the Serre
quotient of the quiver Hecke algebra corresponding to the set of partitions with at most A
columns [6]. Through these isomorphisms, one can obtain the ¢ — 1 distinct BGG resolutions
of the e — 1 distinct homogeneous simple modules of the quiver Hecke algebra predicted by
Berkesch—Griffeth—Sam [5].

We now provide an elementary infinite family of simple modules which do not admit
BGG resolutions, in order to justify our claim in the introduction that such resolutions are
“rare". In [8] an example of such a simple for W = &4 is given. We focus on the simplest
case, namely that of the anti-spherical category controlling the algebraic group SL; (k).

Proposition 2.12 Let k be a field of finite characteristic p > 0. There exist infinitely many

simple H6 18 -modules which do not admit BGG resolutions.

Proof This is a standard Temperley-Lieb type result, we provide references in Remark 2.14
below but we include a proof for the sake of completeness. The Coxeter presentation of &, is
(0,7 | 12 = 0% = 1) and we let P denote the finite parabolic generated by the reflection 7.
We will provide an infinite family of examples of x € W such thatrad(A (x)) is not generated
by the homomorphic images of standard modules, thus showing that each such L(x) does
not admit a BGG resolution. For n € N, we set

X=0T0T0... Z=0T0TO ... y=0T0T0... (2.26)
X 4 LT
np—1 np np+1

so that, in the notation of Eq. 1.5, we have

=12t =1y, = 1t (2.27)

oT
Suppose that L(y) is a subquotient of A (x) and that L (y) belongs to the submodule generated
by the homomorphic images of standard modules. Then L(y) must be in the image of a
homomorphism from A(y) or A(z) by highest weight theory. (In more detail, we simply
note that [A(w) : L(y)] # O implies that w < y and that HomHu)()\W(A(w), A(x)) #0
implies that x < w and therefore x < w < y; thus w € {x, y, z}.) The module A(x)1, is
(np — 1)-dimensional and spanned by the light leaves basis elements B

b {(1’< L@ fork?, ® 172775 (1%, @ spot? @ 1227%) if k is odd, (22%)

(kT @ fork”, @ 177751k @ spot? @ 1727%) if k is even,
for 1 < k < np. We now calculate the full submodule structures of standard modules and
hence verify that L(y) is not in the image of any homomorphism HomH[;) w (A(w), A(x))

forw € {x, y, z}.
Decomposition numbers. We will prove that the Gram matrix of A(x)1, has rank
dim(ASX(x)) —dim(LSX(y)) =np—1—1=np—2. Thus proving that [A(x) : L(y)] =1
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using Eq. 1.22 (this is a standard cellular argument). The Gram-matrix of the cell-form of
A(x)1y has —2 for each of the diagonal entries and 1 for each of the super and subdiagonals
(in other words, it is equal to —1 times the Cartan matrix of type Ayp—1). The determinant
of this matrix is np which is zero in k. Over k, the rank of this matrix is np — 2 and so
[A(x) : L(y)] =1 as required.

Submodule structures and homomorphisms. By considering the light leaves basis, one
deduces that A<y(y)) = L<y(y) is 1-dimensional and that A<y (z)) is 2-dimensional with
simple head L <, (z) and simple socle L<,(y). Suppose that the socle of A< (x)) contains
a submodule isomorphic to L<y(y). This submodule must be the span of some element
g = > ar fi for o € k with gfk; vanishing in A<y (x) forall 1 <k < np, i.e.

* <X
8fe €Hg 6,
forall 1 <k < np. We have that fi+ f* = 1, and fi f¥ = —2-1, modulo Hé’;\éz. Thus

8§ = a(fnp—l +2fup—2+3fnp-3+4fup-a+Sfop-s+---+ (np— 1)f1)7

for some o € k \ {0}. However, we notice that for g as above,

aﬂ;ﬁ_l ® spot? — g(121;—2 ® spotj) if np is even,
o1 ® spot! = g(127 @ spot)) if np s 0dd,

and so the submodule generated by g contains L<y(z) as a submodule. Thus A<, (x) is
uniserial with simple head L <, (x), simple socle L5; (2), and the middle composition factor
L<y(y).Thus L<y,(x)notthe image of ahomomorphism from A<y(z) or A<y (y),asrequired.

[m}

Remark 2.13 There is a theory of “SL; (k)-strings" for algebraic groups. This theory allows to
inflate decomposition numbers and extension groups between standard modules for SL; (k) to
calculate certain decomposition numbers and homomorphisms between standard modules for
arbitrary algebraic groups (see [30, Part I, 5.21 (2)] and [18, Introduction] for decomposition
numbers and extension groups respectively). One can use the equivalence between algebraic
groups and anti-spherical Hecke categories from [42] in order to translate these statements
to the setting of H p\w-modules (in the case that P is the maximal parabolic of an affine
Weyl group W). Thus one can use Proposition 2.12 to provide many examples of simple
'H p\w-modules which do not admit BGG resolutions. We do not go into further details here.

Remark 2.14 Through the isomorphism of [6], we can rephrase the above as a question con-
cerning decomposition numbers and homomorphisms for the symmetric group &, 2, in
characteristic p > 2. We let S(A) denote the Specht module and D (u) is the simple head for
A, u partitions (the latter p-regular). We have that [S(npz, p): D(np2 + p)] = 1, however
D(np?* + p) is not in the image of any homomorphism HomanPz+l, (S(V), S(np?, p))). This
example was already known to Gordon James in [29, 24.5 Examples] for p = 2 and the gen-
eral case is similar, see [29, 24.4 Theorem] and [29, 24.15 Theorem]. For p arbitrary, the full
submodule structures of Specht modules labelled by 2-part partitions were determined in [43].
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