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Abstract: Forecasted gait trajectories of children could be used as feedforward input to control lower
limb robotic devices, such as exoskeletons and actuated orthotic devices (e.g., Powered Ankle Foot
Orthosis—PAFO). Several studies have forecasted healthy gait trajectories, but, to the best of our
knowledge, none have forecasted gait trajectories of children with pathological gait yet. These
exhibit higher inter- and intra-subject variability compared to typically developing gait of healthy
subjects. Pathological trajectories represent the typical gait patterns that rehabilitative exoskeletons
and actuated orthoses would target. In this study, we implemented two deep learning models, a Long-
Term Short Memory (LSTM) and a Convolutional Neural Network (CNN), to forecast hip, knee, and
ankle trajectories in terms of corresponding Euler angles in the pitch, roll, and yaw form for children
with neurological disorders, up to 200 ms in the future. The deep learning models implemented in
our study are trained on data (available online) from children with neurological disorders collected
by Gillette Children’s Speciality Healthcare over the years 1994–2017. The children’s ages range from
4 to 19 years old and the majority of them had cerebral palsy (73%), while the rest were a combination
of neurological, developmental, orthopaedic, and genetic disorders (27%). Data were recorded with
a motion capture system (VICON) with a sampling frequency of 120 Hz while walking for 15 m.
We investigated a total of 35 combinations of input and output time-frames, with window sizes for
input vectors ranging from 50–1000 ms, and output vectors from 8.33–200 ms. Results show that
LSTMs outperform CNNs, and the gap in performance becomes greater the larger the input and
output window sizes are. The maximum difference between the Mean Absolute Errors (MAEs) of the
CNN and LSTM networks was 0.91 degrees. Results also show that the input size has no significant
influence on mean prediction errors when the output window is 50 ms or smaller. For output window
sizes greater than 50 ms, the larger the input window, the lower the error. Overall, we obtained MAEs
ranging from 0.095–2.531 degrees for the LSTM network, and from 0.129–2.840 degrees for the CNN.
This study establishes the feasibility of forecasting pathological gait trajectories of children which
could be integrated with exoskeleton control systems and experimentally explores the characteristics
of such intelligent systems under varying input and output window time-frames.

Keywords: deep learning; forecasting; prediction; gait; children; kinematics; motion capture;
exoskeletons; artificial intelligence; actuated orthoses; pathological gait; lower limb robot

1. Introduction

Assistive devices such as wheelchairs and exoskeletons are designed to facilitate or
enhance movement [1]. For people with impaired motor or nervous systems which affect
their movement, these devices increase mobility and independence and allow for better
interaction with the environment [1].

Exoskeletons are external load-bearing robotic suits made of sensors, actuators, and
controllers to increase the strength and endurance of the user [2,3]. In the 1960s, after
earlier conceptualisations, the first exoskeleton ’Hardiman’ was built by General Electric [2].
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Since then, exoskeletons have witnessed continuous advancements in their structure and
control [3].

Exoskeletons can be divided into two broad categories: passive and active. Passive
exoskeletons are purely mechanical devices that provide torque to joints when contractible
materials such as springs and dampeners expand, releasing the stored energy [4]. On the
other hand, active exoskeletons contain actuators that provide torque to joints using an
external power supply [4].

There are exoskeletons designed for the upper limbs, lower limbs, or the full body [5].
Lower limb exoskeletons are often used for three primary applications [6]. Firstly, they
are used for the rehabilitation of the gait of patients with mobility disorders, the benefits
of which extend to the therapists, relieving them from the strain of fully handling the
patients themselves [6]; examples include Robotic Orthosis Lokomat by Hocoma [7], Ekso
GT exoskeleton by Ekso Bionics [8], and ALEX by the University of Delware [9]. Secondly,
exoskeletons can be used by patients with more severe mobility disorders that are partially
or completely paralysed, outside rehabilitation centres [6]; they can assist with their daily
locomotion, allowing them to stand/walk for longer periods. This has reportedly led
to desirable physiological and psycho-somatic outcomes, including but not limited to
improved spasticity, quality of life, bowel function, etc. [10]; the Vanderbilt exoskeleton is
one example [11]. Thirdly, exoskeletons are used to augment the abilities of healthy users,
allowing heavy loads to be carried with more ease or a movement to be performed with
lower strain [6]; examples include Berkeley Lower Extremity Exoskeleton (BLEEX) [12] and
Hybrid Assistive Limb (HAL) exoskeleton [13].

Powered exoskeletons need a control strategy to guide the exoskeleton’s interaction
with the user. The control strategy coordinates the exoskeleton’s movement with the user’s
body when full support is provided, while it synchronises the exoskeleton’s movement
with the user’s body when partial support is provided [14]. The control strategy often
consists of a three-level hierarchy: high, mid, and low levels [14]. The high level of control
is responsible for intention detection, predicting what state the user would like to be in
and the overall behaviour of the exoskeleton [14–16]. This includes estimating desired
torque from EMG signals [17], classifying locomotion modes (e.g., standing up, sitting
down, walking up/down a staircase, etc.) [18] and their transitions, as well as environment
classification (predicting the user’s interaction with the surrounding environment [19]). The
mid-level control is responsible for selecting one of the continuous states of the exoskeleton
and switching between them [14,15]. Baud et al. [14], in their review on control strategies for
lower limb exoskeletons, divide this level into two sub-levels: detection/synchronisation
and action. Detection/synchronisation involves identifying the state of the user, such as
the phase of gait, while action is responsible for computing the output of the identified
state. Lastly, the low-level control directly controls the actuators and is responsible for
implementing the control strategy to supply torque to the joints. It tracks the reference
input and ensures stability [15,20,21].

The timing and magnitude of the supportive torque provided depend on the control
strategy implemented, which is highly influenced by the exoskeleton’s application. In
rehabilitation applications, an exoskeleton may follow a predefined trajectory. This is
referred to as trajectory tracking and the trajectory tracked can be the trajectory of a healthy
user [6]. Another control strategy used in exoskeletons for rehabilitation is assist as needed,
where the amount of support provided by the exoskeletons is variable and may change
through the course of rehabilitation. Impedance control is an example of an assist as
needed strategy, where the assistance provided depends on the effort of the patient [6]. In
locomotion assistance applications, trajectory tracking is also most commonly used. The
trajectory tracked could be a predefined trajectory for a healthy user, or in the case of
hemiparetic patients, the trajectory used for the pathological limb can be the trajectory
of the healthy limb (also known as complementary limb motion estimation [22]). As for
strength augmentation applications, hybrid and force control are commonly used [6].
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Gait trajectory prediction can be integrated into the control strategy of exoskele-
tons [23]. Several researchers investigated the use of deep learning for gait trajectory
prediction. Liu et al. [24] developed a deep spatio-temporal model that consists of Long
Short-Term Memory (LSTM) units to predict two time-steps in the future, with predictions
averaged to smooth fluctuations. Zaroug et al. [25] implemented an auto-encoder LSTM
for predicting linear acceleration and angular velocity trajectories. They experimented with
varying lengths of input time-steps, between five and 40 steps, to predict five or 10 steps in
the future (equivalent to 30 ms or 60 ms). An LSTM with a weighted discount loss function
was proposed by Su et al. [26] for the prediction of the angular velocities of thigh, shank,
and foot segments. They used 10 or 30 time-steps as input to predict five or 10 steps in
the future, corresponding to 100 ms and 200 ms, respectively. Hernandez et al. [27] used a
hybrid Convolutional Neural Network (CNN) and LSTM neural network, DeepConvLSTM,
to forecast kinematic trajectories with an average MAE of 3.6◦, while Jia et al. [28] imple-
mented a deep neural network with LSTM units and a feature fusion layer that combines
kinematic (i.e., joint angles) and physiological (i.e., EMG) data for trajectory prediction.
Zarough et al. [29] also compared between vanilla, stacked, bidirectional, and autoencoder
LSTMs while Zhu et al. [30] used attention-based CNN-LSTM, predicting trajectories 60 ms
in the future.

Values of kinematic parameters within a gait cycle vary more significantly between
different individuals (inter-subject) compared to the values of kinematic parameters of the
same individual (intra-subject) [31]. Intra-subject trajectory prediction models (models
tested on data from the same individuals used for training the models) have been shown
to be more accurate in their predictions than inter-subject models (models tested on data
from individuals who were not used for training the models) [26]. However, the variability
of pathological gait compared to healthy gait is even greater. For example, children with
spastic cerebral palsy were found to have higher within-day and between-day variability
compared to healthy children, possibly attributed to the spasticity that limits the range of
motion of their joints [32,33].

Given that existing studies have used models trained on healthy gait trajectories
only, the ability of deep learning models to forecast pathological trajectories with greater
heterogeneity and variability is yet to be evaluated. The main contribution of this study is
to investigate, for the first time, the performance of deep learning networks, specifically
the Long Short-Term Memory (LSTM) neural network and Convolutional Neural Network
(CNN), in forecasting pathological gait trajectories of children with neurological disorders.
We conduct a comparison between the two networks. Furthermore, we investigate the
influence of the length of the input and output windows on prediction accuracy and provide
technical recommendations.

2. Materials and Methods
2.1. Data

The deep learning models implemented in our study are trained on data from children
with neurological disorders. The data used are available online and were collected by
Gillette Children’s Speciality Healthcare over the years 1994–2017 [34]. They have been
previously used for the development of a deep learning model to automatically detect
gait events, specifically foot contact and foot off events [35]. The children of the dataset
ranged from 4 to 19 years of age. The majority of them had cerebral palsy (73%), while the
rest had a combination of neurological, developmental, orthopaedic, and genetic disorders
(27%). Children were recorded with a motion capture system (VICON) with a sampling
frequency of 120 Hz while walking for 15 m. The data consist of a 99-dimensional vector
with kinematics and marker positions. The data were divided into a training and testing
set. The statistical distribution of the features of the children in the training set is as
follows: age (11.4 ± 6.2 years), weight (35.7 ± 17.7 kg), height (135.7 ± 21.6 cm), leg length
(70.3 ± 14.0 cm), and walking speed (0.84 ± 0.28 m/s). The statistical distribution of the
children in the testing set is as follows: age (11.0± 4.5 years), weight (35.9 ± 16.7 kg), height
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(135.6 ± 21.4 cm), leg length (70.6 ± 12.8 cm), and walking speed (0.85 ± 0.29 m/s) [35]. In
our study, only kinematics were used for trajectory forecasting; these include angles of the
hip, knee, and ankle in the yaw, pitch, and roll dimensions. The kinematics represent Euler
angles, calculated using the plug-in-gait mechanical model [35].

2.2. Data Processing

Euler angles of the hip, knee, and ankle in yaw, pitch, and roll dimensions were
available for both legs, however, only one leg was used for training the models. The pre-
processing of data involved trimming the leading and the trailing zeros, and the removal
of trails with spurious data (which were assumed to be Euler angles greater or less than a
90◦ cut-off).

Since deep learning models are required to be trained with fixed-length sequences,
fixed-length inputs and their corresponding target trajectories were generated using the
sliding window method, illustrated in Figure 1. The sliding window method involves
generating a shorter sequence xin with k time-steps, where k is the size of the input, i.e., the
number of time-steps utilised by the model to make predictions, xin = {x1, x2, . . . , xk}. An-
other shorter sequence yout with z time-steps is created, were z is the size of the output, i.e.,
the number of time-steps that will be predicted by the model, yout = {xk+1, xk+2, . . . , xk+z}.
Each input window has a corresponding output window (target label to train the models),
and the two windows represent one training sample. The stride, which is the distance
between the beginning of one sample and the beginning of the next sample, is set to
5 time-steps. Ten samples are generated from each trial.

Figure 1. Illustration of the sliding window method. Continuous gait trajectories are used to generate
input and output windows for training the model using the sliding window method. Each pair of
input and output windows forms one sample. Several samples can be generated from one continuous
gait trajectory by sliding the window for a specified distance, also known as stride length.

The models were trained using several sizes of input and output windows. The input
window sizes for the LSTM were 50, 100, 200, 400, 600, 800, and 1000 ms. Given that the
data were captured at a sampling frequency of 120Hz, those durations correspond to 6, 12,
24, 48, 72, 96, and 120 time-steps. Output window sizes for the LSTM were 8.33, 25, 50, 100,
and 200 ms which correspond to 1, 3, 6, 12, and 24 time-steps. Every combination of input
and output window sizes was used, yielding a total of 35 combinations. As for the CNN,
we only focused on using 6 and 120 input time-steps (the smallest and largest input sizes
we used with the LSTM) to predict 1, 3, 6, 12, and 24 output time-steps. We used these time
ranges following values proposed in the literature by researchers that forecasted healthy
gait. Zaroug et al. experimented with a wide range of input windows from 5–40 steps to
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forecast 5 or 10 steps in the future, which correspond to 30 and 60 ms respectively [25].
Output windows ranging from 50–60 ms were common too [25,28,30]. A few researchers
have also predicted output windows of 100 ms or larger [26,29].

For n training samples, f features (hip, knee, and ankle angles in the yaw, pitch, and
roll directions), lin input window size and lout output window size, an input matrix X and
target output matrix Y are created, where X ∈ Rn×lin× f and Y ∈ Rn×lout× f . The matrices
are then normalised such that X ∈ [0, 1] and Y ∈ [0, 1]. The aim is to build a model g() that
maps X to Ŷ, i.e., Ŷ = g(X), where Ŷ is a close approximation to true value Y.

2.3. Long Short-Term Memory (LSTM) Architecture

The Long Short-Term Memory (LSTM) neural network is commonly used for time-
series applications including forecasting future trajectories. It is a type of gated Recurrent
Neural Network (RNN), which solved the issue of vanishing and exploding gradients
during training and is capable of learning long-term dependencies [36]. Each LSTM cell
contains three gates: input, output, and forget gate. The equations of these gates, as
explained in Goodfellow et al. [36], are reported below.

The forget gate unit f (t)i equation for time-step t, cell i, input vector x(t), hidden layer
vector h(t), biases b f , recurrent weights W f , and input weights U f is:

f (t)i = σ

(
b f

i + ∑
j

U f
i,jx

(t)
j + ∑

j
W f

i,jh
(t−1)
j

)
. (1)

The internal state of an LSTM cell, s(t)i , is updated depending on the value of the forget

gate unit f (t)i , and its equation for biases b, input weights U, and recurrent weights W is:

s(t)i = f (t)i s(t−1)
i + g(t)i σ

(
bi + ∑

j
Ui,jx

(t)
j + ∑

j
Wi,jh

(t−1)
j

)
. (2)

The external input gate unit, g(t)i , is calculated as:

g(t)i = σ

(
bg

i + ∑
j

Ug
i,jx

(t)
j + ∑

j
Wg

i,jh
(t−1)
j

)
. (3)

The output of the LSTM cell h(t)i is calculated as:

h(t)i = tanh
(

s(t)i

)
q(t)i . (4)

For biases bo, input weights Uo, and recurrent weights Wo, the value of the output
gate unit is:

q(t)i = σ

(
bo

i ,+∑
j

Uo
i,jx

(t)
j + ∑

j
Wo

i,jh
(t−1)
j

)
. (5)

The LSTM network implemented in this study contained 4 layers of LSTM units, with
128 units per layer. The hidden state of the final layer is used as input to a fully connected
layer which is then reshaped to obtain the desired output. The overall architecture is
illustrated in Figure 2.
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Figure 2. Architecture of the LSTM network used in this study.

2.4. Convolutional Neural Network (CNN) Architecture

In this study, a Convolutional Neural Network (CNN) is used to map input trajectories
X to forecasted predictions Ŷ. The convolution operation is formed between a sequence
and a kernel, whose weights are tuned during the learning process. Equation (6) is used to
calculate the output of the convolution operation S, adapted from the format included in
Goodfellow et al. [36] to work with a 1D time-series I and kernel K.

S(i) = (I ∗ K)(i) = ∑
m

I(m)K(i−m). (6)

The CNN architecture consists of several 1D convolutions and pooling layers, followed
by a dense fully connected layer. The number of kernels in each convolution layer, as well
as the size of the pooling layers, is illustrated in Figure 3. Dilated convolutions were tried,
but they did not improve performance, therefore they were not included.

2.5. Baseline Methods

The performance of the deep learning models was benchmarked against a simpler
machine learning model, a Fully Connected Network (FCN), and two non-intelligent
models, which we refer to as Naïve Method 1 and Naïve Method 2. The FCN contains three
hidden layers and 200 nodes per layer. As for the non-intelligent models, the first naïve
method uses the final time-step in the input window as the predicted value for all output
time-steps. The second naïve method uses the mean value of the input as the predicted
value for all output time-steps.
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Figure 3. Architecture of the convolutional neural network used in this study.

2.6. Details of Network Implementation

The objective of the deep learning models is to find a mapping between the input
trajectories X and forecasted trajectories Ŷ, such that the error between predicted trajectories
Ŷ and true trajectories Y is minimised. The loss function that has been used to optimise the
deep learning models is the Mean Squared Error (MSE).

The number of trials used from the dataset was 16,782. Each trial was used to extract
10 samples using the sliding window method, described in Section 2.2, resulting in a total of
167,820 samples. The samples were split into training (70%), validation (20%), and testing
(10%) sets. Both the CNN and LSTM are trained in mini-batches, where the size of each
batch is 32 samples, with the Adam optimiser used for learning.

To select the hyper-parameters and architecture for the CNN, LSTM, and FCN models
(described in Sections 2.3–2.5), a hyper-parameter search was performed. Hyper-parameter
optimisation involved defining a search space, where windows of values of some param-
eters of the model were chosen (e.g., learning rate, number of layers of LSTM, number
of hidden units, and size of kernels). The objective is to choose the value of parameters
that optimises the performance of the networks. The tree-structured Parzen estimator
algorithm, which is a type of Bayesian hyper-parameter sampler [37], was used to select the
optimal parameters (from a defined search space) that minimise the validation loss. The
search space for the hyper-parameters and the corresponding selected values are included
in Table 1. The parameters were optimised for predictions with an input window size of
72 time-steps, and an output window size of 12 time-steps. The number of epochs was also
a parameter that was included in the hyper-parameter optimisation, but the values were
fine-tuned manually afterwards. The numbers of epochs for training the LSTM, CNN, and
FCN were 60, 150, and 180, respectively. Once the optimal architecture and parameters
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of the networks were selected, the training and validation sets were combined to train
these networks. The total numbers of trainable parameters of the optimised LSTM, CNN,
and FCN are 495,320, 4,666,888, and 380,216, respectively. The final performance of the
networks was evaluated on the testing set.

Table 1. Hyper-parameter optimisation for the LSTM network, CNN, and FCN.

Hyper-Parameter Search
Space

Selected
Value

LSTM
learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.001
number of LSTM layers [1, 2, 3, 4] 4
number of LSTM hidden units [16, 32, 64, 100, 128] 128

CNN

learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.0001
conv1D layer 1 channels [16, 32, 48] 32
conv1D layer 2 channels [32, 48, 64] 48
conv1D layer 3 channels [64, 128, 256] 256
conv1D layer 4 channels [128, 256, 512] 512
kernel size for layers 1, 2 [1, 2, 3, 4, 5, 6, 7] 7
kernel size for layers 3, 4 [1, 2, 3, 4, 5, 6, 7] 7
padding [0, 1, 2, 3, 4, 5] 4
conv1D stride [1, 2, 3, 4, 5] 1
dilation [1, 2, 4] 1

FCN
learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.001
hidden layers [1, 2, 3, 4, 6, 8, 10] 3
nodes per layer [10, 20, 40, 60, 100, 140, 160, 200] 200

The framework described has been implemented using Python, with the follow-
ing libraries: Pytorch, Numpy, Matplotlib, SciPy, and Scikit-learn. Optuna was used
for the hyper-parameter search [37]. An Nvidia Geforce RTX 2070 GPU was also used
for computation.

2.7. Evaluation Metrics

Several metrics have been used to evaluate the performance of the models. To measure
how close the predicted trajectories Ŷ are to the observed trajectories Y we have calculated
the mean square error MSE, mean absolute error MAE, and Pearson correlation coefficient
P. These were calculated after the de-normalisation (i.e., re-scaling to the original ranges)
of the predicted trajectories. Given that n is the number of testing samples, f is the number
of features, and lout is the output window size, the equations are as follows:

Mean squared error:

MSE =
1

n× f × lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

(
yi,j,k − ŷi,j,k

)2
. (7)

Mean squared error standard deviation:

σMSE =

√√√√ 1
n× f × lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

((
yi,j,k − ŷi,j,k

)2
−MSE

)
. (8)

Mean absolute error:

MAE =
1

n× f × lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

∣∣∣yi,j,k − ŷi,j,k

∣∣∣. (9)
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Mean absolute error standard deviation:

σMAE =

√√√√ 1
n× f × lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

(∣∣∣yi,j,k − ŷi,j,k

∣∣∣−MAE
)

. (10)

Pearson correlation coefficient:

P =
1
f

f

∑
j=1

cov(yj, ŷj)

std(yj)× std(ŷj)
. (11)

These metrics are used to evaluate and compare the performance of the networks we
implemented, with results presented in Section 3.

3. Results
3.1. LSTM Network Performance for Varying Input and Output Window Sizes

The LSTM model has been trained using 35 combinations of input and output window
sizes. The input window sizes were 6, 12, 24, 48, 72, 96, and 120 time-steps, which
correspond to 50, 100, 200, 400, 600, 800, and 1000 ms, respectively, while the output
window sizes were 1, 3, 6, 12, and 24 time-steps, and correspond to 8.33, 25, 50, 100, and
200 ms. The performance of the models (MAE, MSE, and Pearson correlation coefficient)
are reported in Table 2.

Table 2. Performance of LSTM in forecasting gait trajectories for varying input and output window sizes.

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

MSE
(Degrees)

MSE
std

(Degrees)

MAE
(Degrees)

MAE
std

(Degrees)

Mean
Pearson

Correlation
Coefficient

50 6 8.33 1 0.034 0.065 0.143 0.115 1.000
100 12 8.33 1 0.077 0.130 0.214 0.177 1.000
200 24 8.33 1 0.027 0.055 0.126 0.105 1.000
400 48 8.33 1 0.019 0.161 0.095 0.099 1.000
600 72 8.33 1 0.030 0.266 0.126 0.119 1.000
800 96 8.33 1 0.020 0.125 0.107 0.092 1.000
1000 120 8.33 1 0.022 0.318 0.109 0.098 1.000

50 6 25 3 0.079 0.526 0.175 0.220 1.000
100 12 25 3 0.077 0.474 0.187 0.206 1.000
200 24 25 3 0.079 0.793 0.176 0.218 1.000
400 48 25 3 0.080 3.068 0.169 0.227 1.000
600 72 25 3 0.092 2.597 0.173 0.250 1.000
800 96 25 3 0.104 1.279 0.200 0.252 1.000
1000 120 25 3 0.117 2.028 0.223 0.261 1.000

50 6 50 6 0.614 4.115 0.461 0.633 0.998
100 12 50 6 0.422 3.956 0.365 0.537 0.998
200 24 50 6 0.416 4.416 0.350 0.541 0.998
400 48 50 6 0.381 2.773 0.356 0.505 0.998
600 72 50 6 0.426 7.653 0.352 0.550 0.998
800 96 50 6 0.363 3.377 0.332 0.502 0.998
1000 120 50 6 0.405 5.414 0.359 0.526 0.998

50 6 100 12 3.548 15.749 1.104 1.526 0.984
100 12 100 12 3.310 15.545 1.058 1.480 0.985
200 24 100 12 3.200 14.790 1.008 1.478 0.985
400 48 100 12 3.279 30.567 1.007 1.505 0.985
600 72 100 12 2.723 14.993 0.927 1.365 0.987
800 96 100 12 2.524 13.366 0.906 1.305 0.988
1000 120 100 12 2.157 9.940 0.847 1.200 0.990

50 6 200 24 16.981 57.084 2.531 3.252 0.928
100 12 200 24 15.025 49.937 2.383 3.057 0.935
200 24 200 24 15.114 55.836 2.357 3.091 0.934
400 48 200 24 14.058 50.333 2.282 2.975 0.937
600 72 200 24 12.617 48.434 2.158 2.821 0.945
800 96 200 24 10.389 38.372 1.973 2.549 0.955
1000 120 200 24 8.971 36.862 1.828 2.373 0.961

Bold entries denote the lowest MSE and MAE values for a given output window size.

Results in Table 2 show that the smaller the size of the output window, the lower the
error of predictions. LSTMs predicting one output time-step had the lowest mean errors,
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while LSTMs predicting 24 time-steps had the highest mean errors, as expected. On the
other hand, the size of the input window did not significantly influence the mean losses
when predicting short output windows, specifically six output time-steps or below (see
Figure 4a–c). The size of the input window had an influence when predicting larger output
windows, i.e., 12 and 24 time-steps, with larger input sizes resulting in lower mean errors
(see Figure 4d,e). For 12 and 24 time-step output windows, using 120 time-steps as input
window size, which is the largest input size we tried, led to the lowest mean absolute errors
(see Figure 4d,e).

Figure 4. Performance of LSTM, measured by MAE, for varying input and output window sizes.
Input sizes range from 6 to 120 time-steps, corresponding to 200 to 1000 ms. Output sizes range from
1 to 24 time-steps, corresponding to 8.33 to 200 ms. Sub-figures (a–e) correspond to networks with 1,
3, 6, 12, and 24 output time-steps, respectively.

3.2. Performance of the CNN and Comparisons with LSTM Network

We trained the CNN and compared its performance with the LSTM network. We only
focused on using six and 120 input time-steps (the smallest and largest input sizes we used
with the LSTM) to predict 1, 3, 6, 12, and 24 output time-steps. The performances of both
models (MAE, MSE, and Pearson correlation coefficient) are reported in Table 3.
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Table 3. Performance of CNN in forecasting gait trajectories for varying input and output window sizes.

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

MSE
(Degrees)

MSE
std

(Degrees)

MAE
(Degrees)

MAE
std

(Degrees)

Mean
Pearson

Correlation
Coefficient

50 6 8.33 1 0.069 0.960 0.129 0.229 1.000
50 6 25 3 0.184 1.699 0.234 0.360 0.999
50 6 50 6 0.891 4.685 0.552 0.766 0.996
50 6 100 12 5.265 20.277 1.358 1.850 0.977
50 6 200 24 20.437 65.596 2.840 3.517 0.913

1000 120 8.33 1 0.061 0.709 0.138 0.203 1.000
1000 120 25 3 0.216 2.020 0.259 0.386 0.999
1000 120 50 6 0.994 4.966 0.576 0.814 0.995
1000 120 100 12 5.496 18.724 1.440 1.850 0.975
1000 120 200 24 18.007 54.453 2.738 3.242 0.926

As shown in Table 3, the CNN errors increase when increasing the number of predicted
time-steps, as observed with LSTM. In Figure 5, we compare the performance of the CNN
and LSTM and it is noticeable that their mean errors are very similar when predicting small
output windows, such as one and three time-steps. However, the difference in the MAE
for CNN and LSTM widens for larger output windows including 6, 12, and 24 future time-
steps, with LSTM outperforming CNN. Interestingly, the size of this difference depends
on the input window size: when six time-steps are used as input, the CNN MAE is larger
than the LSTM one; when 120 time-steps are used as input, the difference in their MAEs is
even larger.

Figure 5. Comparison of the performance of the CNN and LSTM network, measured by MAE, for
varying output window sizes. In (a), the input size is fixed at 6 time-steps, while in (b) the input is
fixed at 120 time-steps.

3.3. Benchmarking Performance of Deep Learning Models

We benchmark the performance of our two deep learning models to a simpler machine
learning architecture, the Fully Connected Network (FCN), and two naïve/non-intelligent
methods. The first naïve method uses the final time-step in the input window as the
predicted value for all output time-steps. The second naïve method uses the mean value of
the input as the predicted value for all output time-steps. Table 4 shows the MAE for the
deep learning and benchmark models. Our deep learning models outperformed all naïve
methods and the majority of the FCN predictions. In two cases, the FCN obtained better
results: the first was when the input and output window sizes were six and 24 time-steps,
respectively, where the FCN had lower MAE compared to the LSTM and CNN; the other
case was when the input and output sizes were 120 and 24 time-steps, respectively, with
FCN performing better than CNN, but not better than LSTM.
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Table 4. Benchmarking performance of deep learning models

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

LSTM
MAE

(Degrees)

CNN
MAE

(Degrees)

FCN
MAE

(Degrees)

Naïve
Method 1 a

MAE
(Degrees)

Naïve
Method 2 b

MAE
(Degrees)

50 6 8.33 1 0.143 * 0.129 *,† 0.195 *,† 0.449 † 1.513 *,†

50 6 25 3 0.175 * 0.234 *,† 0.294 *,† 0.888 † 1.916 *,†

50 6 50 6 0.461 * 0.552 *,† 0.568 *,† 1.517 † 2.486 *,†

50 6 100 12 1.104 * 1.358 *,† 1.336 *,† 2.640 † 3.494 *,†

50 6 200 24 2.531 * 2.840 *,† 2.489 *,† 4.417 † 5.096 *,†

1000 120 8.33 1 0.109 * 0.138 *,† 0.369 *,† 0.448 † 6.090 *,†

1000 120 25 3 0.223 * 0.259 *,† 0.594 *,† 0.888 † 6.121 *,†

1000 120 50 6 0.359 * 0.576 *,† 0.902 *,† 1.520 † 6.167 *,†

1000 120 100 12 0.847 * 1.440 *,† 1.454 *,† 2.651 † 6.254 *,†

1000 120 200 24 1.828 * 2.738 *,† 2.320 *,† 4.448 † 6.385 *,†

a Naïve Method 1: all output time-steps are predicted to be the value of the last input time-step. b Naïve Method
2: all output time-steps are predicted to be the mean value of the input time-steps. * and † represent statistical
significance compared to Naïve Method 1 and LSTM, respectively. Significance is based on pairwise t-tests
(p < 0.05). Bold entries denote the lowest MAE value for a given input and output window size.

Naïve Method 1 resulted in lower MAEs compared to Naïve Method 2, therefore, pair-
wise t-tests were conducted between the Naïve Method 1 and all other intelligent methods
(LSTM, CNN, and FCN). This was done to determine whether the mean absolute errors
were significantly different (with p < 0.05); the results in Table 4 confirm that intelligent
models perform better than non-intelligent models. Furthermore, pairwise t-tests were
conducted between the LSTM and all the other models; the differences in the MAEs were
found to be statistically significant, as shown in Table 4.

3.4. Accuracy of the Models across the Different Time-Steps

In the previous sections, we were reporting the mean error across all features and
time-steps. Here, we calculate the MAE, for each time-step for a given output window,
separately (see Figure 6); the MAE is calculated using an adapted form of Equation (9) (see
Section 2.7), where the summation over k = 1:lout is not performed. As expected, results
show that predictions further in the future deviate more from the actual values, and this
deviation is more pronounced after around the 3rd time-step, as shown in Figure 7. Figure 7
also shows that the LSTM MAE increases with the increase in the size of the output window.

3.5. Performance of the Models for Each Joint

We investigated whether errors for a particular joint were higher than others. The
MAE results for each of the hip, knee, and ankle joints are presented in Figure 8. The MAE
for each joint represents the combined errors for the angles predicted in the pitch, roll,
and yaw dimensions. They were calculated using an adapted form of Equation (9) (see
Section 2.7), where the numbers of features, f, in the summation over j = 1:f are reduced to
the pitch, yaw, and roll angles for a single joint, rather than for all joints. The results do not
show any particular trend.
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Figure 6. Mean absolute errors for each individual time-step predicted by the LSTM and CNN for a
given output window. Input window size is fixed at 120 time-steps. Sub-figures (a–d) correspond to
networks with 3, 6, 12, and 24 output time-steps, respectively.
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Figure 7. Mean absolute errors for each individual time-step predicted by the LSTM networks with 3,
6, 12, and 24 output window sizes. Input window size is fixed at 120 time-steps.

Figure 8. MAEs for each of the hip, knee, and ankle joints for the CNN and LSTM network with
varying output sizes. Input window size is fixed at 120 time-steps and the MAE for each joint
represents the combined MAE for the yaw, pitch, and roll dimensions. Sub-figures (a–e) correspond
to networks with 1, 3, 6, 12, and 24 output time-steps, respectively.

4. Discussion

In this paper, we implement deep learning models, specifically LSTM and CNN, to
forecast trajectories of children with pathological gait. To the best of our knowledge, this is
the first time trajectories of pathological gait of children, which exhibit larger inter- and
intra-subject variability compared to the trajectories of typically developing children, are
predicted using deep learning models.

The advantage of deep learning models is that they make predictions based on current
input data, but also utilise knowledge of learned representations of gait trajectories acquired
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during a prior learning stage from numerous gait sequences. We used LSTM and CNN
to forecast hip, knee, and ankle trajectories based on varying input and output window
sizes. Input window sizes for the LSTM were 50, 100, 200, 400, 600, 800, and 1000 ms (for
data captured at a sampling frequency of 120Hz, these durations correspond to 6, 12, 24,
48, 72, 96, and 120 time-steps). Input window sizes for the CNN were 50 and 1000 ms
(corresponding to six and 120 time-steps). The reason for using input window sizes up to
1000 ms is that the average length of a gait cycle for a typically developing school-aged
child is 980–990 ms [38]. This means we trained deep learning models to make predictions
based on data from approximately one full gait cycle, or lower. Output window sizes for
the LSTM and CNN were 8.33, 25, 50, 100, and 200 ms (corresponding to 1, 3, 6, 12, and
24 time-steps); this means that we have tried to forecast up to 20% of the cycle. We used
these time ranges following values proposed in the literature by researchers that forecasted
healthy gait (refer to Section 2.2 for details).

The LSTM (a type of gated recurrent network) was selected for forecasting gait tra-
jectories as it has been commonly and successfully used with sequential data [36]. The
LSTM has the advantage of taking into account the order of values in an input sequence. It
has the ability to learn long-term dependencies [36]. The LSTM network was compared to
a CNN, which is mostly used for computer vision problems with 2D grid-like topology
inputs using 2D convolutions, but it is increasingly used with time-series sequences using
1D convolutions [39]. Therefore, we implemented a CNN to evaluate if it shows promising
performance in the task of forecasting trajectories for children with neurological disorders.

Our results show that the LSTM’s performance is better than the CNN. However, the
difference between the MAE of the two networks was larger with larger input and output
window sizes. The performance gap, measured in MAE, was highest with 120 time-steps
as input, and 24 time-steps as output, and was 0.91 degrees. There was one case where
the MAE for the CNN was higher than the LSTM, which used the smallest combination
of input and output windows (six and one time-steps, respectively). For this case, the
difference in MAE between the CNN and LSTM was small, 0.014 degrees, and the CNN had
a higher standard deviation. Our results are different from those of Moreira et al. [40], who
found that the CNN was more robust for ankle joint torque estimation based on kinematics,
speed, and anthropometry. Our results are also different from those of Molinaro et al. [41],
in which a temporal convolution network (with dilated convolution layers) outperformed
an LSTM implementation. It must be stressed that Molinaro et al. considered joint moments
rather than joint angles.

We also compared the influence of the size of the input and output windows on
predictions. The size of the input window did not have a significant influence on the
accuracy of the LSTM network when predicting small output window sizes (including one,
three, and six time-steps). However, for predicting longer output window sizes (including
12 and 24 time-steps), larger input windows resulted in lower errors. For both 12 and
24 time-steps, the lowest error was achieved using 120 input time-steps. This is different
from what was reported by [25], who found that after increasing input size beyond 30 time-
steps, the mean errors for predicting five time-steps in the future increased (10 time-steps
correspond to 60 ms in that paper).

There were cases in our results in which the difference between the actual and pre-
dicted trajectories was large compared to the mean absolute error. We could not tell whether
this was due to the model’s lack of generalisability for certain types of pathological gait
patterns, or due to an underlying issue with the data for those samples, such as sensor or
marker errors. This is because the subjects were anonymised and the dataset used didn ot
contain supplementary information/videos for each trial. This is one of the limitations to
our study. Another limitation to this study, also caused by the anonymisation of the dataset,
was the inability to test whether there is a significant difference in performance between
individualised models (models that are subject-specific and need to be trained on data from
the user of the exoskeleton) and generalised models (models that are subject-independent
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and make predictions without the need to be trained on data from a specific user). This is
an important point to consider when designing exoskeleton control strategies.

5. Conclusions

To conclude, we have used two deep learning models, LSTM and CNN, to forecast the
trajectories of children with neurological disorders. The results show that our deep learning
models outperform the three baseline methods we implemented in our study (with the
LSTM being the top performer), with only two exceptions in which the FCN was better
(see Section 3.5 for details). We also experimented with varying input and output windows
to quantify how the performance is affected by the amount of input data and the length
of the future horizon. A potential application of our approach is the control of lower limb
robotics, whereby forecasted trajectories of the models can be used as a proxy for the user’s
intentions. These intentions can be integrated into the control hierarchy of exoskeletons,
specifically into the high-level control responsible for detecting the user’s intention and
passing it on to the mid and low levels to generate appropriate movement commands.
For real-time systems, there is always a trade-off between performance and speed. Input
windows therefore need to be large enough to achieve acceptable errors, but not too large
to slow the system down. As future work, we should evaluate the performance of the
models on data collected using wearable sensors (e.g., IMUs and foot pressure sensors)
rather than motion capture systems. We should also evaluate the difference between the
performance of individualised and generalised models. Furthermore, we believe that the
forecasted trajectories need to be paired with a corrective algorithm, unique to every gait
sequence. In this scenario, the user intention (coming from a trajectory forecasting model)
is adjusted by a corrective algorithm that produces the ’desired trajectory’ used by the mid-
and low-level controllers of the exoskeleton.
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27. Hernandez, V.; Dadkhah, D.; Babakeshizadeh, V.; Kulić, D. Lower body kinematics estimation from wearable sensors for walking
and running: A deep learning approach. Gait Posture 2021, 83, 185–193. [CrossRef]

28. Jia, L.; Ai, Q.; Meng, W.; Liu, Q.; Xie, S.Q. Individualized Gait Trajectory Prediction Based on Fusion LSTM Networks for Robotic
Rehabilitation Training. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Delft, The Netherlands, 12–16 July 2021; pp. 988–993. [CrossRef]

29. Zaroug, A.; Garofolini, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Prediction of gait trajectories based on the Long Short Term Memory
neural networks. PLoS ONE 2021, 16, e0255597. [CrossRef]

30. Zhu, C.; Liu, Q.; Meng, W.; Ai, Q.; Xie, S.Q. An Attention-Based CNN-LSTM Model with Limb Synergy for Joint Angles
Prediction. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft,
The Netherlands, 12–16 July 2021; pp. 747–752. [CrossRef]

31. Kirtley, C. Clinical Gait Analysis: Theory and Practice; Churchill Livingstone Elsevier: Edinburgh, UK, 2006.
32. Steinwender, G.; Saraph, V.; Scheiber, S.; Zwick, E.B.; Uitz, C.; Hackl, K. Intrasubject repeatability of gait analysis data in normal

and spastic children. Clin. Biomech. 2000, 15, 134–139. [CrossRef]
33. Moon, Y.; Sung, J.; An, R.; Hernandez, M.E.; Sosnoff, J.J. Gait variability in people with neurological disorders: A systematic

review and meta-analysis. Hum. Mov. Sci. 2016, 47, 197–208. [CrossRef] [PubMed]
34. Automatic Real-Time Gait Event Detection in Children Using Deep Neural Networks. Available online: https://simtk.org/frs/

?group_id=1946 (accessed on 1 October 2021).
35. Kidzinski, L.; Delp, S.; Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE

2019, 14, e0211466. [CrossRef]
36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.

deeplearningbook.org (accessed on 2 February 2022).
37. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In

Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK,
USA, 4–8 August 2019.

38. Gieysztor, E.; Kowal, M.; Paprocka-Borowicz, M. Gait Parameters in Healthy Preschool and School Children Assessed Using
Wireless Inertial Sensor. Sensors 2021, 21, 6423. [CrossRef] [PubMed]

39. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

40. Moreira, L.; Figueiredo, J.; Vilas-Boas, J.P.; Santos, C.P. Kinematics, Speed, and Anthropometry-Based Ankle Joint Torque
Estimation: A Deep Learning Regression Approach. Machines 2021, 9, 154. [CrossRef]

41. Molinaro, D.D.; Kang, I.; Camargo, J.; Gombolay, M.C.; Young, A.J. Subject-Independent, Biological Hip Moment Estimation
During Multimodal Overground Ambulation Using Deep Learning. IEEE Trans. Med Robot. Bionics 2022, 4, 219–229. [CrossRef]

http://dx.doi.org/10.1016/j.gaitpost.2020.10.026
http://dx.doi.org/10.1109/AIM46487.2021.9517616
http://dx.doi.org/10.1371/journal.pone.0255597
http://dx.doi.org/10..1109/AIM46487.2021.9517544
http://dx.doi.org/10.1016/S0268-0033(99)00057-1
http://dx.doi.org/10.1016/j.humov.2016.03.010
http://www.ncbi.nlm.nih.gov/pubmed/27023045
https://simtk.org/frs/?group_id=1946
https://simtk.org/frs/?group_id=1946
http://dx.doi.org/10.1371/journal.pone.0211466
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.3390/s21196423
http://www.ncbi.nlm.nih.gov/pubmed/34640743
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.3390/machines9080154
http://dx.doi.org/10.1109/TMRB.2022.3144025

