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Abstract 

 

This project aims to develop and explore a robust framework for assessing biometric systems on 

mobile platforms, where data is often collected in non-constrained, potentially challenging environments. 

The framework enables the performance assessment given a particular platform, biometric modality, 

usage environment, user base and required security level. 

 

 The ubiquity of mobile devices such as smartphones and tablets has increased access to Internet-

based services across various scenarios and environments. Citizens use mobile platforms for an ever-

expanding set of services and interactions, often transferring personal information, and conducting 

financial transactions. Accurate identity authentication for physical access to the device and service is, 

therefore, critical to ensure the security of the individual, information, and transaction. 

 

Biometrics provides an established alternative to conventional authentication methods. Mobile 

devices offer considerable opportunities to utilise biometric data from an enhanced range of sensors 

alongside temporal information on the use of the device itself. For example, cameras and dedicated 

fingerprint devices can capture front-line physiological biometric samples (already used for device log-on 

applications and payment authorisation schemes such as Apple Pay) alongside voice capture using 

conventional microphones. 

 

Understanding the performance of these biometric modalities is critical to assessing suitability for 

deployment. Providing a robust performance and security assessment given a set of deployment variables 

is critical to ensure appropriate security and accuracy. Conventional biometrics testing is typically 

performed in controlled, constrained environments that fail to encapsulate mobile systems’ daily (and 

developing) use. 

 

This thesis aims to develop an understanding of biometric performance on mobile devices. The impact 

of different mobile platforms, and the range of environmental conditions in use, on biometrics' accuracy, 

usability, security, and utility is poorly understood. This project will also examine the application and 

performance of mobile biometrics when in motion. 

 



 

3 

Acknowledgements 

 

I wish to take this opportunity to express my sincere gratitude to everyone who has supported and guided 

me both professionally and emotionally throughout the entire process of my PhD. The COVID-19 

pandemic caused rapid changes to many of our lives and research, but we managed to get through it 

together. 

 

I want to take this opportunity to thank my two supervisors, Richard Guest and Farzin Deravi, for their 

continued guidance and support throughout the PhD process. Without their knowledge and wisdom, I 

likely would not have managed to make it anywhere near completing a PhD project. 

 

My family, Mother Sally, Father Nick, Sister Emma, and Brother Stephen, and my girlfriend Ayda, for 

always being around for the good and the bad, for always believing in me and being proud no matter what 

the outcomes of life may be and reminding me to remember to ground myself and take the perspective 

of situations.  

 

Finally, to all my “Big Brain” friends and colleagues who have come and gone over the years or are still 

around, without whom, I do not think I would have been able to complete this thesis. I am not used to 

having so much support from people who are willing and wishing me to succeed, so I would like to thank 

you all and wish you every success and joy in life, and for the many of you working towards a PhD good 

luck. Extra special shout-out to my housemates in the “PhD House” for keeping me fed and watered during 

those final weeks of thesis writing. 

 



 

4 

Table of Contents 

Abstract ........................................................................................................................................... 2 

Acknowledgements .......................................................................................................................... 3 

Table of Contents ............................................................................................................................. 4 

List of Tables .................................................................................................................................... 9 

List of Figures ................................................................................................................................. 11 

1 Introduction ........................................................................................................................... 14 

1.1 Introduction .................................................................................................. 14 

1.2 What Are Biometrics? ................................................................................... 15 

1.3 Biometric Performance Overview .................................................................. 17 

1.4 Research Motivations.................................................................................... 18 

1.5 Mobile Biometrics ......................................................................................... 19 

1.6 Research Questions ....................................................................................... 21 

1.7 Definitions and Acronyms ............................................................................. 22 

1.8 Thesis Structure ............................................................................................ 23 

1.9 Summary ...................................................................................................... 24 

2 Mobile Biometric Testing and Reporting ................................................................................ 25 

2.1 Introduction .................................................................................................. 25 

2.2 Research ....................................................................................................... 26 

2.3 National Cyber Security Centre (NCSC) ........................................................... 28 

2.4 Microsoft (Windows Hello) ............................................................................ 29 

2.5 Android (Google) .......................................................................................... 29 

2.5.1 Metrics .......................................................................................................................... 30 

2.5.2 Tiered Authentication ................................................................................................... 31 

2.5.3 Evaluation Process ........................................................................................................ 31 

2.5.4 Evaluation Phase ........................................................................................................... 32 

2.5.5 Common Considerations ............................................................................................... 32 

2.6 iOS (Apple).................................................................................................... 32 

2.7 International Organization for Standardisation (ISO) ...................................... 33 



 

5 

2.8 FIDO ............................................................................................................. 36 

2.8.1 Metrics ........................................................................................................................... 37 

2.8.2 Performance .................................................................................................................. 37 

2.8.3 Common Test Harness ................................................................................................... 38 

2.8.4 Test Procedures ............................................................................................................. 38 

2.8.5 Report to FIDO ............................................................................................................... 39 

2.8.6 Presentation Attack Detection (PAD) ............................................................................ 39 

2.9 Discussion (Moving Forward) ......................................................................... 40 

2.10 Summary ...................................................................................................... 41 

3 Core Factors and Relationships .............................................................................................. 42 

3.1 Introduction .................................................................................................. 42 

3.2 Discussing Performance................................................................................. 42 

3.3 Factor #1: Modalities ..................................................................................... 44 

3.4 Factor #2: Environments ................................................................................ 46 

3.5 Factor #3: Diversity of Scenarios .................................................................... 48 

3.6 Factor #IV: Users ........................................................................................... 50 

3.7 Factor #V: System Constraints ....................................................................... 54 

3.8 Factor #VI: Hardware .................................................................................... 56 

3.9 Factor #VII: Algorithms .................................................................................. 58 

3.10 Modelling Factor Relationships ...................................................................... 59 

3.11 Discussion ..................................................................................................... 63 

3.12 Summary ...................................................................................................... 64 

4 Towards A Flexible Performance Assessment Framework ..................................................... 65 

4.1 Introduction .................................................................................................. 65 

4.2 Performance Framework Approach ............................................................... 66 

4.3 Performance Evaluation Framework .............................................................. 67 

4.3.1 Stage One – Determine Evaluation Parameters ............................................................ 67 

4.3.2 Stage Two: Algorithmic Evaluation ................................................................................ 71 

4.3.3 Stage Three: Perform Baseline Evaluations ................................................................... 72 

4.3.4 Stage Four: Targeted Scenario Evaluations ................................................................... 73 

4.3.5 Stage Five: Presentation Attack Detection and Architectural Security ......................... 74 

4.3.6 Stage Six: Operational Evaluations ................................................................................ 77 



 

6 

4.3.7 Stage Seven: (Final) Reporting ...................................................................................... 77 

4.4 Evaluation Approach ..................................................................................... 79 

4.5 Framework Flowchart ................................................................................... 80 

4.6 Usability ....................................................................................................... 81 

4.7 Tailored Impostors ........................................................................................ 83 

4.8 Comparing the Framework ............................................................................ 85 

4.9 Summary ...................................................................................................... 88 

5 The Experimental Data Collection .......................................................................................... 89 

5.1 Introduction .................................................................................................. 89 

5.2 Evaluation Design and Dataset to be Collected ............................................... 89 

5.3 Participant Demographics ............................................................................. 90 

5.4 Devices ......................................................................................................... 91 

5.5 Session One (Indoor) ..................................................................................... 93 

5.6 Session Two (Outdoors) ................................................................................ 94 

5.7 Application Development .............................................................................. 95 

5.8 Pre-Experiment Questionnaire Results .......................................................... 97 

5.8.1 Smartphone Habits ....................................................................................................... 97 

5.9 Post-Experiment Questionnaire Results ....................................................... 102 

5.9.1 Satisfaction .................................................................................................................. 102 

5.9.2 Preference ................................................................................................................... 103 

5.9.3 Reliability ..................................................................................................................... 104 

5.9.4 Continuous Authentication ......................................................................................... 106 

5.10 Trialling the Framework Model .................................................................... 108 

5.11 Analysis and Reflection ............................................................................... 112 

5.12 Summary .................................................................................................... 113 

6 Measuring and Analysing Mobile Biometric Performance Factors ....................................... 114 

6.1 Introduction ................................................................................................ 114 

6.2 Habituation ................................................................................................ 115 

6.3 Open-Source Biometric Algorithms .............................................................. 117 

6.3.1 Face (Face Recognition) .............................................................................................. 118 



 

7 

6.3.2 Iris (USIT) ..................................................................................................................... 123 

6.3.3 Voice (Deep Speaker) .................................................................................................. 126 

6.4 Quality ........................................................................................................ 132 

6.4.1 Face .............................................................................................................................. 133 

6.4.2 Iris ................................................................................................................................ 142 

6.5 The Effect of Motion ................................................................................... 145 

6.5.1 Face .............................................................................................................................. 145 

6.5.2 Iris ................................................................................................................................ 147 

6.5.3 Voice ............................................................................................................................ 148 

6.6 The Effect of the Environment ..................................................................... 149 

6.6.1 Indoor vs Outdoor ....................................................................................................... 149 

6.6.2 Weather ....................................................................................................................... 155 

6.7 Usability ..................................................................................................... 163 

6.8 Tailored Impostors Investigation ................................................................. 165 

6.9 Summary .................................................................................................... 167 

7 The Adaptive Threshold Decision ......................................................................................... 168 

7.1 Introduction ................................................................................................ 168 

7.2 Adaptive Approaches in Biometrics ............................................................. 168 

7.3 Adaptive Threshold Data Collection ............................................................. 170 

7.4 Scenario Performance ................................................................................. 172 

7.5 The Adaptive Scenario Threshold ................................................................. 173 

7.6 Automatic Scenario Detection ..................................................................... 175 

7.7 Testing The Adaptive Threshold ................................................................... 178 

7.7.1 Choosing the Impostors ............................................................................................... 179 

7.7.2 Examining the Threshold ............................................................................................. 179 

7.8 Results ........................................................................................................ 180 

7.8.1 Verification .................................................................................................................. 183 

7.9 Discussion ................................................................................................... 184 

7.10 Summary .................................................................................................... 184 

8 Conclusions .......................................................................................................................... 186 

8.1 Introduction ................................................................................................ 186 

8.2 Limitations and Lessons Learnt .................................................................... 186 



 

8 

8.3 The Performance Assessment Framework ................................................... 187 

8.3.1 Stage One: Determine Evaluation Parameters ........................................................... 187 

8.3.2 Stage Two: Algorithmic Evaluation ............................................................................. 188 

8.3.3 Perform Baseline Evaluation ....................................................................................... 188 

8.3.4 Stage Four: Targeted Scenario Evaluation .................................................................. 188 

8.3.5 Stage Five: Presentation Attack Detection and Architectural Security ....................... 189 

8.3.6 Stage Six: Operational Evaluation ............................................................................... 189 

8.3.7 Stage Seven: (Final) Reporting .................................................................................... 189 

8.4 Thesis Contributions ................................................................................... 189 

8.5 Reflection ................................................................................................... 191 

8.6 Summary .................................................................................................... 194 

References .................................................................................................................................... 196 

Appendix A: Questionnaire .................................................................................................... 209 

Appendix B: Data Collection Apps .......................................................................................... 213 

 



 

9 

List of Tables 

 

Table 1.1: Biometrics Vocabulary ......................................................................................................... 23 

Table 2.1: Android Tiered Authentication Metrics ............................................................................... 31 

Table 3.1: List of Influencing Factors as Defined in ISO/IEC 19795-1:2006 [22] ................................... 43 

Table 3.2: Examples of Influencing Factors per Modality ..................................................................... 45 

Table 3.3: Examples of Scenarios Under the Categories of 'Motion' and 'Stationary' ......................... 48 

Table 3.4: Defining the Relationships Identified within the Model ...................................................... 60 

Table 3.5: Examples of Suggested Methods for Collecting Model Relationship Data .......................... 62 

Table 4.1: Evaluators’ Levels of Access to a Device .............................................................................. 69 

Table 4.2: Security Levels ..................................................................................................................... 70 

Table 4.3: Ambient factors that affect each biometric modality [97] .................................................. 74 

Table 4.4: Spoof presentation attack examples separated by levels [99] ............................................ 75 

Table 4.5: Testing approach associated with the level of access ......................................................... 79 

Table 4.6: Example of an impostor selection process showcasing a possible ‘Tailoring’ algorithm ..... 85 

Table 4.7: Comparing the Key Features of Available Performance Methodologies ............................. 86 

Table 4.8: Comparing the Key Features of Available ISO Standards..................................................... 88 

Table 5.1: Experimental Smartphone Device Specification .................................................................. 92 

Table 5.2: Session Two ‘Outdoor’ Stop Locations ................................................................................ 95 

Table 5.3: Background Sensors Collected from the Android Devices ................................................... 96 

Table 5.4: Likert reliability scores pre- and post-experiment ............................................................. 106 

Table 5.5: False Non-Match Rate of modalities on the Samsung Galaxy S9 in a variety of scenarios 108 

Table 5.6: False Non-Match Rate of modalities on the Google Pixel 2, Apple iPhone 8, and Apple iPhone 

X in a variety of scenarios ......................................................................................................................... 108 

Table 5.7: Outcomes from Fingerprint using the Samsung Galaxy S9 ................................................ 110 

Table 5.8: Outcomes from Face using the Samsung Galaxy S9 .......................................................... 110 

Table 5.9: Outcomes from Iris using the Samsung Galaxy S9 ............................................................. 110 

Table 5.10: Outcome from Fingerprint using the Google Pixel 2 ....................................................... 111 

Table 5.11: Outcomes from Fingerprint using the Apple iPhone 8 .................................................... 111 

Table 5.12: Outcomes from Face using the Apple iPhone X ............................................................... 112 

Table 6.1: FNMR Attempt Breakdown ................................................................................................ 116 

Table 6.2: Scenario Genuine Verification Score Statistics for ‘Face’ .................................................. 119 

Table 6.3: Iris Recognition using USIT ................................................................................................. 124 

Table 6.4: Scenario Genuine Verification Score Statistics for ‘Iris’ ..................................................... 124 

Table 6.5: Scenario Genuine Verification Score Statistics for ‘Voice’ ................................................. 127 

Table 6.6: Samsung Galaxy S9 Scenario Quality Score Statistics for ‘Face’ ........................................ 137 

Table 6.7: Google Pixel 2 Scenario Quality Score Statistics for ‘Face’ ................................................ 139 

Table 6.8: Apple iPhone 8 Scenario Quality Score Statistics for ‘Face’ ............................................... 141 



 

10 

Table 6.9: Scenario Quality Score Statistics for ‘Iris’ .......................................................................... 143 

Table 6.10: Stationary vs Motion Scenario Statistics for ‘Face’ ......................................................... 146 

Table 6.11: Stationary vs Motion Scenario Statistics for ‘Iris’ ............................................................ 147 

Table 6.12: Stationary vs Motion Scenario Statistics for ‘Voice’ ........................................................ 148 

Table 6.13: False Non-Match Rate Results for the In-Built Biometric Systems of the Smartphone 

Devices Comparting Between Indoor and Outdoor Environments ......................................................... 151 

Table 6.14: Indoor vs Outdoor Environment Statistics for ‘Face’ ...................................................... 152 

Table 6.15: Indoor vs Outdoor Environment Statistics for ‘Iris’ ......................................................... 153 

Table 6.16: Indoor vs Outdoor Environment Statistics for ‘Voice’ ..................................................... 154 

Table 6.17: Summary of Weather Conditions Experienced During Outdoor Trial ............................. 156 

Table 6.18: Weather Condition Genuine Verification Score Statistics for ‘Face’ ............................... 156 

Table 6.19: Weather Condition Quality Score Statistics for ‘Face’..................................................... 158 

Table 6.20: Weather Condition Genuine Verification Score Statistics for ‘Iris’.................................. 159 

Table 6.21: Weather Condition Quality Score Statistics for ‘Iris’ ....................................................... 161 

Table 6.22: Weather Condition Genuine Verification Score Statistics for ‘Voice’ ............................. 162 

Table 6.23: Usability Metrics for Smartphone Device Modalities for Session One (Indoor) Scenarios

 ................................................................................................................................................................. 164 

Table 6.24: Usability Metrics for Smartphone Device Modalities for Session Two (Outdoor) Scenarios

 ................................................................................................................................................................. 165 

Table 6.25: Statistical Tests on Varying Impostor ‘Tailoring’ Processes ............................................. 166 

Table 7.1: Number of images collected from each scenario .............................................................. 172 

Table 7.2: Participant Age Ranges ...................................................................................................... 172 

Table 7.3: Performance variations for each tested scenario ............................................................. 173 

Table 7.4: Classification accuracy for standard classifiers ................................................................. 177 

Table 7.5: Scenario Classification Results (kNN) ................................................................................ 177 

Table 7.6: ‘Four Scenarios’ Confusion Matrix .................................................................................... 178 

Table 7.7: Recognition performance results when trialling the adaptive threshold ......................... 182 

Table 7.8: Comparing Recommended Baseline Performance to the Adaptive Approach ................. 183 

 



 

11 

List of Figures 

 

Figure 1.1: Components of a General Biometric System [7] ................................................................ 16 

Figure 1.2: Examples of Mobile Influences Expected to Impact Performance ..................................... 20 

Figure 2.1: Mind Map Documenting Buriro et al. [16] Guidelines........................................................ 27 

Figure 3.1: Flowchart to assign a scenario to a category of 'Motion' or 'Stationary' ........................... 49 

Figure 3.2: Human Biometric Sensor Interaction (HBSI) Model [74]. ................................................... 52 

Figure 3.3: Model Showing the Potential Relationships (Connections) between Factors. ................... 60 

Figure 4.1: Performance Framework Flowchart ................................................................................... 81 

Figure 4.2: HBSI Error Framework [108] ............................................................................................... 82 

Figure 4.3: Example Tailored Impostor Diagram (Tailoring) ................................................................. 84 

Figure 5.1: Gender Split of Participants ................................................................................................ 90 

Figure 5.2: Age Split of Participants ...................................................................................................... 90 

Figure 5.3: Market Share of UK Mobile Device Vendors [120] ............................................................. 91 

Figure 5.4: IriTech IriShield (MK 2120U/UL) ......................................................................................... 92 

Figure 5.5: Session Two Route Map of the University of Kent Canterbury Campus ............................ 94 

Figure 5.6: Example Screenshots from the “Biometric DC” Data Collection Application ..................... 97 

Figure 5.7: The Operating System for the Participants’ Smartphone Device ....................................... 98 

Figure 5.8: Participants’ Primary Smartphone Unlocking Method Categorised by Operating System 

Users........................................................................................................................................................... 98 

Figure 5.9: Participants’ Primary Biometric Modality for Smartphone Unlocking ............................... 99 

Figure 5.10: Participants’ Backup Mechanism for Biometric Users .................................................... 100 

Figure 5.11: Likert scale showing the participants’ perceived ‘satisfaction’ with their current phone 

lock based on the lock type ...................................................................................................................... 100 

Figure 5.12: Likert scale showing the participants’ perceived ‘satisfaction’ of their current phone lock 

based on biometric modality ................................................................................................................... 101 

Figure 5.13: Likert scale showing the participants' perceived ‘reliability’ of their current phone lock 

based on biometric modality ................................................................................................................... 101 

Figure 5.14: Likert scale showing the participants' perceived ‘reliability’ of their current phone lock 

based on biometric modality ................................................................................................................... 102 

Figure 5.15: Participants’ Satisfaction for Each Modality ................................................................... 103 

Figure 5.16: Participants’ Preferred Modality .................................................................................... 104 

Figure 5.17: Post-Experiment Reliability Questionnaire Scores Organised by Participants’ Primary 

Screen Lock Type ...................................................................................................................................... 105 

Figure 5.18: Post-Experiment Reliability Questionnaire Scores Organised by Participants’ Biometric 

Modality ................................................................................................................................................... 105 

Figure 5.19: Participants’ response to their familiarity concerning continuous authentication ........ 107 



 

12 

Figure 5.20: Participants’ response to how privacy-invasive they perceive the concept of continuous 

authentication ......................................................................................................................................... 107 

Figure 6.1: Device Genuine Verification Scores Box Plot for Original and Cropped Image for ‘Face’ 120 

Figure 6.2: Samsung Galaxy S9 Scenario Genuine Verification Scores Box Plots and P-Value Significance 

Plots for Original and Cropped Images for ‘Face’ .................................................................................... 121 

Figure 6.3: Google Pixel 2 Scenario Genuine Verification Scores Box Plots and P-Value Significance Plots 

for Original and Cropped Images for ‘Face’ ............................................................................................. 122 

Figure 6.4: Apple iPhone 8 Scenario Genuine Verification Scores Box Plots and P-Value Significance 

Plots for Original and Cropped Images for ‘Face’ .................................................................................... 123 

Figure 6.5: Scenario Genuine Verification Scores Box Plot for ‘Iris’ ................................................... 125 

Figure 6.6: Scenario Genuine Verification Scores P-Value Significance Plot for ‘Iris’ ........................ 125 

Figure 6.7: Device Genuine Verification Scores Box Plot for ‘Voice’ .................................................. 128 

Figure 6.8: Device Genuine Verification Scores P-Value Significance Plot for ‘Voice’ ....................... 128 

Figure 6.9: Samsung Galaxy S9 Scenario Genuine Verification Scores Box Plot for ‘Voice’ ............... 129 

Figure 6.10: Samsung Galaxy S9 Scenario Genuine Verification Scores P-Value Significance Plot for 

‘Voice’ ...................................................................................................................................................... 129 

Figure 6.11: Google Pixel 2 Scenario Genuine Verification Scores Box Plot for ‘Voice’ ..................... 130 

Figure 6.12: Google Pixel 2 Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’

 ................................................................................................................................................................. 130 

Figure 6.13: Apple iPhone 8 Scenario Genuine Verification Scores Box Plot for ‘Voice’ ................... 130 

Figure 6.14: Apple iPhone 8 Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’

 ................................................................................................................................................................. 131 

Figure 6.15: Apple iPhone X Scenario Genuine Verification Scores Box Plot for ‘Voice’ ................... 131 

Figure 6.16: Apple iPhone X Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’

 ................................................................................................................................................................. 132 

Figure 6.17: Device Quality Scores Box Plots and P-Value Significance Plots for Original and Cropped 

Images for ‘Face’ ...................................................................................................................................... 134 

Figure 6.18: Quality Scores vs Verification Scores for the Original Images for ‘Face’ ........................ 134 

Figure 6.19: Quality Scores vs Verification Scores for the Cropped Images for ‘Face’....................... 135 

Figure 6.20: Samsung Galaxy S9 Scenario Quality Scores Box Plots and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ ................................................................................................... 138 

Figure 6.21: Google Pixel 2 Scenario Quality Scores Box Plots and P-Value Significance Plots for Original 

and Cropped Images for ‘Face’ ................................................................................................................ 140 

Figure 6.22: Apple iPhone 8 Scenario Quality Scores Box Plots and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ ................................................................................................... 142 

Figure 6.23: Quality Scores vs Verification Scores for ‘Iris’ ................................................................ 144 

Figure 6.24: Scenario Quality Scores Box Plot for ‘Iris’ ...................................................................... 144 

Figure 6.25: Scenario Quality Scores P-Value Significance Plot for ‘Iris’ ............................................ 145 

Figure 6.26: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for Original and Cropped Images for ‘Face’ ............................................................................. 146 



 

13 

Figure 6.27: Welch’s T-Test Comparing the Quality Scores for Stationary and Motion Scenarios for 

Original and Cropped Images for ‘Face’ ................................................................................................... 147 

Figure 6.28: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for ‘Iris’ ..................................................................................................................................... 148 

Figure 6.29: Welch’s T-Test Comparing the Quality Scores for Stationary and Motion Scenarios for ‘Iris’

.................................................................................................................................................................. 148 

Figure 6.30: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for ‘Voice’ ................................................................................................................................. 149 

Figure 6.31: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for Original and Cropped Images for ‘Face’ ...................................................................... 152 

Figure 6.32: Welch’s T-Test Comparing the Quality Scores for Indoor and Outdoor Environments for 

Original and Cropped Images for ‘Face’ ................................................................................................... 153 

Figure 6.33: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for ‘Iris’ .............................................................................................................................. 154 

Figure 6.34: Welch’s T-Test Comparing the Quality Scores for Indoor and Outdoor Environments for 

‘Iris’ ........................................................................................................................................................... 154 

Figure 6.35: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for ‘Voice’ .......................................................................................................................... 155 

Figure 6.36: Weather Condition Genuine Verification Scores Box Plot and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ ................................................................................................... 157 

Figure 6.37: Weather Condition Quality Scores Box Plots and P-Value Significance Plots for Original and 

Cropped Images for ‘Face’ ....................................................................................................................... 158 

Figure 6.38: Weather Condition Genuine Verification Scores Box Plot for ‘Iris’ ................................ 160 

Figure 6.39: Weather Condition Genuine Verification Scores P-Value Significance Plot for ‘Iris’ ...... 160 

Figure 6.40: Weather Condition Quality Scores Box Plot for ‘Iris’ ...................................................... 161 

Figure 6.41: Weather Condition Quality Scores P-Value Significance Plot for ‘Iris’ ........................... 161 

Figure 6.42: Weather Condition Genuine Verification Scores Box Plot for ‘Voice’ ............................ 162 

Figure 6.43: Weather Condition Genuine Verification Scores P-Value Significance Plot for ‘Voice’ .. 162 

Figure 6.44: DET Curve Showing Performance Alterations for Varying’ Tailoring’ Methods ............. 166 

Figure 7.1: One example image from each scenario obtained from one participant during the first 

session ...................................................................................................................................................... 171 

Figure 7.2: A traditional matcher/decision of a biometric system ..................................................... 174 

Figure 7.3: An example framework for a simplified adaptive threshold decision for a biometric system

.................................................................................................................................................................. 175 

Figure 7.4: A sample of a gyroscope plot recorded from one transaction during the sitting scenario

.................................................................................................................................................................. 176 

Figure 7.5: Changes to false match rate with varying impostor amounts .......................................... 181 

 



Chapter 1 

14 

1 Introduction 

 

1.1  Introduction 

 

Biometric systems use automated methods to verify or identify an individual and have seen 

widespread deployment over the past two decades. Increasingly these technologies are being 

ubiquitously utilised on mobile platforms such as smartphones and tablets. In the 2020 Biometrics 

Institute Industry Survey [1], 82% of respondents agreed that standardised biometric testing is crucial to 

the industry’s future. Respondents also said that digital identity (14%) was the most significant 

development last year. The respondents then followed this development with mobile identity (12%), 

privacy and ethical issues (11%) and biometrics capture via smartphone (10%).  

 

Following up in the 2021 Biometrics Institute Industry Survey [2], respondents again said that digital 

identity topped the list of significant developers, increasing from 14% to 33% in the year. “A high 86% 

agreed that standardised biometric testing is crucial to the industry’s future, with minimal disagreement 

that this was the case. An even higher proportion (94%) believed that testing is essential to understand 

an algorithm’s performance and how risks are managed”. “Virtually all [the] industry professionals (90+%) 

agreed that biometrics will be the key enabler for anchoring digital identity and that there will continue 

to be significant growth in mobile remote identity verification systems and remote onboarding 

technology”. 

 

The FIDO alliance also comments, stating that “the lack of an industry-defined program to validate 

performance claims has led to concerns over variances in the accuracy and reliability of these solutions” 

[3]. The work presented within this thesis aims to explore and address these concerns within a mobile 

context by exploring the existing area and constructing and analysing a potential performance framework 

concerning mobile biometric systems. 

 

Section 1.2 briefly introduces biometrics and why they help solve problems associated with traditional 

authentication methods. Section 1.3 explores the core elements of biometric performance testing, 

although Chapter 2 aims to explore this in further detail. Section 1.4 provides the research motivations 

for the work presented within this thesis, and Section 1.5 explores some of the backgrounds towards 

moving from traditional static biometric systems to mobile biometric systems. Section 1.6 presents the 

research questions this thesis aims to explore and answer. Section 1.7 provides a table of the key 

definitions and acronyms and reader is likely to encounter in this thesis. Finally, Section 1.8 and Section 

1.9 provide a breakdown of the chapters presented within this thesis and a summary of this chapter. 

 



 

15 

1.2  What Are Biometrics? 

 

From a cyber security perspective, the term authentication validates whom users claim to be. There 

are three primary ways to achieve this, and they can be categorised as something we know, something 

we have or are [4]. Something we know includes elements such as passwords and pins. Something we 

have includes access (smart) cards and keys. Something we are where biometrics play their role in the 

authentication space. 

 

The ISO and IEC standards have defined biometrics as “The automated recognition of individuals based 

on their biological and behavioural characteristics” [5]. The biometric characteristic is the “biological and 

behavioural characteristic of an individual from which distinguishing, repeatable biometric features can 

be extracted for biometric recognition”. In this thesis, the biometric characteristics are usually referred to 

as modality, with specific consideration for Fingerprint, Face, Voice, and Iris. Section 1.7 provides a 

complete list of definitions. Unlike passwords and smartcards, biometric attributes cannot be lost or 

forgotten. Even in the case of identical twins, although a face recognition system will struggle to tell them 

apart, a fingerprint or iris system can still provide high identification accuracy. 

 

Jain et al. [6] identified seven factors that determine the suitability of a physical or a behavioural 

modality in a biometric application. The factors identified will serve as an insight into what the modality 

and, in turn, the biometric systems should be capable of achieving and will be investigated further in 

Chapter 3, where the traditional concept of performance is explored and modernised for the introduced 

performance framework. 

 

1. Universality: Every individual accessing the application should possess the trait. 

2. Uniqueness: The given trait should be sufficiently different across individuals. 

3. Permanence: The biometric trait of an individual should be sufficiently invariant over a period 

for the matching algorithm. A trait that changes significantly over time is not a valid biometric. 

4. Measurability: It should be possible to acquire and digitise the biometric trait using suitable 

devices that do not cause undue inconvenience to the individual. Furthermore, the acquired 

raw data should be amenable to processing to extract representative feature sets. 

5. Performance: The recognition accuracy and the resources required to achieve that accuracy 

should meet the constraints imposed by the application. 

6. Acceptability: Individuals in the target population that will utilise the application should be 

willing to present their biometric traits to the system. 

7. Circumvention: This refers to the ease with which the trait of an individual can be imitated 

using artefacts (e.g., fake fingers) in the case of physical traits, and mimicry, in the case of 

behavioural traits. 
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Figure 1.1 shows the general components of biometric systems as defined by ISO. The system is broken 

up into four subsystems: data capture, storage, comparison, and decision, which comprise the biometric 

system. The biometric system is split into three paths, forming the enrolment path where a biometric 

reference is captured and stored. A verification path is a 1:1 comparison between the stored reference 

and the presented biometric probe. Finally, the identification path is a 1:N comparison between the 

stored references and presented probe to find the primarily likely biometric candidate.  

 

Biometric identification is the “process of searching against a biometric enrolment database to find 

and return the biometric reference identifier(s) attributable to a single individual”. In contrast, biometric 

verification is defined as the “process of confirming a biometric claim through biometric comparison”. 

Since mobile is often associated with a single user, the thesis mainly concerns biometric verifications. 

Although it is noted that some smartphone devices are capable of storing multiple references, however, 

the intention is that they should all belong to a single user. 

 

 

Figure 1.1: Components of a General Biometric System [7] 

 

Biometrics aims to solve persistent issues around authentication and the usability and frustrations of 

users that result in poor security practices regarding authentication, mainly reusing passwords. The FIDO 

Alliance states some of the current problems with traditional authentication methods [8] from various 

sources, including: 

 

• 284% growth in authentication credential loss in 2019  

• 49% password-driven cart abandonment rate 

• 55% of IT leaders reuse a single password 
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• 51% of passwords are reused across services 

• 20-50% of helpdesk calls are for password resets 

• 80-90% of e-commerce sites’ attempted logins are compromised by stuffing 

• $25 billion financial loss caused by online payment fraud by 2024 in Europe 

• 1300 years collectively spent by humans each day entering passwords 

• 18 million COVID-19-themed malware and phishing emails blocked per day by Google 

• 7098 breaches in 2019, exposing 15.1 billion records 

 

1.3  Biometric Performance Overview 

 

There are three types of biometric performance testing: 

 

• Technology Evaluation - A technology evaluation compares competing algorithms from a 

single technology. 

• Scenario Evaluation - Scenario testing aims to determine the overall system performance in 

a prototype or simulated application. 

• Operational Evaluation - Operational testing aims to determine the performance of a 

complete biometric system in a specific application environment with a specific target 

population. 

 

“Manufacturers tend to test their products under optimal conditions. Unfortunately, most 

implementations will not reflect these conditions. Consequently, manufacturer claims for biometric 

system performance are unlikely to match what is seen in day-to-day use” [9]. Mansfield and Kelly [10] 

stated the difficulties in allowing meaningful performance comparisons between devices and listed five 

factors for this: 

 

1. The performance of a biometric system can depend heavily on the type of application. For 

example, if the end-users are familiar with the system, willing to use it, and supervised, one 

would expect performance to be better than unsupervised, unwilling, untrained end-users. 

 

2. Measures that apply to some biometric devices are meaningless to others. For example, in 

the case of behavioural biometric systems (such as signature or voice), ease of forgery is 

essential. However, there is no direct analogy for physiological biometric systems. 

 

3. There are trade-offs between the various performance measures. By relaxing the acceptance 

criteria, the false rejection rate can be improved at the cost of increasing the false acceptance 

rate. Allowing multiple attempts can also decrease the false rejection and worsen the 

throughput rate. Devices can give the best possible performance for one application but will 

be less than optimal in different circumstances. 
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4. Manufacturers’ quoted performance figures, obtained from in-house laboratory tests, are 

often not easy to relate to actual live performance. 

 

5. Moreover, there are different interpretations of how to make the measurement, present the 

results, and what the results mean for many possible measurements. 

 

Additionally, they also state that “the performance figures of most interest are those that tell how the 

whole system will operate in practice” and list some key questions that should be answered from 

biometric testing: 

 

• For example, how accurately will the system verify a claimed identity? 

• Will end-users find the system manageable, and will they be happy to use it? 

• Will the system be fast enough in operation? 

• Is the system secure enough to protect against attempted fraudulent use? 

• In addition, there are the usual considerations regarding cost, interfaces, and capacity. 

 

Mansfield and Kelly note that “on their own, the false rejection and acceptance rates are not very 

useful in predicting performance. For a complete view of performance, measurements of usability and 

security are also needed. The operational false rejection rate is dependent on several usability factors, 

while the operational false acceptance rate is affected by security issues”. 

 

1.4  Research Motivations 

 

The world is experiencing a shift towards rapid growth in mobile technology, specifically geared 

towards the consistent use of smartphones to manage our daily lives. As a result, biometrics are now at 

the forefront of smartphone authentication, and it is relatively uncommon for a new smartphone to lack 

any biometric technology. 

 

Currently, manufacturers and developers can claim their system’s biometric performance and security 

without understanding how the evaluation was designed and performed. For example, Apple claimed the 

probability of someone else unlocking a phone with Face ID is 1 in 1,000,000 as opposed to Touch ID at 1 

in 50,000 [11]. However, how useful is this information, and just how accurate is it? 

 

Mobile devices increasingly incorporate biometrics as their primary authentication mechanism to 

access devices and services, including sensitive information such as financial and commercial data. 

However, mobile biometric systems are conducted mainly by the device provider, which causes issues 

comparing results between devices. Work is currently to standardise mobile biometric testing with 

various institutions, including the international organisation for Standardization (ISO), FIDO Alliance, 
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Android and academic researchers providing input into conducting and measuring mobile biometric 

performance.  

 

However, issues remain with these approaches when considering testing commercial devices. First, 

this paper presents a summary of the existing approaches. Then, it introduces a new approach to testing 

mobile biometrics by amalgamating the existing ideas, approaches and inspirations and combining 

additional solutions and recommendations to mitigate the identified issues. Finally, we identify our 

approach as more universally applicable by comparing the ideas to an existing device and presenting a 

proposal for a universal testing framework for the performance evaluation of mobile biometrics. 

 

1.5  Mobile Biometrics 

 

The proliferation of mobile biometrics is a significant reason for updating the current understanding 

of ‘performance’ for biometric systems assessment. Throughout this thesis, the reference to mobile 

biometrics focuses on smartphone devices. Although the traditional uses of biometrics remain (such as 

border control systems and national ID cards), there has been widespread adoption into the mass market 

due to incorporating specific biometric sensors into current smartphone devices. “Consumer acceptance 

of biometrics is being driven largely by smartphone usage and adoption, which will only increase” [12]. 

 

Wojciechowska et al. [13] explored the trends and challenges in mobile biometrics and, noting work 

from Jillela and Ross [14], presented some critical points in a mobile scenario: 

 

• Data privacy: the identification template is usually stored in the mobile phone memory. Thus, 

it must be encrypted carefully to protect the data from leaking. 

• Ease of multi-biometric data acquisition: a smartphone is equipped with various sensors, 

which can help produce a multimodal system that is more reliable. 

• Low operational cost: due to the reduced size and increasing computational power of 

processing units, the identification cost seems minimal. 

• Market penetration: mobile phone popularity is enormous and still increasing. In highly 

developed countries, even children own a mobile phone. 

• Multi-factor authentication: thanks to the specific construction of mobile phones, biometric 

identification may be combined with traditional kinds of protection like a password or 

geospatial data (GPS). 

• Portability: the mobile phone is carried by its owner to different places and locations. 

• Remote identification: according to the lower computational power, the mobile system may 

be implemented for verification purposes (1:1 matching) rather than identification (1:N 

matching). However, identification is possible when the biometric data is securely transferred 

to the server or the cloud. 
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Wojciechowska et al. provided some other trends and challenges in mobile biometrics, including 

template protection, the effect of ageing, vulnerability, computing performance, user acceptance, and 

databases. Although it was noted that classic biometric systems suffer from the same limitations, the risk 

increases with mobile devices because, in cases like smartphones, the user is always in possession of the 

device, meaning these challenges need to be overcome remotely. For example, asking a user to send a 

photo to a smartphone manufacturer to update the face reference is not a practical solution to overcome 

the ageing problem, so the manufacturer employs clever techniques to update the template automatically 

over time [15] or allow the user to enrol themselves again. 

 

Mobile biometrics provides many novel exploration opportunities and a convenient and more secure 

authentication method. An example of the adoption of this technology is mobile banking to enable 

payments through services such as Apple Pay and Google Pay. Additionally, applications on mobile devices 

can use embedded biometric sensors to provide convenient access to services without the need to enter 

and remember a password to access personal information securely. 

 

This adoption of biometrics within a mobile market requires a rethink on testing and verifying that the 

system fits its purpose. Moving from the more traditional fixed (static) system to a mobile (dynamic) one 

can increase the range of environments and scenarios in which they will operate. This increase has a 

knock-on effect on how users perceive and use the system. Figure 1.2 highlights a range of typical 

performance influences for a mobile context [16], [17]. For example, screen size and user posture can 

influence system usability and impact touch-based mobile biometrics [18]. 

 

 

Figure 1.2: Examples of Mobile Influences Expected to Impact Performance 

 

Although several studies have begun to explore these factors [17], [19], there are still limited resources 

on how the performance of mobile biometrics changes in various scenarios and environments, thus 

requiring further exploration, including the definition of a suitable assessment methodology. This work 

draws on existing conventional systems’ evidence to establish knowledge deficits. 
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1.6  Research Questions 

 

A series of research questions were developed to help explore this field in greater depth and help to 

uncover the possibilities and limitations moving forward in developing a performance assessment 

framework. The thesis aims to formulate a framework wherein the performance of a modality (or 

combination of modalities) can be assessed and quantified on mobile platforms across a range of 

environments, usage tasks and scenarios. This thesis seeks to answer the fundamental question, “how 

good is a particular biometric modality?” There are three critical questions that the project aims to 

answer: 

 

• How can mobile biometric performance be measured? 

• How do environment and motion affect biometric performance and security? 

• How can any performance deterioration be mitigated? 

 

Some research questions were developed alongside the critical questions to formulate a background 

into the area of mobile biometrics, with an emphasis on smartphone devices, including: 

 

• What is the current smartphone security (locking) habits among users? 

• Do they primarily use the biometric authentication method available on their device? 

• Is there an overwhelming preference towards a particular modality? 

 

These first questions all centre around user behaviour and attitudes towards mobile biometrics and 

will allow for uncovering information about the acceptance of mobile biometrics. The intent is to uncover 

the current state of mobile biometrics (considering smartphones) and apply this information when testing 

the performance assessment framework. 

 

• Is it possible to achieve reliable performance metrics with a commercial (off-the-shelf) device 

with limited knowledge of its internal workings? 

 

One of the known limitations of commercial systems is limited access to the biometric system for 

sensible security reasons. However, this makes testing the biometric performance tricky for an outsider 

and means end-users must take the manufacturer at their word when they state biometric performance 

statistics. This work will look to see what information can be achieved when working with systems with 

limited access to biometric systems and will allow the performance framework to be built around the 

knowledge of the amount of access. No system is excluded from the testing framework, even if the 

amount of data available at the end is limited. 
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• How does the quality/performance of <modality> change when placed in diverse scenarios and 

Environments? 

 

One aspect that requires investigation when creating the performance assessment framework is to 

explore if and how the performance metrics and quality scores of probes change when the system is 

utilised in a way that is likely to be less common for traditional static systems. For example, it is considered 

particularly necessary to explore Motion vs Stationary and Indoor vs Outdoor. 

 

• What effect does usability have on the performance of biometrics on a mobile platform? 

 

Combining the users’ satisfaction and timings to complete the transaction and whether the 

authentication was successful will allow some exploration of usability on commercial devices. 

 

• Is it possible to produce a definitive score or ranking regarding the device’s performance? 

 

Currently, manufacturers state biometric claims as “FRR 1% @ FAR 1 / 10,000”, but what does this 

mean, and how was it calculated [20]. How useful is this to the consumers? Therefore, one thing that 

should be considered as part of the performance framework is the reporting and hopefully in such a way 

that it can be helpful and meaningful to the consumers.  

 

1.7  Definitions and Acronyms 

 

Table 1.1 lists the definitions and acronyms a reader will encounter across the thesis and serves as a 

reference point. The aim was to include the critical definitions for a reader who may be less familiar with 

biometrics. However, this thesis aims to comply with the biometrics definitions defined by ISO. A 

complete set of definitions can be obtained from the following ISO/IEC 2382-37:2017 Information 

technology — Vocabulary — Part 37: Biometrics [5]. The performance metrics mentioned in the table can 

be turned into metric rates indicating the proportion of a specified set of biometric enrolment 

transactions or comparison trials that resulted in the metric. These include failure-to-acquire rate (FTAR), 

failure-to-enrol rate (FTER), false match rate (FMR), and false non-match rate (FNMR). 
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Table 1.1: Biometrics Vocabulary 

Term Definition [5] 

ISO International Organization for Standardization (https://www.iso.org/) 

FIDO FIDO Alliance (https://fidoalliance.org/) 

Biometrics 
The automated recognition of individuals based on their biological and 

behavioural characteristics. 

Biometric 

Characteristic 

An individual’s biological and behavioural characteristics from which 

distinguishing, repeatable biometric features can be extracted for biometric 

recognition. 

Biometric Feature 
Numbers or labels are extracted from biometric samples and used for 

comparison. 

Biometric Recognition 
Automated recognition of individuals based on their biological and 

behavioural characteristics. 

Biometric Reference 

One or more stored biometric samples, biometric templates or biometric 

models attributed to a biometric data subject and used as the object of 

biometric comparison. 

Biometric Probe 
Biometric sample or biometric feature set input to an algorithm for 

biometric comparison to a biometric reference(s). 

Comparison 
Estimation, calculation or measurement of similarity or dissimilarity 

between biometric probe(s) and biometric reference(s). 

Comparison Score The numerical value (or set of values) resulting from a comparison. 

Threshold The numerical value (or set of values) at which a decision boundary exists. 

Biometric Mated 

Comparison Trial 

Comparison of a biometric probe and a biometric reference from the same 

biometric capture subject and the same biometric characteristic as part of a 

performance test. 

Biometric Non-Mated 

Comparison Trial 

Comparison of a biometric probe and a biometric reference from different 

biometric data subjects as part of a performance test. 

Failure To Acquire 

(FTA) 

Failure to accept for subsequent comparison the output of a biometric 

capture process, a biometric sample of the biometric characteristic of 

interest. 

Failure To Capture 

(FTC) 

Failure of the biometric capture process to produce a captured biometric 

sample of the biometric characteristic of interest. 

Failure To Enrol (FTE) 
Failure to create and store a biometric enrolment data record for an eligible 

biometric capture subject following a biometric enrolment policy. 

False Match 
Comparison decision of match for a biometric probe and a biometric 

reference from different biometric capture subjects. 

False Non-Match 

Comparison decision of “non-match” for a biometric probe and a biometric 

reference from the same biometric capture subject and of the same biometric 

characteristic. 

Quality Score 
The quantitative value of the fitness of a biometric sample to accomplish or 

fulfil the comparison decision. 

Quality 
A measure of the fitness of a biometric sample to accomplish or fulfil the 

biometric comparison decision. 

 

1.8  Thesis Structure 

 

This thesis is divided into a total of eight chapters. The background of mobile biometric testing and 

reporting is presented in Chapter 2. It is the background (state-of-the-art) of current and best biometric 

https://www.iso.org/
https://fidoalliance.org/
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testing and reporting practices. Chapter 3 presents a scoping style review that results in the organisation 

of groups defining core factors that result in the critical explorative areas for a performance assessment 

framework. Chapter 4 then presents the performance assessment framework using the background from 

the previous chapters and existing research to propose a novel assessment suitable for mobile biometric 

systems to provide the ‘fit for purpose’ assurance required. 

 

The first half of the thesis will detail all the theoretical work produced in designing the performance 

framework. The remaining chapters focus on proving and applying the performance framework using 

more practical means. Chapter 5 introduces the methodology and approach for experimental data 

collection, which explores the collection of a range of modalities using commercial smartphone devices 

and a survey to ascertain user behaviour towards biometrics on mobile devices. Chapter 6 explores the 

core factors and performance framework using the obtained data to inform the framework and analysis 

the various effects on the performance to strengthen the credibility of the performance framework. 

 

Chapter 7 uses the information gathered from creating the performance framework to establish a 

potential novel adaptive threshold approach to mobile biometric authentication making practical use of 

the embedded sensors present within smartphone devices to help mitigate performance degradation on 

mobile devices. Finally, chapter 8 concludes the work present within this thesis and summarises the 

observations and results, addressing the potential impact of the work while providing considerations for 

future work. 

 

1.9  Summary 

 

This chapter has introduced the topic of biometrics and mobile biometric and provided justification 

and motivations behind the work presented in the remainder of this thesis. With the background 

highlighted here, the next chapter will explore the existing approaches and methodologies to biometric 

performance testing and reporting, emphasising mobile biometric performance testing developments. 

Taking inspiration from these entities will help form a mobile biometric performance framework. 
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2 Mobile Biometric Testing and Reporting 

 

2.1  Introduction 

 

This chapter will look at existing approaches and methodologies to biometric testing and reporting by 

exploring existing approaches to testing traditional and mobile systems and paying particular attention to 

approaches considering a mobile system. In doing so, the aim is to answer the question, what are the 

existing approaches to biometric performance testing and where possible? By doing this, the intention is 

to identify the recommended values and apply them to inform the development of the performance 

framework. 

 

There are a couple of primary areas that will be considered when examining these approaches: 

 

• Performance Metrics 

• Procedure 

• Sample Size and Test Crew 

• Enrolment 

• Verification/Identification Transactions 

• Performance Rate Requirements 

• Reporting 

 

The chapter will take methodologies and examples from the ISO standards, the FIDO alliance, 

Microsoft (Windows Hello), Google (Android), Apple (iOS), and current research to form a cohesive 

overview of the current state-of-the-art for mobile biometric performance testing. It will also influence 

what is meant by performance for a (mobile) biometric system and how it is measured. To achieve this, 

existing recommendations in this area were surveyed, including how they approach different elements of 

biometric testing. 

 

Section 2.2 will explore some research that discusses mobile biometric performance and evaluation. 

Section 2.3 will show the National Cyber Security Centre’s guidance for measuring biometric performance. 

Sections 2.4 (Microsoft), 2.5 (Google), and 2.6 (Apple) will explore how three major tech companies 

present biometric performance and any specific testing requirements and guidance they provide. Section 

2.7 and Section 2.8 will discuss the guidance and specification provided by ISO and FIDO for biometric 

testing and reporting. Finally, Section 2.9 and Section 2.10 will discuss and summarise the current trends 

for (mobile) biometric testing and reporting. 
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2.2  Research 

 

Investigating and exploring mobile biometric testing is relatively new in the academic literature, with 

most current work focusing on a technology evaluation of data. Fernandez-Saavedra et al. [21] provided 

a detailed account of some of the issues surrounding testing smartphone devices. They applied ISO/IEC 

19795-1:2006 [22] to mobile devices to analyse what would work and what would not in this context and 

identified special features and conditions of mobile devices: 

 

• Changing Ambient Conditions 

• Special Interaction of the users with the biometric system 

• Restricted biometric functions 

• Impossibility of obtaining the captured biometric sample 

• The result of the authentication is a Pass/Fail decision 

 

The authors have highlighted the significant issues in mobile biometric performance testing and 

provide a concluding recommendation to “analyse the biometric functions and methods provided by the 

mobile device to know the restrictions of the evaluations in advance”. Fernandez-Saavedra et al. [21] 

provided input into a methodology for the environmental evaluation of biometric systems. It includes 

ambient factors known to affect specific biometric modalities, including Temperature, Humidity, 

Illumination, Noise and Pressure. 

 

Buriro et al. [16] present some guidelines to researchers for evaluating smartphone user 

authentication methods. They acknowledge how “most publicly available frameworks did not discuss or 

explore any other evaluation criterion, usability and environment-related measures except the accuracy 

under zero-effort”. They identify the potential issues of in-lab testing as not accurately reflecting the 

reality of the performance meaning “their baseline operations usually give a false sense of progress”. 

Their guidance is firmly aimed towards academia and researchers; the proposed performance framework 

incorporates many of the guidelines Buriro et al. [16] proposed to help reduce the issues raised in existing 

methodologies. Figure 2.1 showcases a mind map documenting the guidelines presented by Buriro et al. 

with a couple of additions added in red. 
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Figure 2.1: Mind Map Documenting Buriro et al. [16] Guidelines 

 

Ellavarason et al. [23]–[25] have investigated the usability and performance of a behavioural biometric 

modality (swipe) across usage environments and scenarios on a mobile platform. The authors developed 

an “evaluation framework for analysing factors influencing user interaction in mobile devices concerning 

touch interactions. This data collection framework can be used further to perform the performance 

assessment of various touch-based behavioural biometric modalities using mobile devices”. When 

analysing the swipe data, the authors noted how “the rise in EER values for the dynamic scenario was 

seen across all three classification algorithms. These results show the extent of the impact of the usage 

scenarios on verification accuracy. Furthermore, the results raise questions about the stability of swipe 

gesture authentication when used on a mobile device in real-life situations”. 

 

Bhagavatula et al. [26] showcased a biometric system’s usability and perception concerns. In addition, 

they identified how specific scenarios impacted usability due to performance issues, notably how 

Android’s Face Unlock would cease to function in dark conditions. Finally, Eglitis et al. [27]  investigated 

how the influence of test protocols can affect recognition performance assessment. The authors 

performed a technology evaluation over a finger vein dataset and stated that “the details regarding such 

employed [testing] protocols are often not provided with due care, making it hard to compare the new 

results against those previously achieved in literature, even when performing tests on the same data”. 

The authors demonstrate the “the need to accurately describe comprehensive test protocols when 

evaluating the recognition performance on a given biometric database”. 

 

Dube et al. [28] proposed a new framework evaluation for biometric authentication, although not with 

a specific aim to evaluate mobile systems. The authors identified three core parameters for evaluation 

security, privacy, and performance. The focus was to present an idea for incorporating biometric template  
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protection (BTP) metrics into evaluating biometric systems for a more comprehensive analysis. This 

suggestion is aimed at incorporating it into the performance evaluation framework. 

 

2.3  National Cyber Security Centre (NCSC) 

 

The National Cyber Security Centre (NCSC) is a UK Government organisation whose purpose is to 

support the UK (both public and private entities) in the role of all things cyber with the motto “helping to 

make the UK the safest place to live and work online”. As part of this, they include guidance on the 

responsible use of biometrics and measuring performance [9]. 

 

As part of the guidance provided, it is stated that “in a biometric system, error rates will vary widely 

depending on the environment in which a system is operating. So, accuracy cannot be expressed 

independently from other factors”. They also state four key performance metrics that should be 

considered for understanding performance: failure to acquire, failure to enrol, false non-match, and false 

match. 

 

As part of the guidance, the NCSC mentions the metrics for evaluating biometric performance as 

failure-to-acquire, failure-to-enrol, false non-match and false match. 

 

The NCSC also recommends that the evaluation occurs in an environment similar to where the system 

will operate and recommend that test claims and performance from manufacturers be treated as a 

starting point. “The performance of a biometric system is specific to its operating environment, so it is 

better to use the results of such evaluations as a starting point, to be followed by further testing of 

possible solutions in increasingly realistic test environments”. They also recommend examining the source 

of the data and listing the requirements that should be examined for requirements that differ from what 

is expected: 

 

• The choice of biometric data used in the evaluation 

• The operating conditions used 

• Test subject population 

• Desired security posture 

 

Some recommendations about managing performance to the desired performance level are provided 

with mentions that inevitable trade-offs will likely be required. The recommendation is fallback, how the 

system handles failures, throughput, and ergonomics, stating how “ergonomic design and the usability of 

human-computer interfaces are essential to the successful implementation of any biometric system”. 

Finally, a recommendation regarding consistent performance monitoring of a biometric system is 

provided to identify any performance degradation within and across an enterprise using the biometric 

system and hardware and technology changes. 
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2.4  Microsoft (Windows Hello) 

 

Windows Hello is the brand name used and promoted by Microsoft regarding password-less 

authentication to access the Windows operating system and is recommended for enterprise use. A 

significant aspect of Windows Hello is the biometric capability, and Microsoft states that “Windows Hello 

is the biometric authentication feature that helps strengthen authentication and helps to guard against 

potential spoofing through fingerprint matching and facial recognition” [29], [30]. 

 

The biometric reference is stored locally on the device within an encrypted database. Microsoft states 

that even if the data is stolen and decrypted, it cannot be converted into the raw biometric reference 

used on the sensor. Microsoft uses the False Accept Rate and the False Reject Rate to measure biometric 

performance, ensure the hardware meets the requirements set by Microsoft, and have some anti-

spoofing measures. 

 

For fingerprint authentication, the FAR requirements are <0.002% and FAR (with anti-spoofing or 

liveness) <10%. The FAR requirements are <0.001% for face authentication and FRR (with anti-spoofing 

or liveness) <5%. However, for face, Microsoft has also set a practical, real-world FRR requirement of 

<10%. It is not entirely clear what this effective real-world FRR is and why there is no similar requirement 

for fingerprints. The assumption is that this is an in-lab (scenario testing) and real-world (operational 

testing) requirement. Therefore, Microsoft concludes that Windows Hello face authentication is not 

recommended for mask wearers. 

 

Microsoft also provides calculations for the number of comparisons and subjects required to reach a 

particular confidence level. For example, with the desired FAR of 0.001%, at a confidence of 96%, 

2,500,000 comparisons would be required to reach the desired confidence with about 2,237 unique 

biometric samples to verify the confidence in the claimed FAR. In addition, Microsoft guides for 

transactional time state that it should take less than two seconds to authenticate a user. 

 

Microsoft also provides two core scenarios where they expect users to use Windows Hello: 

authentication, where users will access the operating system regularly, and re-authentication, where 

users will enrol themselves into the device. Again, the expected occurrence of this is low. However, no 

detailed testing plan or requirements were found for Microsoft above what is presented here regarding 

how the tests should be performed. 

 

2.5  Android (Google) 

 

Android is the most extensive operating system for the smartphone market, with two billion users 

worldwide. As one of the leading mobile device operating systems, they have provided standards for every 
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device operating system to conform to this standard. This information is present within the Android 

Compatibility Definition Document (CDD) [31], which specifies the requirements for a device 

manufacturer to meet the standard required for the use of the Android operating system, including the 

use and performance of a biometrics implementation [31]. Android employs a tiered approach to 

authentication, meaning developers can choose how strong the performance can be if it meets the 

minimum requirements. In addition, more robust security (measured using the false accept rate) allows 

developers to use the biometric system to handle more sensitive features within the device. 

 

Android favours security over usability, and therefore the minimum (weak) biometric performance 

must meet the following requirements: 

 

• FAR: 1/50000 (0.002%) 

• FRR: 10% 

• SAR: 7-20% (Weak) 

 

Android splits its biometric security under two subcategories, architectural security and spoofability. 

Android emphasises the security of the biometric functionality and is arguably putting more pressure on 

this area than the overall usability, as seen in the recommended rates for the various metrics. 

 

‘Architectural security’ defines the security of the internal pipeline against kernel and platform attacks 

and is stated as not allowing the reading of biometric sample data or the injection of synthetic data or 

otherwise into the system. ‘Spoofability’ is measured against the Spoof Acceptance Rate (SAR) and 

measures the system’s resilience against a dedicated attacker. 

 

2.5.1 Metrics 

 

Android emphasises three specific metrics to analyse biometric performance to enhance security and 

prevent impostors. 

 

• Spoof Accept Rate (SAR): Defines the metric of the chance that a biometric model accepts a 

previously recorded, known good sample. 

• Imposter Accept Rate (IAR): Defines the metric of the chance that a biometric model accepts 

input that mimics a known good sample. 

• False Accept Rate (FAR): Defines the metrics of how often a model mistakenly accepts a 

randomly chosen incorrect input. 

• False Reject Rate (FRR): Defines the metrics of how often the model mistakenly rejects a 

randomly chosen correct input. 
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Alternatively, this can be viewed as exposing replay attacks (SAR), exploring targeted attacks (IAR) and 

defending against passive impostors (FAR). Less emphasis should be placed on FAR as this does not 

provide necessary information about how well the model holds up to targeted attacks. The FRR initially 

has no mention. However, it does appear when discussing acceptable performance rates to meet 

standards. 

 

2.5.2 Tiered Authentication 

 

A unique approach taken by Android is to propose the idea of having tiered levels of authentication 

that allow manufacturers to provide more functionality if they can prove their device performs to the 

standards set out in Table 2.1. The tiers improve security from ‘convenience’ to ‘weak’ and ‘strong’. These 

tiers have been named Class 1, Class 2, and Class 3, respectively. 

 

One purpose of the tiers allows how much API access is allowed to the biometric process. For example, 

the API must not be exposed with’ convenience’. With ‘weak’, the biometric process can integrate with 

Android’s BiometricPrompt API and with ‘strong’ access is allowed via the BiometricPrompt and the 

Keystore on the device. 

 

Table 2.1: Android Tiered Authentication Metrics 

Biometric Tier Metrics 

Strong (Class 3) 

SAR: 0-7% 

FAR 1/50K 

FRR: 10% 

Weak (Class 2) 

SAR: 7-20% 

FAR: 1/50K 

FRR: 10% 

Convivence (Class 1) 

SAR: >20% 

FAR: 1/50K 

FRR: 10% 

 

2.5.3 Evaluation Process 

 

Android provides specific guidance for the face, iris, fingerprint, and voice modalities. Android 

combines its evaluation process into two stages. One is called the ‘calibration phase’ to find the optimal 

presentation attack for a given solution. A ‘test phase’ takes the results of the calibration phase to 

evaluate the system and determine how many times the attacks were successful. The main point here is 

to attack the system using the most significant know or expected weaknesses. “The calibration phase is 

used to find optimal parameters that maximise the chances of spoofing the authentication solution.” [31]. 
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Android gives some recommendations for the ‘calibration phase’ for the face and iris modalities and 

investigates three areas. First, the presentation ‘medium’ is the output medium for the spoof. The ‘format’ 

is considered a manipulation of the medium or environment to improve spoofing chance. Finally, the 

consideration across ‘subject diversity’ primarily refers to picking specific impostors across gender and 

ethnicity groups for facial-based authentication. Android considers an attempt as the window between a 

probe presented to the system and receiving feedback. Feedback can be a successful unlock or a message 

presented to the user. 

 

2.5.4 Evaluation Phase 

 

For the enrolment, remove all existing biometric profiles and add the target face in a brightly lit room 

at 20cm to 80cm. For face recognition, the suggestion is to test the spoof medium (photo or mask) in a 

vertical and horizontal arc around the device until the medium is no longer visible within the device’s field 

of view, in increments of 10 degrees marking positions that successfully unlock the device. The results of 

this will determine the calibration positions. The suggestion for fingerprints involves lifting a latent copy 

of the target fingerprint and creating a mould against the sensor using at least four different materials 

(gelatine, silicone, wood glue). A 5% margin of error (with 95% confidence) requires 385 test iterations 

per subject. 

 

2.5.5 Common Considerations 

 

The article finishes by considering some common considerations that can apply to all modalities, 

including the advice that tests should occur using the actual device with the hardware installed to capture 

accurate metrics. Most modalities have a successful spoof attack, and there exist documented techniques 

for them, and these existing attacks should be used in the calibration phase when planning the test. The 

final advice is to anticipate new attacks, and Android acknowledges that not all attacks may involve a 

suitable setup with publicly known attacks. Existing modalities may need their existing methodology to 

alternate with discovering a new attack. A process must be in place to adapt to new information in any 

testing methodology. 

 

2.6  iOS (Apple) 

 

Apple is the manufacturer behind the iPhone range of smartphones and introduced Touch ID [32] and 

Face ID [33] (fingerprint and face, respectively). However, Apple has generally been somewhat secretive 

about the technology that goes inside the iPhones to the point where they will buy out companies and 

house them under the Apple name. Such was the case for the Touch ID using AuthenTec technology [34]. 
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Since Apple does not distribute its mobile operating system to any external smartphone 

manufacturers, it does not produce a biometric testing requirement and guides as Google does for 

Android. However, they still provide information through whitepapers about how the technology works. 

 

Regarding Touch ID, Apple claim that it “reads fingerprints from any angle and learns more about a 

user’s fingerprint over time, with the sensor continuing to expand the fingerprint map as additional 

overlapping nodes are identified with each use”, indicating information relating to reference template 

updating over time. Furthermore, “With one finger enrolled, the chance of a random match with someone 

else is 1 in 50,000. However, Touch ID allows only five unsuccessful fingerprint match attempts before the 

user can enter a passcode to obtain access”.  

 

Regarding security and privacy, “the 88-by-88-pixel, 500-PPI raster scan is temporarily stored in 

encrypted member within the Secure Enclave while being vectorised for analysis, and then it is discarded. 

The analysis utilises subdermal ridge flow angle mapping, a lossy process that discards minutia data 

required to reconstruct the user’s fingerprint. The resulting map of nodes never leaves iPhone 5S, is stored 

without any identifying information in an encrypted format that can only be read by the Secure Enclave 

and is never sent to Apple or backed up to iCloud or iTunes” [32]. 

 

Apple handles Face ID similarly and claims that “the probability that a random person in the population 

could look at your iPhone or iPad Pro and unlock it using Face ID is approximately 1 in 1,000,000 with a 

single enrolled appearance. The statistical probability is different for twins and siblings that look similar 

and children under 13 because their distinct facial features may not have developed fully. Face ID matches 

against depth information not found in print or 2D digital photographs. It is designed to protect against 

spoofing by masks or other techniques through sophisticated anti-spoofing neural networks” [33]. 

 

Apple provides no information regarding how they performed the biometric performance evaluation 

and information relating to the test cohort involved. The only information provided is related to the false 

match rate for Touch ID, 1 in 50,000, and Face ID, 1 in 1,000,000, meaning consumers only have the 

manufacturer's word that their claims are valid. 

 

2.7  International Organization for Standardisation (ISO) 

 

The International Organization for Standardisation develops and publishes International Standards. 

ISO has a dedicated Biometrics subcommittee to develop standards within the field known as ISO/IEC JTC 

1/SC 37. Within the subcommittee is a dedicated working group for the specialised area of Biometric 

Testing and Reporting (WG 5). Standards for test protocols are defined within ISO/IEC 19795, “Information 

technology – Biometric performance testing and reporting” documents, currently consisting of ten parts. 
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Eglitis et al. [27] provide a summary of the recommendations provided by ISO/IEC 19795-1:2006 “Part 

1: Principles and framework” [22], including: 

 

• The test phase should be conducted on data unavailable during algorithm development 

• Collection of enrolment and probe data should be separated at least by days 

• The “rule of 3” and “rule of 30”, which relate the number of probes with the achievable error 

confidence intervals, should be considered when reporting error rates. It is remarked that 

handling ten probes for ten subjects is not equivalent to having a hundred subjects, each with 

only a single probe, although, for specific protocols, this produces an equal number of 

comparisons 

• Data from the same subject and the same modality, yet different instances (e.g., distinct eyes, 

fingerprints, finger veins) can be used to represent distinct users 

• Collected samples should be excluded from the database only if a predetermined criterion is 

violated 

• Each test subject should be enrolled only once 

• Impostor comparisons involving data captured from the same subject (e.g., vascular data 

from different fingers of the same person, representing different virtual users) should not be 

performed because intra-individual data are likely to contain more similarities than data from 

different individuals 

• Zero-effort impostors can be selected by randomly choosing biometric templates or by 

making a full cross-comparison 

• Enrolment templates can be used as impostor data in case different feature extractors are 

applied to enrolment and probe samples 

 

Mansfield and Wayman [35] proposed a guide for the best practices for the performance evaluation 

of biometric systems. Their work was incorporated into the framework proposed in ISO/IEC 19795-1:2006 

Part 1: Principles and framework [22]. ISO/IEC 19795-2:2007 “Part 2: Testing methodologies for 

technology and scenario evaluation” [36] describes the recommended scientific practices for technical 

performance testing. WG5 have also produced an updated technical standard to deal with specific issues 

presented for testing mobile biometrics,  ISO/IEC TS 19795-9:2019 Part 9: Testing on mobile devices [37]. 

It is stated that the standard aims to guide “performance assessment at a full system level of biometric 

systems embedded in mobile devices with an offline evaluation of false accept rate (FAR) claims”. It is 

noted that the standard is designed for a complete system level; therefore, elements will not be applicable 

if biometric system access is unavailable. 

 

ISO/IEC TS 19795-9:2019 provides recommendations and requirements for mobile biometric 

performance testing, including how “evaluation of biometric performance … should be consistent and 

follow the same guidelines, methodologies and requirements” and that “ISO/IEC TR 30125 [38] 

recommends scenario evaluation as the most proper type of evaluation for testing biometric performance 

on mobile devices”. 
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The guidance also provides a host of considerations for mobile biometric evaluations, including: 

 

• Biometric authentication process 

o Explicit authentication 

o Passive authentication 

• Biometric capture sensor 

o Embedded sensors 

o Dedicated sensors 

• Uncontrolled environment 

• Challenges in storing references and generating comparison scores 

• Adaptation of the biometric references 

• Biometric application is a black box for security and privacy reasons. 

• A third-party evaluation requires that the system provider deliver a customised version that 

provides access to biometric data or detailed transaction logs. 

• Factors that increase the time and cost of biometric performance evaluations 

o Minimum error rates 

o Inability to store a large amount of biometric data 

o Access to the captured biometric samples 

o The number of conditions to evaluate. 

• Third-party evaluation of FAR would quickly be impractical and time-consuming if the 

evaluator only has access to an unmodified mobile device 

• Baseline - The conditions suggested for this scenario are indoor conditions, with no noise in 

which the user hand-held mobile device. 

 

The standard also notes that “devices are not designed to store multiple references and generate 

comparison scores from the submission of a probe against these references.” “NOTE Some mobile devices 

allow the enrolment of several users for biometric identification in a small dataset related to low-security 

features, e.g., device unlocking. This document only considers verification use cases related to secure 

transactions, which can vary depending on the risk, policy and legislation that applies to the transaction” 

[37]. 

 

The guidance states that an evaluation of a mobile device shall at least report FTE, FTA, FRR and FAR. 

The standard contains detailed information regarding biometric testing and reporting for mobile devices, 

and only the minimum information has been presented here. These and related standards will be 

referenced at appropriate opportunities within the thesis.  

 

 



 

36 

2.8  FIDO 

 

The FIDO Alliance is an open industry association with a focused mission: authentication standards to 

help reduce the world’s over-reliance on passwords. In addition, they act as a certification authenticator 

where devices can be labelled as FIDO compliant if they are shown to meet certain conditions, including 

biometric performance [39]. The FIDO process takes heavy influence from the ISO standards. 

 

The FIDO Alliance is an open industry association with a focused mission: authentication standards to 

help reduce the world’s over-reliance on passwords [40]. Biometrics help in this mission by providing an 

alternative to the “something we know” passwords with the “something we are” authentication 

approach. FIDO recognises this and acknowledges that “biometric user verification has become a popular 

way to replace passwords and PINs, but the lack of an industry-defined program to validate performance 

claims has led to concerns over variances in the accuracy and reliability of these solutions” [3] 

 

The FIDO Alliance is an open industry association with a focused mission: authentication standards to 

help reduce the world’s over-reliance on passwords. They act as a certification authenticator where 

devices can be labelled as FIDO compliant if they are shown to meet certain conditions, including 

biometric performance [39]. The FIDO process takes heavy influence from the ISO standards. 

 

FIDO relies on the following metrics to assess performance: 

• False Accept Rate (FAR) - 1/10000 (0.01%) 

• False Reject Rate (FRR) - 1/500 (5%) 

• Impostor Attack Presentation Accept Rate (IAPAR) - <15% (Level 1), < 7% (Level 2) 

 

• Number of Subjects 245 (Min) 

 

FIDO and Android differ because the FAR performance is based on zero-effort non-genuine 

transactions. In contrast, Android includes guidance on using impostors to exploit weaknesses (same 

gender and ethnicity). Therefore, the corresponding decision threshold should be reported with the FRR, 

and FAR can be shown using a ROC or DET curve. 

 

The Biometric Component Certification Program was created to “utilise accredited independent labs 

to certify that biometric subcomponents meet globally recognised performance standards for biometric 

recognition performance and Presentation Attack Detection (PAD) and are fit for commercial use” < Cite>. 

Part of the goals for this certification is to provide the industry with a testing baseline for biometric 

component performance< Cite>.  
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2.8.1 Metrics 

 

The FIDO Biometric Component Certification Program relies on three key metrics to evaluate 

performance: 

 

• False Accept Rate (FAR): The proportion of verification transactions with wrongful claims of 

identity that are incorrectly confirmed 

o SHALL meet the requirement of less than 1:10,000 for the upper bound of an 80% 

confidence interval. FAR is measured at the transaction level. 

• False Reject Rate (FRR). The proportion of verification transactions with truthful claims of 

identity that are incorrectly denied 

o SHALL meet the requirement of less than 3:100 for the upper bound of an 80% 

confidence interval. FRR is measured at the transaction level. 

• Impostor Attack Presentation Accept Rate (IAPAR) is the Proportion of presentation attacks 

in which the target reference is matched 

o SHALL be performed by the FIDO-accredited independent testing laboratory on the 

TOE provided by the vendor. The evaluation measures the Impostor Attack 

Presentation Match Rate for each presentation attack type, as defined in ISO 30107 

Part 3. 

 

In general, “FIDO-accredited independent testing laboratory performs live subject scenario testing on 

the TOE provided by the vendor using a combination of online/offline testing and presentation attack 

testing, based on ISO 19795-1 and ISO 30107-3” < Cite>. A transaction should not exceed 30 seconds. 

 

Following form Android’s example, emphasis is placed on security and defence against impostors. 

 

2.8.2 Performance 

 

The following performance rates are required to meet the standards for FIDO certification. All require 

an upper bound confidence level of 80%: 

 

• FRR: 3/100 (3%) 

• FAR: 1/10000 (0.01%) 

 

FIDO and Android differ because the FAR performance is based on zero-effort non-genuine 

transactions. In contrast, Android includes guidance on using impostors to exploit weaknesses (same 

gender and ethnicity). Therefore, the corresponding decision threshold should be reported with the FRR, 

and FAR can be shown using a ROC or DET curve. 
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Self-attestation of performance is allowed along as test data support it and fully documented in a 

report submitted by the vendor. 

 

2.8.3 Common Test Harness 

 

A proposal for a standard test harness is used for vendors to supply to FIDO to allow open access to a 

system’s biometric component for certification. This standard test harness calls for specific components: 

 

1. Configurable Enrolment system 

2. Configurable Verification online system 

3. Configurable Verification offline software 

4. Logging capabilities 

 

This proposal highlights the difficulty of effectively and accurately the claims of biometric systems 

without access to the internal workings. 

 

Not as much emphasis is given to the security of the architecture as Android specified. However, it is 

mentioned that “enrolment templates and verification transactions should be confidentiality and data 

authentication protected using cryptographic algorithms” [39]. 

 

2.8.4 Test Procedures 

 

FIDO recommends that testing be carried out using the scenario test approach. The minimum number 

of subjects is 245, although, for face and iris, 123 unique subjects can be used if four-finger or two eyes 

are enrolled, respectively. 

 

Regarding age distribution, the requirements indicate that no one under 18 or over 70 should be 

included. The remaining age groups (18-30, 31-50, 51-70) should be distributed evenly within 25%-40%. 

Similarly, gender (Male, Female) distributions should be as evenly split as possible within 40%-60%. 

 

A bootstrapping sampling technique with replacement can be used to estimate FAR and FRR 

distribution curves. If zero errors occur, FIDO defaults to the “Rule of 3” for determining a test size. 

However, the test can be conducted in one visit for each participant due to the importance of testing the 

FAR rate. 

 

FIDO acknowledges recent systems employing template adaption techniques that adapt the template 

after successful verifications. However, for adequate testing, the number of required correct matches to 

adequately train the system should be used, after which the adaption technique should be turned off to 

perform the tests. 
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Enrolment procedures are reported along with any failure-to-enrols that occurred. 

 

2.8.5 Report to FIDO 

 

• Summary of the FIDO Biometric Certification and Requirements 

• The number of individuals tested 

• Distribution of Age 

• Distribution of Gender 

• Description of the Test Environment 

• Description of the Test Platform 

• Distribution of the time elapsed between Enrolment and Acquisition 

• Number of enrolment transactions 

• Number of genuine verification transactions 

• Number of impostor verification transactions 

• Failure to Enrol Rate 

• Failure to Acquire Rate 

• False Reject Rate 

• False Accept Rate 

• Distribution of Genuine Verification Transaction Time 

• Bootstrap Distribution 

 

2.8.6 Presentation Attack Detection (PAD) 

 

A unique addition from FIDO is the introduction of presentation attack instrument (PAI) levels which 

level presentation attacks based on their sophistication. The accepted IAPMR varies based on the level of 

attack chosen and the amount performed from each level. It is stated that using all Level A or Level B PAI 

attacks much to achieve an IAPMR of less than 50%. No more than five attempts are allowed per impostor 

transaction. An additional study is required to test the system’s presentation attack detection, measured 

by IAPAR), to determine the resistance against minimal expertise attacks. This requirement can be 

achieved using 15 subjects. 

 

As well as the items included in the testing report, the PAD report requires some additional items: 

 

• Number and description of presentation attack instruments, PAI species, and PAI series used 

in the evaluation 

• number of test subjects involved in the testing 

• number of artefacts created per test subject for each material tested 
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• number of sources from which artefact characteristics were derived 

• number of tested materials 

• Imposter Attack Presentation Accept Rate (IAPAR)  

• Number of impostor attack presentation transactions 

 

Testing the PAD required online testing using the Common Test Harness. 

 

As mentioned, FIDO lists PAI attacks into various levels focused on the complexity of attack potential 

as defined in ISO/IEC 30107-3:2017 [41] : 

 

• Level A - Simple to carry out and requires little time, expertise, or equipment. (Paper printout 

of face image) 

• Level B - Require more time, expertise, and equipment. (Paper masks) 

• Level C - The most brutal attacks. (Silicon masks) 

 

FIDO provides more information on the PAI attack levels per modality basis. Laboratories should select 

six Level A and eight Level B attacks, resulting in 14 PAI species and 15 enrolled users, meaning 210 

instruments. In addition, the lab must perform ten presentation attack transactions for each PAI, and all 

acquisition failures must be reported during the process. The FIDO Alliance is continually developing their 

biometric testing standard, which currently sits at v2.2 the guidance is changed with updates from 

standards, laboratories, and industry partners. 

 

2.9  Discussion (Moving Forward) 

 

Current standards depend on performance rates by looking at the statistical hypothesis testing errors, 

examining type I (rejection of a true null hypothesis) and type II (non-rejection of a false null hypothesis) 

errors. When applied to biometrics, these become the false reject, and false accept rates. Existing 

approaches are available from researchers, standards, and organisations to build a common approach to 

evaluating biometrics. However, few of these consider the mobile approach independently and with a 

vaster usage in the hands of everyday usage should a common criterion exist and define how to approach 

mobile biometric testing for defined testing and comparisons. 

 

A common theme among testing strategies is to take a scenario evaluation approach. These existing 

standards and approaches offer practical planning and a mobile biometric performance evaluation. 

However, it can be achieved, and the definition of performance can be expanded beyond traditional 

measures. Furthermore, the approaches mentioned here usually ignore other metrics as they are usually 

deemed out-of-scope of the specific purpose. For example, ISO/IEC TS 19795-9:2019 [37] puts out-of-

scope privacy aspects and presentation attack detection (PAD). 
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The aim is to develop a standard structured approach to mobile biometric testing and reporting 

combining the elements for all these standards and additional metrics that may apply to a broader range 

of devices. This chapter has presented the core entities defining how biometric testing should be carried 

out. The aim is not to disregard or undermine the work carried out by these bodies but carry it forward 

by amalgamating their relevant elements and incorporating them into a new biometric testing framework 

specific for mobile devices to provide a more comprehensive testing structure for various devices with 

meaningful results. 

 

However, one aspect is to look beyond these traditional metrics in today’s world and look further. As 

well as this, privacy and security concerns are rising, and biometric data protection is vital as the GDPR 

has categorised it as ‘sensitive’ data [42]. Furthermore, cancellable biometrics is one of the major 

categories for biometric template protection purposes besides biometric cryptosystems [43]. Therefore, 

assessing the security and privacy-preserving techniques implemented by the mobile biometric system 

should be part of the evaluation process to help assess architectural security. 

 

Eglitis et al. [27] also state that “several of the ISO/IEC 19795 recommendations …, e.g., enrolment 

and probe data being captured at different days, or computing a minimum number of comparisons to 

validate error rates, are often not respected in the employed test protocols, thus affecting the reliability 

of the reported performance”. 

 

2.10  Summary 

 

This chapter has explored what currently exists regarding biometric performance testing and 

considering mobile biometric systems where possible. One thing that became apparent from the 

requirements present here is the test sizes. The ISO standards emphasise “Rule of 3” and “Rule of 30”, 

but how practical is this? Admittable, it is hard to withdraw from the statistical significance using these 

numbers provided, but even 245 participants seem a high requirement for all settings, such as academia. 

Could an alternative approach be developed to reduce the need for such an extensive test size? 

 

The next chapter will explore the core factors identified to be crucial to the performance of a mobile 

biometric system and showcase how significant a user’s influence over the performance of a mobile 

biometric system can be, deeming it essential that some form of usability testing is incorporated into the 

testing framework. 
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3 Core Factors and Relationships 

 

3.1  Introduction 

 

In this chapter, the intent is to take an approach to separate the core factors affecting mobile 

biometric systems' authentication performance. Jain et al. [44]  described seven factors to help assess the 

suitability of a human trait for biometric authentication, one of which defines performance in that it 

"relates to the accuracy, speed, and robustness of technology used". There is a vast field of research about 

performance claims for biometric systems; however, these claims usually predict them by observing a 

changed factor(s) and noting the resulting performance deterioration or improvement demonstrated. 

This chapter aims to identify the core factors that need consideration to specification, evaluate, and 

report biometric systems on mobile devices. The work described in this chapter is an adapted version of 

previously published work [45] addressing this theme. 

 

Section 3.2 discusses how performance is viewed, looking at critical areas. Sections 3.3 - 3.9 will discuss 

each influencing factor in more detail. Section 3.10 will introduce the relationships between factors, and 

the final Sections 3.11 and 3.12 will provide a discussion and summary. 

 

3.2  Discussing Performance 

 

Mansfield and Wayman [35] produced a comprehensive list of factors that can affect the performance 

of a biometric system. Outlined in Table 3.1, these 'influencing factors' were later included within the 

ISO/IEC 19795-1:2006 [22] international standard on biometric performance testing and reporting, 

including strategies for mitigation against performance degradation, such as a section on 'controlling 

factors that influence performance. Although the procedures discussed in the standard are primarily 

relevant to modern biometric devices, including mobile systems, any alternative approach must observe 

them to the current state of the art regarding developments in biometric technologies. For example, one 

strategy in the standard suggests that "enrolment conditions should model the target application 

enrolment", but this is not so straightforward when moving from a statically implemented system to a 

mobile one where the enrolment conditions could be a plethora of different environments and scenarios. 

Furthermore, the ISO standard only seeks to assess performance through very generalised metrics, mainly 

failure-to-enrol, failure-to-acquire, false match rate and corresponding false non-match rate. 
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Table 3.1: List of Influencing Factors as Defined in ISO/IEC 19795-1:2006 [22] 

Factor Description [22], [35] 

Population 
Demographics 

Characteristics of a population, such as age, gender, ethnic origin, and 
occupation 

Application 
The overall system itself, such as enrolment and verification elapsed time, 
user familiarity and user motivation 

User Physiology 
Physical properties of a person, such as a beard, skin tone, height, and 
disability 

User Behaviour 
Behavioural properties of a person, such as a dialect, movement, stress, and 
facial expressions 

User Appearance How a person looks, such as clothing, hairstyle, bandages, and tattoos 

Environmental 
Influences 

Factors of the environment, such as background, lighting level, weather, and 
reflections 

Sensor and Hardware 
The factors affecting the device's correct operation, such as dirt, focus, 
sensor quality and transmission channel 

User Interface 
Means by which the user and a computer system interact, such as feedback, 
instruction, and supervision 

 

Further research [46]–[48] discusses assessing performance for traditional biometric systems, and 

these have usually been in the form of exploring influential factors. This current work aims to expand on 

these previously defined factors and identify new areas that need extra consideration when applied to a 

mobile biometric system. Part of this will be informed by assessing the role of the 'Users' factor within a 

biometric system and increasingly considering the importance of usability when discussing performance. 

Furthermore, this study aims to illustrate how the 'Environments' factor has a greater context when 

considering a mobile setting that links closely with the newly introduced factor of 'Scenarios'.  

 

This work aims to develop a model for assessing the performance of mobile biometric systems and 

implementations by investigating factors that are likely to affect the performance. The seven identified 

factors are 'Users', 'Modality', 'Environments', 'Diversity of Scenarios', 'System Constraints', 'Hardware' 

and 'Algorithms', and they form 'The Core Factors Affecting Mobile Biometric Performance'. Utilising 

these factors allows for illustrating the practicalities of mobile biometric implementations, enabling the 

binning of performance alterations within one of these factors. 

 

Along with 'Scenarios', the model establishes 'Algorithms' and 'System Constraints' as new factors that 

have not previously been considered explicitly within a performance assessment context. The Oxford 

Dictionary defines a factor as "a circumstance, fact, or influence that contributes to a result" [49]. The 

core factors defined by this study are the fundamental elements of mobile biometric performance, acting 

as a foundation layer for future performance assessment development. Even as biometric systems evolve, 

additional properties and areas are discovered, and new relationship connections are forged, they will 

always link back to one (or more) of these core factors. Furthermore, the core factors form unique 

connections, meaning that an impact on one core factor can cause a performance alteration in another. 

 

This study will allow developers to concentrate efforts more effectively when devising ways of testing 

and analysing the performance of mobile biometric systems in the future. Building on previous studies 
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from the community, the developed model demonstrates each factor's existence and the impact on the 

overall performance when applied to a mobile context. 

 

While examining the definition of biometric system performance, it is necessary to include further 

input from Jain et al. [44] regarding acceptability, how well individuals "accept the technology such that 

they are willing to have their biometric trait captured and assessed". Additionally, the concept of 

circumvention which "relates to the ease with which a trait might be imitated using an artefact or 

substitute". Both issues are critical when considering the overall performance of a biometric system. 

Acceptability is essential because public perception and acceptance within the technology sector will be 

one reason to prevent the uptake of a biometric system.  

 

Biometric technology has trust issues among consumers [12], with a Paysafe Group survey revealing 

that 81% prefer passwords for online payments due to security concerns. A recent example of driving 

public opinion through security concerns happened in 2019 in San Francisco, where the public 

administration banned facial recognition for local services [50]. The cited reason was over-perceived bias 

in facial recognition technology regarding ethnicity. More recently, the European Union MEPs backed a 

motion to ban facial recognition technology for mass surveillance [51], paving the way for future laws and 

restrictions regarding AI technology, citing privacy rights.  

 

Although the examples are rather extreme, it highlights that it is necessary to consider the user's 

acceptance of a system before rushing ahead with the implementation; otherwise, it will alienate the 

users. Circumvention primarily refers to spoofing the biometric system using artificial means. Any system 

that offers a biometric solution will be required to have some level of resistance to these attacks. For 

example, a fingerprint system must be resistant to artificially produced finger attack specimens or the 

insertion of images into the biometric pipeline. Failure to attack specimens highlights a significant flaw 

with the system, leading to decreased overall performance. 

 

By considering acceptability and circumvention, the model challenges the conventional approach and 

definition of performance. The focus within the model begins to shift towards the end-user, how they 

perceive the use of the system and how both good and bad actors may attempt to circumvent the system 

using various methods. These are vital areas when considering the performance of the overall system. 

The metrics discussed in ISO/IEC 19795-1:2006 [22] also ignore the usability aspect, which the model 

illustrates as vital to a system's performance. 

 

3.3  Factor #1: Modalities 

 

With existing fixed biometric modalities, evaluators can target the strategy to consider known 

'influencing factors' likely to affect the performance and include these within the testing strategy. 

Mansfield and Wayman [35] provided a list detailing many of these 'influencing factors in Table 3.1. Each 
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modality directly introduces a set of 'influencing factors' caused by choosing a particular modality, for 

example, an assessment of how wearing glasses will likely affect the assessment of an iris recognition 

system. 

 

Table 3.2 shows illustrative examples of influencing factors for a range of common biometric 

modalities and is by no means a completely comprehensive list. 

 

Table 3.2: Examples of Influencing Factors per Modality 

Modality Sample of Influencing Factors [51] 

Face 
• Movement 

• Age 

• Facial Expression 

• Skin Tone 

Fingerprint 
• Fingerprint Condition 

• Arthritis 

• Weather 

• Offsets and Rotations 

Voice 
• Ethnic Origin 

• Colds or Laryngitis 

• Noises 

• Misspoken Phrases 

Iris 
• Lightning Level 

• Blindness 

• Eyelashes 

• Reflections 

Signature 
• Age 

• Sensor Pressure 

• Injuries 

• Motivation 

 

It can be observed from these factors in both Table 3.1 and Table 3.2 that the users are a significant 

influence that affects the performance of a particular modality. 

 

The remaining core factors, defined in the model, will uniquely link to this modality core factor, for 

example, the hardware and algorithms core factors, as each will have a performance impact that could 

affect the other. Therefore, it is also essential to know the 'influencing factors' specific to each modality 

when used in various scenarios. This knowledge will help identify the areas requiring increased attention 

when testing a biometric system. For example, a user's appearance will have little impact on voice but 

will likely significantly affect a facial recognition system. In addition, the understanding that a single 

modality may perform with error is apparent as researchers have utilised multimodal biometric systems 

to combine separate modality systems with improving overall recognition accuracy performance. Part of 

these multimodal systems tries to overcome the 'influencing factors' issues by combining the results of 

another trait that will hopefully not be affected and reduce the error that would otherwise have happened 

[52]. 

 

Jain et al. [52] reported that a unimodal system (using a single trait/modality) might experience several 

problems, including "noisy sensor data, non-universality and lack of distinctiveness of the biometric trait, 

unacceptable error rates, and spoof attacks". All of which can affect the overall performance of a system. 

In comparison, He et al. [53] explored the performance of a multimodal system using three traits: 

fingerprint, face, and finger vein. The experiments concluded that a "multimodal biometric system can 

achieve significantly better performance compared to a single biometric system" and that adding a finger 

vein "results in a verification system with very high accuracy". Thus, this research demonstrates how 

performance changes when using various biometric traits, confirming that modalities affect performance. 
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Gafurov et al. [54] assessed the use of gait as a biometric trait. They concluded that it is better suited 

as a "complementary biometric" and not a "replacement for traditional authentication mechanisms". The 

work also noted "several factors that may negatively influence the accuracy". They classed the factors for 

gait as 'External' (viewing angles, lighting conditions) and 'Internal' (sickness, physiological changes). They 

identified how gait was "robust against minimal effort impersonation attacks". The authors concluded by 

noting that an "investigation of these factors is critical towards developing robust systems", which 

identifies how necessary it is to appropriately select a modality for a particular scenario in a way that will 

try to mitigate issues (caused by influencing factors). 

 

Ito et al. [55] commented on how researchers seek "new biometric traits to enhance the accuracy and 

convenience of biometric recognition", suggesting that modalities differ in their performance. Each 

modality is unique, bringing an assortment of influencing factors to contend with, although some are 

common between specific traits. It is undoubtedly true that a modality holds extraordinary power over 

the system. It can define how the rest of the system develops around it, meaning selecting the suitable 

modality for the job is a priority. An example of a lesser-researched biometric includes the 3D ear shape 

explored by Yan et al. [56]. 

 

Furthermore, external factors relating to the target population may cause modality-specific 

performance alterations. For example, the sample quality of the elderly [57] and issues of accessibility 

[58] will influence the performance of the modality. Elliott et al. [59] investigated how fingerprint sample 

quality can affect a biometric system across age groups. They concluded that "more emphasis should be 

placed on an individual's age, rather than the moisture of the finger when developing a fingerprint 

recognition system" as the image quality became more variable for an older population (aged 62 and 

over). 

 

Due to the 'influencing factors' present, the modality themselves impact the performance of a system. 

It is for this reason, therefore, that it is one of the factors. 

 

3.4  Factor #2: Environments 

 

The environment can significantly impact the performance of a biometric system. These systems are 

becoming less fixed and mobile, and the environments they will operate in are nearly impossible to 

predict. 

 

Research produced by Lunerti et al. [60] examined the environmental impact factors on smartphone 

face recognition. They assessed facial image quality (FIQ) in indoor and outdoor conditions. They 

concluded that "[biometric] scores obtained with the images taken from the smartphone are higher with 

the images taken indoors", showing that the environment impacts a system's performance. 
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One of the main aspects that allows a mobile biometric system to differentiate itself from a traditional 

one is the sheer range of environments and conditions the device will be required to operate within. 

Consequently, the performance could be affected at both the enrolment and authentication phases due 

to the various environments and situations that could occur during the process. For example, in practice, 

a robust enrolment template captured under 'optimal' conditions may not produce accurate matches with 

samples collected under certain circumstances at later verification attempts. Furthermore, an enrolment 

template captured under poor conditions may not be functional. 

 

Different environments that have an impact on the performance include: 

 

• Indoors vs Outdoors 

• Lighting 

• Weather Conditions 

• Terrain -- physical features of the environment, from the ground, being walked over to the type 

of location (e.g., city, countryside, ocean) 

 

Previously Elliott et al. [59] had also shown how illumination could significantly affect the performance 

of facial recognition systems. They concluded that "enrolment illumination level is a better indicator of 

performance than the illumination level of the verification attempts". Furthermore, they found that the 

"enrolment light level should be as high as possible" when the "lighting conditions are not constant for 

verification". 

 

Regarding behavioural biometrics, voice recognition performance severely degrades when ambient 

noise is present, as shown by Gong [61]. Therefore, researchers have researched to mitigate and detect 

this noise and hence the performance of a voice recognition system. For example, Yamada et al. [62] 

"described a method for estimating the performance of a speech recognition system using a distortion 

measure". 

 

Applying the environment concept to conventional modalities has been known to affect performance. 

These conditions include: 

 

• Face – Background (Multiple Faces) 

• Fingerprint – Weather 

• Voice – Noise 

• Iris – Illumination 

 

These studies show how the environment impacts biometric performance, and it is deemed worthy 

as another factor. 
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3.5  Factor #3: Diversity of Scenarios 

 

The 'Diversity of Scenarios' relates to how an individual uses a device within an environment. Classing 

these scenarios under two category headings: 'motion' and 'stationary' is possible. Table 3.3 shows a brief 

table of example scenarios. 

 

Table 3.3: Examples of Scenarios Under the Categories of 'Motion' and 'Stationary' 

Motion Stationary 

User Transportation Dual  

Walking Bus Walking on a train Sitting 

Running Train Walking on a boat Standing 

Cycling Earthquake Swimming Lying Down 

 

In this classification, 'motion' refers to the scenario of being in movement relative to the environment. 

Likewise, 'stationary' is where the device is at rest (no action), corresponding to the environment. 

Furthermore, 'transportation' is defined as any scenario where the device is in motion caused by an 

external influence from the environment. For example, when being driven around, such as on a bus. This 

splitting of 'motion' scenarios into 'user' and 'environment' concepts introduces an overlap scenario 

where the cause is both a user and environmental factor—defined as a 'dual' motion scenario. Figure 3.1 

illustrates a flowchart to aid in assigning scenarios to a potential category. As a result, minor movements 

that will likely occur in stationary situations, such as shaky user hands while holding the device, are 

overlooked. 
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Figure 3.1: Flowchart to assign a scenario to a category of 'Motion' or 'Stationary' 

 

There is currently limited research assessing various scenarios under which biometric authentication 

can occur, including the conventional modalities: Face, Fingerprint, Voice, and Iris. However, different 

scenarios can alter the performance of a biometric system. For example, Blanco-Gonzalo et al. [17] 

explored performance changes across conditions when signing using dynamic signature verification (DSV) 

systems. Their results showed that although there is "not an ideal scenario for signing", the observed 

performance improved when using a stylus device with "the user sat on a chair, and the device is resting 

on a table" and for finger-stylus devices when "the user has to handle the device without support". 

 

The location of a scenario plays a role in affecting the user's behaviour and state of mind. For example, 

"stress negatively influences performance and usability" [17]. For example, consider signing within an 

outlet such as a post office. Here, the scenario encourages users to sign quickly and carelessly to avoid 

causing long delays, introducing stress and anxiety, and negatively affecting performance. Whereas, in a 

ceremony-based scenario, such as signing a legal document, the "user typically signs with greater care, 

striving for enhanced quality and clarity", as demonstrated in research by Guest et al. [63], which causes 

an increase in performance. 

 

The scenario links closely with the user's interaction with a system in a particular environment and 

how adjustments may be needed to account for these changes. These adjustments can come from the 

system itself or how the user interacts with it. The development of the Human-Biometric Sensor 

Interaction (HBSI) model  [64] investigated how scenarios can modify performance. Brockly et al. [65] 
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concluded: "the development [of HBSI] reveals the complexity of the potential interactions and the 

changes of those interactions when digitisers change, as well as when the ceremony changes". 

 

The number of scenarios in that biometric authentication can occur increases dramatically when 

introduced to a mobile environment. Bhagavatula et al. [26] assessed the usability of a range of mobile 

biometrics systems. Firstly (and probably the least surprising) was the Android "face unlock completely 

unusable in a dark room". They also explored Apple's Touch ID and found that the Touch ID and face 

unlock "mechanisms fail in specific scenarios, wet fingers and dark rooms, respectively". They also 

conducted a series of walking experiments, one merely walking and another walking while carrying a bag 

in one hand. The authors performed the experiments in laboratory conditions (indoors). Participants "did 

not find unlocking difficult for any authentication scheme in either of the walking scenarios". The 

experiment was mainly conducted from a usability perspective, concluding that participants preferred the 

Android face unlock in the walking scenarios as they could handle the phones in their desired positions. 

In contrast, Apple's Touch ID had to hold the phone more precariously from the bottom as this is the 

fingerprint sensor's location. 

 

Sitová et al. [66] introduced "hand movement, orientation, and grasp (HMOG)" to authenticate 

smartphone users continuously, and their work investigated two conditions, sitting and walking. The 

results showed that "HMOG improves the performance of taps and keystroke dynamic features, especially 

during walking". They theorised that this improvement was "attributed to (a) the distinctiveness in hand 

movements caused by tap activity and (b) the distinctiveness in movements caused by walking". 

 

With increased development in mobile technology, research is looking into ways to help capture and 

authenticate a biometric trait while in motion, including work to perform long-range iris recognition, also 

known as iris-on-the-move, as surveyed by Nguyen et al. [67]. 

 

Given the proliferation of biometrics on mobile systems, this indicates that researchers should conduct 

further work in this area, which should be considered a factor. 

 

3.6  Factor #IV: Users 

 

Users of a biometric system need to have confidence in the authentication process. Therefore, 

biometric systems must be universal (applicable to all) for the system's end-users to gain this confidence. 

Therefore, implementers chose modalities due to their uniqueness in identifying between individuals. 

However, developing a system to accurately extract all the small features within a modality to achieve 

uniqueness is difficult; this is how false positives can occur. 

 

One of the most prominent ideas in biometric testing is the concept of the 'Biometric Zoo' proposed 

by Doddington et al. [68]. In this work, they used voice recognition to show that users of a system could 
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directly impact the overall performance. In addition, this work proved the existence of different categories 

of users: 

 

• Sheep – Sheep dominate the population, and systems perform nominally well for them. 

• Goats – Goats are those users who are particularly difficult to recognise. 

• Lambs – Lambs are those users who are particularly easy to imitate. 

• Wolves – Wolves are those users who are particularly successful at imitating others. 

 

They state that "goats have the greatest performance effect", adding a considerable amount of false-

negative data. In contrast, the wolves and lambs attribute more to the false-positive data, affecting overall 

performance. Finally, Yager and Dunstone [69] extended the biometric zoo or menagerie to include 

different groups of users that cover the extreme ends of the spectrum and explore the existence of the 

menagerie within other modalities: 

 

• Worms – Worms are the worst conceivable users and match poorly against themselves. 

• Chameleons – Chameleons always appear like others and receive high match scores. 

• Phantoms – Phantoms always receive low match scores regardless of the comparison template. 

• Doves are the best possible users, matching well against themselves and poorly against others. 

 

The framework presented here highlights weaknesses in the system and whether any of these user 

groups exist, whether within the algorithm itself, the enrolment quality, or data integrity. They conclude 

that the "biometric menagerie is a diagnostic tool that takes a more user-centric approach". 

 

The biometric menagerie is not without critics. Popescu-Bodorin et al. [70] claim the concept is 'fuzzy' 

regarding whether the categories refer to the users themselves or the templates. Part of their claim 

highlights that the category of users can change based on the system's calibration. Although this may be 

true, the biometric menagerie concept is still beneficial for highlighting how users can affect performance 

or how users can be used to identify potential flaws and weaknesses within a system. In either of these 

cases, the users directly affect the performance. 

 

The user interaction with the interface and user acceptance of the modality and scenario is a factor of 

performance that is often not considered. However, if users encounter a bad experience in using the 

system, it may result in an unwillingness to use the technology on an ongoing basis. As well as examining 

the environmental impact, Lunerti et al. [60] also examined the effect of user interaction with face 

recognition on smartphones. Through a questionnaire given to the participants, the authors found that 

users' ease and confidence with the system increased with each session when operated indoors. However, 

when used outdoors, the confidence remained relatively constant throughout. 

 

As noted previously, research has also shown that a user's physiology can affect the performance of a 

biometric system, including age [59] and accessibility [71]. 
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Another important factor when discussing how users affect system performance is to examine users' 

acceptance and satisfaction with biometric systems. These factors will drive the overall performance and 

indicate the willingness to use such a system. El-Abed et al. [72] proposed that "taking into account users' 

view … is beneficial to the end-users, but it will also help to improve performance and effectiveness". 

Manufacturers can use the thoughts and opinions of users to influence the design and interface of the 

biometric system. For example, respondents of a survey conducted by El-Abed et al. found that 

"biometric-based technology is more appropriate than secret-based solutions against fraud" and that the 

"trust factor has been identified as a major [aspect] that affects their general appreciation". It is also worth 

noting that the user's culture can influence the acceptance and use of biometrics [13], [73]. 

 

It has become clear that users' acceptance and willingness are crucial factors to consider when using 

a particular biometric system. It is possible to imagine a system with excellent performance results; 

however, this does not guarantee that the users will be inclined to engage with the system. Thus, 

usability's effect on performance is becoming an increasingly relevant research topic. Unfortunately, 

traditional performance metrics have relied only on error rates, which generally do not consider usability 

concerns. 

 

 

Figure 3.2: Human Biometric Sensor Interaction (HBSI) Model [74]. 

 

Shown in Figure 3.2 is a thematic outline of the Human-Biometric Sensor Interaction (HBSI) model to 

address this issue. Guest et al. [63] identified that an interaction error might cause performance 

deterioration of a tuned biometric software system with a biometric capture device. Furthermore, they 

discovered that when a biometric system is "deployed within a public setting … [the] performance of a 

system drops, not because of a change in the algorithmic implementation". This discovery points to the 
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need to include Algorithms as a separate factor that can affect performance. Finally, they concluded that 

in the case of dynamic signature verification, "these problems can be solved through the design of 

appropriate on-screen user interfaces and hardware", which strengthens the argument for having System 

Constraints and Hardware as different factors affecting performance. 

 

Miguel-Hurtado et al. [75] assessed voice using the HBSI model for a smartphone's mobile 

authentication system. Their results concluded that "the learnability of the application needs to be 

improved by better guidance … thus, better user interfaces and participant guidance within the 

application have been recommended". They noted that this would improve the overall performance by 

"avoid[ing] user's assistance requests and reduce the user's errors. Hence, it will help to reduce the 

number of incorrect presentations and raise the rate of successful enrolments". 

 

Jain et al. [44] compared biometric traits using data from the perception of three biometric experts. 

This comparison showed the acceptability given to the common modalities on a high, medium, and low 

scale as follows: 

 

• Face – High 

• Fingerprint – Medium 

• Voice – High 

• Iris – Low 

 

As mentioned, acceptability is essential, but the concept may have grown into public perception along 

with privacy and security concerns. Therefore, acceptability is one reason that will prevent the uptake of 

a biometric system's use and highlights the necessity to consider the user's acceptance before rushing 

ahead with the implementation. 

 

When assessing the performance of mobile biometrics, it will be necessary to identify the user's 

familiarity with the device in question. The reason for this is habituation. Users more familiar and 

comfortable with a device are likely to perform better than someone handling it for the first time. 

Therefore, the suggestion is that all users have time to adjust and familiarise themselves with the device 

before any formal testing begins to mitigate any performance impact from different habituation levels 

from the users involved. 

 

Users are a significant factor affecting biometric systems' performance, so it is little surprise to include 

them within the core set. 
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3.7  Factor #V: System Constraints 

 

It is necessary to consider that systems often need to meet their own needs and demands for the 

scenario they require to operate. These needs will include requirements such as: 

 

• Verification or Identification? 

• Throughput Rate 

• Required Error Rates 

• On-Device vs Off-Device 

• Time to Enrol or Authenticate 

• Privacy Protection / Control 

• Latency 

 

On-device refers to the processing of the biometric algorithm occurring on the hardware of the device 

of the biometric system. In contrast, off-device is where some or all the processing gets delegated to 

external equipment for processing, most likely a server. Each introduces security concerns that will need 

exhaustive testing and ties into the privacy protection and control provided. 

 

Privacy protection and control refers to the security for storing all captured samples, even when the 

authentication algorithm compares samples. Securing these templates is crucial to gain user confidence 

and ensure the system is not vulnerable to attacks. However, there will be a trade-off between security 

and performance, as more significant restrictions will generally mean slower functionality. Latency is the 

delay introduced by transferring data around. This aspect could be an issue for off-device systems where 

the captured sample needs to be transmitted for processing or providing visual cues to users. 

 

These specific requirements will introduce their constraints and impact the system's performance. For 

example, whether authentication takes place off-device or on a server, evaluators must note how the 

performance is affected under different network setups (including Wi-Fi, 4G, and 3G). 

 

Many factors within System Constraints link closely to that overall user experience. For example, a 

system will likely function as intended, but due to the constraints placed on the system by its 

requirements, it now takes a long time to perform verifications, and then its performance will suffer. Thus, 

the model defines a System Constraint as introducing a constraint on how the system can function. This 

constraint could be due to many factors, including external (corporate) restrictions, device requirements 

and scenarios. 

 

Users enjoy convenience and ease, and hopefully, when implemented correctly, this is something that 

biometrics can offer as a service. A classic use case for biometrics is airport security to process many 

people as quickly and efficiently as possible. Sasse et al. [76] investigated various biometric processes at 
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various airports. This scenario contains many constraints and requirements that any biometric system 

must adhere to, thus creating System Constraints. The study mentions how a significant factor is how the 

users react to the system and that any implementation should "emphasise usability's importance in 

successfully operating biometric systems". 

 

Universal access is also one of the primary requirements associated with an airport border control 

system. Early tests showed how disabled users struggled to enrol and later verify with the system. The 

other issue was the experience of the "bendy shuffle", as Sasse et al. defined the scenario when trying to 

position the body correctly for the verification sensor. This scenario was due to the interaction being 

entirely different from that of the enrolment phase caused by the fixed position of the sensors. Thus, 

there is a hardware issue present here. However, a different verification process from the enrolment has 

equally caused problems, which was a flawed system design. 

 

While exploring recent advancements in biometric recognition, Ito and Aoki [55] state, "biometric 

techniques [that are] to be used in the practical system depend heavily on application requirements". 

 

Research has also explored visual feedback and how this affects performance. Visual feedback is 

where visual cues help guide the user through the biometric process and provide suggestive feedback. As 

expected, "the better [the] visual feedback, the better performance and usability" was demonstrated by 

Blanco-Gonzalo et al. [17]. However, they also showed that "users do not feel comfortable when [no] 

visual feedback is provided". Furthermore, while exploring dynamic signature verification (DSV), Blanco-

Gonzalo et al. found that "latency … involves annoyance in users, and it also affects the performance". 

Here the latency refers to the digital ink appearing on display, providing a visual aid to the user. 

 

However, latency raises questions about future concerns regarding the performance of systems that 

require off-device processing and how network latency can cope with data movement, thereby affecting 

performance. 

 

Besides the dedicated biometric sensor, exploring all the available resources in a system may improve 

the recognition system. For example, using the available sensors and hardware can provide a continuous 

authentication mechanism on a smartphone. An example is using the available touchscreen gestures 

explored by Feng et al. [77]. When observing keystroke dynamics on a mobile device, Buschek et al. [78] 

were able to "improve implicit authentication accuracy through new features" available on a smartphone. 

They were also able to "improve usability with a framework to handle changing hand postures". 

 

It is again necessary to mention circumvention from Jain et al. [44]. Here measures will explicitly need 

to be incorporated into a system to prevent security concerns and vulnerabilities. In addition, there will 

likely be the introduction of trade-offs between having a secure system and error rates along with the 

time to enrol/authenticate. All of which will mean balancing the performance. It is for these reasons that 

System Constraints belong as a factor. 
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3.8  Factor #VI: Hardware 

 

A biometric system can only be as good as the hardware it has to function on, regarding both the 

speed and functionality for processing and the resources available to be exploited. The sensors, both 

dedicated biometric and otherwise, can affect the system's overall performance. For example, Jain et al. 

[79] explored the performance of smartphone touchscreens with traditional hardware keyboards using 

the same modality of keystroke dynamics. Given that touchscreen sensors "provide considerably richer 

data", they could exploit this data to generate results demonstrating that "touchscreen data has 

considerably greater biometric value than that available on hardware keyboards". 

 

Obtaining a detailed hardware description helps better understand performance, especially when 

considering authentication involving multimodal biometrics. For example, one sensor may capture 

multiple modalities, or various sensors capture a single trait each. 

 

Elliott et al. [59] noted that "various devices used in studies demonstrate different physical and 

measurement characteristics". This message is still relevant in a mobile context that provides a more 

excellent range of hardware devices to implement biometric authentication. Developing a testing 

framework for this purpose will involve considering device variability to ensure consistency. 

 

"Hardware properties can affect the variables collected in the data acquisition process, and therefore 

the quality and performance of the device" [59]. Likewise, how available sensors collect the acquisition 

features will also affect the performance of a system. Elliott et al. again concluded that "there are 

significant differences in the variables across devices, yet these variables are not significantly different 

within device families". 

 

The introduction of biometrics into the mobile market is a relatively recent event, with the first 

smartphone featuring biometric technology appearing in 2004 [80]. However, significant adoption was 

due to the introduction of Touch ID into the Apple iPhone series [81]. 

 

Hwang and Verbauwhede [82] explored the implications of portable biometric authentications. 

Although this research is from 2004, it is interesting to see how the problems and experiences are still 

relevant today. They stated that a potential scenario is "financial and commercial transactions as a 

replacement for (biometric) smart cards" – it is now observed today that a significant end-use for 

biometrics on smartphones is the introduction of mobile payments, including Apple and Google Pay. 

Factors also discussed, including where to store the biometric template within the system (when 

portable), are crucial in the design and overall performance of the final product, and this is one of the 

critical arguments for the trade-offs surrounding on-device vs off-device: 
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"Performing the biometric processing on the server provides performance benefits with significant 

security problems. On the other hand, performing all the biometric processing locally [on the device] 

provides the best security but requires a relatively larger amount of energy and latency" [82]. 

 

This statement concerns examining a system's hardware and the limitations and benefits it provides. 

It is hard to estimate whether people expected the current advancements in computing and how powerful 

smartphones have developed. Nevertheless, Moore's law, the observation that "Manufacturers … [have] 

been doubling the density of components per integrated circuit at regular intervals" (every two years) as 

surveyed by Schaller [83], has been used as a reliable method for calculating and predicting future trends. 

Simplistically, this law's application has allowed for higher-performance computers. The same is true for 

smartphones and the mobile market; with a continuing drive from the industry to exploit hardware 

resources, current predictions show that Moore's Law is still likely to be accurate until around 2050. 

 

As stated previously, it can be challenging to predict the future outcome of the computing industry. 

However, the hardware used to support the system will impact the system's performance within the 

realm of biometric systems. For example, Cantó-Navarro et al. [84] developed a floating-point accelerator 

"specially designed for accelerating biometric recognition algorithms" for embedded systems. They 

achieved this by exploring accelerating the stages that usually proved the most time-consuming for 

biometric systems, such as Support Vector Machines, Gaussian Mixture Models and Dynamic Time 

Warping. As a result, they obtained "acceleration factors ranging from x7 to x22" on two complete 

biometric algorithms. 

 

Emerging developments in cloud computing and mobile systems have shown that processing can be 

moved from a mobile device to save on the demand for power consumption and storage capacity by 

effectively using the cloud. Smartphones today can currently store and run a biometric system without 

the need to offload resources. However, the same is not valid for mobile IoT devices with limited 

resources. 

 

Hu et al. [85] explored cloud computing and the Internet of Things (IoT) to create a functioning 

biometric system, as IoT devices typically do not have the same processing and storage capacity as 

modern smartphones. They created a face identification system that could "meet the growing demands 

of computation power and storage capacity in the current big data era" by utilising the advantages of 

cloud computing with the parallel resolution mechanism. "In this scheme, resolution services and identity 

information management services are deployed in the cloud, which can fully use the high reliability, high 

scalability, powerful computing and storage capacity of cloud computing to provide efficient and accurate 

face resolution services". However, they admitted that the system was not without drawbacks, including 

storing templates in a third-party data centre and the privacy and security associated with the overall 

system. 
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The captured sample quality from the biometric sensor must be high enough to satisfy the biometric 

system. Poor-quality images may result in more false rejects and cause the performance to suffer. Metrics 

exist to measure sample quality, including Face Image Quality (FIQ) and NIST Fingerprint Image Quality 

(NFIQ) algorithm. 

 

For all these reasons, hardware is a factor affecting the performance of biometric systems. 

 

3.9   Factor #VII: Algorithms 

 

Algorithms are the computational backbone of a biometric system. Recent advances in machine / deep 

learning have allowed for significant progress in computer vision, speech recognition, natural language 

processing, and many more. It has, therefore, also found its way into biometric authentication. 

Conventional machine learning methods, including Support Vector Machines, Principal Component 

Analysis and Linear Discriminant Analysis, have previously provided the backbone algorithm for biometric 

systems. However, now with more 'deep learning' approaches discovered, it is likely that a rise in 

performance will occur as researchers produce more accurate machine learning models. 

 

Taigman et al. [86] have experimented with deep learning on a 3D face model and have developed a 

system called 'DeepFace' which claims to "reduc[e] the error of the current state of the art by more than 

27%". 

 

Examining the conventional algorithms, He et al. [53] explored the performance comparison of sum 

rule-based score level fusion and support vector machines (SVM)-based score level fusion for multimodal 

systems. They discovered that SVM "could attain better performance … provided that the kernel and its 

parameters [were] carefully selected". 

 

There is a close link between the algorithm and hardware whereby the algorithm must perform on the 

available device to ensure the performance is usable. This relationship involves carefully considering the 

amount of memory available to run the algorithm without causing a significant delay for the algorithm 

users. Cantó-Navarro et al. [84] proved this as they achieved higher acceleration performance regarding 

execution time by altering the hardware components to be more efficient for a biometric system. 

 

Algorithms are designed to produce higher accuracy results and overcome certain environmental 

factors. Therefore, face image processing is an important research topic. It covers many fields, including 

computer vision, pattern recognition, image processing and biometrics, as surveyed by Ito and Aoki [55]. 

Here the authors state, "a variety of face image processing methods has been proposed since the 

performance of face image processing is significantly influenced by environmental changes such as head 

pose, expression and illumination changes". 
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Mobile biometrics provide another challenge for the development of algorithms for those devices. 

They will need to contend with an array of unconstrained conditions to maintain a high level of operation. 

Biometrics is an exercise in pattern recognition, and machine learning algorithms have proved extremely 

useful in this area. Similarly, it has been shown that "machine learning offers several advantages over 

other approaches for biometric pattern recognition", as discussed by Ortiz et al. [87]. At the same time, it 

also "satisfies an increasing need for security and smarter applications". Similarly, Blanco-Gonzalo et al. 

[17] stated that "the objective of the algorithm is to decide whether the user is the one who claims to be 

or not". Thus, the whole system's functionality depends on the algorithm, which is why it is a factor. 

 

3.10  Modelling Factor Relationships 

 

Figure 3.3 shows the interaction model between the factors. These relationships (connections/links) 

show an association between factors. The model forms these relations in several ways, such as being 

constrained or influencing the behaviour of each other. 

 

Many connections demonstrate that an alteration in performance may be caused by several factors 

discussed here. It is plausible that adjusting to one of these factors could incur a knock-on effect on 

another. For example, should the hardware be modified, this could cause the algorithm's functionality to 

change, producing a poor implementation for feature extraction and causing more false positives. 

Similarly, a relationship may connect more than two nodes. 

 

Figure 3.3 interprets where connections are forming; however, that is not to say that this is a definitive 

model, and more relationships may exist. The model is a first attempt at forming relationships between 

the factors, not a comprehensive list. Therefore, there will be missing relationships (links), and others are 

encouraged to find links and continue to use and adapt the model to form a complete model. The model 

here begins to present the metrics for reporting the performance of a mobile biometric system, with the 

connections being some of the key features that a report should include to provide the assurance users 

need. Table 3.4 provides the relationship definitions (mainly from the Oxford Dictionary [88]). 
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Figure 3.3: Model Showing the Potential Relationships (Connections) between Factors. 

 

Table 3.4: Defining the Relationships Identified within the Model 

Relationship Definition [5], [88] Measure 

Influencing 
Factors 

Any factor that affects the observed performance Data Binning 

Adaptability The quality of being able to adjust to new conditions 
Quantitative + 

Qualitative 

Resilience The capacity to recover quickly from difficulties Qualitative 

Constraints A limitation or restriction Data Binning 

Functionality The quality of being suited to serve a purpose well 
Quantitative + 

Qualitative 

Feature 
Extraction 

The process of extracting information from data 
intended to be informative 

Quantitative 

Acceptance Allowing a transaction using a specific modality Qualitative 

Willingness 
The state of being prepared to operate within a 
particular environment 

Qualitative 

Mobility The ability to move freely and easily 
Quantitative + 

Qualitative 

Usability The measure of effectiveness, efficiency, and satisfaction 
Quantitative + 

Qualitative 

Ergonomics 
The efficiency of the solution when being operated and 
handled by the user 

Quantitative + 
Qualitative 

Timing 
The time that is taken by a process, activity, or a person 
doing it to complete 

Quantitative 

Sample Quality 
The fitness of a biometric sample to accomplish the 
comparison decision 

Quantitative 

 

The connection model highlighted Users as one of the most influential factors—an important factor in 

determining the performance of a system, the model attributes to user satisfaction. However, "the users' 

satisfaction is often put aside", as highlighted by Blanco-Gonzalo et al. [17]. However, its importance is 

evident as "a non-usable system has not only repercussions in performance but users' acceptance of the 

technology also". 

 

The aim is that using this approach will generate values that can universally express performance by 

finding a way of qualitatively or quantitatively defining these relationships. Some identified relationships 
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already have robust research methods for obtaining a quantitative value, such as retrieving sample 

qualities of biometric traits discussed in current ISO standards [89]. However, the same is not valid for all 

the relationships identified here and gathering all this information would be impractical for testing one 

system. Therefore, the proposal is that a subset of the data will be sufficient. The model theorises that it 

is possible to build an overall picture of performance by treating each relationship separately and 

becoming more confident in its value with each newly added piece of information. The aim would be to 

compare different devices more consistently, but this practicality will require further research. 

 

Table 3.5 begins with suggestions about a possible collection approach to collect the relationship data 

defined here, along with some suggested basic examples. This table is not a complete list, but it is 

currently forming some initial ideas that will require further analysis of best methods and practices. 
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Table 3.5: Examples of Suggested Methods for Collecting Model Relationship Data 

Relationship 
Collection 
Suggestion 

Explanation Examples 

Influencing 
Factors 

Literature 
Explore current influencing 
factors 

[Illumination, Noise, Wearing 
Glasses] 

Adaptability Algorithmic 

Measure standard 
performance rates1 in 
various environments and 
scenarios 

While in "Environment 1", FAR 
increased to 9% 

Resilience Algorithmic 

Measure standard 
performance rates1 across a 
range of challenging 
conditions 

In challenging conditions, FRR 
was 34% 

Constraints Literature 
Explore current hardware 
that can be supported and 
usable 

[Identification, Off-Device 
Processing, 2 Seconds to 
Authenticate] 

Functionality Statistical 
Explored with analysis of 
using different algorithms 
and hardware 

"Algorithm 1" achieved 88% 
successful matches, and 
"Algorithm 2" achieved 92% 

Feature 
Extraction 

Algorithmic 
The measure of how well 
the algorithm performs at 
extracting features 

Extraction was able to find a 
total of 8 total features 

Acceptance Questionnaire Survey of users 
The survey revealed that 80% of 
users would allow a transaction 
to happen with chosen modality 

Willingness Questionnaire Survey of users 

Only 20% of surveyed users 
would be happy to use this 
verification method in the 
chosen environment 

Mobility Statistical 
Explored with analysis of 
performance in motion 
scenarios 

While in motion, the FRR was 
13% 

Usability 
Questionnaire + 

Interaction 
Survey of users and 
interaction measures 

74% of users were satisfied, and 
it took 10 seconds to read each 
of the task prompts 

Ergonomics 
Questionnaire + 

Interaction 
Survey of users and 
interaction measures 

67% of users were comfortable 
and managed to complete the 
task within 35 seconds 

Timing Experimental 
The device in operation 
should be capable of 
capturing timings 

Authentication took an average 
of 7 seconds to complete 

Sample 
Quality 

Algorithmic 

The measurement of Sample 
quality to ISO and similar 
standards for some 
modalities 

The sample quality score 
achieved was 81 

 

  

 

1 Standard Performance Rates = FNMR, FMR, FTA, FTE 
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3.11  Discussion 

 

As noted, these seven factors have significant overlap with one another. For example, algorithms will 

require a particular hardware setup to function as expected. Also, the willingness of users to engage with 

a system will be profoundly affected by the modality and environment used. El-Abed et al. [72] stated 

that "evaluating biometric systems constitutes one of the main challenges in this research field". They 

also conclude that "the main drawback of the widespread use of biometric technology is the lack of a 

generic evaluation methodology that evaluates biometric systems taking into account: performance, 

users' acceptance and satisfaction, data quality and security aspects". 

 

Each defined factor could easily extend and expand to incorporate more detail. However, the aim here 

is to highlight the central concepts that create a foundation acting as a parent node to use tree 

terminology. For example, the model identifies Users as a core factor, but many subsections will occur, 

including interaction and acceptance. Both are significant areas that could arguably be a factor of their 

own, but the model will still identify Users as the central area incorporating these. 

 

Interestingly, some of the factors identified fit directly into the HBSI model proposed by Elliott et al. 

[59]. Here, Human, Sensor and Biometric Systems become Users, Hardware, and System Constraints. In 

identifying factors that affect performance differently, it is reassuring to note that the HBSI model is still 

present and preserved within this updated model, which goes beyond usability aspects to define 

performance. 

 

Comparing the factors presented here with the ones provided initially by Mansfield and Wayman [35] 

and included within the ISO/IEC 19795-1:2006 [22], they are similar. 

 

• Population Demographics ↔ Users 

• Application ↔ System Constraints 

• User Physiology ↔ Users 

• User Behaviour ↔ Users 

• User Appearance ↔ Users 

• Environmental Influences ↔ Environments 

• Sensor and Hardware ↔ Hardware 

• User Interface ↔ System Constraints 

 

Mansfield and Wayman's factors only cover four of the seven factors presented here. However, it 

confirms that users are one of the most influential factors. Furthermore, it demonstrates how the Users 

consideration can extend into subsections incorporating what Mansfield and Wayman have previously 

identified. The factors added are Modality, Diversity of Scenarios and Algorithms, and these are the core 

factors for mobile biometric performance. 
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Looking back at Jain et al. [44] seven factors for assessing biometric traits, the model takes influence 

from them in terms of performance, acceptability and circumvention. The model incorporates 

acceptability within the Users factor and circumvention within the System Constraints factor. The 

definition of performance talks about "accuracy, speed, and robustness," which are fundamental 

concepts. However, there is a need to update and incorporate the other factors presented here to provide 

more assurance for a mobile context. 

 

3.12  Summary 

 

This chapter has identified seven core factors that form binning categories of performance alterations 

in mobile biometric systems. These factors are Users, Modality, Environments, Diversity of Scenarios, 

System Constraints, Hardware, and Algorithms. In defining the factors, an informative overview was 

provided to developers, implementers, and testers of biometrics systems, enabling the binning of 

performance alterations within one of these factors. The model expects categorical overlaps, so a 

performance alteration will likely have many factors contributing to the observed effect. 

 

Research is shifting to accommodate this change from a fixed to a more mobile system and exploring 

new opportunities and situations for mobile biometrics. Hopefully, the identified factors will help pave 

the way for future research to focus on some of these critical areas and allow future biometric systems to 

have a high level of performance and assurance that it fits their purpose. This work is the first step in 

designing a suitable framework to assess performance. The next chapter will combine all the current 

theories into a potential mobile biometric performance framework. 



Chapter 4 
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4 Towards A Flexible Performance Assessment 

Framework 

 

4.1 Introduction 

 

This chapter aims to develop a performance assessment framework for mobile biometrics and finds 

ways to suitably measure and mitigate the effects of the core factors identified in Chapter 3. However, 

testing every usage outcome within a mobile context is impossible. Therefore, the requirement is to 

develop an approach providing confidence that the system fits its purpose.  

 

Adopting this change will likely mean modifying the current testing strategy that the community is 

familiar with within specific areas. The changes will require thorough testing that includes more available 

situations in a mobile context. Other metrics for performance will need to be added to the standard 

testing procedures, including measuring usability from the HBSI model and data quality. These changes 

will bring more confidence into results from biometrics studies and allow users to feel more comfortable 

interacting with a biometric system. Researchers will need to conduct more research to identify the 

quality of biometric samples under various conditions with more significant influence given to the 

collection environment. 

 

This chapter will present a proposal for an evaluation framework to establish the suitability of mobile 

biometric systems for applications. Chapter 2 showcased the existing methodologies and approaches, and 

Chapter 3 identified the core factors known to affect mobile biometric performance. Finally, the concepts 

are amalgamated to provide mobile devices with an extensive and extendable performance testing 

framework. The framework is designed to be tuneable to best suit the needs of the end-users and 

evaluators by providing a more comprehensive testing structure for various devices with more meaningful 

results. 

 

The organisation of this chapter is as follows: Section 4.2 provides some information relating to the 

approach taken when producing the guidance for the performance framework, followed by Section 4.3 

to introduces the proposed seven-stage mobile biometric performance framework. Section 4.4 discusses 

the various evaluation approaches based on the identified access level to the device. Section 4.5 

showcases the framework as a flow diagram. Section 4.6 discusses usability requirements, and Section 

4.7 introduces and explains the approach to non-mated testing using a ‘Tailored Impostor’ approach. 

Finally, Section 4.8 and Section 4.9 compares the proposed framework and summarises the chapter. 
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4.2 Performance Framework Approach 

 

There is generally considered a trade-off between usability and security [90], and finding an 

appropriate balance depends on what would be considered acceptable for any given situation. There are 

two crucial issues to consider here: firstly, performing exhaustive testing is unfeasible, and secondly, what 

is considered an acceptable amount of testing will vary for each use case. The aim here is to introduce an 

approach to a testing framework that will hopefully provide some confidence and trustworthiness in a 

mobile system under evaluation to ensure that it fits its purpose. The proposed framework acknowledges 

that testing every possible scenario and eventuality may be impossible. However, the intention is to create 

a process to certify that the device fits its purpose. 

 

The question then becomes how to determine if a device is fit for purpose, and the answer here is by 

taking existing theories and approaches from similar disciplines. The basis of the proposed approach is 

utilising ‘worst-case analysis’ from system design and ‘boundary value analysis’ from software testing with 

concepts of ‘equivalence class partitioning (ECP)’.  

 

Boundary value analysis is concerned with using input values (test cases) around the boundary of and 

including the expected values and the extreme cases (minimum and maximum) values [91]. Finally, the 

worst-case analysis uses statistical analysis to identify the worst possible input parameters’ values and 

then analyse whether the system meets its specifications under such circumstances. “Worst-case analysis 

(or testing) is most useful when you have a few parameters that are known to be troublesome” [92]. 

 

Biometric testing is not the same as system and software testing primarily due to the incorporation of 

people, as the test space for a mobile biometric system is not comparable to a software system. However, 

the above ideas can still be applied and could help achieve a testing approach that scales down the 

amount of testing required by not relying on a random testing approach. The framework applies boundary 

value analysis and worst-case testing ideas to formulate an approach to scenario testing that allows 

evaluators to examine the ‘troublesome’ scenarios. These scenarios are known as influencing factors 

(independent variables and experimental conditions), defined as “user and environmental factors that 

have been found to affect performance” [35]. This approach would demonstrate how the system will 

perform at its worst and provide a guideline for a more informative testing regime. 

 

Similarly, the framework proposes an alternative approach regarding non-mated testing, also known 

as a biometric non-mated comparison trial [5]. Implementing a technique based on equivalence class 

partitioning (ECP), and more specifically ‘edge testing’ described as a “hybrid of boundary value analysis 

and equivalence class testing” [91], to identify the “faults near the boundaries of the classes, and edge 

testing will exercise these potential faults”. In addition, the approach is to consider the use of ‘tailored’ 

impostors to force the system into showing its worst False Match Rate when exposed to ‘doppelgangers’ 

(similar looking people). 
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The framework does not provide recommendations for sample sizes partly because this will not affect 

the process of using the proposed performance evaluation framework. The “rule of 3” and “rule of 30” 

are required for statically significant results. The framework does present an alternative to non-mated 

comparison testing, which is hoped could provide a method for reducing the required sample size and still 

provide meaningful results. 

 

4.3 Performance Evaluation Framework 

 

This chapter outlines the design of the seven-stage performance assessment framework. The 

framework presents a complete performance evaluation, and the design of each stage is to operate as a 

continuous flow from one stage to the next. However, not every stage must be completed (but it should 

be for a complete system evaluation), which means the framework can adapt to individual requirements. 

However, the approaches adopted in each stage will help execute a meaningful evaluation. 

 

The framework stages relate to a particular outcome, allowing for a selective approach using only the 

required stages. For example, evaluators whose concerns are only related to scenario performance will 

only need to follow the guidelines specified in Stage One, Stage Three and Stage Four (plus reporting in 

Stage Seven). This outcome generally relates to one or more of the core reporting requirements: 

(Scenario) Recognition Performance, (Operational) Recognition Performance, Usability, Spoofability and 

Presentation Attack Detection (PAD) and Privacy. 

 

4.3.1 Stage One – Determine Evaluation Parameters 

 

The initial stage is to set up the evaluation parameters to determine how the evaluators should run 

the evaluation. Determining the best approach to provide the most meaningful outcome requires 

understanding the requirements. An interview may be needed to gather this information and determine 

the requirements for the evaluation between the key stakeholders, including users, manufacturers, and 

evaluators. The framework includes three parameters to set up the testing process and aid: modality or 

modalities under examination, the level of access, and the desired security level. The joint outcome from 

the stakeholders should decide upon these three parameters and the system's desirable scenario and 

operational conditions. This information-gathering phase is similar to Mansfield and Wayman’s 

“Determine Information About You System” [35]. The questions asked should include the following: 

 

- What is the modality or modalities under evaluation? 

- How much access does the evaluator have to the system? 

- What level of performance (security level) are you hoping to achieve? 

- What would be the appropriate and suitable scenario conditions? 

- What are the operational conditions for the system? 
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A similar approach will involve looking at requirements from a use case classification point of view to 

determine the risk analysis when defining the evaluation criteria and parameters; such examples may 

include: 

  

• A low classification where a commodity approach consistent with current implementations is 

acceptable. 

• A low classification includes specific requirements and sensitivities, such as cases involving VIPs 

where individuals are more likely to be specifically targeted. The evaluators would want to 

protect against a lower-end attacker. 

• A high classification where often the environment is simple, but spoofing protection is a higher 

requirement due to more skilled attackers. 

• A high classification under challenging environments where the spoofing requirement is still vital 

must operate in unpredictable locations. 

 

The first parameter to consider is the modality or modalities in a multimodal system. The modality will 

influence what aspects to test by considering and exploiting known influencing factors and spoofs. The 

testing and spoof attack process will depend on whether the evaluators deal with a physiological or 

behavioural biometric. The ambient environmental conditions and the necessary presentation attack 

instrument (PAI) will need adjusting. 

 

Fernandez-Saavedra et al. [21] recommend evaluators “analyse the biometric functions and methods 

provided by the mobile device to know the restrictions of the evaluations in advance”. The framework 

encompasses this recommendation within the evaluation. Therefore, to provide a universally acceptable 

testing framework, the evaluators must establish what functions and methods (access) they have to the 

device. 

 

The framework introduces a tiered system to indicate the access level, as shown in Section 4.7. 
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Table 4.1: Evaluators’ Levels of Access to a Device 

Level of Access Aspects 

Closed (Blackbox) • No internal access 

User 

• System-controlled biometric functions 

• Impossibility of obtaining captured biometric samples 

• The result of the authentication is a Pass/Fail decision 

Developer 

• Restricted biometric functions 

• Ability to create a custom application with biometric API 

• Access to logging capabilities 

• Impossibility of obtaining captured biometric samples 

• The result of the authentication is a Pass/Fail decision 

Tester 

• Greater access to biometrics functions 

• Offline access to biometric functions 

• Ability to obtain a captured biometric sample 

• The result of the authentication is a match score (with a known system 

decision threshold) 

Open (Whitebox) 
• Full internal access 

• Algorithm and source code access 

 

The framework will adapt to the level of access determined by the evaluator. The closed (Blackbox) 

level showcases the extremes in access level. The framework deems this Blackbox level as only theoretical, 

implying that the evaluators obtain no indication of the biometric decision outcome. Therefore, this 

access case is untestable. 

 

Any system that indicates the biometric decision, such as unlocking a smartphone or opening e-Gates 

at borders upon presenting a passport and the user’s face, is considered testable. The same logic applies 

here, and any system with an access level above a Blackbox is considered testable. Again, however, access 

to the system will impact the extent of the testing. 

 

An evaluator can assess a device with functionality that crosses the aspects of the levels defined in the 

framework. For example, a commercial device where the evaluators can obtain match scores. In those 

instances, the evaluator will need to adapt the framework to determine the best approaches based on 

the framework’s guidance. Ideally, an evaluator should aim for a high level (open) of access for the 

evaluation until external restrictions force a downgrade in access. 

 

The second evaluation parameter is the desired security level, which could relate to the desired 

performance level the evaluators are looking to achieve or a claimed performance level from the 

manufacturer that needs proving. Finally, a security level is assigned, taking inspiration from the ‘Tiered 

Authentication’ classes provided by the Google Android standard [93].  
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The framework defines three classes of security levels: Convenience, Balanced and Secure. The 

‘convenience’ level is associated with a greater emphasis on usability (low false non-match rate). Whereas 

a ‘secure’ level considers the overall security more critical, potentially at the cost of usability (having a 

low false match rate), a ‘balanced’ level aims to achieve an equal level between usability and security. 

Table 4.2 shows the concept of this tiered authentication system. 

 

Table 4.2: Security Levels 

Security Levels 

Convenience Balanced Secure 

• High Usability 

• Low Security 

• Low FRR 

• Medium Usability 

• Medium Security 

• Low Usability 

• High Security 

• Low FAR 

• Low Sophisticated Spoof 

Attacks 

• Zero Effort Attacks 

• Medium Sophisticated 

Spoof Attacks 

 

• High Sophisticated 

Spoof Attacks 

 

The framework identified a link between access, the desired security level, and what would be 

realistically achievable. For example, it would be deemed unfeasible with a ‘user’ access device to 

evaluate to a ‘secure’ level primarily due to a lack of offline testing capabilities. Ultimately the decision 

will come down to how much time and resources the evaluator will spend on the device. However, as a 

guiding rule of thumb, the framework foresees the maximum security obtainable by access level as: 

 

• Closed (Blackbox) → None 

• User → Convenience 

• Developer → Balanced 

• Tester → Secure 

• Open (Whitebox) → Secure 

 

The framework includes three evaluator parameters: the level of access defined in Table 4.1, the 

desired security level highlighted in Table 4.2, and the modality or modalities involved. These three pieces 

of information establish the framework parameters, and the idea is to view their contribution as follows: 

 

• Modality = What the evaluator(s) assess 

• Level of Access = How the evaluator(s) assess 

• Security Level = Why the evaluator(s) assess 
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4.3.2 Stage Two: Algorithmic Evaluation 

 

An algorithmic evaluation tests the performance of the biometric algorithm, generally by using existing 

or pre-collected data. The approach here is the same as the Technology Evaluation defined in ISO/IEC 

19795‑1 [6], an “offline evaluation of one or more algorithms for the same biometric modality using a 

pre-existing or especially collected corpus of samples”. However, an algorithmic evaluation would only be 

possible if the access level was that of a ‘Tester’ or higher and would allow for data injection into the 

system. 

 

Academic research prioritises algorithmic evaluations to create new and enhance existing algorithms 

[94]. Using customised or existing datasets, researchers can mimic expected performance. For example, 

using these samples, they can evaluate False Non-Match Rates and False Match Rates, resulting in an 

Equal Error Rate calculation. Although there is no general rule or standard comparing performance 

between algorithms, the current approach in the literature seems to be using Equal Error Rates and 

Receiver Operating Characteristic (ROC) curves to showcase a low Equal Error Rate. 

 

“ISO/IEC 19795‑1 [22] describes three biometric performance evaluations: technology, scenario and 

operational evaluations. ISO/IEC TR 30125 recommends scenario evaluation as the most proper 

evaluation for testing biometric performance on mobile devices” [38]. ISO recommends that a technology 

evaluation is inappropriate for mobile biometrics as it does not provide sufficient information about its 

operational performance. The framework acknowledges this recommendation; however, performing an 

algorithmic evaluation can be an excellent early indicator of the performance outcome. An algorithmic 

evaluation is appropriate for catching early warnings before continuing with an expensive evaluation 

when data is available, and the system offers offline testing capabilities. For this reason, the framework 

does not include the results of this algorithmic evaluation as part of the main reporting stage, owing to 

the lack of operational performance information. 

 

Stage two exists to assess the performance outcome of an algorithm before undertaking extensive 

evaluations. The aim is to avoid a costly evaluation process for a system with identifiable, early issues 

from an algorithmic evaluation, such as an unacceptable false match rate. A possible future extension to 

this section would be utilising the knowledge of statistical models to predict performance without the 

need to carry out extensive testing incorporating the work of the currently under development ISO 

standard “Biometric performance estimation methodologies using statistical model” [95]. However, even 

with statistical models to improve algorithmic evaluations, it is likely that the requirements to perform a 

practical evaluation will remain. 

 

This stage’s outcome will provide the evaluators with performance scores consisting of a false non-

match rate and a false match rate. The evaluators should then decide if the obtained scores meet the 

system’s required specifications sufficiently to allow the evaluation to continue or if further work is 

required to improve the algorithm’s performance. 



 

72 

4.3.3 Stage Three: Perform Baseline Evaluations 

 

Having established that the algorithm works using existing data, the next step is to test the system 

under various scenarios in a scenario evaluation. The baseline scenario is where the evaluators create 

their comparable benchmark for comparisons between scenarios highlighting performance alterations by 

creating the most controlled and ‘optimal’ conditions for the mobile biometric system to operate. The 

framework uses this scenario for two aspects, enrolling the modality and the initial verifications. 

 

The baseline scenario conditions take inspiration from the conditions specified in ISO/IEC TS 19795-

9:2019 [37] as indoor conditions with no noise with the device handheld by the user. The framework 

extends this to specify that the user should be seated (if appropriate). The enrolment conditions can harm 

overall system performance. For example, if the captured enrolment template’s quality is considered low, 

it will cause an impact on subsequent comparisons. Modi et al. showcased this by looking at the effect of 

image quality and age on biometric performance. They concluded by noting how the “removal of lower 

quality images from … the datasets showed that the number of false non-matches decreased, which 

shows that performance of the system can be significantly improved by removing images of lower quality” 

[96]. However, as the enrolment process is generally considered a one-time action, it seems reasonable 

to perform the rest of the evaluation against optimal high-quality enrolment templates. 

 

Each stage of this framework aims to expose problems with the system under evaluation. For example, 

suppose the evaluators discover performance issues affecting baseline evaluations. In that case, the 

evaluators should stop the evaluation process. This pause would allow the developers to make the 

necessary changes to the system and algorithm to mitigate the performance defects before continuing. 

This stage’s outcome should ensure that the proposed system works and will be used to gain the 

necessary baseline performance relating to recognition accuracy, the false rejection rate, and the false 

acceptance rate for comparison against the scenario and operational testing. For ‘Developer’ access and 

lower, this is the main stage that involves non-mated comparisons because of the high cost involved in 

performing large-scale, non-mated testing. 

 

Each enrolled user should perform five verifications against their stored template for five attempts 

per verification as specified in ISO/IEC TS 19795-9:2019 [37]. Next should follow the non-mated 

comparisons. The framework employs a novel approach to non-mated testing called ‘Tailored Impostors’ 

or ‘Tailoring’ as a counter approach to the traditional random selection process for the methodology 

approach here. The ‘Tailored Impostor’ theory is discussed further in Section 0 below. In addition, the 

effect of a user’s ‘habitation’, defined here as the user's familiarity with the operations and control over 

a device, and previous experience towards mobile technology could impact the obtained performance. 

Therefore, the suggestion is that the first verification is used as a ‘habitation’ to allow the user to get 

comfortable, meaning six verifications are necessary. 

 



 

73 

Where the system allows (i.e., the level of access is that of a ‘Tester’ or more), the evaluators should 

collect the biometric samples and store them securely for offline non-mated comparison testing. For 

systems with lower access levels than ‘Tester’, the suggestion is to conduct online non-mated comparison 

testing. The recommendation is to utilise the presented ‘Tailored’ impostor methodology for both 

methods 

 

The framework encourages the collection of usability metrics, especially when extensive scale 

evaluations are impossible, and the desired security level aims for ‘convenience’. Suggested usability 

requirements are discussed further in Section 4.6. The evaluators should report the results obtained from 

the false non-match rate (FNMR) and false match rate (FMR). 

 

4.3.4 Stage Four: Targeted Scenario Evaluations 

 

The evaluators have established that the algorithm works, enrolment can capture features, and the 

system performs optimally. The framework enters the entire scenario evaluation stage, defined as an 

“evaluation in which the end-to-end system performance is determined in a prototype or simulated 

application” [22]. The recommendation is to target specific environmental conditions and weaknesses of 

the system and limit generic scenarios, defined as those unlikely to impact performance. However, the 

evaluators should consider selecting scenarios representing standard system use cases, taking inspiration 

from boundary value analysis by including typical data for the system. The number of evaluation scenarios 

will vary based on the system under evaluation. It will partially be down to the evaluators to ensure they 

have explored a diverse range. 

 

As this framework aims to capture mobile biometric performance, the recommendation is that at least 

one of the scenarios involves the motion of the user while holding the device, and another explores a 

known influencing factor for the modality. The suggested scenario is walking in a straight line (track) at a 

steady pace that is comfortable for the user indoors with no noise, distractions, or obstacles. At the same 

time, they operate the biometric subsystem of the device in their hands. Ideally, the tasks should be 

achievable before the user runs out of the track; otherwise, they should turn around and walk back down 

along the same track they came. 

 

The evaluators should base the remaining scenarios on known weaknesses in the literature and 

desirable use cases for the system. Table 4.3 shows which ambient factor affects each biometric modality 

specified in ISO/IEC TR 19795- 3 [97]. The ambient factors displayed here represent examples of 

environmental influencing factors. 
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Table 4.3: Ambient factors that affect each biometric modality [97] 

Ambient Factor Biometric Modalities 

Temperature Face, Fingerprint, Vascular, Voice and Hand Geometry 

Humidity Face, Fingerprint, Vascular, Voice and Hand Geometry 

Illumination Face, Vascular, Iris and Fingerprint (optical sensors) 

Noise Voice and audio guides for all modalities 

Pressure Signature 

 

Precisely defining what scenarios are worth testing will come down to an agreed specification between 

the stakeholders, including users, manufacturers and evaluators, based on the criteria defined in stage 

one. The framework utilises the identified ‘Core Factors’ [98] to evaluate conditions that affect the 

system’s performance. For example, if the evaluators were testing a facial recognition system embedded 

into a smartphone, one possible suggestion would likely be to look at evaluating the following scenarios: 

 

• Walking (Motion) 

• Standing 

• Transportation (Motion) 

• High Illumination 

• Low Illumination 

• Distance to Camera 

• Field of View 

 

Here, the chosen scenarios include some common, practical use cases (standing), along with some 

motion-based scenarios (walking and transportation), some influencing factors (high illumination, low 

illumination) and some hardware-specific considerations (distance to camera, field of view). 

 

Likewise, to the evaluation approach conducted for the baseline evaluation, each user should perform 

a minimum of five verification transactions with a maximum of five attempts allowed per transaction for 

every chosen scenario. If allowed, the evaluators should conduct offline non-mated testing (i.e., if the 

access level is ‘Tester’ or more). Subject to resource constraints, it may be recommended not to proceed 

with online non-mated testing for these scenarios. 

 

4.3.5 Stage Five: Presentation Attack Detection and Architectural Security 

 

At this point, the evaluators have hopefully addressed performance regarding scenario recognition 

accuracy and usability. At this stage, the aim is to address cybersecurity and privacy concerns with the 

system. Spoofability refers to vulnerability to presentation attack detection (PAD). It involves defending 
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the system against attacks, usually at the sensor level, to trick the system into accepting the spoof as a 

mated probe. 

 

The framework incorporates the FIDO Alliance’s work in PAD criteria within the FIDO Biometrics 

Requirements documentation [99]. Attacks are generally ranked based on their sophistication and 

execution time. The desired security level will determine the recommendations for what level of 

sophisticated attacks to consider. For example, suppose the evaluators are aiming for usability over 

security. In that case, the evaluators will test their system against low sophisticated attacks, for example, 

a 2D paper-based mask for a facial recognition system and replaying a voice recording for a voice 

recognition system. 

 

The framework utilises the same criteria as defined in ISO/IEC 30107-3:2017 [41] and the FIDO Alliance 

[99] to define the sophistication of an attack. The sophistication is also known as the attack potential, 

which is the “measure of the capability to attack a [Target of Evaluation] TOE given the attacker’s 

knowledge, proficiency, resources, and motivation”. The framework mirrors FIDO’s simplified three-level 

approach to classifying presentation attack instruments (PAI) into levels based on time, expertise, and 

equipment. These levels will inform the framework’s knowledge regarding PAD sophistication. For 

example, a common sophisticated approach would come under FIDO’s Level A. A highly sophisticated 

approach would come under Level C, meaning the medium-level approaches would comprise Level B. 

Table 4.4 provides examples of these levels of sophistication. 

 

Table 4.4: Spoof presentation attack examples separated by levels [99] 

 Fingerprint Face Iris Voice 

Level A 

(Laymen) 

A paper printout A paper 

printout of a 

face image 

A paper printout A replay of the audio 

recording 

Level B 

(Proficient) 

Fingerprints made 

from artificial 

materials 

A paper mask A video display of an 

iris 

A replay of an audio 

recording of a 

specific passphrase 

Level C 

(Expert) 

A 3D-printed spoof A silicon 

mask 

A contact 

lens/prosthetic eye 

with a specific pattern 

A voice synthesiser 

 

FIDO requires 12 PAI, six from level A and eight from level B, using 15 participants. The framework 

mirrors these requirements but alters them to match the desired security levels to best match the 

evaluator’s needs. The recommendations are: 

 

• Convenience – 10 Level A, 4 Level B 

• Balanced – 6 Level A, 8 Level B (FIDO) 
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• Secure – 3 Level A, 7 Level B, 4 Level C 

 

The 14 PAIs combined with the 15 participants resulted in 210 transactions for PAD testing. The 

evaluators should report the Impostor Attack Presentation Accept Rate (IAPAR). 

 

Architectural security is concerned with privacy and resilience against compromises. Android defines 

architectural security as “how resilient a biometric pipeline is against kernel or platform compromise. A 

pipeline is considered secure if kernel and platform compromises do not confer the ability to read raw 

biometric data or inject synthetic data into the pipeline to influence the authentication decision” [93]. It 

will be challenging to thoroughly assess the architectural security independently unless the level of access 

is close to that of ‘open’ (Whitebox). Otherwise, the evaluation will rely on acknowledging the published 

claims of the manufacturer.  

 

The evaluators can look at the employed underlying algorithm and encryption techniques when access 

allows. This task will uncover any personal or sensitive biometric data leakage at any process stage. It is 

expected for commercial and functioning biometric systems to inhibit unauthorised tampering and 

exposure of sensitive biometric data. In other words, when the system is fully functional, it should be as 

locked down as possible, and the level of access restricted to that of a developer or below. For this 

proposed framework, architectural security also relates to template protection. Template protection 

helps to ensure the irreversibility [100] and unlikability (cancellable biometrics) [43], [101] of the 

biometric data. 

 

PAD also incorporates liveness detection to check whether the authentication probe belongs to an 

‘alive’ being. Part of PAD testing aims to confirm whether the system can distinguish between' alive' 

actors. Ideally, a system should not accept a probe that is not live. For example, face recognition could be 

achieved by capturing a live video feed instead of a static image and checking for movement within the 

captured sample [102]. The report should include details of any liveness detection components and the 

corresponding Impostor Attack Presentation Accept Rate (IAPAR). 

 

Based on the criteria defined in stage one, the general requirements will be to meet a set of standards 

as agreed upon and defined between the stakeholders, including users, manufacturers, and evaluators, 

based on the criteria defined in stage one to establish what behaviour is appropriate for the given system. 

A commercial application will need to fulfil specific international standards, most notably the EU General 

Data Protection Regulation (GDPR) [103], [104]. The GDPR classes biometrics as sensitive personal data 

requiring additional user permissions to obtain, store and process. As an extension, the developers should 

guarantee the ethical use of the data. Whiskerd et al. [42] identified privacy-sensitive attributes from 

biometric data. The attributes include race, gender, language, nationality, age, and sexual orientation. 

 

Under the heading of ‘privacy’ are biometric template protection schemes such as cancellable and 

privacy-preserving biometrics. Under operational conditions, access to stored references and probes 
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during authentication should be restricted and unobtainable. Cancellable biometrics refers to a process 

where “the biometric template of a person is distorted in such a manner that the original data is not 

available to the intruder, but still identity recognition can be performed” [101] (also referred to as feature 

transformation). 

 

Biometric encryption (cryptosystems) “securely bind a digital key to a biometric or generate a digital 

key from the biometric so that no biometric image or template is stored. Therefore, it must be 

computationally difficult to retrieve either the key or the biometric from the stored biometric encryption 

template” [105] (also referred to as data-based helper schemes). Both cancellable and cryptosystems 

meet some of ISO/IEC 24745:2011 biometric information protection [106]. 

 

It is required that privacy and template protection be employed in any system that operates 

commercially or in the wild. Therefore, the final report should detail all the techniques from the evaluators 

and manufacturers. 

 

4.3.6 Stage Six: Operational Evaluations 

 

This stage allows evaluators to test the system under operational conditions and observe any 

performance alterations from the previously achieved scenario performance. Operational testing aims to 

allow the system to run (operate) as intended and measure errors. ISO/IEC 19795-1:2006 defines 

operational evaluation as an “evaluation in which a complete biometric system’s performance is 

determined in a specific application environment with a specific target population” [22]. 

 

This stage will vary by the system’s requirements under evaluation, and the operational conditions 

will need to be set based on the stakeholder criteria defined in Stage One. However, the suggestion is that 

the evaluators incorporate some outdoor scenarios into this stage (if appropriate). The main objective is 

to create an experiment with conditions outside the evaluator’s control (e.g., weather, terrain). For 

example, one possible suggestion for a smartphone system would be to devise a walking route or trail for 

the participant to follow. At designated locations, the user should perform an authentication matching 

the exact requirements before, a minimum of five transactions for each location with a maximum of five 

attempts allowed per transaction. 

 

4.3.7 Stage Seven: (Final) Reporting 

 

While reporting should be occurring on an ongoing basis, this stage comprises the final report. The 

final report will cover the findings throughout the process and, more specifically, will divide the 

performance into distinct categories: 

 

• Baseline Recognition Accuracy 
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• (Scenario) Recognition Accuracy 

• (Operational) Recognition Accuracy 

• Usability 

• Presentation Attack Detection and Spoofability 

• Privacy and Architectural Security 

 

The reporting requirements will closely follow the requirements defined by ISO/IEC 19795-1:2006 [22]

  and FIDO [99], including the participant demographics. The general and minimum recognition 

accuracy includes the false reject and accept rates (baseline). This framework only requires the false 

match rate for the baseline recognition accuracy. The access level does not allow offline testing (where 

the access level is less than ‘Tester’).  

 

The scenario and operational evaluations should include a detailed description of the scenario 

involved and the recognition accuracy achieved. The usability should contain a combination of 

satisfaction, efficiency, effectiveness and performance-related usability metrics as covered within the 

Human-Biometric Sensor Interaction (HBSI) model. Further details are covered in Section 4.6. The 

Spoofability and PAD will contain a PAI list given the security level and the obtained Impostor Attack 

Presentation Accept Rate (IAPAR). The privacy requirements will form a report featuring the techniques 

implemented to protect the user’s privacy and avoid data leaks explaining any cancellable and 

cryptographic techniques employed or incorporating a published manufacturer report detailing the 

techniques used. 

 

The reporting approach aims to simplify how biometric performance results are presented and 

potentially allow for a more functional approach rather than quoting one figure to cover the entire depth 

and breadth of what the performance will likely be. In addition, by showcasing the baseline, everyone can 

see what the system’s optimal performance is likely to be, allowing for comparisons between the targeted 

scenarios and operational conditions.  

 

Ideally, one aim was to incorporate a colour-coded ranking system for each category defined to allow 

easier comparisons between systems in a user-friendly approach. However, this approach was discarded 

due to no formal agreements as to what constitutes “good” or “bad” performance rates, as shown in 

Chapter 2, with a range of performance rates and requirements. Equally, having a ranking system would 

potentially introduce the problem of assuming one system is superior. The intention is to allow users to 

decide the system they want to use. However, this concept should be revisited and perhaps incorporate 

a unique ranking rate for each desired security level. 
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4.4 Evaluation Approach 

 

The above stages have walked through the approach that a complete system evaluation should include 

for a thorough analysis. The specific evaluation parameters (the modality, level of access, and security 

level) will impact or impede the approach taken when assessing the performance of a biometric system. 

 

The approach to conducting the evaluations will depend on the level of access defined in stage one. 

As the access level increases, the evaluation moves from a manual process to a more automated one. For 

example, the process will be manual for a ‘User’ level, with the evaluator making notes of successful and 

unsuccessful authentications and user interaction errors. It would generally be unfeasible to do large-

scale impostor testing with this level of access [21].  

 

The process becomes more automated when moved into the ‘Developer’ access realm. Here the 

evaluators can use specific tools that the manufacturers allow to aid in testing. The biggest will likely be 

the ability to call the biometric authentication components and log analysis. This ability would allow for 

developing a custom application for testing purposes. For ‘Tester’ and higher, the assumption is that a 

pre-made testing application can access the biometric functions for both online and offline use. 

 

Table 4.5: Testing approach associated with the level of access 

Level of Access Approach 

Closed (Blackbox) • Untestable 

User • System defined 

Developer 
• Custom application to trigger the system’s biometric API functions 

• Logging capabilities 

Tester 
• Pre-made application with access to unlimited attempts 

• Offline access for impostor testing 

Open (Whitebox) 
• Same as a tester with added benefits of looking into greater privacy 

and architectural security concerns. 

 

Table 4.5 summarises these approaches and shows that with ‘User’ and ‘Developer’ access, the 

approach taken is greatly impeded by what access the manufacturer provides. Although testing the 

system entirely with this lower level of access, other approaches may be adaptable to indicate likely 

performance. For example, the evaluators can use a device’s camera to collect facial images through third-

party face recognition software to see likely performance and quality information using their camera for 

such purposes. Similarly, voice samples could be recorded from a device’s microphone to explore voice 

recognition. 
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4.5 Framework Flowchart 

 

Figure 4.1 shows a high-level flow diagram demonstrating the path through the performance 

evaluation framework corresponding to the available access level. It starts with defining the three 

parameters that drive the performance assessment framework. Then, based on the level of access 

provided, it determines whether an algorithmic evaluation is plausible and directs the flow accordingly. 

Afterwards, the baseline evaluation is performed. Then, the process splits, again, based on the level of 

access, ranging from a more manual ‘user’ process to a more automated ‘tester’ process. 

 

Once the process in which to run the evaluation is determined, the process again splits based on the 

modality the system uses. Using known influencing factors affecting the modality means that the targeted 

scenario evaluation phase can begin targeting a range of scenarios involving at least one motion-based 

scenario. Next, we can begin to examine the presentation attack detection phase and, using the desired 

security level, can aim the sophistication of attacks to that level. All that is left is the operational evaluation 

now, knowing that, hopefully, all the previous stages are performing at a level expected by the evaluator. 

 

So, the processes defined within the framework are guidelines, and the evaluator may have alternative 

ways to evaluate the device’s performance with the level of access and security level defined. Although 

this is the recommended approach, it is not static, and evaluators are encouraged to use judgment against 

the performance framework developed here to identify their best approach. The aim is to help in 

producing a suitable evaluation framework. 
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Figure 4.1: Performance Framework Flowchart 

 

4.6 Usability 

 

Usability is defined as the “extent to which a system, product or service can be used by specified users 

to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use” (ISO 

9241-11:2018 [107]).  
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• Effectiveness: accuracy and completeness with which users achieve specified goals 

• Efficiency: resources used to concern the results achieved 

• Satisfaction: the extent to which the user’s physical, cognitive, and emotional responses that 

result from the use of a system, product or service meet the user’s needs and expectations 

 

The core factors [98] identified ‘Users’ as the cornerstone of mobile biometric performance and 

considered usability more in line with how Human-Computer Interaction (HCI) influences performance 

where the main goal is to improve performance results. One model that addresses usability from a 

performance perspective is the Human-Biometric Sensor Interaction (HBSI) model. The HBSI model 

“focuses on the interaction between the user and the biometric system to understand the individual 

details during this time. Including detecting and classifying both user and system errors” [108]. 

 

 

Figure 4.2: HBSI Error Framework [108] 

 

• A defective interaction (DI) occurs when a user makes an incorrect presentation that is not 

detected by the biometric system [109]. 

• A concealed interaction (CI) occurs when the biometric system detects an incorrect presentation 

but is not classified correctly as an error [109]. 

• A false interaction (FI) is an incorrect presentation detected by the biometric system but, unlike 

a CI, is correctly handled as an error [109]. 

• A failure to detect (FTD) is a correct presentation made by the user that is not detected by the 

biometric system [109]. 

• A failure to process (FTP) is a correct presentation made to the biometric system that encounters 

an error when processed [109]. 

• A successfully processed sample (SPS) is a correct presentation detected by the biometric system 

and successfully processed as a biometric sample [109]. 
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The HBSI model should be incorporated into the usability testing of the biometric system where 

appropriate and resources allow, and the metrics should be reported within the final report. However, it 

is noted that these metrics may not always be possible to use, mainly when the level of access is less than 

“developer”, and it will be difficult to distinguish between individual events and causes for failure. 

 

The user’s satisfaction is encouraged to be measured using a questionnaire with a similar question to 

“how satisfied are you with the ease of use of <modality> in the proposed system?” which can be 

measured on a Likert scale to gauge an indication of satisfaction and further interviews with the users can 

be used to explore low scores further. 

 

Transactional timings are another metric that should be recorded and examined where possible. This 

requirement will likely need to be set within the requirements as to recommendation range from around 

two seconds (Android) to 30 seconds (FIDO). However, low transactional time will increase user 

satisfaction and adoption of the system and should be measured. 

 

4.7 Tailored Impostors 

 

This section introduces the methodology for selecting ‘tailored’ impostors as an alternative approach 

to selecting impostors at random to allow for more informative results utilising the approaches discussed 

earlier relating to ‘edge case’ testing from software engineering [91]. The approach involves exploiting 

previously identified know weaknesses with biometric systems around users’ physiological and 

behavioural characteristics [98], [110], [111]. 

 

The definitions for the work presented here include the following: 

 

• Tailored Impostor: An individual chosen to serve as a passive impostor (probe) to a genuine 

reference based on similar characteristics determined from physiological and behavioural 

attributes. 

• Tailoring: The algorithmic process selects the tailors suitable for a given reference based on 

determined and appropriate characteristics from physiological and behavioural attributes for the 

modality or modalities under evaluation. (Past Tense: Tailored) 
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Figure 4.3: Example Tailored Impostor Diagram (Tailoring) 

 

In simple terms, the approach involves selecting the most similar or ‘lookalike’ participants for each 

genuine participant to draw out and explore potential increases in the false match rate (and highlighting 

potential bias in the process). The factors chosen for ‘tailoring’ will depend on the modality under 

investigation. Table 4.3 shows an illustrative potential tailoring model for a facial recognition system. The 

algorithm will select impostors from the innermost grouping from the test population before moving into 

the outer groups. The suggestion is to remove identical twins from the test population and keep the age 

groups to a maximum of 10 years from either side of the subject and ideally five years in young adults (18-

34). 

 

This concept of using ‘homogenous’ people is becoming more prevalent, as was explored by Rathgeb 

et al. [112], who used a database of doppelgangers, and concluded that “many face recognition evaluation 

protocols randomly pair face images to obtain non-mated comparisons. Obtained non-mated comparison 

score distribution may be used to set up decision thresholds at fixed FMRs. Consequently, it may be 

concluded that FMRs (and decision thresholds) obtained in such a way overestimate the security of the 

underlying face recognition system”. Additionally, Popescu et al. [113] explored face verification with 

challenging imposters and diversified demographics and found that their “evaluation shows that model 

comparison is more meaningful when using challenging imposter pairs” when exploring gender, origin 

(ethnicity) and age. 

 

Recently ISO also published a technical report, ISO/IEC TR 22116:2021 [114], which looks at how 

demographic factors can affect the performance of a biometric system. The report found that “if the 

demographic distributions for a given biometric system change significantly, the system’s overall 

performance can also change. However, the magnitude of this variation in biometric performance 

depends on the specific demographic factors and the modality of the system”. It is worth noting that the 

Test Population

Gender

Age Group

Ethnicity

Nationality
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report was not focused on non-mated comparisons but found that for FMR for face recognition, FMRs for 

men and women differ. In addition, FMR is more significant for the very young and very old. Regarding 

ethnicity, FMR varies globally, with high FMR in East Asia, South Asia and sub-Saharan Africa. 

 

Table 4.6 shows a possible tailoring process for the face modality. This approach will be tested further 

in Chapter 7, although it was impossible to extensively test it due to a relatively small dataset (consisting 

primarily of students). 

 

Table 4.6: Example of an impostor selection process showcasing a possible ‘Tailoring’ algorithm 

Genuine (Reference) 

 

Impostor (Probes) (5 Probes) 

Random 

 

Gender 

 

Gender + Age Group 

 

 

4.8 Comparing the Framework 

 

The work presented here was a comprehensive testing framework for mobile biometrics to provide 

users and businesses with the assurance they need to satisfy their requirements. The framework utilises 

existing standards and approaches to bring together current industry standards and recommendations, 

including the likes of ISO, FIDO Alliance, and Google. Furthermore, the framework aims to go further and 

improve upon the existing standards in certain aspects by incorporating more performance areas into the 

framework, most notably usability.  

 

The FIDO alliance biometric testing protocol (V2) can be broadly split into three components. These 

components are still maintained within the proposed framework within stages two, three and five. 

 

1. Online Testing (FNMR) 

2. Offline Testing (FNMR and FMR) 



 

86 

3. Presentation Attack Detection (IAPMR) 

 

Table 4.7 highlights the critical comparisons and differences between the existing methodologies and 

our proposed framework. One of those key differences is the consideration of varying access levels to a 

device, as all existing approaches assume a reasonable level of access to the system. It should be noted 

that only ISO/IEC 19795-1 is considered for the comparison present. It is acknowledged that some 

components are present within an additional standard, like presentation attack detection. 

 

Several vital differences are present in the proposed framework, including: 

 

• Separate FTA from FRR 

• Consider FNMR and FMR (attempt-based) (for usability purposes) 

• Considers options for when the ‘common test harness’ is not available 

• Use targeted impostors (the current suggestion is to use random for attempt-based) 

• Defined enrolment scenario 

• Defined multiple verification scenarios (incl. motion) + operational 

• Various levels of security testing 

 

Table 4.7: Comparing the Key Features of Available Performance Methodologies 

Identity FIDO 
Android 

(Google) 

ISO/IEC 19795-

1:2006 

Proposed Framework 

(Boakes) 

Usability 
    

Tiered Authentication 

(Security Levels)     

Enrolment Scenario 
    

Motion Scenario 
    

Presentation Attack Detection 
    

Technology Evaluation 
    

Scenario Evaluation 
    

Operational Evaluation 
    

Designed for Varying Access 

(Commercial)     
 

As noted, the ISO standards covering (mobile) biometrics are split across multiple working groups. 

Therefore, they are not the most accessible to gather a complete picture as each standard will often 

reference another. However, Table 4.8 compares some of the critical ISO standards when considering a 
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complete mobile biometric system performance evaluation. The proposed performance evaluation 

framework takes tremendous influence from these existing standards, as highlighted in Chapter 2, and 

seeks not to reinvent the wheel from the work of existing experts in the biometrics field. 

 

Additionally, it is worth noting the contribution and influence of ISO/IEC TR 29156:2015 [116], 

“Information technology — Guidance for specifying performance requirements to meet security and 

usability needs in applications using biometrics” and ISO/IEC 29197:2015 [117] “Information technology 

— Evaluation methodology for environmental influence in biometric system performance”. ISO/IEC TR 

29156:2015 provides guidance and recommendation around usability and security requirements. It 

presents a potential classification by security level (High, Medium, Basic), providing target rates for FMR 

of 1%, 0.01%, and 0.0001%, respectively. It considers the following factors for usability requirements: 

accessibility, throughput, the authentication failure rate for authorized users, ease of use at point of 

authentication, ease of user for enrolment. Most of these concepts have been replicated into the 

proposed performance framework. ISO/IEC 29197:2015 discusses evaluating environmental influences on 

biometric performance and suggests to express the environment-specific performance relative to 

baseline performance however it is worth noting that both of these standards are not mobile specific and 

therefore the requirements for setting scenarios, such as for enrolment, is generally down to the 

evaluator or the likely operating conditions for the system. Influences from these standards have been 

incorporated as approach such as including environmental evaluation as part of the operational testing. 
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Table 4.8: Comparing the Key Features of Available ISO Standards 

Identity 

ISO/IEC 

19795 30107 

1:2021 

[7] 

2:2007 

[36] 

3:2007 

[97] 

9:2019 

[37] 

3:2017 

[41] 

Usability 
     

Tiered Authentication (Security 

Levels)      

Enrolment Scenario 
     

Motion Scenario 
     

Presentation Attack Detection 
     

Technology Evaluation 
     

Scenario Evaluation 
     

Operational Evaluation 
     

Designed for Varying Access 

(Commercial)      
 

4.9 Summary 

 

This chapter has introduced the potential new framework for evaluating the performance and 

applicability of a mobile biometric system. The framework incorporates the existing standards and state-

of-the-art research presented in Chapter 2 and the core performance factors identified in Chapter 3. The 

aim was to look at some of the unique aspects of mobile systems when considering performance. The 

chapter presents a seven-stage performance framework for a complete system evaluation which aims to 

provide the ‘fit for purpose’ assurance required by users and evaluators. Several procedural approaches 

are identified and considered for a system's varying access levels that an evaluator could have. This 

chapter also introduces the concept of tailored impostors to draw out a system's worst-case scenario false 

match rate.  

 

The next chapter will introduce a comprehensive data collection experimental procedure further to 

explore mobile biometric systems first-hand from commercial smartphone devices and begin evaluating 

the possibilities of the proposed performance evaluation framework. As part of the data collection 

exercise, a survey was provided to gauge the demographics of the resulting dataset, understand the 

current state of how users are utilising mobile biometrics as a security option on smartphones, and 

analyse usability.



Chapter 5 
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5 The Experimental Data Collection 

 

5.1  Introduction 

 

To fully understand the intricacies of mobile biometric performance testing, an experimental data 

collection was designed and performed to help understand the framework’s possibilities and limitations 

by trialling parts of it. For this purpose, a two-session experimental data collection was designed. The 

experimental data collection was performed between April and June of 2019. Therefore, the 

questionnaire data reflects the time, particularly regarding the habits and trends of the participants. This 

timing is worth highlighting due to the rapid pace of technology changes. Therefore, if the same 

questionnaire were presented today, the responses would likely differ from when the experiment was 

conducted. 

 

This chapter introduces the experimental data collection, including the scenarios and devices chosen. 

It explores the breakdown of our collected database, including our participant demographics, trends in 

smartphone security locking habits among our participants, and usability metrics. Upon completing the 

experimental data collection design, ethical approval was sought and granted for human participation 

from the University of Kent Faculty of Sciences Research Ethics Committee. 

 

Section 5.3 discusses the demographic breakdown of the participants in the data collection. Next, 

section 5.4 introduces the decision behind the chosen commercial devices and the specifications. Next, 

sections 5.5 and 5.6 describe what the participants must do within sessions one and two, respectively, 

and Section 5.7 discusses the mobile application developed to assist with the data capture process. Next, 

section 5.8 will explore the results of our pre-experiment questionnaire, which will provide a background 

into our participants and highlight the trends of smartphone habits among them. Next, section 5.9 will 

seek to showcase the results of the post-experiment questionnaire providing an insight into the 

satisfaction and thoughts of how the participants respond to biometric authentication on mobile devices. 

Section 5.10 will then show the initial results from the data collection by looking at the false non-match 

rates achieved for each device’s in-built modalities. Next, section 5.11 provides some analysis and 

reflection, and a final Section 5.12 will summarise the chapter. 

 

5.2  Evaluation Design and Dataset to be Collected 

 

Although there exist several facial recognition datasets [117]–[119], there are limitations, with most 

including not enough subjects or images per subject. Furthermore, most datasets consist of images 

scraped from various sources on the internet. Therefore, the source cannot be guaranteed when seeking 

a dataset containing only images from mobile sources. These datasets are also limited in the scenarios 
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involved, where most are confined to stationary scenarios. The same limitations are also present when 

seeking a dataset of other physical modalities (fingerprint, iris, and voice). For these reasons and to test 

the framework, a bespoke data collection process and dataset were produced. 

 

When evaluating biometric systems, it is best to test on a population that best matches the target 

population for the system for the evaluation to be an accurate reflection of the performance. 

Unfortunately, that can prove not easy with most commercial systems as essentially the entire planet’s 

population could be viewed as a potential target. The aim of this data collection is similar in that the aim 

is to reflect a generic but balanced population sample. Ideally, the experiment would contain gender, age, 

and ethnicity demographic balance. 

 

Achieving a balanced demographic is ideal for commercial biometric testing, and we achieved a good 

gender balance. However, due to the constraints placed upon the process (location, time, finances), the 

population consists mainly of a university cohort. Hence, although a mixture of nationalities is present, 

the balance is not met, and the age is skewed to a young adult population. However, this is not a problem, 

provided it is acknowledged that the target demographic is not a balanced general population but a 

balanced university population.  

 

Although there exists a bias within the dataset, the collected data still allows for the examination and 

evaluation of the proposed performance framework and begins to evaluate its suitability. The emphasis 

is that this is a test sample and not a comprehensive database that will allow for a thorough proof-of-

concept. The intention is that the results of this thesis will provide sufficient merit for further 

investigation, where researchers can perform evaluations with comprehensive databases. However, at 

the time of writing, no existing datasets provided sufficient depth and scope to explore our approach fully, 

hence the need to create our own to meet this purpose, despite certain limitations. 

 

5.3  Participant Demographics 

 

Our trial was split across two sessions, whereby 60 participants completed the first session, and 56 

completed the second session. They were awarded a £15 Amazon voucher for their time. Figure 5.1 shows 

these participants’ gender split, showing that 35 participants were male and 25 were female. 

 

 

Figure 5.1: Gender Split of Participants 

 

Figure 5.2: Age Split of Participants 
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Regarding age, the general population cohort was a university population; therefore, 75% of the 

participants were under 30. The nationality of our participants was collected, and most of our participants 

(40%) identified themselves as ‘British’, with the following two most significant groupings consisting of 

‘Indian’ (14%) followed by an equal amount of ‘Italian’ and ‘Romanian’ (5%). The questionnaire also asked 

participants about their eyewear, with 35% saying that they wore glasses and 5% wearing contacts for the 

first session of the study. 

 

5.4  Devices 

 

Four commercial smartphone devices were chosen to serve as the mobile devices used for this 

experimental data collection. They were partly chosen based on their high profile within the UK mobile 

device market, as shown in Figure 5.3. For this reason, two iOS and two Android devices were selected. 

 

 

Figure 5.3: Market Share of UK Mobile Device Vendors [120] 
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Table 5.1: Experimental Smartphone Device Specification 

     

Device 
Samsung Galaxy 

S9 
Google Pixel 2 Apple iPhone 8 Apple iPhone X 

Modality 

• Fingerprint 

• Face 

• Iris 

• Fingerprint • Fingerprint • Face 

Fingerprint 
Sensor 

Egis Technology 
(ET510) 

Fingerprints 
(FPC1075) 

AuthenTec 
(TouchID) 

 

Camera (Front) 

Resolution 8 MP 8 MP 7 MP 7 MP True Depth 

Aperture ƒ/1.7 aperture ƒ/2.4 aperture ƒ/2.2 aperture ƒ/2.2 aperture 

Focus Fixed Focus Auto Focus 
Auto Image 
Stabilisation 

Auto Image 
Stabilisation 

Flash   Retina Flash Retina Flash 

Pixel Size 1.22 µm 1.4 µm   

 

The Samsung Galaxy S9 provides users with three biometric modalities: fingerprint (located at the 

rear), face, and iris. The Google Pixel 2 provides users with fingerprint recognition capabilities that can be 

used for authentication. However, it is worth noting that the device can perform both face and voice 

authentication using the ‘trusted face’ and ‘trusted voice’ features, respectively but not with a 

“developer” level of access. The Apple iPhone 8 features a frontal fingerprint sensor, and the Apple iPhone 

X features a face recognition system. 

 

These devices are all commercial, so access to the biometric system is limited. First, the data will be 

analysed with a “developer” level of access, meaning the results will be obtained from recording the 

Boolean verification results, and Section 5.10  provides the discussion. Furthermore, biometric samples, 

including images (face and iris) and recordings (voice), are obtained to analyse further what might be 

possible with greater access. The results of this will be discussed in Chapter 6. 

 

Along with the four commercial smartphone devices, a separate mobile device was used to collect iris 

images. The IriTech IriShield (MK 2120U/UL) [121] can capture infrared images of the iris and be 

connected to an Android smartphone and incorporated into an Android application through the supplied 

SDK.  

 

 

Figure 5.4: IriTech IriShield (MK 2120U/UL) 
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5.5  Session One (Indoor) 

 

The first session took place indoors while controlling the conditions and external influences as much 

as possible. First, participants would arrive, be briefed about the experiment, and be allowed to ask any 

questions. Once the participant was satisfied, they would be asked to sign a consent form, and the 

experiment would begin. 

 

One of the scenario tests involved the use of a treadmill. The participants were allowed to walk at a 

comfortable pace. Before testing, they familiarised themselves with the treadmill’s controls and selected 

a comfortable speed. This speed would then be fixed for the remainder of the trials. 

 

The participant would use two devices for this session: one iOS-based device and one Android. Which 

device a participant would use and the order in which they would use them was randomised beforehand 

to minimise any bias from device ordering and habitation that could occur in the results. 

 

With the participant now with a device, the first step was to enrol the participant into the device’s in-

built biometric system. This enrolment process was device-specific, depending on the biometric 

capabilities of the device (see Section 5.4 ). The enrolment was performed while the participant was sitting 

with the device hand-held by the user. 

 

The participant was then tasked with performing verification attempts in four defined scenarios for a 

minimum of five transaction attempts. The four scenarios were while the user is ‘Sitting’, ‘Standing’, 

walking on a ‘Treadmill’ (at a personalised speed), and walking down a ‘Corridor’. In addition, the session 

analysed a ‘Factor’ scenario, introducing extreme conditions to test while the user was sitting. For 

example, the device was tested in a dark room with low lighting (around 4-5 lx approx.) for face and iris 

recognition. Before attempting the authentication, the user was asked to dip their finger into a glass of 

water for fingerprint recognition. 

 

• Sitting – The participant sits in a chair while operating the device with their hands. 

• Standing – The participant stands while operating the device with their hands. 

• Treadmill – The participant walks on a treadmill at a predefined speed to allow a comfortable 

simulated walking pace while operating the device in their hands. 

• Corridor – The participant walks comfortably down a straight corridor while operating the 

device in their hands. 

• Factor – Introducing a known ‘influencing factor’ to expose potential weaknesses in the 

system (low lighting for face and iris, wet finger for fingerprint). 
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These scenarios comprised two stationary (Sitting and Standing) and two motion (Treadmill and 

Corridor) scenarios. Thus, this process complies with the recommendation of the framework by 

introducing at least one motion-based scenario and incorporating an influencing factor. 

 

5.6  Session Two (Outdoors) 

 

The second session took place with a minimum gap of one week from the first session but was, on 

average, two weeks from the first session. For the second session, the experiment moved outdoors, where 

the environment became unconstrained and outside the control of the evaluators and participants. Again, 

the participants were required to follow a predefined trail around the University of Kent campus and stop 

at selected destinations that formed a circular route. Each participant performed this route with one 

device, randomly selected from one of the two devices they operated during session one. 

 

At each destination, the participant performed verifications (or data capture) depending on the 

available modalities on the device they were operating. Before the participant set off, a screen capture 

showing the weather conditions and the temperature was captured and stored for analysis. 

 

Once the participant had successfully returned, they returned the device for a £15 Amazon voucher 

for their time. 

 

 

Figure 5.5: Session Two Route Map of the University of Kent Canterbury Campus 

 

Ten locations were involved in the circular route, as shown in Figure 5.5 and Table 5.2. The aim was to 

try and capture as many environments as possible from the university campus, generally areas with a high 

concentration of student footfall near significant university buildings and locations near roads. 
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Table 5.2: Session Two ‘Outdoor’ Stop Locations 

 
 

 
 

 
Jennison Sport Centre Canterbury 

Mosque 
Keynes College Central Plaza 

    

 
Elliot College Library Gulbenkian Grimond Huella Humana 

 

 

5.7  Application Development 

 

A custom application was developed for Android and iOS platforms to capture the required data, 

entitled “Biometric DC” (Data Collection). The intent was to mirror the biometric capture process as 

closely as possible from a developer's perspective. Unfortunately, capturing helpful information directly 

from the smartphone logs upon unlocking the devices resulted in limited data with a cumbersome 

process. 

 

A smartphone application was developed using the available API for each operating system, 

BiometricPrompt [122] for Android and the equivalent 

LAPolicy.deviceOwnerAuthenticationWithBiometrics [123] for iOS. The result was a device authentic 

authentication experience with the same user interface prompt as a device user would expect to see. 

 

Alongside the verification attempts, the application collected background sensor data available on the 

device while the verifications took place. 
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Table 5.3: Background Sensors Collected from the Android Devices 

Motion Sensors [124] 

Accelerometer Acceleration force along the x, y, and z-axis (including gravity). 

Gravity Force of gravity along the x, y, and z-axis. 

Gyroscope Rate of rotation around the x, y, and z-axis. 

Linear Acceleration Acceleration force along the x, y, and z-axis (excluding gravity). 

Position Sensors [125] 

Magnetic Field Geomagnetic field strength along the x, y, and z-axis. 

Orientation 
Azimuth (angle around the z-axis), Pitch (angle around the x-axis), Roll (angle 
around the y-axis). 

Proximity Distance from an object. 

Environment Sensors [126] 

Ambient 
Temperature 

Ambient air temperature 

Light Illuminance 

Pressure Ambient air pressure 

Relative Humidity Ambient relative humidity 

Temperature Device temperature 

 

The information from the sensor will be used to help inform any trends about the performance and is 

used as the basis to build a novel authentication system to alter the threshold depending on the scenario 

involved dynamically. This branch of work is discussed in-depth in Chapter 7. The application would store 

and save CSV files containing all the required sensor information. Additionally, another CSV file would 

store all the verification results, which could then be extracted from the device and stored for analysis.  

 

Figure 5.6 shows screenshots taken from the iOS version of the data collection application. The 

participants’ flow can be seen by observing the images from left to right. The first screen asked the 

participant to select the current session. The second screenshot shows the first session’s home screen. 

Next, the participant would select which modality to collect, moving down the list from ‘Fingerprint’ to 

‘Factor’ (depending on what modalities are available on the device). The third screen shows the modality 

collection screen. The modality is bold at the top of the screen, followed by the current scenario. Pressing 

the “Authenticate” button triggered the collection of the modality with a number on the screen to count 

the number of transactional attempts. Once the minimum number of transactions was achieved (5), a 

next button would appear to allow the participant to progress onto the following scenario. The interface 

was designed to guide the participant with ease and precise information from start to finish. 
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Figure 5.6: Example Screenshots from the “Biometric DC” Data Collection Application 

 

5.8  Pre-Experiment Questionnaire Results 

 

 The participants were provided with a questionnaire (Appendix A: Questionnaire). The first part 

collected demographic information about the participants before the trials began and information about 

their current smartphone security habits. The second part, completed after the experiment, sought the 

participant’s opinions regarding satisfaction and usability. 

 

5.8.1 Smartphone Habits 

 

The participants were asked, “Do you currently own a mobile phone?” All of them said that they did 

own a personal smartphone device. They were then asked, “What mobile phone do you own?”. This 

information was extracted into the device’s operating system, allowing the categorisation of Android and 

iOS users. 
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Figure 5.7: The Operating System for the Participants’ Smartphone Device 

 

The questionnaire then sought the current phone locking habits and whether the participant utilised 

a biometric locking method. Firstly, in the question “Do you currently operate a screen lock on your 

mobile phone?” most participants (58) said that they did, with only 2 participants stating that they did 

not currently operate a locking mechanism on their device. Next, those operating a screen lock were 

asked, “What type of screen lock do you use primarily?”. Again, biometrics was the most common choice 

to act as the participant’s screen lock security mechanism. 

 

 

Figure 5.8: Participants’ Primary Smartphone Unlocking Method Categorised by Operating System 

Users 

 

Overall, 41 (71%) participants operated a biometric modality as their primary method for unlocking 

their smartphone. This smartphone unlocking mechanism was followed by 11 (19%) pins, 5 (9%) patterns 

and 1 (2%) who used another, which transpired to be a password. 
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Smartphones employ a range of biometric modalities, with manufacturers deciding what modalities 

to employ in their devices. The participants (41) said they were already using a biometric modality as their 

primary unlocking method and were further asked, “If you use a biometric screen lock, please specify 

which you use?”. From the study, a fingerprint was the biometric modality most used as the primary 

modality for unlocking a smartphone device, with 80% of the biometric users using this modality, with the 

remaining 20% using their face. 

 

 

Figure 5.9: Participants’ Primary Biometric Modality for Smartphone Unlocking 

 

Smartphone biometrics do not currently operate without a backup mechanism for authentication. For 

example, iOS users must set a pin as a backup mechanism, whereas Android users are usually offered 

choices between a swipe pattern, pin or even a password. The backup mechanism is used for cases of 

verification failure to prevent users from becoming locked out of their devices. Next, the questionnaire 

asked, “If you operate a secondary (backup) screen lock, what type do you use?”. The most common 

backup lock was a pin. However, this is the only backup option available to iOS users, with 80% of 

participants opting for this method, 15% opting for a pattern, and the remaining 5% using a password. 
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Figure 5.10: Participants’ Backup Mechanism for Biometric Users 

 

A final pair of pre-experiment questions asked how the participants felt regarding the security 

unlocking mechanism of their smartphone device. First, they were asked, “How satisfied are you with the 

ease of use of your current phone lock?” by ranking their satisfaction on a seven-point Likert scale, with 

one being very dissatisfied and seven being very satisfied.  

 

 

Figure 5.11: Likert scale showing the participants’ perceived ‘satisfaction’ with their current phone 

lock based on the lock type 

 

Figure 5.12 shows this satisfaction organised by the type of locking mechanism the participant 

primarily uses. For example, the participants that use biometrics as their primary locking mechanism have 

a satisfaction average of 5.8 (± 1.2). A pin follows this with an average satisfaction of 5.5 (± 1.0) and a 

pattern of 5.0 (± 1.6). 
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Figure 5.12: Likert scale showing the participants’ perceived ‘satisfaction’ of their current phone lock 

based on biometric modality 

 

Figure 5.12 shows a further breakdown of satisfaction per modality for the participants operating a 

biometric screen lock. The fingerprint modality shows an average satisfaction of 5.9 (± 1.2), while the face 

has an average of 5.5 (± 1.3), indicating a preference for the fingerprint modality. 

 

Similarly, the participants were then provided with a definition of reliable in a biometric context as 

“the ability to identify you promptly consistently accurately”, which was followed by a question which 

asked, “How reliable do you find biometrics as a form of authentication on smartphones?” using the 

same Likert scale as before. 

 

 

Figure 5.13: Likert scale showing the participants' perceived ‘reliability’ of their current phone lock 

based on biometric modality 
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Figure 5.13 shows the participants’ reliability scores based on their current primary phone lock. 

Overall, the participants ranked the reliability of biometric authentication with an average score of 5.2 (± 

1.1). Participants who used biometrics as their primary phone lock gave an average reliability score of 5.4 

(± 1.0), followed by a pattern of 5.6 (± 0.9) and a pin with an average reliability score of 4.6 (± 1.4). Figure 

5.14 shows the reliability breakdown organised by the biometric modality for the participants using a 

biometric screen lock. The participants gave fingerprints an average reliability score of 5.4 (± 1.0) and face 

5.1 (± 1.0). 

 

 

Figure 5.14: Likert scale showing the participants' perceived ‘reliability’ of their current phone lock 

based on biometric modality 

 

5.9  Post-Experiment Questionnaire Results 

 

5.9.1 Satisfaction 

 

The participants were asked questions about their experience using a seven-point Likert scale where 

one was very dissatisfied and seven was very satisfied. The questions took the form: 

 

“How satisfied are you with the ease of use of <modality> authentication on smartphones?” 

 

The results shown below represent the entire participant population. They, therefore, do not show 

separations based on the devices the participant used during the study or personally owned, which could 

cause some deviation in the observed results. 
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Figure 5.15: Participants’ Satisfaction for Each Modality 

 

The participants ranked their satisfaction with fingerprint recognition with an average of 5.1 (± 1.3), 

face recognition at 5.0 (± 1.2), voice recognition at 4.3 (± 1.5), and iris recognition at 4.0 (± 1.8). However, 

none of the devices used in the trial could perform voice authentication with a “developer” level of access. 

These results are more of the users’ experience towards uttering a passphrase using a mobile device. 

 

The results allow ranking the modalities based on the participant’s perceived ease of use using the 

average satisfaction, resulting in 1: fingerprint, 2: Face, 3: Voice, and 4: Iris. These results highlight a 

potential preference for fingerprints in mobile devices. 

 

5.9.2 Preference 

 

The participants were also asked to select a preferred modality, having now experienced the four 

trialled sample capture processes. The specific question was 

 

“Which would be your preferred modality for authentication on a smartphone?” 

 

Figure 5.16 shows the breakdown of results where it can be shown that fingerprint was the most 

preferred modality for authentication on a smartphone, with 65% (39) participants selecting it, and voice 

was the least preferred modality, with only 2% (1) participants choosing voice. Interestingly, despite more 

people being satisfied with voice over the iris, the same is true for a preference, where more people prefer 

the iris over voice. 
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Figure 5.16: Participants’ Preferred Modality 

 

A further question was asked of the participants who were not already using a biometric modality to 

unlock their smartphone device (19). “If you were not previously using a biometric screen lock, are you 

now considering using it?”. 68% (13) responded “Yes” to indicate they would. The remaining 32% (6) said 

“No”. Chapter 3 identified how much the ‘User’ could affect the performance of a system, including 

usability (and satisfaction). The results here indicate that general scepticism towards biometric 

recognition systems, which misunderstandings could cause, can be overcome by interacting with such 

systems to improve user confidence and willingness. 

 

5.9.3 Reliability 

 

Similarly to Section 5.9.1 regarding the participant’s satisfaction, the question was asked regarding the 

user’s perceived perception of the reliability of the biometric authentication process on mobile devices. 

The participants were provided with a definition for reliability for a biometric system as “the ability to 

identify you promptly consistently accurately”. Using a seven-point Likert scale, where one was very 

unreliable, and seven was very reliable, the participants ranked the overall concept of reliability for mobile 

biometrics based on the following question “How reliable do you find biometrics as a form of 

authentication on smartphones?” 
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Figure 5.17: Post-Experiment Reliability Questionnaire Scores Organised by Participants’ Primary 

Screen Lock Type 

 

Upon completing session one, the participant’s perceived reliability for mobile biometric 

authentication shows an average of 5.4 (± 1.1). For the participants who were already using a biometric 

screen lock, they scored reliability with an average of 5.5 (± 1.1) for pattern users, 5.2 (± 0.4), and for pin 

users, an average of 5.1 (± 1.3). 

 

 

Figure 5.18: Post-Experiment Reliability Questionnaire Scores Organised by Participants’ Biometric 

Modality 

 

Figure 5.18 shows the reliability breakdown organised by the biometric modality for the participants 

using a biometric screen lock. The participants gave fingerprints an average reliability score of 5.5 (± 1.1) 

and face 5.5 (± 1.1). 
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Comparing these results to the ones achieved from the pre-experiment questionnaire, we can see that 

the overall average score increases from 5.2 (± 1.1) to 5.4 (± 1.1), again supporting how interacting with 

a biometric system can improve users’ trust towards it. However, a paired t-test shows that these results 

are not statistically significant and are included only for comparison purposes. 

 

Table 5.4: Likert reliability scores pre- and post-experiment 

Screen Lock Pre-Experiment Reliability Post-Experiment Reliability 

All 5.2 (± 1.1) 5.4 (± 1.1) 

Biometrics 5.4 (± 1.0) 5.5 (± 1.1) 

Pattern 5.6 (± 0.9) 5.2 (± 0.4) 

Pin 4.6 (± 1.4) 5.1 (± 1.3) 

Fingerprint 5.4 (± 1.0) 5.5 (± 1.1) 

Face 5.1 (± 1.0) 5.5 (± 1.1) 

 

5.9.4 Continuous Authentication 

 

A final set of two questions asked participants about their knowledge of behavioural biometrics. The 

questions were regarding the concept of continuous authentication to gauge the awareness of modern 

biometric modalities that could become much more prevalent within a mobile context utilising elements 

such as swipe analysis on touch screen devices. The first question asked: 

 

“Are you familiar with continuous authentication? (Definition - It utilises a user’s behaviour to 

continuously verify identity throughout a session, not just at the entry login point. Such as swipe 

behaviour or movement.).” 
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Figure 5.19: Participants’ response to their familiarity concerning continuous authentication 

 

 Most participants were unfamiliar with continuous authentication; on average, they ranked 

themselves with a 3.1 (± 2.0). Finally, the participants were asked about their perception regarding their 

privacy and continuous authentication with the following question: 

 

“Do you feel that continuous authentication would be an invasion of your privacy?” 

 

 

Figure 5.20: Participants’ response to how privacy-invasive they perceive the concept of continuous 

authentication 

 

Figure 5.20 shows the results of participants’ perceptions towards privacy regarding continuous 

authentication. The results are captured using a Likert scale where one indicates ‘Very Invasive’, and seven 

indicates ‘Very Non-Invasive’. On average, the participants ranked the privacy of continuous 
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authentication with 4.2 (± 1.7), indicating a slight preference for continuous authentication not being an 

invasion of privacy. 

 

5.10  Trialling the Framework Model 

 

To begin to test and apply the modelling and methodology, this was applied to commercial devices, 

starting with the Samsung Galaxy S9. This device allows users to enrol in three modalities, Fingerprint, 

Face, and Iris. From session one, 25 users enrolled on the three modalities while seated and holding the 

device comfortably in their hands. 

 

Table 5.5 presents the total False Non-Match Rates (FNMR), the proportion of times a biometric 

system fails to grant access to an authorised person, found from each scenario. Here, the False Non-Match 

Rate is an outcome where the result was unsuccessful authentication. This outcome includes unsuccessful 

recognition, user interaction errors, user cancelled or invalid sample capture. 

 

Table 5.5: False Non-Match Rate of modalities on the Samsung Galaxy S9 in a variety of scenarios 

 Fingerprint Face Iris 

Sitting 26% 8% 28% 

Standing 6% 10% 17% 

Treadmill 4% 9% 27% 

Corridor 7% 7% 29% 

Factor Wet - 77% Dark - 1% Dark - 25% 

 

The remaining devices had one modality that could be explored with a “developer” level of access. 

The FNMR results with these are shown in Table 5.6. 

 

Table 5.6: False Non-Match Rate of modalities on the Google Pixel 2, Apple iPhone 8, and Apple 

iPhone X in a variety of scenarios 

 
Google Pixel 2 Apple iPhone 8 Apple iPhone X 

Fingerprint Fingerprint Face 

Sitting 14% 4% 1% 

Standing 10% 4% 1% 

Treadmill 13% 7% 2% 

Corridor 5% 9% 3% 

Factor Wet - 80% Wet - 100% Dark - 3% 

 

Under the specifications of biometric testing standards ISO 19795-1 [11], only the first row would be 

required to meet the requirements set out in the standard (albeit with a more significant number of 
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participants involved), hiding from view the remaining information in the table. By exploring a more 

significant number of scenarios and conditions, we can begin to extract more information about the 

performance of a mobile biometric system. 

 

This preliminary test begins to show the foundations of the framework model by testing several of the 

factors presented within Chapter 3, including ‘Modality’, ‘Scenarios’, ‘Environments’, ‘Users’ and 

‘Hardware’. Part of the increase in FRR seen in the sitting scenario was likely because this was the first 

scenario the user was presented and asked to authenticate themselves in and highlighted the relationship 

between the users and hardware before the users adjusted themselves to the current setup. 

 

Introducing a challenging condition (Factor) and altering the environment can cause alternations in 

the performance, demonstrating a link between the modality and environments. For example, observing 

how darkening the lighting conditions saw a significant decrease in the FNMR scores (Table 5.5). This 

difference is likely due to the phone’s use of an infrared camera which can focus more without 

disturbances and influences from external light sources, highlighting the relationships between the 

modality, environment, and scenario. 

 

The acceptability was investigated by asking users their preferred modality post-experiment. Only 13% 

of the participants confirmed a preference for the iris, which likely reflects the FNMR found while using 

the iris modality despite the scenario. For the other modalities under test, 65% of participants preferred 

fingerprint, 20% for face and 2% for voice. The ‘mobility’ relationship was examined by introducing 

‘motion’ scenarios, and slightly against expectations, the FNMR tended to drop slightly in these ‘motion’ 

scenarios. However, this could be a consequence of the users’ habituation of the device. 

 

Utilising “Developer” level features available within Android and iOS platforms can reveal further 

information about the system’s performance as it reveals certain information as to why a transaction or 

attempt failed by providing details relating to the outcome. For Android, these outcomes are defined with 

the BiometricPrompt [122] API. The outcomes encountered here include: 

 

• Succeeded – When a biometric is recognised, indicating that the user has successfully 

authenticated. 

• Failed – When a biometric is presented but not recognised as belonging to the user. 

• Negative – The user pressed the negative button. 

• Exceeded – The operation was cancelled because the API was locked out due to too many 

attempts. 

• User Cancelled – The user cancelled the operation. 

• Cancelled – The operation was cancelled because the biometric sensor was unavailable. 

• Time Out – The current operation has been running too long and has timed out. 
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Receiving some “Cancelled” outcomes is likely a consequence of some early development bugs with 

the application, which were quickly rectified. A couple is device-specific, such as when using the Samsung 

Galaxy S9: 

 

• No Face Detected – No face detected. 

• Irises Not Detected – Irises were not detected. 

• Phone Too Close – Phone too close to face. 

 

Table 5.7: Outcomes from Fingerprint using the Samsung Galaxy S9 

Scenario 
Outcome 

Total 
Succeeded Failed Negative Exceeded User Cancelled Cancelled 

Sitting 112 24 12 2 0 1 151 

Standing 125 6 1 0 0 0 132 

Treadmill 125 4 0 0 0 1 130 

Corridor 126 7 2 0 0 0 135 

Factor - Wet 44 84 43 12 2 0 185 

 

Table 5.8: Outcomes from Face using the Samsung Galaxy S9 

Scenario 
Outcome 

Total 
Succeeded Failed Negative Time Out User Cancelled No Face Detected 

Sitting 114 1 2 3 2 1 123 

Standing 110 0 11 0 0 0 123 

Treadmill 111 0 10 0 0 0 123 

Corridor 113 0 8 0 0 0 121 

Factor - Dark 127 0 1 0 0 0 128 

 

Table 5.9: Outcomes from Iris using the Samsung Galaxy S9 

Scenario 
Outcome 

Total 
Succeeded Failed Negative Irises Not Detected Phone Too Close No Face Detected 

Sitting 92 0 16 12 7 0 127 

Standing 100 0 14 2 4 0 120 

Treadmill 89 0 15 15 2 0 121 

Corridor 87 0 15 16 3 0 121 

Factor - Dark 96 1 16 10 2 1 126 
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Table 5.10: Outcome from Fingerprint using the Google Pixel 2 

Scenario 
Outcome 

Total 
Succeeded Failed Negative Exceeded User Cancelled Cancelled 

Sitting 171 22 1 0 4 0 198 

Standing 173 15 2 0 1 0 191 

Treadmill 171 14 1 2 7 0 195 

Corridor 179 5 1 2 1 0 188 

Factor - Wet 47 97 49 18 17 3 231 

 

For iOS, there is a similar approach to examining the authentication outcome. However, one key 

difference from Android is that iOS will only provide the outcome from the complete transaction and not 

from the individual attempts, meaning the information presented below is transactional-based. A list of 

potential errors from the iOS process can be seen from LAError.Code [127]. The ones present here are: 

 

• Success – When a biometric is recognised, indicating that the user has successfully 

authenticated. 

• Cancelled – Cancelled by the user. 

• Locked Out – Biometry is locked out. 

• Fallback – Fallback authentication mechanism selected. 

• Limit Exceeded – Application retry limit exceeded. 

• Misbehaving – Misbehaving caller PID:XXX has made too many authentication requests. 

 

It is worth noting that “Cancelled” here does not have the same meaning as the Android version and 

is instead equivalent to Android’s “Negative” outcome. 

 

Table 5.11: Outcomes from Fingerprint using the Apple iPhone 8 

Scenario 
Outcome 

Total 
Success Cancelled Locked Out Fallback Limit Exceeded Misbehaving 

Sitting 160 5 0 0 0 0 170 

Standing 160 3 1 0 2 0 166 

Treadmill 152 6 2 1 1 0 162 

Corridor 147 4 0 0 0 9 160 

Factor - Wet 1 119 5 4 1 0 130 
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Table 5.12: Outcomes from Face using the Apple iPhone X 

Scenario 
Outcome 

Total 
Success Cancelled Fallback 

Sitting 134 1 0 135 

Standing 135 1 0 136 

Treadmill 134 2 0 136 

Corridor 133 3 0 136 

Factor - Dark 131 2 2 135 

 

Once the initial FNMR and FRR results are broken down into the outcomes that make up those results, 

more in-depth performance analysis can be observed. Intriguingly, most “failed” cases can be attributed 

to user error or usability issues hidden under the current standard testing protocols that rely only on 

standard performance rates. For example, although looking at the data above, one of the reasons for 

failure is the user cancelling the authentication. It is, unfortunately, unclear from this data exactly why 

the user cancelled. Although some assumptions can be made regarding the factor scenarios when the 

user struggled to authenticate, they would likely quick the transaction. 

 

5.11  Analysis and Reflection 

 

The aim of presenting the questionnaire results is to provide insight into the demographics and 

behaviours of the test population. This information helps when testing a biometric system to have realistic 

expectations about the results achieved. As previously acknowledged, the test cohort described here is a 

student population, so it would be unreasonable to assume the results would extrapolate and mirror the 

general population. However, by surveying the participants, we can picture what opinions and trends 

begin to form. For example, comparing the two major smartphone operating system users’ opinions, 

Android users (5.8 ± 1.4) are more satisfied with biometric authentication than their iOS counterparts (5.3 

± 1.3). These factors could cause an inherent bias towards biometric testing. 

 

The first question relating to a participant’s mobile device asked if they owned a mobile phone, and 

everyone involved in the study did. The remaining questions regarding participants’ devices aimed to seek 

out the potential habitational impact that the participants in the trial could experience. In other words, 

the exposure a participant previously had towards a particular device and operating system would likely 

impact the practical usability and performance. This effect is already seen in the initial results as the first 

scenario tested (Sitting) has the most significant false non-match rates observed. This result also highlights 

a lesson learnt from conducting this data collection as no habitational or practise transactions were 

performed before starting the trial. A noticeable decrease in false non-match rates would likely be seen 

if the participants practised how to perform a transaction before starting. This recommendation was 

added to the framework from this experience. 
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Looking back towards the core factors of mobile biometric performance, ‘users’ was identified as one 

of these factors and sitting at the centre of the groupings of relationships. Meaning users can be viewed 

as the cornerstone of biometric performance, and their influence could determine the obtained results. 

A detailed view of the participants’ breakdown can help put the achieved results into perspective. Looking 

at the results, the population is generally young adults who will likely be more familiar with mobile 

technology. However, there is no knowledge of how the system will perform around different 

populations, such as the elderly, where more training sessions are usually required [57]. 

 

5.12  Summary 

 

This chapter introduced experimental data collection, discussing methodology and data collection. 

Next, the pre-and post-experiment questionnaire results were shown and analysed, including exploring 

the trends smartphone users used to secure their devices, including locking habits and satisfaction. Finally, 

the initial results from the experiment were introduced, showcasing the Boolean results from the devices 

and the breakdown of causes for the FNMR possible from developer access, finally followed by a 

discussion regarding the potential benefits of the framework method exploring a more dynamic range of 

scenarios for analysis. 

 

The next chapter will take the samples from this experimental data collection and use third-party 

open-source algorithms to analyse the performance metrics obtained within the scenarios and 

environments. The aim is to prove the statistical significance of these choices and demonstrate the 

potential merit of some of the key concepts and ideas introduced within the performance framework. 
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6 Measuring and Analysing Mobile Biometric 

Performance Factors 

 

6.1  Introduction 

 

This chapter aims to present the research findings of the collected data when applied to open-source 

algorithms and take elements from the core factors to demonstrate the effectiveness of using these 

elements in forming the performance framework. The data explored here back up the core factors’ 

findings and strengthen their inclusion within the performance framework. The result is an illustrative 

run-through applying the data to the observed results. 

 

Using quality score enables further analysis of systems where access is limited, but access to a sample 

is available. Furthermore, it is possible to use the quality score as a substitute for a match score to obtain 

further performance information relating to a system. This analysis will focus on genuine verification 

results and comparisons between core factors. 

 

The results presented throughout this chapter will, at times, where appropriate, be split in terms of 

the device used to capture the data. This separation is because the hardware was identified as a core 

performance factor that impacts the observed performance. For example, the device camera used to 

collect facial images or the microphone used to capture voice recordings should be presented separately. 

The main exception is the Iris images because an external mobile device (IriTech IriShield) was used to 

capture the samples. However, both Android devices were used as the controller for this device. 

 

This chapter is split into roughly two parts. The first explores the impact of the scenarios and 

influencing factors using the data collected from the first data collection session presented in Chapter 5. 

In comparison, the second half explores the environmental impact using the data collected from the 

second (Outdoor) session. The statistical tests performed throughout this chapter, specifically ANOVA and 

pairwise T-test step-down method using Bonferroni adjustments, were performed with the help of the 

‘scikit-posthocs’ Python library [128]. 

 

The chapter breakdown is as follows: Section 6.2  explores the habituation effect seen from the data. 

Section 6.3  introduces the open-source biometric algorithms used for further analysis of the data and the 

scenario results achieved using them. Section 6.4  explores some quality metrics obtained from the data, 

and Section 6.5 explores the effect of the motion observed. Section 6.6  looks at the impact of the 

environment and weather. Section 6.7  briefly explores usability, and Section 6.8  provides an initial 

investigation into the tailored impostors' technique. Finally, Section 6.9  provides a summary. 
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6.2  Habituation 

 

Within biometrics, habituation refers to the user's familiarity with the system and concerns usability, 

which influence the system’s performance [129]. When performing the experimental data collection, 

performing habituation transactions to allow the user to get familiar and comfortable with the system 

was omitted and later acknowledged as a limitation of the data as it skewed the results of the first scenario 

(sitting), which was intended to act as our baseline and optimal scenario conditions. To briefly explore the 

impact of this habituation effect, the FNMR for each attempt is shown separately in Table 6.1. 

 

During the data collection, instructions were provided to the participants in the form of verbal 

instructions with visual aids (screenshots from the application) presented on laminated cards. This 

method was the primary form of communication presented to the participants. The participant’s 

interaction with the device’s biometric system was (where possible) the same as the one provided by the 

operating system; this was important so possible evaluation of the UI could be explored. However, no 

complete transaction was performed before the participant’s first attempt. Usability increases with use 

and exposure, so one would expect to see this reflected in the results. 

 

Although the habituation effect was known before the commencement of the data collection, the 

impact it could have had on the results was underrepresented. It is now acknowledged as a limitation of 

the test dataset that should have been considered more carefully. However, it is helpful to see the impact 

of habituation and usability on the UI of these systems. As proposed by the evaluation framework, the 

intention is to use the ‘sitting’ scenarios as the baseline. However, not taking careful consideration of the 

habituation effect beforehand could have an impact on how the results are evaluated. 

 

When comparing scenarios and utilising this baseline scenario, it should be noted that this habituation 

effect is present. However, lessons can still be learnt from the outcome presented here and show that 

usability improves with use, partly noted by the transactional times presented later in this chapter. The 

same can be said for the biometric performance, as shown in Table 6.1. This chapter will explore the 

scenario’s impact on biometric performance. However, it is interesting to see the habituation effect within 

such raw data, particularly when these tech companies pride themselves on intuitive UI and researchers 

know how critical human interaction is on biometric system performance [130]. 

 

In the context of this thesis, the habituation effect is likely more present within the initial intended 

baseline. Although the effect provides additional exciting insights, it may not provide the fairest 

comparison between scenarios as expected. Not taking this into account beforehand was an oversight of 

the data collection task. However, the data still provides valuable insights and an understanding of the 

proposed performance framework, as explored in the remainder of this chapter. 
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Table 6.1: FNMR Attempt Breakdown 

Device Modality Scenario 

FNMR (%) 

Attempt # 

1 2 3 4 5 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Fi
n

ge
rp

ri
n

t 
Sitting 31 25 26 19 25 

Standing 15 4 4 4 0 

Treadmill 8 8 4 0 0 

Corridor 18 0 4 4 4 

Factor (Wet) 81 84 68 67 71 

Fa
ce

 

Sitting 5 12 9 8 4 

Standing 9 9 9 9 9 

Treadmill 9 9 9 9 9 

Corridor 9 9 5 9 5 

Factor (Dark) 0 0 0 0 0 

Ir
is

 

Sitting 36 28 28 24 24 

Standing 14 17 21 13 21 

Treadmill 21 25 30 30 30 

Corridor 38 34 25 25 21 

Factor (Dark) 31 20 20 20 28 

G
o

o
gl

e 
P

ix
el

 2
 

Fi
n

ge
rp

ri
n

t 

Sitting 32 11 6 13 3 

Standing 17 3 11 6 11 

Treadmill 11 16 16 11 6 

Corridor 11 3 3 6 0 

Factor (Wet) 88 83 71 70 82 

iP
h

o
n

e 
8

 

Fi
n

ge
rp

ri
n

t 

Sitting 4 10 0 4 0 

Standing 4 4 4 0 7 

Treadmill 10 10 4 0 0 

Corridor 7 7 4 10 13 

Factor (Wet) 95 100 100 100 100 

iP
h

o
n

e 
X

 

Fa
ce

 

Sitting 0 4 0 0 0 

Standing 0 0 4 0 0 

Treadmill 0 4 4 0 0 

Corridor 0 4 0 4 4 

Factor (Dark) 0 8 4 4 0 

 

Looking at the data on an attempt basis seems to support the theory of habituation impacting 

performance. The table shows that the first scenario sitting has some of the highest FNMR scores 

compared to the other scenarios, with the introduced factor(s) having the second-highest FNMR scores. 
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It is with the support of this data that a recommendation to introduce a trial (habituation) phase before 

measuring and capturing the results of the baseline scenario should be included, and attempts by the 

evaluators made to help the users compensate for any user errors that occur from improper use of the 

system. 

 

6.3  Open-Source Biometric Algorithms 

 

The main disadvantage to using commercial devices to perform a biometric evaluation is the closed 

nature of the algorithm (and sometimes hardware) controlling the biometric system. The proposed 

framework aims to help alleviate this problem by focusing more on usability when access is limited and 

expanding upon more significant security testing where access allows. 

 

The experimental data collection focuses on the collection and evaluation of commercial devices. 

However, that leaves little room to explore further and evaluate the framework. Therefore, to go beyond 

the ‘commercial’ and ‘developer’ level of access, open-source algorithms were obtained to compare and 

match the obtained biometric samples from the mobile devices, allowing for the simulated evaluation of 

the framework at the ‘tester’ level. 

 

The reasoning behind using open-source biometric algorithms, as opposed to commercial algorithms, 

was partly for the reproducibility of the results and the evaluation of algorithms that anyone could obtain 

and use in their biometric solutions. Where possible, the option was to use popular open-source 

algorithms backed by scientific research and recommended for research use. These algorithms will be 

referred to as Face Recognition (Face), USIT (Iris) and Deep Speaker (Voice) moving forward. 

 

The first captured sample within the sitting scenario was used as the enrolment reference when using 

the algorithms. Then, all the following probes from the remaining scenarios were compared against this 

reference. This decision partly followed the framework that we want to have an ‘optimal’ scenario as the 

baseline for comparison. Furthermore, it is known that the enrolment can affect subsequent 

authentications [131]. Therefore, the analysis and the framework are present, assuming we have a high-

quality enrolment. This approach allows the evaluators to ensure they have given the system the ‘best’ 

start for the evaluation. 

 

The authors of the algorithms themselves admit that the algorithms are not perfect, and accuracy will 

drop when presented with challenging scenarios or conditions discussed below, demonstrating how the 

algorithm fits into the system’s performance as a core factor. Usually, this is due to the training of machine 

learning models and the data used is too specific or ‘clean’ from noise. 
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6.3.1 Face (Face Recognition) 

 

The Python’ face_recognition’ library [132], [133] was used as the basis for the face recognition 

algorithm. This library presents a Python wrapper for the C++ dlib library, a toolkit containing machine 

learning algorithms, including image recognition for face recognition and detection [134]. The model has 

an accuracy of 99.38% on the Labelled Faces in the Wild [118] benchmark. Notably, Face recognition states 

that particular user groups will experience a lower accuracy, specifically children and certain ethnic groups 

(Asian) owning to the training dataset used and states how “the face recognition model is only as good as 

the training data”. 

 

The algorithm can compare two images by extracting faces and encodings and comparing the two 

encodings. The algorithm returns a dissimilarity score between 0-1, where zero is more similar and one is 

less similar. By default, the algorithm uses a decision threshold of 0.6. 

 

Two images were analysed from each photo, the original captured from the device and a cropped 

version cropped to the detected facial region. Doing so was to analyse the background impact of the 

images. A combination of two open-source face detection algorithms was used to achieve this. Firstly 

Multitask Cascaded Convolutional Networks (MTCNN) [135], [136], and the second was RetinaFace [137]–

[139]. Both algorithms were applied to the data set, MTCNN, and then RetinaFace was applied to the 

images where MTCNN had failed to extract the facial region. Manual checking was then performed to 

confirm that facial regions were indeed extracted. 

 

When facial recognition was performed against the original image, the reference (sitting) and probe 

were the original obtained image. Similarly, when performing the recognition against the cropped version, 

both the reference and probe were cropped to maintain consistency. 

 

Table 6.2 shows the statistics for the genuine face verification scores achieved from the face 

recognition algorithm across the scenarios evaluated from the data collection. Unfortunately, due to an 

error with the development app, the images captured from the Apple iPhone X became inconsistent, and 

some were lost, meaning the image data collected from the Apple iPhone X is not considered when 

evaluating the scenarios. 

 

In some instances, and most notably when observing the Factor – Dark scenario, the algorithm failed 

to detect (FTD) a face within the provided image, causing the number of participants and images to be 

less than contained within the data set. 
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Table 6.2: Scenario Genuine Verification Score Statistics for ‘Face’ 

Device Scenario Image Participants Amount Mean (𝝁) Median Min Max 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Sitting 
Original 25 114 0.17 (±0.08) 0.15 0.06 0.40 

Cropped 25 112 0.17 (±0.07) 0.15 0.05 0.38 

Standing 
Original 25 123 0.25 (±0.06) 0.25 0.15 0.43 

Cropped 25 116 0.26 (±0.06) 0.25 0.14 0.44 

Treadmill 
Original 24 116 0.31 (±0.07) 0.28 0.19 0.57 

Cropped 24 107 0.31 (±0.07) 0.29 0.20 0.54 

Corridor 
Original 24 121 0.29 (±0.06) 0.29 0.21 0.56 

Cropped 24 116 0.30 (±0.05) 0.30 0.21 0.42 

Factor – Dark 
Original 14 41 0.45 (±0.06) 0.46 0.34 0.58 

Cropped 5 7 0.40 (±0.04) 0.39 0.35 0.46 

G
o

o
gl

e 
P

ix
el

 2
 

Sitting 
Original 33 100 0.16 (±0.05) 0.15 0.05 0.31 

Cropped 32 94 0.16 (±0.05) 0.16 0.07 0.30 

Standing 
Original 33 116 0.26 (±0.06) 0.27 0.13 0.39 

Cropped 32 102 0.26 (±0.06) 0.26 0.13 0.44 

Treadmill 
Original 35 124 0.29 (±0.05) 0.28 0.19 0.43 

Cropped 33 103 0.29 (±0.05) 0.28 0.19 0.44 

Corridor 
Original 34 141 0.30 (±0.06) 0.29 0.20 0.47 

Cropped 34 133 0.30 (±0.06) 0.30 0.15 0.49 

Factor – Dark 
Original 20 87 0.43 (±0.06) 0.42 0.29 0.59 

Cropped 18 49 0.42 (±0.06) 0.41 0.32 0.54 

A
p

p
le

 iP
h

o
n

e 
8

 

Sitting 
Original 29 118 0.17 (±0.06) 0.15 0.07 0.35 

Cropped 28 110 0.17 (±0.06) 0.17 0.08 0.37 

Standing 
Original 27 135 0.27 (±0.06) 0.27 0.15 0.40 

Cropped 27 123 0.28 (±0.06) 0.27 0.16 0.42 

Treadmill 
Original 25 122 0.32 (±0.08) 0.32 0.15 0.50 

Cropped 24 88 0.31 (±0.10) 0.30 0.15 0.80 

Corridor 
Original 23 115 0.31 (±0.07) 0.30 0.17 0.46 

Cropped 23 110 0.31 (±0.07) 0.31 0.15 0.48 

Factor – Dark 
Original 16 64 0.42 (±0.08) 0.41 0.26 0.58 

Cropped 14 36 0.40 (±0.08) 0.40 0.26 0.54 

 

One of the first things to consider was to explore if there was any difference between the smartphone 

hardware when comparing the genuine verification scores. To evaluate this, we took the scores from the 

baseline sitting scenario and compared the devices using a one-way ANOVA statistical test to assess the 

significance of the verification scores between devices. The test results in 𝐹(2, 329)  =  [0.56] at 𝑝 =

 0.57 (𝑝 > 0.5) for the original images and (2, 313)  =  [0.62] at 𝑝 =  0.54 (𝑝 > 0.5) indicating that 

there is no statistically significant difference between the genuine verification scores across the 
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smartphone devices used. This evidence can be seen in the box plot showing the sitting scenario scores 

across devices in Figure 6.1. 

 

Original Cropped 

  

Figure 6.1: Device Genuine Verification Scores Box Plot for Original and Cropped Image for ‘Face’ 

 

Having established that there does not appear to be any significant difference between the individual 

devices, the genuine verifications for each scenario were analysed for each device to see if the scenarios 

impacted the genuine verification scores. 

 

Figure 6.2 shows a box plot for genuine verification scores obtained across the scenarios for the data 

collected from the Samsung Galaxy S9 for both the original and cropped image versions. Using a one-way 

ANOVA statistical test to assess the statistical significance of the verification scores between scenarios 

with the original images results in 𝐹(4, 510)  =  [163.65] at 𝑝 =  5.18 × 10−80 (𝑝 <  0.001) indicating 

that there is some statistically significant difference between some scenarios on the genuine verification 

scores for the original images for the face recognition system. Similarly, when performing an ANOVA 

statistical test using the cropped images provides the result 𝐹(4, 453)  =  [94.69] at 𝑝 =  1.75 ×

10−58 (𝑝 <  0.001), equally indicating statistical significance for the verification scores with the cropped 

images. 

 

Evidence of some statistical significance between scenarios was followed by a statistical post hoc 

pairwise t-test for multiple comparisons of independent groups with a step-down method using 

Bonferroni adjustments. Figure 6.2 shows a significance plot indicating where the significant pairs are. 

The plot highlights that most scenarios show significance against one another, indicating the importance 

of performing these scenario tests. However, it can also be seen that there is no significance between the 

two motion-based scenarios, which is potentially to be expected. 
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Original Cropped 

  

  

Figure 6.2: Samsung Galaxy S9 Scenario Genuine Verification Scores Box Plots and P-Value 

Significance Plots for Original and Cropped Images for ‘Face’ 

 

This process was then repeated for the Google Pixel 2, and Figure 6.3 shows the box plot for the 

verification scores for both the original and cropped images. Using a one-way ANOVA statistical test to 

assess the statistical significance of the verification scores between scenarios with the original images 

results in 𝐹(4, 563)  =  [270.89] at 𝑝 =  1.18 × 10−129 (𝑝 <  0.001) and cropped images results in  in 

𝐹(4, 476)  =  [198.60] at 𝑝 =  5.11 × 10−100 (𝑝 <  0.001) indicating that there is some statistically 

significant difference between scenarios for the genuine verification scores.  

 

Following this with a statistical post hoc pairwise t-test for multiple comparisons of independent 

groups with a step-down method using Bonferroni adjustments provides the significance plots shown in 

Figure 6.3. The results for the Google Pixel 2 show a similar pattern to the Samsung Galaxy S9, indicating 

some improbability towards using the scenario approach across devices. The only minor difference is that 

the cropped images show significance between the two motion-based scenarios that were not apparent 

with the original images. 
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Original Cropped 

  

  

Figure 6.3: Google Pixel 2 Scenario Genuine Verification Scores Box Plots and P-Value Significance 

Plots for Original and Cropped Images for ‘Face’ 

 

Once more, this analysis was performed on the Apple iPhone 8. The box plot for the verification scores 

across the scenarios for both the original and cropped images is shown in Figure 6.4. A one-way ANOVA 

statistical test to assess the statistical significance of the verification scores between scenarios for the 

original images results in 𝐹(4, 549)  =  [158.28] at 𝑝 =  5.47 × 10−90 (𝑝 <  0.001) and for the cropped 

images results in 𝐹(4, 462)  =  [93.01] at 𝑝 =  5.66 × 10−58 (𝑝 <  0.001) indicating that there is some 

statistically significant difference between some scenarios on the genuine verification scores for this face 

recognition system. 

 

Performing a statistical post hoc pairwise t-test provides the significance plot in Figure 6.4. The results 

support the evaluation of various scenarios as part of the performance framework with all three mobile 

devices. In each case, the sitting scenario used as a baseline has significance, with the remaining scenarios 

supporting the concept of using this scenario as the baseline.  
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Original Cropped 

  

  

Figure 6.4: Apple iPhone 8 Scenario Genuine Verification Scores Box Plots and P-Value Significance 

Plots for Original and Cropped Images for ‘Face’ 

 

6.3.2 Iris (USIT) 

 

For the Iris data, the USIT -- University of Salzburg Iris-Toolkit v3.0.0 [140] was used for the analysis. 

USIT is an open-source software development kit for iris biometric research to help achieve comparability 

and reproducibility of research results. There is a three-step process to follow to perform iris recognition 

with this software: 

 

1. Iris Pre-processing (Segmentation) 

2. Feature Extraction 

3. Feature Comparison 

 

The approach taken here was to use Contrast-adjusted Hough Transform (CAHT) for segmentation 

followed by Discrete Cosine Transform (DCT) [141] for feature extraction into an iris code and later 

comparison as demonstrated. Table 6.3 demonstrates these steps (note that a small extraction section 

has been zoomed in and shown here for demonstration purposes). 
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Table 6.3: Iris Recognition using USIT 

Iris Image 

 

Segmentation (CAHT) 

 

Extraction (DCT) 
 

 

Using the USIT library allows further analysis of the collected data with additional insight into potential 

match scores that were not possible using the commercial devices alone. The results of running the 

collected iris dataset through the USIT library are shown in Table 6.4. The immediate observation is that 

there seems to be a minor difference between the genuine scores obtained across the scenarios. 

Therefore, a statistical test was used to check for any difference between the scenarios. Figure 6.5 shows 

the box plot for the genuine verification scores across the scenarios using the USIT algorithms (CAHT and 

DCT). 

 

The algorithm produces a dissimilarity score between a reference and a probe between 0 and 1, where 

the closer to zero is more similar, and the closer to one is less similar. 

 

Table 6.4: Scenario Genuine Verification Score Statistics for ‘Iris’ 

Device Scenario Participants Amount Mean (𝝁) Median Min Max 

Ir
iT

ec
h

 Ir
iS

h
ie

ld
 

Sitting 60 278 0.39 (±0.09) 0.41 0.00 0.46 

Standing 59 297 0.39 (±0.07) 0.41 0.00 0.48 

Treadmill 59 291 0.39 (±0.07) 0.41 0.00 0.48 

Corridor 57 287 0.41 (±0.06) 0.42 0.00 0.47 

Factor – Dark 60 321 0.40 (±0.07) 0.42 0.00 0.47 
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Figure 6.5: Scenario Genuine Verification Scores Box Plot for ‘Iris’ 

 

Using a one-way ANOVA statistical test to assess the statistical significance of the verification scores 

between scenarios results in 𝐹(4, 1469)  =  [3.46] at 𝑝 =  8.05 × 10−3 (𝑝 <  0.01) There is some 

statistically significant difference between some scenarios on the genuine verification scores for the iris 

recognition system. Evidence of some statistical significance between scenarios was followed by a 

statistical post hoc pairwise t-test for multiple comparisons of independent groups with a step-down 

method using Bonferroni adjustments.  

 

Figure 6.6 shows the results of this post hoc analysis in the form of a significance plot highlighting the 

significant relationships between groups. The observation made is that there was no significance found 

between our stationary and motion scenarios and only two groups have significance between them, that 

being Sitting and Corridor. This result could highlight how using infrared imaging has offset the effect of 

different scenarios and are a factor (dark). In addition, this result indicates how the hardware can impact 

performance as one of the core factors. 

 

 

Figure 6.6: Scenario Genuine Verification Scores P-Value Significance Plot for ‘Iris’ 
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6.3.3 Voice (Deep Speaker) 

 

“Deep Speaker” [142] is “a neural speaker embedding system that maps utterances to a hypersphere 

where speaker similarity is measured by cosine similarity … Deep Speaker reduces the verification equal 

error rate by 50% (relatively) and improves the identification accuracy by 60% (relatively) on a text-

independent dataset”. The authors of the GitHub repository note that “models were trained on clean 

speech data. Remember that the performance will be lower on noisy data” [143]. The analysis presented 

throughout the “ResCNN Softmax+Triplet trained” model was selected as it currently provides the best 

performance with an EER of 0.025 when trained against the LibriSpeech [144] dataset.  

 

Deep Speaker produces a similarity score between a reference and a probe using a cosine similarity 

method. It can produce a score between -1 and one, depending on how similar the samples are. Leaning 

towards one indicates more similarities, and leaning towards -1 means less similarity. In the experience 

of using the library, it usually produces results between 0 and 1 and only occasionally drops below 0. 

 

In order for the voice data to be parsed by Deep Speaker, the audio from the devices needed to be 

converted into “.wav” format from either “.m4a” (iOS) or “.3gp” (Android), the audio was originally 

recorded in this format as it is the default audio encoding for those devices. The open-source FFmpeg 

library [145] was used to convert all the audio files into “.wav” format to achieve the conversion for the 

analysis. 

 

Table 6.5 provides the statistical data when using DeepSpeaker as the biometric algorithm against the 

collected voice data to obtain genuine verification scores for all the devices and scenarios trialled during 

the experimental data collection. Using this algorithm also provides the opportunity to compare the 

devices. Each device has a microphone, but one previously identified core factor was hardware, centred 

around how different hardware can affect performance. It is possible to compare the device and test if 

there is a significant difference using the defined optimal scenario (sitting). Figure 6.7 shows the box plot 

of the genuine verification scores when comparing the devices in the sitting scenario. 

 

Using a one-way ANOVA statistical test to assess the statistical significance of the verification scores 

between devices (hardware) results in 𝐹(3, 485)  =  [34.25] at 𝑝 =  4.31 × 10−20 (𝑝 <  0.001) 

indicating that there is some statistically significant difference between the devices on the genuine 

verification scores for the voice recognition system. The evidence of some statistical significance between 

devices was followed by a statistical post hoc pairwise t-test for multiple comparisons of independent 

groups with a step-down method using Bonferroni adjustments.  

 

Figure 6.8 shows the results of this post hoc analysis in the form of a significant plot highlighting 

significant relationships between the devices. The analysis supports that devices are significant 

(hardware) in biometric performance. It is shown that there is significance between all pairs of devices 

except for the two iOS devices, potentially supporting a claim that manufacturers will use the same parts, 
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in this case, microphones, across devices. The same microphone may be used for both the iPhone 8 and 

the iPhone X. Equally, there is significance, although slightly less, between the two Android devices when 

comparing Android against iOS. 

 

Table 6.5: Scenario Genuine Verification Score Statistics for ‘Voice’ 

Device Scenario Participants Amount Mean (𝝁) Median Min Max 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Sitting 24 98 0.85 (±0.10) 0.89 0.56 0.95 

Standing 24 120 0.78 (±0.10) 0.79 0.51 0.93 

Treadmill 24 122 0.78 (±0.09) 0.79 0.52 0.93 

Corridor 24 120 0.77 (±0.09) 0.80 0.54 0.91 

Factor – Quiet 23 118 0.76 (±0.08) 0.78 0.50 0.88 

Factor – Loud 23 116 0.68 (±0.09) 0.69 0.46 0.85 

G
o

o
gl

e 
P

ix
el

 2
 

Sitting 35 146 0.88 (±0.07) 0.90 0.51 0.97 

Standing 35 177 0.83 (±0.08) 0.84 0.54 0.95 

Treadmill 35 178 0.82 (±0.08) 0.84 0.60 0.94 

Corridor 35 177 0.80 (±0.08) 0.80 0.48 0.94 

Factor – Quiet 35 187 0.75 (±0.08) 0.77 0.40 0.90 

Factor – Loud 35 182 0.64 (±0.09) 0.65 0.36 0.88 

A
p

p
le

 iP
h

o
n

e 
8

 

Sitting 33 135 0.74 (±0.19) 0.79 0.01 0.94 

Standing 33 167 0.61 (±0.19) 0.65 -0.02 0.94 

Treadmill 33 166 0.63 (±0.17) 0.65 0.02 0.95 

Corridor 33 167 0.56 (±0.18) 0.58 -0.05 0.93 

Factor – Quiet 33 168 0.55 (±0.16) 0.56 0.06 0.87 

Factor – Loud 33 167 0.43 (±0.14) 0.46 0.01 0.77 

A
p

p
le

 iP
h

o
n

e 
X

 

Sitting 27 110 0.78 (±0.14) 0.83 0.26 0.93 

Standing 27 139 0.67 (±0.11) 0.68 0.25 0.83 

Treadmill 27 140 0.64 (±0.14) 0.67 0.20 0.83 

Corridor 27 140 0.58 (±0.12) 0.60 0.23 0.79 

Factor – Quiet 27 138 0.57 (±0.11) 0.58 0.20 0.79 

Factor – Loud 27 140 0.44 (±0.12) 0.46 0.15 0.64 
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Figure 6.7: Device Genuine Verification Scores Box Plot for ‘Voice’ 

 

 

Figure 6.8: Device Genuine Verification Scores P-Value Significance Plot for ‘Voice’ 

 

The next step is to examine the scenario impact of each device, having demonstrated the potential 

impact of the various devices. Firstly Figure 6.9 shows a box plot for the scenario using the Samsung Galaxy 

S9. Using a one-way ANOVA statistical test to assess the statistical significance of the verification scores 

between scenarios results in the following for each device: 

 

• Samsung Galaxy S9: 𝐹(5, 688)  =  [39.86] at 𝑝 =  5.13 × 10−36 (𝑝 <  0.001)  

• Google Pixel 2: 𝐹(5, 1041)  =  [187.05] at 𝑝 =  3.66 × 10−142 (𝑝 <  0.001) 

• Apple iPhone 8: 𝐹(5, 964)  =  [51.91] at 𝑝 =  9.82 × 10−48 (𝑝 <  0.001) 

• Apple iPhone X: 𝐹(5, 801)  =  [103.08] at 𝑝 =  5.79 × 10−84 (𝑝 <  0.001) 

 

It indicates some statistically significant differences between the scenarios on the genuine verification 

scores for the voice recognition system. Evidence of some statistical significance between devices was 

followed by performing a statistical post hoc pairwise t-test for multiple comparisons of independent 

groups with a step-down method using Bonferroni adjustments.  
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Figure 6.9: Samsung Galaxy S9 Scenario Genuine Verification Scores Box Plot for ‘Voice’ 

 

 

Figure 6.10: Samsung Galaxy S9 Scenario Genuine Verification Scores P-Value Significance Plot for 

‘Voice’ 

 

Figure 6.10 shows the significance plot for the verification scores for the Samsung Galaxy S9. The main 

observation is how the baseline scenario (sitting) shows significance against the remaining scenarios. 

However, this is likely because it is the same scenario used for the enrolment (reference) sample. 

Moreover, equally, the introduced influencing factor of the background shows significance when it is loud 

but not when it is quiet. 
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Figure 6.11: Google Pixel 2 Scenario Genuine Verification Scores Box Plot for ‘Voice’ 

 

 

Figure 6.12: Google Pixel 2 Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’ 

 

The Google Pixel 2 shows more significance between scenarios than the previous Samsung Galaxy S9, 

including the baseline scenario and the influencing factors introducing noise into the background. 

 

Figure 6.13: Apple iPhone 8 Scenario Genuine Verification Scores Box Plot for ‘Voice’ 
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Figure 6.14: Apple iPhone 8 Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’ 

 

The two iPhone devices (8 and X) show a similar pattern for the verification scores between scenarios 

caused by having the same manufacturer (Apple) and identical components. The significance between 

scenarios is between the baseline, the influenced factor (noise), and the motion-based scenarios. 

 

 

Figure 6.15: Apple iPhone X Scenario Genuine Verification Scores Box Plot for ‘Voice’ 
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Figure 6.16: Apple iPhone X Scenario Genuine Verification Scores P-Value Significance Plot for ‘Voice’ 

 

The voice data showed the most variation in verification scores between devices compared to the 

other tested modalities (Face, Iris). The results presented here showcase how scenarios influence the 

verification scores and, by extension, the performance of the mobile biometric systems supporting their 

inclusion of specified scenarios within the performance framework. 

 

6.4  Quality 

 

A biometric quality score is a “quantitative value of the fitness of a biometric sample to accomplish or 

fulfil the comparison decision” [5]. Therefore, sample quality is an essential link for analysing the 

performance of a system, as illustrated by its inclusion within the Human-Biometrics Sensor Interaction 

(HBSI) model serving as the intersection between the Sensor and Biometric System. “Sample quality is the 

important link between these two components because the image or sample acquired by the biometric 

sensor must contain the characteristics or features needed by the biometric system to enrol or match a 

user in the biometric system” [146]. 

 

Yao et al. [147] stated that “in a deployed system, the poor acquisition of samples perhaps constitutes 

the single most important reason for high false reject/accept rates”, highlighting how vital the quality 

score can be to determining performance. There exist some approaches to adopt a standard to create 

quality assessments for various modalities, including NIST Fingerprint Image Quality (NFIQ) [148] and Face 

Recognition Vendor Test (FRVT) Quality Assessment [149]. 

 

Quality score information can be obtained directly from the manufacturer in the form of an API that 

allows access to this information or by extracting the sample collected from the capture sensor to analyse 

offline. The quality score can become more critical to assessing the performance of systems where 

performance information is limited, such as when the level of access is ‘commercial’. In these situations 

where performance results, such as match score data, are not readily available, it is possible to use quality 

scores to indicate performance. 
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Hernandez-Ortega et al. developed a face quality assessment tool to “predict the suitability of a 

specific input image for face recognition purposes” [150]. As part of this, they stated that the “variability 

[in samples] is associated with the image acquisition conditions … other factors are more related to the 

properties of the face itself. All these factors influence the quality of the face samples, which is understood 

as a predictor of the goodness of a given face image for recognition purposes. That is, quality is an 

estimator of biometric performance”. 

 

Overall, quality checks are essential for enrolment, verification, identification, or de-duplication. 

During image acquisition, it can be used to select the best image from streaming video. It also provides 

feedback to improve the quality of image capture. During enrolment and identification, it can help reject 

unqualified images and provide actionable feedback to improve accuracy. A high correlation of quality 

score with matching accuracy helps reduce error rates [151]. 

 

Using the collected data allows for examining the quality of samples for the scenarios and 

environments explored. 

 

6.4.1 Face 

 

For this trial, the facial quality assessment scores were provided by FaceQnet V0 [150] [152], who 

states that “the results of a computerised system are only as reliable as the data you input. If you input 

data that is garbage, the result will be unreliable garbage”. “FaceQnet can be used as a “black box” that 

receives a face image and outputs a quality measure between 0 and 1 related to the face recognition 

accuracy. This quality measure can be understood as proximity between the input image and a 

hypothetical corresponding [International Civil Aviation Organization] ICAO compliant face image”.  

 

Two pre-made models are provided, V0 and V1. For the results presented within this chapter, V0 is 

used. This decision is partly due to some inconsistent and unexpected behaviour from V1 compared to 

V0. For example, dark images with hardly visible faces score higher than visible faces. This observation 

was from manually comparing the results supplied by V0 and V1. For this reason, V0 was used. 

 

Comparing the quality scores between devices using the baseline scenario (sitting) using a one-way 

ANOVA statistical test results in 𝐹(2, 418)  =  [9.28] at 𝑝 =  1.14 × 10−4 (𝑝 <  0.001) for the original 

images and 𝐹(2, 414)  =  [4.50] at 𝑝 =  1.17 × 10−2 (𝑝 <  0.05) for the cropped images. Both show 

statistical significance between the devices used, indicating that the hardware, in this case, the camera 

embedded into the smartphones, can cause a difference between the obtained quality scores. Figure 6.17 

shows the corresponding box and significance plots for the face image quality score device comparison. 

 



 

134 

Original Cropped 

  

  

Figure 6.17: Device Quality Scores Box Plots and P-Value Significance Plots for Original and Cropped 

Images for ‘Face’ 

 

The results show how the quality is impacted by the device (hardware) used. However, it is interesting 

that this did not correlate significantly with the verification scores obtained across devices using the face 

recognition algorithm. However, it is still worth showing the device impact from a quality score 

perspective because of the potential impact on the verification performance.  

 

 

Figure 6.18: Quality Scores vs Verification Scores for the Original Images for ‘Face’ 
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Figure 6.18 and Figure 6.19 show the comparison between quality and verification for the original and 

cropped images, respectively. A trendline is also displayed for analysis. For the original images, this trend 

line has the equation y = −0.43x + (0.47), and for the cropped images, the trendline has the equation 

𝑦 = −0.52𝑥 + (0.58). In both cases we see a negative correlation between quality and verification, 

meaning there is support for the argument that higher quality images result in better verification results, 

as the verification score for face is a dissimilarity score. This observation becomes more apparent when 

comparing the cropped images and could be caused by FaceQnet performing better when the images are 

cropped. However, there are arguments for improving the quality scores for images not cropped to the 

facial region by applications like FaceQnet. 

 

 

Figure 6.19: Quality Scores vs Verification Scores for the Cropped Images for ‘Face’ 

 

 

Table 6.6 shows the face quality scores obtained across the scenarios for the cropped and uncropped 

images for the Samsung Galaxy S9. When considering the scenario quality scores for the original 

unmodified images, a one-way ANOVA statistical test to assess the statistical significance of the quality 

scores results in the following: 

 

• Samsung Galaxy S9 

o Original: 𝐹(4, 652)  =  [342.82] at 𝑝 =  1.04 × 10−158 (𝑝 <  0.001) 

o Cropped: 𝐹(4, 544)  =  [267.34] at 𝑝 =  6.96 × 10−127 (𝑝 <  0.001)  

• Google Pixel 2 

o Original: 𝐹(4, 723) =  [186.65] at 𝑝 =  8.00 × 10−110 (𝑝 <  0.001) 

o Cropped: 𝐹(4, 649) =  [444.62] at 𝑝 =  2.94 × 10−184 (𝑝 <  0.001) 

• Apple iPhone 8 

o Original: 𝐹(4, 671) =  [23.16] at 𝑝 =  5.98 × 10−18 (𝑝 <  0.001) 

o Cropped: 𝐹(4, 561)  =  [91.22] at 𝑝 =  1.03 × 10−59 (𝑝 <  0.001) 

 

All tests indicated some statistically significant difference between the facial image quality scores for 

both the original and cropped image quality scores across the scenarios. Evidence of some statistical 



 

136 

significance between scenarios was followed by a statistical post hoc pairwise t-test for multiple 

comparisons of independent groups with a step-down method using Bonferroni adjustments for each 

device for both the original and cropped images. Figure 6.20 shows the box plot of the quality scores and 

the significance plot between scenarios for the quality scores with the Samsung Galaxy S9. 
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Table 6.6: Samsung Galaxy S9 Scenario Quality Score Statistics for ‘Face’ 

Device Scenario Image Participants Amount Average Median Min Max 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Sitting 

Original 25 139 0.45 (±0.05) 0.45 

0.35 

 

0.55 

 

Cropped 25 139 0.61 (±0.05) 0.61 

0.46 

 

0.73 

 

Standing 

Original 25 124 0.44 (±0.06) 0.45 

0.18 

 

0.55 

 

Cropped 25 123 0.59 (±0.05) 0.59 

0.44 

 

0.69 

 

Treadmill 

Original 24 121 0.43 (±0.05) 0.43 

0.35 

 

0.53 

 

Cropped 24 121 0.56 (±0.04) 0.56 

0.44 

 

0.65 

 

Corridor 

Original 24 122 0.46 (±0.06) 0.47 

0.33 

 

0.58 

 

Cropped 24 121 0.61 (±0.06) 0.6` 

0.47 

 

0.72 

 

Factor - Dark 

Original 25 151 0.21 (±0.10) 0.20 

0.00 

 

0.45 

 

Cropped 12 45 0.31 (±0.09) 0.35 

0.00 

 

0.57 
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Original Cropped 

  

  

Figure 6.20: Samsung Galaxy S9 Scenario Quality Scores Box Plots and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ 
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Table 6.7: Google Pixel 2 Scenario Quality Score Statistics for ‘Face’ 

Device Scenario Image Participants Amount Average Median Min Max 

G
o

o
gl

e 
P

ix
el

 2
 

Sitting 

Original 35 135 0.43 (±0.07) 0.43 

0.35 

 

0.66 

 

Cropped 35 131 0.62 (±0.05) 0.62 

0.52 

 

0.73 

 

Standing 

Original 33 116 0.44 (±0.07) 0.42 

0.31 

 

0.58 

 

Cropped 32 111 0.61 (±0.06) 0.62 

0.44 

 

0.73 

 

Treadmill 

Original 35 128 0.42 (±0.06) 0.41 

0.35 

 

0.58 

 

Cropped 35 127 0.58 (±0.06) 0.58 

0.48 

 

0.73 

 

Corridor 

Original 34 142 0.44 (±0.08) 0.44 

0.08 

 

0.70 

 

Cropped 34 142 0.62 (±0.07) 0.63 

0.16 

 

0.75 

 

Factor - Dark 

Original 35 192 0.24 (±0.11) 0.24 

0.03 

 

0.48 

 

Cropped 30 143 0.34 (±0.09) 0.35 

0.00 

 

0.50 
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Original Cropped 

  

  

Figure 6.21: Google Pixel 2 Scenario Quality Scores Box Plots and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ 
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Table 6.8: Apple iPhone 8 Scenario Quality Score Statistics for ‘Face’ 

Device Scenario Image Participants Amount Average Median Min Max 

iP
h

o
n

e 
8

 

Sitting 

Original 29 147 0.47 (±0.07) 0.48 

0.30 

 

0.60 

 

Cropped 29 147 0.62 (±0.05) 0.62 

0.53 

 

0.71 

 

Standing 

Original 28 140 0.46 (±0.08) 0.47 

0.00 

 

0.59 

 

Cropped 28 140 0.60 (±0.06) 0.60 

0.38 

 

0.70 

 

Treadmill 

Original 27 136 0.44 (±0.06) 0.44 

0.35 

 

0.63 

 

Cropped 27 136 0.56 (±0.05) 0.57 

0.40 

 

0.68 

 

Corridor 

Original 23 115 0.47 (±0.07) 0.47 

0.35 

 

0.60 

 

Cropped 23 115 0.63 (±0.06) 0.63 

0.51 

 

0.76 

 

Factor - Dark 

Original 24 119 0.39 (±0.07) 0.38 

0.08 

 

0.53 

 

Cropped 18 72 0.43 (±0.09) 0.42 

0.04 

 

0.63 
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Original Cropped 

  

  

Figure 6.22: Apple iPhone 8 Scenario Quality Scores Box Plots and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ 

 

6.4.2 Iris 

 

The IriTech IriShield provides an SDK that includes a bespoke algorithm for assessing the quality of an 

iris image. The quality scores are calculated based on several image quality metrics for iris recognition 

using IriCore (IriTech Iris SDK) [151]. IriTech’s image quality assessment algorithm has been proven as the 

most accurate one in IREX II. However, IriTech cannot share details of the calculations and algorithms 

because they are Critical Confidential and Proprietary Information. The metrics used for the calculation 

include full support of IQCE (IREX II) quality metrics and self-defined metrics: 

 

1. Scalar overall quality 

2. Gray level spread 

3. Iris radius 

4. Pupil iris ratio 

5. Usable iris area 

6. Iris-sclera contrast 

7. Iris-pupil contrast 

8. Iris sclera boundary shape 

9. Iris pupil boundary shape 

10. Margin 

11. Sharpness (defocus) 

12. Motion blur 

13. Signal-to-noise ratio 

14. Magnification 

15. Head rotation 

16. Gaze angle 

17. Interlace 

18. Vendor-defined metrics 
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Similarly, to analyse the genuine verification scores for face, the quality scores were examined against 

the scenario groups to check for any statistical significance. Table 6.9 shows the statistical results for the 

iris quality scores across the experimented scenario range. Unsurprisingly, the lowest quality scores were 

found to be for users who were attempting to operate the iris scanner through glasses 

 

Table 6.9: Scenario Quality Score Statistics for ‘Iris’ 

Device Scenario Participants Amount Average Median Max Min 

Ir
iT

ec
h

 Ir
iS

h
ie

ld
 

Sitting 60 338 71.2 (±29.4) 83 

100 

 

20 

 

Standing 59 297 77.6 (±27.0) 90 

100 

 

20.0 

 

Treadmill 59 291 81.3 (±25.7) 94 

100 

 

21 

 

Corridor 57 287 80.9 (±23.8) 90 

100 

 

20 

 

Factor - Dark 60 321 76.6 (±25.5) 86 

100 

 

20 

 

 

When comparing the quality scores against the verification scores, a slight positive correlation, as 

shown in Figure 6.23, was found. The trendline has the equation 𝑦 = 0.00𝑥 + (0.34). This means that 

higher iris quality scores had a slight decrease in the verification performance as the verification scores 

are present as dissimilarity scores. However, as noted from the equation, the gradient is almost flat (0), 

implying that potentially there is little to no effect between quality and verification observed. This impact 

could be caused by using infrared imaging to capture and compare the images. It is also worth noting that 

IriTech IriCore SDK was not used to produce the verification scores due to the closed commercial nature 

of the SDK. 
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Figure 6.23: Quality Scores vs Verification Scores for ‘Iris’ 

 

 

Figure 6.24: Scenario Quality Scores Box Plot for ‘Iris’ 

 

Figure 6.24 shows the box plot results for the quality scores of the iris images between the scenarios. 

Using a one-way ANOVA statistical test to assess the statistical significance of the quality scores between 

scenarios results in 𝐹(4, 1529)  =  [7.51] at 𝑝 =  5.00 × 10−6 (𝑝 <  0.001) indicating that the different 

scenarios have a statistically significant impact on the quality scores for the iris recognition system. 

Evidence of some statistical significance between scenarios was followed by a statistical post hoc pairwise 

t-test for multiple comparisons of independent groups with a step-down method using Bonferroni 

adjustments.  

 

Figure 6.25 shows the results of this post hoc analysis in the form of a significance plot highlighting 

the significant relationships between groups. The observation is that the significant differences come 

from comparing the sitting scenario with the other scenarios (except for our challenging condition). The 

probable cause for this relates to the user’s habituation with the device. Sitting was the first scenario that 

each user experienced for each trialled modality. Therefore, any errors or issues were encountered within 

this scenario. The results observed here likely reflect this difficulty with users familiarising themselves 

with the IriTech IriShield for the first time. 
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Figure 6.25: Scenario Quality Scores P-Value Significance Plot for ‘Iris’ 

 

6.5  The Effect of Motion 

 

The effect of motion on mobile biometric performance is a new area of interest, and we aim to begin 

to analyse the effect of this performance. Previously, the core factors identified ‘Diversity of Scenarios’ as 

factors that influence the systems performance and ‘motion’ and ‘stationary’ are vital differences within 

scenarios [45]. 

 

Using the collected data, we aim to analyse the effect of motion on biometric performance. The 

biometric match scores from our face, voice and iris recognition trials were analysed for this purpose. Two 

scenarios were categorised as stationary (Sitting and Standing), and two were categorised as motion 

(Treadmill and Corridor). 

 

6.5.1 Face 

Table 6.10 shows the statistical results of analysing the genuine verification and quality scores for both 

the original and cropped facial images between the stationary and motion scenarios. For each 

comparison, Welch’s T-Test was performed to test for statistical significance between the stationary and 

motion scenarios. In all cases, the statistical test indicates that the stationary and motion scenarios are 

significant, although slightly less so when comparing the quality of the original images. Figure 6.26 and 

Figure 6.27 show the T-Test histogram density distributions for the verification and quality scores, 

respectively, for the original and cropped images. 
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Table 6.10: Stationary vs Motion Scenario Statistics for ‘Face’ 

Variable Image Scenario Amount Average Median 

Verification 

Original 

Stationary 706 0.22 (±0.08) 0.21 

Motion 739 0.30 (±0.06) 0.30 

Welch's T-Test: 𝑡(1348.24) = −22.28, 𝑝 = 7.18 × 10−94 (P < 0.001) 

Cropped 

Stationary 657 0.22 (±0.08) 0.21 

Motion 657 0.31 (±0.07) 0.30 

Welch’s T-Test: 𝑡(1277.31) = −21.76, 𝑝 = 1.51 × 10−89 (P < 0.001) 

Quality 

Original 

Stationary 801 0.45 (±0.07) 0.45 

Motion 764 0.44 (±0.07) 0.44 

Welch's T-Test: 𝑡(1562.14) = 1.73, 𝑝 = 8.30 × 10−2 (P < 0.1) 

Cropped 

Stationary 791 0.61 (±0.05) 0.61 

Motion 762 0.59 (±0.06) 0.59 

Welch's T-Test: 𝑡(1497.35) = 5.17, 𝑝 = 2.62 × 10−7 (P < 0.001) 

 

Original Cropped 

  

Figure 6.26: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for Original and Cropped Images for ‘Face’ 
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Original Cropped 

  

Figure 6.27: Welch’s T-Test Comparing the Quality Scores for Stationary and Motion Scenarios for 

Original and Cropped Images for ‘Face’ 

 

6.5.2 Iris 

 

Table 6.11 shows the statistical results of analysing the genuine verification and quality scores for the 

iris images between the stationary and motion scenarios. For each comparison, Welch’s T-Test was 

performed to test for statistical significance between the stationary and motion scenarios. In all cases, 

the statistical test indicates that there is significance between the stationary and motion scenarios for 

both verification and quality, although slightly less so for the verification scores, which, as mentioned 

previously, is likely down to the capability of the hardware using infrared images over colour RGB images. 

Figure 6.28 and Figure 6.29 show the T-Test histogram distribution for the verification and quality scores 

for the stationary and motion scenarios observed for the iris data. 

 

Table 6.11: Stationary vs Motion Scenario Statistics for ‘Iris’ 

Variable Scenario Amount Average Median 

Verification 

Stationary 575 0.39 (±0.08) 0.41 

Motion 578 0.40 (±0.07) 0.42 

Welch’s T-Test: 𝑡(1086.89) = −2.86, 𝑝 = 4.38 × 10−3 (P < 0.01) 

Quality 

Stationary 635 77.4 (±28.4) 87.0 

Motion 578 81.1 (±24.8) 92.0 

Welch's T-Test: 𝑡(1208.73) = −4.51, 𝑝 = 7.26 × 10−6 (P < 0.001) 
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Figure 6.28: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for ‘Iris’ 

 

Figure 6.29: Welch’s T-Test Comparing the Quality Scores for Stationary and Motion Scenarios for ‘Iris’ 

 

6.5.3 Voice 

 

Table 6.12 shows the statistical results of analysing the genuine verification scores for the voice audios 

between the stationary and motion scenarios. A Welch’s T-Test was performed to test for statistical 

significance, and the statistical test indicates that the stationary and motion scenarios are significant for 

the verification scores. Figure 6.30 shows the T-Test histogram distribution for the verification scores for 

the stationary and motion scenarios observed for the voice audio data. 

 

Table 6.12: Stationary vs Motion Scenario Statistics for ‘Voice’ 

Variable Scenario Amount Average Median 

Verification 

Stationary 1092 0.76 (±0.16) 0.80 

Motion 1210 0.70 (±0.16) 0.73 

Welch's T-Test: 𝑡(2283.73) = 9.54, 𝑝 = 3.56 × 10−21 (P < 0.001) 
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Figure 6.30: Welch’s T-Test Comparing the Genuine Verification Scores for Stationary and Motion 

Scenarios for ‘Voice’ 

 

One of the novel factors that intruded on mobile biometrics is mobility. The concept that the biometric 

system can be operated while on the move is an area that will require continuous academic research. 

However, here the results indicate that motion does have a statistically significant for both verification 

and quality scores for several modalities and supports the inclusion of ensuring that motion-based 

scenario testing should be included within the performance framework. 

 

6.6  The Effect of the Environment 

 

Following on from motion is another concept that will require investigation when considering a mobile 

biometric system, the environment. Users can authenticate at any time and place, meaning that a 

performance testing framework should consider the environment when evaluating. 

 

The first data collection session focused on scenarios and challenging conditions in the form of 

influential factors. The second session focused on the environment by taking the session outdoors in an 

uncontrolled setting. This trial allows a unique look at how defined (weather, temperature) environmental 

factors can affect performance and further showcases how we can record operational results within the 

performance framework. 

 

6.6.1 Indoor vs Outdoor 

 

Looking into the performance effects of altering the environment from indoor to outdoor was possible 

with the inbuilt biometric systems of the tested smartphone devices.  

 

Table 6.13 shows the FNMR achieved by the participants between session one (Indoor) and session 

two (Outdoor). As noted in Chapter 5, the leading causes of false non-matches were human error and the 
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user cancelling the authentication rather than a biometric match failure. In addition, the participant 

enrolled again before starting the session with the baseline sitting scenario. 

 

There are some notable cases where the FNMR increased from the change in environment, most 

notably the Samsung Galaxy S9 iris, which had the highest FNMR across all the devices and modalities 

tested. Also, in the case of the two iPhones, the FNMR increased slightly within the outdoor environment 

than in the indoor environment. However, the remaining modalities saw a fall in the outdoor FNMR. 

Unfortunately, no firm conclusions can be drawn from this data, partly because of the limited number of 

participants involved. However, it is still worth highlighting the results achieved directly from the devices 

as this is typical of the data available from a device offering commercial access to the biometric system. 

 

Going further, using the captured modality samples allows the analysis of the indoor and outdoor 

environments using third-party libraries. The enrolment reference was the same baseline sitting sample 

used for all comparisons throughout this chapter. When comparing the data available, the factor 

scenarios were removed to make the comparison fairer and only compare the indoor and outdoor 

conditions without potential distractions from other external influences. 
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Table 6.13: False Non-Match Rate Results for the In-Built Biometric Systems of the Smartphone 

Devices Comparting Between Indoor and Outdoor Environments 

Device Modality Session Participants Amount Success FNMR (%) 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Fi
n

ge
rp

ri
n

t Indoors 25 548 488 11 

Outdoors 15 823 746 10 
Fa

ce
 

Indoors 25 486 448 8 

Outdoors 15 760 735 4 

Ir
is

 

Indoors 25 489 368 25 

Outdoors 15 683 411 40 

G
o

o
gl

e 
P

ix
el

 2
 

Fi
n

ge
rp

ri
n

t Indoors 35 772 694 11 

Outdoors 14 749 690 8 

iP
h

o
n

e 
8

 

Fi
n

ge
rp

ri
n

t Indoors 33 653 619 6 

Outdoors 14 664 615 8 

iP
h

o
n

e 
X

 

Fa
ce

 

Indoors 27 543 536 2 

Outdoors 13 658 623 6 

 

6.6.1.1 Face 

 

Table 6.14 shows the statistical results of analysing the genuine verification and quality scores for both 

the original and cropped facial images between the indoor and outdoor environments. For each 

comparison, Welch’s T-Test was performed to test for statistical significance between the indoor and 

outdoor environments. In all cases, the statistical test indicates that there is significance between the 

indoor and outdoor environments, although slightly less so when comparing the quality of the cropped 

images. Figure 6.31 and Figure 6.32 show the T-Test histogram density distributions for the verification 

and quality scores, respectively, for the original and cropped images. 
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Table 6.14: Indoor vs Outdoor Environment Statistics for ‘Face’ 

Variable Image Environment Amount Average Median 

Verification 

Original 

Indoor 1445 0.26 (±0.08) 0.27 

Outdoor 1827 0.34 (±0.08) 0.34 

Welch's T-Test: 𝑡(3010.35) = −28.73, 𝑝 = 1.33 × 10−160 (P < 0.001) 

Cropped 

Indoor 1314 0.26 (±0.08) 0.27 

Outdoor 1739 0.34 (±0.07) 0.33 

Welch’s T-Test: 𝑡(2555.11) = −25.79, 𝑝 = 1.53 × 10−130 (P < 0.001) 

Quality 

Original 

Indoor 1565 0.45 (±0.07) 0.45 

Outdoor 2017 0.46 (±0.07) 0.46 

Welch's T-Test: 𝑡(3380.91) = −6.64, 𝑝 = 3.58 × 10−11 (P < 0.001) 

Cropped 

Indoor 1553 0.60 (±0.06) 0.60 

Outdoor 1994 0.60 (±0.06) 0.61 

Welch's T-Test: 𝑡(3417.76) = −0.70, 𝑝 = 4.82 × 10−1 (P < 0.5) 

 

Original Cropped 

  

Figure 6.31: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for Original and Cropped Images for ‘Face’ 
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Original Cropped 

  

Figure 6.32: Welch’s T-Test Comparing the Quality Scores for Indoor and Outdoor Environments for 

Original and Cropped Images for ‘Face’ 

 

6.6.1.2 Iris 

 

Table 6.15 shows the statistical results of analysing the genuine verification and quality scores for the 

iris images between the indoor and outdoor environments. For each comparison, Welch’s T-Test was 

performed to test for statistical significance between the indoor and outdoor environments. In all cases, 

the statistical test indicates that there is significance between the indoor and outdoor environments for 

both verification and quality, although less so for the quality scores. Figure 6.33 and Figure 6.34 show the 

T-Test histogram distribution for the verification and quality scores for the indoor and outdoor 

environments, respectively, observed for the iris data. 

 

One observation worth noting when analysing the iris data is that when comparing scenarios, 

specifically between stationary and motion, the quality scores were impacted more than the verification 

scores. In contrast, the opposite is true when exploring the environmental impact. The verification 

impacts outdoor conditions more than the quality scores, which seem to be less affected. 

 

Table 6.15: Indoor vs Outdoor Environment Statistics for ‘Iris’ 

Variable Environment Amount Average Median 

Verification 

Indoor 1153 0.40 (±0.07) 0.41 

Outdoor 1370 0.42 (±0.04) 0.44 

Welch’s T-Test: 𝑡(1800.29) = −9.20, 𝑝 = 9.58 × 10−20 (P < 0.001) 

Quality 

Indoor 1213 77.5 (±27.0) 90.0 

Outdoor 1390 76.6 (±23.7) 86.0 

Welch's T-Test: 𝑡(2433.84) = 0.89, 𝑝 = 3.74 × 10−1 (P < 0.5) 
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Figure 6.33: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for ‘Iris’ 

 

Figure 6.34: Welch’s T-Test Comparing the Quality Scores for Indoor and Outdoor Environments for 

‘Iris’ 

 

6.6.1.3 Voice 

 

Table 6.16 shows the statistical results of analysing the genuine verification scores for the voice audios 

between the indoor and outdoor environments. A Welch’s T-Test was performed to test for statistical 

significance, and the statistical test indicates that there is significance between the indoor and outdoor 

scenarios for the verification scores. Figure 6.35 shows the T-Test histogram distribution for the 

verification scores for the indoor and outdoor environments observed for the voice audio data. 

 

Table 6.16: Indoor vs Outdoor Environment Statistics for ‘Voice’ 

Variable Environment Amount Average Median 

Verification 

Indoor 2302 0.73 (±0.16) 0.76 

Outdoor 2875 0.59 (±0.17) 0.61 

Welch's T-Test: 𝑡(5067.91) = 30.07, 𝑝 = 5.55 × 10−183 (P < 0.001) 
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Figure 6.35: Welch’s T-Test Comparing the Genuine Verification Scores for Indoor and Outdoor 

Environments for ‘Voice’ 

 

The comparison between indoor and outdoor environments indicates a significant difference across 

all tests with verification and quality scores across various modalities. This result helps to strengthen the 

inclusion of different environments trialled as part of the mobile biometric performance framework with 

the recommendation that some outdoor activity should be included within the operational testing stage. 

 

6.6.2 Weather 

 

Weather analysis collected a snapshot of the weather when the participant started the outdoor trial 

of the second data collection session. This snapshot was collected from BBC Weather App [153], in 

association with MeteoGroup [154], which indicates the current weather over the next hour, covering the 

outdoor trial duration. 

 

Table 6.17 shows the observed weather conditions for the total of the fifty-six participant trials who 

completed the second session. It is shown that most of the outdoor trials took place in dry, sunny 

conditions reflecting the time of the year that the trial took place, Summer. It is possible to see if and 

what the weather conditions have on the biometric performance using these groups, particularly in 

sample quality and match scores. 
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Table 6.17: Summary of Weather Conditions Experienced During Outdoor Trial 

Wet Conditions Heavy Rain Showers Light Rain Showers Light Rain 

Snapshot Sample 

   
Participants 1 9 4 

    

Dry Conditions Light Cloud Sunny Intervals Sunny 

 

   
Participants 1 25 16 

 

6.6.2.1 Face 

 

Table 6.18 shows the statistical summary of the weather analysis on the genuine verification scores 

for the face. Figure 6.31 presents the data as a box plot and the significance plot showing a statistical 

significance between weather conditions for the verification scores. 

 

Table 6.18: Weather Condition Genuine Verification Score Statistics for ‘Face’ 

Weather Cropped Participants Amount Mean (µ) Median Min Max 

Heavy Rain Showers 
Original 1 48 0.34 (± 0.03) 0.34 0.29 0.40 

Cropped 1 40 0.35 (± 0.03) 0.35 0.29 0.41 

Light Rain Showers 
Original 5 260 0.32 (± 0.06) 0.31 0.23 0.85 

Cropped 5 253 0.31 (± 0.04) 0.31 0.21 0.45 

Light Rain 
Original 4 167 0.37 (± 0.06) 0.37 0.26 0.59 

Cropped 4 147 0.38 (± 0.06) 0.36 0.26 0.62 

Light Cloud 
Original 1 51 0.28 (± 0.04) 0.28 0.23 0.40 

Cropped 1 43 0.29 (± 0.03) 0.28 0.23 0.39 

Sunny Intervals 
Original 20 936 0.35 (± 0.08) 0.35 0.17 0.88 

Cropped 20 907 0.34 (± 0.07) 0.34 0.17 0.58 

Sunny 
Original 14 616 0.34 (± 0.09) 0.33 0.19 0.85 

Cropped 14 582 0.34 (± 0.08) 0.32 0.19 0.60 

 



 

157 

Original Cropped 

  

  

Figure 6.36: Weather Condition Genuine Verification Scores Box Plot and P-Value Significance Plots for 

Original and Cropped Images for ‘Face’ 

 

Using a one-way ANOVA statistical test to assess the statistical significance of the genuine verification 

scores between weather conditions results in 𝐹(5, 2072)  =  [17.45] at 𝑝 =  5.80 × 10−17 (𝑝 <  0.001) 

for the original images and 𝐹(5, 1966)  =  [23.80] at 𝑝 =  2.63 × 10−23 (𝑝 <  0.001) meaning that 

weather conditions have a statistically significant impact on the genuine verification scores for a face 

recognition system. 
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Table 6.19: Weather Condition Quality Score Statistics for ‘Face’ 

Weather Cropped Participants Amount Mean (µ) Median Min Max 

Heavy Rain Showers 
Original 1 50 0.52 (± 0.06) 0.54 0.38 0.59 

Cropped 1 45 0.64 (± 0.02) 0.64 0.59 0.70 

Light Rain Showers 
Original 9 470 0.51 (± 0.07) 0.49 0.37 0.71 

Cropped 9 350 0.60 (± 0.06) 0.59 0.35 0.73 

Light Rain 
Original 4 187 0.41 (± 0.06) 0.39 0.20 0.56 

Cropped 4 170 0.57 (± 0.07) 0.55 0.37 0.71 

Light Cloud 
Original 1 51 0.51 (± 0.03) 0.51 0.43 0.56 

Cropped 1 46 0.63 (± 0.03) 0.63 0.57 0.68 

Sunny Intervals 
Original 25 1270 0.46 (± 0.08) 0.46 0.07 0.67 

Cropped 25 1059 0.61 (± 0.06) 0.61 0.35 0.80 

Sunny 
Original 16 755 0.46 (± 0.07) 0.46 0.20 0.65 

Cropped 16 680 0.59 (± 0.08) 0.59 0.36 0.80 

 

Original Cropped 

  

  

Figure 6.37: Weather Condition Quality Scores Box Plots and P-Value Significance Plots for Original 

and Cropped Images for ‘Face’ 

 

Using a one-way ANOVA statistical test to assess the statistical significance of the original quality 

scores between weather conditions results in 𝐹(5, 2777)  =  [70.81] at 𝑝 =  6.57 × 10−70 (𝑝 <  0.001) 

and the cropped images results in 𝐹(5, 2333)  =  [20.72] at 𝑝 =  2.63 × 10−20 (𝑝 <  0.001)  meaning 
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that weather conditions have a statistically significant impact on the uncropped quality scores for a face 

recognition system. 

 

6.6.2.2 Iris 

 

The same approach for analysing the impact of the weather was performed against the obtained iris 

data. Table 6.20 shows the overall statistics for the genuine verification score data for the inferred iris 

image captured using the IriTech IriShield. In contrast, outdoors during the second data collection session 

and Figure 6.38 shows this in a box plot.  

 

Using a one-way ANOVA statistical test to assess the statistical significance of the verification scores 

between weather conditions results in 𝐹(4, 1365)  =  [31.26] at 𝑝 =  6.14 × 10−25 (𝑝 <  0.001) 

indicating that the weather conditions statistically impact the genuine verification scores for the iris 

recognition system. The evidence of some statistical significance between weather conditions was 

followed by a statistical post hoc pairwise t-test for multiple comparisons of independent groups with a 

step-down method using Bonferroni adjustments.  

 

Figure 6.39 shows the results of this post hoc analysis in the form of a significance plot highlighting 

the significant relationships between groups. The significance is present between the ‘wet’ and ‘dry’ 

conditions as demonstrated by the “Light Rain Showers” and “Sunny Intervals” having significance 

compared to the other trialled weather conditions and more significantly with each other. 

 

Table 6.20: Weather Condition Genuine Verification Score Statistics for ‘Iris’ 

Weather Participants Amount Mean (µ) Median Min Max 

Light Rain Showers 3 111 0.42 (± 0.02) 0.43 0.36 0.46 

Light Rain 2 76 0.42 (± 0.03) 0.42 0.34 0.46 

Light Cloud 1 53 0.42 (± 0.01) 0.41 0.40 0.46 

Sunny Intervals 13 635 0.41 (± 0.06) 0.43 0.20 0.48 

Sunny 10 495 0.44 (± 0.02) 0.44 0.36 0.47 
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Figure 6.38: Weather Condition Genuine Verification Scores Box Plot for ‘Iris’ 

 

 

Figure 6.39: Weather Condition Genuine Verification Scores P-Value Significance Plot for ‘Iris’ 

 

Additionally, analysing the iris quality score against the weather conditions produces the statistical 

data shown in Table 6.21 and the box plot Figure 6.40. Using a one-way ANOVA statistical test to assess 

the statistical significance of the quality scores between weather conditions results in 𝐹(4, 1385)  =

 [10.42] at 𝑝 =  2.55 × 10−8 (𝑝 <  0.001) indicating that the different weather conditions have a 

statistically significant impact on the quality scores for the iris recognition system. The evidence of some 

statistical significance between weather conditions was followed by a statistical post hoc pairwise t-test 

for multiple comparisons of independent groups with a step-down method using Bonferroni adjustments.  

 

Figure 6.41 shows the results of this post hoc analysis in the form of a significance plot highlighting 

the significant relationships between groups. The observation is that significance is present between the 

‘wet’ and ‘dry’ conditions as demonstrated by the “Light Rain Showers” and “Sunny Intervals” having 

significance compared to the other trialled weather conditions and more significantly with each other. 
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Table 6.21: Weather Condition Quality Score Statistics for ‘Iris’ 

Weather Participants Amount Mean (µ) Median Min Max 

Light Rain Showers 3 111 86 (± 22) 97 23 100 

Light Rain 2 96 79 (± 23) 88 36 100 

Light Cloud 1 53 89 (± 14) 92 39 100 

Sunny Intervals 13 635 75 (± 25) 85 20 100 

Sunny 10 495 74 (± 23) 80 23 100 

 

 

Figure 6.40: Weather Condition Quality Scores Box Plot for ‘Iris’ 

 

 

Figure 6.41: Weather Condition Quality Scores P-Value Significance Plot for ‘Iris’ 

 

6.6.2.3 Voice 

 

Using a one-way ANOVA statistical test to assess the statistical significance of the genuine verification 

scores between weather conditions results in 𝐹(5, 2869)  =  [16.54] at 𝑝 =  3.95 × 10−16 (𝑝 <  0.001) 

indicating that the weather conditions significantly impact the quality scores for the iris recognition 

system. The evidence of some statistical significance between weather conditions was followed by a 
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statistical post hoc pairwise t-test for multiple comparisons of independent groups with a step-down 

method using Bonferroni adjustments.  

 

Table 6.22: Weather Condition Genuine Verification Score Statistics for ‘Voice’ 

Weather Participants Amount Mean (µ) Median Min Max 

Heavy Rain Showers 1 50 0.58 (± 0.09) 0.58 0.16 0.74 

Light Rain Showers 9 468 0.53 (± 0.19) 0.51 0.06 0.92 

Light Rain 4 204 0.54 (± 0.18) 0.60 0.10 0.80 

Light Cloud 1 50 0.60 (± 0.06) 0.60 0.48 0.73 

Sunny Intervals 25 1284 0.60 (± 0.16) 0.61 0.02 0.93 

Sunny 16 819 0.61 (± 0.18) 0.64 0.09 0.91 

 

 

Figure 6.42: Weather Condition Genuine Verification Scores Box Plot for ‘Voice’ 

 

 

Figure 6.43: Weather Condition Genuine Verification Scores P-Value Significance Plot for ‘Voice’ 

 

 



 

163 

6.7  Usability 

 

This section will explore usability by examining three key metrics to form an understanding of how 

users are interacting with the mobile biometric system: 

 

• Transactional Time – The total time taken from the biometric prompt being presented to the 

user asking for the presentation of the biometric sample until a decision is made. 

• Accuracy (1-FNMR) – The system’s accuracy is equivalent to removing the false non-match rate 

from all the errors that occur, indicating how often the system performs as expected and 

successfully verifies the user. 

• Satisfaction – The user’s satisfaction is an opinion generated from the survey completed by our 

participants using a Likert scale ranging from 0 (completely unsatisfied) to 7 (completely 

satisfied). 

 

From the devices trialled as part of the research, six combinations of device and biometric modality 

were present. They had a “developer” level of access, allowing the collection of the usability metrics 

defined above. From the indoor session and scenario, Table 6.23 shows the usability metrics obtained 

from the study. In addition, the usability metrics presented in Table 6.24 were captured from the outdoor 

session. 

 

Seeing the transactional time can also reveal some possible habituation effects, as with all the tested 

modalities, the first scenario presented to the participants (sitting) is also the one which boosts the 

highest average transactional time, with the presented influencing factors coming in second. 
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Table 6.23: Usability Metrics for Smartphone Device Modalities for Session One (Indoor) Scenarios 

Device Modality Scenario 
Mean Transactional 

Time (s) 

Accuracy (1-

FNMR) (%) 
Satisfaction (#) 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Fi
n

ge
rp

ri
n

t 
Sitting 2.16 74 4.96 

Standing 1.42 94 4.96 

Treadmill 1.32 96 4.96 

Corridor 1.10 93 4.96 

Factor - Wet 3.30 23 4.96 

Fa
ce

 

Sitting 3.16 92 5.08 

Standing 1.39 90 5.08 

Treadmill 1.38 91 5.08 

Corridor 1.37 93 5.08 

Factor - Dark 0.75 99 5.08 

Ir
is

 

Sitting 3.56 72 3.56 

Standing 2.65 83 3.56 

Treadmill 3.42 73 3.56 

Corridor 3.59 71 3.56 

Factor - Dark 3.17 75 3.56 

G
o

o
gl

e 
P

ix
el

 2
 

Fi
n

ge
rp

ri
n

t 

Sitting 1.55 86 5.20 

Standing 1.02 90 5.20 

Treadmill 1.13 87 5.20 

Corridor 1.08 95 5.20 

Factor - Wet 5.45 20 5.20 

iP
h

o
n

e 
8

 

Fi
n

ge
rp

ri
n

t 

Sitting 1.63 96 5.06 

Standing 1.16 96 5.06 

Treadmill 1.32 93 5.06 

Corridor 1.19 91 5.06 

Factor - Wet 7.06 0 5.06 

iP
h

o
n

e 
X

 

Fa
ce

 

Sitting 1.13 99 5.11 

Standing 0.81 99 5.11 

Treadmill 0.86 98 5.11 

Corridor 0.86 97 5.11 

Factor - Dark 1.14 97 5.11 
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Table 6.24: Usability Metrics for Smartphone Device Modalities for Session Two (Outdoor) Scenarios 

Device Modality Mean Transactional Time (s) 
Accuracy (1-FRR) 

(%) 
Satisfaction (#) 

Sa
m

su
n

g 
G

al
ax

y 
S9

 

Fi
n

ge
rp

ri
n

t 

2.16 74 4.96 

1.42 94 4.96 

1.32 96 4.96 

1.10 93 4.96 

3.30 23 4.96 
Fa

ce
 

3.16 92 5.08 

1.39 90 5.08 

1.38 91 5.08 

1.37 93 5.08 

0.75 99 5.08 

Ir
is

 

3.56 72 3.56 

2.65 83 3.56 

3.42 73 3.56 

3.59 71 3.56 

3.17 75 3.56 

G
o

o
gl

e 
P

ix
el

 2
 

Fi
n

ge
rp

ri
n

t 

1.55 86 5.20 

1.02 90 5.20 

1.13 87 5.20 

1.08 95 5.20 

5.45 20 5.20 

iP
h

o
n

e 
8

 

Fi
n

ge
rp

ri
n

t 

1.63 96 5.06 

1.16 96 5.06 

1.32 93 5.06 

1.19 91 5.06 

7.06 0 5.06 

iP
h

o
n

e 
X

 

Fa
ce

 

1.13 99 5.11 

0.81 99 5.11 

0.86 98 5.11 

0.86 97 5.11 

1.14 97 5.11 

 

6.8  Tailored Impostors Investigation 

 

To examine the impact of this tailoring approach. The sample tailoring algorithm will try to locate 

tailors within each group at random. When all tailors within a group are exhausted, they will begin to 
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select randomly from the group above. As the dataset is small, tailoring is locating tailors from less 

concentrated groups in the selection process. 

  

The impact of impostors was analysed in the baseline (Sitting) scenario to minimise any interference 

from external factors. Using voice recording obtained from the Samsung Galaxy S9, we could analyse the 

impact of the different tailoring processes’ Gender’ and ‘GenderAge’ to analyse the performance 

variations, precisely the false match rate. Figure 6.44 and Table 6.25 shows the results of this analysis. 

 

 

Figure 6.44: DET Curve Showing Performance Alterations for Varying’ Tailoring’ Methods 

  

Table 6.25: Statistical Tests on Varying Impostor ‘Tailoring’ Processes 

 Mean Match Score Independent T-Test 

Impostor 

Amount 
Random Gender 

Gender + Age 

Group 

(Random, 

Gender) 

(Random, 

Gender + 

Age Group) 

(Gender, 

Gender + 

Age Group) 

1 0.57 ( 0.13) 0.71 ( 0.09) 0.68 ( 0.13) P<0.001 P<0.001 P<0.025 

2 0.56 ( 0.13) 0.66 ( 0.11) 0.66 ( 0.13) P<0.001 P<0.001 P<0.991 

3 0.60 ( 0.14) 0.66 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.494 

4 0.59 ( 0.15) 0.67 ( 0.11) 0.67 ( 0.13) P<0.001 P<0.001 P<0.519 

5 0.59 ( 0.13) 0.67 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.496 

6 0.60 ( 0.14) 0.66 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.253 

7 0.59 ( 0.13) 0.67 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.815 

8 0.59 ( 0.13) 0.67 ( 0.11) 0.67 ( 0.12) P<0.001 P<0.001 P<0.683 

9 0.59 ( 0.13) 0.67 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.662 

10 0.59 ( 0.13) 0.67 ( 0.12) 0.67 ( 0.12) P<0.001 P<0.001 P<0.946 

 

The results indicate a statistically significant difference between the average match scores obtained 

using randomly selected impostors based on gender and between randomly selected impostors and those 

selected based on gender and age group. However, it is not clear that there is a statistically significant 
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difference between impostors selected based on gender and those selected based on gender and age. 

Therefore, it can be stated that the impostor’s gender has more of an impact on performance than the 

age group, but this is due to the sample size and age groups being unbalanced. 

 

The results provided here are beginning to present a picture as to how a tailored impostors approach 

could work at exploiting the known weakness of the system to bring out an above-average false match 

rate and thus provide a deeper understanding of the potential securing risk of a worst-case passive 

impostor attack on the biometric system. 

 

6.9  Summary 

 

This chapter has introduced the results of the experimentation work when applied to the core factors 

and performance framework. In doing so, the argument for including the core factors has been 

strengthened, and the concepts of the performance framework have been demonstrated.  

 

An illustrative example of the impact of the ‘Scenarios’ was shown for each tested modality using 

third-party open-source biometric algorithms against the captured data, including a comparison of 

stationary and motion scenarios. This chapter has also shown the ‘Environment’ core factor results by 

exploring the effect of various weather conditions and temperatures. This observation was achieved by 

exploring the obtained images’ verification and quality scores (Face and Iris). 

 

In providing these results, we have also begun to demonstrate part of the stages of the theoretical 

framework, including “Stage Two – Target Scenario Evaluation” and “Stage Six – Operational Evaluation”, 

and demonstrated the impact of motion and the environment on the performance by showcasing 

statistically significant results meaning the impact and performance in these scenarios and conditions 

should be considered as part of the performance framework. 

 

The next chapter will explore an approach designed to mitigate performance degradation in mobile 

devices from previously identified factors, focusing on movement patterns using the same collected data. 

In doing the tailored impostor, the approach was trialled further. 
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7 The Adaptive Threshold Decision 

 

7.1  Introduction 

 

Biometric facial recognition is a valuable security tool, allowing authentication with little interaction 

from the users’ perspective since images can be captured from a distance and while in motion, requiring 

a camera. As a result, technology has advanced in recent years with its incorporation into mobile devices. 

This chapter develops a proof-of-concept adaptive decision model for mobile devices, which can 

outperform a static threshold applied to all environments and usage conditions. The motivation for this 

work was exploring the research question of how any performance deterioration can be mitigated. The 

performance assessment framework help informs and discover the approach developed in this chapter 

and serves as a potential solution to help mitigate performance deterioration in mobile biometric systems. 

The work present in this chapter is an adapted version of previously published work [155]. 

 

Section 7.2  introduces related work regarding adaptive methods and the inspiration for the proposed 

method. Section 7.3 —7.4  introduces the data collection and discuss how movement scenario impact 

recognition performance. Section 7.5  introduces the theory behind an adaptive framework to better deal 

with changing movement patterns. Section 7.6  discuss the approach to a detection algorithm for 

scenarios. Sections 7.7 —7.8  shows the experimental work and results in testing the adaptive threshold 

algorithm. Finally, Section 7.9 —7.10  provides a concluding discussion and summary and suggests future 

work. 

 

7.2  Adaptive Approaches in Biometrics 

 

Facial recognition has its share of criticism as campaigners claim the current technology is inaccurate, 

intrusive and infringes on an individual’s privacy rights [156]. As a result, several locales have recently 

implemented or are considering a ban on fixed-system facial recognition technology, including San 

Francisco [50] and the European Union [156]. Furthermore, on October 05 2021, the European Union 

recently went as FMR to ban face recognition for mass police surveillance, citing bias and discrimination 

concerns and an individual’s right to privacy [157]. This move is significant because it “sends a strong 

signal for negotiations of the first-ever EU rules on AI systems” and creates the necessary starting point 

“to preserve our freedoms and create a human-centric legal framework for AI”. Furthermore, the 

framework helps certify that it fits its purpose of supporting broad technology adoption. One way to 

achieve this would be to ensure high recognition accuracy across scenarios consistently. 

 

With a camera installed on most smartphone devices, it is increasingly convenient to take a self-

portrait image (‘selfie’) for facial recognition. In addition, service providers are increasingly asking for 
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users to submit an ID document photo alongside a selfie captured on a mobile device to authenticate 

their claimed identity as part of Electronic Identity Verification (eIDV) services [158]. Furthermore, 

smartphones now increasingly incorporate facial technology allowing users to verify themselves and 

access services and resources within the device and beyond. 

 

Static biometric systems, fixed in position, such as airport eGates, have been used. In these scenarios, 

the operators have great control over the environment to help optimise recognition performance. 

However, the same is not valid with mainstream mobile biometrics, where the operator has no control 

over the operational environment. It, therefore, stands to reason that those mobile biometrics would 

require a more adaptive approach to handling the authentication system. 

 

The concept of adaptive biometrics systems is not new, as Pisani et al. [159] have comprehensively 

reviewed adaptive biometrics systems. However, most approaches work by updating the biometric 

reference over time, usually to account for template ageing. Pisani et al. note how “there is still a limited 

number of studies that evaluate adaptive biometric systems on mobile devices” and how researchers 

“should also acquire data from the sensors on these devices over time”. Here the idea is to take a 

condition-sensitive (and quality index) adaptation criterion approach based on Pisani et al. taxonomy. 

 

The method intends not to alter the sample or the probe but to utilise the mobile device’s sensor 

information to determine the operation scenario and set thresholds accordingly. Techniques utilising the 

sensors embedded into smartphones and combining them with the biometric authentication process are 

present in the literature, for example, including the creation of behavioural biometric data to assess 

unique traits to identify individuals either independently or as part of a multimodal system with another 

physical or behavioural biometric trait to produce accurate biometric systems, commonly for continuous 

authentication purposes [160]–[162]. Another involvement of smartphone sensor data is liveness 

detection [163] and defending against presentation attacks. For example, Chen et al. [164] demonstrated 

a presentation attack detection approach using motion sensors to defend against 2D media attacks and 

virtual camera attacks. 

 

The need for a more adaptive recognition framework is present in the literature as aspects like 

movement and portability of the device can vary between enrolment and recognition phases [165]. 

Chapter 3 highlighted the potential factors affecting a mobile biometric system and highlighted ‘Scenarios’ 

as one of these factors by categorising them under ‘Stationary’ and ‘Motion’. Gutta et al. [166] have filed 

patents that suggest work and ideas relating to an adaptive biometric threshold, including a light intensity 

sensor to assist in adjusting the threshold value in a facial recognition system. Similarly, Brumback et al. 

[167] (Fitbit Inc) have also filed patents for continuous authentication on wearable technologies such as 

smartwatches and fitness trackers. However, they provide no practical examples of the proposals for 

mobile systems. Castilllo-Guerra et al. [168] proposed an adaptive threshold estimation for voice 

verification systems allowing the threshold to adapt to specific speakers. Similarly, Mhenni et al. [169] 
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proposed using an adaptive strategy specific to each category of users while investigating Doddington’s 

Zoo classification of user keystroke dynamics. 

 

Lunerti et al. [170] showed that for face verification in a mobile environment, “it can be possible to 

ensure good sample quality and high biometric performance by applying an appropriate threshold that 

will regulate the amplitude on variations of the smartphone movements during facial image capture”. 

This chapter aims to contribute to showing how an adaptive approach can be the answer to having an 

“appropriate threshold” and begin to explore the gap in mobile biometric adaptive systems by exploring 

the potential impact of motion scenarios on recognition performance. The aim is to answer the following 

question: can mobile biometric recognition performance and security be improved by using an adaptive 

approach to the decision component using knowledge of the operating scenario? 

 

7.3  Adaptive Threshold Data Collection 

 

The same data collected from Chapter 5 was used to trial this approach, and this section will briefly 

identify the data relevant for the remainder of this chapter. This chapter will focus on the results achieved 

using the Android-based Samsung Galaxy S9 smartphone device. A custom application was developed to 

collect and capture data from this device to mimic biometric authentication. Using the Samsung Galaxy 

S9, the collected data included a ‘selfie’ image taken by the participant in the scenarios and background 

metadata obtained from the multitude of sensors (including accelerometer, gyro sensor and geomagnetic 

sensor) within the device. The device features an 8-megapixel (1.22 𝜇, f/1.7) front-facing camera. 

However, the default picture size captures images at 5.2 megapixels for the study. Therefore, the 

resolution of the images was 2640x1980. 

 

Twenty-five participants completed this part of the study during one session visit. The participant was 

tasked with operating the device in a variety of scenarios, the order of which was: 

 

• Sitting - Participant sat down in a chair. 

• Standing - Participant standing. 

• Treadmill - Participant walking at a steady speed on a treadmill (speed set by the participant). 

• Corridor - Participant walking at a steady speed down a corridor. 

 

The aim was to mimic likely scenarios for smartphone use, except the treadmill, where the aim was to 

create a controlled walking scenario. The intention was to ensure the tasks were not too strenuous due 

to the repetitive nature of the repeat biometric transactions. The theory tests the approach on indoor 

scenarios in typical biometric authentication environments (room lighting), allowing the work to focus 

specifically on motion and movement. However, ideally, the approach could be adapted to other 

scenarios and factors in the future. 
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In each scenario, the participant held the device with their own hands as they usually would when 

operating a smartphone device. The participants were pre-enrolled at the start of the session using the 

device’s biometric system while seated. The participants took a ‘selfie’ image for each scenario. There 

were no recommendations on positioning the face within the image; the only requirement was that the 

face was within the image. An additional part of the experiment was to see the impact on the device’s 

facial recognition system. 

 

Once the participant had captured the image, they remained in the same position, including the 

handling of the device. They were then presented with the device’s in-built Android BiometricPrompt 

[171] to perform an authentication. While this was happening, the device would simultaneously collect 

the metadata (sensors, including Gyroscope, Linear Acceleration, Magnetic Field, and Orientation) from 

the moment the device’s face authentication started until the process had finished utilising the abilities 

of Android SensorManager [172].  

 

Because the face recognition authentication can be over within a second, the sensor delay was set to 

0.005s to collect as much sensor data as possible. However, the documentation does note that “this is 

only a hint to the system. Events may be received faster or slower than the specified rate”. 

 

Figure 7.1 shows examples of one captured ‘selfie’ image from each tested scenario, taken by a single 

participant in the study. Table 7.1 displays the number of images collected from each scenario and how 

many of those the facial recognition algorithm could detect a face. The work in this paper uses images 

where the algorithm detected a face. Table 7.2 shows the breakdown of the participants' ages. 76% of the 

participants who used the Samsung Galaxy S9 were under 30, as a student population was recruited and 

used for this study. In addition, the participants had a gender split of 52% Female to 48% Male. 

 

    

(a) Sitting (b) Standing (c) Treadmill (d) Corridor 

Figure 7.1: One example image from each scenario obtained from one participant during the first 

session 
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Table 7.1: Number of images collected from each scenario 

Scenario Images Face Detected No Face Detected 

Sitting 139 139 0 

Standing 124 123 1 

Treadmill 121 116 5 

Corridor 122 120 2 

 

Table 7.2: Participant Age Ranges 

Age Ranges Number of Subjects 

19-21 3 

22-24 8 

25-29 8 

30-39 4 

40-49 2 

Total 25 

 

7.4  Scenario Performance 

 

A prototype was created to test whether the adaptive approach has the potential to outperform a 

traditional system. Unfortunately, commercial smartphone devices have biometric components tightly 

locked down for security and privacy concerns. Therefore, an open-source software algorithm was used 

to help create a prototype of how a potential adaptive system could perform and function. The open-

source ‘face-recognition’ python library (version 1.3.0) by Geitgey [133], [173] was used as the face 

recognition algorithm for the prototype. This library utilises the machine learning library ‘Dlib’. 

 

The first sitting attempt was used as the enrolment reference for each user to act as the base-case 

scenario. Then, the remaining images from all the scenarios were used as verification probes. 114 

verification probes for the sitting scenario, 123 for the standing scenario, 116 for the treadmill scenario, 

and 120 for the corridor scenario were used. Next, the ‘face-recognition’ library calculated and returned 

the dissimilarity distance scores (between 0 and 1) of a given enrolled sample and a new verification 

probe. Here, a high score indicates that two images are unlikely to be of the same person (no match), and 

a low score indicates that the two images are likely to be of the same person (match). The library 

recommends a decision threshold of 0.6, meaning all comparisons that score 0.6 or below are considered 

the same person, and anything above is different. 

 

Chapter 3 showed how scenarios could impact the false non-match rate of the Samsung Galaxy S9, 

and Chapter 5 showed the performance results from the device. However, it is also noted how additional 

factors could have caused this impact. Finally, as an exploratory investigation, the dissimilarity score 
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information provided by this library was used and investigated if a need existed for having a different 

threshold for each scenario by examining the performance observed within each. This potential need can 

be seen by exploring how the dissimilarity scores from genuine transactions vary in each scenario. Table 

7.3 shows this information along with the standard deviation and shows that the average dissimilarity 

score for the stationary scenarios was 0.21 (±0.08). 

In contrast, the average score for the in-motion scenarios was 0.30 (±0.06). It indicates a 43% score 

increase from a user in a stationary scenario to being in a motion scenario. The unpaired two-tailed t-test 

gives a t-score equal to 13.84 with an associated p-value of less than 0.00001, demonstrating a statistically 

significant difference between the genuine distance scores in stationary and motion scenarios. Similar 

statistical tests proved that the difference between the impostor distance scores in this instance was not 

statistically significant. It can also be seen that the baseline recognition performance varies across 

scenarios. 

 

Here four impostors for each genuine user were used as discussed in Section 7.7.1, and the largest 

FMR occurs in the same scenario used for the enrolment. However, this is also the scenario with a mean 

dissimilarity score significantly lower than the baseline threshold of 0.6, highlighting the problem and 

effect of using impostor probes taken in the same scenario on the false match rate. Therefore, it is 

believed that an adaptive threshold could provide greater security by restricting these passive impostor 

attacks. These findings highlight reasons for the introduction of unique thresholds into biometric 

algorithms. 

 

Table 7.3: Performance variations for each tested scenario 

 Genuine Mean Dissimilarity Score Baseline Recognition Performance 

Sitting 0.16 (±0.07) 
FNMR: 0.00 
FMR: 11.30 

Standing 0.25 (±0.06) 
FNMR: 0.00 
FMR: 9.04 

Treadmill 0.31 (±0.07) 
FNMR: 0.00 
FMR: 8.70 

Corridor 0.29 (±0.05) 
FNMR: 0.00 
FMR: 9.41 

 

7.5  The Adaptive Scenario Threshold 

 

The adaptive threshold approach alters a biometric system’s ‘Decision’ (‘Matcher’) component. In a 

traditional static system, this component is relatively straightforward. First, the stored enrolment 

reference is compared to an additionally provided probe and receives a match score from the system to 

determine how similar or dissimilar the two are. Then, having received this match score, a pre-defined 

threshold can allow genuine users to access the system while keeping as many impostors from accessing 

the system as possible. The aim is to set a threshold to keep the False Non-Match Rate (FNMR), the 
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percentage of genuine people rejected by the system, and False Match Rate (FMR), the percentage of 

impostors accepted by the system, as low as possible. The equal error rate (EER) is the value where the 

FNMR and FMR are identical, with a low equal error rate indicating a high accuracy for the biometric 

system. Figure 7.2 shows an example of a static system’s ‘Decision’ component. 

 

 

Figure 7.2: A traditional matcher/decision of a biometric system 

 

This method addresses whether it can improve overall biometric performance by adapting the 

threshold based on information from the authentication environment. When using a traditional (static) 

biometric system, the evaluators can create an appropriate environment and provide directions to users 

to help ensure optimal usage, giving the best chance of successful authentication. However, with the 

unpredictability of the environments, scenarios, and conditions in which mobile devices are operated, 

and hence where the biometric authentication can occur, can the system alter the decision threshold 

instead to allow optimal performance? The chapter presents how this framework could function in Figure 

7.3. Here it is illustrated that instead of having a single threshold to cover the entire spectrum of 

environments and scenarios, as depicted in Figure 7.2, the system can have a separate limit set for 

specified situations, such as in this example using ‘Stationary’ and ‘Motion’. This concept is the first work 

to utilise smartphone sensor data to classify scenarios to create an adaptive biometric system for mobile 

devices by adjusting the threshold accordingly. 
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Figure 7.3: An example framework for a simplified adaptive threshold decision for a biometric system 

 

In using an adaptive threshold, the expectation is to tailor the authentication experience to better deal 

with changing movement patterns and allow for enhanced security and user satisfaction. The primary 

driver is to allow genuine users unobstructed access while keeping out passive impostors. Therefore, using 

appropriate impostors while designing and testing the framework is vital. The approach to this is discussed 

further in Section 7.7.1. 

 

7.6  Automatic Scenario Detection 

 

A methodology is required to know in what scenario the device user was performing the 

authentication to achieve this adaptive threshold. The first step is distinguishing between the ‘Stationary’ 

and ‘Motion’ scenarios. 

 

Five features were used for the classifiers, including four in-build mobile sensors, two motion-based 

sensors, two position-based sensors and a facial image quality assessment. The motion sensors were 

Gyroscope and Linear Acceleration. The position sensors were Magnetometer (Magnetic Field) and phone 

Orientation. All these sensors operate on an 𝑥, 𝑦, and 𝑧 axis system, and the data from each channel was 

collected. The data collection application began collecting the sensor data from the moment the 

participant started the authentication until the transaction was complete (successful authentication, 

timeout, attempt limit exceeded). Because the sensor data was collected during the authentication 

process alone, the entire sample was for analysis. In addition, the participant remained within the 

scenario when the authentication process began, meaning outliers are not expected in the data from the 

participants preparing themselves. 

 

The fifth and final feature was the quality assessment of the ‘selfie’ image. This information came from 

an open-source library known as ‘FaceQnet’ and uses a Convolutional Neural Network to “predict the 

suitability of a specific input image for face recognition purposes” [150]. FaceQnet provides a score for an 
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input image between 0 and 1, where 0 means the worst quality and 1 means the best quality. In addition, 

FaceQnet recommends cropping images to the facial region first before assessing them. Using the open-

source Multi-task Cascaded Convolutional Neural Networks (MTCNN) library based on the work provided 

by Zhang et al. [135], [174] to achieve this. On the rare occasion that the MTCNN algorithm could not 

produce a cropped version of the image (usually because the facial region was already over the frames of 

the images), the original un-cropped image was used instead. 

 

The data in the feature set was processed to achieve reasonable accuracy. The magnitude 

(√𝑥2 + 𝑦2 + 𝑧2) of the gyroscope, linear acceleration and magnetometer were calculated for each data 

point obtained for each authentication attempt. Figure 7.4 shows a sample plotted Gyroscope data from 

one random sitting scenario. The median value from the captured data was used as the feature from each 

transaction for the orientation. 

 

 

Figure 7.4: A sample of a gyroscope plot recorded from one transaction during the sitting scenario 

 

Standard classifier algorithms (SVM, kNN, Naive Bayes, Decision Tree) were tested to see the impact 

on the performance. The approach started from a ‘Stationary’ and ‘Motion’ classifier as it is believed this 

would provide the most generic form of scenario categories. Next was to create a classifier that could 

detect the four scenarios explored (‘Sitting’, ‘Standing’, ‘Treadmill’, ‘Corridor’). Finally, three classifiers 

were tested; one to categorise ‘Stationary’ and ‘Motion’ and another two to classify into each sub-

scenario. 

 

The features were grouped into individual transactions, and a transaction contained multiple rows of 

features as the sensors continued to release information. Next, half (50%) of the transactions were 

removed for training and testing. The reason for doing this was to simulate having unseen data for testing 
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the adaptive framework in its entirety later. This process was repeated five times, selecting a different 

50% each time to see the impact of classification accuracy. 

 

Python’s Scikit Learn library [175], [176] was used. The features were split into a training (66%) and a 

testing set (33%). The accuracy was estimated using k-fold cross-validation with a fold value of five and 

reported the F1-score. The k-nearest neighbour algorithm, with a k-value of three, performed the best 

with the features. Table 7.4 shows the accuracy results for tested classifiers when classifying the four 

scenarios. 

 

Table 7.4: Classification accuracy for standard classifiers 

Classifier Cross-Val (F1-score) Training Testing 

Support Vector Machine 0.57 (±0.03) 0.57 0.57 

Decision Tree 0.81 (±0.04) 0.83 0.83 

Random Forest 0.80 (±0.02) 0.79 0.81 

Naïve Bayes 0.57 (±0.09) 0.59 0.60 

Quadratic Discriminant 0.58 (±0.09) 0.60 0.62 

 

The kNN classifier with a k-value of three could classify all four scenarios with a testing accuracy of 

97%. Table 7.5 shows the accuracy results for each scenario detection classifier using the k-nearest 

neighbour algorithm for each attempt. The random split of data from attempt five provided the most 

accurate classifier according to the F1 scores, and this is the one used for the remaining work in this paper. 

Table 7.6 gives the corresponding confusion matrix for the ‘Four Scenarios’ classifier when testing with 

the kNN classifier in attempt five. It is possible to bin most errors under ‘Stationary’ and ‘Motion’, where 

scenarios within each category are misclassified. 

 

Table 7.5: Scenario Classification Results (kNN) 

Scenario Classification Accuracy 
Attempt 

1 2 3 4 5 

Stationary vs Motion 

Cross-Val (F1-score) 0.99 (±0.01) 0.98 (±0.01) 0.98 (±0.01) 0.98 (±0.00) 0.99 (±0.01) 

Training 0.99 1.00 1.00 0.99 1.00 

Testing 0.99 0.99 0.99 0.99 0.99 

Four Scenarios 

Cross-Val (F1-score) 0.95 (±0.01) 0.96 (±0.01) 0.96 (±0.01) 0.96 (±0.01) 0.97 (±0.01) 

Training 0.98 0.99 0.99 0.98 0.99 

Testing 0.95 0.97 0.97 0.97 0.97 

Stationary 

Cross-Val (F1-score) 0.95 (±0.02) 0.96 (±0.03) 0.98 (±0.01) 0.97 (±0.01) 0.98 (±0.01) 

Training 0.98 0.98 0.99 0.99 0.99 

Testing 0.96 0.96 0.98 0.97 0.97 

Motion 

Cross-Val (F1-score) 0.96 (±0.02) 0.98 (±0.01) 0.97 (±0.01) 0.98 (±0.02) 0.97 (±0.01) 

Training 0.99 1.00 0.99 0.99 0.99 

Testing 0.97 0.99 0.98 0.98 0.99 
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Table 7.6: ‘Four Scenarios’ Confusion Matrix 

 
Predicted 

Sitting Standing Treadmill Corridor 

True 

Sitting 775 14 5 4 

Standing 24 570 3 4 

Treadmill 1 2 494 11 

Corridor 6 5 3 563 

 

Using the kNN classifier to classify all four scenarios provided a 97% and 99% testing accuracy when 

classifying stationary and motion scenarios. In all the classifiers, the achieved testing accuracy was above 

90%. 

 

7.7  Testing The Adaptive Threshold 

 

Next was to test the approach by using the metadata (features) with the classifier(s) and the ‘selfie’ 

image with the ‘face-recognition’ python library [133], [173]. However, in theory, the approach could be 

incorporated into commercial devices and work in real-time by integrating it into the biometric 

authentication process. The approach for this would be like the offline approach, the main difference 

being the real-time data collection. The device would collect the sensor information about motion and 

position as the biometric process was happening and turn this information into a feature set like ours. 

 

This feature set would be continuously passed to a classifier to assign a scenario. A majority vote 

method was then used to assign the overall scenario classification. In other words, the operational 

scenario with the highest number of occurrences from the scenario detection algorithm was selected. 

Finally, the overall scenario classification will assign an adaptive decision threshold. The same approach 

was tested offline for the prototype by using the pre-collected. 

 

A custom Python program that works by excepting two facial images were used to achieve this. All the 

image files had unique names to locate the data associated with each one. The first image was an 

enrolment template (taken as the first sitting attempt for each user), and the second was the verification 

probe. First, the authentication sensor data for the supplied probe image was retrieved. Next, the 

classifier processed each feature row of data to predict a scenario—a majority vote method assigned the 

final scenario classification. Once the predicted scenario was known, the program set the decision 

threshold appropriately. Based on the dissimilarity score and the set threshold, the program then marks 

the probe image as either a ‘match’ or a ‘no match’ decision. It was possible to begin to validate the 

approach using this information to produce the performance results. 
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7.7.1 Choosing the Impostors 

 

It was necessary to test the potential to keep out passive impostors and evaluate the false match rate 

of the system to assess the effectiveness of the proposed adaptive framework. In addition, the aim was 

to find the most suitable (tailored) participants to act as impostors for each enrolled participant. The set 

theory below represents the algorithm for achieving this. 

 

- Number of Impostors Required: 𝑥 

- Current user: 𝑐 

- Set of Users: 𝑈 where 𝑐 ∈ 𝑈 

- Set of Impostors: 𝐼 ⊂ 𝑈 = 𝑐 ∉ 𝑈 

- An Impostor: 𝑖 where 𝑖 ∈ 𝐼 

- Gender Subset: 𝐺 ⊆ 𝐼 ∀ 𝑐. 𝐺𝑒𝑛𝑑𝑒𝑟 == 𝑖. 𝐺𝑒𝑛𝑑𝑒𝑟 

- Age Group Subset: 𝐴 ⊆ 𝐼 ∀ 𝑐. 𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝 == 𝑖. 𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝 

- Nationality Subset: 𝑁 ⊆ 𝐼 ∀ 𝑐. 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 == 𝑖. 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 

- A subset of Tailored Impostors: 𝑇 = 𝐺 ∩ 𝐴 ∩ 𝐸 ∩ 𝑁 ⊆ 𝐼 

- If |𝑇| ≥ 𝑥 {Randomly select 𝑥 elements from set} 

- while |𝑇| < 𝑥 

o Randomly select from 𝐺 ∩ 𝐴 ∩ 𝑁 until|𝑇| == 𝑥 is reached 

o if 𝐺 ∩ 𝐴 ∩ 𝑁 becomes ∅ {Randomly select from 𝐺 ∩ 𝐴 until |𝑇| == 𝑥 is reached} 

o if 𝐺 ∩ 𝐴 becomes ∅ {Randomly select from 𝐺 until |𝑇| == 𝑥 is reached} 

 

The ‘AgeGroup’ was specified in ranges, as shown in Table 7.2. This algorithm should result in a set of 

𝑥 tailored impostors for each participant who resembles the participants. The outcome was to expect the 

impostor set to provide the most likely cases to cause a false match. An experiment was performed by 

adjusting the number of tailored impostors to provide meaningful results. When using the algorithm, the 

more impostors added, the less tailored they will be, diluting the results. For the data, using four 

impostors per genuine user (2015 impostor comparisons) seemed to provide a fair balance before the 

impostors became less tailored. This idea is discussed further in Section 7.8  and Figure 7.5. 

 

7.7.2 Examining the Threshold 

 

The recommended threshold from the python ‘face-recognition’ library [133], [173] is 0.6. Using the 

data gives a false non-match rate of 0.00%, a false match rate of 10.22%, and an equal error rate of 

approximately 0.64%. It seems the library is recommending a practical threshold value for most cases. 

However, the concept was to devise a scenario whereby security is of great concern to test the adaptive 

theory. Therefore, a low (<1%) false match rate is required by setting tighter, more restrictive thresholds. 

 



 

180 

Section 7.4  identified that the match score varies across scenarios and that the system should set 

other thresholds for each. Several approaches were trialled to set appropriate threshold values, and in 

this case, trialling multiple thresholds for the scenarios. The trials allowed the biometric community to 

see how varying thresholds could affect overall system performance. For example, the maximum distance 

score obtained from the data could be used. The 95th percentile, maximum distance, and the EER 

threshold value from the scenario data were used as the threshold values to explore the approach. The 

theory is that this will allow for most genuine cases without causing extremes and outliers in the data to 

be accepted. 

 

Similarly to how the creation of the scenario classifier was handled, a random 75% sample from the 

dissimilarity score data (75% from genuine and 75% from impostors) created the thresholds. The impostor 

scores used for this were created using the tailored impostors. This process was repeated five times, 

picking a new random set to see the impact, as shown in Table 7.7. 

 

7.8  Results 

 

The classifiers produced as discussed ( Section 7.6 ), along with the thresholds found in Section 7.7.2 

and chosen tailored impostors based on Section 7.7.1, bring the framework together. Finally, it is possible 

to examine how the adaptive framework could perform using the open-source ‘face-recognition’ library 

[133], [173] and the pre-collected data. 

 

Figure 7.5 shows how the false match rate changes as the algorithm are used to alter the number of 

impostors used (the algorithm was rerun for each iteration). A randomly selected 450 comparisons were 

used to provide a reasonable sample from the impostor comparisons pool with 𝑥 number of impostors 

per genuine user. This process was repeated three times, and an average was taken to produce the graph. 

The baseline’s FMR declines as the impostors become less tailored; however, the adaptive approach 

outperforms the baseline with the most tailored impostors and continues to do so even when less tailored 

impostors are included. 
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Figure 7.5: Changes to false match rate with varying impostor amounts 

 

Firstly, the more generic classifier was tested to classify the authentication metadata into a ‘Stationary’ 

and ‘Motion’ category, followed by a test of the classier that could distinguish between the four scenarios 

experimenting with: ‘Sitting’, ‘Standing’, ‘Treadmill’, ‘Corridor’. Finally, a combination of the two 

classifiers. The data would first classify into ‘Stationary’ and ‘Motion’ and then into separate classifiers for 

the scenario that belonged to either category. The approach can achieve recognition results by trialling 

both using ‘95th’, ‘Max’ and ‘EER’ thresholds, as shown in Table 7.2. 
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Table 7.7: Recognition performance results when trialling the adaptive threshold 

Classifier Threshold 
Attempt 

1 2 3 4 5 

Stationary vs Motion 

95th 
FNMR: 

5.29 
FMR: 0.00 

FNMR: 
4.65 

FMR: 0.00 

FNMR: 
6.98 

FMR: 0.00 

FNMR: 
5.07 

FMR: 0.00 

FNMR: 
6.13 

FMR: 0.00 

Max 
FNMR: 

0.00 
FMR: 2.53 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
0.63 

FMR: 0.35 

EER 
FNMR: 

0.42 
FMR: 0.35 

FNMR: 
0.42 

FMR: 0.69 

FNMR: 
0.42 

FMR: 0.50 

FNMR: 
0.42 

FMR: 0.50 

FNMR: 
0.85 

FMR: 0.25 

Four Scenarios 

95th 
FNMR: 

6.13 
FMR: 0.05 

FNMR: 
7.19 

FMR: 0.10 

FNMR: 
7.40 

FMR: 0.00 

FNMR: 
5.92 

FMR: 0.10 

FNMR: 
6.98 

FMR: 0.00 

Max 
FNMR: 

0.85 
FMR: 1.39 

FNMR: 
1.06 

FMR: 1.39 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
1.48 

FMR: 0.25 

EER 
FNMR: 

0.85 
FMR: 1.39 

FNMR: 
1.27 

FMR: 0.89 

FNMR: 
1.06 

FMR: 0.50 

FNMR: 
1.06 

FMR: 0.55 

FNMR: 
1.48 

FMR: 0.25 

Stationary/Motion + 

Scenarios 

95th 
FNMR: 

6.13 
FMR: 0.05 

FNMR: 
7.19 

FMR: 0.10 

FNMR: 
7.40 

FMR: 0.00 

FNMR: 
5.92 

FMR: 0.10 

FNMR: 
6.98 

FMR: 0.00 

Max 
FNMR: 

0.85 
FMR: 1.39 

FNMR: 
1.06 

FMR: 1.39 

FNMR: 
0.85 

FMR: 1.39 

FNMR: 
0.00 

FMR: 2.53 

FNMR: 
1.48 

FMR: 0.25 

EER 
FNMR: 

1.06 
FMR: 0.55 

FNMR: 
1.27 

FMR: 0.89 

FNMR: 
1.06 

FMR: 0.50 

FNMR: 
1.06 

FMR: 0.55 

FNMR: 
1.48 

FMR: 0.25 

 

It is known from the classifier accuracy that the classifier is not classifying all the scenarios correctly 

every time. As a result, there is a risk of incorrect classification of a scenario with an alternative acceptance 

threshold. This misclassification poses a risk for impostors to be accepted by the system. Further work to 

improve the classifier accuracy will result in improved recognition performance. 

 

The results show that an adaptive approach can produce reliable recognition accuracy, notably by 

maintaining and improving a low false match rate above a traditional fixed value. Table 7.8 highlights this 

comparison using the four-scenario classifier and EER (number 3 in Table 7.7 thresholds to the baseline 

and a perfect classifier. A perfect classifier would be able to accurately categorise the scenarios 100% of 

the time. The success of the most effective adaptive approach has reduced the false match rate by 

approximately 95% from baseline performance. 
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Table 7.8: Comparing Recommended Baseline Performance to the Adaptive Approach 

 Recognition Performance 

Baseline 
FNMR: 0.00 

FMR: 10.22 

Adaptive Threshold 
FNMR: 1.06 

FMR: 0.50 

Perfect Scenario Classifier 
FNMR: 0.42 

FMR: 0.60 

 

7.8.1 Verification 

 

Having tested the scenario adaptive threshold method on the Samsung Galaxy S9, the same concept 

was tested on another device to see if the approach was interoperable. Therefore, another Android-based 

device, the Google Pixel 2, was tested. However, Google Pixel 2 does not allow developers access to its 

‘Trusted Face’ feature, meaning it is impossible to collect background sensor data during the 

authentication process. The device collected the sensor features while the participant was operating the 

in-built camera and taking a ‘selfie’ to simulate the authentication process to counter this. Unfortunately, 

the side effect means there was a lot more sensor data collected. On average, operating and using the 

camera takes more time than the usual biometric authentication prompt to complete. 

 

The data were collected under the same scenario conditions. Resulting in an additional 100 genuine 

‘sitting’ transactions, 116 ‘standing’ transactions, 124’ treadmill’ and 141 ‘corridor’ from around 30 

individuals of a similar student demographic that operated the Samsung Galaxy S9. Furthermore, when 

running the ‘selfie’ data collected from the Google Pixel 2 through the ‘face-recognition’ Python library 

with a baseline threshold (0.6), the performance results were FNMR: 0.00% and FMR: 9.50%. 

 

The same approach was used by removing half of the transactions before classifying them. As devices 

are unique with different sensors, it is impossible to rely on using the same classifier as before, and unique 

ones will need to be produced for each device/model. The classifier evaluation results were promising, 

with the ‘four scenarios’ classifier reporting cross-validation accuracy as 1.00 (±0.00) and the training and 

testing accuracy being 1.00%. Again 75% of the dissimilarity score data set appropriate thresholds. Three 

sets of EER thresholds were generated as a trial by altering 75% of the data used. For the three trials, the 

results were again showing improvements over the baseline case and beginning to prove that the adaptive 

threshold is interoperable: 

 

- FNMR: 1.25% and FMR: 0.00% 

- FNMR: 2.91% and FMR: 0.00% 

- FNMR: 1.66% and FMR: 0.00% 
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7.9  Discussion 

 

The approach utilised the sensors readily available on most modern smartphones (and wearables) 

with developer access. It showed the transformation into potential features for a classifier that could 

recognise simple scenario categories. The classifier for detecting the four simple scenarios had a testing 

accuracy of 97%. The adaptive threshold relies on having the ability to identify the scenario reliably, and 

the results suggest that this ability is a significant factor in the overall function of the adaptive framework 

to perform optimally. The chapter focuses on using an adaptive approach for face recognition, but no 

significant obstacles are foreseen for using the same technique for other physical and behavioural 

biometric modalities. 

 

The process was demonstrated using collected data from a commercial device and an open-source 

face recognition algorithm showing that this method has potential merit by imagining a scenario where 

security and privacy are of grave concern. Hence, a low false match rate may be more important than a 

false non-match rate. The method was tested against a static, fixed threshold. An algorithm was produced 

to help identify the best impostors for each participant to help stress-test the approach. The impact of 

tailoring was demonstrated in Figure 7.5, which proved that the algorithm was working. 

 

Offline testing was then performed using Python’s ‘face recognition’ library [133], [173], which 

recommends a threshold of around 0.6. This threshold gave a false non-match rate of 0.00% and a false 

match rate of 10.22% using the previously collected data. One of the best methods found by taking the 

adaptive decision approach was using the classifier to detect between stationary and motion scenarios 

and the EER threshold value. The approach achieved a result that gave a false non-match rate of 0.42% 

and a false match rate of 0.35%, a reduction of 95% over the algorithm’s baseline threshold. The 

interoperability of the approach was shown by replicating it using another device with similarly successful 

results. This relatively simple adaptive method was able to produce an improvement in recognition 

performance, which could outperform an algorithm using a single static threshold value. 

 

7.10   Summary 

 

This chapter presented a novel adaptive approach to biometric authentication for a mobile device, an 

area of research currently lacking in the literature, as noted by Pisani et al. [159]. The proposal created an 

extendable ‘Adaptive Decision Threshold’, whereby a unique threshold value is set for specified scenarios. 

The theoretical advantage of this approach is to allow for stricter control over access by not having to 

specify a one-off static threshold value to account for the vast number of conditions where a biometric 

authentication may occur. 

 

This relatively simple example demonstrates the practicalities and proof-of-concept of using this 

adaptive threshold approach. Further testing will be required to prove the competency of the method 
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thoroughly, including a greater variety of scenarios and environmental lighting and weather conditions. 

In addition, testing should include adapting presentation attack detection (PAD) methods for individual 

scenarios and mitigating malicious actors in exploiting weaknesses in the adaptive approach. The hope is 

that others will take the work started here to produce and further investigate the method’s effectiveness. 

As well as allow developers and manufacturers to incorporate a scenario-based threshold adaptive 

approach into future algorithms in mobile biometric systems to allow for higher security without 

jeopardising performance. 

 

The next chapter will present the conclusion for the thesis, providing what has been addressed and 

considerations for future work. 

 



Chapter 8 
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8 Conclusions 

 

8.1  Introduction 

 

This thesis provides the first foundational step towards a novel performance assessment framework 

for mobile biometrics. However, producing a comprehensive and extensive framework that can cover and 

capture the entire breadth and depth of performance is more than a single PhD project. To fully achieve 

this goal will require collaboration on a global scale using the expertise of the ISO SC 37 WG5 committees 

and the FIDO Alliance and incorporating private companies. 

 

The novelty of the work mainly comes from the focus on mobile devices and analysing data captured 

entirely from mobile devices. The proposed framework also considers the level of access the evaluator 

will have to the device. The current literature assumes that a certain level of access to evaluate a system 

will be available. 

 

 The contribution is to allow this thesis and the recommendations to serve as a starting point for 

further exploration with the potential to incorporate some of the identified areas into future standards 

and documents within the scope of mobile biometric performance testing. Furthermore, academia can 

use this comprehensive guide to provide a comparable guide for performance results with a specified 

captured scenario. 

 

Although the term ‘mobile’ includes a range of devices, the core focus of the thesis was considering a 

smartphone scenario. However, the proposal should be compatible with a range of mobile devices. A 

handheld iris scanner that cooperated with a smartphone was used to indicate that the framework could 

be interoperable between mobile devices. 

 

This concluding chapter will provide an overview of the work presented throughout this thesis, 

including lessons learnt and contributions. Section 8.2  acknowledges lessons learnt and limitations mainly 

regarding the collected dataset. Section 8.3  provides a brief illustrative walkthrough through the 

assessment framework concerning previous chapter results. Finally, section 8.4  discusses thesis 

contributions, and Section 8.5 and 8.6  provides a reflection and closing summary. 

 

8.2  Limitations and Lessons Learnt 

 

The project was not without its share of problems, particularly regarding running a biometric data 

collection exercise. Collecting demographic information was not done as well as it should have been, and 

important information for later analysis was lacking. For example, ethnicity information and age values 
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(as opposed to age ranges) should have been used to evaluate better are tailored impostor theory. 

Initially, the decision not to include this information was made to ensure the experiment was run 

appropriately and maintain a high level of ethical standards to gain ethical approval from the university. 

 

The data collection was produced using commercial smartphones, which means the same issues 

resulting in the lack of access to the biometric system were present. However, this ensured that the 

proposed framework could handle a range of device access considerations. However, it did mean certain 

aspects of the framework could not be fully explored, such as security and privacy. 

 

At the start of the project, it was decided that PAD should not be a focus of the presented work. 

However, given PAD prevalence in existing requirements and analysis of biometric system performance, 

it was later deemed to be an essential component for a full-scale mobile biometric performance 

evaluation, and it was included; however, due to its late-stage inclusion, practical work was not 

conducted, and therefore the inclusion in the framework remains theoretical at this point.  

 

8.3  The Performance Assessment Framework 

 

So far, this thesis has analysed the effects of various core factors previously identified as crucial to 

understanding the performance of mobile biometric systems. The proposed framework utilised these 

factors in its formation, and pulling in the results obtained will demonstrate an illustrative theoretical 

walkthrough of the framework using the experimental data collection results. One of the key differences 

regarding the proposed framework is working with multiple access levels. 

 

Not every element of the proposed framework was explored for this project owing to time constraints 

and the ongoing COVID-19 pandemic, including PAD. However, walking through each stage of the 

framework produces the following outcome. First, the experimental data collection involved collecting 

data from commercial devices, meaning obtaining significant performance results is limited. However, 

using ‘developer’ access and our custom application allows for more usability-related performance 

metrics. Equally, taking the obtained biometric sample data captured from the mobile devices and 

applying third-party open-source libraries to act as the algorithm can allow the simulated evaluation of 

the proposed framework as if a higher level of access (e.g., ‘tester’) was available. 

 

8.3.1 Stage One: Determine Evaluation Parameters 

 

Stage one required defining three core parameters: modality, access level, and desired security level. 

This exercise examined fingerprint, Face, Iris, and voice as unimodal (not multimodal) modalities. For the 

level of access, the intent is to illustrate several outcomes from ‘developer’ through to ‘open’; however, 

only one level of access is assumed when using the performance framework in practice. No samples were 

collected and operated only at the ‘developer’ level of access for fingerprint. The desired security level is 
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of less concern for this illustration, as this parameter dictates the extent of testing and the necessary 

performance results that need to be achieved to consider the system a ‘pass’. 

 

8.3.2 Stage Two: Algorithmic Evaluation 

 

Stage two provides the algorithmic test for evaluating the algorithm(s), usually involving existing 

frameworks. Looking at each level of access: 

 

• Closed, User and, Developer – Algorithmic evaluation is considered impossible due to the 

inability to operate the algorithm offline and allow data injection. 

• Tester and Open–Algorithmic evaluation is considered possible as the ability for offline access 

and the injection of data is possible. 

 

For this illustrative example, the reported results of the open-source algorithms for face and voice are 

displayed: 

 

• Face Recognition - The model has an accuracy of 99.38% on the Labelled Faces in the Wild 

benchmark  

• Deep Speaker - Deep Speaker reduces the verification equal error rate by 50% (relatively) and 

improves the identification accuracy by 60% (relatively) on a text-independent dataset. 

 

8.3.3 Perform Baseline Evaluation 

 

Stage three requires the results of a baseline evaluation in ‘optimal’ conditions. The condition defined 

for this is indoors with no noise, with the device handheld by the user while seated. The experimental 

data collection corresponds to the data obtained from the first scenario of session one, where the user is 

operating the device in a seated position. It should be noted that no habituation transactions occurred, 

something added to the framework from this experience. 

 

The first results shown in Chapter 5 form part of the baseline evaluation from a ‘developer’ level of 

access and, therefore, can be attributed to the device used. In practice, the baseline evaluation should 

include false match rates; however, this study omitted to perform offline FMR due to time constraints. 

 

8.3.4 Stage Four: Targeted Scenario Evaluation 

 

Stage four requires defining scenarios to conduct a performance test within. The main requirement is 

to involve a motion-based scenario and a challenging known influencing factor scenario. Again, with the 

‘developer’ level of access, this comes directly from the Boolean result of the verification. 
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This approach allows for more in-depth analysis and explanation of the performance obtained. 

Specifically, we can group the scenarios into stationary and motion (not the influencing factor scenario). 

The results for this are shown within Chapter 5, where a breakdown of the scenario results achieved and 

a further breakdown showcasing what caused the false non-match to occur. 

  

8.3.5 Stage Five: Presentation Attack Detection and Architectural Security 

 

Stage five of the framework is concerned with security regarding the circumvention of the system. 

This stage was not explicitly evaluated as part of the experimental data collection. A high-level 

investigation was conducted to see if anything was obtainable from the logs regarding architectural 

security; however, no evidence of security or privacy concerns was found. 

 

8.3.6 Stage Six: Operational Evaluation 

 

Stage six explores the operational performance of the device, and the requirements for this are device-

specific. The recommendation, where possible, is to trial the device in various outdoor conditions. How 

the results are presented can differ based on the evaluation performed. The experimental data collected 

contained information about the conditions (weather) at the time (for the current hour) of collection. The 

results for this were included in Chapter 6. 

 

8.3.7 Stage Seven: (Final) Reporting 

 

Stage seven is the reporting stage, although the recommendation, as demonstrated here, is to 

produce a report of results as the evaluators move through the stages of the performance framework. 

The fundamental reporting criteria are the false non-match rate (FNMR), the false match rate (FMR), and 

the defined scenario in which the results were achieved. Ideally, the results should include other usability 

quality scores (satisfaction, timings). This approach should showcase the baseline (optimal) results and 

the targeted scenario evaluation composed of, for example, the defined stationary scenarios, the defined 

motion scenarios, and the defined factor scenarios. 

 

8.4  Thesis Contributions 

 

Building on and providing an overview of best practices for biometric assessment, including the 19795 

series and the FIDO work, the thesis defined a range of performance metrics relating to biometric system 

accuracy, timing, environmental considerations, usability errors and security levels. In doing so, an initial 

performance framework for reporting and exploring system performance was designed with the intention 

of an extensible design that will have direct generic applicability to other existing and emerging 
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modalities, with specifics where required. Furthermore, seven core factors relating to mobile biometric 

performance were identified and utilised in discussions around performance, serving as the foundation 

for all future researchers looking into presented performance-related results. 

 

The thesis assessed mobile performance in a controlled environment (lighting and noise) and using 

standard smartphone in-built biometric sensors in scenarios including holding in hand (while sitting and 

standing) and moving on a treadmill device using the performance framework. A range of influencing 

factors was also introduced, including varying the controlled illumination within the test room to simulate 

dark lighting conditions and background noise. Data were collected from 60 participants across mainly a 

student demographic. 

 

The performance assessment of both the black-box OS biometric systems, from commercial 

smartphone devices and open-source algorithms that can return more performance data, were explored 

to assess the framework—first, assessing the baseline performance, allowing the exploration of 

performance alterations. The performance was assessed according to verification rates, sample quality, 

timings, usability assessments, and offline questionnaires. Local Ethics Committee Approval was obtained 

for the data collection. 

 

The performance of mobile devices across various environments was explored using the framework. 

Subjects used the same devices to interact with biometric sensors whilst on the move. The environment 

involved data collection both indoors and outside and whilst walking. In addition, the experiment involved 

a ‘free-style’ capture session whilst moving around the university campus. The thesis has explored the 

environmental impact, how performance characteristics are affected by environmental data and scenario 

impact, and how performance characteristics are affected by scenario usage. 

 

An approach to overcome performance deficit through an introductory study regarding a novel 

authentication approach for mobile devices using embedded sensors to classify scenarios to improve 

recognition performance. In doing so, further analysis of the tailored impostor approach was presented. 

 

The thesis has started to provide a robust assessment of mobile biometric platforms by establishing a 

theoretical framework for mobile performance assessment. The framework considers the following: 

 

• Use of mobile devices in various environments, including indoors and outdoors, using whilst 

stationary, walking 

• The user base and deployment platform 

• Capture requirements at enrolment to enhance the performance of mobile biometrics 

• The nature of the transaction utilising the biometric authentication 

• System performance, accuracy, and timings 

• The security level needed – a three-way balance between the ‘quantity’ of a transaction, ease 

of use and susceptibility to presentation attack scenarios 
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• Metrics for analysis and the presentation of understandable/interpretable performance 

results. 

 

Biometric performance testing is complex, time-consuming and expensive, with large-scale testing 

often restrictive for non-large-scale multinational corporations, resulting in requirements such as the rule 

of 3 and rule of 30 test sizes becoming ignored [27]. The approach taken by the proposed performance 

assessment framework presented within this thesis attempted to address some of these concerns for 

mobile platforms. The concept presented was to target a worse-case approach to all aspects of the testing 

process, which is generally not considered within the literature and current testing standards that aim to 

show the system positively. Manufacturers will be resistant to showcasing results that showcase their 

product negatively. 

 

By introducing a tailored impostor’s approach to non-mated comparisons, we aim to exploit this 

worst-case analysis using more challenging populations, i.e., those that are more similar. The hypothesis 

is that the performance will increase the false match rate, and since that rate dominates the sample size 

calculations, the required sample sizes are likely to be smaller. However, there is still a potential issue 

regarding how those results generalise to a population that is not as similar if the effort required to gather 

a more specific sample will outweigh the potential benefits of running the evaluation. 

 

The outcome is the foundation for a robust performance assessment of mobile biometrics concerning 

environmental and usage variation. In addition, the performance framework will allow for a deeper 

academic and security-focused understanding of anticipated performance levels, with the possibility to 

develop mitigation techniques and support tailored to specific end-use scenarios. 

 

8.5  Reflection 

 

The PhD and, by extension, this thesis had been a journey, and like all large-scale projects, there were 

twists and turns, and not everything planned at the start could be completed in detail by the end. One 

such element was an exploration into automated approaches to biometric testing using statistical 

methods to predict performance based on certain factors, mainly the core factors presented in Chapter 

3. This idea is currently exploring an ongoing ISO standard [95]. The second such element and an ongoing 

area of research within the biometric community is the black-box nature of biometric algorithms that rely 

more on artificial intelligence and deep learning techniques. Initially, the intent was to explore and 

uncover the black box (explainable AI). However, after initial scoping, it was revealed that this work could 

form its PhD project. 

 

Regardless of some elements that could not be fully explored in work presented in this thesis, the 

thesis has extensively explored the world of mobile biometric performance and produced a performance 
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evaluation framework. Furthermore, looking back at the research questions ( Section 1.6 ), the thesis has 

made progress in answering them all. 

 

• How can mobile biometric performance be measured? 

Arguably, this thesis's main aim is to explore and produce a definitive standard for measuring mobile 

biometric performance. Has this been achieved? The thesis provides a strong foundation for measuring 

mobile biometric performance by utilising and amalgamating existing work in this area and adding 

necessary recommendations for moving this area of research forward with the inclusion of core factors. 

However, changing current practices and making ground-breaking additions to the current standards will 

take time. However, hopefully, this work will form a reference for updating and improving as research 

and industry move forward. 

 

• How do environment and motion affect biometric performance and security? 

• How does the quality/performance of <modality> change when placed in diverse scenarios and 

Environments? 

It was acknowledged that operating within various environments and scenarios is one of the principal 

elements separating mobile biometric systems from fixed systems. Therefore, including 

recommendations to make sure this was fully addressed within the performance framework was 

paramount. This framework was followed up by a test study to explore the impact of these factors and 

consolidate the inclusion within the framework, the results of which were presented in Chapter 6, 

showing the potential impact of the environmental conditions and scenarios. Quality scores were used to 

gauge further information regarding performance and usability   

 

• How can any performance deterioration be mitigated? 

The next step was to explore if it was possible to mitigate against the established core factors, having 

established the performance framework and then proceeding to justify it. For this, a novel authentication 

approach was designed, explored and tested by utilising the typical sensors available on mobile and 

wearable devices to predict the scenario that the user was performing the authentication within and 

adjust the decision threshold dynamically and accordingly. This work was presented within Chapter 7 and 

shows the potential of this method as a successful approach to improve performance deterioration 

without jeopardising security. 

 

• What is the current smartphone security (locking) habits among users? 

This question was provided as an insight into the current user habits of mobile biometrics and to help 

target the framework accordingly. It was interesting to see where users placed their security habits 

regarding phone unlock with a preference for fingerprint. However, it would be expected that if the same 

questions were repeated today (2022), a preference and use towards face unlock would be seen due to 

the industry and technology movement in this direction, with most smartphones today incorporating the 

technology. The overview of these results is showcased in Chapter 5. 
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• Do they primarily use the biometric authentication method available on their device? 

This question is built on the previous one. It was seen that biometrics did form the primary method of 

authentication for users wishing to unlock their devices and is continuing to see rises in use across other 

sectors as a secure yet usable method of authentication, with trends showing that biometrics will likely 

authenticate the vast majority of banking transactions [177]. 

 

• Is there an overwhelming preference towards a particular modality? 

Perhaps unsurprisingly, there was a strong preference towards fingerprint as the biometric modality 

for authentication. However, as this was also the most popular modality in use at the time among the 

participants, it supports the usability and habituation theories that the more use and exposure users have, 

the more comfortable and greater preference they are likely to show. This trend will change over time, 

and it is suspected that if a repeat of the question was issued today, a higher, if not majority, preference 

for the face modality is likely to be observed. 

 

• Is it possible to achieve reliable performance metrics with a commercial (off-the-shelf) device 

with limited knowledge of its internal workings? 

This question proved to be an exciting exploration of the work presented in this thesis. The limited 

access to the workings of the biometric system of commercial devices is troublesome for researchers but 

utterly understandable from a privacy and security perspective. Whether it is possible to achieve reliable 

performance metrics is debatable, and evaluators are certainly limited in what is achievable. However, it 

is still possible to perform a biometric performance evaluation with careful consideration. One of the 

essential requirements for the proposed performance framework is the ability to consider the level of 

access an evaluator has and adjust the flow accordingly so that meaningful information can be obtained 

without exhaustive testing, but this does come at the expense of scaling down the evaluation. The 

introduction of tailored impostors to perform impostor testing with fewer participants but with the most 

significant impact was designed to overcome some issues. 

 

• What effect does usability have on the performance of biometrics on a mobile platform? 

Regarding usability, the habituation effect was discussed and demonstrated within the results leading 

to the alteration of the performance framework to include some trial or habituation transactions before 

the principal transactions take place to avoid potential bias. Alongside this transactional time, satisfaction 

scores and error rates showed some of the usability impacts of the devices. It is noted that usability was 

not explored in-depth as some of the other factors, partly due to the sheer scope of analysing as many 

aspects as possible that comprise mobile biometric performance. However, it was discovered as part of 

the scoping of the core factors that the users play a central role in understanding the performance and 

the consideration to make sure that usability metrics were included as part of the performance framework 

and analyse was added for this reason. Furthermore, it was observed that specific metrics, like satisfaction 

scores, often related to the error rates achieved. 

 

• Is it possible to produce a definitive score or ranking regarding the device’s performance? 



 

194 

It turns out that this question may not be as simple to answer as it first appears. Biometric 

performance can be broken down into several areas (recognition performance, usability, security) and 

trying to provide a singular score to combine all this information may not be ideal as, depending on use 

cases, some areas of performance may be more necessary than others which is why the results section of 

the framework breaks these respective areas and suggests reporting the information from each allowing 

a more informed decision to be reached. 

 

Overall, the thesis has looked into the three core questions it hoped to achieve and gone further to 

look into some sub-questions that helped answer the core questions, including current trends and habits 

among mobile users and how any performance deterioration could be mitigated once measured. As 

stated at the start of this section, not everything was envisaged, and the start of the project was 

achievable by the end, leaving future scope for further work to help complete some of these consolidating 

areas. Continuing and incorporating the findings of this work will require global standard cooperation, 

and discussions are likely still required on how biometric performance should be scored and reported and 

whether it is possible to achieve this with a definitive score or rank. Hopefully, this thesis will play its part 

in aiding future researchers, standard makers and industry stakeholders in the performance assessment 

of mobile biometric systems. 

 

8.6  Summary 

 

This chapter has wrapped up the work presented within this thesis and performed an initial 

walkthrough of the proposed performance evaluation framework stating some current limitations with 

the work presented and noting possible improvements and future work. As stated at the start of this 

chapter, creating a fully-fledged performance assessment framework is more than any PhD project. 

However, the intention is to serve as the start of something for academia, industry, governments, and 

future standardisation work, allowing for further exploration and research into the proposals presented 

in this thesis. 

 

Regarding future work ideally, it would be ideal to evaluate if performance trends can be predicted 

from existing results, something that the proposed framework will be able to handle more effectively due 

to the inclusion of defined scenarios to answer the question: can we identify trends in performance that 

are common between devices/modalities that can predict performance for an unknown device? 

 

Further analysis and investigations into using the approaches discussed within the proposed 

framework are required to explore all the approaches it can offer. However, certain aspects will hopefully 

be helpful for future mobile biometric performance assessments. The thesis aimed to present a 

comprehensive testing framework for mobile biometrics to provide users and businesses with the 

assurance they need to satisfy their requirements.  
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The framework utilised existing standards and approaches to amalgamate current industry standards 

and recommendations, including the likes of ISO, FIDO Alliance, and Google. The intention was also to go 

further and improve upon the existing standards in certain aspects by incorporating more performance 

areas into our framework, most notably usability. Hopefully, evaluators will see the benefit of some of 

the ideas present and will work towards incorporating and analysing the benefits further: 

 

• Separate FTA from FRR 

• Consider FNMR and FMR (attempt-based) (for usability purposes) 

• Considers options for when the ‘common test harness’ is not available 

• Use targeted impostors (the current suggestion is to use random for attempt-based) 

• Defined enrolment scenario 

• Defined multiple verification scenarios (including motion) + operational 

• Different levels of security testing 
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Appendix B: Data Collection Apps 

 

Andoird App: https://bitbucket.org/MattyB95/biometric-data-collection-android/ 

iOS App: https://bitbucket.org/MattyB95/biometric-data-collection-ios/ 

 

https://bitbucket.org/MattyB95/biometric-data-collection-android/
https://bitbucket.org/MattyB95/biometric-data-collection-ios/
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