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Abstract

Analysing large-scale data brings promises of new levels of scientific discovery and

economic value. However, the fact that such volume of data is by its nature dis-

tributed and the need for new computational methods to be effective in the face

of significant changes in data complexity and size has led to the need to develop

large-scale data analytics. Genetic algorithms (GAs) have proven their flexibility in

many application areas, and substantial research has been dedicated to improving

their performance through parallelisation. In contrast with most previous efforts, we

reject approaches based on the centralisation of data in the main memory of a single

node or requiring remote access to shared/distributed memory. We focus instead on

scenarios where data is partitioned across machines.

In this partitioned scenario, we explore two parallelisation models: PDMS, in-

spired by the traditional master-slave model, and PDMD, based on island models.

We adopt the two models to distribute BioHEL, a popular large-scale single-node

GA classifier, using the Spark distributed data processing platform. We investigate

the effect of GA control parameters (population size and migration frequency).We

study the accuracy, time performance and scalability of the proposed models. Our

results show that our distributed genetic algorithm design provides a good tradeoff

between accuracy and time.
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We then extend the two models using automatic termination and population siz-

ing to enhance the distributed genetic algorithm ease-of-use. Moreover, after testing

this strategy on both models, we show that the applied automation offers a promising

enhancement on the performance of the initially designed GA models.
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Chapter 1

Introduction

Overview Genetic Algorithms (GAs) are used to solve optimisation problems

based on their population-based search nature, which gives them great potential

for solving large and complex problems where single-solution-based algorithms may

fail. On the other hand, GAs are relatively expensive as they involve a more com-

prehensive search of the problem space using an iterative process over a population

(multiple solutions). There have therefore been substantial efforts made to enhance

the performance of GAs on parallel architectures, which started in the 80s and led

to many successful implementations capable of reducing the time needed to obtain

good results.

However, as GAs are applied to different optimisation disciplines, most of these

proposals focus on time and quality improvements and do not necessarily consider

the need for processing large volumes of data. The frequent assumption is that the

dataset is readily available at each worker node through replication or shared/dis-

tributed memory, which is impractical or inefficient for vast datasets. Our work in

this field addresses distribution of the Parallel GA (PGA) over a cluster of nodes
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CHAPTER 1. INTRODUCTION 2

where large data is distributed and only local data access is allowed.

1.1 Motivation

Large-scale data analytics is becoming increasingly important in the academic and

business sectors as it helps us to understand scientific phenomena and supports effec-

tive decision making. The effective use of large data has the potential to transform

economies, delivering a new wave of productivity growth and consumer surplus. Ex-

tracting knowledge from such volumes of data is challenging, however. As the size of

data produced increases rapidly, storage and processing requirements quickly grow

beyond the capabilities of centralised solutions, which become prohibitively expen-

sive as they require distributed infrastructure. This has fostered the development

of large-scale parallel computing platforms such as those provided by Amazon and

Google, which promise affordable, reliable and scalable storage capacity and process-

ing power. In addition, scalable analytics requires algorithmic techniques that could

benefit from these infrastructures.

Data mining is a branch of artificial intelligence (AI) that focuses on building ap-

plications that extract knowledge from a massive volume of structured and unstruc-

tured data that is so large that it is difficult to process using traditional database

and software techniques.

Evolutionary algorithms, and genetic algorithms (GAs) in particular, have been

widely used in a variety of data mining tasks such as clustering (Maulik and Bandy-

opadhyay 2000; Murty, Rashmin and Bhattacharyya 2008), regression (Paterlini and

Minerva 2010), time-series (Baragona, Battaglia and Calzini 2001), enhancing the

accuracy of classification algorithms (Minaei-Bidgoli and Punch 2003; Cervantes,

Li and Yu 2013), and in particular classification (Dam, Abbass and Lokan 2005;
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O’Reilly, Wagy and Hodjat 2013).

GAs offer an attractive solution for large data mining problems for multiple rea-

sons: (i) They are population-based search techniques that give great potential for

solving large and complex problems, as they offer a high chance of escaping from

local optima. Moreover, they help to provide a broader and more efficient search

of the problem space than single solution techniques. (ii) They offer flexible search

techniques to address general optimisation tasks and have been applied successfully

to problems in many different disciplines. (iii) Their ability to exploit the infor-

mation accumulated about an initially unknown search space is their key feature,

particularly in large, complex and poorly understood search spaces where classical

search tools (enumerative, heuristic) are inappropriate. (iv) Most importantly, their

method of exploration of the solution space is inherently parallel, making them an

excellent candidate for execution on parallel architectures and undoubtedly speeding

up the large data processing time. There has therefore been a substantial effort to

enhance the performance of GAs on parallel architectures. Alba and Troya (1999)

and Cantú-Paz (1998) have summarised in their surveys the fundamental approaches

to GA parallelisation, which started in the 80s and led to many successful implemen-

tations capable of reducing the time needed to obtain good results. However, most

of these proposals focus on time and quality improvements without considering the

case of large data volume processing. The frequent assumption is that the dataset

is readily available at each worker node through replication or shared/distributed

memory, which is impractical or inefficient for very large datasets.

A way of speeding up the GA is to distribute data access over a cluster of nodes

where processing capability and storage capacity are sufficient. Since our work is
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focused on using GAs for large-scale data classification problems, we search for so-

lutions to scale GAs for this purpose. We found some proposals that address dis-

tribution of the GA process taking into account data distribution. However, they

are either based on ensemble approaches, such as DXCS (Dam, Abbass and Lokan

2005), or they assume frequent changes to the set of worker nodes, typical of volunteer

computing such as EC-Star (O’Reilly, Wagy and Hodjat 2013).

MapReduce and Spark are programming models designed to support massively

parallel computations on distributed data. MapReduce performs the parallel com-

putations on disk-based datasets, which could be efficiently computed with a single

pass over the input (e.g. web indexing). On the other hand, iterative jobs can be

implemented as a pipeline of MapReduce jobs repeated until convergence, which

would require transferring intermediate results from and to an external storage layer

(typically a distributed file system such as GFS/HDFS) at every iteration. As GAs

typically require many iterations to converge, this would result in substantial over-

head due to disk access latency and throughput. Spark is a better fit for in-memory

iterative computations such as those required for GA processing. Spark is aimed at

compensating for the limitations of MapReduce while retaining its scalability, data

locality and fault tolerance.

Even though efforts have been made to parallelise GAs and other evolutionary

algorithms using these platforms, our goal is to apply the data partitioning concept.

Data partitioning can be defined as data being physically split into distinct parts.

All data access for the sake of massive computation, such as fitness evaluation, is

restricted inside a partition. At the same time, the system tightly controls data

movement. This approach will enable GAs to scale up and will improve processing

time. The main objective of this work is to propose a GA model that can be used in

large-scale data classification while maintaining efficient output results in reasonable
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learning time.

1.2 Contribution

The contribution presented in this thesis is in answer to the question of how to

enhance the behaviour of rule-based GA classifiers over large-scale data

processing using data partitioning. The goals of our contribution are:

1. Reducing the execution time of the system.

2. Scaling parallel GAs while maintaining a high level of accuracy.

3. Maintain a high GA scalability by automatically controlling its key parameters.

Two models are proposed targeting partitioned data processing:

Partitioned-Data Master-slave (PDMS) This model is a master-slave paral-

lel implementation of GA, which considers the case where data is partitioned over

multiple nodes. Master-slave parallel implementation focuses on the most expensive

GA processing stage, fitness computation. This thesis reports the scalability of the

PDMS model scales over different cluster sizes.

Partitioned-Data Multiple-deme (PDMD) This model differs from the orig-

inal multiple-deme parallel GA as the local GAs would access only a local data

partition for all GA processing stages rather than having access to the complete

dataset. A potential advantage from this modeling is a reduction in processing time

since the local GA accesses only part of the dataset to complete its process. This

implementation is compared to the PDMS to report how it performed in terms of
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accuracy and processing time. This work has been published in GECCO’19 (Al-

terkawi and Migliavacca 2019). The contribution included proposing PDMS and

PDMD model designs, implementations and performing the experiments.

The proposed models have been tested within the BioHEL machine learning sys-

tem. We presented the learning accuracy and training time (execution time) when

we tested the scalability of the models on the largest classification datasets avail-

able on the UCI repository. For context, we compared our proposed models with

DEAP-Spark, a GP implementation over Spark (Hmida et al. 2019). We used the

learning accuracy and execution time to formulate our conclusion. The experiments

performed show that the implementations have considerably reduced the execution

time, and it also achieves a high accuracy level for both implementations compared

to DEAP-Spark.

AUTO-PDMS & AUTO-PDMD As we have stated, scalability is the core

strength of both models, and our experiments show that it could be enhanced by au-

tomatically controlling some of the GA fixed parameters. Therefore, we reimplement

both models considering an automated strategy for two GA parameters (number of

iterations and population size). We compare the accuracy and the execution time of

the modified models with the ones proposed initially. These modified models give a

good tradeoff between accuracy and time. A key advantage of this automated design

is that it can save the user from the trial-and-error experiments to find the ideal

number of iterations and population size for the different problems addressed.

1.3 Summary of Chapters

This thesis is divided into a number of chapters:
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Chapter 2 This chapter outlines the essential background for the main idea behind

this work.

Chapter 3 This chapter discusses the existing work on implementation of distributed

parallel genetic algorithms in the literature. The literature is divided into three

sections: implementing DPGA using custom distribution topology; MapReduce; and

Spark.

Chapter 4 This chapter introduces our first contribution: two GA Parallel Models

considering a partitioned data environment. In this chapter, we explain the design of

the PDMS and the PDMD models as well as the two models’ implementations using

the BioHEL classifier over the Spark platform. It also includes the experimental

results and a comparison with a Genetic Programming over Spark Classifier (DEAP-

Spark).

Chapter 5 This chapter represents our second contribution: enhancing PDMS and

PDMD to optimize their performance and enhance their scalability while reducing

the number of GA parameters. Experimental results compare the original PDMS

and PDMD implementations with the updated versions.

Chapter 6 This chapter presents some conclusions drawn from this research and

proposes a number of promising areas for further research.



Chapter 2

Background

This chapter describes the two main aspects of this thesis: genetic-based classifiers

and large-scale data processing. It briefly introduces the classification task: a data

mining technique used for intelligent decision making. As classification is a big topic,

this chapter is intended to provide enough background material to connect the con-

tributions contained in this thesis with the classification task. Therefore, the chapter

focuses on explaining the closest topics to our field of application: a rule-based ma-

chine learning classifier system, genetic algorithms, and in particular the scaling-up

techniques used to handle large-scale data analysis.

The chapter is structured as follows. First, Section 2.1 will provide a brief definition

of data mining and its main techiniques and will focus specifically on the classifi-

cation task. Section 2.2 will describe the main knowledge representations (and the

corresponding inference mechanisms) used to solve the classification problem, focus-

ing primarily on prediction rules. Section 2.3 will briefly discuss rules extraction.

Section 2.4 explains the basic concept of the genetic algorithms and their general

8
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workflow. Section 2.5 explains BioHEL, a rule-based machine learning classifier,

which adopts a genetic algorithm as the rule discovery approach.Section 2.6 and its

subsections will present how researchers improved the execution time of GAs using

parallel approaches. Section 2.7 introduces the problem of mining large-scale data,

also presenting some of the existing approaches. Finally, Section 5.6 will provide a

summary of the chapter.

2.1 Data mining

Data mining can be defined as the process of extracting useful patterns from large

and raw datasets. These useful patterns are turned into outcomes which help to

understand the data and/or make predictions on future data; this is called learning.

As defined by Witten, Frank and Hall (2011), learning is the acquisition of knowledge

and the ability to use it. The first stage in data mining is preparing the input data

instances; that is, cleaning data by filtering the noisy instances or instances with

missing values. Prior to that step, in some cases data is completely unstructured

(such as pure text), and a pre-step is then needed to organize and structure the

raw data into a dataset of instances to enable data modeling and pattern extraction.

Each data instance that enters into the learning process is characterized by its values

on a fixed, predefined set of features or attributes. In this work, we define an instance

as follows:

Definition 1. Given a set of attributes A = {a1,. . . , am}, and a set of data instances

I = {i1,. . . , in}, where all instances share the same attributes, a structured instance i

is represented as a discrete sequence of values for those attributes i = {ia1,. . . , iam},

where iak represents the value of attribute ak in instance i.
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The attribute types can vary between binary, nominal, ordinal and continuous

values. Many practical data mining systems accommodate just two of these four:

nominal (binary and nominal) and real-values (ordinal and continuous). Nomi-

nal attributes (also called cathegorical) represent discrete values which belong to a

specific finite set of categories. For example, the traffic light signal could be one of

three values: red, green or yellow. The binary value is a special case of nominal with

just two values; ordinal is also a special case where there is an order relationship

defined between values. On the other hand, real-valued attributes are those that

take the form of any numerical value.

The second stage in data mining is using machine learning to extract useful

patterns and create knowledgeable models that can help to conclude and describe the

dataset or even to predict future data instances. Some of the data mining techniques

are shown in Figure 1. Descriptive analytics focuses on summarising and converting

the data into meaningful information for reporting and monitoring. This category of

data mining explains and analyzes the current state of the data. On the other hand,

the primary objective of predictive mining techniques is to predict future results

from current states. Based on a training set of some input (data instances) and

output (target values), a supervised machine learning algorithm is used to build a

learning model that is designed to predict the correct output value for future inputs.

Regression is a method in statistics which expresses the output as a combination of

the attributes, with predetermined weights. It is commonly used to make projections,

such as sales revenue for a given business, and it is only applicable if the attributes

are numerical. In time series data analysis, each instance represents a different time

step and the attributes give values associated with that time. Time series are studied

both to interpret a phenomenon (identifying the cyclicity and seasonality components

of a trend) and to predict its future values. Classification is about determining a
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Figure 1: Data Mining Techniques

cathegorical class (or label) for an element in a dataset.

In this thesis, we focus on the classification task. Classification has numerous

applications, including fraud detection, target marketing, performance prediction,

manufacturing and medical diagnosis. In the following section, I will briefly explain

the classification task.

2.1.1 Classification

As shown in Figure 2, the classification learning process involves two phases: the

Training Phase and Classification (Prediction) Phase. A prior step is to

divide the dataset into TrainS and TestS sets where each is used in the corre-

sponding phase. (1)Training Phase builds a classifier model based on the input

training sample, TrainS, where the training sample contains labelled data instances;

(2)Classification (Prediction) Phase, where the classifier model is fed with data

instances without their labels, also called testing samples, TestS, for predicting their

correct classes or labels. The correct classes are then compared with the predicted
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Figure 2: The Learning Process for Classification

ones to estimate the accuracy of the developed classifier model. Usually, a classifier

is evaluated with its testing accuracy as well as the training time.

In this work, we follow Bacardit Bacardit (2004) definition of classification:

Definition 2. Given a set of instances I = i1, . . . , in, each of them labeled with a

finite set of classes C= c1, . . . , cm, the task of classification is to create a certain

theory T based on I and C that, given an unlabeled new instance, can give a prediction

of the class of this instance.

Researchers use different algorithms to create the classifier model in the training

phase, such as Decision Trees, Logistic Regression, K-Nearest Neighbor, and Neural

Networks. It is difficult to make precise statements about the effectiveness of the

classifier modeling algorithms, as each of these learning algorithms has its advantages

and limitations in data mining applications. As mentioned in (Freitas (2002)), it is

enough to say that each classification learning algorithm performs better on some
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datasets than others, and hence none is universally superior across all datasets. An-

other technique that is used to learn a classifier model is rule-based machine learning.

The defining characteristic of a rule-based machine learner is the identification and

utilization of a set of relational rules (prediction rules) that collectively represent

the knowledge captured by the system (classifier model), in contrast to the other

machine learners that commonly identify a single model that is used to make the

prediction.

This thesis focuses on rule-based classifier modeling which concludes rules using a

GA. The following section briefly defines the different ways to represent knowledge.

It will mainly focus on knowledge representation of prediction rules.

2.2 Knowledge Representation

There are different ways to represent a learned model, or knowledge, in the literature,

and they are strongly mapped to the classification task Bacardit (2004). We represent

below six of the main representations:

Decision trees Predict an instance class, starting from the root of the tree. Each

internal node represents a "test" on an attribute and each branch represents the out-

come of the test. An instance attribute value is compared against the node’s specified

attribute and based on this comparison one descending branch, which evaluates to

true, is followed to the next node until a leaf is reached. The leaf node provides the

classification of the instance (Mitchell 1997). A decision tree representation is shown

in Figure 3.
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Figure 3: Example of a Simple Decision Tree

Canonical tree-structure In this model knowledge is represented as a tree in

which nodes are function nodes, representing a subroutine in the algorithm, or ter-

minal nodes, representing constants or variables defined by the algorithm. A simple

example is shown in Figure 4. The algorithm is executed by a depth-first traverse of

the tree, starting from the root node, searching for function nodes and their operands.

An examination of nodes 2, 3, and 4 yields the logical value true or false. A true

result causes the traverse to continue by examining node 5 and its operands. A true

value for Z calls the subroutine XYZ, while a false value calls the sub-routine XY. If

the expression X AND Y is false, the algorithm relinquishes control. Lemczyk and

Heywood (2007) uses this representation for GP-based classifier model.

Sets of instances This knowledge representation consists of storing a set of in-

stances, either taken from previous experience or modifying the instances using a new

representation, and using them to classify input examples. Instance-based learning
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Figure 4: Canonical tree-structure (Keane 2008)

algorithms look for k instances from the selected stored set nearest to the input ex-

ample based on distance metrics. When the k closest instances to this example are

selected, the predicted class can be based on a simple voting mechanism or more

complex techniques. Different instances-set algorithms and a comparison between

them can be found in (Yu et al. 2014). The instances-set representation is shown in

Figure 5. These classifiers do not construct any classifier model explicitly; instead

they keep all training data in memory (or a data subset) for classification.

Bayesian networks Also known as belief networks, or decision networks, they are

graphically represented as an acyclic graph of nodes and directed edges connecting

them. Each node represents a random variable and the directed edge connecting

nodes defines a dependency relation: the node origin of the arrow influences the

pointed node. Nodes that are not connected represent variables that are conditionally

independent of each other. Each node is associated with a probability function that

takes as input a particular set of values for the node’s parent variables and gives as

output the variable’s probability represented by the node. For example, if a node
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Figure 5: Example of Sets of Instances

has two parent nodes and each node is represented with a Boolean variable, then

the probability function is represented by a table of 22 entries, representing all the

possible combinations of the Boolean values of the two parents. Figure 6 shows

a simple example of three nodes, where each is assigned a table representing the

probability function. More details about Bayesian networks and their application

can be found in (Niedermayer 2008).

Artificial Neural Networks are biologically inspired from the functions of neu-

rons in the brain. As shown in Figure 7, each neuron acts as a computational unit,

accepting a number of inputs (possibly outputs from other neurons) and outputting

a single output. Neural networks learn (or are trained) by processing examples,

where each example consists of an "input" and a known "result", forming probability-

weighted associations between the two which are stored within the data structure of
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Figure 6: A Simple Example of Bayesian networks
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Figure 7: A Simple Example of an Artificial Neural network

the net itself. The training of a neural network from a given example is usually con-

ducted by determining the difference between the processed output of the network

(often a prediction) and a target output. This difference is the error. The network

then adjusts its weighted associations according to a learning rule and using this

error value. Successive adjustments will cause the neural network to produce output

that is increasingly similar to the target output. After a sufficient number of these

adjustments, the training can be terminated based upon specific criteria. The origin

of NN can be found in (Clark 1950).
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Prediction Rules Rule sets are the most ancient knowledge representations and

probably the easiest to understand. Their origins can be traced back to the ancient

Greek philosophers and their propositional logic. A classification model is represented

by a rule set composed by individual rules. Rules can take very different forms and

also there are many different ways to interpret the rule set in order to classify an

input instance. Below is a brief description of three aspects: the syntax of rules; the

classification process; and the rules discovery approach.

1. Rule Syntax Logical conjunctions are a kind of knowledge representation

used to express IF-THEN prediction rules. The rule antecedent (IF part) consists

of a conjunction of conditions (e.g. {IF ’temparature >37.8’ AND ’cough’ }). The

rule consequent (THEN part) predicts the class or label value for a data instance

satisfying the rule antecedent (e.g. THEN {’Covid-19’}). Rules can be represented

in many different ways to handle different data types (e.g. binary, discrete-valued,

ordinal, continuous-valued).

2. Classification There are two main strategies for using a combination of

multiple rules for classification: Unordered rule set, and ordered rule set (rule list).

In the former a voting scheme is used where all rules either have the same importance

or votes or some rules might have higher voting power. In the set, the rules are either

mutually exclusive or a strategy for resolving conflicts, such as majority voting,

which may be weighted by each rule’s accuracy or some other quality measurement.

Interpretability potentially suffers when several rules apply.

In the Rule list, an ordered rules-set, is created, and the first rule that matches

the instance is used to predict its class. Rules Set solves the problem of overlapping

rules by only returning the prediction of the first rule in the list that matches the
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instance.

Both strategies have to deal with the situation in which no rule applies to an

instance. Usually this is resolved by introducing a default rule. The prediction of

the default rule could simply be the majority class (the class with the largest amount

of instances in TrainS) or minority class (the class with the minimum amount of

instances in TrainS).

These simple policies perform pretty well compared to the original system. How-

ever, they perform poorly on specific datasets, showing a lack of robustness. Bac-

ardit (Bacardit, Goldberg and Butz 2007) represented a better automatic selection

for the default rule-class, which increases the accuracy of the classifier. It is note-

worthy to highlight that even though using a default rule may conceal the actual

performance of the classifier, especially when some classes suffer from normalisation

where they represent a small number of dataset instances and end up misclassified

entirely.

3. Rules Discovery Decision rules are discovered using rule induction (Michal-

ski 1983; Holsheimer and Siebes 1994) or evolutionary algorithms, more specifically

GAs (Alves de Araujo, Lopes and Freitas 1999; Giordana et al. 1997; Augier, Ven-

turing and Kodratoff 1995; Janikow 1993; Greene and Smith 1993) search strategies,

where the former uses a local, greedy search strategy, whereas the latter uses a kind

of global, population-based search strategy inspired by natural selection. We shall fo-

cus our discussion on the GA approaches, giving a brief explanation of rule induction

in the next section.

It is worth mentioning that some researchers conclude rules from decision trees

using the rule-pruning method rather than learning the decision rules from the
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dataset (QUINLAN 1993; BRESLOW and AHA 1997; Mingers 1989). The rule-

pruning method first converts the tree into a set of rules, and then for each rule

considers removal of conditions regardless of the order in which conditions were gen-

erated (Freitas 2002). Rule-pruning has some disadvantages: it is computationally

expensive, because the computation of statistics required to decide which condition

should be removed from a rule often requires new scans of the training set. In addi-

tion, the entire approach can be considered somewhat cumbersome: it consists of first

building a decision tree, then converting the tree into a rule set and finally pruning

those rules to achieve a more "flexible" rule set that does not follow a decision-tree

structure.

2.3 Rule-based Classifier using GAs

There are three main designs for rule-based classifiers that use GAs for rule discovery:

Michigan Approach Each individual in the GA represents a single rule, i.e. a

part of a classifier. The GA evolves new individual at each generation, then a subpop-

ulation—a set of most efficient rules—is derived to represent the prediction model

(WILSON 1987). The main problem with the Michigan approach is that in gen-

eral GAs measure the performance of a rule (individual) out of the context of the

other rules, ignoring the critical issue of rule interaction. Hence, in the Michigan

approach, we often need some additional methods that foster the discovery of a good

set of rules, a subpopulation rather than a single good individual. In particular, the

method used to discover a group of rules should avoid converging all individuals to

the same point in the search space.



CHAPTER 2. BACKGROUND 22

Pittsburgh Approach Each individual encodes a complete set of rules. Greffen-

stette (1989) initially proposed this model, and a sophisticated implementation of

this approach can be found in (Bacardit 2004). In the Pittsburgh approach, since an

individual represents a set of rules, the entire solution for the classification problem,

it is easy to evaluate the performance of the complete classifier as the quality of the

individual (fitness) On the other hand, an individual tends to be significantly more

complex in this approach —at least, longer—than in the Michigan approach. This

often leads to more complex genetic operators. In addition, the fact that at any given

generation there are many more rules to be matched against the data being mined,

in comparison with the Michigan approach, usually leads to a longer GA execution

time.

Iterative Rule Learning (IRL) As with the Michigan approach, each individ-

ual in the population represents a single rule, but rather than evolving all rules

together, a sequential covering algorithm approach is adopted, where one rule is

learned at a time. A GA is used for rule learning, and after each rule is ob-

tained the training examples covered by this rule are removed from the training

set. Thus, the GA is forced to explore other areas of the search space to learn

other rules. The approach continues searching for rules until a terminating con-

dition is met. The terminating condition can vary across different implementa-

tions, but is typically linked to the fact that no more interesting rules can be in-

duced when the training set is empty. All rules are inserted into a rule set with

an explicit default rule, covering the majority class of the domain (Tung 2009).
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Algorithm 1: Iterative Rule Learning

1 Rule-Set=∅ ;

2 do

3 Rule ← findBestRule(TrainS);

4 Covered ← Cover(Rule,TrainS);

5 TrainS ← TrainS-Covered;

6 Rule-Set ← Rule-Set ∪ Rule;

7 while TrainS 6= ∅ ∧ ¬ StopCriteria(Rule,Rule-Set,TrainS);

8 return Rule-Set

Compared to the Michigan and Pittsburgh approaches, the advantage of the

IRL approach is that it drastically reduces the genetic search space, even if several

searches must be performed if several rules are to be learned (De Jong and Spears

1991).

Rule Induction Similar to GA IRL, a rule induction algorithm induces a rule at a

given time and adds it to the rule set. To create a rule, a search takes place to find the

best condition to be added to the current induced rule, based on a given evaluation

function and on the current contents of the training set, and then it adds the selected

condition to the current induced rule. This process is repeated, while the induced

rule can be improved by adding a new condition to it. The rule is then added to

the rule set, and a match process matches the current training set with the recently

induced rule in order to remove the data instances that are covered and have the

same class of the induced rule. The algorithm keeps adding rules to the rule set and

stops when all data instances are covered by at least one induced rule, or until the

number of uncovered instances is very small and could be neglected. Algorithms of

the rule induction paradigm usually perform a greedy local search for rules, selecting
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one condition at a time to be inserted into or removed from a candidate rule. As a

result, this may cause the algorithm to miss the best rule(s). Some conditions may

seem irrelevant separately, but in conjunction with other conditions they may have

a significant influence on the rules-set quality.

Work by Dhar, Chou and Provost (2004) compared a GA with two greedy rule

induction algorithms and presented some evidence that the GA is more effective at

finding hidden attribute interactions. Moreover, Greene has reported that genetic

algorithms (GA) have shown great promise on complex search domains compared to

rule induction algorithms (Greene and Smith 2004). The following section explains

the basic elements of GAs and how they operate.

2.4 Genetic Algorithms

GAs are search algorithms which use principles inspired by Charles Darwin’s theory

of natural selection, whereby the fittest individuals are chosen to produce offspring,

which are the individuals of the next generation. Holland’s book "Adaptation in Nat-

ural and Artificial Systems" (Holland 1992a) presented the genetic algorithm as an

abstraction of biological evolution and gave a theoretical framework for adaptation

under the GA. In contrast with evolution strategies and evolutionary programming,

Holland’s original goal was not to design algorithms to solve specific problems but

rather to formally study the phenomenon of adaptation as it occurs in nature and

to develop ways in which the mechanisms of natural adaptation might be introduced

into computer systems. Because of their adaptation, genetic algorithms (GAs) proved

to be successful in search and optimization problems. GAs can exploit information
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about an initially unknown search space and bias subsequent searches into useful sub-

spaces. This is their key advantage in complex and poorly understood search spaces,

where classical search tools (enumerative, heuristic, ...) are inappropriate, offering

a valid approach to problems requiring efficient and effective search techniques. In

GAs, each candidate solution is represented using the following:

Individual A candidate solution to the problem to be solved,

Chromosome The codification of an individual. Usually an individual is codified

using a single chromosome.

Gene Each of the atomic values of a chromosome, either a single bit or a short block

of adjacent bits, in case of binary or nominal attributes. For real-valued attributes,

the attribute values could be codified as integers, real numbers or intervals, depending

on the problem.

Allele Refers to a single variant of the gene. For example, considering a gene

represented with a single bit, an allele is either 0 or 1.

Fitness value A value that indicates the degree of adaptation of an individual

(solution) to the environment or, in other words, how "fit" or how "good" the solution

is with respect to the problem under consideration.

One crucial task that affects the efficiency of GAs is choosing a suitable scheme

for encoding the genes. Encoding mainly depends on the type of problem. Most GAs

use fixed-length, fixed-order bit strings to encode candidate solutions. However, in

recent years there have been many experiments with other kinds of encodings, several

of which are described in (Mitchell 1998).
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Algorithm 2 shows the basic steps of GAs that were first laid down by Holland

(1992b). The general workflow for the simple GA can be explained as follows:
Algorithm 2: The basic steps of a simple GA

1 Generate initial population;

2 Evaluation();

3 while Not termination-condition do

4 Selection();

5 Crossover();

6 Mutation();

7 Evaluation();

8 Replacement()

9 end

Initial population. The GA starts with its first step (line 1) of creating an ini-

tial population which is the first generation of feasible solutions or individuals that

are randomly or heuristically created (Kazimipour, Li and Qin 2014). The initial

population contributes genetic materials. Heuristic-created individuals can lead to

a quick solution, while random ones result in a higher diversity, leading to a better

solution.

Fitness function. The created solutions are then evaluated using a fitness function

(line 2). A fitness value is assigned to each newly created individual, representing

how good the solution is. The fitness function may become the bottleneck of the

algorithm, especially in big data problems where an individual is evaluated across

the entire dataset at every generation, resulting in a reduction in the efficiency of the

algorithm. Considering classification, the fitness function should evaluate the per-

formance of a classification rule with respect to the training dataset. To understand
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how a rule is evaluated, let us assume that a rule with antecendent A predicts the

consequent (class) c. A and c are matched with the attributes and the actual class of

each instance in the training datasets and, a result, four different values are gathered

for the rule: TP (True Positives) = Number of instances satisfying A and having

class c; FP (False Positives) = Number of instances satisfying A but not having class

c; FN (False Negatives) = Number of instances not satisfying A but having class c;

TN (True Negatives) = Number of instances not satisfying A nor having class c.

Given the values of TP, FP, FN and TN, as discussed above, several measures

can be defined to represent the quality of the rule, for example:

Precision = TP/(TP + FP ) (1)

TruePositiveRate = TP/(TP + FN) (2)

TrueNegativeRate = TN/(TN + FP ) (3)

AccuracyRate = (TP + TN)/(TP + FP + FN + TN) (4)

CoverageRate = TP + FP/(TP + FP + FN + TN) (5)

In principle, a fitness function could use any combination of the above measures

to evaluate rule quality concerning predictive accuracy. Accuracy is one of the most

popular metrics in both binary and multi-class classification problems. Grandini,

Bagli and Visani (2020) present an overview of different fitness evaluation metrics

such as "Balanced Accuracy" and "Confusion Matrix", where most of these metrics

evaluate an entire classifier fitness and are not intended to evaluate individual rules.
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Selection. The algorithm selects parents, individuals, who will crossbreed and cre-

ate offspring (line 4). There are different methods used for the parent selection, in-

cluding Roulette-Wheel Selection, Tournament Selection, and Boltzmann Selection.

Roulette-Wheel is the most common selection method, where each individual is as-

signed a slice of a circular "roulette wheel", the size of the slice being proportional

to the individual’s fitness. The wheel is spun N times, where N is the number of

individuals in the population. On each spin, the individual under the wheel’s marker

is selected to be in the pool of parents for the next generation. In tournament se-

lection, a random number s of individuals is selected (with or without replacement)

from the population, and then the best of the s individuals is chosen to be added

to a mating pool. This process is repeated until the mating pool is filled (selection

of enough parents to generate offspring). Boltzmann selection works similarly to

simulated annealing, in which a varying "temperature" controls the rate of selection

according to a preset schedule. The temperature starts high, which means that se-

lection pressure is low and every individual has a reasonable probability of being a

parent. The temperature is gradually lowered and the selection pressure increases,

thereby allowing the GA to narrow in ever more closely to the best part of the search

space while maintaining a reasonable degree of diversity. More selection methods can

be found in (Saini 2017; Mitchell 1998).

Crossover. The first genetic operator which is applied to the parent to reproduce

is crossover (line 4). Crossover consists of exchanging genetic material between two

parents’ chromosomes. The most crucial criterion for crossover operator design is

that children inherit the superior characteristics of their parents. The crossover

and selection operators create a link between the old and new generations as they

are responsible for passing the good properties, knowledge, from the old to the new
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populations’ chromosomes. Crossover can be considered the most important operator

in the genetic algorithm, determining the global convergence of the genetic algorithm.

There are different ways that the crossover operator is applied to the two parents.

The three main types can be defined as follows:

• One point: A point on both parents’ chromosomes is picked randomly, called

a ’crossover point’: the genes to the right of that point are swapped between

the two parent chromosomes. This results in two offspring, each carrying some

genetic information from both parents.

• Two-point: Two crossover points are picked randomly from the parent chro-

mosomes. The genes in-between the two points are swapped between the parent

chromosomes.

• Uniform: Each gene is chosen from either parent with equal probability.

Sometimes a different mixing ratio is set and results in offspring inheriting

more genetic information from one parent than the other.

Mutation. The second genetic operator is mutation (line 6), which acts on a single

individual at a time. It replaces the value of a gene with a randomly generated

value. Mutation is a blind operator, whereby the selected gene and its new value are

randomly chosen without any attempt to maximize the fitness of the new individual.

Mutation is used to maintain genetic diversity from one generation of a population

of genetic algorithm chromosomes to the next.

After reproduction, the offspring will be evaluated using the fitness function and are

usually sorted according to their fitness values (line 7).

Replacement. Is the process of creating new generations (line 8). Following the
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genetic operator activity, parents are replaced by offspring. Some GAs adopt a pro-

cess that allows the best individuals from the parents’ generation to carry over to the

next generation, which is called elitism. If elitism is used, the individuals with the

best fitness replace the offspring with the worst fitness. Elitism is used to guarantee

that the solution quality obtained by the GA will not decrease from one generation

to the next. Elites should only represent a small portion of the population in order

to maintain diversity and avoid premature convergence.

The steps in lines (line 4 – line 8) are repeated until a termination condition is

met. A maximum number of generations (iterations) is the most commonly used

condition to end the GA process. GA designers use other various conditions in the

implementation of their algorithms to finish the processing of their algorithms. One

possible condition is when the specified time to run the algorithm has been met.

Another condition is when no significant improvement in terms of solution quality

occurs. In some problems (classification might be one of these), the user can specify a

fitness level that corresponds to a good solution. Termination could be reached when

the best-found individual reaches or exceeds that accepted fitness value. However,

in general, the best achievable fitness is not predictable. A smarter termination for

GAs would satisfy a convergence condition (Schmitt 2001). Genotypic convergence

is the point at which evolution stops because every individual in the population is

identical. This type of convergence can only take place in genetic algorithms when

no mutation is used.

Next we present BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learn-

ing) Bacardit, Burke and Krasnogor (2009). BioHEL is an IRL-based classifier de-

signed for single node large dataset, which we later extend to multi-node operation

on distributed datasets.
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2.5 BioHEL: GA IRL Classifier

BioHEL is a classifier designed to handle large and complex data classification tasks,

such as protein structure prediction. It has been successfully applied to large-scale

bioinformatics datasets (Bacardit et al. 2007). Algorithm 3 shows the pseudo-code

of the general workflow of BioHEL.
Algorithm 3: BioHEL general workflow
Input: TrainSet

1 RuleSet =∅ ;

2 stop=false;

3 while stop = false do

4 BestRule = null;

5 for repetition ← 1 to NumRepetitionsRuleLearning do

6 CandidateRule = RunGA(TrainS);

7 if CandidateRule is better than BestRule then

8 BestRule = CandidateRule ;

9 end

10 Matched = Examples from TrainS matched by BestRule;

11 if class of BestRule is the majority class in Matched then

12 Remove Matched from TrainS;

13 Add BestRule to RuleSet;

14 else

15 stop = true

16 end

Output: RuleSet
BioHEL follows a typical IRL by learning a rule at a time (lines 4–9) and adds
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it to a rule list (line 13). BioHEL repeats several learning attempts with different

seeds (lines 5–9), and only the best candidate rule is selected (bestRule), (lines 7–

8). The selected rule is then penalised to induce niche formation in the search

space. To achieve this as, per the typical IRL strategy, BioHEL deletes the training

examples that have been covered by the selected rules (matching the selected rule)

(line 12). The iterative search for new rules stops when it is no longer possible to find

any rule where the associated class is the majority class of the matched examples

(lines 11–15). When this happens, all remaining examples are assigned to the default

rule. BioHEL is strongly influenced by the GAssist Pittsburgh LCS (Bacardit 2004),

inheriting from it some main mechanisms. For a full description of BioHEL, as well

as the justification for its design issues, please see (Bacardit and Krasnogor 2006).

As described above, BioHEL evolves and learns each rule using a GA.

In order to understand the different terminologies represented in section 2.4 under

the heading of rules knowledge representation, we will use BioHEL representations

to give an example of each. A graphical representation will be used to explain some

of these terminologies also.

• Individuals representation since BioHEL is an IRL-based GA classifiers,

which discover one rule at a time, the solution of the problem is a rule and

the individual is the representation of a rule. BioHEL uses the attribute list

knowledge representation (ALKR) (Bacardit and Krasnogor 2009) to encode

the individuals. This meta-representation is able to handle real-valued and

nominal attributes at the same time.

• gene: A gene is a condition that could include either a real-valued attribute or a

nominal one. In the case of a real-valued attribute, the condition is represented

with a lower and an upper bound of its associated interval. In a nominal
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attribute, the condition is represented with a string of bits, where each bit

represents a possible value for the nominal attribute. If the condition covers

the value, then a ’1’ in that bit represents that coverage. Otherwise, the bit is

set to zero. Figure 8 shows an example for both gene representations.

• An individual chromosome A chromosome is a rule (with multiple genes)

represented by four elements, as shown in the example in Figure 9: (1) an

integer containing the number of expressed attributes; (2) a vector specifying

which attributes are expressed; (3) a vector of the lower and upper bound

for each real-valued expressed attribute; (4) a vector of the covered values for

nominal attributes; and (5) the class associated with the rule.

• initialization Smart initialization operators create rules that are generalised

versions of randomly sampled training instances. In the case of a real attribute,

for example, the size of the interval is randomly initialised, with a uniform

distribution of between 25% and 75% of the domain size. This interval is

centered with the attribute value of a randomly selected training instance.

In case the interval overlaps with the lower or upper bound of the attribute

domain, it is shifted so that it lies fully within the domain. It also considers

the use of the explicit default rule, sampling only instances not belonging to

the class of the default rule. The detailed initialisation process can be found

in (Bacardit 2004).

• one-point crossover A crossover point can have one of three positions in the

selected parent chromosome: (1) between attributes, and in this case, the list of

attributes before the point are copied from the other parent; (2) inside a nom-

inal attribute; or (3) inside a real-valued attribute. The crossover point could



CHAPTER 2. BACKGROUND 34

Figure 8: BioHEL: Gene representation. (a) shows how a real-valued attribute is
represented with the lower bound and the upper bound of attribute in the condition.
(b) shows an example of the traffic light colors and how they are represented for this
attribute in the condition

be inside an attribute which does not exist in the other parent’s chromosome.

Figure 10 shows how the swap would take place in all situations.

• mutationMutation may affect three different parts of the chromosome: a nom-

inal attribute gene’s bit; an upper or lower bound of a real-valued attribute;

or the class. A bit-flip mutation is applied to the selected bit in the nomi-

nal attribute. In the case of the real-valued attribute, the mutation operator

selects one bound with uniform probability and adds or subtracts a randomly

generated offset to the bound, the size (picked with uniform distribution) being

between 0 and 50% of the attribute domain. If the mutation affects the class

value, a different class value is assigned to the rule, picked at random.

If the crossover or the mutation operators create invalid intervals where the

lower bound is higher than the upper bound, a repair would swap the bounds.

• Fitness Function In BioHEL, the fitness function is defined as follows:

Fitness = TL ·W + EL (6)
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Figure 9: BioHEL: Chromosome representation

Figure 10: BioHEL crossover: Example of the crossover operator for two cases: when
the cut point attribute is expressed in both parents or only in the first parent

(Bacardit 2004)
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where TL stands for theory length (the complexity of the solution) and EL

stands for exceptions length (the accuracy of the solution). EL is designed

taking into account a suitable tradeoff between accuracy rate and coverage,

thus covering as many examples as possible without sacrificing accuracy. W

is a weight that adjusts the relationship between TL and EL. BioHEL seeks

to minimize its fitness. For more details about the EL, W and TL values, the

reader may refer to (Bacardit 2004)).

As we are addressing large-scale data, the BioHEL, specifically the GA in BioHEL,

may require substantial training time to conclude the classifier. One of the most

promising solutions for enhancing the performance of GAs is the parallelisation ap-

proach. Although using a finite number of computing resources in parallel cannot

lower the intrinsic time complexity, parallelism can reduce the time to reasonable lev-

els. In the following section, I shall explain the most well-known GA parallelisation

methods.

2.6 Parallel GAs

Parallelisation is key to the success of a genetic algorithm: as GA is applied to

complex and large problems in the domains of business, science and engineering, there

is a solid drive to reduce the execution time required to obtain reasonable quality

solutions. Consequently, there are several well-established strategies, together with

some more recent techniques, to implement parallel GA (PGA).

There are three main traditional approaches to PGA Alba and Troya (1999):

master-slave, coarse-grained (multiple demes) and fine-grained parallelisation. Each

model distributes data and computation tasks differently across different processors.
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In the following two sections, we explain the first two approaches. In the fine-

grained model, the population is distributed over a sizeable topological mesh where

each processor hosts mostly one individual. While fine-grained approaches have been

successfully implemented on massively parallel hardware using e.g. MPI or GPGPU

techniques, it is challenging to adapt these techniques to a large data scenario, given

the high degree of communication required between the different nodes/machines.

Consequently, I do not consider such models in my implementation and leave the

exploration of such techniques as a possible area for future research.

2.6.1 Master Slave Model

In the master-slave PGA model, all individuals belong to a single population, which

is managed by a master processor. The master node is responsible for handling

the selection and genetic operators, and there is therefore no need to communicate

with the other processors during this evolution process. However, it delegates to the

processors, or slaves, the fitness computation task, i.e. the most expensive operation

of the GA. In particular, the master distributes each individual to a processor to

evaluate its fitness, thus parallelising the fitness function computation. The slaves

determine the fitness for the assigned individuals on the training instances, then the

results are sent back to the master processor, which selects individuals to pass to the

next generation. In this model, the data is replicated over the different processors,

or all processors access the data in shared memory for fitness computation. This

approach leads to solutions of the same quality as the sequential approach (as the

fitness evaluation is equivalent to the sequential case), and the selection and crossover

operate across all individuals in the panmictic population.

Master-slave PGA is easy to implement, and it can be a very efficient method
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of parallelisation when the fitness evaluation needs considerable computation. One

drawback of this model is the overhead resulting from the shared memory being

accessed by all processors. Also, the master needs to wait for all the slaves to return

the fitness results to start the following process, which impedes speed.

2.6.2 Multiple-deme or Island Model

Multiple-deme models are a popular and efficient way to implement GA on both

serial and parallel processors. Multiple-deme GAs are known by different names,

such as coarse-grained GAs, and the island model. Probably the first systematic

study of PGAs with multiple populations was Grosso’s dissertation (Grosso 1985).

In some cases it has proven to be more efficient than panmictic populations, even in

the case of sequential implementations. Whitley’s island implementation managed

to optimise a broad range of sample problems more accurately and more consistently

than a GA with a single large population (WHITLEY and STARKWEATHER 1990).

In a parallel implementation of a multiple-deme model, each processor executes

a GA independently and maintains its subpopulation for search. For example, a

total population N total for a serial algorithm could be spread across M machines by

giving each processor a population size of N island = N total/M. The processors work

together by periodically exchanging a portion of their population in a process called

migration. Migration is affected by a number of different parameters: (1) migration

frequency, the number of generations (or evaluations) between two migrations; and

(2) migration size (rate), the number of individuals in the population to be replaced

between the parts of the population (subpopulation). Grosso observed that when the

demes were running without migration, the fitness rose rapidly, but stopped at a lower

value than with a single large population, and therefore the quality of the solution
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found after convergence was worse in that scenario. At intermediate migration rates

however, the multiple-deme found solutions close to those found in the panmictic

population, as this process allows exploration of areas not yet discovered. These

observations indicate a critical migration rate below which the isolation of the demes

obstructs the algorithm’s performance, and above which the partitioned population

may be able to find solutions of the same quality as the panmictic population.

The impact of migration was also studied by Luque and Alba (2010), and the

impact of the frequency of migration has been studied by Mambrini and Sudholt

(2014). Broadly speaking, dense migration topologies, such as a complete graph,

lead to a fast spread of good solutions at the price of high communication overhead.

Less frequent communication between islands may save the communication overhead,

at the price of delays in spreading new good individuals. Setting the migration

interval correctly is a challenge for designing efficient island algorithms (Mambrini

and Sudholt 2015). In most multi-deme PGAs, migration is synchronous, which

means that it occurs at predetermined constant intervals. Migration may also be

asynchronous, that is, the demes communicate only after some events occur.

As data size increases, current trends support the implementation of GAs over

multiple networked computing nodes (horizontal scalability) rather than using multi-

cores with a shared memory (vertical scalability). Distributed PGA (DPGA) con-

siders using multiple distributed nodes to scale up to solve large-scale data mining

problems. Even though both the master-slave and the multiple-deme have been

implemented in a distributed environment, multiple-demes offer an excellent oppor-

tunity for distribution, as different nodes run independently and occasionally com-

municate to perform the migration. Thus, the resulting communication overhead is

minor in the context of the total execution time.

We consider the following assumption in our DPGA: a coordinator (master)
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processor controls the overall progress in the distributed genetic algorithm and co-

ordinates the distributed process between the other processors. Below, we motivate

Distributed PGA (DPGA). Then, in the following section we explain the data parti-

tioning concept. Two distributed parallel programming platforms, MapReduce and

Spark, are described briefly at the end of the chapter.

2.7 Large-scale Data Processing

Processing large datasets brings challenges for both storage and processing capabil-

ities. Usually, large data is stored in a data warehouse (local storage) or on cloud

platform. A data warehouse is a centralised storage scheme for organising data from

different sources. Data warehouse tools make it possible to manage data efficiently

by finding, accessing, visualising and analysing data. With cloud storage, data and

information are stored remotely and can be accessed from anywhere. It can rapidly

scales up the storage capacity according to application demands, making it an at-

tractive option for meeting increases in data volume. Of course, the importance of

storing such a massive amount of data lies in the benefit of extracting the knowledge

hidden inside. Analysing this massive data is not easy with traditional data mining

and machine learning algorithms. Large-scale data mining is highly demanding for

hardware resources (processors and memory) and time-consuming. Thus, we need

to provide an efficient processing mechanism as well as reducing the time required

to analyse data.

A possible approach to sidestepping the challenges of analysing large datasets is

to reduce their size using sampling methods. The main idea is to choose a represen-

tative sample of the data for learning instead of using the entire dataset, allowing the

user to trade result accuracy for response time. Sampling methods can effectively
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reduce the amount of data and help speed up data processing. Hence, sampling

techniques have been widely studied and used in big data contexts, e.g. methods for

determining the sample size, combining sampling with big data processing frame-

works (Mahmud et al. 2020). Albattah (2016) has studied the role of sampling in

big data analysis. The main focus of the study is the benefit of using sampling in

the Artificial Intelligence field. The experimental results show that sampling not

only reduces the data processing time, but also yields better results in some cases.

The author’s results also show that not all examples of sampling are as effective as

using the original dataset. In a recently published work by Wu et al. (2014), the

author implemented a GP classifier (DEAP) over Spark cluster to parallelise the

fitness evaluation. He integrated a simple random sampling technique to speed up

the training time. The author highlights that the theoretical trade-off between accu-

racy and sample size needs further investigation. He also stated that big data could

be analysed incrementally to obtain results close, but not equal, to those computed

using the entire dataset.

He and Garcia (2009) present a detailed explanation of why sampling may fail

to return the same accuracy as using the original dataset. First, the authors explain

how learning algorithms would fail to generalise inductive rules over a small sample

size when the presented dataset has a high degree of features with a limited number

of instances. If the sample space is sufficiently large enough, a set of generalised

inductive rules can be defined for the data space. However, when the sample has a

limited number of representative instances, the formed rules can become too specific,

leading to overfitting. Also, sampling may hide some details about the data when

targeting imbalanced datasets; one or more classes are represented with a small

number of instances. Hence sampling may hide completely or maybe barely represent

those instances in the small sample resulting in maybe a 100% accuracy while ignoring
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the non-represented classes. If the sample size becomes larger, even using sampling

(considering the above limitations) would lead to a point where the sample size is big

enough to warrant parallel or distributed execution to obtain results faster. Hence,

sampling and parallelism are best regarded more as complementary techniques than

alternative ones.

Distributed systems can increase computing power by adding hardware resources.

Distributed computing can be defined as using a distributed network of computing

nodes to solve a single large problem by breaking it down into several tasks, where

each task is handled by the individual computers of the distributed system. Here,

it is essential to differentiate between parallel and distributed systems. A parallel

computing system consists of multiple processors that communicate with each other

using shared memory, whereas a distributed computing system contains multiple

processors connected by a communication network. As a result, parallel systems

have high bandwidth access to a shared memory, while distributed systems do not.

Nowadays, this definition becomes tricky when considering modern multicore and

GPGPUS, which have local memory with faster access than main memory. So, in

principle, the approach to organising work between these cores would be similar to

our presented designs, even if they are on a single node machine.

Many researchers addressing large data processing using distributed approaches

would use MapReduce and Spark to speed up their implementation. In this study,

we focus on Distributed Parallel GA implementations over the Spark platform. The

following section briefly explains the MapReduce and Spark distributed frameworks.
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2.7.1 Distributing Data

MapReduce and Spark are two frameworks that simplify the programming of parallel

and distributed systems and provide scalability and efficiency.

MapReduce—proposed and developed by Google, and then reimplemented by

Yahoo as the open-source version that is available nowadays—and Spark—developed

at the University of California at Berkeley—are two famous distributed programming

models that help programmers to process distributed data across multiple computing

nodes. In the following two sections, the programming model of MapReduce and

Spark will be explained.

2.7.2 Hadoop MapReduce

MapReduce is a paradigm of parallel programming (Dean and Ghemawat 2008)

designed to simplify the processing of large datasets, as it abstracts many details

of the underlying software and hardware platform by providing a standardised API.

Hadoop MapReduce allows programmers to parallelise applications over multiple

nodes/machines in an easy way without the need to manage a number of details such

as data access, serialisation of tasks and data across the network, synchronisation,

and any failure that could occur during these steps. The model works in two phases

inspired by functional programming: the map phase and the reduce phase. The

map and reduce functions are defined by the user to specify the processing logic and

effectively constitute the MapReduce “program". Each phase has key-value (<k; v>)

pairs as input and output. The map user-defined function phase takes each <k; v>

pair and generates a set of intermediate <k; v> pairs. Then, all pairs’ values with

the same key are merged and are associated with the same key as a list (known

as the shuffle phase). The reduce user-defined function takes that list as input to
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Figure 11: Map Reduce Word-count Example

produce the final values. In a MapReduce program, both map and reduce operations

run in parallel. Inputs and outputs of a map-reduce job are typically stored in an

associated distributed file system accessible from any computer of the used cluster.

HDFS takes a dataset file, divides it into separate blocks and distributes them on the

different data-nodes for storage. Figure 11 shows how a map-reduce job is executed

to handle a simple program of word counting.

First, the file is divided into 3 splits (generally they are defined according to

blocks in the underlying HDFS system). Each mapper will access one or more splits.

The mappers will execute the map function defined by the word-count program

independently, i.e. with no communication between them, and will create a <key,

value> pair for every word where the key is the word, and the value is one. Then, the

outputs of the mappers are shuffled, preparing for the reduce task. The shuffle creates

a list of all values for each key. Each key is assigned to a reducer (also three in this

example). The reducers take the <key, list[values]> and apply the reduce task

to the list, in this word-count example it is summation, resulting in <key,value2>

output where value2 is the number of times each word (key) appeared in the input.
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For this example, the user needs to specify the map and reduce task source code

before the MapReduce job can be created and run on the Hadoop cluster.

In the MapReduce programming model, each map operation needs to be followed

by a reduce operation. The MapReduce model is considered a good solution for ap-

plications that require a single pass over the dataset. On the other hand, a number

of complex jobs cannot be efficiently implemented in a single mapreduce step; thus,

this often leads to processing pipelines composed of a sequence of map and reduce

jobs. The model is not designed to cache intermediate data in memory for faster per-

formance; instead, it pushes intermediate data to disk after each step. Such overhead

makes algorithms requiring many quick steps unacceptably slow using the MapRe-

duce paradigm. Therefore, it is not the best paradigm for implementing parallel GA,

which needs to run many iterations over the intermediate results. Compared with

MapReduce, Spark can provide faster iteration on datasets that fit in the memory of

distributed machines without pushing the intermediate data to the disk. Spark has

a library of APIs that help the user to manipulate high-level typed objects masking

the complex underlying (or the detailed structural) code.

2.7.3 Spark

Spark programs are executed in a distributed fashion by the driver and a set of

executor processes. The driver manages the user application execution on the cluster,

and executes the serial part of the code and distributes tasks to the executors in form

of Resilient Distributed Datasets (RDD) operations.

RDDs are Spark’s core abstraction: an immutable, distributed collection of ob-

jects that can be operated on in parallel. There are two ways to create RDDs: (1)

parallelising an existing collection in the driver program; or (2) referencing a dataset
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in an external storage system, such as a distributed file system (for example, HDFS).

Internally, each RDD is partitioned, and those partitions are simply cached in the

executors’ memory if there is enough space. RDDs support two types of operations:

• Transformations: lazy operations that return another RDD. Some examples

of transformations are map(), flatmap(), and filter()—see Table 1 for a

description of key Spark operations. RDD transformations are designed for

efficient parallel computation across partitions; e.g., filter(pred) can be exe-

cuted in parallel in each partition to filter RDD elements, and aggregate(start,

seqOp, combOp) aggregates elements in each partition first using a seqOp func-

tion (starting from start) and then aggregates partial results from each par-

tition using function combOp. RDDs do not compute unless an action is per-

formed on them. This design enables Spark to run more efficiently. For exam-

ple, we can realise that a dataset created through map will be used in a reduce,

and will return only the result of the reduce to the driver, rather than the larger

mapped dataset. By default, each transformed RDD may be recomputed each

time we run an action on it. However, we may also persist an RDD in memory

using the persist (or cache) method, in which case Spark will keep the elements

on the cluster for much faster access the next time you query it. There is also

support for persisting RDDs on disk, or replicated across multiple nodes.

• Actions: operations that trigger computation and return values to the driver.

Some examples of actions are count, top(), and savetofile(); more examples are

found in Table 2. Each action in the user program will trigger jobs, and then

Spark will split the work into multiple tasks that can be computed separately.

Transformation Description
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aggregateByKey(zeroValue) (seqOp,

combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a

dataset of (K, U) pairs where the values for each key

are aggregated using the given combine functions and

a neutral "zero" value. Allows an aggregated value type

that is different from the input value type while avoid-

ing unnecessary allocations.

filter(func) Return a new dataset formed by selecting those ele-

ments of the source on which func returns true.

flatMap(func) Similar to map, but each input item can be mapped to

0 or more output items (so func should return a Seq

rather than a single item).

groupByKey([numTasks]) When called on a dataset of (K, V) pairs, returns a

dataset of (K, Iterable<V>) pairs.

join(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W),

returns a dataset of (K, (V, W)) pairs with all pairs

of elements for each key. Outer joins are supported

through leftOuterJoin, rightOuterJoin, and fullOuter-

Join.

map(func) Return a new distributed dataset formed by passing

each element of the source through a function func.

mapPartitions(func) Similar to map, but runs separately on each partition

(block) of the RDD, so func must be of type Itera-

tor<T> => Iterator<U> when running on an RDD

of type T.

pipe(command, [envVars]) Pipe each partition of the RDD through a shell com-

mand, e.g. a Perl or bash script. RDD elements are

written to the process’s stdin and lines output to its

stdout are returned as an RDD of strings.
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reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a

dataset of (K, V) pairs where the values for each key are

aggregated using the given reduce function func, which

must be of type (V,V) => V. Like in groupByKey,

the number of reduce tasks is configurable through an

optional second argument.

repartition(numPartitions) Reshuffle the data in the RDD randomly to create

either more or fewer partitions and balance it across

them. This always shuffles all data over the network.

sample(withReplacement, fraction,

seed)

Sample a fraction fraction of the data, with or without

replacement, using a given random number generator

seed.

sortByKey([ascending], [numTasks]) When called on a dataset of (K, V) pairs where K

implements Ordered, returns a dataset of (K, V) pairs

sorted by keys in ascending or descending order, as

specified in the boolean ascendingargument.

Table 1: Spark RDD Transformations

Action Description

reduce(func) Aggregates the elements of the dataset using a func-

tion func (which takes two arguments and returns one).

The function should be commutative and associative so

that it can be computed correctly in parallel.

collect() Returns all the elements of the dataset as an array

at the driver program. This is usually useful after a

filter or other operation that returns a sufficiently small

subset of the data.

count() Returns the number of elements in the dataset.
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Action Description

first() Returns the first element of the dataset (similar to

take(1)).

take(n) Returns an array with the first n elements of the

dataset.

takeSample(withReplacement, num,

[seed])

Returns an array with a random sample of num el-

ements of the dataset, with or without replacement,

optionally pre-specifying a random number generator

seed.

takeOrdered(n, [ordering]) Returns the first n elements of the RDD using either

their natural order or a custom comparator.

saveAsTextFile(path) Writes the elements of the dataset as a text file (or

set of text files) in a given directory in the local filesys-

tem, HDFS or any other Hadoop-supported file system.

Spark will call toString on each element to convert it

to a line of text in the file.

saveAsSequenceFile(path) Writes the elements of the dataset as a Hadoop Se-

quenceFile in a given path in the local filesystem,

HDFS or any other Hadoop-supported file system.

This is available on RDDs of key-value pairs that either

implement Hadoop’s Writable interface. In Scala, it is

also available on types that are implicitly convertible

to Writable.

saveAsObjectFile(path) Writes the elements of the dataset in a simple format

using Java serialization, which can then be loaded us-

ingSparkContext.objectFile().

countByKey() Only available on RDDs of type (K, V). Returns a

hashmap of (K, Int) pairs with the count of each key.
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Action Description

foreach(func) Runs a function func on each element of the dataset.

This is usually done for side effects such as updating

an accumulator variable (see below) or interacting with

external storage systems.

Table 2: Spark RDD Actions

Figure 12 shows how a word-count example is handled by Spark. This example

is written in Scala language. Text file RDDs can be created using SparkContext’s

textFile method. This method takes a URI for the file and reads it as a collection

of lines and generates an RDD of Strings. Once textFile is executed, then an RDD

is created, and now transformations can be applied to this RDD. On the second line,

a .flatmap operation would take every String with the line content and transform

it to an RDD of words (the split function is used to divide the line into collections

of words). The .map will transform the RDD of words into RDD of tuples (word,

1), also called key-value RDD, where the word represents the key and 1 is the value.

Finally, .reduceByKey for each key (word), the values are reduced by summing

them together. The reduce operation will apply the same summing operation to all

previously processed elements. The third line in the code saves the count result as a

text file back to HDFS.

Once the user submits their program, the Spark driver identifies the tasks that can

be computed in parallel with partitioned data in the cluster. With these identified

tasks, the Spark driver builds the program’s dataflow, represented in a directed

acyclic graph (DAG). Figure 13 shows the DAG for the word-count example. From

this graph, Spark builds a parallel execution plan where tasks in each stage are

bundled together and are sent to the executors to be run in parallel.
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Figure 12: Spark: Word Count Code Example

Figure 13: Spark DAG (Directed Acyclic Graph) for Word-count
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Figure 14: Spark: Job Execution

The driver program is the part of Spark which loads the user application. In the

user program, once an action is encountered, a Spark job is created. A job is trans-

lated to a Directed Acyclic Graph of stages as mentioned before, where each stage

may include multiple tasks. At the same time, the driver also performs optimisations,

such as pipelining transformations.

The driver program requests resources from the cluster manager, such as the

memory and cores to be used by the executors. The cluster manager launches execu-

tors, while the driver sends a .jar file to the executors to run. The cluster manager

keeps track of jobs and reports back their status to the driver. Executors register

themselves, through the cluster manager, with the driver program before starting the

execution so that the driver program can monitor the executors’ running of all the

tasks by tracking the location of cached data based on data placement. Figure 14

gives further details of Spark’s job execution.



CHAPTER 2. BACKGROUND 53

The Spark driver converts the DAG into a physical execution plan which con-

tains tasks that are bundled and sent to nodes through the cluster manager. The

Spark driver keeps track of RDD lineages: a fault during the computation of an RDD

operation would mean recomputing the content of RDD in case of an executor’s fail-

ure. Spark allows checkpoint RDDs to disk to shorten the amount of recomputation

necessary to recover from a fault.

2.8 Summary

This chapter has described the specific area of focus of this thesis: the classification of

large-scale data. The chapter started with a general description of data mining: clas-

sification and knowledge representation. After defining and comparing the different

approaches to creating a rule-based classifier and explaining the BioHEL classifier,

GAs and their parallelisation methods were briefly described. Finally, the chapter

concluded by describing two distributed frameworks that are used to implement dis-

tributed PGAs. The chapter aimed to give a description of just the background

material needed to introduce the contribution of this thesis to the research field.

We have omitted many details of the BioHEL background materials and a lot of

hybrid PGAs modeling. The next chapter will present the work most related to the

contribution of this thesis.
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Literature Review

PGA can be implemented through parallel programming using multiprocessor CPUs,

however, when big data is addressed, vast processing power is needed to analyse it,

and there is a limit to the number of cores in multi-core machines. Moreover, mas-

sively parallel hardware like GPGPUs have limited bandwidth to the local main

memory. Thus, it is pretty inadequate to fit the large dataset in one machine’s

memory. Furthermore, fetching and storing data on a disk during processing would

impact the execution time. Moreover, as GAs are iterative algorithms, this process-

ing scenario requires an extended processing time. Distributed computing—, such

as Cluster or Cloud Computing—is suitable for solving large-scale problems, making

massive data processing feasible using the distributed processing power. These dis-

tributed systems are used to implement distributed PGA (DPGA), where the author

defines the infrastructure and the communication topology. MapReduce and Spark

frameworks have been used to generalise distributed parallel processing and enhance

the system’s reliability, uniformity, and scalability.

The chapter is structured as follows. First, Section 3.1 will discuss the work of

54
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handling DPGA using custom distribution topology. Next, Section 3.2 will present

existing research efforts on distributing GA using the MapReduce platform. Then,

Section 3.3 will address the research work considering DPGA over Spark. Finally,

Section 3.4 will summarize and conclude the related work.

3.1 Custom Distribution Topology

In large-scale data mining, where data is evenly distributed among multiple ma-

chines, a fundamental step is to distribute the data processing in order to take

advantage of parallelism and in-memory computation. Due to the inherently paral-

lel nature of GAs, many researchers have utilized this feature and have considered

using GA in large-scale classification problems. Therefore, distributed-processing

topologies have been developed for this purpose. In this section, we address three

of the state-of-the-art applications: EC-Star, DXCS, and Flexible-GP. Even though

Flexible-GP is concerned with genetic programming, the topology followed for dis-

tributing the data processing is worth mentioning here.

3.1.1 EC-Star

EC-Star is a parallel computing framework which uses a distributed Genetic Pro-

gramming (GP) model upon a commercial volunteer resource (O’Reilly, Wagy and

Hodjat 2013). The model consists of Evolution Coordinators, Evolutionary Engines,

and Resources. It is elastic, since volunteer nodes evolutionary engines can indepen-

dently enter the framework and the evolutionary algorithm can seamlessly integrate

them as Evolutionary Engines. These volunteers offer to execute the "guest" pro-

gram on behalf of EC-Star in their "spare time", using idle cycles that their primary
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applications leave unused; they can withdraw from volunteering at any time. The

volunteers do not need to communicate with each other, thus assuring their privacy.

A volunteer can store a state file on its disk and shut down its program. Then, when

it decides to volunteer again, it can resurrect itself, using the state file to resume

where it left off. "Resources nodes" is the part of the framework which holds the

data instances, and evolution coordinators coordinate the activities of the volunteer

computer nodes. The main advantages that were reported for the EC-Star model

are elasticity, robustness, and scalability. Nevertheless, if we assume that the system

is so dynamic that there will be multiple departure and join during the computa-

tion the design forgoes the possibility of keeping track about which data has been

processed where, which lead to a less efficient implementation.

3.1.2 DXCS

Many researchers have been extending traditional data mining approaches to dis-

tributed environments. DXCS is an example of the XCS distributed data mining

system (Dam, Abbass and Lokan 2005). XCS is a genetics-based machine learning

algorithm that applies reinforcement learning (RL) techniques for rule learning. The

DXCS system consists of a number of clients and a single server. Each client is placed

at a distributed site and runs a complete XCS that is trained independently on its

own local database. Clients then forward their XCS models and their misclassified

and untrained instances to the server. The server holds copies of all clients’ models

and applies the knowledge-probing approach (Guo et al. 1997) to combine the local

models. The server combines misclassified and untrained instances and uses them

as inputs for all copies of XCS local models available at the server; the server then

trains an XCS to learn the mapping between the output of these local models and
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the target class. The paper reports experiments with two clients and a server, which

shows accuracy that is competitive with a centralised XCS. DXCS uses a fused model

approach where several ensemble models are combined into a global model, however,

such approach tends to generate models which are more complex to understand.

3.1.3 Flex-GP

Flex-GP is a large-scale genetic programming cloud computing system (Sherry et al.

2012). It uses the Amazon EC2 cloud service as its infrastructure and is based on

ECJ—an evolutionary computation system written in Java—which adopts an island

model with socket-based communication.

The work does not address the problem of large datasets —experiments consider

a symbolic regression problem using 100 samples —and focuses instead on remov-

ing bottleneck of the implementation encountered as the system scale up the use of

computation resources. The approach run a local GP on different islands each with

its own local population of fixed size, thus resulting a linear increase of the global

population as the number of islands increase. Results show a significant ( 40%) in-

crease in accuracy with 256 islands but resulting in an 3× increase in computation

time ( 750× increase in cost). Most of the increase in cost appears to be due to

coordination cost which later focussed on a complete system re-design to improve

scalability Derby, Veeramachaneni and O’Reilly (2013).

Arnaldo et al. (2015) introduced FCUBE, a machine learning framework that

harnesses cloud computing to solve largescale supervised learning problems via mas-

sive ensemble learning. FCUBE helps machine learning researchers to integrate their

learning algorithms into the framework. FCUBE treats those learning algorithms as
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black boxes decoupled from the framework’s code. However, learners must com-

ply with a standardized specification, i.e. a predetermined list of input parameters

and expected outputs. The framework has been demonstrated by integrating five

different classifiers and deploying them in a massive data-parallel fashion on Ama-

zon EC2. The five classifiers are; Rule List, GA-based, Rule Tree, GP-based, GP

Function, Memetic Pittsburgh Learning Classifier, and Symbiotic Bid-Based Genetic

programming. Even though the ensemble model might return high accuracy and can

usually overcome the overfitting problem, the output of the ensembled model is hard

to predict and explain. It is considered expensive in terms of both time and space.

As the above systems show adopting custom implementation for distributed com-

putation can offer a great degree of flexibility, but also incurs in substantial develop-

ment and maintenance costs. Next we describe instead DPGA approaches based on

MapReduce and Spark, two general-purpose platforms that simplify the implemen-

tation of DPGA and are designed to scale to thousands of cores.

3.2 DPGA using MapReduce

Verma used the MapReduce model to scale the simple GA (Verma et al. 2009). In

his work the authors use one map-reduce job for each generation of the GA, and a

new map-reduce job is executed for each generation. individuals’ fitness is computed

using a map function, and the selection of individuals with the best fitness is then

performed using tournament selection within the reduce function. At the end of each

step, the population’s individuals are saved on HDFS. The model had a big input-

output footprint, as the entire population is saved to HDFS for each iteration of

the GA, and this external storage access limit the iteration performance. Kečo and

Subasi (2012) implemented a DPGA using MapReduce, with only one map-reduce
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phase for all generations of GA. The author reconfigured Verma’s implementation by

moving most of the processing from the reduce phase to the map phase. This change

reduces the amount of IO footprint as all processed data is kept in the memory

instead of HDFS, but the drawback of this procedure is that different populations

exist for each node, leading to a species problem in the GA, as the author noted.

Di Geronimo et al. (2012) proposed a DPGA based on Hadoop MapReduce for

the automatic generation of JUnit Test suites, using the Master-Slave GA model

developed on Hadoop MapReduce. The parallel genetic algorithm module lets the

user manage the execution of GA and specify the SUT (Software Under Test). Upon

termination of GA for the software under test, a test suite is returned to the user.

The proposed algorithm is carried out in 3 phases: a split phase, in which the input

acquires the current population from the HDFS and divides and distributes it among

the mapper modules; a map phase, in which all mappers carry out the fitness eval-

uation task in parallel; and a reduce phase, in which the master uses a reduce job

to collect the output of the mappers, that is, the entire population. Thus, selection,

crossover, and mutation operators are applied to the current generation by the re-

ducer to produce new offspring. The offspring is then saved into the HDFS, allowing

the DPGA to validate the stopping criteria. In this phase, the work of the master

module consists of notifying Parallel Genetic Algorithm to restart the computation

invoking the map-reduce job for the new offspring created by Reducer. The paper

preliminary analysis was to calculate the speed-up concerning the sequential execu-

tion. The results obtained highlighted that using PGA allowed for a time saving of

over 50%.

MRPGA is an extension of the MapReduce model with a hierarchical reduction

phase (Chao Jin 2008). The proposed work uses MapReduce as a distributed model

to parallelize the GA algorithm. Each worker within the system sub-evaluates a set
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of individuals and applies the GA operators. MRPGA follows the Pittsburgh GA

approach, where an individual representing a complete solution. The system uses

three MapReduce phases: 1) a local map within the worker, 2) local reduce, and 3)

a global reduce process to complete one iteration. The local map process within a

worker is used to partially evaluate individuals locally, then the local reduce process

selects the local optimum individual for this worker. A global merging and sorting

step is then used to select only the best individuals for all workers. These best

individuals are fed into the last global reduce process and is for the global selection ,

called once at the end of each iteration of the loop. The complete process is repeated

until the optimal individual meets the requirement set by the user. Two benchmark

multi-objective problems were used in the experiments: DLTZ4 and DLTZ5. The

results show that such an approach can upscale GA to 20 workers, after which adding

more workers doesn’t speed up the system any further. Hans, Mahajan and Omkar

(2015) implemented a coarse-grained PGA model using Hadoop MapReduce to solve

clustering problems. The authors formed chromosomes of centroids for each data

split randomly and merged the centroids in the reduce phase.

Kondekar et al. (2012) proposed a MapReduce-based hybrid genetic algorithm

using an island approach for solving the Time-Dependent Vehicle Routing Problem.

MR-GEP is a scalable parallel evolutionary algorithm model based on MapReduce

and presented in (Du et al. 2013). The authors propose a hybrid model which consists

of two layers. The upper layer uses a coarse-grained computational model, while the

lower layer uses a fine-grained master-slave model. The population is divided into

a number of subpopulations equivalent to the number of processor "islands". Each

node computes the fitness within a map function. Then, the processor applies the

genetic operations to its subpopulation within a reduce function. The processors use

a global shared memory to share intermediate results (population). The author used
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speed-up as a measure for scalability. MR-GEP proved effective in improving the

speed as more processors were added. 16 is the largest number of processors tested.

A practical application of DPGA on MapReduce is found in (Huang and Lin

2010). The DPGA model is used to solve a job-shop scheduling problem (JSSP). The

author ran the experiments with various population sizes (up to 107) and clusters of

multiple dimensions. The author followed a simple MapReduce approach where the

mapper is used to evaluate the individuals’ fitness (the makespans). Then, a parti-

tioner assigns the emitted individuals from the mappers to the reducers according

to their IDs. Finally, a reducer uses a tournament- based selection process to choose

the good individuals and produces descendants by crossing over their chromosomes.

As the author concluded in his work, using the MapReduce platform allows the ex-

ploration of population sizes significantly larger than those in typical experiments

and reveals interesting trade-offs between population sizes and generations.

MapReduce does not utilize the full memory of the Hadoop cluster. In Spark,

the concept of RDDs (Resilient Distributed Datasets) allows data to be saved in the

memory and to be preserved to the disc (only if this is required). Spark can execute

batch processing jobs substantially faster than the Hadoop MapReduce framework,

just by reducing the number of reads and writes to the disk.

3.3 DPGA using Spark

As we discussed in (cfr §2.7.3), Spark allows a richer set of data-processing primi-

tives compared to the MapReduce and supports a processing model that can benefit

from in-memory data processing, thus eliminating a significant amount of disk I/O

operations. Therefore, it is more suitable for data mining iterative computations.

Hoewever, as we will show in this section, most parallel GA proposal focus on using
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Spark to address hard optimisation problems which commend very large populations

but where the environment required to evaluate the individual’s fitness is small.

The resulting overall approach is to represent the GA population as an RDD (cfr

§2.7.3) and exploit Spark to parallelise the fitness evaluation which can be computed

from relatively small (local) data. Spark is then also used to parallelise the genetic

operators, which is key because of the large population by either using parallel trans-

formations or adopting an island model where evolution can be performed in each

population partition in an independent way.

Qi, Wang and Li (2016), and Paduraru, Melemciuc and Stefanescu (2017) applied

genetic algorithms (GA) to software test suite generation. Both follow a Spark-

based architecture that parallelises fitness evaluation and genetic operators. A single

individual in the population represents an input test data for the evaluated program.

The input data associated to an individual can even represent complex data such as

a file uploaded by a user or online data that a software application has to process.

The main objective of the test data is to execute instructions of the program being

evaluated that are difficult to reach using common input. To guide the individuals

toward inputs that lead to rare paths of a program, the fitness function associates

higher scores to individuals that take uncommon paths when the program is tested

against them. The works focus on evolving very large populations (up to 3 million

individuals), using an RDD to partition the population. The approaches assume

that a form of shared memory or data replication exists which is not applicable in

the case of large-scale data.

The work in (Hu et al. 2017) addresses instances of water pollution, where a vi-

able solution is to install water quality-monitoring sensors in water supply networks

(WSNs) for real-time pollution detection. The work uses GA to optimize the sen-

sor placement problem in large-scale WDSs, with the objective of minimising the
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impact of contamination events. The author specifically highlighted the need for a

large-scale water distribution system which would result in significant computation

overhead. The author proposes a two-phase Spark-based genetic algorithm (SGA).

After the driver initializes the population, a map function parallelises the popula-

tion into different partitions of RDD so that different workers evaluate the fitness of

different individuals on different workers and then a collect return the population

to the driver to carry out the genetic operators. Experimental results show that

SGA outperforms other traditional algorithms in both accuracy and efficiency, thus

demonstrating the feasibility and effectiveness of the proposed approach.

A distributed version of the GA algorithm implemented on Spark was used

to solve the traveling salesman problem more efficiently than earlier implementa-

tions (Lu, Hwang and Huang 2020). The work in (AlJame, Ahmad and Alfailakawi

2020)) proposes a Spark Whale Optimization Algorithm (Spark-WOA) to enhance

WOA execution time and reduce its computational complexity. To evaluate Spark-

WOA , two types of benchmark were used: unimodal and multimodal functions.

The performance of Spark-WOA was compared to a MapReduce version of WOA.

The results demonstrate that Spark-WOA outperforms MR-WOA, running at more

than 300 times the speed of the latter. The work highlights in particular Spark’s

advantages over MapReduce in terms of its in-memory computing capabilities.

As we mentioned, all of the above works use the Spark RDDs to represent the

individuals of the GA populations. Some try to optimize functions, while others aim

to optimize a network design. None of the above works address large-scale data for

which the dataset needs to be partitioned and distributed over the cluster nodes.

We now mention some approaches that instead addressed the use of GA-based data-

mining on large datasets.

In (Cheraghchi, Iranzad and Raahemi 2017), the author addresses the problem of
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mining for outliers in subspaces with relevant attributes for high-dimensional large-

scale datasets. The author implemented a grid-based GA in Apache Spark to search

for subspaces that are candidates for outlier detection (with regard to the subset

of features in the subspace within the high-dimensional data), and to find the sub-

space with maximal sparsity. The algorithm runs targeting projections from the

full-dimension data space into lower dimensions with the best fitness values (the

most sparsity). One GA iteration contains several map & reduce functions. In

every iteration, each dimension in a subspace is divided into an equal number of

slices which would result in a fixed number of cells. Individuals are a set of sub-

spaces which are initially chosen randomly. Each data point in the input dataset is

mapped into a cell for all subspaces of a population in one generation. The result

of this map is an (individual,cell),1), where 1 represents a data point that could be

mapped to that subspace/cell. Of course this map would result in a large amount

of data, significantly larger than the dataset itself. Then, a reduce-by-key (where

the individual-cell combinations represent the keys) is used to sum all 1s and end

with an individual- cell-sum intermediate RDD. Another map-reduce combination

is used to determine an RDD of the population’s individuals and their total fitness.

A final collect function returns the evaluated individuals to the master node. The

master node is responsible for the evolution processes after the offspring is created,

and another iteration starts. After each iteration, the algorithm reserves a list of

elitists which is carried to the next generation. The experiment uses 100 generations

and a population size of 50. For Spark settings, there are 8 partitioned RDDs for

the purpose of diversity, and to evaluate more sub-spaces, the algorithm used keeps

members of each population unique (a sub-space already seen before is not evalu-

ated again). A dictionary data structure is used for this purpose. If crossover and

mutation lead to duplicate individuals being generated, the duplicates are replaced
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with new random individuals. The data is original mp3 music files from archive.org,

divided into 16 categories based on their meta tags and instruments used. The data

was created by concatenating segments of 190 music tracks. Mixed sound tracks

were converted into 1,370 dimensions, with 77,000 instances, and a size of 2.7 GB.

The data is labelled "outlier" and "inlier". The result shows that there were some

missing relevant subspaces which the GA did not find during its iterations. The

author attributed the resulting problem to the heuristic nature of GA.

A parallel work to my own is found in (Hmida et al. 2019), where the author

reshaped an existing GP implementation (DEAP) by parallelising evaluations on

Spark. The author added a sampling step whereby the large data were fitted into

small clusters. Evaluating the performance of DEAP-Spark using different combina-

tions of population sizes and number of generations, the results are encouraging and

demonstrate that Spark is an efficient environment for distributing GP evaluations.

The work has been tested on a cluster of 4 nodes with 64 processors. Experiments

are conducted according to Higgs boson classification with different settings. In our

evaluation section, we compare our results with the performance of DEAP-Spark.

3.4 Summary

Throughout this chapter, we have covered the different available scenarios of DPGA

implementation in the literature. We divided the literature into three sections: im-

plementing DPGA using custom distribution topology; MapReduce; and Spark. The

next chapter describes our first contribution: designing and implementing PDMS and

PDMD our two DPGA models over Spark. The two proposed models are then used

to reimplement BioHEL.



Chapter 4

Parallelised GA for Partitioned

Data

This chapter describes the contributions of this thesis to the area of PGA scal-

ability, focusing on a data partitioning approach, Two PGA models are presented:

Partitioned-Data Master-Slave (PDMS) and Partitioned-Data Multiple-Deme (PDMD).

These two models are then used to obtain two distributed versions of the BioHEL

classifier. In order to support their implementation in large-scale scenarios, we build

them on top of the Spark framework. We evaluate both with three large datasets.

Moreover, we evaluate their scalability and how their performance changes in differ-

ent configurations.

The chapter is structured as follows. First, Section 4.1 will define data partition-

ing and describe the models under this definition. Then, Section 4.2 will provide an

extensive description of the BioHEL reimplementation considering these two models.

Section 2 will report the results of the experiments and will also provide an investi-

gation of the effects of both the migration frequency and the population size on the

66
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performance of the PDMD model. Section 4.4 will provide a comparison between the

two implemented models and a recent Genetic Programming (GP) implementation

(DEAP) over Spark (Hmida et al. 2019). Finally, Section 4.5 will summarize the

contribution presented in this chapter and the results obtained.

4.1 Data Partitioned Models

Traditionally, PGAs have been used to speed up the computation of GA in com-

plex optimisation problems (including combinatorial problems such as the travelling

salesman problem (Varadarajan and Whitley 2021; Wang et al. 2005)). In many such

scenarios, the fitness evaluation on a single candidate solution (population individual)

can involve relatively small data access and computational costs; thus, parallelisation

can be efficiently implemented by distributing the individuals across the computing

nodes. Each node can compute the fitness of the assigned individuals, and data can

be replicated over the nodes or accessed in a shared memory subsystem.

In contrast, it is more challenging to apply PGAs to large datasets such as the

training instances in big-data classification problems. Data access costs need to be

considered in the parallelisation strategy: each computational unit should access

data locally for the purposes of fitness computation. However, given the size of the

data, this local access cannot be given to the whole dataset, but to only a part of it,

which we call the partition.

Our proposed approach for scaling PGA is based on four basic principles related

to partitions: (i) partitions must be kept in memory for fast access required by GA

iterative processing; (ii) partitions must be distributed, for scaling memory storage

and accessing bandwidth, in addition to harnessing distributed processing power;

(iii) processors should be restricted to local data access during GA iterations; and
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(iv) remote access should be tightly controlled to reduce network contention.

Based on these principles, we will now outline two possible parallelisation mod-

els: the Partitioned-Data Master-Slave (PDMS) model and the Partitioned-Data

Multiple-Deme (PDMD) model.

Partitioned-Data Master-Slave Model (PDMS) The Partitioned-Data Master-

Slave model is a typical master-slave model in which the master handles the core GA

algorithm and the slaves are responsible for computing the fitness of the population’s

individuals. In contrast to the typical master-slave model, where the master sends

different subsets of the population’s individuals to different workers, in PDMS the

master node sends a copy of the complete population to all the slaves, and each slave

then computes a partial fitness value for the individuals on the local data partition.

Next, the slaves send their results to the master which, in turn, aggregates all partial

fitness values and uses them in the following GA algorithm steps. Our design for this

model is represented in Figure 15a. As the master will be sending the population

and collecting the fitness values in every iteration, communication overhead can be

a disadvantage of this model. It is worth mentioning that in this scenario it must be

possible to compute the global fitness level by efficiently combining the partial fitness

values computed on the different partitions; in other words, the fitness function is

required to be associative and commutative. In this way, by co-locating the compu-

tation of the partial fitness value with the data in a partition, and later combining

the results to compute the global fitness value, PDMS requires less communication

overhead than the approach of providing remote access to the full dataset for each

processor to directly compute the global fitness values.
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Partitioned-Data Multiple-Deme Model (PDMD) Figure 15b represents the

basic design for the Partitioned-Data Multiple-Deme (PDMD) model. As shown,

each node runs the complete GA on the local data partition, that is, each subpopu-

lation is initialised, evaluated and evolved only with respect to the local data of that

node. Occasionally, migration occurs; nodes exchange their best individuals with

randomly selected nodes to allow interaction among individuals in different popula-

tions. Finally, a solution is selected after an individual is globally nominated as the

best individual. It is worth mentioning that in such implementations, as individuals

are not evaluated over the complete dataset, their fitness values may not reflect their

global quality. We will return to this aspect when discussing the implementation in

section 4.2 , and also in the evaluation in section 4.3.2 where we examine the quality

of the PDMD solution.

4.2 Implementation

Like the original master-slave and multiple-deme parallelisation models, the princi-

ples of PDMS and PDMD can be applied to any GA algorithm. However, the re-

sulting benefits would depend on their reification in a specific parallel GA. We have

reimplemented BioHEL, turning it into a distributed GA according to the PDMS

and PDMD models. To support the implementation of PDMS and PDMD models

in large-scale scenarios, we have built on top of Spark (Zaharia et al. 2012). In

this section, we will firstly explain a redesigned pseudocode for the original BioHEL,

which simplifies the injection of changes into the workflow. Then, we will detail the

changes to BioHEL according to these two proposed models and implemented using

Spark’s primitives.
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Compute partial
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(a) PDMS
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Figure 15: Partitioned-Data GA Models.
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The BioHEL function (lines 1–10) represents the main loop of BioHEL which builds

a classifier as a list of rules, terminating when no further rules can be derived. This

function calls two other functions: findRules and bestRule. findRules (lines 11–

20) represents the execution of the GA, (runGA of algorithm (4) the typical GA steps

(2). findRules returns candidate solutions, while bestRule (lines 21–27) selects the

best rule, checks its validity as a rule to be added to the rules set (if the associ-

ated class is the majority class of the matched examples) and deletes the matching

instances from TrainS.

4.2.1 BioHEL PDMS Implementation

The main goal of the PDMS model is to speed up the most costly step, that being the

computation of the fitness of the population’s individuals. All the evolutionary work

is handled by the Spark driver, which sends the individuals across the executors to

compute the fitness value. Each executor computes a partial fitness value based on

the individuals in the local partition, while the master node performs the aggregation.

The PDMS BioHEL implementation follows the main structure of BioHEL, but

with specialized findRulesPDMS and bestRulePDMS functions. The training set is

stored as an RDD (TrainS, underlined, in Algorithm 5) with instances equally parti-

tioned across executors. In findRulesPDMS (lines 1–10) the population is initialised

as follows: a sample primitive is used to derive a sample RDD from TrainS, then

collect is used to retrieve the sample from the executors and make it available to

the driver (line 2). The fitness computation is then parallelised using the aggregate

function (lines 3,8): a copy of the population is transferred to each executor and used

in the partialFitness function to compute the fitness of the population on the local

TrainS partition. In BioHEL, the data-dependent part of the fitness function consists
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Algorithm 4: BioHEL general workflow.
1 BioHEL(TrainS):
2 ruleList = ∅; stop = false;
3 while stop is false do
4 for repetition=1 to numRepetitions do
5 candidates += findRules(TrainS);
6 (bestRule,TrainS) = bestRule(candidates, TrainS);
7 if bestRule not null then
8 ruleList += bestRule; candidates = ∅;
9 else stop = true;

10 return ruleList;
11 findRules(TrainS):
12 pop = TrainS.sample(N);
13 pop.fitness = doFitness(pop,TrainS);
14 for iter = 1 to numIter do
15 offsp = pop.selection();
16 offsp.crossover();
17 offsp.mutation();
18 offsp.fitness = doFitness(offsp,TrainS);
19 pop.replacement(offsp);
20 return pop.best();
21 bestRule(candidates,TrainS):
22 bestRule = candidates.bestFitness();
23 matched = TrainS.matchedBy(bestRule);
24 if bestRule.class = matched.majorityClass() then
25 TrainS = TrainS.removeMatched(bestRule);
26 return (bestRule, TrainS);
27 else return (null, TrainS);
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Algorithm 5: PDMS BioHEL.
1 findRulesPDMS(TrainS):
2 pop = TrainS.sample(...).collect();
3 pop.fitness = TrainS.aggregate(zeroes, partialFitness(pop),

mergeFitness);
4 for iter = 1 to numIter do
5 offsp = pop.selection();
6 offsp.crossover();
7 offsp.mutation();
8 offsp.fitness=TrainS.aggregate(zeroes, partialFitness(offsp),

mergeFitness);
9 pop.replacement(offsp);

10 return pop.best();
11 bestRulePDMS(candidates,TrainS):
12 bestRule = candidates.bestFitness();
13 matchedCl = TrainS.filter(_.matches(bestRule))

.map(_.class).countByValue();
14 if bestRule.class = majorityClass(matchedCl) then
15 TrainS = TrainS.filter(!_.matches(bestRule));
16 return (bestRule, TrainS);
17 else return (null, TrainS);
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of computing the confusion matrix of the rule to be evaluated, thus partialFitness

computes four integers for each rule: true-positives, false-positives, true-negatives

and false-negatives. Then a mergeFitness function is used to aggregate the counters

of each rule from each partition, thus obtaining the total fitness value.

bestRulePDMS (lines 32–38) is then used to select the best rule among repetitions

(line 33); and the stopping condition is evaluated by comparing the class of the rule

and the most frequent (majorityClass line 35) of the classes of the matched instances

(matchedCl, computed using countByValue, map and filter, line 34). If the rule is

accepted, a new TrainS RDD is created by removing the instances not matched by

the selected rule (line 36).

4.2.2 BioHEL PDMD Implementation

In the multiple-deme model, each island is an executor. In addition to the training

instances TrainS, also the population pop and the incoming migrants mig are repre-

sented by RDDs, partitioned across executors. The driver instructs each executor

to evolve each sub-population in parallel by invoking the zipPartitions function

(line 4 in Algorithm 6). zipPartitions allows the combining of partitions of sev-

eral RDDs that are colocated on the same executor by providing a user-provided

function. This (anonymous) function (lines 5–16) first initialises the population in

the local partition (popPart) by taking a sample of size n = N/numPartitions from

the local training set (TrainSPart, line 7), then repeats the main evolutionary loop

until migration takes place. Finally the population in the local partition popPart

is returned (line 16), becoming a partition of pop referenced by the driver (line 4).

The driver randomly redistributes the best half of the population in each partition

as migrants (line 18) which will be merged with the local population in the next
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Algorithm 6: PDMD BioHEL.
1 findRulesPDMD(TrainS):
2 pop = ∅; mig = ∅;
3 for migration=1 to numMigrations do
4 pop = TrainS.zipPartitions(pop, mig)(
5 (TrainSPart, popPart, migPart)⇒
6 if popPart = ∅ then
7 popPart = TrainSPart.sample(n);
8 popPart.replacement(migPart);
9 popPart.fitness=doFitness(popPart, TrainSPart);

10 for iter = 1 to numIter/numMig do
11 offsp = popPart.selection();
12 offsp.crossover();
13 offsp.mutation();
14 offsp.fitness=doFitness(offsp,popPart);
15 popPart.replacement(offsp);
16 return popPart;
17 );
18 mig =pop.mapPartitions(best(n/2)) .repartition();
19 return pop.mapPartitions(best(2)).collect();
20 bestRulePDMD(candidates,TrainS):
21 candidates.fitness=TrainS.aggregate(zeroes, partialFitness(candidates),

mergeFitness);
22 bestRule = candidates.bestFitness();
23 matchedCl = TrainS.filter(_.matches(bestRule))

.map(_.class).countByValue();
24 if bestRule.class = majorityClass(matchedCl) then
25 TrainS = TrainS.filter( !_.matches(bestRule));
26 return (bestRule, TrainS);
27 else return (null, TrainS);
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migration (line 8). After numMigrations, the best two individuals from each par-

tition are collected by the driver as candidate rules (line 19). Candidate rules for

every repetition are then evaluated globally (bestRulePDMD, line 22), the best being

selected and used for termination detection and filtering as in the original BioHEL.

4.3 Evaluation

Our primary goal in the evaluation is to assess the scalability of the PDMS and

PDMD models and their relative performance in terms of accuracy and execution

time. The result leads us to investigate how the performance of the PDMD BioHEL

is affected by changes in key parameters such as population size and multiple-deme

migration frequency. Therefore, we shall evaluate the performance of PDMD against

different settings for both parameters separately. Then, in order to put the result

into perspective, we shall compare our models with DEAP Spark in terms of accuracy

and execution time.

4.3.1 Experimental Setting

In order to train and test the PDMS and PDMD models, we used the HEPMASS

dataset, obtained from https://archive.ics.uci.edu/ml/datasets.html, and KDD-

cup99 (full version ) obtained from https://www.openml.org/d/1110. Table 3

shows the two datasets composition.

For the BioHEL configuration, we set the algorithm parameters using the same

configuration provided in (Bacardit and Krasnogor 2006), summarised in Table 4.

We ran the experiments on a cluster with 17 servers, each with 2x Intel Xeon

E5520 CPUs running at 2.27GHz. Each server has 8 cores and 12GB RAM. In order

https://archive.ics.uci.edu/ml/datasets.html
https://www.openml.org/d/1110
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Dataset HEPMASS KDD-99
no. of instances 10.5 M 4.9 M
no. of attributes 28 41 (26 real-valued & 15 nominal)
no. of classes 2 23

Class distribution 50%

56.85%
21.70%
19.69%
(other classes <1.00%)

Table 3: KDD and HEPMASS data composition

Parameter Value
crossover prob. Rule sets per ensemble 0.6

Selection algorithm tournament
Tournament size 4
Population size 500

Individual-wise mutation prob. 0.6
Default class policy MAJOR

Iterations 50
Expected value of #expressed att. in init. 15

Repetitions of rule learning process 2
Prob. generalize 0.1
Prob. specialise 0.1

Table 4: General Parameters of BioHEL.
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to test the scalability of the two models, we ran configurations with different num-

bers of executors (thus increasing the parallelism level) and data equally partitioned

between them (1 partition per executor). We report the results for both models using

a cluster of 8, 16, 32, 64 and 96 executors, which have been selected according to

both memory limitations and the number of processing units available. All results

are averaged over 20 runs using 10-fold cross-validation. We report average and 95%

confidence intervals.

4.3.2 Scalability

In this section we evaluate the scalability and performance of both implemented

models. Performance evaluation results are summarized in Table 5. the following is

an outline of the scalability of both PDMS and PDMD.

PDMS. Table 5 shows the PDMS results as the parallelism level p is increased.

As expected, PDMS maintains a constant degree of accuracy 83.67% for HEPMASS

and 99.7% for KDD-cup which is in line with centralised BioHEL. This is due to

the fact that, in PDMS, increasing the number of partitions does not impact the

accuracy of the fitness computation, thus leading to the same solution quality.

Figure 16 shows the speed-up with respect to the execution time with 8 partitions,

i.e. T8/Tp. PDMS shows a good degree of scalability overall—as the cluster size

increases, the time decreases. For HEPMASS, scalability is linear up to 64 cores,

and sublinear at 96 cores, while for the smaller KDD-Cup it is sublinear starting

from 32 cores upwards. The maximum speed-up is 11× for 12× cores for HEPMASS

and 7× for 12× cores for KDD-Cup. This reduction in scalability is due to thread

contention and synchronisation overhead between the driver and the executors in
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Model Data P R Accuracy Time

PDMS

Hepmass

8 65 ±0 83.69 ±0.1 169950 ±5300
16 67 ±0 83.67 ±0.1 89400 ±1156
32 69 ±2 83.67 ±0.1 44730 ± 987
64 70 ±2 83.65 ±0.2 20040 ± 229
96 70 ±2 83.65 ±0.2 16500 ± 250

KDD

8 30 ±2 99.73 ±0.3 40030 ± 800
16 29 ±2 99.70 ±0.0 16900 ± 450
32 29 ±3 99.70 ±0.1 13080 ± 290
64 28 ±2 99.68 ±0.1 6300 ± 210
96 28 ±3 99.68 ±0.2 5800 ± 80

PDMD

Hepmass

8 45 ±1 81.93 ±0.2 16770 ± 494
16 40 ±2 81.45 ±0.2 4700 ± 200
32 40 ±2 79.89 ±0.2 2700 ± 145
64 39 ±3 79.87 ±0.3 1190 ± 95
96 38 ±3 78.67 ±0.6 900 ± 200

KDD

8 25 ±4 99.69 ±0.0 4558 ± 500
16 21 ±3 99.65 ±0.2 1300 ± 70
32 20 ±6 99.58 ±0.1 730 ± 50
64 19 ±3 99.44 ±0.1 420 ± 35
96 13 ±5 93.20 ±1.0 260 ± 15

Table 5: PDMS and PDMD Scalability. P is number of partitions, R is number of
rules.

collecting the fitness results.

PDMD PDMDmaintains a relatively good degree of accuracy compared to PDMS.

For HEPMASS, accuracy decreases by 0.5% up to 16 partitions and then settles at

around −2.0% at 32 and 64, falling by 1.2% at 96 partitions. Two possible factors

contribute to this decrease in accuracy. Firstly, the fitness is computed locally in

each partition, thus fewer rules are discovered and the quality is potentially lower.

Secondly, there is a drop in the local subpopulation size. As we scale the cluster up

to 64 and 96 partitions, the local population size decreases to 8 and 5 individuals,
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Figure 16: PDMS and PDMD Scalability

respectively. We will report the influence of the population size in further detail

in section 4.3.4. For KDD-Cup, the degree of accuracy is close to the significance

threshold up to 64 partitions but then falls by 6.5% at 96. This increased drop is likely

due to the nature of the dataset, which has fewer instances, higher dimensionality

and a higher number of classes.

As seen in Figure 16, PDMD shows good scalability up to 96 cores for both

datasets, with a 20× speedup for 12× cores. This super-linear scalability is at-

tributable to two factors: the reduction in the fitness computation time and the

reduction in synchronisation overhead. The fitness computation time decreases

quadratically: the size of both the local population and the local training dataset

decrease linearly as the value of p increases, an effect that is dominant at low p

values, resulting in a quadratic time reduction from 8 to 16 cores; as p increases

however other linear factors start to dominate, such as the filtering of the training
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Dataset P mig-8 mig-2 no-mig
Accuracy Time Accuracy Time Accuracy Time

Hepmass

16 82.03 0.2 8450 700 81.45 0.2 4700 200 79.61 0.2 1790 50
32 79.88 0.2 4450 260 79.89 0.2 2700 145 79.10 0.2 1960 100
64 78.88 0.2 2650 220 78.87 0.3 1194 95 78.01 0.5 1100 20
96 78.42 0.2 2070 200 78.67 0.6 900 200 77.30 0.5 1300 400

KDD

16 99.71 0.1 3000 200 99.65 0.2 1300 70 99.60 0.3 850 100
32 99.60 0.2 2000 250 99.58 0.1 730 50 96.7 0.4 800 80
64 99.46 0.2 1020 70 99.44 0.1 420 35 93.50 1.0 390 40
96 96.70 0.6 440 30 93.20 1.0 260 15 90.77 0.8 230 10

Table 6: Impact of migration on PDMD accuracy and execution time.

set characteristic of IRL which improves linearly as the number of cores increases.

Finally, PDMD is also less affected by synchronisation overhead as islands do not

need to synchronise at every fitness evaluation but only at migration intervals.

4.3.3 Migration

In order to study the influence of migration on PDMD accuracy and execution time

we tested the impact of a change in the frequency of migrations (numMigrations)

while performing GA iterations. In addition to the default case, 2 migrations per

50 iterations (mig-2), we tested with 8 migrations (mig-8) and with no migrations

(no-mig).

We performed experiments for parallelism levels 16, 32, 64, and 96 for both

HEPMASS and KDD-cup datasets (Table 6).

Accuracy results are shown in Figures 17a and 17b. For Hepmass mig-2 improves

accuracy of approximately 2% for 16 partitions with respect to no-mig, and of 1% for

32, 64 and 96 partitions, while generally, mig-8 does not improve accuracy further.

For KDD-Cup there are no differences at 16 partitions, but at 32 and 64 partitions

mig-2 is able to keep the accuracy close to the maximum, improving accuracy by
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(a) Hepmass

(b) KDD-cup

Figure 17: Impact of migration on PDMD accuracy
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4 − 6% effectively negating the accuracy loss due to increased partitioning; finally

at 96 partitions mig-2 is no longer enough and mig-8 starts providing benefits im-

proving accuracy of 6% over no-mig. Migration has a significant impact on runtime

performance due to synchronisation effects: mig-8 total execution time is 33− 65%

higher than the default case, while no-mig, results in 60% lower execution time at

16 partitions and close to mig-2 at 32, 64, and 96 partitions.

4.3.4 Impact of Population Size on PDMD

As our results report, scaling the PDMD model results in an accuracy drop. One

factor which highly influences the accuracy is the subpopulation size. A small pop-

ulation would lead to a quick convergence to a poor solution. Of course, migration

would help boost the fitness value, but as the results show, it could not support

the model to reach the accuracy accomplished by the centralised model. In the lit-

erature, it has been shown that a too-small population can be the cause of poor

solution (Koumousis and Katsaras 2006; Pelikan, Goldberg and Cantu-Paz 2000;

Piszcz and Soule 2006)and that the population size has to be large enough to pro-

vide good coverage of the solutions space (Lobo and Lima 2005; Vrajitoru 2000).

Thus, we rerun all the parallelism scenarios with 250, 500, 1000, and 1500 popu-

lation sizes for the HEPMASS dataset to study the population size’s influence on

accuracy and execution time. For each population size, we used the average of 10

runs for 10-fold cross-validation. Table 7 reports the changes in accuracy and time.

In general, as we increase the population size, the accuracy improves of 2% for 64

and 96 partitions. Furthermore, reducing the population size to 250 results with 30%

drop in accuracy for both scenarios. In terms of execution time, Figure 18 reports

the trends of increasing the population size at the different partitions. As the figure
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no. nodes 250 500 1000 1500
time acc time acc time acc time acc

16 3000 ±150 79.10 ±0.2 4700 ±320 81.45 ±0.1 6300 ±370 82.48 ±0.1 8700 ±390 83.14 ±0.1
32 2340 ±200 78.03 ±0.4 2700 ±210 79.89 ±0.2 3730 ±300 81.51 ±0.1 5030 ±340 81.87 ±0.1
64 1100 ±150 74.64 ±0.7 1194 ±100 78.87 ±0.2 2080 ±170 80.21 ±0.1 3000 ±150 80.94 ±0.2
96 750 ±150 58.5 ±1.2 900 ±70 78.67 ±0.3 1100 ±85 80.60 ±0.2 1200 ±90 80.67 ±0.2

Table 7: Impact of population size on PDMD accuracy and execution time (HEP-
MASS dataset)

Figure 18: Population size effect on execution time (HEPMASS dataset)

shows, the total time increases linearly with the increase in population size for 16,

32, 64, and 96 partitions.
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4.4 Comparison with DEAP-Spark

To put the above results into perspective, both in terms of model efficiency and

absolute performance, we have compared PDMS, and PDMD BioHEL implemen-

tation against the DEAP GP algorithm which is also implemented on the Spark

framework (Hmida et al. 2019). In this work, the author presents a GP imple-

mentation (DEAP) modified by distributing the fitness evaluation on a Spark clus-

ter. Experiments are performed on Higgs Bosons dataset obtained from https:

//archive.ics.uci.edu/ml/datasets.html. Figure ?? shows the dataset features.

Comparing the performance of DEAP-Spark to the sequential DEAP algorithm,

Hmida shows that Spark is an efficient environment to distribute GP fitness eval-

uations. Also, Hmida has integrated a simple sampling technique that preserves

learning performance while providing the possibility to probe GP with large popu-

lations or for a high number of generations. We compare our two models against

DEAP-Spark with the complete Higgs dataset results since we target large-data pro-

cessing. In Figure 19, we report the accuracy and the execution time performance

for different population sizes reported by Hmida. We have used the same cluster

size and we ran the PDMS with 65, 125, 250, 500, and 1000 population sizes, as

well as, the PDMD with 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, and

128,000 populations sizes. As the graph shows, compared to DEAP-Spark, both

PDMS and PDMD appear to offer a better speed-accuracy tradeoff. It is clear to see

that PDMD has a poor performance with population less than 8000. Nevertheless,

PDMD provides good results starting from a population of 16,000.

In conclusion, the PDMS and PDMD models offers a good tradeoff between accu-

racy and execution time. The results indicate that the population size helped both

models to enhance their accuracy.

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
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no. of instances 11 M
no. of attributes 28 real-valued
no. of classes 2
Class distribution 53% - 47%

Table 8: Higgs dataset composition

Figure 19: Comparison between DEAP-SPARK and the Implemented PDMS and
PDMD Models at different population sizes

4.5 Summary

This chapter describes our first contribution. First, we presented two partitioned

data models for parallel GA, PDMD and PDMS, to address big data classification

problems. We used the two proposed models to reimplement BioHEL, a popular

large-scale single-node GA classifier, using the Spark distributed data processing

platform under the assumption of data partitioning. Then the two models scalability
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were tested using different datasets with different cluster sizes. Our results have

shown that the training time reduces as the parallelisation level increase. The PDMS

scales up linearly to 64 nodes, while overhead negatively affects the training speed

when the cluster size increases to 96 nodes. The PDMD model is substantially

faster than PDMS while maintaining relatively good accuracy. Then the chapter

showed the influence of adopting different migration frequencies and population sizes

in the PDMD model. The results found that both changes increase the accuracy of

the PDMD model with a linear increase in time. Furthermore, using a sufficient

population size helped PDMD score higher accuracy than the one accomplished by

PDMS while offering a better accuracy-time tradeoff. Finally, a comparison with

a GP implementation over Spark shows that both proposed models offer a good

accuracy-time tradeoff. While examining both models against the Higgs Bosons

dataset, we noticed that increasing the population size not only enhanced the PDMD

accuracy but it also boosted the PDMS one. The next chapter will describe further

work focusing on how to boost the scalability of both models.



Chapter 5

Automatic Parameter Control

As we showed in the previous chapter, the accuracy-runtime trade-off for both PDMS

and PDMD is influenced by the population size. For the PDMD model, this trade-

off also depends on the number of partitions; thus, keeping the population fixed

limits the scalability of PDMD. This is an example of a parameter that plays a

crucial role in expressing the accuracy-time trade-off. Another such parameter is

the number of iterations. Changing the number of iterations from 50 to 30 resulted

in a change of training time—from 26k (sec) to 13k (sec)—while maintaining the

accuracy level for PDMS HEPMASS using 96 cores. Furthermore, as IRL learns rules

and consequently filters instances from the training dataset, the fitness landscape

changes over time, requiring new parameter settings (rather than using fixed ones)

for optimal algorithm performance. Therefore, using parameter control results in

better performance, accuracy and time, as the search strategy evolves and adapts.

Parameter control removes the need for conducting time-consuming and laborious

explorations of the large space of possible parameter value combinations whenever the

algorithm is applied to new problem instances. In this Chapter, we shall discuss these

88
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parameters and possible approaches to automating their selection, before proposing

AUTO+PDMS and AUTO+PDMD models that integrate some of these techniques,

and finally, evaluating their performance in comparison to the baseline.

The chapter is structured as follows. Section 5.1 presents existing research efforts

aimed at reducing the number of key GA parameters, the number of iterations and

the population size more specifically. Section 5.2 and 5.3 explain the automated

version of the PDMS and the PDMD models respectively. Section 2 will report the

results of the experiments and will provide a comparison with the original models.

Section 5.5 discusses the results presented, and finally, Section 5.6 summarizes the

contribution presented in this chapter and the results obtained.

5.1 Related Work: GA Parameters Setting

GAs are flexible and rather robust optimisation strategies, with a high likelihood of

obtaining good results for many combinations of parameters. On the other hand,

for complex problems or when it is crucial to optimise performance, choosing a

suitable parameter is essential. One potential cause of poor performance of a GA

is the incorrect calibration of the GA parameters. Parameters such as population

size, probability of crossover, and probability of mutation must be calibrated to each

specific problem that is tackled. The absolute values used for these parameters,

together with their relative values, will determine how a GA finds new solutions and,

ultimately, the quality of the final solution found.

The values chosen for the GA parameters will produce a search behavior between

two possible extremes: exploitation, where the current best solution is used as a

basis for finding better solutions; and exploration, where solutions are combined to
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explore the entire search space Herrera, Lozano and Verdegay (1998).

Suitable GA parameters are typically found using a trial and error approach, as

in most cases, the characteristics of the problem are largely unknown. However, this

approach requires a great deal of time and computational effort. Consequently, a

number of methods have been suggested in an attempt to provide an insight into

how to set these values. These methods can be divided into three classes: empirical

studies; parameter adaptation; and theoretical modelling. The simplest method for

determining beneficial relationships among all aspects of a GA is to perform em-

pirical analyses on various test functions. However, there is the potential that the

results will be specific to the cases that have been considered in the analyses, and it

would be difficult to get precise recommendations from these kinds of studies. Based

on theoretical and practical approaches, several authors have proposed methods of

adaptively controlling one or more of the operators (i.e. crossover probability or mu-

tation). Instead of using fixed values for these parameters, GAs utilize the knowledge

gained about the individuals’ fitness values in each generation and adaptively adjust

the parameter value in order to maintain the population diversity.

A serious concern with the theoretical studies is that they are derived from rather

simplified models of both the problem and the behaviour of the GA; this requires

knowledge of aspects of the problem that are not generally known. Also, most GA

modelling has been conducted using binary coding, as it is much simpler to perform

the analysis when each bit in the solution string can only be in one state—1 or 0.

For the past decade, automated methods for configuring state-of-the-art algorithms

have been broadly established as an effective alternative to this manual approach.

Prominent examples of general-purpose automated algorithm configurators include

irace (López-Ibáñez et al. 2016), ParamILS (Hutter et al. 2009), and SMAC (Hutter,

Hoos and Leyton-Brown 2011).
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The irace package is a software package that implements several automatic con-

figuration procedures (López-Ibáñez et al. 2016). In particular, it proposes iterated

racing procedures, which have been used successfully to configure various state-of-

the-art algorithms automatically. The primary goal of irace is to automatize the

arduous task of configuring the parameters of an optimization algorithm. However,

it may also be used for determining good settings in other computational systems

such as robotics and traffic light controllers. The iterated racing algorithms currently

implemented in irace have some limitations. The most notable one is that they were

mainly designed for scenarios where reducing computation time is not the primary

objective. Moreover, the default parameters of irace assume that a minimum number

of iterations can be performed and a minimum number of candidate configurations

can be sampled. If the tuning budget is too small, the resulting configuration might

not be better than random ones. Hutter et al. (2009) introduces ParamILS, a Rein-

forcement Learning (RL) approach that tunes RL agents across environments that

fall into the algorithm configuration method class, which seeks to find better pa-

rameters to improve general algorithm performance. A method designed to solve

"black box" problems with high computational cost is the sequential configuration of

algorithms based on search space (Hutter, Hoos and Leyton-Brown 2011). The algo-

rithm configuration procedure consists in adapting the existing general algorithm to

the given problem, allowing the replacement of the expert’s attempts by automatic

determination of algorithm parameters.

Among the main challenges of the automated algorithm configuration is the time

required to evaluate a configuration’s performance and the configuration space’s size,

especially when dealing with a set of challenging training instances. The mechanism

of choosing random configurations can easily time out and thus provide little helpful

information. Although irace leverages racing methods based on a statistical test to
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discard configurations that are unlikely to perform well, yet it leads to insufficient

information about the configurations.

In the following two sections, we shall introduce a strategy for managing and

automating the number of iterations and population size of BioHEL to enhance the

performance of PDMD and PDMS.

5.1.1 Number of iterations

Our objective is to reduce the number of parameters that need to be defined in

the GA algorithm, while still being able to sustain good performance. From our

experiments conducted to date, we have noticed that most often, half—or less—of

the default predefined number of iterations were required to reach the achieved degree

of accuracy; however, in a few cases the predefined fixed number of iterations was

not enough to find the optimal solution. This highlights that an automated approach

to control the number of iterations would be useful and could lead to a significant

increase in efficiency.

Still, most of the GA applications have no automatic termination criteria. Ac-

tually, in general, EAs cannot decide when or where they can terminate and a user

should usually pre-specify a maximum number of generations or function evaluations

as termination criteria, as previously mentioned in Section 2.4. The most common

used termination criteria that have been used in experiments (as recorded in the

recent EA literature) are: (1) a maximum number of generations or function eval-

uations, which is a simple approach that does not guarantee optimal performance.

Moreover, this is usually considered problem-dependent, and a user should have

prior information about the test problem; (2) a fitness value approaching the known
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global minima, which is not usually known in real problems; 3) a maximum num-

ber of consecutive generations without improvement. To give an example in (Leung

and Wang 2001), a value of 50 was used before stopping, while in (Venturini 1993),

the user is given the choice when to stop the algorithm. It is worth noting that

the test suites used to examine these methods are unconstrained test problems with

known minima. Hence, these measures for termination are generally not applicable

to many real-world problems. Some of the recent studies on termination criteria

for EAs can be found in (Gibbs et al. 2006), and Ghoreishi, Clausen and Jørgensen

(2017). In (Gibbs et al. 2006), an empirical study is conducted to detect the number

of generations before the individuals in the population converge, using the problem

characteristics. The survey conducted by Ghoreishi, Clausen and Jørgensen (2017)

studies eight termination criteria and provides a concise categorisation of prominent

termination criteria in EA. The author stresses the efficacy of using a combination

of direct termination criteria and threshold-based termination criteria in order to

guarantee the convergence of EA in a reliable manner. Safe et al. (2004a) highlighted

the fact that the recent trends are in the direction of employment of adaptive termi-

nation conditions. Either genotypical or phenotypical terminations are used instead

of a fixed number of iterations.

In general, recent termination criteria for EAs can be classified as follows:

1. TFit Criterion uses convergence measures of the best fitness function values

over generations.

2. TPop Criterion uses convergence measures of the population over generations.

3. TSFB Criterion uses search feedback measures to check the progress of explo-

ration and exploitation processes.
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EAs can easily be trapped in local minima if only TFit is applied to termination,

especially if the algorithm quickly reaches a deep local minimum. Using TPop only

for termination is generally improper, since causing the whole population or a part

of it to converge is not cheap. However, this is not generally needed, and reaching

global minima with one individual is enough. Even though Greenhalgh and Marshall

(2000) had already shown that, given a desired confidence level, an upper bound for

the number of iterations required to ensure convergence can be estimated, Safe et al.

(2004b) showed that, despite being theoretically correct, these criteria are of little

practical interest, either because they are too large or for other reasons. Finally,

although using TSFB seems efficient, it may face the curse of dimensionality. For

example, De Jong (1975) & Manner, Mahfoud and Mahfoud (1992) used performance

measuring techniques that maximize the diversity between individuals as a strategy

for exploring the entire search space. De Jong (1975) introduced the idea of crowding.

This technique was intended for a single population. Its main idea is to remove

from the population individuals most similar genetically to the new offspring, thus

making a place for the offpsring in that single population. This was later extended

to deterministic crowding (Manner, Mahfoud and Mahfoud 1992), where each child

created by recombination replaces the genetically closer parent in case it has a better

degree of fitness. The crowding concept considers that recombination must create

better individuals instantly. Moreover, it does not allow individuals to survive or

mate too closely; therefore, they are pushed away from each other, which prevents

the algorithm from exploiting a single region. Each crowding and deterministic

crowding technique uses its own unique performance measuring criteria, where speed

is not a factor in their measurements.

Relying on all of these conclusions, in a modified implementation for both PDMD
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and PDMS, we replaced the fixed number of iterations defined in the original Bio-

HEL with a convergence condition combining both TFit and TPop. The convergence

test determines that if there is no improvement in the best-found solution (fitness)

so far, and the average fitness level does not improve, then the rule-learning process

is terminated. We added an upper count (consecutive generations without improve-

ment) to estimate convergence, where a fixed counter to 3 is used to ensure that

the convergence state is reached. This would be a smarter termination, as it gets

feedback from the population about the current state of the search. The algorithm

searches for a better solution until no further enhancement is observed in either the

best solution or the entire population (average fitness), which indicates that continu-

ing the search process is ineffective. On the other hand, the search continues further

if it is progressing well, rather than being forced to stop as the maximum number of

iterations is reached.

5.1.2 Population Size

As we have discussed in Chapter 4, larger population sizes are likely to give better

solutions for the PDMD model as it scales up, while PDMS may also benefit from

a larger population size, as shown by the experiments in Section 4.4. On the other

hand, maintaining a large population takes a lot of computational effort. A trade-

off has to be made between the quality of the final solution and the amount of

computation one is willing to do.

Since the early days of the genetic algorithm (GA) community, many researchers

have considered in their studies the effects of the population size on the quality

of the obtainable solutions (Goldberg 1989). While there is potential to do things

more optimally, designing and drawing valid conclusions naturally becomes more
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complex, given that static population sizing is still an open problem. However,

there are many factors in population genetics and nature that would support the

use of variable population size during the evolution of GAs. Aleti has documented

in his literature review (Aleti and Moser 2016) that in 35 papers, population size

is being adapted and, as has been observed, population size has a crucial effect on

the performance of the algorithm. The genetic algorithm with variable population

size (GAVaPS) (Arabas, Michalewicz and Mulawka 1994) replaces the explicit fixed

population size parameter with a variable one by introducing two properties: the age

and the maximal lifetime. The adaptive population size-based GA (APGA) (Bäck,

Eiben and van der Vaart 2000) is a variant of GAVaPS, where a steady-state GA

is used, and the lifetime of the best individual remains unchanged when individuals

grow older. In (Eiben, Marchiori and Valkó 2004), the author introduces a growing

population size when the individuals’ fitness is high, in order to improve capacity

or in case of longer periods of stagnation. Short stagnation periods decrease the

population size.

All previous research has highlighted that the choice of proper population size

could substantially increase the efficiency of GA. One of the most comprehensive GA

calibration strategies has been proposed in (Harik and Lobo 1999). The approach

runs multiple populations with different sizes simultaneously, while establishing a

race among those populations.

The different populations are at different stages of evolution, the smaller ones

being ahead of the larger ones in terms of generations. For example, a snapshot of

the parameter-less GA at a particular point in time could reveal the existence of

three populations whose sizes may be 256, 512 and 1024. The population of size 256

could be running its 30th generation, while the population of size 512 could be on

generation 6, and the population of size 1024 could still be on generation 1. As time
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goes by, the smaller populations are eliminated, and larger populations are created.

The creation and deletion of populations is controlled by inspecting the average

fitness of the populations and taking decisions based on their relative readings. For

example, suppose the population of size 512 has an average fitness greater than that

of size 256. This suggests that the smaller population could be stopped because

it is improbable that it will produce a fitter individual than the larger population.

The larger population is at a much earlier stage of evolution but already contains

better individuals than those contained in the smaller one, a clear indication that the

smaller population is not large enough. This approach never terminates (that is, it

never makes a decision about when it has received the optimal population size, and to

run higher populations would therefore just be a waste of computational resources),

rendering it inappropriate in an IRL/sequential covering setting. Instead, we are

looking for an approach which at some point would be able to terminate, with some

confidence that it has obtained a solution with good quality (that is, one obtained

from a population with an appropriate size for the problem at hand). Thus, we run

the evolution sequentially, doubling the population until doubling it further will not

improve the solution quality. This is indeed equivalent to the parallel case. The main

motivation for running populations in parallel is to avoid waiting for a long time in

the eventuality that a population starts drifting. In our case however, given the

termination criteria discussed in the previous section, in case the population starts

drifting (and termination is most likely), the run should be terminated due to lack

of progress and immediately restarted with a bigger population.

The overall net effect of this strategy is equivalent to a scheme that continuously

increases the population size as time progresses.

In addition, we aim to start our GA with a small population. Theoretically,

if the starting size is sufficient to kickstart the learning process, the exact value
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does not matter, since the population can grow later if necessary. Otherwise, if the

population is very small (one or two individuals), the number of individuals may not

be sufficient to enable the GA to carry out an efficient starting step in large-scale

data problems, and the learning would be terminated at a very early stage. As a

point of reference for identifying a good starting value, we can look at the micro-

genetic algorithm (micro-GA), which is defined by Goldberg (1989) and was first

implemented by Krishnakumar (1990). Krishnakumar used a population size of 5

and reported that his micro-GA obtained faster and better results than the standard

GA when tested on two stationary functions and a real-world engineering control

problem (a wind-shear controller task). We have chosen the initial size to be ten,

which is a reasonable number considering large-scale and complex datasets.

5.2 AUTO+PDMS

The AUTO+PDMS is the result of the application of the above strategy to the orig-

inal PDMS model by replacing the fixed iteration numbers and the fixed population

size with an automated termination and a simple auto-population resizing, as shown

in Algorithm 7.

The main BioHEL function is reported for clarity. The first modification in the

AUTO+PDMS is in findRulesPDMS where the population size is explicitly initialized

to 10, and a bestFoundCandidate is set to null (line 12). Then, within the main

learning loop, and after terminating an inner loop that returns a candidate rule,

the best candidate rules are evaluated (lines 28– 29). If the candidate rule has

a better fitness level than the previously found one (bestFoundCandidate) using a

smaller population, then the candidate replaces the old bestFoundCandidate and the

population size is doubled (line 29). Otherwise, the learning process is terminated
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Algorithm 7: AUTO+PDMS BioHEL
1 BioHEL(TrainS):
2 ruleList = ∅; stop = false;
3 while stop is false do
4 for repetition=1 to numRepetitions do
5 candidates += findRules(TrainS);
6 (bestRule,TrainS) = bestRule(candidates, TrainS);
7 if rule not null then
8 ruleList += bestRule; candidates = ∅;
9 else stop = true;

10 return ruleList;
11 findRules(TrainS):
12 terminate=false; popSize=10; bestFoundCandidate=null;
13 while terminate = false do
14 count=3;
15 pop = TrainS.sample(...).collect();
16 pop.fitness = TrainS.aggregate(zeroes,

partialFitness(pop),mergeFitness);
17 while count != 0 do
18 offsp = pop.selection(); offsp.crossover(); offsp.mutation() ;
19 offsp.fitness=TrainS.aggregate(zeroes, partialFitness(offsp),

mergeFitness);
20 pop.replacement(offsp);
21 candidateIndividual=pop.Best();
22 currentAverage=pop.computeAverageFitness();
23 if candidateIndividual is better than bestIndividual OR

currentAverage is better than fitnessAverage then
24 bestIndividual= takeBest(candidateIndividual,

bestIndividual);
25 fitnessAverage= takeBest(currentAverage, fitnessAverage);
26 count=3
27 else count−−;
28 if bestIndividual is better than bestFoundCandidate then
29 bestFoundCandidate=bestIndividual; popSize=popSize*2
30 else terminate=true ;
31 return bestFoundCandidate;
32 bestRulePDMS(candidates,TrainS):
33 bestRule = candidates.bestFitness();
34 matchedCl = TrainS.filter(_.matches(bestRule))

.map(_.class).countByValue();
35 if bestRule.class = majorityClass(matchedCl) then
36 TrainS = TrainS.filter(!_.matches(bestRule));
37 return (bestRule, TrainS);
38 else return (null, TrainS);
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by setting the "terminate" value to true (line 30) , and thus, the outer loop (line 13)

stops.

The second modification in the code is in the GA evolution repeating condition.

The GA loop with a fixed number of iterations is replaced with a countdown condition

(line 17). This loop repeats the same GA evolution processes, but two additional

steps are added to it: (1) computation of the best fitness found and (2) computation

of the average fitness of the current generation (lines 21– 22). In case any of these

values is better than before, then the better value/s replace the old one/s, and the

count value is reset to 3 (lines 24– 26). Otherwise, the count value is decremented

by one. Eventually, the loop (line 17) will stop when the count reaches 0 and no

further enhancement is found in both best and average fitness values.

For both AUTO+PDMS & AUTO+PDMD, we disable the repetitions in the

original BioHEL (cfr. numRepetitions in Algorithm 4, § 4.2), since the modified

model is already repeating the learning of a rule with double the population size of the

previous run. This gives a clearer indication that the solution has not been trapped

in a poor quality local minima. As a consequence bestRulePDMS, which is the same

in AUTO+PDMS matches the original one defined in the original PDMS-BioHEL

(Algorithm 5 in § 4.2) but operates on a single rule (the best rule discovered in

findRulesPDMS). Moreover, the same bestRulePDMS is used again in AUTO+PDMD

model.

5.3 AUTO+PDMD

Similarly, we redefined the original PDMD model by replacing the fixed iteration

numbers and the fixed population size, as shown in Algorithm 8.

AUTO+PDMD uses the same definition of the BioHEL function as AUTO+PDMS.
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Algorithm 8: AUTO+PDMD BioHEL
1 findRulesPDMD(popSize,TrainS):
2 terminate=false; popSize=10; bestFoundCandidate=null;
3 while terminate = false do
4 pop = ∅; count=3; bestIndividual=null;
5 pop = TrainS.zipPartitions(pop)(
6 (TrainSPart, popPart)⇒
7 if popPart = ∅ then popPart = TrainSPart.sample(popSize);
8 popPart.fitness=doFitness(popPart, TrainSPart);
9 while count != 0 do

10 offsp = popPart.selection();
11 offsp.crossover();
12 offsp.mutation();
13 offsp.fitness=doFitness(offsp,popPart);
14 popPart.replacement(offsp);
15 candidateIndividual=Best(pop);
16 currentAverage=computeAverageFitness(pop);
17 if candidateIndividual is better than bestIndividual OR

currentAverage is better than fitnessAverage then
18 bestIndividual= takeBest(candidateIndividual,

bestIndividual);
19 fitnessAverage= takeBest(currentAverage, fitnessAverage);
20 count=3
21 else count−−;
22 return popPart

23 );
24 candidates = pop.mapPartitions(best(1)).collect();
25 candidates.fitness=TrainS.aggregate(zeroes,

partialFitness(candidates), mergeFitness);
26 bestIndividual = candidates.bestFitness();
27 if bestIndividual is better than bestFoundCandidate then
28 bestFoundCandidate=bestIndividual; popSize=popSize*2
29 else terminate=true ;
30 return bestFoundCandidate;
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Moreover, in findRulesPDMD all nodes will locally use the countdown condition

(line 9) and repeat the GA evolution processes, with the addition of two further

steps: computation of the best fitness (line 13), and computation of the average fit-

ness of the current generation (line 15). After all local GAs terminate as their local

count reaches 0, the zippartition function returns all the partitioned subpopulations

(line 5). Then, all local best individuals (rules) are reevaluated globally (line 24), and

the overall best individual is compared to the previously found bestFoundCandidate

where a decision is taken whether to duplicate the population size or the learning

process is to be terminated.

Note that in AUTO+PDMD we apply a no-migration policy, to separate the

effect of migration from the automated parameter management strategy.

5.4 Experimental Study

The experimentation design aims to estimate the performance of the presented

AUTO+PDMS & AUTO+PDMD models. We investigate how the automatic termi-

nation and population resizing influence the accuracy and the execution time. In or-

der to examine the efficiency of automated implementations, we used the HEPMASS,

KDD, and the Higgs datasets, with the same cluster and BioHEL configuration used

as in Chapter 4. The cluster size is set to 96 executors. We report the average over

20 runs, using 10-fold cross-validation and 95% confidence intervals.

In the following section, we compare the performance of the AUTO+PDMS to

the original model results where the same number of nodes were used. Then, the

AUTO+PDMD model is compared to the original version as well as to the original

PDMS for comparison.
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5.4.1 AUTO+PDMS Performance

In this section, we evaluate the performance of AUTO+PDMS and compare it to

the original PDMS across the selected datasets. Figure 20 reports the performance

(accuracy vs execution time) for the KDD dataset. We ran the PDMS with differ-

ent population sizes (10, 20, 200, 300, 500 & 2000). The figure shows the resulting

accuracy/time performance as we grow the population in the PDMS model. More-

over, the figure reports the average accuracy and execution time for the proposed

AUTO+PDMS BioHEL. We can see that AUTO+PDMS BioHEL offers a better

trade-off compared to the original PDMS BioHEL. Although AUTO+PDMS does

not reach the degree of accuracy achieved by the original PDMS with population size

500 and larger, it obtains a good level of accuracy in a considerably shorter time.

This can be returned to the fact that in IRL approach being able to have differ-

ent population sizes for the different learned rules could lead to a better efficiency

where some rules were concluded using smaller population sizes compared to the

fixed default one. In observing the size of the population used to learn the different

rules in AUTO+PDMS, we have noticed that a population of size 80 was used for

learning most of the selected rules in the AUTO+PDMS model while occasionally

the evolution terminated with a larger population sizes.

Figure 21 and Table 10 report the performance for the HEPMASS dataset. We

ran the PDMS with different population sizes (10, 20, 200, 300, 500 & 2000).

As shown in Figure 21, AUTO+PDMS accuracy/time tradeoff is in line with the

original PDMS. AUTO+PDMS is capable of achieving a high degree of accuracy

within a reasonable time. Nevertheless, the model was unable to reach the degree of

accuracy attained by the original PDMS model with a population size of 2000. The

average accuracy of the model is 83.59, which is somehow in line with the accuracy
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popSize Accuracy Time

PDMS

10 21.57 ±7.0 165 ± 20
20 30.10 ±7.0 282 ±215
100 98.89 ±0.6 915 ±100
200 99.29 ±1.0 2350 ±100
300 99.35 ±0.4 3680 ±100
500 99.68 ±0.2 5800 ± 80
2000 99.68 ±0.0 40900 ±680

AUTO+PDMS 99.37 ±0.0 1040 ± 93

PDMD

20 21.56 ±0.0 55 ± 2
500 93.20 ±1.0 260 ± 15
960 98.68 ±0.0 590 ± 60
2000 99.01 ±0.0 630 ± 20
4000 99.03 ±0.0 650 ± 15
8000 99.20 ±0.0 800 ± 50
16000 99.32 ±0.0 1790 ±160
32000 99.32 ±0.0 4550 ±300

AUTO+PDMD 99.23 ±0.0 540 ± 12

Table 9: Performance metrics of AUTO+PDMS, AUTO+PDMD, and PDMS &
PDMD at varying population sizes (KDD dataset).
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Figure 20: Accuracy/Time tradeoff for AUTO+PDMS and Original PDMS at dif-
ferent population sizes (KDD Dataset)

reached by the original model using the default population size "500" while it saves

approximately half of its execution time. (Table 10).

Figure 22 and Table 11 reports the performance for the Higgs dataset. We ran the

PDMS with different population sizes (66, 126, 250, 500, 1000, 2000, 4000 & 8000).

The accuracy/time tradeoff of PDMS+AUTO is slightly more competitive than the

original PDMS, with an execution time between PDMS-250 and PDMS-500 but an

accuracy between PDMS-500 and PDMS-1000.

5.4.2 AUTO+PDMD Performance

In this section, we evaluate the performance of the automated PDMD BioHEL while

comparing it with both the original PDMS and PDMD models.

Figure 23 reports the performance (accuracy vs time) for the KDD dataset. We
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Figure 21: Accuracy/Time tradeoff for AUTO+PDMS and Original PDMS at dif-
ferent population sizes (HEPMASS Dataset)

popSize Accuracy Time

PDMS

10 76.67 ±1.0 1409 ±200
200 82.30 ±0.3 6434 ± 50
300 83.57 ±0.2 9782 ±150
500 83.65 ±0.2 16500 ±250
2000 84.90 ±0.1 116047 ±600

AUTO+PDMS 83.59 ±0.1 8200 ±500

PDMD

500 78.67 ±0.6 900 ±200
960 79.89 ±0.4 1100 ±400
2000 80.70 ±0.3 1432 ±300
4000 81.59 ±0.3 1600 ±250
6000 82.27 ±0.2 1910 ±320
8000 82.71 ±0.2 2612 ±300
16000 83.94 ±0.0 5009 ±250
32000 84.50 ±0.0 10239 ±500

AUTO+PDMD 83.43 ±0.5 6210 ±620

Table 10: Performance metrics of AUTO+PDMS, AUTO+PDMD, and PDMS &
PDMD at varying population sizes (HEPMASS dataset).
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popSize Accuracy Time

PDMS

66 57.25 ±1.0 733 ± 170
126 60.18 ±0.7 1071 ± 300
250 61.18 ±0.3 2061 ± 158
500 61.38 ±0.3 4075 ± 450
1000 61.83 ±0.2 7425 ± 620
2000 62.27 ±0.3 12961 ±1220
4000 63.00 ±0.2 17179 ±1600
8000 63.00 ±0.2 21006 ±2000

AUTO+PDMS 61.59 ±0.2 2900 ± 690

PDMD

500 53.12 ±0.0 116 ± 20
1000 54.09 ±0.4 148 ± 16
2000 57.48 ±0.7 225 ± 30
4000 57.42 ±0.8 299 ± 120
8000 60.64 ±0.7 503 ± 100
16000 61.24 ±1.0 951 ± 300
32000 61.85 ±0.3 2014 ± 100
64000 61.94 ±0.2 3626 ± 260
128000 62.01 ±0.1 11523 ± 640

AUTO+PDMD 61.57 ±0.4 3440 ± 400

Table 11: Performance metrics of AUTO+PDMS, AUTO+PDMD, and PDMS &
PDMD at varying population sizes (Higgs dataset).
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Figure 22: Accuracy/Time tradeoff for AUTO+PDMS and Original PDMS at dif-
ferent population sizes (Higgs Dataset)

ran the PDMD with population sizes 100, 200, & 300. The graph also reports the

performance of the original PDMS with population sizes 20, 500, 960, 2000, for

comparison. We can clearly see that the AUTO+PDMD offers a better trade-off

compared to both original models. AUTO+PDMD managed to reach an accuracy

level close to that reached by the original PDMD in 50% of the execution time.

Moreover, while investigating our AUTO+PDMD runs on the KDD dataset, it was

discovered that, only for a minority of rules rules (on average 25% of the learned

rules), the population size of the best selected rule was greater than 10 per island

(i.e. 960 in total).

Figure 24 reports the performance (accuracy vs time) for the HEPMASS dataset.

For comparison, We report the earlier results of PDMS with different population

sizes (10, 200, 300, & 500). Then, we ran the PDMD with population sizes 500,
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Figure 23: Accuracy/Time tradeoff for AUTO+PDMD and Original PDMS &
PDMD at different population sizes (KDD Dataset)

960, 2000, 4000, 8000, 16000 & 32000. The graph shows that the AUTO+PDMD

average accuracy is 83.43%; this level of accuracy is between PDMD-8000 and

PDMD- 16000 but with a worse execution time between PDMD-16000 and PDMD-

32000. Even though PDMD-16000 offers a better tradeoff than AUTO+PDMD, the

AUTO+PDMD model returns a close result without knowing the ideal population

size.

Figure 25 reports the performance (accuracy vs time) for the Higgs dataset. We

ran the PDMD with population sizes 500, 1000, 2000, 4000, 8000, 16000, 32000,

64000 & 128000. The AUTO+PDMD model running time is stable, with its highest

accuracy value and learning time being equivalent to those of the original PDMD.

The accuracy average across all runs has a wider confidence interval (see Table 11),

with a lowest accuracy of 61.17%; this level of accuracy is between PDMD-8000
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Figure 24: Accuracy/Time tradeoff for AUTO+PDMD and Original PDMS &
PDMD at different population sizes (HEPMASS Dataset)

and PDMD-16000 with a higher execution time between PDMD-32000 and PDMD-

64000. The AUTO+PDMD returns a good accuracy level with a considerable high

execution time but is yet less than the total execution time of all trial population

sizes starting from 500 to 32000.
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Figure 25: Accuracy/Time tradeoff for AUTO+PDMD and Original PDMS &
PDMD at different population sizes (Higgs Dataset)

5.5 Discussion

Some general conclusions can be drawn from our results. Firstly, AUTO+PDMS

performed very competently compared to the original PDMS. We can see that the

AUTO+PDMS is above the original PDMS curve at different population sizes, which

shows that it offers a better trade-off. We can attribute this to the variability of the

population size used by the automated BioHEL. When the system is in the process

of learning a complicated rule, a larger population will help to explore the search

space and locate that solution; however, when the system is in the process of learning

an easy rule, a small population could be sufficient for exploiting the search space

within a shorter time rather than using a large population. On the contrary, the

original PDMS BioHEL algorithm uses the same population for each discovered rule.

AUTO+PDMS could not attain the level of accuracy reached by the original
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PDMS, since the convergence condition used is not based on exact convergence (geno-

type convergence) but rather expresses a tradeoff between cost (execution time) and

efficiency (chance to improve the fitness). Overall, the PDMS improves when aug-

mented by the auto-strategy, since a good degree of accuracy can be reached with

a smaller population size and thus a shorter time. Regarding the PDMD model,

in terms of scaling up the original PDMD to a large cluster size, the model needed

a far larger population than the default one to reach a good accuracy level. The

performance achieved by AUTO+PDMD proved to be comparable to the optimal

performance level of the original; a high accuracy degree was reached without the

need to guess the ideal fixed population size. Moreover, AUTO+PDMD benefited

from learning good rules with small population sizes when possible, ultimately lead-

ing to a shorter learning time and thus a better trade-off than the original PDMD.

In general, we have found that the proposed extensions are significant in that

they allow the proposed models to attain high accuracy in a reasonable time. In

summary, the automated solution has proved to be a capable tool for solving the

problem of setting the population size and the number of iterations; consequently,

the automation of both PDMS & PDMD models is a good solution. Nevertheless,

the proposed automated models are not ideal when the highest accuracy is the main

objective, as the convergence test used may not always lead to the best solution

space. Further work could be focused on finding a more sophisticated convergence

test to be used for learning termination. Another question to consider is "to which

extent the decision to stop at a given population size is reliable".
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5.6 Summary

In this chapter, we complemented the proposed models with the automation strategy.

The motivation behind automation is proposing a more flexible model which can han-

dle large-scale data while offering high levels of accuracy in a reasonable timeframe,

without the need to search manually for the best population size or the number of

iterations to be used. The experiments in this chapter compared the AUTO+PDMS

& AUTO+PDMD to the original versions, using three datasets. The experiments

revealed that both the models, when complemented with the auto-strategy, can scale

up reasonably when addressing large-scale data.



Chapter 6

Conclusion

This chapter concludes the contributions presented in this thesis. Moreover, it

presents suggestions for future research and areas for application.

In this thesis, we have made great efforts to simplify the use of GA in large-

scale problems for practitioners seeking to apply state-of-the-art GA technology to

solving real-world problems. The work is motivated by the successful applications

of GAs in many areas, and more specifically by the parallel GA power in handling

large-scale design optimization problems. GA can be used in knowledge acquisition

from mass data; it has been used to great effect by LCS. This research focused

on two interesting research areas: firstly, applying data mining to a partitioned

data environment, and more precisely, extending a GA-based LCS to learn in a

partitioned data environment; secondly, exempting the GA algorithm from some of

its user-defined parameters. The main objective is to propose a system to be used in

large-scale data classification problems, while maintaining simplicity and efficiency.

The proposed algorithms adopted BioHEL, a popular large-scale single-node IRL

classifier using the Spark distributed data processing platform under the assumption

114
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of data partitioning.

6.1 Contributions

Two partitioned data models for parallel GA, PDMD and PDMS were implemented

to address big data classification problems. The two proposed models reimplemented

BioHEL, a popular large-scale, single-node IRL classifier, using the Spark distributed

data processing platform under the assumption of data partitioning. The fundamen-

tal strategy followed here is to partition the training dataset in the distributed nodes?

main memory and to structure the computation and data access according to this

partitioning. PDMS runs a unique master-slave parallel GA model, whereby the

master runs the complete GA evolutionary processes until the fitness computation

step is reached. The master sends a copy of the entire population to all the slaves,

and each slave then computes a partial fitness for the individuals on the local data

partition. Slaves send their results back to the master, which, in turn, aggregates

all partial fitness values, thus completing the GA processes. On the other hand, the

PDMD model runs isolated parallel GA, each with its own subpopulation. Occasion-

ally, nodes exchange their best individuals with randomly selected nodes, allowing

interaction with different subpopulations. Once the GA terminates (that is, com-

pletes the preset number of iterations), a solution is selected after an individual has

been globally nominated as the best individual (the individual is evaluated over the

complete training dataset). Data partitioning merits the parallel implementation

of GA; both implementations proved their scalability while preserving high levels

of accuracy. Overhead has a minor effect on the learning speed as the cluster size

increases. As shown by the results, the PDMD model is substantially faster than
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PDMS while maintaining relatively high accuracy. Comparison of the two imple-

mented models with a Parallel GP, presented in (Hmida et al. 2019), found that

both models offer a better trade-off of accuracy and execution time. The global

conclusions that can be extracted from the work in this thesis are positive.

All of the four kinds of implementations presented are able to improve the basic

BioHEL under the assumption of data partitioning. More importantly, the added

automated aspect of both AUTO-PDMS & AUTO-PDMD can help the GA user

to analyze large-scale data without the need to think about how to terminate the

learning process and what the most efficient population size to use could be.

We have investigated the effects of migration on the PDMD model, and of the

population size on both PDMS & PDMD models. The investigations revealed that

both of these considerations could enhance accuracy degrees while adding a tangible

runtime. In order to enhance both PDMS and PDMD implementations, we decided

to track the impact of the population size and to find a better alternative for the

general default fixed-value policy used by most GA implementations.

Usually, the search space in big data problems is vast, and choosing the right

population size to arrive at a correct solution is complex. In this work, we used the

dynamic population increase policy proposed in (Harik and Lobo 1999) to overcome

the unlucky population size selection. Since our work addressed IRL, it was impossi-

ble to adopt the infinite proposed solution in (Harik and Lobo 1999) to sequentially

learn multiple rules; therefore, we implemented a greedy termination for the popu-

lation increase policy. Moreover, as we have dug deeper into the iterative learning

process, we have found that the default fixed number of iterations is generally a waste

of resources, not even being sufficient in some cases. Therefore, we have replaced the

fixed number of iterations with a simple convergence test.

The experimental results have shown that the proposed change gives a good
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trade-off between accuracy and time needed to get the classifier concerning the pre-

defined PDMS and PDMD models. These automated models can save the user from

conducting trial-and-error experiments to find the ideal number of iterations and

population size for the different addressed problems. However, although this study

improves the performance of GA in some respects, certain limitations still exist. As

discussed earlier, the learning termination criteria (convergence test) impeded the

effectiveness of both Dynamic PDMS and PDMD.

6.2 Future Areas

Future work should consist of further experiments with other datasets, as for this

work, we were unable to find other large real datasets. Moreover, the work presented

in this thesis offers many opportunities for further development and exploration.

First, as our contribution is not limited to IRL, an exciting extension would be

to examine the modeled ’automated GA’ parameters and the ’population evaluation

considering data partitioning’ with other kinds of GAs used in classification problems

(i.e. Pittsburgh and Michigan). Moreover, further work should focus on investigating

the applicability of our proposed modeling beyond classification tasks.

While the benefits of using auto-population have been demonstrated, more re-

search needs to be conducted to estimate to what end the auto-population increase

scheme was utilized. For example, the role of selection in GAs is a curious one (Harik,

Lobo and Sastry 2006), and therefore, the selection method and the selection pressure

needs could be other parameters to vary or automate as the population size changes.

We believe that this would allow further control of the ratio between exploration and

exploitation. Furthermore, as highlighted by Črepinšek, Liu and Mernik (2013), it

would be helpful to use a direct measure for exploration and exploitation in order to
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boost the explorative and exploitative factors of EA.

Even though AUTO-PDMD yields promising results, inserting migration into its

process may boost the level of accuracy, exactly as was the case with the original

PDMD. Therefore, we would consider reimplementing AUTO-PDMD with different

migration policies.

These extensions to the work of the thesis would be of value to pursue. However,

the work presented here already suggests a promising future for using the PDMS &

the PDMD models. We hope that this thesis will trigger more interest in considering

data partitioning in large-scale data applications. More research will be devoted to

enhancing the scalability of GA in such applications. We are convinced that our ap-

proach to enhance large-scale data processing is promising in many applications. The

automated GA will not only relieve GA users from searching for the best parameters’

values for their problems, but it will also return satisfactory results.
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