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Synopsis

This study deals with the supplier selection problem in which truck com-
panies are considered as supplier for the transportation service and freight
consolidation scheduling problems for Third Party Logistic (3PL) companies.

We present two novel investigations for the supplier selection problem.
In the first one, we make some analyses on the commonly used methods
for supplier selection problems which are the Multi-Criteria Decision Making
(MCDM) methods, namely Analytic Hierarchy Process (AHP), Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) and VIekriter-
ijumsko KOmpromisno Rangiranje (VIKOR). Then we evaluate the results
of each method based on the other two methods and conduct some tests for
relying on a single method by the regret based measure approaches that we
developed. In this way, we offer two effective approaches for combining the
results of the individual MCDM approaches. Note that we do not propose
an integration of the approaches, but a combination of the results of different
MCDM methods in a systematic way instead of relying on a result of an indi-
vidual method. In the second study of supplier selection, we handle the issue
of missing expert knowledge. When data is not available, researchers rely on
expert knowledge. Therefore, there is a tendency to use MCDM methods for
supplier selection problem due to working ability of MCDM methods with
expert knowledge. However, experts do not always have full knowledge of all
evaluation criteria. We offer a reliable solution for this problem. We integrate
MCDM methods and Bayesian Network (BN) in a novel way that they can
compensate each others’ limitations with their strengths. We mainly rank the
alternative suppliers with TOPSIS which has two inputs: weights of the deci-
sion criteria and initial decision matrix. We obtain the weights of the criteria
from AHP and elicit the initial decision matrix from BN. Causal graphical
structure and parameterization of BN is done by Decision Making Trial and
Evaluation Laboratory (DEMATEL). Here, experts submit their knowledge
about the decision criteria linguistically. Ranked Nodes tool of BN provides
the experts to submit their knowledge with verbal expressions in an ordinal
scale as low, medium, high. If the experts do not have full knowledge about
some of the criteria BN estimates the missing value of criteria based on the
available knowledge of the experts and causal relationship between the cri-
teria probabilistically. According to the obtained new knowledge(evidence)
BN updates the values of the network and provides updated information to
decision makers dynamically. Finally, we conducted sensitivity analyses for
the value of knowledge followed by a case study.
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In the second part of this research, we investigate the freight consolidation
scheduling problem. We address the problem in a particular way due to the
preference of a 3PL company that operates in the UK. We consolidate the
orders up to 3. First we investigate the possible consolidation configurations
of orders as singleton(one), pair and triplets. We compute all the savings
obtained by consolidation among non-consolidation case. Then we use these
configurations and their saving values as input in our exact approaches like
the 0-1 Integer Linear Programming (ILP) and the set partitioning formula-
tion which we developed. We also presented some tightening constraints into
the set partitioning formulation and tested them for different size of the data
sets. On the other hand we also tackled the problem using metaheuristics to
overcome the computational time for larger instances. We offered Variable
Neighbourhood Search (VNS) algorithm using six neighbourhood structures
and two local searches: one performs within the route and the other one
performs between the routes. The proposed neighbourhood structures are
compatible with the purpose of the improvement of the consolidated ship-
ment configurations up to three requests. On the other hand to perturb the
solution and improve it with the repair mechanism we offered Large Neigh-
bourhood Search (LNS) algorithm. In LNS algorithm, one of the removal
operators performs effectively in a guided way by destroying the consolida-
tion configurations which have negative effect on savings. We also propose
to hybridize the VNS/LNS algorithms. Lastly we discuss about the com-
putational results in terms of deviation from the optimal results and com-
putational time effectiveness. We finalize the study with a summary of the
research, limitations and suggestions for further work.

The thesis is made up of eight chapters. In the first chapter, the problem
definition, a brief of the study and contributions are presented. In chapter 2,
the literature review for supplier selection and order consolidation scheduling
problems are given. Chapter 3 propose a deterministic rule for the combina-
tion of the results of different methods for supplier selection problem while
Chapter 4 deals with the case of lack of complete expert knowledge for the
supplier selection problem and proposes a novel MCDM-BN integration for
this purpose. Chapter 5 discusses the order consolidation scheduling problem
and defines all the possible configurations with their respective savings. In
chapter 6, exact approaches for the order consolidation scheduling problem
are provided, namely, a 0-1 ILP and a set partitioning formulation enhanced
by valid inequalities. Chapter 7 treats the same scheduling problem by de-
signing and implementing two metaheuristics approaches, namely, variable
neighbourhood search (VNS) and large neighbourhood search (LNS) as well
as their hybridisation. Chapter 8 is the final chapter, it covers a summary of
our findings and present limitations of the study and outlines suggestions as
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future work.
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Chapter 1

INTRODUCTION

1.1 Introduction

In this introductory chapter we first define the problem, give the methods to
be used, outline the aim and contributions of the study and finally present
the organisation of the thesis.

1.2 Problem Definition

We aim to investigate the decision problem in contingency logistics opera-
tions. This is based on the operations of a third party logistics company
which performs in contingency logistics. We address this challenging issue
by studying the supplier selection problem, which in our case the suppliers
represent the freight companies (providers), and the order request consoli-
dation scheduling problem. For the first part, we propose a selection tool
based on multi criteria decision analysis that considers the selection of the
transportation suppliers (the freight companies) whereas in the second part,
we solve the order consolidation scheduling of the customer requests which
also incorporates the presence of the transshipment points both optimally
and heuristically.

The focus of the work is those third party logistic (3PL) companies that
do not have their own fleet. Usually the company is faced with two inter-
related challenges, namely, the selection of their suppliers known as truck
carriers (providers) throughout the world while organising in an efficient way
the delivery/collection schedules of the customers that require the good to
be arrived urgently, known as requests. These customers are usually com-
panies, some of them are rather big like Jaguar, that require special parts
that suddenly failed and can be fatal in their production system. However,
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the 3PL company has to bid for the job, namely, the customer order request,
as will be briefly explained below. This latter situation provides the 3PL
company with the challenge of not only finding the right freight providers
and also producing the right order consolidation (up to 2 or 3 requests at
most) that could lead to cost saving, added advantage of gaining the bids and
a by-product of reducing the level CO2 emission as a consequence of using
less vehicles on the roads. It is also important that the selection of the most
suitable truck companies (providers) is carefully performed as customer ser-
vice is paramount for the 3PL company. This type of logistics company fall
into the category of third party logistic companies that perform in the op-
erational contingency logistic area. In other words, they are asked to collect
and deliver these parts in strict due date, say next day, as any unnecessary
delays will affect the production that generates massive financial losses and
also may have a negative effect on their clients.

The current study was inspired from a real case study of a 3PL logistic
company in the Kent region (UK) where an initial study was recently car-
ried out by Salhi et al. (2020). The authors investigated order consolidation
strategies using pairs of requests to be consolidated while also briefly exam-
ining the inclusion of the transshipment points. The aim was to maximize
the profit by reducing unnecessary driving costs and also enhancing or at
least retaining the customer satisfaction at their current level for this 3PL
company. More details will be provided in subsequent sections and chapters.
However, in this study, the selection of the truck suppliers (providers) though
investigated to produce a list of chosen promising providers by addressing the
supplier selection problem, it was not integrated with the order consolidation
scheduling part. This is due to the assumption that there will be enough cho-
sen providers around the collection points and hence the additional cost will
be either minimal or constant throughout the search and hence will have no
bearing in the scheduling decision. This linkage can be easily incorporated
as will be highlighted in the limitations and suggestions in the final chapter
of this thesis.

The process is briefly given as follows. The third party logistic company
bids for a customer order (request) with the view that if they gain the bid
they will make a profit. If the bid is too high it is likely the bid will be
rejected but if it is too low, the company may lose money. In other words, the
3PL company has the challenge of offering the right quote to the customers
(mother companies) with the aim of gaining the bid and yielding profit.
There

Determining the price the 3PL company offers to the chosen truck com-
pany (provider) for the transportation service and delivering the product on
time to the customer is a major challenge. The 3PL company if they manage
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effectively on how to consolidate orders can reduce the transportation cost,
decrease CO2 emission and enhance customer service while increasing their
chances of gaining future bids. To maintain customer service and its reputa-
tion, the 3PL company which historically delivers each customer its request
on a direct route via a van or a truck, decided to explore order consolida-
tion but with the strict condition that the maximum number of requests to
be examined for consolidation in any route is three at most. To respond to
this challenge, we need to study the selection of these suppliers (providers) in
terms of quality, reliability etc and then address the decision problem of order
consolidation scheduling accordingly. Our first task is therefore to address
the selection problem of the truck company for transportation service as a
supplier selection problem. These selected suppliers could then be chosen as
part of the second task, namely, the order consolidation scheduling where
we assume that there will be enough providers near the collection points to
choose from. Additionally, in this study we also consider the selection of
transshipment points and we extend the work to triplets in addition to pairs
as initially attempted by Salhi et al. (2020). The methodology adopted here
is also very different as will be shown in the subsequent chapters.

In summary, we handle supplier selection problem and order consolidation
scheduling problems for third party logistic companies.We aim to select the
best freight company as the transportation service supplier for third party
logistics companies. We evaluate and rank all the suppliers based on the
region. Then we aim to schedule the orders as they can be consolidated up
to 3 in most effective way by consideration of transshipment points.

1.3 Methods adopted in this study and how

they are implemented

The following approaches are used in this work. These include (i) methods
based on selection rules that are used in multi criteria decision analysis, (ii)
exact methods that are based on mathematical programming with a focus
on 0-1 programming, and (iii) metaheuristics.

In (i) methods such as AHP, TOPSIS and DEMATEL will be incorpo-
rated into our new methodology as well as Bayesian Network(BN) used
with Ranked Nodes tool in AgenaRisk 10 Academic Desktop software to
tackle lack of knowledge. In (ii) methods based on Branch & Bound, Cut-
ting Planes, Branch/Cut/Price including the new advances in mathematical
programming form the basis of the optimisation software IBM ILOG CPLEX
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studio 12.9 that will be used here. In (iii) two powerful and known meta-
heuristics such as Variable Neighbourhood Search and Large Neighbourhood
Search will be explored. A brief review of the above techniques is given in
the next chapter.

The algorithms in this study, the multi criteria decision making(MCDM)
methods used and regret based evaluation algorithms we developed in the
supplier selection chapters, the use of CPLEX in solving the mathematical
models that we developed and the metaheuristics that we constructed, are all
coded in Visual Studio C++ and executed on an Intel Core i5-7300U CPU
@ 2.60GHz 64-bit operating system with 8 GB RAM. The data generation
in both parts, namely, the supplier selection and the order consolidation
scheduling are also coded and executed in the same way.

1.4 Aims and Contributions of the study

In this study, we aim to explore the time critical scheduling problem where
the company operator needs to provide a quick response to the customers on
how much the cost is with the objective of gaining the bid as the customer
may or may not choose this particular third party logistic provider. In other
words if the price is too high there may be a risk of losing the customer
whereas if it is too low the company may lose money. To respond to this
need we aim to investigate the selection of those suppliers (truck providers)
while producing efficient schedules that could reduce travel time wastage and
be environmentally attractive due to resulting relatively cleaner air.

In the first part of the study, we investigated the supplier selection prob-
lem as truck companies are the transportation service suppliers for third party
logistics companies. We conducted two studies for supplier selection problem.
In the first one, we made some analyses on relying on an individual method
with common used MCDM methods for supplier selection problem, namely
AHP, TOPSIS and VIKOR. We developed a regret based measurement ap-
proach for evaluating the results of each method based on the other two
methods. We found out that in different tests, different methods outperform
the other methods and relying on an individual method is not reliable. Then
we developed some deterministic rules for the combinations of the results
of the individual methods. We also tested the results of these rules against
the results of individual ones by regret based measurement approach we de-
veloped and found out that the proposed deterministic rules which combine
the results of the individual methods outperform the individual methods.
Note that despite the common practice of integration of methods, we offer
to combine the results of the methods. In the second study for the supplier
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selection problem, we tackle incomplete expert knowledge problem. As data
is not always available, researchers use expert knowledge for the decision
making problems. Therefore there is a tendency to use MCDM methods
due to their ability to work with expert knowledge. However, full expert
knowledge is also not available for all the criteria. We offer a novel approach
for decision making based on incomplete expert knowledge. In the proposed
approach, we rank the suppliers with TOPSIS. TOPSIS needs weights of the
decision criteria and initial decision matrix as inputs to perform. We obtain
the weights of the decision criteria from AHP and elicited the initial decision
matrix by BN. We use DEMATEL for building causal graphical structure and
parameterization of BN as proposed by (Kaya & Yet 2019). In supplier se-
lection problems the experts prefer to submit their knowledge with linguistic
expressions instead of dealing with complicated mathematical expressions.
Therefore there is a tendency to use fuzzy approach for the elicitation of ex-
pert knowledge with linguistic expressions which is still a bit complicated for
experts. We offer to use Ranked Nodes tool of BN which allows experts to
submit their knowledge with linguistic expressions in an ordinal scale as very
low, low, medium, high and very high. In addition to this, if the experts have
some knowledge/belief about some criteria and do not have about some other
criteria, BN estimates the missing values of the other criteria based on the
cause-effect relationship between the criteria probabilistically in a systematic
way. Therefore using BN with Ranked Nodes tool expert friendly alternative
approach to fuzzy approach with additional aspects of consideration of causal
relationship between the criteria and estimation of missing knowledge. When
there is a new knowledge(evidence) about any criterion, BN updates all the
network based on the obtained evidence dynamically and propose updated
results. The proposed approach can be adapted to any multi-criteria decision
making problem.

In the second part of the study, we examine the order consolidation
scheduling problem. As we tackle the particular case of a 3PL company
which prefers to consolidate orders up to 3, we first define all possible con-
solidation configurations as pair and triplet consolidation with and without
transshipment case. Then compute all the savings gained among the non-
consolidation case for all configurations. These computations are carried out
beforehand and given to the exact approaches. In the common practice of
formulations all these consolidation possibilities are computed inside the for-
mulation and for each iteration. However we make it out of the formulation
once and only. As exact approaches, we offer set partitioning formulation
with valid inequalities(tightenings). We found interesting computational re-
sults. For the computational time concerns for large sizes, we offer meta-
heuristic approaches, VNS, LNS and VNS/LNS hybridization. We offer six
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neighbourhoods which are designed as they systematically extend from first
neighbourhood to sixth neighbourhood compatible with the problem struc-
ture and two local searches:one works within the routes(consolidated orders)
and find the best consolidation configuration for the candidate orders to be
consolidated and the second local search works between the routes to find
the best routes. We use first local search inside the second local search as
well. Computation of saving of the consolidation configurations is done only
for the candidate route(consolidated orders) not for all possible routes. This
brings significant computational time saving among the exact approaches.
On the other hand to perturb the solution and repair the ineffective parts
of the solution we propose LNS algorithm which works in guided way and
eliminates the routes which bring negative savings. Lastly we hybridize the
VNS/LNS as to perturb and improve the solution of VNS with LNS by run-
ning LNS just after VNS. We present computational results for different size
of instances. Finally we discuss the limitations of the study and propose
suggestions as future avenue.

The contributions of the study can be summarised under the following items

(i) A novel integrated multi criteria decision making (MCDM) method is
developed and analysed.

(ii) As the presence of full expert knowledge may be lacking in practice,
an efficient integration of probabilistic BN and deterministic MCDM
methods is designed and computationally tested.

(iii) Data set generators are constructed. For (i), a data set generator that
reflects several criteria is constructed to provide a set of instances for
empirical testing. For(ii), a survey for the supplier selection process of
a forging company is conducted. Another generator designed for the
scheduling problem is also developed to construct data sets with 50 to
200 requests with a step size of 50. Ten instances for each class are
generated which are used in testing our exact and heuristic approaches
that are outlined below.

(iv) For the scheduling problem, all the configurations for pairs and triplets
with and without transshipment points with their respective costs are
identified. These computations are done at the outset and once only
and given to exact approaches as input despite the general approaches
in the literature carry out all these computations in each iteration.

(v) A set partitioning formulation for the problem is first developed which
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is then tightened by creating new valid inequalities. Comparison with
classical 0-1 ILP using CPLEX is also performed.

(vi) Meta-heuristics such as Variable Neighbourhood Search (VNS) and
Large Neighbourhood Search (LNS) are also developed for the same
scheduling problem to provide another way of looking at the problem.
Here, appropriate neighbourhood structures, local searches, removal
and repair operators are constructed. Various variants are also exam-
ined.

(vii) Finally, some limitations as well as potential research avenues that we
believe to be worth examining are outlined.

1.5 Structure of the thesis

The rest of the thesis is organised into seven chapters. Chapter 2 deals with
the review for both supplier selection and order consolidation scheduling.
Chapter 3 develops a new integrated MCDM approach based on individual
approaches whereas chapter 4 treats the case when there is lack of knowledge
using Bayesian network. Chapter 5 discusses the order consolidation schedul-
ing problem and defines all the possible configurations with their respective
costs. This is followed by chapter 6 that provides a mathematical formula-
tion based on standard integer programming with a focus on set partitioning
and valid inequalities. Chapter 7 treats the same scheduling problem by de-
signing and implementing two metaheuristics approaches, namely, variable
neighbourhood search (VNS) and large neighbourhood search (LNS) as well
as their hybridisation. Chapter 8 is the final chapter and covers a summary
of our findings, highlights some the limitations of the study while outlining
some potential suggestions that we believe to be useful to investigate in the
future.

1.6 Summary

In this short introductory chapter, we define the problem, briefly outline
some of the techniques that will be used, present the aims and the potential
contributions and provides the structure of the thesis. The next chapter will
present the literature review.

25



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter covers the literature review. We first provide those studies on
the supplier selection related to logistics, followed by the work done in the
order consolidation scheduling problem. A brief of the methods adopted in
this study will also be presented at the end of this chapter.

2.2 Supplier Selection

We classified the reviewed supplier selection studies under three different cat-
egories; individual approaches for supplier selection, integrated approaches
for supplier selection and sustainability in supplier selection.

We first examined the common used individual methods in supplier se-
lection mainly based on the insights of two very detailed literature review
studies in supplier selection (Chai et al. 2013, Ho et al. 2010). Though these
are relatively not recent, their classification of the methods and contribution
still reflects the new advances in this area as will be shown in this section.

Chai et al. (2013) reviewed supplier selection studies between 2008 and
2012. They review the methods used for supplier selection effectively. They
pointed out the uncertainty of decision environment in the supplier selection
problem and the dominance of fuzzy hybridization among the approaches.
They classified methods used for supplier selection under three categories:
Multi Criteria Decision Making (MCDM), Mathematical Programming (MP)
and Artificial Intelligence (AI) methods. According to this review, mostly
used methods for the supplier selection problem are MCDM methods, which
include AHP, ANP (Analytic Network), TOPSIS, ELECTRE (Elimination
and Choice Expressing Reality), DEMATEL, VIKOR (ViseKriterijumska
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Optimizacija I Kompromisno) and Simple Multi-Attribute Rating Technique
(SMART). MP techniques are also common in supplier selection problems
and include Data Envelopment Analysis (DEA), Linear Programming and
Multi-objective Programming. Most of MP methods need data as Integer
Programming, Data Envelopment Analysis. However, in most of supplier
selection problems, data is not always available or it can be even sparse. In
addition to this, the preferences of decision makers are important for sup-
plier selection decision. MCDM methods allow using preferences of decision
makers and having the ability to work without data. According to Chai
et al. (2013), mostly used AI methods for the supplier selection problem are
Genetic Algorithm (GA), Grey Systems Theory (GST), Artificial Neural Net-
works (ANN), Rough Set Theory (RST), Bayesian Networks (BN), Decision
Trees (DT), Case-based Reasoning (CbR) and Particle Swarm Optimization
(PSO).

Another earlier literature review was conducted by Ho et al. (2010). The
authors reviewed multi-criteria decision making approaches for supplier eval-
uation and selection between 2000-2008. Their aim is to find out the common
approaches and criteria, and limitations of the approaches by offering future
research areas. They reviewed 78 articles and analysed the studies under two
main categories: individual approaches and integrated approaches. Accord-
ing to their review, individual approaches (58.97%) are preferred more than
the integrated approaches (41.03%). Most common individual approaches
are DEA, Mathematical Programming, AHP, CbR, fuzzy set theory, SMART
and GA. The authors explained the popularity of DEA was due to its ro-
bustness. On the other hand, the authors presented that the original DEA
was able to analyse quantitative data. It was then revised, as it is also able
to analyse qualitative data for the supplier selection problem.

On the other hand, the authors found the common approach in integrated
approaches is AHP. According to the authors, the motivation to prefer AHP
is its simplicity, flexibility, ease of use and consistency check mechanism.
They emphasized the consistency check and feedback mechanism as supplier
selection decision requires judgements of decision makers. This is important
as an elicitation of consistent judgements and a revision of the judgements
are essential for reliable decision-making. Additionally, they present that the
AHP- Goal Programming (GP) integration is a popular integration. AHP is
not able to evaluate the resource constraints as the capacity of the suppliers
and integration of GP considers these sort of criteria. The authors explain
the usage of integrated approaches, as it is useful to take advantage of the
strength of different approaches.

Another aim of this review is to find the most popular decision criteria in
supplier selection decision. It is found that three most popular criteria are
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quality, delivery and cost/price. The authors remarked that the cost/price
criterion is not the most popular criterion unlike the earlier observation given
in the past studies.

Lastly, the authors present the limitations of the most common individual
approaches: DEA and integrated AHP-GP approach. The first limitation of
DEA is the potential confusion of the decision-makers about discrimination
of input/output criteria. The second limitation is subjective judgement of
decision-makers and a lack of a consistency check mechanism. The authors
also criticized the integrated AHP-GP approach due to its inefficiency in
terms of time consumption. AHP needs to evaluate alternatives under each
criterion and sub-criterion, and in case of consistency, evaluations must be
revised. Due to these constraints, it requires long time computation. It was
also highlighted that the stakeholders are not considered as part of the model.
One interesting avenue is to integrate the AHP-Quality Function Deployment
(QFD) approach as a future research.

In this study, we reviewed the articles in the supplier selection under
three categories: individual supplier selection approaches, integrated supplier
selection approaches and sustainability in supplier selection. We added the
last aspect due to the importance of sustainability in supplier selection in
recent years.

Individual Approaches for Supplier Selection Problem
According to Chai et al. (2013), the most popular MCDM method for the

supplier selection problem is AHP. AHP works based on the pairwise com-
parison matrix and subjective judgement of experts (Saaty 2008). Experts
submit their relative preferences between alternatives based on evaluation
criteria. Priority values of criteria are computed based on the pairwise com-
parison of these criteria. On the other hand, priority values of alternatives
are calculated according to pairwise comparison of alternatives based on the
criteria. As it works with subjective judgements it checks consistency of de-
cision makers with consistency ratios. If the consistency of the judgements of
decision makers is not sufficient, the pairwise decision matrix is revised. Since
AHP considers both quantitative and qualitative criteria, it is advantageous
for the supplier selection problem (Kilincci & Onal 2011). It is effective to
deal with uncertainty in the supplier selection problem. Moreover, it allows
to use judgement of multiple experts. However, it has disadvantages: It is
not always possible to keep the judgements consistent; another disadvantage
is its inability to consider the relationship between the criteria. AHP has
a hierarchical structure and evaluates alternatives based on each level. In
case there is a need to add a new criterion, all pairwise comparisons in every
level must be revised. It is therefore not an effective method for the prob-
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lems which have dynamic nature. This approach will be considered in our
methodology in the next chapter.

Integration of AHP with fuzzy logic is a very common hybridization ap-
proach. By integrating AHP with fuzzy logic, decision makers assign the
relative preferences between criteria and alternatives by linguistic values as
recently and successfully carried out by Ecer (2022), Ho et al. (2021) who
used fuzzy AHP for supplier selection.

ANP is a variant of AHP where the hierarchical structure works in op-
posite way (Aguezzoul 2014). The authors used ANP for selection of logistic
service providers (3PLs). According to the authors, building pairwise com-
parison matrices is complex and time-consuming. In case of inconsistency, it
is even more challenging.

TOPSIS is another common MCDM approach for the selection prob-
lem. It works based on similarity to obtain ideal solutions (Rodrigues et al.
(2014)). It finds out the ideal and negative-ideal alternatives for each cri-
terion and calculates the distance to ideal and negative-ideal alternatives to
rank the alternatives. It considers benefit and cost criteria in their clusters.
The ideal alternative for the benefit criteria as quality criterion is the alter-
native with the highest score and the negative ideal is the alternative with
the lowest score. On the other hand, the ideal alternative for cost criteria as
a price criterion is the alternative with the lowest score and negative-ideal
alternative is the alternative with the highest score. When data is available,
data is used as input of initial decision matrix. However, in case of data
sparsity, TOPSIS is able to work with expert judgement. Lei et al. (2020)
used TOPSIS for supplier selection with linguistic information. Fuzzy inte-
gration is also common for TOPSIS as other fuzzy hybrid MCDM methods
with using expert knowledge. For instance, an interesting study by Memari,
Dargi, Akbari Jokar, Ahmad & Abdul Rahim (2019) used fuzzy TOPSIS
for sustainable supplier selection where they opted to use intuitionistic fuzzy
numbers to handle uncertainty and provide experts to submit their knowl-
edge by linguistic expressions.

Both AHP and TOPSIS are two common fuzzy hybridized MCDM meth-
ods in the supplier selection literature. Rodrigues et al. (2014) compares
TOPSIS and AHP for supplier selection decision on the basis of adequacy to
changes of alternatives or criteria, agility in the decision process, computa-
tional complexity, adequacy to support group decision making, the number
of alternative suppliers and criteria and modelling of uncertainty. The meth-
ods were applied on the automotive manufacturer company. They have five
alternative suppliers and five decision criteria. It is expected that the method
gives consistent results after the addition or deduction of alternatives. Ade-
quacy to changes of alternatives were tested with five different scenarios. In
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each scenario, a new supplier alternative was added with the equal rate of the
current alternatives. In Fuzzy AHP, when the new alternative has the same
rating with the best current alternative, the worst alternative became the
best alternative. The same scenarios were tested with Fuzzy TOPSIS, con-
trary to Fuzzy AHP, ranking of alternatives do not show significant changes.
This demonstrates TOPSIS is adequate to changes of alternatives. In addi-
tion to adequacy test to changes of alternatives, changes of criteria tested
with addition and exclusion of new criteria with equal weight to each criteria
in five scenarios. Similar results with the adequacy to changes of alternatives
were obtained. In Fuzzy AHP, inclusion and exclusion of new criteria cause
significant changes in results. Fuzzy TOPSIS shows consistent results with
those obtained prior to the addition of new criteria. Due to the agility in the
decision process, the technique used for supplier selection decision is desired
to require the minimum amount of judgement. Fuzzy TOPSIS needs less
judgement than the Fuzzy AHP. Depending on the technique, computation
time of the algorithm changes and the technique with the less computation
time is preferred. TOPSIS algorithm run in less time compared to AHP. In
some cases with the increase of alternatives, AHP performs better than TOP-
SIS. The method enables to consider judgements of multiple decision makers
is more preferable. Fuzzy AHP and Fuzzy TOPSIS consider judgements of
different decision makers. However, as the increase of the number of deci-
sion makers, TOPSIS becomes advantageous compared to AHP depending
on the increase of computation time. The number of criteria and alternative
suppliers is another important factor for supplier selection decision. While
TOPSIS has no restriction for the number of criteria, AHP is used for only
the case with limited criteria. However, TOPSIS does not allow evaluating
sub-criteria. TOPSIS will also be adopted in our study.

VIKOR is another MCDM approach for the supplier selection problem.
Recently, Wu et al. (2019) used VIKOR under fuzzy environment for green
supplier selection. It works based on the compromise of the decision makers.
It aims to have a minimum regret and a maximum utility. It works similarly
to TOPSIS. Chai et al. (2013) categorize TOPSIS and VIKOR as compro-
mise solution approaches under MCDM category. Opricovic (2004) compares
and presents differences between VIKOR and TOPSIS based on evaluation
metrics and a normalization method. VIKOR ranks the alternatives based
on the compromise function, which depends on regret and utility measures.
On the other hand, TOPSIS ranks the alternatives based on the distance
to the ideal solution. VIKOR uses a linear normalization, whereas TOPSIS
uses a vector normalization. VIKOR is also used in our study.

ELECTRE and PROMETHEE methods are other used approaches for
supplier selection problem. They work based on the dominance of the alter-
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natives (Qu et al. 2020, Tong et al. 2022).
DEMATEL is one of the MCDM methods, which is used to determine

the cause effect relationship between the criteria (Li et al. 2020). However, it
is not able to rank the alternatives. Hence, in supplier selection problems, it
is integrated with other approaches to rank the alternative suppliers ((Zhang
et al. 2021)).

Metaheuristics and AI methods are also used for supplier selection prob-
lem. Che et al. (2021) very recently used the multi-objective genetic al-
gorithm for supplier selection. Another effective AI technique for supplier
selection is Bayesian Networks. It is able to deal with uncertainty proba-
bilistically. It visualises causal relations between factors and the effects of
them on each other dynamically (Fenton and Neil, 2012). For example, when
a buyer has no historical data about the supplier but she has a belief about
the supplier, BN allows using expert knowledge. Ferreira and Borenstein
(2012) integrated fuzzy logic with BNs to provide updated performances of
the suppliers. The authors constructed a large number of simulation mod-
ules, which include Purchasing Strategy Module, Decision Network Module,
Database Module, Enterprise Database, Fuzzy Module and Supply Chain
Simulator. This approach was used in a case study carried out in a biodiesel
production plant in Brazil. Sener et al. (2021) used Bayesian belief networks
to evaluate the supplier performance in aircraft manufacturing supply chain
in US. In this research we will also extend an approach based on BNs.

As using individual approaches bring some limitations, researchers tend
to integrate different methods. Integrated approaches are presented in the
next section.

Integrated Approaches for Supplier Selection Problem
In recent years, there is a trend to use integrated approaches for the sup-

plier selection problem. We first reviewed the integrated MCDM approaches
due to prevalence of them in the literature and also as we will put forward a
novel approach that fits in this category.

Wang et al. (2009) used fuzzy hierarchical TOPSIS for supplier selection.
They offered an alternative way to fuzzy TOPSIS, elicit fuzzy weights from
fuzzy AHP and integrates with fuzzy linguistic scores into TOPSIS and rank
the alternatives. They compared their proposed approach with AHP, TOP-
SIS and fuzzy TOPSIS and concluded that the proposed approach outper-
forms these methods. Recently, Jain et al. (2018) integrated fuzzy AHP and
TOPSIS for the supplier selection problem in an Indian automotive industry.
Abdel-Basset et al. (2019) used integrated neutrosphic ANP and VIKOR
for sustainable supplier selection. They use triangular neutrosphic numbers
(TriNs) for submission of expert’s opinion. Moreover, the neutrosphic ap-
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proach helps deal with incomplete information and imprecision. They use
ANP for the calculation of the weights of the criteria and VIKOR for rank-
ing the alternatives. Ortiz-Barrios et al. (2020) integrated fuzzy AHP, fuzzy
TOPSIS and fuzzy DEMATEL for forklift supplier selection whereas Mo-
hammed, Harris & Dukyil (2019) integrated DEMATEL, ELECTRE and
TOPSIS is adopted for vendor selection.

According to (Chai et al. (2013)), MCDM methods are effective to work
with expert knowledge when data is not available or limited. However, they
are not able to give dynamic and updated results. MP techniques are ef-
fective methods as they give exact and objective solutions. AI techniques
are effective techniques for dealing with uncertainty and giving updated and
dynamic solutions. In summary, the integration of MCDM, MP and AI meth-
ods provide more effective methods in which the limitations of each method
were compensated by each other.

For example, Mohammed, Harris, Soroka & Nujoom (2019) integrates
fuzzy MCDM and fuzzy multi-objective programming approach for supply
chain design while very recently Dohale et al. (2021) integrates Delphi-
MCDM and BNs for a production system selection problem.

Dogan & Aydin (2011a) integrated the BN and Total Cost of Ownership
(TCO) method for the supplier selection problem. A model based on BN
was built including supplier selection criteria and factors related to criteria
and lastly cost items connected with factors. It provides an evaluation of
the suppliers based on both qualitative and quantitative criteria and their
causal relations between the cost items. In this approach, TCO evaluates
the supplier selection performance in terms of the total cost and also the
other costs arising from the other criteria, unlike the tendency of evaluation
based on only unit price in previous TCO studies. Both financial data and
domain knowledge were used in this approach. The integrated approach was
applied for a tier-1 supplier automotive sector. Kaya & Yet (2019) integrated
DEMATEL and BN for the supplier selection problem. The causal graph of
the BN and parameterization of the graph is done by using DEMATEL. Then
suppliers are evaluated based on the selection criteria based on the causal
relationship between them probabilistically by BN.

In the next section, we discuss the sustainability concept in supplier se-
lection problem.
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Sustainability in Supplier Selection
In recent years, due to legal obligations and increasing environmental

awareness, most of the supplier selection studies turned into sustainable sup-
plier selection and green supplier studies. Govindan et al. (2015) reviewed
multi criteria decision making approaches for green supplier evaluation and
selection literature from 1997 to 2011. They investigated which selection
approaches and criteria are common and checked the limitations of the used
approaches. Thirty-three articles were reviewed where, most of the stud-
ies are fuzzy based single approaches. They classified the papers based on
methodology and selection criteria. They classified the papers as individual
approaches and integrated approaches. The authors found that researchers
who use individual approaches integrate their approaches by fuzzy logic to
deal with uncertainty from human judgement. On the other hand, 22.2%
of the papers use integrated approaches as the researchers and experts find
more complicated integrated approaches than the individual approaches. In
criteria based classification of the review, the authors found that the 30.55%
of the papers used environmental management systems. This shows most
common criteria for green supplier evaluation and selection is environmental
management. The authors emphasize that as this criterion and its subcrite-
ria are qualitative criteria, they need subjective evaluation. One of the most
remarkable findings in this review is the prevalence of the fuzzy logic that is
used in this area, which can be due to the uncertainty and ambiguity of the
supplier selection decision analysis. Another important finding of the authors
is the tendency of the researchers to use individual approaches as shown by 25
of the papers (77.7%). One of the reasons is that researchers and experts find
it complicated to use integrated approaches and they want to focus on indi-
vidual approaches. 8 of the reviewed papers focus on individual approaches.
In this thesis, we will explore the different individual approaches where 8 of
the reviewed papers (22.2%) use integrated approaches and offer more real-
istic approaches. According to the authors, an integrated approach must be
adopted by researchers and explained to the experts clearly. Therefore, inte-
grated approaches are expected to be expert friendly particularly in need of
human judgement for decision. In this study, we also propose, in the fourth
chapter, an approach that uses the integration of MCDM with BNs based
on Ranked Nodes. According to this review, the most popular individual
multi-criteria decision making approach is AHP including fuzzy integration
papers with 16.6%. According to the authors, AHP is the most common ap-
proach due to the following reasons: Firstly, it considers the quantitative and
qualitative criteria in the evaluation process, secondly, it is able to handle
uncertainty and subjective judgement of the decision makers and it is easy
to understand mathematically by the experts and provides flexible and ro-
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bust solutions. Moreover, its consistency check mechanism provides experts
with the opportunity to submit consistent judgements. However, in most
of the studies that use AHP, the fuzzy approach is integrated in the elicita-
tion of the expert knowledge. The authors criticize this philosophy since the
AHP approaches which were integrated by fuzzy logic do not give different
results than in the case of the utilization of AHP approach without fuzzy
logic. Therefore, the authors claim that the integration of fuzzy logic does
not make contribution apart from causing extra complexity. They offer this
claim as a potential future research avenue. Another future research insight
of the authors is the categorization of the criteria by using a methodological
approach as an exploratory factor analysis. The authors criticize that most
of the studies do not give insight why some suppliers are best and others
are worst and also how some suppliers could improve. In the fourth chap-
ter of this thesis, we will investigate this issue by incorporating probabilistic
evaluation of the alternatives.

In recent years, particularly in 2019, researchers have been concentrated
on the selection of sustainable suppliers (Yu et al. 2019, Memari, Dargi, Ak-
bari Jokar, Ahmad & Abdul Rahim 2019, Wu et al. 2021). Although, the
used approaches are the same with the approaches that are used for the gen-
eral supplier selection problem, the sustainable supplier selection problem
emphasizes the need of using decision makers’ judgements as the sustainable
supplier selection problem consists of more social and environmental criteria.
For instance, Liu, Quan, Li & Wang (2019) propose an MCDM model com-
posed of the Best-Worst Method (BWM) and Alternative Queuing Method
(AQM) within the interval valued intuitionistic uncertain linguistic (IVIUL)
setting for sustainable supplier selection problem. In this model, IVIUL-
BWM is used to calculate the weights of the criteria and IVIUL is used to
rank the alternative sustainable suppliers. The authors emphasize the ten-
dency of decision-makers to evaluate suppliers with their fuzzy knowledge by
linguistic expressions. They also offer to handle the uncertainty and vague-
ness of the decision-makers by using interval valued intuitionistic uncertain
linguistic sets. Interesting limitations of the proposed approach are also pre-
sented; one is that the final decision is highly dependent on the subjective
judgement of the decision makers. One way to overcome this issue is to in-
crease the number of decision makers for this limitation. Amin et al. (2019)
used the fuzzy grey cognitive map to analyse the interdependencies between
the criteria for the grey system theory based green supplier selection model
for uncertain environments. They also use the best-worst analysis method to
determine the weights of the criteria. Memari, Dargi, Reza, Jokar, Ahmad,
Rahman & Rahim (2019) use fuzzy TOPSIS for the selection of sustainable
supplier selection as decision maker’s knowledge is imprecise and vague.
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Gupta et al. (2019) used the fuzzy approach with AHP, TOPSIS, Multi-
Attribute Border Approximation Comparison (MABAC) and Weighted Ag-
gregated Sum-Product Assesment (WASPAS). Pishchulov et al. (2019) pro-
pose to use a revised Voting AHP approach for the sustainable supplier se-
lection problem. The Voting AHP approach was originally developed by Liu
& Hai (2005) for the supplier selection problem. It is composed of AHP
and DEA approaches. In AHP, the weights of the criteria are determined
based on the pairwise comparison of the criteria. However, this procedure is
challenging when there are many criteria. The voting AHP approach utilizes
DEA for this purpose where DEA derives the weights of the criteria based
on the ordinal preferences of the decision makers instead of the complicated
pair-wise comparison procedure. However, Pishchulov et al. (2019) adjusted
this approach by using a game-theoretic approach for the derivation of crite-
ria weights to handle subjectivity and arbitrariness of rank discrimination.

The Positioning of Our Proposed Supplier Selection Methods
As can be seen from the literature review on the supplier selection, dif-

ferent approaches under different categories perform differently. Hence, we
first offer to combine the results of different approaches to construct an effec-
tive deterministic rule that will be presented in chapter 3. Govindan et al.
(2015) state that researchers might be biased by one approach. In our pro-
posed deterministic approach, we offer to combine the results of different ap-
proaches with a deterministic approach to prevent the biasedness that might
come from using one approach. The authors also propose to investigate the
acceptance level of the approaches by the decision makers and building ex-
perimental designs. We also consider in chapter 3 the preference level of the
decision-makers for each individual method that is integrated with the other
methods.

There is much tendency to fuzzy hybridization because of the uncertainty
and vagueness of the expert judgement. However, fuzzy logic is still compli-
cated to understand by decision-makers in practice. We offer an alternative
and more expert-friendly approach to fuzzy, Ranked Nodes in BNs. Ranked
Nodes allows experts to submit their judgement in linguistic ordinal scale as
low, medium and high. Moreover, BNs consider causal relationship between
the criteria and compute the performances of suppliers based on criteria prob-
abilistically. It has the ability to work with data and expert knowledge, even
missing knowledge. When experts have missing knowledge about some of
the criteria, BN estimates the probabilities of the missing ones based on the
causal relationship between the criteria. By obtaining any new evidence, it
updates the network and shows the updated performances of suppliers based
on each criterion. However, it does not rank the alternatives. For this pur-
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pose, we offer to integrate with TOPSIS to rank the alternatives. TOPSIS
needs weights of the criteria, we offer to elicit the weights of the criteria from
AHP. The causal graph of BN is also built by DEMATEL systematically.
As a result, we propose an effective integrated MCDM and BN approach for
supplier selection decision. Most important distinction of this approach is
Ranked Nodes as being an effective alternative to the fuzzy approach. The
proposed approach will be presented in chapter 4.

Govindan et al. (2015) also emphasize the importance of expert friendly
approaches in need of human judgement. The BN approach based on ranked
nodes makes it easy to elicit the expert knowledge. Experts are only needed
to submit their opinion about the criteria and alternatives with linguistic
variables as low, medium and high. After that, BN computes the probability
of alternatives based on the criteria mathematically. We offer to use Age-
naRisk software as researchers and experts do not have to deal with the math-
ematical background of the approach and they can see the updated results
immediately. In addition to this, the proposed approach considers the causal
relationship between the criteria. Due to these causal relationships, BN is
able to estimate even missing criteria of the alternatives. The authors pro-
pose to investigate the advantages and disadvantages of using multi-methods
as a future research. The authors also criticize that most studies do not give
insight why some suppliers are best and worst. BN visualises the evaluation
of each supplier based on each criterion probabilistically. The probability
values of the suppliers are updated with the new evidences by the time. This
also visualises the improvement opportunities of the suppliers. Another im-
portant finding of the authors is the importance of sensitivity analysis. The
software AgenaRisk which we use in our approach is able to make effective
sensitivity analyses as will be shown in chapter 4.

2.3 Order Consolidation Scheduling

Freight consolidation has attracted recently research attention due to the
financial benefits of maximization of the profit as well as the reduction of
CO2 emissions due to a reduction in unnecessary distance travelled. We
mainly conducted our review based on freight consolidation and some related
vehicle routing studies such as the pickup and delivery routing problem,
the capacitated vehicle routing problem, the vehicle routing problem with
transshipment, and the vehicle routing problem with time windows. Some of
these variants have some similarities with our study. On the other hand, we
mainly focussed on the approaches that are commonly used in these studies
such as metaheuristics.
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First we start our research with freight consolidation especially for Less-
Than-TruckLoad (LTL) operations. Mesa-Arango & Ukkusuri (2013) search
the benefits of in-vehicle consolidation less than truckload freight transporta-
tion operations. They found out that in auctions for the procurement of
freight transportation services, most likely, consolidated bids, by LTL oper-
ations, from the carriers take the job by discarding the carriers which offer
non-consolidated bids as these prefer to use full TL with direct transportation
resulting in high cost profile. The authors also found out that, the customers
who prefer the TruckLoad (TL) companies prefer them because of the de-
livery time concerns as these tend to guarantee customer service by arriving
on time. However, mostly LTL operations offer longer delivery times. The
authors investigate the benefits of the consolidation in competitiveness and
the challenges that could arise in less than truck load transportation. They
define this problem as multi-commodity one-to-one pick-up and delivery ve-
hicle routing problem and offer to solve by branch-and-price algorithm. They
obtain promising results that required large CPU time. They offer to speed
up the algorithm to solve larger instances as future research by using hybrid
metaheuristics. On the other hand, they use a deterministic demand though
they offer the idea of the incorporation of the stochastic demand for consid-
eration of the uncertainty. Simoni et al. (2018) believe that effective freight
consolidations can help to prevent the environmental side effects of freight
shipments. In this study, they investigate the consolidation solutions for
parcel delivery considering location, vehicle fleet and route choice for a mail
delivery service in Austin, Texas. They define the problem as multi-depot
vehicle routing problem with heterogeneous vehicle fleet for urban consoli-
dation centers. They propose a mixed-integer linear program (MILP) model
which considers the total cost and environmental impact of alternative urban
consolidation configurations and policy scenarios. To solve the large-scale
real-world cases they offer a metaheuristic based on a genetic algorithm. Qiu
& Huang (2013) evaluates the value of freight consolidation in aspect of using
supply hub in industrial park(SHIP). They offer two mathematical models
to compare the cases with and without SHIP. They solve these models with
genetic algorithm (GA). The computational results show that consolidation
of shipment by using SHIP brings benefits as the increase of the size of the
supply chain decreases the total cost.

Ülkü & Bookbinder (2012) investigate the effect of different pricing schemes
for third party logistics (3PL) providers. According to the authors, on-time
delivery guarantee and offer of the competitive quote are the key success fac-
tors for 3PL providers. They offer four temporal pricing scheme based on the
shipment consolidation with the objective of the maximization of profit for
3PL providers. This observation is also highly stressed by the 3PL company
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for which our study is based upon. Hu et al. (2018) propose a two-echelon
mathematical model which combines the inventory routing and freight con-
solidation for perishable goods. They follow an iterative framework, first
using a decomposition and then a local search. Freight consolidation prob-
lem is solved in the decomposition part whereas the assignment type mixed
integer programming model is adopted to solve the inventory routing prob-
lem based on the freight consolidation decision. In the local search part, the
incumbent solution cluster is improved gradually with each iteration.

Very recently, Anand et al. (2021) emphasize the importance of the freight
consolidation in urban goods in terms of the reduction of carbon emission.
This support the work by Ülkü (2012) who also emphasized the contribution
of shipment consolidation in terms of environmental aspects.

Lin & Lee (2018) handles a hub network design problem for time-definite
LTL freight transportation. In this problem, carriers guarantee to deliver
the shipments on time while maximizing profit with split deliveries. They
formulate the problem as a mixed integer program with a pricing subprob-
lem. They found out that effective design of the hub-network design makes
significant effect on the time-definite LTL freight transportation problem in
aspect of profit maximization. The use of hubs is also considered in our
research by introducing and locating promising transshipmemt points which
also act as hubs. These are defined in chapters 5 under the best configura-
tion consolidation of pairs or triplets of requests which may or may not use
transshipment points depending on the obtained solution.

Cunha & Silva (2007) studied a similar problem. They handle the hub-
and-spoke network problem for one of the top trucking companies in LTL
operations in Brazil. They aim to determine consolidation locations(hubs)
and assign the spokes to the hubs in a way which minimize the total cost.
They offer a metaheuristic approach based on a genetic algorithm and ob-
tained effective improvements in the operations for the trucking company.
Computational results show that using a heuristic provide effective real life
solutions for LTL optimization problem. The authors indicate that using
spoke-hub configuration restrict the consolidation figures, therefore, the case
which does not consider specific consolidation nodes can be considered as a
future research. This case can provide more cost and time savings. In this
study, we also design metaheuristics to tackle our order consolidation type
problem.

Moon et al. (2012) extended vehicle routing problem with time windows
with overtime working of drivers and outsourcing of the vehicles for third
party logistics companies. They offer a decision support system based on
GA which gives opportunity to the company reschedule the orders in real
life.
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Recently, Lu & Yang (2019) Iterative Logistics Solution Planner (ILSP)
which first generates an initial solution and then improves it based on expert
knowledge using ant colony algorithm designed for for logistics with pickup
and delivery problem.

Hybridization of the metaheuristics is common in vehicle routing problem.
For instance, Allahyari et al. (2015) hybridized Greedy Randomized Adap-

tive Search Procedure (GRASP), Iterated local search (ILS) and simulated
annealing for a multi-depot covering tour vehicle routing problem. Also, Sze
et al. (2017) hybridized adaptive variable neighbourhood search and large
neighbourhood search for the cumulative capacitated vehicle routing prob-
lem.

Similarly, Alinaghian & Shokouhi (2018) hybridized the adaptive large
neighbourhood search and variable neighbourhood search algorithm for multi-
depot multi compartment vehicle routing problem. They try to minimize the
total number of vehicles used and total distance taken under constraints of
split delivery allowance of requests and assignment of the specific products
on specific compartments of the vehicles.

Baños et al. (2013) propose simulated annealing based parallel multi-
objective approach for a vehicle routing problem with time windows. They
try to minimize the distance and the imbalance of the routes which is defined
by the imbalance in distance travelled by the vehicles and also the imbalance
in the loads of the vehicles.

Kuo & Wang (2012) developed a VNS algorithm for the multi-depot ve-
hicle routing problem with loading cost. The authors point out the gap in
the literature by stressing the consideration of loading cost in multi depot
vehicle routing problem. They use a stochastic method for generating initial
solution for VNS, then they choose randomly between four operators and
finally the solution is accepted based on the criterion which is similar to
simulated annealing. They tested the approach with 23 cases and obtained
23.7% improvement on the transportation cost.

On the other hand, Rais et al. (2014) proposed an effective mixed integer
programming model for the pickup and delivery problem with transship-
ment. One of the important results of the study is the obtained benefits of
transshipment in the networks.

According to the above studies, the order consolidation is a hot practical
logistic problem that can bring a lot of benefits not only financial but also
environmental. Our chapters, namely, chapters 5, 6 and 7, aim to respond
to these needs.
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2.4 A Brief of the methods adopted

Literature review on the above transportation problem variants shows that
there are mainly two solution approaches: exact and heuristic approaches.
Exact methods are based on mathematical programming or dynamic pro-
gramming and aim to guarantee optimality. These are mainly branching
and exhaustive performed approaches.They always guarantee optimal solu-
tion but may require an excessive computation burden in terms of CPU.
Rais et al. (2014) used exact approach, MIP for pickup and delivery prob-
lem with transshipment. Çapar (2013) also propose exact approach for joint
shipment consolidation and inventory decisions in a two-stage distribution
system. Despite the benefit of providing optimal solution of exact meth-
ods, these methods as mentioned above have serious disadvantages due to
long computational times especially for large sized problems. Therefore one
way forward is to embrace heuristics and metaheuristics, which though they
do not guarantee optimality, they are simpler to understand and to mod-
ify besides requiring a reasonable computational time. In addition these
approaches provide the flexibility to researchers to adjust and enhance their
performances by adding new attributes such as learning. These are described
in (Salhi & Thompson 2022a).

Recently, it is also found interesting and useful to hybridize exact meth-
ods with heuristics or metaheuristics as highlighted by (Salhi & Thompson
2022b).

Exact Methods
Exact methods are mathematically based approaches with the aim to

produce an optimal solution. These are often used for small or medium sized
combinatorial optimization problems. The common one is branch and bound
which is an approach used for integer linear programming(ILP) problems. It
works with two tools: splitting and branching procedures. There are several
enhancements on this original method, some of these are integrated in the
commercial optimisation software IBM ILOG CPLEX.

In this study, we formulate the problem as an ILP but adopted a set
partitioning formulation as our exact approach. Set partitioning formulation
is originally proposed by (Balinski, M. L., & Quandt 1964). For instance,
Baldacci et al. (2008) used set partitioning formulation for the vehicle routing
problem. The formulation is given in the following:

Let a set of feasible routes R, with their costs ck, k∈R and let N be the
set of customers,
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aik =

{
1 if customer i, i∈N belongs to route k, k∈R
0 otherwise

(2.1)

xk =

{
1 if kth route is used, k∈R;

0 else
(2.2)

min
∑
k∈R

ckxk (2.3)

subject to ∑
k∈R

aikxk = 1; ∀i ∈ N (2.4)

xk ∈ {0, 1}; ∀k ∈ R (2.5)

Objective function refers to the minimization of the total cost. Eq. 2.4
refers that each customer is covered by one route. Last constraint, eq. 2.5
refers that xk is a binary variable.
Note that, if we replace equal sign(=) in eq. 2.4 with ≥, the set partitioning
formulation becomes the the set covering formulation which is relatively much
easier to solve. Note the above problem has N constraints and |R| binary
variables. In this study we adopt this type of formulation when exploring
the optimal solution of our problem in chapter 6.

Metaheuristics

Metaheuristics are common approaches in vehicle routing problems due to
requiring a reasonable computational time, simplicity and flexibility. Meta-
heuristics can be classified according to Salhi (2017) under (i) improving
only heuristics such as GRASP, composite heuristics, variable neighbourhood
search (VNS), large neighbourhood search (LNS), etc (ii) not necessarily im-
proving heuristics such as simulated annealing, tabu search, etc and (iii)
population based heuristics such as GA, Ant Colony (AC), Particle Swarm
(PS), etc. As we adopted VNS, LNS and hybrid of VNS and LNS in our
study, we present a brief summary of these approaches in the following:

Variable Neighbourhood Search

Mladenović, N., & Hansen (1997) introduced the VNS algorithm for the
location problem in the case of the p-median problem. VNS works based on
a systematic change of neighborhoods within a local search. It moves from
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one neighbourhood to another neighbourhood if there is no improvement
in the current solution to escape from local optimality. Neighbourhoods
are usually designed from smallest to largest. If there is no improvement
in the last and largest neighbourhood, the search returns back to the first
and smallest neighbourhood Salhi (2017). As long as the neighbourhoods
and local searches are designed effectively, VNS gives effective results with
practical implementation as shown by the excellent work given in (Simeonova
et al. 2018, Brandão 2020).
In chapter 7, we will revisit VNS and provide more details as we present our
implementation of VNS to our problem.

Large Neighbourhood Search

Large neighbourhood search was first introduced by (Shaw 1997). It
works with destroy and repair operators. At each iteration, a certain num-
ber of attributes are removed from the solution and then re-inserted into the
solution using repair mechanisms in order to obtain a new feasible solution
which may or may not be improved (Wolfinger 2021). There are different
removal strategies adopted by researchers according to the type of the prob-
lem, the common one includes random removal or worst removal (Pisinger &
Ropke 2007).

Adaptive LNS is effective in vehicle routing problems as shown in (Lahyani
et al. 2019, Sacramento et al. 2019, Liu, Tao & Xie 2019). The idea here is to
choose a pair of removal/repair operator at each iteration depending on the
quality of such pair that could have been assessed at the learning stage. This
strategy is effective as it speeds up the search while guiding the search to a
better choice of ruin/repair. A basic implementation of LNS will be explored
in chapter 7 with some suggestions provided in the final chapter.

Hybridisation
The hybridisation of several heuristics is a powerful tool as hybridised meth-
ods compensate the weaknesses of each other. Though the choice is not as
easy as it sound, a good strategy that embrace the idea is welcome. Some
details on this subject can be found in (Salhi & Thompson 2022b). Here,
VNS/LNS is also attempted in chapter 7 to assess whether or not this strat-
egy can be useful.
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2.5 Summary

A literature review on supplier selection and order consolidation scheduling
are presented. A brief of the techniques that are used in this study are also
presented. From the literature review that we conducted, we can see that
there is a gap on the literature for handling both of supplier selection and
order consolidation scheduling problems together. In supplier selection stud-
ies, data availability is a challenge. Therefore most of the studies, researchers
prefer to rely on expert knowledge. However, full expert knowledge is also not
always available. There is not any supplier selection study in the literature
which handles this issue. Our approach is able to make supplier selection
decision with partial expert knowledge systematically and probabilistically.
For the order consolidation scheduling problem in the literature, possible con-
solidation configurations are computed in the mathematical model each and
every iteration. In our proposed exact approach, all possible consolidation
configurations are computed out of the model and only once. And the pro-
posed metaheuristic approach perfroms better than the exact method. On
the other hand, we handle the speacial case of order consolidation whichh
allows consolidation of the orders upto 3. The next chapter will present an
integrated deterministic rule used in MCDM for the case of supplier selection.
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Chapter 3

An Effective Integrated
MCDM approach

3.1 Introduction

In this chapter, we present a deterministic selection rule that considers a set
of techniques to produce an overall and robust selection of suppliers instead
of making a decision based on one method only.

In the literature, there is a tendency to use integrated approaches for
many type of problems as different approaches perform effectively in differ-
ent aspects. In this study, we mainly focus on the combination of the results
of the different ranking methods. In ranking methods for problems as supplier
selection problem, different lists obtained from different methods can be su-
perior to the other lists obtained from the other methods in different aspects.
Hence, we offer to combine the results of different approaches by an effective
deterministic rule. According to (Govindan et al. 2015), researchers might
be biased for relying on only one approach. They also propose to investigate
the acceptance level of the approaches by the decision makers and building
experimental designs. We offer to combine the results of different approaches
with a deterministic approach to prevent the biasedness which might come
from relying on one approach. We also consider the preference level of the
decision-makers for each individual method among the other method.

We propose two different types of deterministic rule; rank-based deter-
ministic rule and score based deterministic rule. Score based deterministic
rule consists of three different versions; deterministic rule only based on score
of the alternatives, deterministic rule based on score and the weight of the
position of the alternatives, deterministic rule based on the score and the
weight of the alternatives and weight of the methods. In the literature,
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MCDM methods are most common approaches for supplier selection prob-
lem due to decision making ability with expert knowledge. We explained the
proposed deterministic rule among three common MCDM methods; AHP,
TOPSIS and VIKOR for supplier selection problem. We generated data for
AHP, TOPSIS and VIKOR methods and compared the performances of these
methods by regret based measurement methods that we developed. In dif-
ferent cases, different methods dominate the other methods. We justify that
there is no need to use single method, results of the different methods can be
combined by the proposed deterministic rule. Note that we offer to combine
the results of methods not combining the methods. We also compare the
performance of the proposed deterministic rules among the individual meth-
ods by regret based methods. Computational results from 10 data sets show
that deterministic rules perform better than each individual method.

3.2 Brief Review on Integration of Different

MCDM Methods

Integration of different methods for multi criteria decision problems is com-
mon in the literature (Jain et al. 2018, Liu, Quan, Li & Wang 2019). Different
methods are effective in different aspects (Rodrigues et al. 2014, Opricovic
2004). Very recently, Watróbski et al. (2019) provided an interesting re-
view and highlighted this important issue that a selection of a particular
MCDM method could be misleading for a given decision problem. The au-
thors presented a useful framework using a decision rule to identify a subset
of promising methods for a given problem. In this study, we aim to support
this important claim by introducing an integrated approach that focuses on
the combination of the results of such a subset of different ranking methods
instead of the combination of these methods themselves. For example, in the
supplier selection problem, different selection lists are obtained from different
methods, some are better than the others depending on various aspects. To
overcome this anomaly, we offer to combine the results of a subset of ranking
methods (e.g., those that could be identified from Watróbski et al. (2019)
or other means) by incorporating a simple but effective deterministic inte-
grated approach. For simplicity, our subset consists of three commonly used
Multi Criteria Decision Making Methods(MCDM), namely, AHP, TOPSIS
and VIKOR. We propose two types of deterministic approaches which we
describe as score based and ranked based deterministic approaches.

Govindan et al. (2015) state that researchers could be biased for one ap-
proach. They propose a way where the acceptance level of the approaches is
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investigated by the decision makers leading to the building of experimental
designs. In this study, we propose a more effective approach that prevents
the biasedness which may arise from using a single method. We also incor-
porate into our approach, the preference level of the decision-makers for each
individual method with reference to the others.

In this chapter, we develop a novel integrated deterministic approach
for the supplier selection problem. However, the proposed approach can be
applicable for other related selection problems. In this chapter, we handle the
supplier selection problem in case of the availability of the expert knowledge.
The case of lack of knowledge will be treated in the next chapter. Multi-
Criteria Decision Making (MCDM) methods are among the most commonly
used approaches for the supplier selection problem due to the consideration
of multi-criteria and decision making ability with expert knowledge. Expert
knowledge is essential source of decision making when data is not available. In
supplier selection problem, experts have knowledge about suppliers based on
their past experience or reputation of the suppliers on the market. We present
the proposed approach based on three commonly used MCDM methods,
namely, AHP, TOPSIS and VIKOR.

The contributions of this chapter are fourfolds:

(ii) The reduction in the biasedness of relying on a single method only and
hence provide an added flexibility to the decision maker.

(i) The design and analysis of an effective deterministic integrated MCDM
approach that takes into account the results of a subset of MCDM
methods.

(iii) A regret-based evaluation mechanism to assess the performance of the
individual methods as well as the proposed approach.

(iv) The generation of robust data sets that could be used for future bench-
marking.

The rest of the chapter is organised as follows; the MCDM methods used
in the proposed methodology are first presented in Section 3 with their respec-
tive illustrative examples. The effect of relying on a single method including
the data generation schemes and the evaluation mechanisms to assess each
of the three MCDM methods are outlined in Section 4 with their respective
illustrative examples. We describe the proposed integrated approach and its
three variants in Section 5 and provide the computational results in Section
6. A brief summary on this chapter is given in Section 7.
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3.3 MCDMs used in the Proposed Method-

ology

We present three MCDM approaches namely, the Analytical Hierarchical
Process(AHP), Technique for Order-Preference by the Similarity to Ideal
Solution(TOPSIS) and the Vlsekriterijumska Optimizacija I KOmpromisno
Resenje(VIKOR). These already known techniques will be followed by illus-
trative examples while emphasizing their pros and cons. These will make the
basis for our analysis in the next section.

3.3.1 Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) is a well-known MCDM method. It
works based on the pairwise comparison of criteria and alternatives. The rel-
ative importance of criteria and then relative preferences between alternatives
for each criterion are provided by decision makers. Decision makers submit
their preferences in AHP pairwise comparison scale (Saaty 1980) which is
presented in Table 3.1.

Numerical Rating Definition
1 Equally important
3 Moderate importance of one over another
5 Essential or strong importance
7 Very strong importance
9 Extreme importance

2,4,6,8 Intermadiate values between the two adjacent judgements

Table 3.1: AHP Pairwise Comparison Scale

The pairwise comparison matrix in AHP is a reciprocal matrix with its
diagonal elements equal to 1. The experts submit their preferences between
the criteria with the values from AHP Pairwise Comparison Scale and the
lower triangular of the matrix is reciprocal of the upper triangular matrix.
An example pairwise comparison matrix is presented in Table 3.2.

A B C
A 1 3 1/5
B 1/3 1 1/7
C 5 7 1

Table 3.2: Example Pairwise Comparison Matrix
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The pairwise comparison matrix of criteria is used to compute the pri-
orities (weights) of criteria. On the other hand, the pairwise comparison of
alternatives for each criterion is used to compute the priorities (preferences)
of alternatives for each criterion. In the last step, the priority vector of each
alternative is multiplied by the corresponding priority value (weight) of the
criterion and the alternatives are then ranked based on the overall priority
values. Since AHP works based on the subjective judgement of the decision
makers, a consistency check is performed to assess if the judgements of de-
cision makers are consistent. If a decision maker submits that alternative
A is more preferable than alternative B (pairwise comparison matrix value
of A vs. B:3) and alternative B is more preferable than alternative C(B
vs. C:5), then the decision maker can not state that alternative C is more
preferable than alternative A(C vs. A:5). The consistency check is performed
by computing the Consistency Index (CI). If the value of CI is below 0.10,
the judgements are accepted as consistent. The main notations used in the
AHP process are given in Figure 3.1 and the main steps of the method are
summarized in Figure 3.2.

Notation:
c: number of decision criteria
s: number of alternatives
A: pairwise comparison matrix of criteria valued by aij which show-
ing the relative importance of the ith criterion compared to jth criterion;
i = 1, . . . , c; j = 1, . . . , c.
N : normalized pairwise comparison matrix valued by nij ; i = 1, . . . , c; j =
1, . . . , c.
w: weights of the criteria indexed by i = 1, . . . , c.
r: weighted sum vector indexed by i = 1, . . . , c.
λmax: principal eigenvalue
CI: Consistency Index
RI: Random Consistency Index
CR: Consistency Ratio
B: comparison matrix of alternatives for each criterion, Bk; k = 1, . . . , c
each Bk valued by bij , i = 1, . . . , s; j = 1, . . . , s.
P : matrix of priorities of alternatives based on the criteria valued by pij ,i =
1, . . . , c; j = 1, . . . , s.
o: overall priority value of alternatives indexed by i = 1, . . . , c.

Figure 3.1: Notation of Steps of AHP
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1. Set c decision criteria, s alternatives and RI.

2. Create the cxc pairwise comparison matrix A = [aij ].

3. Determine the priority values(weights) of the criteria as follows:

(a) Compute the normalized pairwise comparison matrix say N = [nij ].

nij =
aij∑i=c
i=1 aij

i = 1, . . . , c; j = 1, . . . , c; (3.1)

(b) Calculate the priorities(weights) of the criteria by following formula:

wi =

∑i=c
j=1 nij

c
i = 1, . . . , c; (3.2)

4. Compute the consistency index (CI) and consistency ratio (CR) to check
the consistency of the judgements,

ri =

j=c∑
j=1

aijwi i = 1, . . . , c (3.3)

λmax =
1

c

i=c∑
i=1

ri
wi

(3.4)

CI = (λmax–s)/(s− 1) (3.5)

CR = CI/RI (3.6)

If CR ≥ 0.10 go back to step 2 and repeat the pairwise comparison.

5. Create c Bk matrices Bk = [bij ].

6. Apply Step 3 to the Bk matrices and compute the priorities of the alter-
natives based on the criteria, P = [pij ].

7. Apply Step 4 to the Bk matrices to check the consistency of judgments. If
CR ≥ 0.10 go back to step 5.

8. Compute the overall priorities of alternatives among the criteria, oi.

oi = pij n wi i = 1, . . . , n (3.7)

9. Rank the alternatives from the highest to the lowest oi values.

Figure 3.2: Steps of AHP
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Random Consistency Index (RI) is determined based on the number of
items being compared and table of RI is shown in Table 3.3.

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Table 3.3: Random Consistency Index (RI)

Illustrative Example 1
In this subsection we provide the following supplier selection example,

which have 4 decision criteria and 3 supplier alternatives. We follow the
steps of Figure 3.2.

1. The decision criteria include: product quality, price, delivery perfor-
mance and reputation. The alternatives are given as supplier A, sup-
plier B and supplier C.

2. Criteria are compared in a pairwise manner. The decision makers sub-
mit their preferences on AHP Pairwise Comparison Scale which is pre-
sented in Table 3.1. The results of the pairwise comparison matrix are
given in Table 3.4.

Criteria Product Quality Price Delivery Performance Reputation
Product Quality 1 5 3 9

Price 1/5 1 1/3 5
Delivery Performance 1/3 3 1 5

Reputation 1/9 1/5 1/5 1

Table 3.4: Pairwise Comparison Matrix

3. Priorities of the criteria are calculated based on the pairwise comparison
matrix shown in Table 3.4.

(a) Normalized pairwise comparison matrix, N is calculated by eq.(3.1)
and the results are summarized in Table3.5.
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Criteria Product Quality Price Delivery Performance Reputation
Product Quality 0.61 0.54 0.66 0.45

Price 0.12 0.11 0.07 0.25
Delivery Performance 0.20 0.33 0.22 0.25

Reputation 0.07 0.02 0.04 0.05

Table 3.5: Normalized Pairwise Comparison Matrix

(b) After normalization, priorities(weights) of the criteria are calcu-
lated by eq.(3.2) and results shown in Table 3.6.

Criteria Priority Value
Product Quality 0.57

Price 0.14
Delivery Performance 0.25

Reputation 0.05

Table 3.6: Priorities(weights) of the criteria

4. The consistency ratio is calculated with equations (3.3) to (3.6) to check
the consistency of the judgements. If consistency level is not enough,
pairwise comparison matrix is revised. The calculation of λmax is pre-
sented in Table 3.7 with ri and wi shown in their respective columns

Criteria ri wi ri/ wi
Product Quality 2.42/ 0.57 = 4.28

Price 0.56/ 0.14 = 4.07
Delivery Performance 1.08/ 0.25 = 4.34

Reputation 0.19/ 0.05 = 4.06
Total 16.75
λmax 4.19

Table 3.7: λmax calculation

(a) The consistency index(CI) is calculated using eq.3.5 leading to

CI = (4.19− 4)/(4− 1) = 0.063
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(b) The consistency ratio(CR) is derived using eq.3.6 with RI being
0.90 (see Table 3.3 for the case of m=4). This leads to

CR = 0.063/0.90 = 0.07

Since the consistency ratio is under 0.10, the pairwise comparison
is considered as consistent.

5. After pairwise comparison of criteria, the alternatives are compared
pairwise for each criterion. The decision makers submit their relative
preferences between the alternatives for every criteria. Pairwise com-
parison matrix of alternatives with regard to product quality is pre-
sented in Table 3.8. The same pairwise comparison matrix is also built
for other criteria.

Product Quality A B C
A 1 3 1/5
B 1/3 1 1/7
C 5 7 1

Table 3.8: Pairwise Comparison Matrix of Alternatives for Product Quality

6. The priority values of alternatives for every criteria are calculated ac-
cording to equations (3.1), (3.2). The results are summarized in Table
3.9.

Alternatives Product Quality Price Delivery Performance Reputation
A 0.19 0.26 0.11 0.15
B 0.08 0.63 0.78 0.78
C 0.72 0.11 0.11 0.07

Table 3.9: Priority values of Alternatives based on the criteria

7. Consistencies of the judgements are checked with the same procedure
as shown in step 4. The consistency check of judgements in pairwise
comparison of alternatives with regard to product quality is followed
as follows:
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λmax = 3.07

CI = (3.07–3)/(3− 1) = 0.03

RI is determined based on the number of criteria which is n=3, RI is
0.58 (see Table 3.3 for n=3). Therefore,

CR = 0.03/0.58 = 0.03

The consistency check of judgements in pairwise comparison of alter-
natives with regard to other criteria are also conducted and results are
presented below:

CR for pairwise comparison of alternatives with regard to cost, delivery
performance and reputation are 0.03, 0 and 0.07 respectively.

As consistency ratios for pairwise comparison of alternatives with re-
gard to each criterion are lower than 0.1, judgements are accepted as
consistent.

8. Overall priority values of all alternatives among the criteria, oi are
calculated with eq.(3.7) and presented in Table 3.10.

Alternatives Overall Priority
Supplier A 0.18
Supplier B 0.36
Supplier C 0.45

Table 3.10: AHP Scores of Alternatives

9. Alternatives are ranked based on the overall priority values leading to
the following result with C being at the top followed by B and then A.
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3.3.2 Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS)

TOPSIS differs from AHP as it is a distance based MCDM method. It ranks
the alternatives based on the distance from the ideal-solution and negative-
ideal solution. In other words, the closer to the ideal, the better. The
notation used in TOPSIS are given in Figure 3.3 and the main steps of the
method are summarised in Figure 3.4.

Notation:
c: number of decision criteria
s: number of alternatives
T : TOPSIS decision matrix in which alternatives are evaluated based on
criteria valued by tij , i = 1, . . . , c; j = 1, . . . , s.
K: normalized TOPSIS decision matrix valued by kij , i = 1, . . . , c; j =
1, . . . , s.
w: weights of the criteria indexed by i = 1, . . . , c.
M : weighted normalized TOPSIS decision matrix valued by mij ; i =
1, . . . , c; j = 1, . . . , s.
bi: weighted normalized value of best alternative for criterion i = 1, . . . , c.
wi: weighted normalized value of worst alternative for criterion i=1,..c.
dbj : distance of alternative j to the best alternative for criterion i; i =
1, . . . , c; j = 1, . . . , s.
dwj : distance of alternative j to the worst alternative for criterion i; i =
1, . . . , c; j = 1, . . . , s.
cwj : similarity of alternative j to the ideal solution, j = 1, . . . , s.

Figure 3.3: Notations of TOPSIS

1. Set c decision criteria, s alternatives and weights of the criteria wi
(i=1,. . . ,c).

2. Create the cxs decision matrix T = [tij ] shows the evaluation of al-
ternative i for criterion j.

3. Compute the normalized evaluation matrix K, kij denoting the
element of K.

kij =
tij√∑i=c
i=1 t

2
ij

i = 1, . . . , c; j = 1, . . . , s; (3.8)
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4. Compute the weighted normalized decision matrix M with mij being
the element of M .

mij = wi ∗ kij i = 1, . . . , c; j = 1, . . . , s; (3.9)

5. Compute the best bi and worst wi values for each attribute. If criterion
is benefit criterion which means it has positive impact,

bi = max
j
mij i = 1, . . . , c (3.10)

wi = min
j
mij i = 1, . . . , c (3.11)

If criterion is cost criterion which means it has negative impact, then,

bi = min
j
mij i = 1, . . . , c (3.12)

wi = max
j
mij i = 1, . . . , c (3.13)

6. Compute the geometric distance of each alternative from the best
solution dbj .

dbj =

√√√√ i=c∑
i=1

(mij − bi)2 j = 1, . . . , s (3.14)

7. Compute the geometric distance of each alternative from the worst
solution dwj

dwj =

√√√√ i=c∑
i=1

(mij − wi)2 j = 1, . . . , s (3.15)

8. Compute the similarities of alternatives to the ideal solution cwj as
follows,

cwj =
dwj

(dwj + dbj)
j = 1, . . . , s (3.16)

9. Alternatives are ranked from the highest to the lowest values based
on the cwj values.

Figure 3.4: Steps of TOPSIS
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Illustrative Example 2

1. The same example given earlier is followed here. Alternatives vs criteria
evaluation matrix is created. Alternatives are evaluated and scored
based on the criteria and presented in Table 3.11

Alternatives Product Quality Price Delivery Performance Reputation
A 5 4 6 9
B 4 7 8 5
C 9 3 4 3

Table 3.11: TOPSIS initial Decision Matrix

2. The evaluation matrix is normalized by the eq.3.8 and presented in
Table 3.12

Alternatives Product Quality Price Delivery Performance Reputation
A 0.45 0.47 0.56 0.84
B 0.36 0.81 0.74 0.47
C 0.82 0.35 0.37 0.28

Table 3.12: Normalized Decision Matrix

3. The weighted normalized matrix is calculated by eq.3.9 and presented
in Table 3.13. In this example, weights are obtained from AHP.

Alternatives Product Quality Cost Delivery Performance Reputation
A 0.26 0.06 0.14 0.04
B 0.21 0.11 0.19 0.02
C 0.46 0.05 0.09 0.01

Table 3.13: Weighted Normalized Decision Matrix

4. The best and the worst value of each attribute are determined by eqs
3.10 to 3.13 and the results are given in Table 3.14.
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Alternatives Product Quality Price Delivery Performance Reputation
Best 0.46 0.05 0.19 0.04

Worst 0.21 0.11 0.09 0.01

Table 3.14: Best and Worst values of each attribute

5. The geometric distance of each alternative from the best solution is
calculated by eq.3.14 and results are presented in Table 3.15.

Alternatives dbj
A 0.21
B 0.27
C 0.10

Table 3.15: Distance of each alternative from the best solution

6. The geometric distance of each alternative from the worst solution is
calculated by eq.3.15 and results are given in Table 3.16.

Alternatives dwj
A 0.09
B 0.09
C 0.26

Table 3.16: Distance of each alternative from the worst solution

7. The similarities of the alternatives to the worst solution are obtained
using eq.3.15 and the scores are provided in Table 3.17.

Alternatives TOPSIS Score
A 0.30
B 0.26
C 0.73

Table 3.17: TOPSIS Scores of the Alternatives

8. According to the similarities to the ideal solution, the alternatives are
ranked as follows: C at the top followed by A and then by B.
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3.3.3 VIKOR

VIKOR is an MCDM method that searches for the compromised solution
for maximum group utility of majority and minimum regret of the individ-
uals. It works similarly as TOPSIS. The notation used in VIKOR are given
in Figure 3.5 and the main steps of the method are summarised in Figure 3.6.

Notation:
c: number of decision criteria
s: number of alternatives
V : VIKOR decision matrix in which alternatives are evaluated based on
criteria valued by vij ; i = 1, . . . , c; j = 1, . . . , s.
L: normalized VIKOR decision matrix valued by mij ; i = 1, . . . , c; j =
1, . . . , s.
wi: weights of the criteria indexed by i = 1, . . . , c.
u: weight of maximum group utility
S : Utility measure
R : Regret measure
Q : VIKOR index

Figure 3.5: Notation of VIKOR

1. Set c decision criteria, s alternatives and weights of the criteria wi.

2. Create the mxn decision matrix V with vij being the evaluation of
alternative i for criterion j.

3. Compute the normalized evaluation matrix L with lij denoting the
element of L.

v∗i is maximum value for benefit attributes, minimum value for cost at-
tributes, v−i is minimum value for benefit attributes, maximum value
for cost attributes,

lij =
v∗i − vij
v∗i − v

−
i

i = 1, . . . , c j = 1, . . . , s (3.17)

4. The utility measure(S) and the regret measure(R) are calculated for
each alternative with the following formulas:

Si =

i=s∑
i=1

wilij i = 1, . . . , c (3.18)
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Ri = max
i
wilij i = 1, . . . , c (3.19)

S∗ = min
i
Si S− = max

i
Si (3.20)

R∗ = min
i
Ri R− = max

i
Ri (3.21)

5. VIKOR index(Q) is calculated with the following formula: u is the
weight of the maximum group utility, and it is determined based on
the compromise level of decision makers.

Qi =
u(Si − S−)

(S∗ − S−)
+

(1− u)(Ri −R∗)
(R∗ −R−)

(3.22)

6. Alternatives are ranked based on the S, R and Q values from smallest
to the largest. According to this ranking list, A1 and A2 is accepted
first and second best compromised alternative if the following condi-
tions are satisfied:

a) A1 is also best ranked by S or/and R .

b) Q(A2)−Q(A1) ≥ DQ;DQ = 1/(c− 1) (3.23)

If all conditions are satisfied, the solution is accepted as a compromise
solution.

Otherwise (i.e., if one of the conditions is not satisfied), we check the
following

a) If only the first condition is not satisfied, A1 and A2 are accepted
as first and second compromised best alternatives.

b) If the second condition is not satisfied, the alternatives are ranked
based on the distance relation by the following formula;

Q(Am)−Q(A1) > DQ (3.24)

Figure 3.6: Steps of VIKOR

Illustrative Example 3

The earlier example is also used here.

1. Each alternative is evaluated with regard to each criterion and scored
to build the VIKOR decision matrix in Table 3.18.
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Alternatives Product Quality Cost Delivery Performance Reputation
A 5 4 7 9
B 3 6 8 5
C 9 3 4 3

Table 3.18: VIKOR initial Decision Matrix

2. The normalized decision matrix is calculated by eq.3.17.

Alternatives Product Quality Cost Delivery Performance Reputation
A 0.38 0.05 0.06 0
B 0.57 0.14 0 0.03
C 0 0 0.25 0.05

Table 3.19: VIKOR Normalized Decision Matrix

3. The utility measure(S), regret measure(R) and VIKOR index(Q) are
calculated by equations 3.18, 3.19 and 3.22 respectively.

wj represents the relative importance(priority value) of each criterion.

Alternatives S R
A 0.49 0.38
B 0.73 0.57
C 0.30 0.25

Table 3.20: Utility and Regret Measures

4. VIKOR index(Q) is calculated by 3.23. u is assumed as 0.5.

Alternatives Q
A 0.42
B 1
C 0

Table 3.21: VIKOR Index Values
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5. The alternatives are ranked based on the S, R and Q values ranking
from smallest to the largest.

Alternatives S Alternatives R Alternatives Q
C 0.30 C 0.25 C 0
A 0.68 A 0.47 A 0.78
B 0.74 B 0.57 B 1

Table 3.22: VIKOR List

If the conditions in step 6 a) and b) are satisfied, the ranking list will
lead to a compromise solution.

a) C is also best ranked in S or/and Q.

b) (0.78− 0) ≥ 1/(3− 1)

All conditions are satisfied. Thus, the solution can be accepted as
compromise solution. The alternatives are ranked as follows: C at the
top followed by A and then by B.

3.4 Effect of Relying on Single Method-Based

Selection Rules

In this section we demonstrate, as also shown in earlier studies including the
recent interesting review by Watróbski et al. (2019), the risk of producing
misleading results for a given decision problem if one entirely relies on one
single method only. In this work, for simplicity the three MCDM methods
namely, AHP, TOPSIS, VIKOR are used. We provide a simple evaluation
measure to assess the effectiveness of each of the three individual methods.
This assessment is based on the measure of regret, also known as opportunity
cost. As there is no expert knowledge is available for these three methods,
we propose a survey data set generator. This assessment measure and these
new data sets will be used not only for testing these three individual methods
but also the proposed approach which is presented in the following section.

3.4.1 Data Generation Schemes

We generated data sets for AHP, TOPSIS and VIKOR. These survey data
sets are compiled in the MS Visual Studio environment using C++ language.
In this experiment and for illustration purposes, we consider 10 alternative
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suppliers and 4 supplier selection criteria. Alternative suppliers are known
as A to J for simplicity while the four supplier selection criteria include prod-
uct quality, price, delivery performance and reputation. The three genera-
tor schemes, though strongly related, are presented separately one for each
method. Note that these schemes could be easily modified to cater for the
characteristics of other MCDM ranking methods if need be.

Data Generation for AHP

The following steps constitute the generation mechanism for AHP.

1. We firstly generate a survey data for AHP by creating a pairwise com-
parison matrix for the criteria. Here, experts submit their relative
preferences between the criteria in the AHP Pairwise Comparison Scale
(Saaty 2008) which is presented in Table 3.1. The pairwise comparison
matrix in AHP is a reciprocal matrix with its diagonal elements equal
to 1, and the lower triangular of the matrix is reciprocal of the upper
triangular matrix. To illustrate how the generation is performed, we
present an example of a pairwise comparison matrix in Table 3.2 using
the following two steps.

(a) We define an array of this scale which includes 1, 3, 5, 7, 9 and
their respective reciprocal values 1/3, 1/5, 1/7, 1/9.

(b) We then assign random numbers from this array for the first row of
the matrix which represents the relative importance of the first criterion
vs. the other criteria for the decision makers.

2. The remaining rows of the pairwise comparison matrix of the criteria
are generated pseudo-randomly based on the consistency rule which is
described as follows;

Consistency Check in AHP

In the above table, product quality vs. price is 5 which means product
quality is relatively 5 times more important than the price. On the
other hand, product quality vs. delivery performance is 9. According
to these two values, price vs delivery performance is expected to be
relatively 1.8(9/5). In the proposed data generation mechanism, we
assign the closest value from the array which is 1. While delivery per-
formance and price have different relative importance values compared
to product quality, price vs. delivery performance is 1 which means
they have relatively equal importance. It shows that we generate the
data randomly as long as they remain consistent.
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In case inconsistent results are obtained (e.g., the consistency ratio as
defined in AHP is larger than 0.10), the process is repeated again.

For each criterion, the same procedure is performed for the pairwise
comparison of alternatives. For example, for the first criterion, alterna-
tives are compared in a pairwise manner. The first row of the pairwise
comparison of alternatives for this criterion is generated by assigning
the values from the array randomly. The other rows of the matrix are
generated to compute the consistency rule of the AHP. For illustration,
an example of a pairwise comparison matrix of 10 suppliers for product
quality criterion is presented in Table 3.23.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S1 1 5 9 1/3 1 3 7 1/3 1/7 9
S2 1/5 1 1 1/9 1/5 1/3 1 1/9 1/9 1
S3 1/9 1 1 1/9 1/9 1/3 1 1/9 1/9 1
S4 3 9 9 1 3 9 9 1 1/3 9
S5 1 5 9 1/3 1 3 7 1/3 1/7 9
S6 1/3 3 3 1/9 1/3 1 3 1/9 1/9 3
S7 1/7 1 1 1/9 1/7 1/3 1 1/9 1/9 1
S8 3 9 9 1 3 9 9 1 1/3 9
S9 7 9 9 3 7 9 9 3 1 9
S10 1/9 1 1 1/9 1/9 1/3 1 1/9 1/9 1

Table 3.23: Example Pairwise Comparison Matrix of 10 Suppliers for Product
Quality

3. For the pairwise comparison matrices of the alternatives for the other
criteria, these are obtained based on the generation of the pairwise
comparison matrix of alternatives for the first criterion. They can
obviously be generated randomly but we preferred to generate them
pseudo randomly by incorporating expert knowledge. For example if
experts submit that alternative 1 is 3 times better than alternative 2
in terms of product quality, price of the alternative 1 is expected to be
higher than alternative 2. They are closely related. So we assigned the
first row of the pairwise comparison of the alternatives for the second
criterion using the values from the first row of the pairwise compari-
son of alternatives for the first criterion by allowing a perturbation of
±1 range in the array. On the other hand, product quality vs deliv-
ery performance and product quality and reputation vs reputation are
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less relative. Therefore we keep the range ±2 for the first row of these
pairwise comparison matrices which means, while alternative 1 vs al-
ternative 2 is 1 for product quality, alternative 1 vs alternative 2 can
be one of 1/5, 1/3, 1, 3 and 5 values for delivery performance. For the
ten suppliers, the perturbation is carried out using the random range
values for delivery performance as 1 -1 2 -2 2 2 1 2 2 whereas those for
reputation as -1 0 1 0 0 2 -1 0 1.

So the first row of the pairwise comparison matrix of the alternatives
for the other criteria are assigned based on the relationship between
the first criterion pseudo randomly.

4. The remaining rows of the matrices are generated based on the con-
sistency rule. The pairwise comparison of 10 suppliers for delivery
performance criterion is presented in Table 3.24.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S1 1 7 7 3 1/5 7 9 1 1/3 9
S2 1/7 1 1 1/3 1/9 1 1 1/7 1/9 1
S3 1/7 1 1 1/3 1/9 1 1 1/7 1/9 1
S4 1/3 3 3 1 1/3 3 3 1/3 1/3 3
S5 5 9 9 3 1 9 9 1 1 9
S6 1/7 1 1 1/3 1/9 1 1 1/9 1/9 1
S7 1/9 1 1 1/3 1/9 1 1 1/9 1/9 1
S8 1 7 7 3 1 9 9 1 1 9
S9 3 9 9 3 1 9 9 1 1 9
S10 1/9 1 1 1/3 1/9 1 1 1/9 1/9 1

Table 3.24: Example Pairwise Comparison Matrix of 10 Suppliers for Deliv-
ery Performance
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5. The weights of criteria, and the overall evaluation matrix of alternatives
based on the criteria are then obtained. The overall evaluation matrix
is presented in Table 3.25 which will be used for the data generation
for TOPSIS.

Product Quality Price Delivery Performance Reputation
S1 0.09789 0.14266 0.15515 0.12320
S2 0.01961 0.02341 0.02360 0.04310
S3 0.01848 0.02341 0.02360 0.01730
S4 0.18252 0.22806 0.06822 0.15681
S5 0.09789 0.06794 0.24190 0.15681
S6 0.03955 0.02315 0.02299 0.05200
S7 0.01886 0.02262 0.02272 0.01730
S8 0.18252 0.19457 0.19544 0.20183
S9 0.32419 0.25155 0.22367 0.21434
S10 0.01848 0.02262 0.02272 0.01730

Table 3.25: Overall Evaluation of Suppliers Based on Criteria in AHP

Data Generation for TOPSIS

TOPSIS requires, as one of its inputs, a decision matrix which includes
the evaluation of the alternatives based on the criteria and their respective
weights. To incorporate subjectivity which can arise when using these kind
of methods such as AHP, TOPSIS and VIKOR, we introduce into our scheme
two additional attributes, namely, normalisation and some form of pertur-
bation. These are necessary to obtain consistent and meaningful values that
can then be used analytically in any subsequent evaluation.

1. The data about the alternatives such as age, price, etc are first provided
which are then normalized.

2. In case there is a lack of data in step 1, expert judgements are used to
construct the decision matrix. Experts score the alternatives on a scale
of 1 to 10. Note that the same alternatives are evaluated based on the
same criteria for these three methods. Though their judgements may
differ for different methods, their results are expected to be consistent.
The evaluation matrix of TOPSIS is generated based on the overall
evaluation matrix of alternatives using the criteria from AHP. This
matrix for TOPSIS is then perturbed accordingly to be consistent with
the one used for AHP. Here, these values are turned on a scale 1 to 10
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(i.e., timing these values by 100) then multiplying them by 0.25 and
then perturbing them using a ± random number between 0 and 1 while
keeping them integer. This is an important step that aims to alleviate
the subjectivity element often encountered in these methods.

In brief, for a given supplier and a given criterion let βAHP be the
original AHP value. We then compute the new value for TOPSIS, say
βTOPSIS, using the following steps.

a) Generate a random number α ∈ [0, 1].

b) For each element of the TOPSIS matrix do the following:

- If α < 0.5, set βTOPSIS = Max(1, b(25× βAHP )− αc)
- Otherwise set βTOPSIS = d(0.25× (100× βAHP )) + αe

For example, consider α = 0.2159 < 0.5 .

For S1 and product quality, the value for TOPSIS would be
(0.09789× 25)− 0.2159 = 2.4472 and hence βTOPSIS = b2.4472c = 2.

The evaluation of the other elements of the TOPSIS matrix can then
be computed in the same way.

3. The weights of the criteria in TOPSIS are then set to those from AHP.
This choice is commonly used in the literature as shown in the following
recent studies (Jain et al. 2018, Akgün & Erdal 2019).

Data Generation For VIKOR

VIKOR also needs a decision matrix as an input. We therefore perturb the
decision matrix of TOPSIS to obtain a decision matrix for VIKOR in case
the experts might submit slightly different values for the evaluation of the
alternatives with different methods.

A similar mechanism as the one given for TOPSIS is performed here.
a) Generate a random number α ∈ [0, 1].
b) For each element of the VIKOR matrix do the following:

- If α < 0.5 set βV IKOR = Max(1, bβTOPSIS − (0.2× βTOPSIS)c),
- Otherwise we set βV IKOR = Min(10, dβTOPSIS+(0.2×βTOPSISe)).

For example, consider α = 0.5628 > 0.5 .
For S1 and product quality, the value for VIKOR would be
(2× 0.2) + 2 = 2.4 and hence βV IKOR = d2.4e = 2
The evaluation of the other elements of the VIKOR matrix can then be

computed in the same way.
It is worth noting that our generation rule, though used for the supplier

selection problem in this instance, can easily be made appropriate for other
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type of decision problems. Also, in this experiment, we opted for a lighter
perturbation by injecting the same noise (the random number α to all ele-
ments of the TOPSIS and the VIKOR matrices). This is based on the view
that a decision maker will apply his/her subjectivity toward all suppliers and
all criteria in the same way. However, if one wishes to have a stronger pertur-
bation, for each supplier and each criteria, the noise could then be injected
to each element of the two matrices. The above generation code and the data
sets can be requested from the author.

3.4.2 Regret-Based Assessment Methods

In this section, we provide the definitions of two assessment measures and use
them to show that it is not always possible to identify the best performing
individual method. Later in Section 4, we will use these measures to illustrate
how much the integrated approach can improve the results, and how it can
outperform all individual methods.

We first provide the notation and the adjustment scheme, followed by the
two regret measures with illustrative examples for the three MCDM methods.

Notation
s : number of suppliers indexed by i = 1, . . . , s
m : number of methods used indexed by x and y; x, y = 1, . . . ,m
Six : the score of the ith supplier by method x; i = 1, . . . , s;x = 1, . . . ,m
Rix : the rank of the ith supplier by method x; i = 1, . . . , s;x = 1, . . . ,m

Figure 3.7: Notations of Regret Based Methods

Adjustment Scheme
We first ran AHP, TOPSIS and VIKOR methods on 10 generated data

sets. The results of each method are evaluated using the regret based method,
also known as the opportunity cost measure. These three methods give
different ranking lists. AHP ranks the alternatives from the largest to the
lowest score where the sum of the scores equals 1. TOPSIS also ranks the
alternatives from the largest to the lowest but the sum of the scores does not
equal 1. VIKOR, on the other hand, ranks the alternatives from the lowest
to the largest where the sum of the scores is also not necessarily 1. As our
assessment measures use the scores of alternatives from different methods
together, it is necessary to bring the scores to a common scale. We adopt the
scores of AHP for this purpose, and adjust the results of other methods so
that the alternatives are ranked in decreasing order of scores and the sum of
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scores is equal to 1. We designed the following adjustment scheme to perform
such a task:

a) We adjust the scores in the list of TOPSIS to have the same scale
as the ones in AHP by setting SiTOPSIS = S̃iTOPSIS/

∑i=s
i=1 S̃

i
TOPSIS,

∀i = 1, . . . , s with S̃iTOPSIS being the original score of supplier i found
by TOPSIS.

b) As VIKOR ranks the alternatives from lowest to largest, we substracted
the values of the list from 1 and divide them by the sum of the scores.
This simple transformation leads to scores being on the same scale
used in AHP and TOPSIS. We set SiV IKOR = (1− S̃iV IKOR)/

∑i=s
i=1(1−

S̃iV IKOR) ∀i = 1, . . . , s with S̃iV IKOR being the original score of supplier
i found by VIKOR.

The new results of these three methods are put in descending order and
Table 3.26 provides an example for one of the data sets. There are some
suppliers with the same score in the list. As the suppliers with same score in
the lower ranks, they dont have big impact on the results. Therefore we chose
which comes first randomly and rank all the suppliers as the total number
of ranks will be 10 for all three methods to apply the regret based methods.
These results though informative with respect to each method cannot be used
to confirm whether or not the result of one method is better than the other.
In the following subsections, we will present an evaluation scheme to achieve
this goal by introducing a regret-based measure. This is explored under two
variants, namely, a rank-based and a score-based measure.
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AHP TOPSIS VIKOR
Order Supplier Score Supplier Score Supplier Score

1 Supplier E 0.284 Supplier E 0.306 Supplier E 0.343
2 Supplier J 0.185 Supplier D 0.170 Supplier D 0.218
3 Supplier D 0.182 Supplier J 0.167 Supplier J 0.201
4 Supplier A 0.155 Supplier A 0.138 Supplier A 0.190
5 Supplier G 0.051 Supplier F 0.045 Supplier F 0.024
6 Supplier F 0.048 Supplier G 0.042 Supplier G 0.021
7 Supplier B 0.027 Supplier B 0.033 Supplier B 0.02
8 Supplier H 0.023 Supplier H 0.033 Supplier C 0
9 Supplier I 0.023 Supplier I 0.033 Supplier H 0
10 Supplier C 0.021 Supplier C 0.033 Supplier I 0

Table 3.26: Normalized Results of the three methods for Data Set1

In brief, we compare the effectiveness of the methods based on the devia-
tion between the ranking results of one method and the others. Each method
gives the ranked list of alternatives and corresponding scores.

For simplicity, consider x as the reference method in which the other
method, say y, is being evaluated against.

A weight function-
Let wix be the weight of supplier i for being ranked Ri

x in method x. This
is expressed as a strictly decreasing discontinuous function of the rank of the
suppliers. In this particular setting, the top supplier is associated with a
weight of unity whereas the bottom supplier a weight of 1/s.

wix =
1

Ri
x

; i = 1, . . . , s;x = 1, . . . ,m

The above function is one way to discriminate the position of the sup-
pliers, though other functions may be attempted as well. We opted for this
function as discrepancies in higher ranks are usually more important to the
decision maker. For example, if a supplier comes first in one method and
second in the other one, the difference between its weights in the methods
will be higher as opposed to the case of it coming seventh and eighth. This
is reasonable since alternatives in higher ranks carry significant importance
for decision makers and more attention should be paid to those ranks.

The deviation of the result of method y with respect to the result of
method x is then given by ∆xy in Eq 3.25.
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∆xy =
i=s∑
i=1

(Six × wix)−
i=s∑
i=1

(Six × wiy) ∀x, y = 1, . . . ,m (x 6= y) (3.25)

Note that we include both the rank weights and the scores of alternatives
in calculating the deviation. This is useful because it may be possible for
two consecutive alternatives in the rank list to have quite different scores. In
addition, there may be very close scores in consecutive ranks in the list. Con-
sidering both the rank and the score helps us to account for such situations
when calculating our deviation measures.

In our example, we have s = 10 representing Supplier A to Supplier J
and m = 3 referring to AHP, TOPSIS and VIKOR.

In the following subsections, the rank-based and the score-based regret
measures are presented respectively.

Rank-Based Regret Measure

In this subsection, we evaluated the result of each method based on the results
of the other methods via the calculation of the deviations. The method which
has the smallest deviation is considered to be the best performer based on
the reference method. These calculations are performed for all the reference
methods (i.e., all the methods), taken one at a time. For instance, when we
consider VIKOR as the reference method and calculate the deviation of AHP
from VIKOR and the deviation of TOPSIS from VIKOR, we can find out
whether AHP or TOPSIS has the smallest deviation and then be considered
as the best and the other method will be the second with respect to VIKOR.
If there were m methods, this ranking is then done for all the m − 1 other
methods.

Illustrative Example 1

We ran the three methods with data set1 whose results are presented in
Table 3.26 and calculated the deviations of each method with respect to the
other methods.

Firstly, we evaluated the list of AHP based on the list of TOPSIS using
eq.3.25. For computing the deviation of the results of AHP from the results
of TOPSIS, (x = 2, y = 1)

∆21 = ((0.306×1+0.170×0.5+...0.033×0.1)−(0.306×1+0.167×0.5+...0.033×0.1))

= 0.000614073
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For the deviation of result of AHP from the result of VIKOR, (x = 3, y = 1)

∆31 = ((0.343×1+0.218×0.5+...0×0.1)−(0.343×1+0.201×0.5+...0×0.1))

= 0.002812460

For the deviation of result of TOPSIS from the result of AHP, (x = 1, y = 2)

∆12 = ((0.284×1+0.185×0.5+...0.021×0.1)−(0.284×1+0.182×0.5+...0.021×0.1))

= 0.000673790

For the deviation of result of TOPSIS from the result of VIKOR, (x = 3, y =
2)

∆32 = ((0.343×1+0.218×0.5+...0×0.1)−(0.343×1+0.201×0.5+...0×0.1))

= 0

For the deviation of result of VIKOR from the result of AHP,(x = 1, y = 3)

∆13 = ((0.284×1+0.185×0.5+...0.021×0.1)−(0.284×1+0.182×0.5+...0.021×0.1))

= 0.000723549

For the deviation of result of VIKOR from the result of TOPSIS, (x = 2, y =
3)

∆23 = ((0.306×1+0.170×0.5+...0.033×0.1)−(0.306×1+0.170×0.5+...0.033×0.1))

= 0

In summary, using the reference method AHP, the deviation of the results
of TOPSIS and VIKOR are 0.000673790 and 0.000723549 respectively. In
terms of the effectiveness of TOPSIS and VIKOR based on AHP, TOPSIS is
ranked as first and VIKOR as second. For each of the other reference meth-
ods, the deviations of the other two methods are computed in the same way
and summarized in Table 3.27. The methods in rows refer reference meth-
ods denoted by x, and the methods in columns refer the evaluated methods,
denoted by y.

AHP TOPSIS VIKOR
AHP - 0.000673790 0.000723549

TOPSIS 0.000614073 - 0
VIKOR 0.002812460 0 -

Table 3.27: Deviations of the methods with respect to each of the reference
methods with Data Set 1
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For a given reference method x, x = 1, . . . ,m, we evaluate the comparative
effectiveness of the other methods using the following rank-based algorithm.

The Rank-Based Regret Algorithm (RBRA)

Step 1: For a given reference method x = 1, . . . ,m do

• Compute ∆xy ∀y = 1, . . . ,m

• Sort the vector ∆ in ascending order and let Rankxy be the rank of the
yth method with respect to the reference method x.

Step 2: Compute the total rank for method y as TRanky =
∑x=m

x=1 Rankxy

Step 3: Find y∗ as the selected method using y∗ = ArgMiny=1,...,m TRanky.

The rankings of the methods based on the deviation values found in Table
3.27 are presented in Table 3.28 with bold displaying the smallest total score.
In this particular example, TOPSIS has the smallest total rank of 2 and hence
it is the best performer, with VIKOR as the second best, followed by AHP
in the last position.

AHP TOPSIS VIKOR
AHP - 1 2

TOPSIS 2 - 1
VIKOR 2 1 -

Total Rank 4 2 3

Table 3.28: The ranking of the methods based on the deviations with Data
Set 1

Some Basic Statistical Results

We ran the three methods with ten generated data sets and summarized
their respective rankings including ties in Table 3.29. For example if the best
configuration for instance 1 found by AHP is used in TOPSIS and VIKOR
(see row 1 in Table 3.29), TOPSIS has a smaller deviation than VIKOR and
hence TOPSIS earns the position of 1 for that data set and VIKOR earns
2. If there is a tie, as shown for instances 5, 7, 8 and 10, they both earn the
position of 1.
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AHP TOPSIS VIKOR
AHP - 1,1,1,2,1,2,1,1,1,1 2,2,2,1,1,1,1,1,2,1

TOPSIS 2,1,2,2,2,1,2,2,2,2 - 1,1,1,1,1,2,1,1,1,1
VIKOR 2,1,2,2,2,1,2,2,2,2 1,1,1,1,1,2,1,1,1,1 -

Overall Total Rank 36 23 25

Table 3.29: Ranking of the methods based on the deviations over the 10 data
sets

To obtain an overall result we summed up these rankings and record the
results under ‘Total’ in Table 3.29. The method with the smallest value is
the most effective: In our case, TOPSIS is the best followed by VIKOR then
AHP.

In the next subsection, we evaluate the effectiveness of the methods using
the score based approach instead.

Score-Based Regret Measure

Here, we evaluated the effectiveness of the methods using their deviation
scores directly instead of the ranks they achieve with these scores. This is
similar in principle to the rank based except a score is used instead of rank.
The method is as follows:

The Score-Based Regret Algorithm (SBRA)

Step 1: For a given reference method x = 1, . . . ,m do

• Compute ∆xy ∀y = 1, . . . ,m

• Compute the total sum for the method y as

∆̃y =
m∑
x=1
x 6=y

∆xy

Step 2: Find y∗ as the selected method using y∗ = ArgMiny=1,...,m ∆̃y.

Illustrative Example 2

The total deviation score of AHP is the sum of the deviation of AHP
from TOPSIS and from VIKOR:

∆̃1 = ∆21 + ∆31 = 0.000614073 + 0.00281246 = 00342654
The total deviation score of TOPSIS is then:
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∆̃2 = ∆12 + ∆32 = 0.00067379
Finally, the total deviation score of VIKOR is:
∆̃3 = ∆13 + ∆23 = 0.000723549

y∗ = ArgMin
y=1,2,3

(∆̃y) = ArgMin
y=1,2,3

(0.00342654, 0.00067379, 0.000723549) = 2

In other words, TOPSIS is the most effective method as it has the smallest
total deviation, ∆̃2 = Min(∆̃1, ∆̃2, ∆̃3)

Some Basic Statistical Results

The analysis is performed over the 10 generated data sets. For each
method the average deviation score and the number of best (including ties)
are also reported in Table 3.30 where the best results are shown in bold.
Based on these empirical results, TOPSIS tends to perform better compared
to the other methods in terms of average deviation score. However, AHP
produces a slightly larger number of best solutions (i.e., 5 compared to 4)
though it yields the worst average deviation. On the other hand, VIKOR’s
average performance in terms of deviation score sits in between the two
methods while it comes last in producing the number of best solutions.

The above inconclusive results demonstrate that there is not necessarily
one method that dominates the others. This demonstrates the negative effect
of relying on one method only as also strongly shown by Watróbski et al.
(2019). This led us to a technique that aim to combine the results of the
individual methods.

Data Set AHP TOPSIS VIKOR
Data Set 1 0.003430 0.000067 0.000072
Data Set 2 0 0.000280 0.000740
Data Set 3 0.212390 0.053030 0.073120
Data Set 4 0.110700 0.094880 0.094020
Data Set 5 0.000580 0.001000 0.001000
Data Set 6 0.000820 0.021810 0.001890
Data Set 7 0.001430 0.002180 0.002180
Data Set 8 0.078890 0.071390 0.071390
Data Set 9 0.128970 0.116700 0.225740
Data Set 10 0.242820 0.265910 0.262170
Average 0.078000 0.062790 0.073300

Number of Best (incl ties) 5 4 2

Table 3.30: Deviation scores of the three methods
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3.5 The Deterministic Integrated Approach

Here, we propose an integrated and deterministic approach to combine the
different MCDM methods through their respective ranking lists of suppliers.
In this study for completeness we use AHP, TOPSIS and VIKOR methods
which are described in the two previous sections. In other words, the lists
which are obtained from the different MCDM methods are considered in the
design of the following deterministic method. We adopt two rules one using
the ranks and the other the scores instead. These two rules are described in
the following sub-sections. Additionally, we offer three variants for the latter
rule.

3.5.1 RBDR

Here, the positions (or ranks) of the suppliers in the lists of the different
methods are summed up and put in ascending order. The steps of this tech-
nique which we refer to as RBDR, short for the ranked based deterministic
rule algorithm, are summarized below:

The RBDR algorithm

Step 1: Solve the problem for all methods x, x = 1, . . . ,m.

Step 2: Record the Ri
x (i = 1, . . . , s; x = 1, . . . ,m).

Step 3: For each supplier i(i = 1, . . . , s) compute

δi =
m∑
x=1

Ri
x

Step 4: Sort the list (δ) in ascending order with

i∗ = ArgMini=1,...,sδi

being the supplier at the top of the list and δ̃ its corresponding ordered list
with

δ̃(1) = i∗
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As an example consider data set1 where positions of the suppliers in
the lists of AHP, TOPSIS and VIKOR are presented in Table 3.31. The
alternative suppliers are ranked based on the sum of the position values in
ascending order in Table 3.32. Here, supplier E receives the smallest total
value of 3 resulting in supplier E being at the top of the list whereas suppliers
C and I at the bottom. It is worth noting that it may not, in some situations,
be possible to achieve full ranking with RDBR because of the existence of
ties as shown by I and C. Though these two suppliers happen to be at the
bottom of the list and hence may not affect the decision, such an occurrence
of tie could also occur with suppliers at the top of the list where the decision
could be more critical. The score-based methods that we present next are
able to differentiate more between the alternatives.

Alternatives AHP TOPSIS VIKOR TOTAL
Supplier A 4 4 4 12
Supplier B 7 7 7 21
Supplier C 10 10 8 28
Supplier D 3 3 2 7
Supplier E 1 1 1 3
Supplier F 6 5 5 16
Supplier G 5 6 6 17
Supplier H 8 8 9 25
Supplier I 9 9 10 28
Supplier J 2 3 3 8

Table 3.31: Positions of the suppliers in the list of the methods for Data Set1
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Alternatives (i) TOTAL (δi)
Supplier E 3
Supplier D 7
Supplier J 8
Supplier A 12
Supplier F 16
Supplier G 17
Supplier B 21
Supplier H 25
Supplier C 28
Supplier I 28

Table 3.32: Rank of alternatives based on total position for Data Set 1

In brief, the new list is given in Table 3.32. It is worth noting that this
list differs from each of the best lists found by the individual methods.

3.5.2 SBDR

In this section, we use the score as our measure instead of the rank. Three
different versions of the score based rule are presented. In the first version,
the score of the alternative in each method is considered only. On the other
hand, in the second version, the position of the alternative is also considered.
In the last version, in addition to the score and the position of the alternative
in the lists, a preference weight of the methods is introduced. These three
versions are presented in the following subsections.

Additional notations:
αx: weight of method x; x = 1, . . . ,m.
Sx: Ranked scores of suppliers according to the xth method with Six de-

noting the score of the ith supplier by method x.
βi: Total score of ith supplier based on the score based deterministic rule.

Variant 1- The SBDR Algorithm

In this initial version, we sum up the scores of the alternatives in results of
the methods and rank the alternatives in descending order based on these
total scores. The steps of this technique which we call SBDR for short are
summarized as follows:

Step 1: For each method x find the ranked list Sx; x = 1, . . . ,m
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Step 2: Record Six(x = 1, . . . ,m; i = 1, . . . , s)

Step 3: Compute

βi =
m∑
x=1

Six i = 1, . . . , s (3.26)

Step 4: Sort the list in descending order with

i∗ = ArgMax
i=1,...,m

βi (3.27)

and β̃ being the ordered list of the suppliers with β̃(1) = i∗

Illustrative Example 3

The same example is considered here. Alternatives are ranked based on
equations 3.26 and 3.27. The individual scores for each supplier under each
of the three methods including their total score are given in Table 3.33. The
suppliers are then sorted based on their total score and a new ranking list
of suppliers is shown in Table 3.34. Here, supplier E is at the top of the list
whereas C is at the bottom.

Alternatives AHP TOPSIS VIKOR TOTAL
Supplier A 0.1546 0.1381 0.1903 0.4830
Supplier B 0.0271 0.0331 0.0023 0.0625
Supplier C 0.0215 0.0329 0 0.0543
Supplier D 0.1819 0.1701 0.2176 0.5696
Supplier E 0.2840 0.3059 0.3430 0.9329
Supplier F 0.0476 0.0452 0.0242 0.1170
Supplier G 0.0513 0.0418 0.0211 0.1143
Supplier H 0.0235 0.0329 0 0.0563
Supplier I 0.0234 0.0329 0 0.0563
Supplier J 0.1852 0.1671 0.2014 0.5536

Table 3.33: Total Scores of Alternatives in Different Methods for Data Set 1
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Alternatives TOTAL
Supplier E 0.9329
Supplier D 0.5696
Supplier J 0.5536
Supplier A 0.4830
Supplier F 0.1170
Supplier G 0.1143
Supplier B 0.0625
Supplier H 0.0563
Supplier I 0.0563
Supplier C 0.0543

Table 3.34: Ranking based on Total Score for Data Set 1

Variant 2- The incorporation of the positions of the alternatives in
SBDR (SBDRP)

In this version, position of the alternative is also considered. In other words,
this variant is variant one with the addition of the positions of the alterna-
tives. The position weight of each alternative is multiplied by the score of
the alternative and alternatives are then ranked in descending order.

This algorithm which, we call the SBDRP algorithm, is similar to the
SBDR algorithm described earlier except in Step 3, βi of eq. 3.26 is replaced
by eq. 3.28.

βi =
m∑
x=1

wixS
i
x (3.28)

Illustrative Example 4

Using the same example the alternatives are ranked based on the βi values
found by eq. 3.28 instead. The summary results are given in Table 3.35.
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Alternatives TOTAL
Supplier E 0.9329
Supplier D 0.2545
Supplier J 0.2154
Supplier A 0.1207
Supplier F 0.0218
Supplier G 0.0208
Supplier B 0.0089
Supplier H 0.0070
Supplier I 0.0063
Supplier C 0.0054

Table 3.35: Ranking based on Total Score and Position for Data Set 1

Variant 3- The incorporation of the position of the alternatives and
the preferences for the MCDM methods in SBDR (SBDRPP)

In this version, in addition to using the position and score of the alternatives
as in variant 2, the weights of the methods are also considered. This is in
case the decision makers have some preferences among the methods. It is
important to stress that solving MCDM problems, often requires additional
preference information from a decision maker. In this experiment, for sim-
plicity we reflect this aspect by generating random weights a decision maker
would assign to a given method and hence to its criteria. Due to the high
degree of subjectivity of the decision makers and the appropriateness of a
given method for a given decision problem, different ways of determining
these weights could be worth examining, some of which are highlighted in
the suggestion Section.

This algorithm which we call the SBDRPP algorithm is also similar to
the SBDR algorithm where Steps 1,2 and 4 are left unchanged except Step
3 where eq. 3.26 is replaced by eq. 3.29.

βi =
m∑
x=1

αxw
i
xS

i
x (3.29)

Illustrative Example 5

We also used the same example here. For this data set, we generated
preferences of the decision makers(α) randomly as in the below: α1 = 0.166
α2 = 0.666 α3 = 0.166

The final results are summarized in Table 3.36.
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Alternatives TOTAL
Supplier E 0.3085
Supplier D 0.0849
Supplier J 0.0637
Supplier A 0.0374
Supplier F 0.0082
Supplier G 0.0069
Supplier B 0.0039
Supplier H 0.0032
Supplier I 0.0029
Supplier C 0.0025

Table 3.36: Ranking based on Total Score, Position and Weight of the Meth-
ods for Data Set 1

3.6 Computational Experiments

The proposed deterministic and integrated approaches, namely, SBDR, SB-
DRP and SBDRPP are tested on the 10 data sets obtained by our data set
generator described in the previous section. New ranking lists are obtained
and their respective deviations from the original lists derived by the individ-
ual methods, namely, AHP, TOPSIS and VIKOR are evaluated. Note that
the results of the rank based algorithm RBDR will provide a set of lists each
of which dominates the ones found by the individual methods whose perfor-
mances, excluding RBDR, is shown in Table 3.29. For simplicity, a similar
table with RBDR scoring 10 and the others having their original values in-
creased accordingly, is not reproduced here. This section will therefore focus
on the performance of the three score-based variants when compared against
the individual methods.

3.6.1 Individual Methods vs. SBDR

The total deviations of the lists according to the score-based deterministic
rule and the three individual methods are presented in Table 3.37. As shown
in this table, in every run, the deviation of the list found by the proposed
algorithm SBDR is less than or equal to the deviations of the other individ-
ual methods. For convenience, the average results of the deviations of each
method are also computed, with the best represented by ’bold’. The overall
average percentage deviation from the best is computed as

81



Overall Average Deviation (%) = 100×(Average(method)-Best average)/Best
average

with Average(method) representing the average deviation of a given method
and the Best average refers to the smallest average over all the four methods.
The results in Table 3.37 demonstrate that SBDR is robust and outperforms
the other individual methods by a large margin. For instance, TOPSIS which
is the best individual method is 45% worse than SBDR whereas AHP and
VIKOR are 90% and 74% worse than SBDR respectively.

AHP TOPSIS VIKOR SBDR

Data Set 1 0.00434 0.00067 0.00074 0.00067

Data Set 2 0 0.00037 0.00099 0

Data Set 3 0.26752 0.05504 0.08184 0.04699

Data Set 4 0.11932 0.09823 0.09708 0.08484

Data Set 5 0.00066 0.00122 0.00122 0.00033

Data Set 6 0.00082 0.02881 0.00225 0.00082

Data Set 7 0.00143 0.00243 0.00243 0.00143

Data Set 8 0.09275 0.08276 0.08276 0.03729

Data Set 9 0.13509 0.11873 0.26411 0.11061

Data Set 10 0.29880 0.31251 0.30785 0.20029

Average 0.09207 0.07008 0.08413 0.04833

Overall Average Deviation (%) 90.51 45.00 74.28 0.00

Table 3.37: Deviation results of AHP, TOPSIS, VIKOR and SBDR

3.6.2 Individual Methods vs. SBDRP

The SBDRP algorithm is also tested on the same 10 generated data sets
resulting in new ranking lists. A comparison of the deviations of the proposed
algorithm SBDRP and the individual methods is given in Table 3.37. The
deviation obtained by SBDRP is less than or equal to the deviations of the
other three methods in each run. This is a similar pattern shown by the
original SBDR algorithm. According to the average deviations over the 10
runs, SBDRP is more effective than the AHP, TOPSIS and VIKOR as it
yields the smallest deviation individually and obviously on average. For
clarity, the best value is shown in ’bold’. With respect to the overall average
deviation TOPSIS scores again as the best individual performer with over
18% worse than SBDRP whereas AHP and VIKOR have a relatively poorer
performances with 110% and over 41% worse than SBDRP respectively.
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AHP TOPSIS VIKOR SBDRP

Data Set 1 0.02594 0.01069 0.01077 0.01069

Data Set 2 0.00001 0.00012 0.00062 0.00001

Data Set 3 0.85326 0.25020 0.39873 0.25020

Data Set 4 0.57181 0.25416 0.25767 0.25767

Data Set 5 0.00048 0.00041 0.00041 0.00025

Data Set 6 0.01957 0.06041 0.02443 0.01744

Data Set 7 0.04214 0.01839 0.01839 0.01839

Data Set 8 0.66163 0.30965 0.30965 0.28615

Data Set 9 0.59683 0.49525 0.77675 0.45946

Data Set 10 0.80481 0.61952 0.61751 0.40284

Average 0.35765 0.20188 0.24149 0.17031

Overall Average Deviation (%) 110.00 18.54 41.79 0.00

Table 3.38: Deviation results of AHP, TOPSIS, VIKOR and SBDRP

3.6.3 Individual Methods vs. SBDRPP

The third variant namely the SBDRPP algorithm is also tested on the 10
generated data sets. The comparison of the deviations is given in Table
3.37. The deviation found with this version is also equal or less than the
other three methods in each data set except data set3. In this particular
data set, the deviation of TOPSIS is slightly smaller than our proposed
method. This is mainly due to the large weight associated with TOPSIS.
However, the average deviation of SBDRPP is still relatively smaller than
the other three MCDM methods, with the best result shown in ’bold’. Again
with respect to the overall average performance, TOPSIS is found to be the
best individual method with over 11% worse than SBDRPP while AHP and
VIKOR produce nearly 89% and over 40% relatively poorer performances
compared to SBDRPP.
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AHP TOPSIS VIKOR SBDRPP

Data Set 1 0.02867 0.01069 0.01077 0.01069

Data Set 2 0.00001 0.00012 0.00062 0.00001

Data Set 3 0.88673 0.25135 0.39162 0.25241

Data Set 4 0.57831 0.25462 0.25758 0.24978

Data Set 5 0.00049 0.00040 0.00040 0.00025

Data Set 6 0.02222 0.05348 0.02787 0.01996

Data Set 7 0.03975 0.01839 0.01839 0.01839

Data Set 8 0.70054 0.30729 0.30729 0.28570

Data Set 9 0.56942 0.48809 0.92110 0.46245

Data Set 10 0.74836 0.72077 0.71858 0.59221

Average 0.35745 0.21052 0.26542 0.18919

Overall Average Deviation (%) 88.94 11.27 40.29 0.00

Table 3.39: Deviation results of AHP, TOPSIS, VIKOR and SBDRPP

3.7 Summary

We presented an effective deterministic and integrated approach which takes
into account the results of the different individual ranking methods with the
aim to demonstrate that relying on one individual method can be misleading
to decision makers. For illustration, the performances of three commonly
used MCDM approaches, namely, AHP, TOPSIS and VIKOR are investi-
gated. This is achieved by designing an approach that considers the score
and rank based regret measures. We show that our approach outperforms the
individual methods resulting in providing a relatively more robust outcome
for the decision maker.

For example, in terms of the overall average deviation our approach out-
performs the best individual method, namely, TOPSIS by at least 11% and
at most by 45%. On the other hand, AHP and VIKOR produced relatively
poorer performances compared to the proposed approach reaching, in some
cases, over 100% deterioration for AHP and over 41% for VIKOR.

In summary, through these empirical experiments, we demonstrate that
it is much better not to rely on one MCDM method only when it comes to
supplier selection. Some aspects on how to enhance the proposed approach
are provided in the last chapter of this dissertation under the suggestion
section.

The next chapter will deal with the case where there is a lack of expert
knowledge using Bayesian networks.
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Chapter 4

Integration of MCDM Methods
& Bayesian Networks for
Supplier Selection with
Incomplete Expert Knowledge

The integrated and deterministic approach in the previous chapter is based
on the assumption that there is complete knowledge. In this chapter, we
explore the case when that assumption is not always valid leading to a lack
of expert knowledge. To achieve that we will integrate MCDM methods
and Bayesian Networks. Illustrative example is provided throughout and
computational results given. We first start by presenting the strengths and
weakness of some of the MCDM methods that we use in this work, followed
by the main ingredients that form the basis of the methodology. Our novel
approach is then presented in Section 3 and the case study in Section 4 and
a scenario analysis in Section 5 using new performance measures.

4.1 Overview of the owning Expert Knowl-

edge and Dynamic Structure of Supplier

Selection Problem

In many logistical problems such as the supplier selection problem, data is
not always readily available or is often rather limited. For instance, when
new suppliers are considered, some performance criteria cannot be truly de-
termined and some sellers may not want to share all information or spend
resources on gathering information sought by buyers (Igarashi et al. 2013).
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One way forward is for the decision makers to take advantage of the experts’
knowledge and perception in such circumstances. The buyer may be able to
gather data about some criteria, such as price and reputation through market
research. On the other hand, the buyer may form a judgement about some
criteria like cooperation and communication abilities based on the purchas-
ing interviews. In addition, a buyer may ask for sample parts which can be
used to evaluate the suppliers in terms of product quality, delivery perfor-
mance, among others. Though it is not possible to gain knowledge about the
supplier performance based on the sample parts, such as reliability and price
stability. Our aim is to develop a robust approach which takes into account
incomplete expert knowledge. We believe this approach is important for ef-
fective decision making. Multi criteria decision making methods (MCDM) as
shown earlier consider expert knowledge, however,they are not able to work
with incomplete expert knowledge and these are often deterministic methods
that are not designed to deal with uncertainty. However, supplier selection
problem has uncertain and dynamic environment. Uncertainty must be con-
sidered and alternative suppliers must be evaluated dynamically. Bayesian
Networks(BNs) are able to work with incomplete expert knowledge. Ac-
cording to the prior belief of the buyers about some evaluation criteria, BNs
estimate the other criteria. When buyers have some new evidence about
criteria, it updates the network based on the obtained evidence dynamically.

One philosophy is that experts are encouraged to submit their knowledge
quantitatively although they may feel more comfortable providing such in-
formation qualitatively. The tendency of a qualitative submission and the
uncertainty in expert knowledge prompt to integrate MCDMs with fuzzy ap-
proach (Jain et al. 2018, Chang 2019, Mohammed, Harris, Soroka & Nujoom
2019). Govindan et al. (2015) emphasize the fuzzy prevalence in the review of
multi-criteria decision making approaches for green supplier evaluation and
selection. There is a lot of research on fuzzy approaches. Here, the idea is
to transform linguistic expressions of experts such as low, medium and high
into a trapezoidal or triangular type membership (Zhang et al. 2017, Liu,
Eckert, Yannou-Le Bris & Petit 2019, Darbari et al. 2019). On the other
hand, Liu & Li (2019) use multi attribute decision making method based on
generalized maclaurin symmetric mean aggergation operators for probabilis-
tic linguistic information. In this paper, we propose to use Ranked Nodes to
model qualitative judgements of experts in Bayesian Networks (BNs). This
type of network has been shown to provide effective tools for decision making
based on expert knowledge (Fenton et al. 2007). BNs have the advantage of
being able to deal with uncertainty while considering the causal relationship
between the decision criteria (Jensen & Nielsen 2013). For example, Dogan
& Aydin (2011b) integrated BNs and Total Cost of Ownership for the sup-
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plier selection problem in the automotive industry while Hosseini & Ivanov
(2019) used BNs for the resilience measure of supply networks.

In case data is not available or limited, expert knowledge becomes an
invaluable alternative source of information. However, full expert knowl-
edge is not always available. BNs has the flexibility to work even if there
is incomplete knowledge. This is usually achieved by estimating the missing
knowledge based on the causal relationship between the criteria. This can
be considered as a dynamic supplier evaluation tool. In other words, when a
buyer has a new evidence about a given criterion, BNs update the entries of
the network based on the entered evidence as posterior probabilities. This
demonstrates that BNs are effective tools to evaluate alternative suppliers
based on the causal relationship between the selection criteria. However, it
is worth stressing that there is no systematic way of determining the causal
structure of BNs. Kaya & Yet (2019) adopted DEMATEL to resolve this
issue with DEMATEL being used to determine the cause-effect relationship
between the criteria. Very recently, Li et al. (2020) also used DEMATEL for
the supplier selection problem in a Chinese Textile Industry to determine the
most influential criteria for the evaluation of suppliers based on the cause-
effect relationship between the criteria. Kaya & Yet (2019) determined the
causal relationship between the criteria based on DEMATEL and then pa-
rameterized the BN with Ranked Nodes systematically. DEMATEL results
are also used for parameters of Ranked Nodes. In this network, the buyer
can evaluate alternative suppliers based on each criterion. However, it is
worth noting that the network does not rank the alternatives based on the
overall performance. In this study, we propose to extend the work of Kaya
& Yet (2019) by producing a ranking of the suppliers. To achieve this, we
incorporate TOPSIS into our methodology. TOPSIS is one of the commonly
used MCDM methods for the supplier selection problem. It works based on
distance to the ideal solution, see Wang et al. (2009), Mohammed (2019).
Inputs of TOPSIS are weights of the criteria and the evaluation matrix of
the alternatives based on the criteria. In case there is a lack of data, the
evaluation of the alternatives based on criteria is carried out on a scale that
needs to be determined. Mostly, as experts prefer to submit their knowledge
by linguistic expressions, fuzzy approach is usually integrated with TOPSIS
(Nilashi et al. 2019, Venkatesh et al. 2019). As the full expert knowledge is
not always possible, BN provides a probabilistic full evaluation matrix for
TOPSIS based on the expert knowledge which is submitted with linguistic
expressions. The missing knowledge is incorporated based on the causal rela-
tionship between the criteria which then provides a complete and an updated
evaluation matrix.
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Another input of TOPSIS is the weights of the decision criteria. It is hard
to elicit these weights quantitatively. Liu & Wan (2019) use ELECTRE I and
III for the weights of criteria. One way forward, which is commonly adopted
in the literature, is to integrate AHP with TOPSIS for the elicitation of the
weights (Jain et al. 2018, Akgün & Erdal 2019). AHP is the most common
MCDM method for supplier selection (Chai et al. 2013, Govindan et al. 2015,
Kahraman et al. 2003). It works based on the pairwise comparison of criteria
and alternatives (Saaty 2008). Rodrigues et al. (2014) compares TOPSIS and
AHP methods for the supplier selection problem and shows that TOPSIS is
more practical in terms of the number of criteria, alternatives and decision
makers, and the agility in decision as AHP has a hierarchical structure and it
process pairwise comparison at each level. In this study, we propose TOPSIS
as a ranking approach and AHP for the elicitation of the weights of criteria
for TOPSIS. Recently, Singh et al. (2018), Venkatesh et al. (2019) also used
AHP for the elicitation of weights of the criteria for the upplier selection
problem. The elicitation of the weights of the criteria can also be determined
by DEMATEL (Baykasoglu et al. 2013).

In the case study performed in this paper, the weights of the criteria are
initially calculated by both DEMATEL and AHP for a better understanding.
However, the discussion with the experts led to a conclusion that the AHP-
based results represent their preferences much more than those derived by
DEMATEL. It is also worth noting that DEMATEL aims to determine the
weights based on the cause and effect relationships and prioritizes the cause
attributes than the effect attributes and AHP on the other hand prioritizes
the criteria based on the relative preferences of the experts. It is therefore
appropriate to take advantages of the strengths of these two methods by
using DEMATEL for building causal graph and AHP for the calculation of
the weights of the criteria.

Integrated approaches compensate the limitations of individual methods.
Büyüközkan & Ifi (2012) integrated fuzzy DEMATEL, fuzzy ANP and fuzzy
TOPSIS methods for the evaluation of green suppliers. DEMATEL deter-
mines causal relations between criteria, ANP compares alternatives pairwise
and TOPSIS ranks the alternatives. Fuzzy hybridization is also used in this
study due to the vagueness of expert judgements. On the other hand, Math-
ematical Programming techniques (MP) are effective methods as they give
exact and objective solutions (Moheb-Alizadeh & Handfield 2019, Izadikhah
& Farzipoor Saen 2019). However, they are not easily extendable to deal
with uncertainty. AI techniques are effective techniques for dealing with un-
certainty and giving updated and dynamic solutions(Luan et al. 2019). The
integration of MCDM, MP and AI methods provide more effective meth-
ods in which the weakness of a given method is compensated by the others,
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(Ramanathan 2007, Dogan & Aydin 2011b, Liu, Quan, Li & Wang 2019)
In this study, we combined the strengths of MCDM and BN in a most ef-

fective way. We use DEMATEL to elicit the causal graph of the BN based on
the causal knowledge of the experts. BN provides the evaluation of alterna-
tives based on the decision criteria which make up the initial decision matrix
of TOPSIS. We then parameterize BN using Ranked Nodes which allows the
experts to submit their knowledge with linguistic expressions. We propose
AHP to determine the weights of the decision criteria and TOPSIS to rank
the alternatives. A supplier selection case study is conducted to illustrate the
effectiveness of the proposed approach. Two evaluation measures, namely,
the number of mismatches and the distance due to the mismatch are devel-
oped to assess the performance of the proposed approach. A scenario analysis
with 5% to 20% of missing values with an increment of 5% is conducted to
demonstrate that our approach remains robust as the level of missing values
increases. The strengths and limitations of the methods used in the pro-
posed approach are summarised in Figure 4.1. This integration provides a
systematic and user friendly way to evaluate the alternatives. It helps the
experts to submit their available knowledge with linguistic expressions and
calculates the relative performances of the suppliers in a probabilistic way.
One of the important contributions of this study is the ability of working
with incomplete knowledge and making reliable probabilistic estimations.

Figure 4.1: Strengths and Limitations of the Methods used in the Proposed
Approach
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The main contributions of this study are as follows:

(i) An effective integration of MCDM methods and BNs for multi criteria
decision problems is proposed.

(ii) This novel approach is able to work with both complete and incomplete
expert knowledge.

(iii) Ranked Nodes are used for easy elicitation of probabilities of BN based
on linguistic expressions of experts.

(iv) The value of the knowledge is analysed and a scenario analysis is con-
ducted with interesting results.

The rest of the chapter is organised as follows. The techniques that
are used in this study are outlined in Section 2 followed by the proposed
approach in Section 3. An illustrative example using a case study is provided
in Section 4 and a scenario analysis is presented in Section 5. Our conclusion
and suggestions are provided in the final section.

4.2 Main Ingredients of the Methodology

The proposed approach will be described in the next section. Here, we present
some of the techniques that will be used. The following three MCDM ap-
proaches namely, the AHP, TOPSIS and DEMATEL will be incorporated
into our methodology. We also use Bayesian Networks (BNs) with Ranked
Nodes (RNs). As these are relatively less known, we first provide a brief
description of BNs and how RNs are implemented.

4.2.1 MCDM Methods

AHP and TOPSIS methods are explained in details in the previous chapter.
In addition these methods, we use DEMATEL in the proposed approach.

DEMATEL

DEMATEL is an MCDM method used for determining the causal relationship
between the criteria and strengths of the relationship. It works based on two
matrices: direct relation matrix which shows the direct relationship between
the criteria and total relation matrix which shows the total direct and indirect
influences between the criteria (Chang et al. 2011). The detailed steps of
DEMATEL is given in the following (Kaya & Yet 2019):
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1. The direct relation matrix A is built by asking experts the influence
of decision criteria on each other in scale of 0-4. The average of the
responses of the experts are recorded.

2. A normalized direct relation matrix M is obtained by dividing values
of the direct relation matrix A with the maximum of sum of rows and
columns:

M = A ∗min(
1

max
∑n

i aij
,

1

max
∑n

j aij
) (4.1)

where aij is the average direct relation matrix value for row i and col-
umn j.

3. The total relation matrix T represents the sum of direct and indirect
relations:

T = M +M2 +M3 +M4 + . . . (4.2)

It is calculated as follows:

T = M(I −M)−1 (4.3)

where I is the identity matrix.

4. For each criterion, the sum of the associated row R and column C is
computed. If (R − C) > 0, the criterion is defined as cause criterion,
else the criterion is defined as effect criterion. Strengths of the criteria
are defined by (R+C) values.

5. The threshold value is determined by the experts to determine the
causal effects between the criteria. The influence values which are
greater than the threshold value accepted as causal influences and
causal network is built.

Figure 4.2 shows an example causal graph built by DEMATEL(Kaya
& Yet 2019). The causal graph with DEMATEL is built based on the
total relation matrix of DEMATEL. However, the causal graph of BN
cannot be built based on total relation matrix as the total relation
matrix includes direct and indirect relations and the causal graph of
BN can only include direct relations. DEMATEL results need to be
transformed into the causal graph of BN. We adopted the methodology
of (Kaya & Yet 2019). Direct relation matrix which consists of only
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direct relations is used for building causal graph of BN and matrix
values are used for parameterization of BN.

Figure 4.2: Example DEMATEL Graph

4.2.2 Bayesian Networks

Bayesian Networks are probabilistic graphical decision making tools (Fenton
& Neil 2013). They work based on Bayes’ Theorem and make inferences
based on the prior beliefs of experts. They are able to make inferences
even with partial evidence. When new evidence is obtained, BNs calculate
the posterior probabilities and update all the network based on the new
evidence. BNs are comprised of nodes and arcs which represent variables
and causal relationship between variables respectively. Each node has its
own Node Probability Table(NPT) which includes the conditional probability
distribution parameters of that node (Kaya & Yet 2019). It calculates the
joint probability distributions based on Bayes Theorem. Joint probability
distributions are calculated based on the parent and child relations of the
nodes. Example BN for X, Y, Z and T events is given in Figure 4.3.
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Figure 4.3: Example BN

The joint probability distribution of these events is calculated as below:
P(X,Y,Z,T)= P(X|T)P(Y|X,T)P(Z|X,T)P(T)
BNs are acyclic directed graphical networks. Cycles are not allowed be-

tween the nodes. BNs have the advantage in terms of representation of
causal relationships between variables graphically. It analyses the causal re-
lationship between variables probabilistically and systematically. BNs have
also the flexibility in working with expert knowledge resulting in producing
updated results based on the obtained new evidences.

4.2.3 Ranked Nodes

Ranked Nodes (RNs) are expert friendly tools of BNs for decision making
based on human judgement. RNs work based on doubly Truncated Nor-
mal (TNormal) distribution with scaled states [0-1] and approximate this
distribution with a discrete BN node with equal width intervals (Fenton
et al. 2007). RNs work with weighted functions such as the weighted mean
(WMEAN), the weighted minimum (WMIN) and the weighted maximum
(WMAX). These three measures are used to determine the central tendency
of child node depending on the parent nodes.

An illustrative example is displayed in Figure 4.4 by (Kaya & Yet 2019).
This shows a TNormal distribution with mean 0.7 and variance 0.1 on the
left and ranked node approximation of this distribution on the right. This
ranked node has 5 states, so it approximates the probability density under 5
equal width intervals (i.e., [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8) and [0.8,1]).
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Figure 4.4: Graph of an example node with TNormal Distribution(left) and
with Ranked Nodes(right)

The main advantage of ranked nodes is that they require fewer parameters
than their node probability tables (NPTs) counterparts. Besides, RNs are
flexible enough to define a wide variety of shapes. An NPT has probability
values of a node for each state combination of its parents. Therefore, the
number of parameters in an NPT is the cartesian product of the number of
its parents’ states and its states. For example, the BN model in Figure 4.5
has three variables X, Y, Z where X is dependent on Y and Z, and each node
has 5 states. Without using RNs, the number of probability values that need
to be elicited from experts for the NPT of X is therefore 53 = 125 as seen in
Figure 4.6. This is not only a time consuming task for the experts but can
also be confusing resulting in misleading information.

Figure 4.5: Example Network
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Figure 4.6: NPT of X

The construction of NPTs by ranked nodes consists of the following steps.
- Firstly, the states of a ranked node are determined.
- The type of the weighted function to be adopted is selected.
- The weights and variances of its parents are determined.
- NPTs are then calculated based on the TNormal approximation. This

is performed automatically by the software AgenaRisk (Fenton et al. (2007)).
For instance, if we use ranked nodes for our example model in Figure 4.5,

we need to define 3 parameters. These include the weights of Y and Z and
the variance of X to define NPT of X as shown in Figure 4.7.

Figure 4.7: Parameters for NPT of X with ranked nodes
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4.3 A Novel Integrated Approach

We develop an integrated approach that combines DEMATEL, AHP, TOP-
SIS and BNs for the supplier selection problem. We first provide an overview
of the algorithm, followed by the algorithm itself and some explanation of
the main steps.

4.3.1 An Overview

We adopt an approach that consists of four stages,

1. Use DEMATEL to determine the causal graph of BN,

2. Apply AHP to find the weights of the criteria,

3. Implement BNs to provide the evaluation matrix of alternatives for
TOPSIS,

4. Use TOPSIS to rank the alternatives.

A basic flow chart is given in Figure 4.8 and the main steps of the algo-
rithm which we refer to as ”MCDM-BN” are summarized in Figure 4.9. It
is worth noting that this approach can easily be made applicable for other
multi-criteria type problems.

Figure 4.8: Flow Chart of the MCDM and BN Integrated Approach(MCDM-
BN)
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4.3.2 The MCDM-BN Algorithm

Figure 4.9 describes the summary of the MCDM-BN algorithm.

1. Identify the decision criteria

2. Find the weights of the criteria using AHP

3. Determine the causal relationship between the decision criteria
by DEMATEL

4. Define the states of BN and construct the BN

5. Parameterize the BN with Ranked Nodes

6. Elicit the decision matrix from the experts

7. Estimate the missing values in the decision matrix using BN

8. Rank the alternatives with TOPSIS.

Figure 4.9: The Integrated MCDM-BN Algorithm

4.3.3 Explanation of the Main Steps of the MCDM-
BN Algorithm

In Step 1, experts determine the main criteria for the supplier selection de-
cision.

In Step 2, the relative importance of the decision criteria are found us-
ing the pairwise comparison of criteria of AHP. There are obviously several
other available methods for determining the weights of the criteria. These
include for instance the entropy method, Step-wise Weight Assessment Ratio
Analysis (SWARA) and Simos method (?). DEMATEL can also be applied
as a weighting method (Baykasoglu et al. 2013). As we already use DEMA-
TEL in our proposed approach for the construction of BNs, we also elicit the
weights of the criteria based on DEMATEL and evaluate the results with the
experts in the case study. In the last step of DEMATEL, the total relation
matrix(T) is obtained. This matrix has two important indicators, namely,
the importance indicator(t+) and the relation indicator(t−) which are sums
of and differences between the rows and columns of the total relation matrix,
respectively. The weights of the criteria which are represented by wi are then
calculated with the following formulas:
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zi = ((t+)
2

+ (t−)
2
)
1/2

(4.4)

wi =
zi∑n
i=1 zi

(4.5)

We conducted a DEMATEL survey with purchasing experts. The total
relation matrix(T) is presented in Table 4.1 and the weights of the criteria
which are calculated based on DEMATEL are given in Table 4.2.

Product Quality Delivery Performance Price Cooperation Reputation
Product Quality 0 0.261 0.526 0 0.505

Delivery Performance 0 0 0.399 0 0.296
Price 0 0 0.015 0 0.088

Cooperation 0.217 0.405 0.276 0 0.345
Reputation 0 0 0.177 0 0.015

Table 4.1: Total Relation Matrix

t+ t− wi
Product Quality 1.509 1.075 0.210

Delivery Performance 1.360 0.029 0.160
Price 1.498 -1.290 0.230

Cooperation 1.243 1.243 0.200
Reputation 1.441 -1.057 0.200

Table 4.2: Weights of the criteria by DEMATEL

Kobryń (2017) produced an interesting modification of the formulas of
the calculation of the weights of the criteria using DEMATEL. These are
defined in the following equations:

t̄i =
1

2
(t+ + t−) (4.6)

wi =
t̄i∑n
i=1 t̄i

(4.7)

The corresponding results related to the modified DEMATEL rule as
defined by Kobryń (2017) are presented in Table 4.3.
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t̄i wi
Product Quality 1.292 0.370

Delivery Performance 0.695 0.200
Price 0.104 0.030

Cooperation 1.243 0.350
Reputation 0.192 0.050

Table 4.3: Weights of the criteria by DEMATEL using the modified rule

We also calculated the weights of the criteria based on the AHP in Step
2 of the case study. The results are given in Table 4.5.

We evaluated the results of these two strategies with the experts. They
state that the weights elicited by AHP represent better their preferences.
DEMATEL is used to determine the cause-effect relationships and gives more
importance to the criteria which have cause-effect on the other criteria. Based
on the above information, we therefore opted to use AHP for the elicitation
of the weights of the criteria.

In Step 3, BNs evaluate the alternatives based on the causal relationship
between the criteria. When any evidence is entered to any criterion, BNs
update the rest of the network based on the causal relationship between the
criteria which are determined by DEMATEL. However, it is worth noting
that the initial causal graph which was obtained by DEMATEL may not
be a convenient causal network for BNs as it may include cycles. After
the construction of the initial causal graph, cycles are eliminated using the
interesting rules constructed by Kaya & Yet (2019).

In Step 4, the causal graph of BN is built based on the causal graph
obtained from DEMATEL where the states of the nodes in BN are also
determined.

In Step 5, we use Ranked Nodes to parameterize the BN. This is mainly
because these are easy to elicit the expert knowledge from experts as a pa-
rameter of BN. The mean function of Ranked Nodes, known as the WMEAN
function, is used as the Ranked Node function. The central tendency and
variance of child nodes are determined with the weights and variances of the
parent nodes via the WMEAN function. The weights of the parent nodes
are then elicited from the direct relation matrix of DEMATEL. On the other
hand, the variance values are summed for each child node and normalized
to the unit scale of TNormal Distribution. In this study, AgenaRisk soft-
ware is used to compute the BN model automatically where ranked nodes
are already inserted in the software.

In Step 6, the decision matrix is elicited from experts as it is one of the
inputs of TOPSIS. In this matrix, alternatives are evaluated based on the
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selection criteria by the experts. Experts may not have a complete knowledge
about all attributes of the suppliers. In this case, they submit their available
knowledge about the alternatives.

In Step 7, in case there are missing values in the decision matrix for
TOPSIS, BNs estimate these elements to complete the decision matrix.

In Step 8, TOPSIS uses the weights of the criteria and the decision ma-
trix as an input and proceed with the matrix calculations to compute the
geometric distance to the best and the worst alternatives. The alternatives
are then ranked based on the smallest distance to the best alternative and
the largest distance to the worst alternative.

4.4 Case Study

To illustrate the approach, we use the following example based on a case study
carried out with a forging company in Turkey. This company outsources ma-
chining operation and they have alternative suppliers. In this case study, we
evaluated the eight alternative suppliers used by the company, For simplicity,
we refer to these as Supplier A,..., Supplier H. We follow the step by step of
the approach as given in Figure 4.9.

1. Identify decision criteria: Experts determined the decision criteria as
product quality, delivery performance, price, cooperation and reputa-
tion based on the supplier selection criteria given in Kaya & Yet (2019).

2. Determine the weights of criteria: AHP was conducted to determine
the weights of the criteria. The pairwise comparison matrix of criteria
is presented in Table 4.4.

Criteria Product Quality Delivery Performance Price Cooperation Reputation
Product Quality 1 1 1 5 5

Delivery Performance 1 1 1 3 5
Price 1 1 1 3 5

Cooperation 1/5 1/3 1/3 1 3
Reputation 1/5 1/5 1/5 1/3 1

Table 4.4: Pairwise Comparison Matrix of the Criteria

After processing the matrix computations, the weights of the criteria
are obtained and presented in Table 4.5.
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Criteria Weight
Product Quality 0.31

Delivery Performance 0.27
Price 0.27

Cooperation 0.10
Reputation 0.05

Table 4.5: Weights of the Criteria

A consistency check is then conducted and the consistency index(CI)
is found as 0.028. As CI < 0.1, the judgements are considered as
consistent.

3. Determine the causal relationship between the decision criteria: Causal
relationships between criteria are determined by DEMATEL. We con-
ducted DEMATEL survey with purchasing experts from the company.
The direct relation matrix of the DEMATEL is presented in Table 4.6.

Criteria Product Quality Delivery Performance Price Cooperation Reputation
Product Quality 0 2 2.67 0 3

Delivery Performance 0 0 2.67 0 2
Price 0 0 0 0 0.67

Cooperation 1.67 2.67 0 0 1
Reputation 0 0 1.33 0 0

Table 4.6: Direct Relation Matrix

The threshold value is set to 2 by the experts in this case study. The
values which are greater than or equal to 2 are considered accepted as
direct causal relation between the corresponding criteria. According to
Table 4.6, there is a direct causal relation between product quality and
price, delivery performance and price, product quality and delivery
performance, cooperation and delivery performance, product quality
and reputation, and finally delivery performance and reputation. The
causal graph of the criteria is presented in Figure 4.10.

4. Construct BN and define its states : As mentioned earlier we use Ranked
Nodes. The states of the nodes are therefore determined in an ordinal
scale, namely, very high, high, medium, low and very low.
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Figure 4.10: Causal Graph

5. Parameterize the BN with Ranked Nodes : We propose to use Ranked
Nodes to parameterize the BN with WMEAN as the Ranked Node func-
tion as we also noted earlier. Weights of the parent nodes were elicited
from the direct relation matrix of DEMATEL. For example, accord-
ing to causal relationship between the criteria, the parents of price are
product quality and delivery performance where the weights of product
quality and delivery performance for mean of price node are 2.67 and
2.67. On the other hand, the variance values are summed for each child
node and normalized to the unit scale of the TNormal Distribution[0-1].
the variances of the values in the matrix are presented in Table 4.7.

Criteria Product Quality Delivery Performance Price Cooperation Reputation
Product Quality 0 1 0.33 0 0

Delivery Performance 0 0 0.33 0 1
Price 0 0 0 0 1.33

Cooperation 0.33 0.33 0 0 0
Reputation 0 0 2.33 0 0

Table 4.7: Variances of Criteria

The software AgenaRisk software (Fenton et al. 2007) is used auto-
matically computes the BN model. As an example, see a snapshot in
Figure 4.11.
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Figure 4.11: Ranked Nodes

6. Elicit the decision matrix from the experts : Decision makers submitted
their knowledge about the alternatives for each criterion on the five
point ordinal scale as very high, high, medium, low and very low. This
information is presented in Table 4.8. We then randomly deleted some
of the knowledge to make BN estimate the missing knowledge. The
evaluation of the alternatives with missing knowledge is given in Table
4.9. We finally entered the knowledge of the experts as evidence into
the BN as shown in Figure 4.12.
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Alternatives Product Quality Delivery Performance Price Cooperation Reputation
Supplier A Very High Very High Very High High Very High
Supplier B Very High High Very High High Very High
Supplier C Very High High Very High Medium Very High
Supplier D High Medium High Medium High
Supplier E High Medium High High Medium
Supplier F Medium Medium High Medium Medium
Supplier G Medium High High High Low
Supplier H Low Low Low High Low

Table 4.8: Evaluation of Suppliers based on Criteria

Alternatives Product Quality Delivery Performance Price Cooperation Reputation
Supplier A Very High Very High Very High - Very High
Supplier B Very High High Very High - Very High
Supplier C Very High High Very High Medium Very High
Supplier D High Medium High - -
Supplier E - Medium High High Medium
Supplier F Medium Medium High Medium Medium
Supplier G Medium High High - Low
Supplier H Low Low Low High Low

Table 4.9: Evaluation of Experts with missing knowledge denoted by ‘-’
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Figure 4.12: Example BN with Ranked Nodes for Supplier E

7. Estimate the missing values in the decision matrix : BNs submit their
knowledge about the alternative suppliers as provided in Table 4.9.

If there is missing knowledge, BN estimates the missing values. In
this case study, to validate this process we purposely deleted some of
these knowledge values randomly and make BN estimate these missing
values. For example, the elicitation of probability of product quality
for supplier E with BN by AgenaRisk software is presented in Figure
4.13. The full estimation of BN with incomplete knowledge is presented
Table 4.10. More explanation on this issue will be discussed in the next
section.
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Figure 4.13: Estimation of Probability of Product Quality for Supplier E

Alternatives Product Quality Delivery Performance Price Cooperation Reputation
Supplier A 0.90 0.90 0.90 0.70 0.90
Supplier B 0.90 0.70 0.90 0.55 0.90
Supplier C 0.90 0.70 0.90 0.50 0.90
Supplier D 0.70 0.50 0.70 0.44 0.61
Supplier E 0.61 0.50 0.70 0.50 0.50
Supplier F 0.50 0.50 0.70 0.50 0.50
Supplier G 0.50 0.70 0.70 0.66 0.30
Supplier H 0.30 0.30 0.30 0.70 0.30

Table 4.10: Probabilities of Criteria elicited from BN

8. Rank alternatives with TOPSIS : The weights of the criteria are ob-
tained by AHP and the decision matrix is given by BN as inputs for
TOPSIS which finally ranks the alternative suppliers. The results are
given in Table 4.11.
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Alternatives TOPSIS Score
Supplier A 0.63
Supplier B 0.57
Supplier C 0.57
Supplier G 0.46
Supplier D 0.46
Supplier E 0.41
Supplier H 0.37
Supplier F 0.33

Table 4.11: Ranking of Suppliers

4.5 Scenario Analysis for Knowledge Value

To assess the effects of the knowledge value a sensitivity analysis is conducted
by using various scenarios with different levels of missing values.

4.5.1 Performance Measures

We assess the robustness of the approach using the following two evaluation
measures:

a) Total number of mismatch (Tm)
Let n refer to the number of suppliers,
P̃i refers to the original or default position of the ith supplier(i.e., no

missing value); i = 1, . . . , n
Pi the position of the ith supplier in the new list when there are some

missing values; i = 1, . . . , n

Tm =
n∑
i=1

mi

where mi =

{
1, if Pi 6= P̃i i = 1, . . . , n

0, otherwise
(4.8)

b)Total distance of mismatch Dm

This refers to the sum of mismatch for each supplier which is defined as

Dm =
n∑
i=1

d(Pi, P̃i) =
n∑
i=1

| Pi − P̃i |
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with | Pi − P̃i | is the distance between Pi and P̃i; i = 1, . . . , n.

Illustrative Example

Firstly, we ranked the alternatives with complete knowledge and obtained
the list in Table 4.12. When we compare with the list in Table 4.11 which
has missing values, 3 mismatch items are generated which include Supplier
E, Supplier G, Supplier D. Their total position distance of mismatch items
is 4 as E mismatched by 2, G by 1 and D by 1.

Alternatives TOPSIS Score
Supplier A 0.63
Supplier B 0.57
Supplier C 0.57
Supplier E 0.46
Supplier G 0.46
Supplier D 0.46
Supplier H 0.37
Supplier F 0.33

Table 4.12: Ranking of Suppliers with Complete Knowledge

4.5.2 Statistical Analysis

We replicated the approach 10 times for these 8 supplier and 5 criteria while
varying the number of missing value from 5% to 20% with an increment of
5. Figure 4.14 shows the total number of mismatch whereas Figure 4.15
displays the total position distance of mismatch as the number of missing
value increases. According to both graphs, as one may expect, the total
distance and the number of mismatch increase with the number of missing
values. The marginal change appears to be relatively higher when the % of
missing values(mi) is low (ie 5%, 10%) and they slowly stabilise. In other
words, we have for mi = 5%, Tm = 2.4 & Dm = 3.2, these values increase
for mi = 10% to Tm = 3.6 & Dm = 4.8, and then their relative increase slow
down afterward.
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Figure 4.14: Effect of mismatch on % of missing values

Figure 4.15: Effect of average position on % of missing values
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4.6 Summary

In this study, we present an approach which integrates MCDM and BNs for
the supplier selection problem in case of incomplete knowledge. This is an
important facet within MCDM as one may not always have the chance to
acquire all the information required. Our approach uses TOPSIS to rank the
alternative suppliers with the weights of the selection criteria for TOPSIS
obtained by AHP. The initial evaluation matrix for TOPSIS is estimated
by BN. DEMATEL is used for determining the causal graphical structure
and parameterization of the BN. We developed two performance criteria of
mismatch, namely, the distance as well as the number of mismatches. A
sensitivity analysis using several levels of missing values, ranging from 5%
to 20% with an increment of 5%, is conducted. Interesting results show
that our approach is robust as the degree of mismatch does not deteriorate
significantly with the increase in the number of missing values.

The next chapter treats the order consolidation scheduling by first provide
the introduction of the problem and the necessary items that are required to
conduct the research.
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Chapter 5

Time-Critical Scheduling:
Problem Definition and the
Construction of all
configurations for consolidation
of pairs and triplets

5.1 Introduction

In this chapter, the order consolidation scheduling problem when time is
critical is investigated. We consider that the suppliers, here named the freight
or truck companies, are already identified either by the company or as by-
product of the results of the earlier chapters. The aim here is to optimise
this kind of scheduling problem. We first introduce the problem, then provide
the necessary notation, followed by the identification of all the configurations.
We first present the case of pair consolidation and extend the methodology to
triplets where we construct all the necessary configurations and define their
respective costs. A small example is also given to illustrate the construction
of these consolidations.

5.2 Problem Definition

In this study, we specifically work on time-critical freight logistics where
the orders have to be met by third party logistics companies in a short time.
Third party logistics companies (3PL) receive urgent orders and they have to
offer a competitive quote in a short time around 10-15 minutes. The company
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has to offer a quote which will make the customer choose this company but
at the same time yields the company profit. An illustration of such a typical
problem is given below in Figure 5.1.

Figure 5.1: Illustration of a typical problem definition

To be able to offer a competitive quote, scheduling of the orders must be
done effectively using freight companies known as truck suppliers. All avail-
able orders have to be considered and scheduled so to minimize the total
distance while maintaining the high level of service level. Another critical
point is the response time of the quote offer which has to be rather quick.
Therefore, we offer to consolidate orders and determine suitable transship-
ment points and perform consolidation of orders with and without transship-
ment in an effective and fast way. Note that this 3PL company can identify
all their truck companies before hand using their experience or the results of
our earlier chapters. In other words, we assume that these truck companies
are available to respond to the call of the company. In the first stage of our
study, we consider pair consolidation of orders as it is easier to implement in
practice while requiring relatively less computation time. This limitation to
pairs only was initially required by the company as they usually opt for di-
rect shipments instead to maintain their high level of quality of service. This
will be then extended to cater for triplets. For the sake of completeness we
consider that the chosen suppliers are at negligible distance to the collection
points.
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5.3 Case of Pair Consolidation

In this case, we propose to consolidate the orders as pairs with different
consolidation configurations to minimize the cost and maximize the service
level. The latter factor is defined by the quality of service that is provided as
well as the speed by which the quote offer is given. In other words, we aim
to determine the pairs to be consolidated and the best consolidation con-
figuration for the pairs which give the maximum saving. We first compute
the savings for all consolidation configurations of each possible pair of ship-
ments, as recently shown by Salhi et al. (2020). We perform a similar task
by extending to the case of triplets. This is, to the best of our knowledge,
the first time this is formally explained and formulated. Once these configu-
rations and their savings are determined, these will be used as input in our
mathematical formulations which will be developed in the next chapter. The
consolidation configurations and the corresponding costs and savings from
the consolidations among the non-consolidation case are given below after
the necessary notations are defined.

5.3.1 Notation

n : number of shipments, indexed by i(i = 1, .., n)
Ci : the collection location of shipment i(i = 1, .., n)
Di : the delivery location of shipment i(i = 1, .., n)
V = (Ci, Di); i = 1, .., n: the set of shipments with |V | = n and each ship-
ment i being defined by its collection and delivery locations Ci and Di;
i = 1, ..., n respectively
< : the set of regions, indexed by Rr;Rr ∈ <; r = 1, ..., |<|
K: the set of potential configurations of serving any two shipments (K =
{0, 1, 2, ..., 8}), indexed by v ∈ K with v = 0 referring to the original con-
figuration (no consolidation), v ∈ {1, ..., 4} for en-route consolidation and
v ∈ {5, ..., 8} for transshipment consolidation.
dLiLj : the distance(cost) between locations Li and Lj where a location
refers to origin and destination of shipments i, j(i, j = 1, ..., n)
Sij : the cost saving over the original configuration when using the best
consolidation configuration of shipment i with shipment j(i, j = 1, ..., n).
πvij : the cost of serving shipments i and j using configuration v ∈ K
Ωl
rs: set of potential transshipment points throughout the business area <,

indexed by transshipment point Tk;Tk ∈ Ωl
rs(k = 1, ..., |Ωl

rs|) that can be
used between shipments with collection (delivery) points in regions Rr and
Rs and the delivery (collection) point in region Rl;Rr, Rs, Rl ∈ <
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γ(Tk∗): This is the nearest transshipment point to Rr and Rs, which is
determined based on the base location of each region as a reference point,
say (R̄r, R̄s), γ(Tk∗) = Arg min

Tk∈Ωl
rs

(dR̄rTk
+ dR̄sTk

)

Γlrs : the subset of transshipment points which are the nearest transship-
ment points to Rr and Rs (Γlrs ⊆ Ωl

rs) that can be used between collec-
tion (delivery) points in regions Rr and Rs to go to (come from) region
Rl;Rr, Rs, Rl ∈ <
Fγ(Tk∗)

: the financial cost incurred to consolidate the two shipments at the

transshipment point γ(Tk∗) (i.e., the additional fixed cost).

Figure 5.2: Notations for Pair Consolidation

5.3.2 Consolidation Configurations and Computation
of Consolidation Costs

In case of shipment of two orders, the third party logistics companies mostly
prefer to use two TL(truckload) for each shipment to make sure that the
customer needs are met urgently. If we assume two shipments i and j whose
collection points are Ci and Cj with their delivery destinations being Di and
Dj respectively, using two different truck for each shipment

Ci → Di and Ci → Dj

Cost of original configuration which is non-consolidation is:

π0
ij = dCiDi

+ dCjDj

However, instead of following this tradition, we offer to consolidate orders
with and without transshipment to minimize the cost and maximize the
service level.

(a) En-route Order Consolidation Configurations

In en-route order consolidation case, we offer to use only one truck for
collection and delivery of two orders. The truck firstly will pickup the or-
ders from the collection points and after that deliver them to the delivery
locations. There are four possible en-route consolidation configurations for
shipment of two orders which are given in Figure 5.3.
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Figure 5.3: En-route consolidation configurations

Costs of en-route consolidation configurations which are given below re-
spectively.

π1
ij = dCiCj

+ dCjDi
+ dDiDj

π2
ij = dCiCj

+ dCjDj
+ dDjDi

π3
ij = dCjCi

+ dCiDj
+ dDjDi

π4
ij = dCjCi

+ dCiDi
+ dDiDj

(b) Transshipment Consolidation Configurations

In case collection and delivery points are close, en-route consolidation
configurations are effective. However, in case there is a large distance between
either collection or delivery points, using only one truck cannot be an effective
option. In this case, we offer to use transshipment point for merging either
collections or deliveries.

Case 1: Merging Deliveries

If delivery points of the orders are close to each other and collection
points are far from each other, collection of the orders with two different
trucks and merging the collections in one of the trucks at a transshipment
point and going through the delivery points with one truck can be more
cost productive consolidation configuration. Possible merging consolidation
configurations are given in Figure 5.4.
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Figure 5.4: Merging delivery configurations (5) left, (6) right

The cost for merging deliveries, as shown by the configurations in Figure
5.4, depending on (5) and (6) are given below respectively.

π5
ij = min

γ(Tk)∈Γr
′

rs

([dCiγ(Tk) + dCjγ(Tk) + Fγ(Tk)] + [dγ(Tk)Di
+ dDiDj

];

{Ci ∈ Rr, Cj ∈ Rs, Di ∈ Rr′ , Dj ∈ Rr′}

π6
ij = min

γ(Tk)∈Γr
′

rs

([dCiγ(Tk) + dCjγ(Tk) + Fγ(Tk)] + [dγ(Tk)Dj
+ dDjDi

];

{Ci ∈ Rr, Cj ∈ Rs, Di ∈ Rr′ , Dj ∈ Rr′ }

If the used trucks of both shipments are not determined, then a vehicle
which has enough capacity to carry both shipments is chosen for one of the
shipments. If it is possible, this large truck is preferred to take the shortest
distance which means it starts from the collection point which is close to
the transshipment point. After merging the collections in this large size
vehicle at the transshipment point, this vehicle delivers both orders after the
transshipment point.

Case 2: Merging Collections

This case is the opposite of the merging delivery case. Here, the collection
points are close to each other but delivery points are far from each other. One
large truck can collect both orders and at a transshipment point transfer one
of the orders to another truck. After the transshipment point, the largest
truck takes the shortest distance among the distances between each delivery
points and transshipment point.This is performed to reduce transportation
cost as the largest vehicle is likely to consume more fuel.

The merging collection consolidation configurations are given in Figure
5.5.
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Figure 5.5: Merging collection configurations (7) left, (8) right

The cost for merging deliveries with the configurations given in Figure
5.5 is based on (7) and (8) and are defined below respectively.

π7
ij = min

γ(Tk)∈Γr
′

rs

([dγ(Tk)Di
+ dγ(Tk)Dj) + Fγ(Tk)] + [dCjCi

+ dCiγ(Tk)]

{Ci ∈ Rr′ , Cj ∈ Rr′ , Di ∈ Rr, Dj ∈ Rs}

π8
ij = min

γ(Tk)∈Γr
′

rs

([dγ(Tk)Di
+ dγ(Tk)Dj

+ Fγ(Tk)] + [dCiCj
+ dCjγ(Tk)]

{Ci ∈ Rr′ , Cj ∈ Rr′ , Di ∈ Rr, Dj ∈ Rs}

Note that to eliminate those configurations that are unlikely to lead to
a promising outcome, neighbourhood schemes are also introduced which will
be developed in the next chapter as we aim here to provide the general
framework.

Computation of the cost saving

For calculation of the cost saving, firstly we define the least cost of con-
solidation among all possible consolidation configurations including non-
consolidation ones. The least cost of consolidating two orders, namely, i
and j is computed as follows:

Ĉ1
ij =

{
min

v=1,...,8
πvij if shipments i and j are feasible to consolidate

π0
ij otherwise

(5.1)

The best consolidation configuration is determined in the following:

v∗ = Arg min
v∈{1,...,8}

πvij

To find the best consolidation configuration among non-consolidation,
en-route consolidation and transshipment consolidation configurations, the
following saving formulation is used.
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Sij = π0
ij − Ĉ1

ij; i, j = 1, .., n

The total saving is then computed as

TS =
∑

(i,j)∈Ep

Sij

,
with Ep representing those pairs of shipments that are chosen in the final

solution configuration.
It is important to stress that these calculations are performed from the

outset and once only. This extra effort is worthwhile as it provides competi-
tive advantage among the classical mathematical formulations in the litera-
ture which are replicated each and every run inside the formulation.

5.3.3 Data Generation and Illustrative Example

We generated 10 data sets of each sample sizes of 50, 100, 150 and 200 to
run tests with the proposed mathematical model.

Firstly, we generated the coordinates of the collection and delivery loca-
tions of the orders and transshipment points. These coordinates are gener-
ated randomly in range of 0 and 100 as decimal numbers. Sample data set
for 10 orders is presented in Table 5.1.

Request No Pickup location Delivery Location
(X Y) (X Y)

0 35.3099 6.10065 94.3724 12.5462
1 4.34889 54.1429 86.523 22.0008
2 34.0617 43.3027 26.5267 52.3637
3 73.278 90.4233 23.8899 45.1003
4 37.6751 78.1945 91.3144 29.7128
5 85.876 39.4086 54.4969 6.90023
6 32.4229 30.4575 94.1252 35.0444
7 50.856 34.7118 98.2269 85.6532
8 69.8813 86.401 53.0107 83.3399
9 15.8757 55.6505 50.3037 96.0479

Table 5.1: Sample Data Set Size of 10

Then savings were computed for all possible pairs of orders based on con-
solidation configurations; en-route consolidation configurations and trans-
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shipment consolidation configurations. Then maximum savings for each pair
of orders and the corresponding consolidation configuration and the corre-
sponding transshipment point if the consolidation configuration is the con-
solidation configuration with transshipment were determined. All these al-
gorithms are programmed in Visual Studio C++ and executed on an Intel
Core i5-7300U CPU @ 2.60GHz PC with 64-bit operating system and 8 GB
RAM.

Savings of sample data set is given in Table 5.2. Configurations which
give the max saving for the sample data set is given in Table 5.3.

No 0 1 2 3 4 5 6 7 8 9
0 0 24.58 -56.48 -66.32 -13.44 -15.43 15.37 -25.63 -110 -88.23
1 24.58 0 -10.63 -10.91 38.06 -2.26 43.52 4.81 -54.70 -5.82
2 -56.48 -10.63 0 -0.54 -31.41 -60.16 -20.86 -28.35 -79.65 -18
3 -66.32 -10.91 -0.54 0 -3.32 -34.46 -31.55 -33.54 13.70 -17.64
4 -13.44 38.06 -31.41 -3.32 0 1.19 21.23 -0.70 -25.86 -5.84
5 -15.43 -2.26 -60.16 -34.46 1.19 0 -5.08 -38.72 -80.91 -107.41
6 15.37 43.52 -20.86 -31.55 21.23 -5.08 0 18.47 -68.88 -43.38
7 -25.63 4.81 -28.35 -33.54 -0.70 -38.72 18.47 0 -30.79 -20.24
8 -110 -54.70 -79.65 13.70 -25.86 -80.91 -68.88 -30.79 0 -22.06
9 -88.23 -5.82 -18.00 -17.64 -5.84 -107.41 -43.38 -20.24 -22.06 0

Table 5.2: Savings of Sample Data Set

No 0 1 2 3 4 5 6 7 8 9
0 0 3 2 8 6 3 5 1 2 2
1 3 0 2 3 2 1 1 1 2 2
2 2 2 0 3 4 4 4 4 4 1
3 8 3 3 0 1 2 1 3 2 1
4 6 2 4 1 0 1 1 1 3 3
5 3 1 4 2 1 0 3 1 2 5
6 5 1 4 1 1 3 0 1 2 2
7 1 1 4 3 1 1 1 0 2 2
8 2 2 4 2 3 2 2 2 0 4
9 2 2 1 1 3 5 2 2 4 0

Table 5.3: Max Saving Configurations of Sample Data Set
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No 0 1 2 3 4 5 6 7 8 9
0 0 0 0 2 2 0 2 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 2
6 2 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 2 0 0 0 0

Table 5.4: Transshipment Points of max Saving of the small Data Set of 10
shipments

We also propose to extend the consolidation of orders pair to triplet which
is discussed in the next section. This will be followed by the set partitioning
formulation.

5.4 Case of Triplet Consolidation

In case of triplet consolidation, we consolidate the orders as triplets with and
without transshipment consolidation configurations to save cost and time
among non-consolidation configuration.

In case of no consolidation (original configuration) this is given as follows:

Ci → Di & Cj → Dj & Ck → Dk

The cost of this original configuration is

C0
ijk = dCiDi

+ dCjDj
+ dCkDk

5.4.1 (a) Consolidation of 3 requests en-route(no trans-
shipment)

There are 6 cases to explore.
Case (a-1) First possible en-route triplet consolidation is given in Figure

5.6.
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Figure 5.6: En-route consolidation for triplet case (a-1)

Cost of (1)
δ1 = dDiDj

+ dDjDk

Cost of (2)
δ2 = dDiDk

+ dDkDj

Cost of (3)
δ3 = dDjDi

+ dDiDk

Cost of (4)
δ4 = dDjDk

+ dDkDi

Cost of (5)
δ5 = dDkDi

+ dDiDj

Cost of (6)
δ6 = dDkDj

+ dDjDi

Note (δ1,..,δ6) will be used later in other scores given below

Compute all the 6 costs for (a-1). We will do the same for all cases of
(a).

∆1
CiCjCk

= dCiCj
+ dCjCk

+ dCkDi
+ δ1

as δ
′
0 = dCiCj

+ dCjCk
will be used as well

∆2
CiCjCk

= δ
′

0 + δ2 + dCkDi

∆3
CiCjCk

= δ
′

0 + δ3 + dCkDj

∆4
CiCjCk

= δ
′

0 + δ4 + dCkDj
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∆5
CiCjCk

= δ
′

0 + δ5 + dCkDk

∆6
CiCjCk

= δ
′

0 + δ6 + dCkDk

Least cost for (a-1):

T
(1)
ijk = min

r=1,...,6
(∆r

CiCjCk
)

Case (a-2)

Figure 5.7: En-route consolidation for triplet case (a-2)

Compute all costs for (a-2)

∆1
CjCiCk

= dCjCi
+ dCiCk

+ dCkDi
+ δ1

∆1
CjCiCk

= δ2
0 + δ1 + dCkDi

(as δ2
0 = dCjCi

+ dCiCk
)

∆2
CjCiCk

= dCkDi
+ δ2 + δ2

0

∆3
CjCiCk

= dCkDj
+ δ3 + δ2

0

∆4
CjCiCk

= dCkDj
+ δ4 + δ2

0

∆5
CjCiCk

= dCkDk
+ δ5 + δ2

0
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∆6
CjCiCk

= dCkDk
+ δ6 + δ2

0

T 2
ijk = min

r=1,...,6
(∆r

CjCiCk
)

Same calculations are done for cases of (a-3), (a-4), (a-5), (a-6) in Ap-
pendix B and T 3

ijk, T
4
ijk, T

5
ijk and T 6

ijk are calculated.
The best en-route cost consolidation configuration ijk is therefore,

C1
ijk = min

s=1,...,6
(T sijk)

After consolidation of triplets as en-route, we consider the consolidation
of triplets with the transshipment points.

5.4.2 (b) Consolidation of Triplets(ijk) with only one
transshipment point(T)

Let ΛP1P2P3 = {T ∈ Ω s.t T is in neighborhood of points P1, P2, P3} ⊂ Ω
with Ω set of all transshipments . Note that there are two cases, namely, the
first dealing with having transshipment points before delivery and the other
after delivery instead.

(b-1) Case of transshipment points before delivery

In this case, we consider the transshipment points before delivery points. We
classified the configurations in this case under two sub-cases which we refer
to as subsections b-1-1 and b-1-2.

Subcase (b-1-1) In this case, two of the orders collected and then com-
bined at the transshipment point then collect the third order then go towards
the delivery points of the orders. Possible configurations for this case are
given below as b-1-1-1, b-1-1-2 and b-1-1-3.

b-1-1-1)
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Figure 5.8: Triplet case with transshipment of (b-1-1)

∆1
CiTCjTCk

= min
T∈ΛCiCjCk

(dCiT + dCjT + dTCk
) + δ1 + dCkDi

∆1
CiTCjTCk

= δ1
′

0 + δ1 + dCkDi

as δ1
′

0 = min
T∈ΛCiCjCk

(dCiT + dCjT + dTCk
)

Note δ1, ..., δ6 are unchanged.

T 1
′

ijk = min
r=1,...,6

(∆r
CiTCjTCk

)

b-1-1-2)

Figure 5.9: Triplet case with transshipment of (b-1-2)

∆1
CiTCjTCj

= δ
1′

0 + δ1 + dCjDi
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T 2
′

ijk = min
r=1,...,6

(∆r
CiTCjTCj

)

b-1-1-3)

Figure 5.10: Triplet case with transshipment of (b-1-3)

∆1
′

CjTCiTCk
= δ1

′

0 + δ1 + dCiDi

T 3
′

ijk = min
r=1,...,6

(∆r
CjTCiTCk

)

C2
ijk = min

s=1,...,3
(T

s
′
)

ijk

Subcase (b-1-2) In this case, all orders collected, two of them by one
truck and the third one by another truck and all collections are consolidated
at the transshipment point as off towards to delivery points.

125



b-1-2-1)

Figure 5.11: Triplet case with transshipment of (b-2-1)

∆1
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDi

(dCjT + dCkT + dDiT ) + δ1 = dCiCj
+ δ2

′

0 + δ1

∆2
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDi

(dCjT + dCkT + dDiT ) + δ2 = dCiCj
+ δ2

′

0 + δ2

∆3
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDj

(dCjT + dCkT + dDjT ) + δ3 = dCiCj
+ δ3

′

0 + δ3

∆4
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDj

(dCjT + dCkT + dDjT ) + δ4 = dCiCj
+ δ3

′

0 + δ4

∆5
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDk

(dCjT + dCkT + dDkT ) + δ5 = dCiCj
+ δ4

′

0 + δ5

∆6
CiCjTCk

= dCiCj
+ min

T∈∆CjCkDk

(dCjT + dCkT + dDkT ) + δ6 = dCiCj
+ δ4

′

0 + δ6

T 1
′′

ijk = min
r=1,...,6

(∆r
CiCjTCk

)
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Note δ1, .., δ6are unchanged.
We do the same for the other 5 cases in Appendix B.
Least cost

T 6
′′

ijk = min
r=1,...,6

(∆CkCjTCiT r)

C3
ijk = min

s=1,...,6
(T s

′′

ijk)

(b-2) Case of transshipment after collection points
In the second case of triplet consolidation with transshipments, transship-

ment point is assigned after collection points in the delivery points region.
This case has two subcases.

Subcase (b-2-1)
In this subcase, collections are collected and deliver one of the orders then

head to transshipment points while transferring one of the deliveries to the
other truck at the transshipment after that head to the delivery point of the
third order.

b-2-1-1)

Figure 5.12: Triplet case with transshipment of (c-1-1)

Cost of (1)
δ
′

1 = dCjCk
+ dCkCi

Cost of (2)
δ
′

2 = dCkCj
+ dCjCi

Cost of (3)
δ
′

3 = dCiCk
+ dCkCj

Cost of (4)
δ
′

4 = dCkCi
+ dCiCj
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Cost of (5)
δ
′

5 = dCiCj
+ dCjCk

Cost of (6)
δ
′

6 = dCjCi
+ dCiCk

Note (δ
′
1,..,δ

′
6) will be used later in other scores given below

∆1
DiTDjTDk

= min
T∈ΛDiDjDk

(dDiT + dTDj
+ dTDk

) + δ1 + dCiDi

∆1
DiTDjTDk

= δ1
′′

0 + δ
′

1 + dCiDi

as δ1
′′

0 = min
T∈ΛDiDjDk

(dDiT + dDjT + dTDk
)

We computed all the 6 costs for (b-2-1-1). We will do the same for all
cases of (b-2-1).

T 1
′′′

ijk = min
r=1,...,6

(∆DiTDjTDk
r)

b-2-1-2)

Figure 5.13: Triplet case with transshipment of (c-1-2)

∆1
DjTDjTDk

= δ1
′′

0 + δ
′

1 + dCiDj

T 2
′′′

ijk = min
r=1,...,6

(∆DjTDjTDk
r)
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b-2-1-3)

Figure 5.14: Triplet case with transshipment of (c-1-3)

∆1
DkTDiTDj

= δ1
′′

0 + δ
′

1 + dCiDk

T 3
′′′

ijk = min
r=1,...,6

(∆r
DkTDiTDj

)

C4
ijk = min

s=1,...,3
(T s

′′′

ijk )

Subcase (b-2-2) In this subcase, after collection of orders, truck head
to the transshipment point and then one of the three orders is transferred to
the another truck at this point and then head to deliver the two other orders.

b-2-2-1)

Figure 5.15: Triplet case with transshipment of (c-2-1)
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∆1
TDkDjDi

= dDjDi
+ min

T∈∆CiDkDj

(dCiT + dTDk
+ dTDj

) + δ
′

1 = dDjDi
+ δ2

′′

0 + δ
′

1

∆2
TDkDjDi

= dDjDi
+ min

T∈∆CiDkDj

(dCiT + dTDk
+ dTDj

) + δ
′

2 = dDjDi
+ δ2

′′

0 + δ
′

2

∆3
TDkDjDi

= dDjDi
+ min

T∈∆CjDkDj

(dCjT + dTDk
+ dTDj

) + δ
′

3 = dDjDi
+ δ3

′′

0 + δ
′

3

∆4
TDkDjDi

= dDjDi
+ min

T∈∆CjDkDj

(dCjT + dTDk
+ dTDj

) + δ
′

4 = dDjDi
+ δ3

′′

0 + δ
′

4

∆5
TDkDjDi

= dDjDi
+ min

T∈∆CkDkDj

(dCkT + dTDk
+ dTDj

) + δ
′

5 = dDjDi
+ δ4

′′

0 + δ
′

5

∆6
TDkDjDi

= dDjDi
+ min

T∈∆CkDkDj

(dCkT + dTDk
+ dTDj

) + δ
′

6 = dDjDi
+ δ4

′′

0 + δ
′

6

T 1
′′′′

ijk = min
r=1,...,6

(∆TDkDjDi
r)

The other 5 configurations are also computed and presented in Appendix
B.

Least cost
T 6
′′′′

ijk = min
r=1,...,6

(∆r
TDiDjDk

)

C5
ijk = min

s=1,...,6
(T s

′′′′

ijk )

5.4.3 Computation of the cost saving for the case of
triplets

The least cost of consolidating three orders, namely, i, j and k is computed
as follows:

Ĉ1
ijk =

{
min

s=0,...,5
Cs
ijk if shipments i and j are feasible to consolidate

C0
ijk otherwise

(5.2)

130



The best consolidation configuration is determined in the following:

s∗ = Arg min
s∈{0,...,5}

Cs
ijk

To find the best consolidation configuration among non-consolidation,
en-route consolidation and transshipment consolidation configurations, the
following saving formulation is used.

Sijk = C0
ijk − Ĉ1

ijk; i, j, k = 1, .., n

The total saving is then computed as

TS =
∑

(i,j,k)∈Et

Sijk

,
with Et representing those triplets of shipments that are chosen in the

final solution configuration.
As stressed in pair consolidation case, all these calculations are performed

once before running the mathematical model, while the mathematical models
in the literature carry out all calculations inset and replicated each and every
run.

5.5 Summary

In this chapter we extend on the earlier study by Salhi et al. (2020) on
constructing configurations for consolidation for pairs to the case of triplets.
We then defined their corresponding costs and associated savings.

The next chapter will cover the mathematical formulation on how to solve
this scheduling problem optimally and produce some computational results
accordingly.
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Chapter 6

Mathematical Models and a
Computational Analysis

6.1 Introduction

In this chapter, we formulate the problem using two mathematical approaches,
namely, a standard Integer 0-1 Linear Programming (ILP) and a set parti-
tioning based(SPB). The set partitioning formulation is extended to the case
of triplets where all configurations including singleton, pairs and triplets are
first defined. To tighten the formulation, three types of tightening using ap-
propriate valid inequalities are developed. Computational experiments using
instances varying in size from 50 to 200 shipments with an increment of 50
are carried out and the results are analysed. A computational comparison
between the classical 0-1 ILP and the SPB is first produced for the case of
pairs using ILOG CPLEX. Ten random instances for each size (n=50, 100,150
and 200) are considered and the average results in terms of CPU are recorded
and discussed.

6.2 Initial Mathematical Formulation

We first start by providing an existing 0-1 formulation as proposed by (Salhi
et al 2020) for the case of pairs and then produce a simple but powerful
alternative formulation based on the set partitioning problem.

To find the pairs of orders that can be consolidated for maximizing the
total cost saving, a mathematical formulation based on 0-1 integer linear
program is proposed. More details can be found in Salhi et al. 2020. Recall
from the previous chapter that Sij is the saving by consolidating shipments i
with j. The decision variable Xij of whether or not to consolidate shipments
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i with j is defined as follows.

Xij =

{
1 if shipments i and j are consolidated

0 otherwise
(6.1)

Maximise TS =
n∑
j=1

n∑
i=1

SijXij (6.2)

subject to

n∑
j=1

Xij = 1; i = 1, ..., n (6.3)

n∑
i=1

Xij = 1; j = 1, ..., n (6.4)

Xij = Xji; i, j = 1, ..., n (6.5)

Xij ∈ {0, 1}; i, j = 1, ..., n (6.6)

The objective function (6.2) is to find the maximum total saving among
consolidation configurations. Constraint (6.3) enforces that each shipment i
can consolidate with another shipment including itself only and (6.4) shows
that each shipment j can be consolidated with another shipment only. Con-
straint (6.5) refers that an assigned order cannot be assigned to another order
as a pair. Constraint (6.6) refers to the binary decision variables.

Note that the TS value obtained from this formulation needs to be halved
to the assignment problem structure of the formulation so to avoid double
counting.

This mathematical model has n2 + 2n constraints and n2 binary vari-
ables. This can be solved using standard commercial optimization software
such as GAMS, LINDO, ILOG CPLEX, among others. For convenience and
availability, we will be using the latter one in this study.

An illustrative example
We ran the above proposed mathematical model for the illustrative exam-

ple given in Section 5.3.3. The savings Sij are already computed in Section
5.3.3 and their values are given in Table 5.2. The above model is run with
these computed savings and the total maximum saving as well as the consol-
idated pairs which give the optimal result were obtained. The total saving
was found as 70.2337 and the optimal consolidated pairs are given in Table
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6.1 with their corresponding consolidation configuration type and transship-
ment points. The configuration number represents the order of pairs as for
example configuration number 13 represents consolidation pair of 1 and 4 and
vice versa. The consolidation type shows the consolidation configuration type
among the 8 pair consolidation type described in the previous chapter. The
transshipment point column gives the best transshipment point for the con-
solidation of the corresponding pair. This happens if the consolidation type
is one of the consolidation types with the transshipment case which are given
by v ∈ {5, ..., 8} as explained in the earlier chapter.

Configuration No i j Consolidation Type Transshipment Point
0 0 0 0 0
13 1 4 2 0
19 2 2 0 0
32 3 8 2 0
13 4 1 2 0
40 5 5 0 0
46 6 7 1 0
46 7 6 1 0
32 8 3 2 0
54 9 9 0 0

Table 6.1: Consolidated Pairs for the Max Saving of the Sample Data Set
(illustrative example)

To provide an overall computational time, we ran the model 10 times
by ILOG CPLEX. These CPU times for the 10 runs are given in Table 6.2
where it can be observed that most values are around the 50 milisecs except
the last two runs which seems to deviate with an increase. This could be
due to the computer being slightly slower by doing something else in the
background and in parallel exactly at that moment such as basic computer
updates. Normally there is no need to carry out a few runs as the problem
is deterministic but in this occasion we just want to be sure if there is any
discrepancies between the runs.

Run-1 Run-2 Run-3 Run-4 Run-5 Run-6 Run-7 Run-8 Run-9 Run-10
CPU Time 46 45 47 52 56 59 52 73 103 46

Table 6.2: CPU time (in milisecs) of 10 runs of the Sample Data Set
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6.3 Set Partitioning-based formulation

The above problem can be formulated differently if we can identify all the
possible consolidation configurations a priory. The problem will turn into
determining the optimal subset of these configurations that cover all the
shipments. In other words, the problem can be formulated as a set partition-
ing type model. For this particular scheduling we can take advantage of the
insight of the problem by introducing valid inequalities which we will refer
to as tightening.

We first define the various configurations and then produce the set par-
titioning formulation followed by some tightening of the model.

6.3.1 Defining the various configurations

Consider we have n requests with respective collection, delivery, quantity and
time windows. As we are restricting our consolidations to include up to most
triplets only, we can summarise these configurations as follows:

Singletons type configurations

As we have n requests, this leads to exactly n configurations with each request
served on its own. In other words, no consolidation is allowed.

Let n0 denotes the number of singletons and
E1 = {k : k = 1, . . . , n} be the set of such configurations with n0 = n =

|E1| its cardinality. This is equivalent to having one out of n combinations
which is exactly n0 = C1

n.
Let

yk =

{
1 if kth configuration is used;

0 else
k = 1, . . . , n0 (6.7)

Consolidation with pairs

Here, we consider the consolidation of requests made up by pairs. In the
worst case scenario we have

n1 = C2
n =

n(n− 1)

2
(6.8)

Let E2 = {k : k = n0 + 1, . . . , n0 + n1} be the set of such configurations
and n1 = |E2| be its cardinality.
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Let

yk =

{
1 kth consolidation of pairs is chosen

0 else
k = n0+1, . . . , n0+n1 (6.9)

Consolidation with triplets

In this case, we consider those consolidations made up of trips. Using the
same approach, in the worst case we have the following number

n2 = C3
n =

n(n− 1)(n− 2)

6
(6.10)

Let

yk =

{
1 kth consolidation of pairs is chosen

0 else
k = n0+n1+1, . . . , n0+n1+n2

(6.11)
Let E3 = {k : k = n0 + n1 + 1, . . . , n0 + n1 + n2} be the set of such

configurations and n2 = |E3| its cardinality.

6.3.2 Formulation 1- A simple set partitioning model

Let N = n0+n1+n2 be the total number of all possible consolidations includ-
ing singleton, pairs and triplets. Let also define the following input matrix to
represent whether a given request is covered by a given configuration. Note
that the elements of this matrix are computed a priory. This is defined as

aik =

{
1 if request i is covered by configuration k

0 else
i = 1, ...n; k = 1, ...N

(6.12)
Let Sk be the saving due to having the kth consolidation; k = 1, . . . N =

n0 + n1 + n1

Note that the total number of configurations is in practice much reduced.
This is due to feasibility constraints in terms of capacity and time windows
for the case of pairs and triplets. The saving for such infeasible configurations
can be set to −M , very large negative number (in other this will never be
chosen).

In other words, note if the kth consolidation is not feasible (k = n0 +
1, . . . , n0 + n1 + n2), we set Sk = −M (M being a large positive number)
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Let N = n0 + n1 + n2 be the total number of alternatives including
singletons, pairs and triplets as defined in the previous subsection. Let the
following formulation (P) be given as follows:

max
N∑
k=1

Skyk (6.13)

N∑
k=1

aikyk = 1; i = 1, . . . , n (6.14)

yk = {0, 1}; k = 1, . . . , N (6.15)

(6.13) define the objective function which is to maximize the total saving,
constraints (6.14) guarantee that each request belongs to one configuration
only including singletons, and (6.15) refer to the binary nature of the decision
variables. The problem has n constraints and B = n+ (n− 1).n/2 + (n.(n−
1).(n− 2)/6 binary variables. Note that the partitioning model with triplets
increased the number of binary variables from an order of n2 in case of pairs
up to n3.

6.3.3 Formulation 2 - Tighter set partitioning models

Th above model can be tightened given the structure of the problem. We
first produce a basic tightening followed by specific valid inequalities as well
as other subset based constraints to yield other forms of tightening.

(a) Basic Tightening
Note that above formulation can be tightened by adding the following

valid inequality. It can be observed that in any feasible solution, in the worst
case, there will be at most n configurations of singletons. In other words
no consolidations of pairs or triplets would occur. This can be guaranteed
by adding the following constraints which states that among all the possi-
ble consolidations (i.e., N) including singletons, we can always guarantee to
have at most n configurations. This explains why this constraint is a valid
inequality.

N∑
k=1

yk <= n (6.16)
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(b) Stronger Tightening via valid inequalities
We can tighten the formulation even further by replacing (6.16) with

the following set of valid inequalities related to each type of consolidation,
namely, singleton, double and triplets.

n∑
k=1

yk <= n (6.17)

n+n1∑
k=n+1

yk <= n/2 (6.18)

n+n1+n2∑
k=n+n1+1

yk <= n/3 (6.19)

(6.17) guarantees that if a solution configuration is made up of singletons
only the solution can not have more than n. Using the same idea, (6.18)
limits the solution made of pairs to n/2 only as we cannot have more than
that. The same logic is also applied to triplets where (6.19) guarantees that
any solution made up of triplets only will have at most n/3 configurations.
All these three sets of constraints are valid inequalities as explained above.

Note that though the model has 3 extra constraints, the feasible region
is now much restricted which could lead to obtaining the optimal solution
relatively quickly though this is not always guaranteed. In other words, we
expect the solver to use less iterations but each iteration may require slightly
more time due to the extra three constraints. So there is a balance between
the number of iterations saved against the extra computing time required
per iteration. Unfortunately striking the right balance is not an easy task to
identify from the outset. A more formal analytical discussion will be provided
later.

(c) Stronger tightening via Subset inclusion
In the basic tightening as defined by constraint 6.16, we consider all the N

configurations. However, the idea is still valid if we use any random subset of
size n, the selected configurations within that subset will be always less than
or equal n though it will be most of the time strictly less if configurations of
pairs or triplets were part of the random subset selected. In the worst case
no configuration from that random subset will be chosen making such new
constraint a valid inequality. This is given as follows.∑

k∈En

yk <= n (6.20)
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where En is a subset of random n configurations chosen from the N
configurations.

It is also worth noting that this kind of constraints can be added as many
times as we wish, say M times.

Let Er
n be the rth random subset of configurations of size n. Therefore

the new set of valid inequalities can be defined as∑
k∈Er

n

yk <= n; r = 1, . . . ,M (6.21)

As mentioned earlier, the choice of M can be tricky as adding too many
may restrict the feasible region which is good but could consume more CPU
time while solving each time a more compact formulation as will be shown
later. In our computational results we will investigate a suitable value of M
by analysing the results for the case of r = 1, ...,M ′ with M ′ <= M .

6.4 Computational Analysis

We first provide a comparison between the 0-1 ILP and the set partitioning
formulation for the case of pairs to demonstrate that the latter is more effi-
cient and hence worth pursuing. The results of the tightening is then assessed
and interesting results are summarised. The analysis is performed on 4 sets
of data ranging in size from 50 to 200 in an increment of 50, each instance is
run 10 times and average results produced.

Note that all the formulations are coded in Visual Studio C++ and ex-
ecuted on an Intel Core i5-7300U CPU @ 2.60GHz 64-bit operating system
with 8 GB RAM. The commercial optimisation software, namely, IBM ILOG
CPLEX 12.9 is used for solving the mathematical model.

6.4.1 Comparison of 0-1 ILP vs Basic set partitioning
formulation for the case of pairs

We first ran 10 instances of each size of 50, 100, 150 and 200 with the 0-1
ILP original formulation and the basic set partitioning for the case of pairs.
In addition within each set we run for 10 runs and record the average CPU
time. This is done just to record explicitly the CPU time though that is
usually similar. As an example we show the case of n = 50 when using the
0-1 ILP formulation in Table 6.3. A similar pattern is found in all other
instances and also when using the set partitioning.
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CPU Time R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average
Data Set 1 123 156 133 393 423 180 356 124 170 170 222.8
Data Set 2 102 125 142 117 107 113 114 100 77 77 107.4
Data Set 3 106 127 123 116 147 134 125 132 116 110 123.6
Data Set 4 73 86 92 110 129 104 89 93 108 111 99.5
Data Set 5 85 94 98 123 124 117 117 144 123 95 112
Data Set 6 109 103 153 135 136 116 161 134 104 125 127.6
Data Set 7 103 112 155 145 332 327 237 122 133 124 179
Data Set 8 81 74 74 93 118 83 90 78 131 134 95.6
Data Set 9 65 80 86 93 135 81 78 87 100 111 91.6
Data Set 10 104 126 105 158 128 125 122 158 113 122 126.1

Overall Average 128.52

Table 6.3: An Illustration of CPU Times (milisecs) and averages for Paired
Consolidation with 0-1 ILP Formulation for data sets of size n = 50

We ran the same data sets with the set partitioning formulation for the
paired consolidation case. As expected the results are similar but the cor-
responding computational burden is very different with the set partitioning
model consuming massively less CPU time. The average CPU times of 10
runs of 10 samples of size of 50, 100, 150 and 200 are presented in Figure 6.1.
For example, the value reported for the n = 50 (i.e., size 50) for the 0-1 ILP
is the overall average value provided in Table 6.3. These is performed for all
the data sets and for both approaches. We can see that the set partitioning
model performs much more effective compared to 0-1 ILP formulation.

The graph of average CPU improvement by the set partitioning formu-
lation over its counterpart is also given for each size in Figure 6.1. As we
can see from the graph, the average improvement for size 50, 100 and 150 is
around 57% and for size 200 is 85%, with the increase of the sample size, the
set partitioning performs dramatically even better.

Mathematically this can also be due to the fact that the original 0-1 ILP
model requires over n2 constraints whereas the set partitioning one has n
constraints only. However, it is also worth noting that the former uses n2

binary variables whereas the latter needs n+n(n− 1)/2 +n(n− 1)(n− 2)/6
binary variables.
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Figure 6.1: CPU time for 0-1 ILP and the set partitioning

Some error plot graphs

We plot the error bar graphs based on standard deviation (std) of CPU
times for paired consolidation from 0-1 ILP and set partitioning formulations
for each sample size. Standard deviation graphs of CPU time for size 50 from
0-1 ILP and set partitioning formulations are given in Figure 6.2-Figure 6.3.

141



Figure 6.2: Standard Deviation of CPU of 0-1 ILP Formulation for Paired
Consolidation-50

Figure 6.3: Standard Deviation of CPU of Set Partitioning for Paired
Consolidation-50

Error plot graphs for the other sizes are given in Appendix C. According
to these graphs we can say that the set partitioning formulation is slightly
more reliable than its counterpart due to the smaller spread of its CPU times.
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6.4.2 Results including triplets of the Set Partitioning
and its variants

The above results demonstrate that the set partitioning is more efficient when
tested in the case of pairs. For this reason this is the formulation which we
will explore further in terms of computational results for the case of the whole
problem including the triplets. Obviously, the 0-1 ILP formulation could be
extended to triplets as a mathematical exercise but with no real gain given
that it was outperformed by the set partitioning model.

Effect of using triplets over pairs

We ran the same data sets for triplet consolidation including pair consol-
idations with set partitioning formulation. The savings obtained from triplet
consolidation vs paired consolidation and improvement from paired consoli-
dation to triplet consolidation for size 50 is given in Table 6.4, and summary
for all sizes is given 6.5.

Size 50 Pair Triplet(Incl Pair) Improvement(%)
Data Set 1 854.20 1171.38 37.13
Data Set 2 860.05 1179.08 37.09
Data Set 3 605.51 836.57 38.16
Data Set 4 524.68 706.02 34.56
Data Set 5 674.59 912.36 35.25
Data Set 6 639.14 903.16 41.31
Data Set 7 786.74 1094.44 39.11
Data Set 8 522.44 721.99 38.20
Data Set 9 762.39 972.99 27.62
Data Set 10 785.85 1049.00 33.49
Average 701.56 954.70 36.08

Table 6.4: Paired vs Triplet Consolidation Savings of Size of 50
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Size Pair Triplet(Incl Pair) Average Improvement(%)
50 701.56 954.70 36.08
100 1639.84 2228.37 35.89
150 2584.37 3523.99 36.36
200 3536.87 4929.47 39.37

Table 6.5: Paired vs Triplet Consolidation Savings of All Sizes

Results from basic tightening

We tested the set partitioning model with addition of basic tightening
constraint and we obtained the average CPU times. As obviously seen in
Figure 6.4, by the increase of sample size set partitioning model with the
addition of basic tightening formulation performs better than the other for-
mulations.

Figure 6.4: CPU of Set Partitioning with Basic Tightening vs other formu-
lations for Paired Consolidation

Results from strong tightening (valid inequalities)

We replaced basic tightening constraint in set partitioning formulation
with 3 level strong tightening constraints for pair consolidation of orders and
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we obtained the average CPU times based on sample size. We illustrate the
improvement in CPU time with the addition of strong tightening constraints
we plotted a comparative bar graph given in Figure 6.5, by the increase of the
sample size, set partitioning formulation with the addition of strong tighten-
ing constraints performs much better than set covering, set partitioning and
set partitioning with basic tightening formulations.

Figure 6.5: Improvement in CPU with strong tightening constraints

Results from the subset based tightening

We added 6 sub-basic tightening constraints for 6 subsets for paired con-
solidation of size 50, 100, 150 and 200. 10 instances of each size was run 10
times and CPU times are computed. As an example, random numbers for 2
subsets and CPU times for size 100 are given in Table C.7. For completeness,
all other subsets for size 100 are given in Appendix B each sub-basic tighten-
ing constraints up to 6. As there are 4950(100×99/2) possible configurations
for size 100, random numbers are generated between 0 and 4950. r1,...r6

denotes random numbers. Subset constraints are added within the range of
100, additional 2 subset constraints for size 100 are as in the following(where
r1=41, r2=3617 from Table C.7):
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41+100∑
k=41

yk <= n (6.22)

3617+100∑
k=3617

yk <= n (6.23)

We plotted comparative bar graph to illustrate the CPU performance of
subset-based tightenings. It is given in Figure 6.6, Figure 6.7, Figure 6.8 and
Figure 6.9. For all sizes we can say that adding 3 or 4 subsets work most
effectively. After 4 subsets it cause increase in CPU as seen for 5 subsets for
size 100 and size 200 in Figure 6.7 and Figure 6.9 respectively. Especially
size 100 shows significant increase for subset 5. Summary of the subset based
tightenings based on each size and each subset with deviation values from
set partitioning formulation is given in Table 6.7. According to the average
improvement based on each subset, we can justify the same result that 3
subset and 4 subset are more likely to provide better CPU time.

r1 − r2 1 2 3 4 5 6 7 8 9 10 Average
41-3617 199 187 195 198 197 223 437 291 244 190 236.1
61-491 109 160 99 107 106 92 111 96 99 95 107.4

755-3395 114 95 112 94 104 97 118 96 104 92 102.6
1384-1750 183 206 213 176 150 168 265 267 154 123 190.5
1578-4608 116 143 147 107 114 110 106 96 116 112 116.7
2212-4664 110 106 123 98 107 98 107 93 111 103 105.6
2995-2042 115 104 110 122 119 164 101 114 99 120 116.8
3481-1977 112 105 107 114 131 103 167 90 99 94 112.2
4319-874 157 114 119 99 138 96 118 92 99 94 112.6
4827-486 106 106 178 137 96 105 93 97 102 133 115.3

Overall Average 131.58

Table 6.6: CPU with Set Partitioning with Subbasic Tightening-2 for size
100
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Figure 6.6: Comparative CPU Time for Subset-based Tightenings for Size
50

Figure 6.7: Comparative CPU Time for Subset-based Tightenings for Size
100
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Figure 6.8: Comparative CPU Time for Subset-based Tightenings for Size
150

Figure 6.9: Comparative CPU Time for Subset-based Tightenings for Size
200
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Sample Size
Subset Number

1 2 3 4 5 6 7 8

50 0.10 0.26 0.27 0.28 0.27 0.22 0.12 0.18
100 0.16 0.19 0.25 0.24 -0.11 -0.12 0.25 0.26
150 0.40 0.42 0.41 0.41 0.41 0.30 0.37 0.31
200 0.47 0.47 0.46 0.46 0.41 0.48 0.30 0.35

Overall Average 0.28 0.33 0.35 0.35 0.25 0.22 0.26 0.27

Table 6.7: Average deviation over 10 runs from the original set partitioning
formulation (in %) for n=50,100,150 and 200

We conducted same set partitioning computations for triplet consolida-
tion case. Comparative CPU times are given in Table C.12 for set partitioning
and set partitioning with addition of basic tightening constraint and set par-
titioning with the addition of strong tightening constraints. It is illustrated
in Figure 6.10.

Reasoning behind possible increase in CPU in tightening

The increase in CPU time when adding constraints (ie tightening) can
be seen as counter intuitive. However, if we dig deep into how the Simplex
method works that could easily happen. In our case as an example, tight-
ening constraints required less CPU time as in the case of pair consolidation
especially with the increase of sample size it performed significantly better.
However, as there are so many operations in case of triplet consolidation,
the number of requests has to be large enough to compensate with the extra
effort. Here below we provide a simple mathematical explanation that could
contribute to this increase.

Let n0 and t0 be the original number of iterations required and the approx-
imate time to perform one iteration respectively. We refer to one iteration
as the Simplex iteration within CPLEX. So the approximate total time, say
T0, to complete the original implementation is:

T0 = n0 ∗ t0 (6.24)

Once we add additional constraints, the approximate time per iteration
is now t1 which will be larger, t1 > t0 as the Simplex tableau is bigger. The
number of iterations required due to tightening say n1 will be n1 <= n0 as
tighter bounds could help to avoid having unnecessary iterations. The new
total time with tightening, say T1, will be:
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T1 = n1 ∗ t1 (6.25)

In summary, tightening is worth to do if T1 < T0 which leads to

n1 < n0 ∗ (
t0
t1

) (6.26)

as t1 ∗ n1 <= n0 ∗ t0
Therefore it can be said that depending on the ratio of the two times and

that of the two number of iterations. As an example, if we could save 5% of
the number of iterations via tightening but if each new iteration requires more
than 5% cpu time than its original one, we do not really gain anything but
lose more. However if the new iteration needs only say 4% more CPU, we will
save about 1% overall. In our experiments, we observe that if the number of
request becomes greater than 200, tightening would start to perform better.

Figure 6.10: Comparative CPU Graph for Triplet Consolidation

Figure 6.10 shows that tightening constraints do not bring gain in terms
of CPU time for triplet consolidation case with these sample sizes due to
the reason given above. If larger sizes of data sets are tested for triplet
consolidation case then it might worth to add additional constraint to save
CPU time.

Note that all detailed tables are given in Appendix C.
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6.5 Summary

In this chapter, two mathematical models are developed, one using a 0-1 ILP
and the other based on set partitioning. For the latter, all the configurations
using singleton, pairs and triplets are first defined. Besides, the latter is made
more efficient by incorporating interesting tightening constraints, also known
as valid inequalities, into the model. A computational analysis is conducted
using four set of instances varying in size from 50 to 200 with a step size of 50.
To provide statistical evidence, 10 random instances for each size are used
and average results in terms of CPU recorded and analysed. It was found
that set partitioning based formulation is relatively much more efficient and
the tightening is useful though not in all cases. A mathematical reasoning
behind this potential weakness is also presented.

In the next chapter, we treat the same scheduling problem by developing
two powerful metaheuristics to respond to the excessive CPU time that could
be required for larger instances.
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Chapter 7

Meta-heuristic approaches:
Variable Neighbourhood
Search, Large Neighbourhood
Search and their hybridisation

7.1 Introduction

In this chapter, we exploit the power of two well known meta-heuristics
to address the same order consolidation scheduling problem studied in the
previous chapter. This includes variable neighbourhood search (VNS) and
large neighbourhood search (LNS). For the VNS, appropriate neighbourhood
structures and local searches are developed and for the LNS, novel removal
and insertion operators are examined. To provide the strengths of the two
approaches we also investigate the effect of hybridisation. Computational
results based on the same instances given in the earlier chapter are used for
testing, which are then analysed and discussed.

7.2 Variable Neighbourhood Search (VNS)

We first provide the general framework of VNS. We then discuss the various
neighbourhood structures and the local searches used. As we analyse some
variants empirical testing will be used to choose the most appropriate one.
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7.2.1 Basic VNS algorithm

The main idea of VNS is to systematically change the neighbourhood when-
ever a solution is not improved. It usually starts with the smallest neigh-
bourhood to evaluate and keeps increasing the neighbourhood depending on
the complexity of the neighbourhood. The method is made up of three ba-
sic steps, known as shaking (generation of a neighbouring solution), local
search (try to improve the solution) and move/not move (acceptance crite-
rion to whether or not to accept the solution and then change or not the
neighbourhood). There are obviously several variants as discussed in the
review chapter by Salhi & Thompson (2022a). In this study, we explore a
simple VNS version to see how it behaves against the optimal solution as
more complex ones could easily be extended and investigated.

The VNS Algorithm

Step1: Generate an initial solution X, select the set of neighbourhood

structures Nk(X), k=1,. . . kmax.(kmax is the number of

neighbourhood structures). Define the local searches LS(l); l=1,. . . lmax

with lmax being the number of local searches. Set k = 1

Step 2: While stopping criteria not met apply the following

2a) Generate the solution X
′

in Nk(X) [shaking step]

2b) Apply a local search engine (made up of LS(l); l = 1, . . . , lmax

to X
′

to find X
′′
. [local search step]

2c) If X
′′

is better than X(ie. F (X
′′
) > F (X); case of

maximization), set X = X
′′

and k = 1 else if k = kmax set k = 1

and return to N1 else set k = k + 1. [Move or not move step]

2d) Go back to step 2

In this study, we set kmax = 6 and lmax = 2. The details of the
neighbourhood structures and local searches are given in the subsequent
sections.
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7.2.2 The Neighbourhood structures

For this problem, six neighbourhood structures are defined.
Let C be the number of routes in solution X, cij the jth request of the ith

route, and cri the number of requests in route i. An illustrative example with
the number of requests (i.e., n = 9), indexed by i = 1, ...9 and the number of
routes being C = 5 is given below:

Figure 7.1: An Illustrative Example for Routes

cr1 = 3, cr2 = 1, cr3 = 2, cr4 = 3 and cr5 = 0. Note that we always keep
an empty route with one idle node at each iteration to create opportunity to
attract singleton in case it is worthwhile. The concept of providing an empty
route during the search has proved to be crucial in earlier metaheuristics that
are applied to routing problems.

For instance, in Figure 7.1 we have as an example c13 = 7 and c32 = 5
Neighbourhood structures and corresponding illustrative examples are

given below:

Neighbourhood 1 (1-0): Here the idea is to remove a random request from
a random route and insert it in another random route which has requests
less than 3 to guarantee feasibility as the maximum number of requests is 3.

Let c12 = 4 being selected randomly to be removed from route 1, and
the second route i=2 is chosen randomly for the insertion of this removed
request, namely request 4. This will be removed from the first route and
will be inserted to the end of the second route. The representation of the
solution configuration before and after the change is given in Figure 7.2.
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Figure 7.2: An Illustrative Example for Neighbourhood 1

Neighbourhood 2 (1-1): In this neighbourhood, random requests of 2 ran-
dom routes are swapped.

Let c21 = 2 and c41 = 9 are selected to be swapped.

Figure 7.3: An Illustrative Example for Neighbourhood 2

Neighbourhood 3 (2-0): Here the idea is to remove 2 random requests
from a random route which has at least 2 requests and insert the removed
requests in another random route which has requests less than 2.

Let i = 3 is selected randomly as route to be removed from and j = 2, 3
are selected as requests to be removed from route i = 3, which are c32 = 5
and c33 = 4 and i = 2 is selected randomly as route to inserted.
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Figure 7.4: An Illustrative Example for Neighbourhood 3

Neighbourhood 4 (2-0): In this neighbourhood 2 random requests are re-
moved from a random route as in neighbourhood 3 but here each of the
removed requests are inserted into 2 different random routes.

Let i = 2 is selected randomly as route to be removed from and j = 1, 2
are selected as requests to be removed from route i = 2, which are c21 = 9
and c22 = 5 and i = 1 and i = 5 are selected randomly as route to inserted.

Figure 7.5: An Illustrative Example for Neighbourhood 4

Neighbourhood 5 (2-1): Here, 2 random requests from a random route
are removed, while one of these random routes swapped with a random re-
quest from a random route and the other removed request is inserted into
the same route. Therefore the random route which will be inserted into has
to have at least a request to be swapped with one of the removed requests
and maximum 2 requests as the other removed request will be inserted into

156



this route to guarantee feasibility as the maximum number of requests is 3.

Let i = 4 is randomly selected as route to be removed from and swapped
with and i = 2 is selected as route to be inserted into and swapped with.
Let c43 = 8 is randomly selected to be be swapped with c21 = 4 which is
randomly selected to be swapped too, and c41 = 2 is randomly selected to be
removed and inserted into route i = 2.

Figure 7.6: An Illustrative Example for Neighbourhood 5

Neighbourhood 6 (2-1): Here, 2 random requests from a random route are
removed. The removed requests are processed separately in different routes.
One of the removed requests is swapped with a random request of a random
route and the other removed request is inserted in a different random route.

Let i = 1 is randomly selected as route to be removed from and swapped
with and i = 2 is selected as route to be inserted into and i = 5 is randomly
selected as route swapped with. Let c13 = 9 is randomly selected to be
swapped with c51 = 5 and c11 = 3 is randomly selected to be removed and
inserted into route i = 2.
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Figure 7.7: An Illustrative Example for Neighbourhood 6

7.2.3 The local searches

We used two local searches. One is based to improve routes within routes
whereas the second is to improve routes by using more than one route.

Local Search 1 (LS1)
LS1(X): (Within routes) This local search is designed for the search of

the best consolidation configuration for a given candidate route. As there
are several possible consolidation configurations for a given route (set of two
or three orders), LS1 finds the best configuration for the given route.
Note that a route is made up of its requests and when evaluated using LS1,
the best configuration of such a route is then defined by the order in which
the collections and the deliveries including the transshipment if there are
made, with its corresponding saving recorded. This is carried out by evalu-
ating all the combinations for the case of pairs and triplets with or without
transshipment as already defined in chapter 5 where the consolidations are
obtained.

For instance, if we consider the first route in Figure 7.1. This route in-
cludes 3 requests as request 3, 4 and 7. This local search computes the
saving values for each consolidation configuration, as explained in chapter
5, and finds the one that produces the largest saving, and hence offers the
corresponding consolidation configuration. For example, the best consolida-
tion configuration for requests 3, 4 and 7 is shown in Figure 7.8 where the
collection for request 4, is followed by the collection for request 7 then the
collection for request 3 in sequence. These are then split at the transship-
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ment request 3 receives its delivery on its own route, whereas requests 4 and
7 get their deliveries in a second route by first delivering to request 4 then
finally request 7.

Figure 7.8: An Illustrative Example for Local Search 1

Note that this local search, LS1, also acts as the objective function evaluator
as it provides for each route the best configuration with its maximum saving.

Local Search 2 (LS2)
LS2(X): (Between routes) This local search is designed to explore the

possibility of shifting requests between routes. For a given set of requests,
this local search works to design the best routes with respect to obtaining
the maximum saving. In brief, a random request is removed from the first
route and saving of the case of insertion of this removed request into other
routes which are suitable for insertion and which have less than 3 requests
are computed respectively by using LS1. The request is then inserted into
where improvement is obtained first. In other words, we are adopting the
first improvement strategy instead of the best improvement strategy which
can be too time consuming. This procedure is applied throughout all the
available routes. A formal step by step algorithm for LS2 is given below
followed by an illustrative example.

The LS2 algorithm
For k = 1, ..., C

Record its saving (already known) SRk
.

Choose a random request from Rk, say ckj and evaluate the saving
for the reduced route say R′k = Rk − ckj using LS1 to obtain
the saving say S(Rk′)

For l =1,...,C
IF (l 6= k and crl < 3) do the following

Insert ckj in Rl to get R′l = Rl + ckj and evaluate the saving on R′s
using LS1 to obtain SR′l .
IF (SR′l + SR′k)− (SRk

+ SRl
) > 0

Set Rk = R′k, Rl = R′l, SRk
= SR′k and SRl

= S(R′s);
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Set crk = crk − 1 and crl = crl + 1
Stop

An Illustrative Example
An illustrative example is given Figure 7.9 with the necessary steps ex-

plained below.
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Figure 7.9: An Illustrative Example for Local Search 2

Let say after application of a neighbourhood and local search 1 a can-
didate solution say x is obtained as given in Figure 7.9a). We will apply
local search 2 on x. We use the same notations in neighbourhood structures
section. In the above example, C = 6, as there are 6 routes.

We apply local search 2 by removing a random request from first route,
c12 = 8 selected randomly as the request to be removed. We first try to insert
into the second route. As the effected routes are only first and second route
i = 1 and i = 2, we will compare the saving values of these routes before and
after change.

Before the change, first and second routes are as given in Figure 7.9.b),
cr1 = 2, c11 = 2, c12 = 8 and cr2 = 2, c21 = 3, c22 = 9, after the change, the
routes are adjusted as in Figure 7.9.c).

Let Si saving of the route i before change and S
′
i saving of the route i

after the change.
Saving values of the first and second route before the change,
S1= 32 and S2= 15; S1 + S2 = 47
Saving values of the first and second route after the change
S
′
1=0 and S

′
2=40; S

′
1 + S

′
2 = 40

As the saving values after the change is less than the one before,
S
′
1 + S

′
2 < S1 + S2,

this insertion move is not accepted.
We move on the next route i = 3, before the change first and third routes

are as given in Figure 7.9.d) and after the change they are as given in Figure
7.9.e). We compare the savings before and after,

S1= 32 and S3= 0; S1 + S3 = 32
S
′
1=0 and S

′
3=45; S

′
1 + S

′
3 = 45

As the saving values after the change is bigger than the one before, S
′
1 +

S
′
3 > S1 +S3 which means we find the first improvement, this insertion move

is accepted and new solution say X
′

as given in Figure 7.9.e) is accepted as
solution X.
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After random request removal from the first route and insertion with first
improvement strategy we move on next route i = 2. (We do not go through
the routes that we changed to save time). c21 = 3 is selected randomly as
request to be removed from route i = 2 and we again start from the first
route for the insertion of the removed request. The routes before the change
are as given in Figure 7.9.f) and after the change as given in Figure 7.9.g).
Savings of the affected routes are,

S1= 0 and S2= 40; S1 + S3 = 32
S
′
1=60 and S

′
3=0; S

′
1 + S

′
3 = 60

As S
′
1+S

′
2 > S1+S2, first improvement is found, this insertion is accepted

and new solution say X
′′

as given in Figure 7.9.g) is accepted as solution X.
The same procedure is applied through the all routes.

7.2.4 Stopping Criterion

The stopping criterion adopted here is based on the number of iterations
as well as the number of successive non improvements. Given that n is the
number of requests, VNS will stop after

Maxiterations = n ∗ 0.25 iterations are performed or Min(5, 0.05 ∗ n)
consecutive non-improvements are found whichever is reached first.

The first part of the above rule is introduced to give a upper limit on the
number of runs whereas the second is based on the solution quality.

7.2.5 Selection the various VNS implementation vari-
ants

We investigate four variants of VNS. These variants are based on two items,
namely, (a) initial solution and (b) the way we revert back to step 2.

Variant 1: Start with random initial solution and continue with same initial
solution at each run.

Variant 2: Start with best initial solution and continue with the same initial
solution at each run.

Variant 3: Start with random initial solution and continue with the last best
solution at each run.

Variant 4: Start with best initial solution and continue with the last best
solution at each run.

We ran the above four variants of VNS with 10 randomly generated instances
of size 50. Each instance was run 10 times and the average performance was
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recorded. The detailed results of the four variants and their corresponding
graph of comparison is given in Figure 7.10.

Figure 7.10: Performance Comparison of VNS Variants

According to the results in Table D.1, the best variant is variant 3 with
the average result of 856.26 shown highlighted. In other words, this variant
starts with a random initial solution and continues with the last best solution
at each run.

7.2.6 Adjusted Stopping Criterion

To assess whether the solution found is of good quality or not, we recorded
the optimal solution for these instances (as found in the previous chapter)
and also presented in Table 7.1 (TS denotes the total saving). It is observed
that the optimal average solution for size 50 is 954.70. This is equivalent
to a loss in quality of 10.31% (i.e 100*(954.70-856.26)/954.70). A formal
mathematical expression of the deviation (in %) is defined in Eq (7.1). In
other words, there is a significant gap between the optimal and the heuristic
results.

DevH(%) = 100 ∗ (Saving(Optimal)–Saving(H))/Saving(Optimal) (7.1)

One way forward is to re-examine the way the stopping criterion is de-
signed and implemented. Therefore, we adjusted the stopping rule to see
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whether the first stopping criterion was a bit restrictive in terms of the num-
ber of non-improvements, especially for larger sizes where more running time
to improve the solution could be required. This stopping criterion 2 is given
next and empirical results derived accordingly.

In this adjusted stopping criterion which we refer as stopping criterion 2,
the VNS will stop after

Maxiterations = n ∗ 0.25 iterations are performed or
Min(10,Max(5, (0.05∗n)) consecutive non-improvements are found whichever

is reached first.
Note that the first part of the above rule referring to the upper limit on

the number of iterations is not changed.
We ran the best VNS variant, namely, VNS-Variant 3, with this new

stopping rule for the same 10 instances of size 50.

Instance TS Optimal Dev(%)
50-1 1067.43 1171.38 8.87
50-2 1046.74 1179.08 11.22
50-3 786.63 836.57 5.97
50-4 636.71 706.02 9.82
50-5 807.99 912.36 11.44
50-6 783.44 903.16 13.26
50-7 992.13 1094.44 9.35
50-8 657.74 721.99 8.90
50-9 910.49 972.99 6.42
50-10 933.01 1049.00 11.06

Average 862.23 954.70 9.63

Table 7.1: Saving of size 50 instances with second stopping rule

According to the results, the deviation of the average solutions decreased
to 9.68% from 10.31%. (Note that average of the deviations is slightly dif-
ferent, recorded at 9.63% instead).

7.3 Large Neighbourhood Search (LNS)

In this study, we also explore a perturbation based metaheuristic, namely,
LNS, which was briefly described in the literature review section. For more
details, see the overview chapter by (Salhi & Thompson 2022a). In brief,
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the idea behind LNS is made up of two steps which can be repeated several
times:

(a) destroy a given solution by removing a certain amount of attributes,
say rmax, using removal operators, say Rk, k = 1.., rmax resulting in an
incomplete solution and therefore not feasible.

(b) reinsert these attributes back into the solution using repair mecha-
nisms, say Ml, l = 1, ..lmax where lmax denote the possible repair mechanisms
that can be used to repair the solution, turning it into a feasible solution
again.

In this section, we first provide the general framework of LNS followed by
the removal operators and the repair mechanisms that we adopted. Two vari-
ants will be investigated using an initial experiment to identify empirically
which one is the most promising to be used on larger instances.

7.3.1 Basic LNS algorithm

The main steps of the algorithm are given below. It is also worth stressing
that the operators, namely, Rk and Ml, incorporate randomness to avoid
cycling in case the incumbent solution X is not changed.

Step 1: Define removal mechanisms Rk(k = 1..rmax), repair operators
Mk(k = 1, ..mmax) and maximum number of attributes can be removed,
Nmax. Start with a given solution X.

Step 2: While the stopping criteria is not met do the following

2a) Destroy solution X using removal mechanism Rk(k = 1, ..Rmax)

by removing Nmax attributes to get partial solution X
′

2b) Insert those Nmax removed attributes from 2a) using repair

operators Mk(k = 1, ..Mmax) to obtain a full solution X”

2c) (optional step) apply local search to find the improved X”

2d) If X” is better than X set X = X”

2e) Go back to step 2 with solution X

7.3.2 The Removal Operators

We have adopted two removal strategies which we denote as the random
removal strategy and the guided removal strategy.
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Removal Strategy 1(Random Removal Strategy)- In this strategy, at-
tributes to be removed are selected randomly. In this work, we opted
to remove Nmax = 0.4 ∗ n requests randomly.

Removal Strategy 2(Guided Removal Strategy) In this strategy, instead
of removing attributes randomly, we follow a rule. We remove the
routes whose saving Sk < 0; k = 1, ..N . We start from the first Sk < 0
and repeat this step until total number of removed requests either reach
Nmax = 0.4 ∗ n or there is no more Sk < 0.

7.3.3 The Repair Operator

In this work, we used one repair mechanism, based on the best insertion
within a given route but not over all routes, resulting in adopting a first
improvement strategy. This is carried out as it is simpler and relatively
much faster than the best improvement which would require investigating all
routes.

Step 1: Randomly select one of the removed attributes, say request A

Step 2:

2a)Starting from the first incomplete route and insert request A in

the best place.

2b) If the solution is improved, insert A in that chosen position and

go back to step 1, otherwise go back to step 2a)

2c) If A cannot be inserted in all the incomplete routes, then keep

it as singleton.

Step 3: While there are still some removed attribute go back to step 1

otherwise record the new complete solution X
′

and stop.

7.3.4 Selection between the two removal strategies

We ran the two variants of LNS, one with the random removal strategy
(denoted by RMS for short) and the other using the guided removal strategy
(GRS). We used the average CPU time of the best variant of VNS (VNS3)
as our stopping criterion. Here, we tested the same 10 randomly generated
instances of size 50. The detailed results are given in Table D.3 with the
average summary results shown in the last row.
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Figure 7.11: Performance Comparison of LNS Variants

It can be shown that the guided variant of the LNS performed relatively
much better than the random variant with a massive average improvement
of 18.60% (i.e., 100*(808.72-658.26)/808.72). This is also shown in Figure
7.11 where the average of the deviations from the optimal solutions for each
variant is displayed (15.16% vs 31.03% for the Guided vs the Random LNS
respectively). We therefore adopted the Guided LNS for the rest of the
experiments as will be shown in the next section.

7.4 Hybridisation of VNS/LNS

As both the VNS and the LNS have their strengths and weaknesses, it is
useful to attempt to combine them while obviously using the same amount
of total CPU time. We adopted a simple hybridisation by integrating them
in series, starting with VNS. Obviously we could have also started with LNS
however as guided variant of LNS’s removal mechanism work on the route
which have Sk < 0, we used VNS first and perturb the solution which ob-
tained after VNS by destroying the routes Sk < 0 instead of improving the
solution with VNS after LNS’s repair mechanism for routes which have Sk.
Note that in this study we did not hybridise the two metaheuristics based
on useful information which we could have gathered during the search, this
could be an interesting research avenue to pursue. Here, the following basic
algorithm of the hybrid metaheuristic is given below:
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Step 1: Start with a random initial solution X

Step 2: While the stopping criterion is not met perform the following:

2a) Apply VNS-V3 starting with X to get new solution X’ and

set X=X’ (note that the solution never gets worse in VNS)

2b) Apply LNS-guided on X to get X
′
.

2c) If X
′

is better than X set X = X
′
.

The performance of this integration is assessed in the computational result
section which is given next.

7.5 Computational Results

In this section, we test our methodology on instances with larger size as car-
ried out in the earlier chapter. These refer to size 100, 150 and 200 requests
where 10 random instances for each size are tested and their respective av-
erage saving recorded. All the algorithms are coded in Visual Studio C++
and executed on an Intel Core i5-7300U CPU @ 2.60GHz 64-bit operating
system with 8 GB RAM.

Note that the deviation measure as defined in the previous section using
the optimal solution found in the previous chapter is adopted for assessing
the performance of each of the metaheuristics.

We first provide a more detailed analysis on the choice of the second VNS
stopping criterion, followed by the presentation of two experiments where in
experiment 1, the CPU time of the VNS is used whereas in experiment 2,
the stopping criterion of VNS based criterion 2 is adopted instead of its cor-
responding VNS CPU time. These results are provided in the subsections
of LNS and Hybrid respectively. Finally, the overall results are then sum-
marised and analysed.

7.5.1 More analysis on the choice of VNS stopping cri-
terion 2

We first provide a summary of empirical result based on these larger instances
to reiterate the choice of the second stopping criteria used in VNS which was
already assessed using size 50 only. This is carried out by running the best
variant of VNS, namely VNS3.

The average deviation results are shown Figure 7.12 and support our
earlier choice of opting for stopping criterion 2. Adoption of second stop-
ping stopping criterion 2 instead of stopping criterion 1 obviously decreases
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the deviation from the optimal solution especially for the larger sizes it per-
forms significantly better. For more information, the detailed results for all
instances for each stopping criterion can be found in Appendix C.

Figure 7.12: Performance Comparison of Stopping Criteria of VNS

7.5.2 VNS3 Criterion 2 results

The detailed results of the VNS3 with criterion 2 which showed to be rela-
tively better as empirically demonstrated in the earlier subsection are also
reproduced and presented in Appendix D. and their average results in Table
7.2 though these are also given as part of Appendix C. The results are for
n=50,100, 150 and 200 requests where 10 random instances are tested for
each size and the average results produced.

Size TS Optimal Deviation(%)
50 862.23 954.70 9.63
100 1955.39 2228.37 12.27
150 3073.70 3523.99 12.75
200 4318.42 4929.47 12.40

Table 7.2: Summary Results of VNS using the second stopping criterion
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7.5.3 The LNS results

We already tested the two proposed LNS approaches namely, LNS Random
and LNS Guided with the first experiment for size 50 in the previous section
and we determined the best variant of LNS as LNS Guided. Here we provide
the results of the LNS Guided, using the instances (n=50,100, 150 and 200)
based on the two experiments:

Results of LNS using Experiment 1
Here, the CPU time of VNS3 found for each instance is adopted. The

LNS Guided stop where the algorithm reaches the VNS-3 CPU time. We
conducted first experiment already for size 50 to determine the best variant.
Here we conduct the first experiment for other sizes, 100, 150 and 200. The
results including the optimal solutions and the corresponding deviations in
% are reported in Table D.8. For completeness, the average summary results
are also provided for in Table 7.3.

Results of LNS using Experiment 2
To be consistent in terms of comparison between the methods, we also

ran the guided variant of LNS with second stopping criterion of VNS. This is
used to relate to the number of iterations etc instead of the CPU time used.
This comparison can also be seen to be independent from the CPU time of
VNS3 but consistent in terms of reasoning behind the rule itself. In addition,
this does not require to have the VNS results first which can be a handicup if
one is interested to explore LNS or any other method. The average summary
results is also provided in Table 7.4 for completeness.

The deviation values of LNS based on second experiment is less than the
deviation values based on the first experiment. However, we also need to
compare these deviation values against the deviation values from the other
methods too. These results are given to present the details of the results.
The discussion about the performance of the algorithm compared to the other
methods based on the deviation from the optimal and computational time
complexity is given in the computational results section.

Size TS Optimal Deviation(%)
50 808.72 954.70 15.16
100 1812.50 2228.37 18.74
150 2844.08 3523.99 19.25
200 3884.48 4929.47 21.20

Table 7.3: Average summary results of LNS: Case of experiment 1
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Size TS Optimal Deviation(%)
50 775.10 954.70 18.83
100 1720.56 2228.37 22.73
150 2762.93 3523.99 21.51
200 3741.79 4929.47 24.08

Table 7.4: Average summary results of LNS: Case of experiment 2

7.5.4 The Hybrid VNS/LNS results

We hybridized the VNS and LNS as LNS perturbs the solution comes from
VNS and improve with repair mechanisms. Here we provide the results of
the hybrid using the same instances under the two experiments related to
the VNS3 stopping criteria.

Summary results of hybrid using experiment 1 and experiment 2 are pro-
vided in Table 7.5 and Table 7.6 respectively.

The results obtained from hybrid approach is similar to the results ob-
tained from VNS. The detailed analyses and comparison with the other re-
sults are given in computational results.

Size TS Optimal Deviation(%)
50 868.13 954.70 9.01
100 1960.07 2228.37 12.04
150 3073.40 3523.99 12.79
200 4274.22 4929.47 13.31

Table 7.5: Average summary of Hybrid: Case of experiment 1

Size TS Optimal Deviation(%)
50 875.41 954.70 8.14
100 1995.07 2228.37 10.47
150 3134.20 3523.99 11.02
200 4232.26 4929.47 14.16

Table 7.6: Average summary of Hybrid: Case of experiment 2

Note that the detailed additional tables are given in Appendix D.
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7.5.5 Overall computational Comparison

In summary, as said earlier, we ran 10 randomly generated instances of size
50, 100, 150 and 200 with the chosen methods which are VNS3 with stopping
criterion 2, the guided LNS and Hybrid. We carried out two experiments
based on stopping criteria where in the first experiment, VNS3 cpu time is
used as the stopping criterion for the other two and in the second experiment,
the second stopping criterion of VNS, which is related to the rule rather than
the time required, is used instead.

Solution Quality
The overall performances of these metaheuristics are measured based on

the deviation in % from the optimal solutions found in the earlier chapter.
The detailed results of these methods using experiment 1 and experi-

ments 2 are presented in Appendix D. Note that for VNS it is the same
experiment. Also for an overall comparisons based on the average deviation
under experiment 1 and experiment 2 are given in Figure 7.13 and Figure
7.14 respectively.

Figure 7.13: Comparison of the Methods by Experiment 1

According to experiment 1 results, both VNS and Hybrid produce sim-
ilar results and outperform the LNS. However, for size 50 and 100 Hybrid
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performs slightly better than VNS but for larger instances such as size 150
and 200, VNS performs slightly better than hybrid.

Figure 7.14: Comparison of the Methods by Experiment 2

Results of experiment 2 is not also so different than the results of exper-
iment 1. VNS and Hybrid methods still outperform the LNS. However, for
the largest size, say size 200, VNS performs better than the other methods
producing the smallest deviation value.

CPU Time of the methods
We also compared the computational time performance of the methods.

Note that the computational time of the exact method consists of the com-
putational time of the mathematical model and computational time of the
saving generation which is quite large. For the exact methods, savings of
all possible consolidation configurations for all requests are computed. How-
ever, for the metaheuristics, the saving calculation is carried out only the
relevant(candidate) route. The CPU time (in milisecs) comparison of VNS,
Hybrid and exact methods are given in Figure 7.15. We only presented the
cpu time of VNS and Hybrid from the metaheuristics that we adopted as
they were considered to be the best in terms of deviation from the optimal
result. It can be shown that the CPU for the exact method is massively
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larger as the size of the problem increases. Note that the detailed additional
tables are given in Appendix E.

Figure 7.15: CPU Performance of the methods for all Sizes

7.6 Summary

In this chapter, we addressed the consolidation scheduling problem using
meta-heuristics, namely, VNS and LNS and their hybridisation. This is
mainly carried mainly to respond to the potential increase in CPU time
that could be required to solve larger instances optimally. For VNS, appro-
priate and novel neighbourhood structures and local searches are exploited.
Similarly, in LNS we presented removal and repair operators that take into
account the structure of the problem. Interesting computational results are
also provided and analysed with the VNS and the Hybrid showing better
performances. Note the obtained results are not as competitive to the opti-
mal solution in terms of quality though they are obtained in relatively less
computational effort. The quality of these metaheuristics could eventually
be enhanced as will be highlighted in the next chapter under the section
limitations and suggestions

The following and final chapter will summarise our findings, highlight
potential limitations of the approaches that we adopted while providing sug-
gestions that could be worth examining.
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Chapter 8

Conclusion, Limitations and
Suggestions

8.1 Introduction

In this chapter, we summarise the findings which we have achieved in this
work, highlight some limitations as well as providing an outline of the poten-
tial research avenues that we believe to be worthwhile.

8.2 Conclusion

The thesis is made up of eight chapters. The first one deals with the problem
we are examining, the aim and contribution of the work and also outlines the
structure of the thesis. Chapter two provides a review on two related areas,
namely, supplier selection which here represent the freight logistic companies
and freight order consolidation scheduling. In the first area we review those
multi-criteria decision approaches that are used independently, then discuss
those integrated approaches and then highlight the use of uncertainty that
could be tackled through fuzzy set approaches and Bayesian networks. The
second part concentrates on freight consolidation scheduling based on exact
and heuristic methods. Our first two contributions are provided in the next
two chapters, namely chapter three and chapter four. Chapter three deals
with the design and analysis of a novel and effective integrated MCDM ap-
proach that aims to combine the results of individual ones such as AHP,
TOPSIS and VIKOR. Though these are chosen as an example, the approach
can be used and adapted for any number of individual ones. A new data
set generator is also produced to reflect the various scenarios. The results
demonstrate, though empirically, that it is not effective to rely on using one
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individual MCDM method only. Our findings also supports earlier studies in
this area such as the recent survey by Watróbski et al. (2019).

Chapter four treats uncertainty when there is a lack of knowledge. We
treat this issue by designing a novel approach that combines MCDM methods,
AHP, TOPSIS and DEMATEL with Bayesian Network(BN).In this proposed
approach, TOPSIS is used for ranking the suppliers. TOPSIS has two input;
weights of the criteria and initial decision matrix. Weights of the criteria
is provided by AHP. Initial decision matrix is elicitated by BN. The causal
graph of BN is determined by DEMATEL.

Chapter five defines the freight order consolidation scheduling problem.
Here we first enumerate all the possible order consolidation configurations
for pair and triplets and produce their corresponding saving due to consol-
idation. A simple 0-1 ILP is also provided here for the case of pairs. The
next two chapters present the approaches that we developed to solve this
scheduling problem. The first part which is covered in chapter six deals with
a development of a set partitioning based approach and provides some inter-
esting results compared to the standard 0-1 formulation. In this chapter we
also introduce some new and efficient valid inequalities and create a data set
generator to produce ten random instances with 50 to 200 requests with a
step size of 50. This data set is used for the empirical testing in this chapter
and in the subsequent one as well. The next chapter, namely, chapter seven,
treats the same problem but from a heuristic search view point. Though
the exact method was fast for small instances, it requires a significant in-
crease in CPU for larger ones. Though optimal solutions could be found,
due to the time urgency of the problem, we wanted to examine two powerful
and well known meta-heuristics, namely, VNS and LNS. Interesting neigh-
bourhood structures and local searches are designed for VNS, while specially
built removal and repair operators are presented for LNS. Some variants for
both VNS and LNS are explored and their hybridisation was also empiri-
cally examined. Computational performance between the method is carried
out showing that the VNS and the hybrid are the best performers. The final
chapter, chapter eight, is the current chapter which presents some limitations
of the study and highlights several suggestions for future research.

8.3 Limitations/Suggestions

The following limitations are worth discussing. Some are based on method-
ology whereas others on applications. These shortcomings have also led to
some interesting suggestions. For simplicity we organise the discussion un-
der two headers, namely the supplier selection (chapters 3 and 4) and the
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consolidation scheduling. (Chapters 5, 6 and 7)

Supplier selection part
In this part, other MCDM approaches besides the three that are used to

determine the integrated approach can include several other ones. This can
result to an extended analysis with more robust results. The criteria that we
considered could also be revisited.

In Chapter 3 for example, we showed, through empirical experiments,
that it is much better not to rely on one MCDM method only when it
comes to supplier selection. This important result reinforces earlier stud-
ies that support such arguments including the recent and informative review
by Watróbski et al. (2019) who provided an interesting framework to identify
a subset of promising methods for a given decision problem instead of one
method only. Our approach though deals with the problem from another
angle it overcomes the problem by incorporating invaluable information that
are gathered by the individual MCDM methods to generate a global result.
This also differs from classical integrated methods that aim to construct a
new method which combines elements of the individual methods.

One way forward would be to merge the framework of Watróbski et al.
(2019) to identify a subset of methods for a given decision problem and
then adapt the proposed approach to get even more robust solution from the
outcomes of these selected individual methods.

Also in chapter 3, we carried out the elicitation of the weights of criteria
from AHP to be consistent in all methods. However, other weighting meth-
ods can also be proposed. Besides, we generated the weights associated with
the individual methods randomly but in practice this can be explored further.
One possibility would be to adopt an ordinal range as low (say [0.05-0.4]),
medium (say [0.4, 0.65]) and high (say [0.65, 0.95]). These can be submitted
to the decision makers for elicitation of their preferences among the available
methods and a random number within these small ranges are chosen instead.
The concept of interval preference is an interesting idea that is recently ex-
plored by Ahn (2017) for the case of AHP but can be adopted to cater for the
individual methods instead. Another way would be to calculate the prob-
ability of success of an individual method based on their respective regret
based measure results found in Subsection 3.2 or through similar empirical
experiments.

The integration of more complex but powerful approaches such as those
using evolutionary methods and also mathematical programming could be
revisited to incorporate this type of learning which is based on useful infor-
mation found by other methods (see Salhi (2017)).

The data set used for our supplier selection testing in both chapters 3
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and 4 is also small and larger data sets supported by more case studies
could enhance the usefulness of both MCDM methods proposed in these
two chapters. For instance, in chapter four, the results were based on one
case study using three experts from the company. A data gathering that
invites more experts or similar type of experts from various companies could
provide more insight. The current study is limited to one case study. One
way forward would be to identify a set of case studies that have different
levels of missed information to assess whether the approach we developed
will remain robust. In this work, we used TOPSIS as a ranking method but
other MCDM ranking methods such VIKOR, ELECTRE or PROMETHEE
can also be adopted. Our approach could also be extended to incorporate
invaluable information derived from commonly used statistical techniques on
missing values.

Another interesting though challenging avenue would be to incorporate
fuzzy information in some of these techniques by considering a mixture of
memberships to better represent each of the criteria from a fuzzy environ-
ment view point. Exciting research aspects on fuzziness in MCDM that are
discussed in the recent informative review chapter by (Zeshui & Zhang 2022)
could be worth exploring. One way would be to incorporate some ideas from
the interesting study of Rodrigues et al. (2014) where AHP and TOPSIS,
are hybridized. Such an investigation would be worthwhile not only for aca-
demics but practitioners too.

Consolidation scheduling part
For the consolidation scheduling part, our mathematical formulation is

based on set partitioning. This could be limited if the company wishes to
incorporate more than triplets. The generation of all combinations espe-
cially if more than one transshipment point for a given consolidation is also
required, this will increase the size of the problem drastically. However, it
is worth stressing that not all combinations will be needed as some could be
eliminated due to feasibility constraints and hence developing a scheme to
identify these non feasible ones would be worth exploring.

In the meta-heuristic chapter, the number of local searches in VNS could
be increased leading to a more powerful local search engine. This would
explore a wider search space that could enhance the quality of the results
but at the expense of extra CPU. However, this computational burden could
be managed if neighbourhood reductions that cut unnecessary computations
for non promising moves could be developed. Such implementation could be
made even more efficient by introducing suitable data structure that avoid
recomputing already found information. These key aspects are highlighted
in (Salhi & Thompson 2022b) and could be worth investigating.
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An adaptive search which uses learning could also be introduced where
a subset of local searches will be called for at a given iteration instead. The
same observation could be made for LNS where additional removal operators
could be introduced and analysed. Here pairs of operators (removal/repairs)
could be analysed at a learning stage and then an adaptive LNS can then
be used that involves a given pair at a given iteration depending on its
probability of success. Some of these ideas could be attempted as successfully
implemented by (Sze et al. 2016, 2017) for the case of the classical VRP and
the cumulative capacitated VRP respectively.

In this study, the supplier selection and the scheduling tasks can be con-
sidered dependent due to the chosen suppliers location and the respective
collection points. Here, we assumed that the extra time/cost to the first
chosen collection point in any consolidation is a constant regardless of the
supplier chosen. This is mainly due to having a large number of available
suppliers that are chosen based on earlier supplier selection. If this is not
the case, the computation of the configuration for consolidation may be af-
fected by the choice of the suppliers. This aspect can be considered and our
approach need to be revisited by reexamining all the configurations between
the collection points and the possible suppliers around that collection points.
This could yield to the best configuration consolidation between two or three
requests being different to the ones we obtained. It is worth noting that this
will have no bearing in the methodology behind either the exact method or
the metaheuristics though the results may obviously be different due to the
new configurations and their respective savings.

Given the urgency of providing quotes to customers, it may be interesting
though challenging to examine the effect of probable arrival of new requests
using past information. This can lead to offering competitive quotes with
the expectation that order requests that are not too far from the paths cho-
sen will materialise making the consolidation relatively much more effective.
The incorporation of such stochastic aspect would not only advance the the-
oretical and academic knowledge but also provide a competitive advantage to
those 3PLs that embrace this innovative and data driven approach by putting
the resource in collecting as much information as possible so the exploration
could be made worthwhile.
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Appendix A

Contribution to Knowledge

In this appendix we highlight the main contributions as demonstrated through
the conferences and the publications.

A.1 Conferences

1. OR61 (September 2019) University of Kent, The Selection of Freight
Transportation Suppliers with presence of Scheduling

2. EURO (July 2019) Dublin, A VNS approach for the Freight Trans-
portation Supplier Selection Problem

3. ECCO XXXV –CO 2022 Joint Conference (June 2022) Online Hosted,
Mathematical Models and Metaheuristic Approaches for the Order
Consolidation Scheduling Problem

A.2 Publications

1. S. Salhi, B. Gutierrez, N. Wassan, S. Wu R. Kaya (2020). An effective
real time GRASP-based metaheuristic: Application to order consoli-
dation and dynamic selection of transship-ment points for time-critical
freight logistics,” Expert Systems With Applications, 158, 1–36. [this
has some small parts from chapters 2, 5 and 6]

2. R. Kaya, S.Salhi, V. Spileger. A Novel Integration of MCDM Methods
and BN: The Case of Incomplete Expert Knowledge. Paper submitted
from Chapter 3 (under review, 2nd revision) [mainly based on chapters
2 and 4]
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3. R. Kaya, S.Salhi, V. Spileger. An Effective Integrated Ranking Ap-
proach for Multi Criteria Decision Making [submitted], [mainly based
on chapters 2 and 3]

4. R.Kaya, S.Salhi, V. Spielgler. Exact Approaches for Order Consoli-
dation Scheduling Problem for Third Party Logistics Companies; in
preparation, [based on chapters 5 and 6]

5. R Kaya, S.Salhi and V. Spielgler Metaheuristics for for Order Consol-
idation Scheduling Problem for Third Party Logistics; in preparation.
[based on chapters 5 and 7]
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Appendix B

Triplet
Consolidation-Additional
Configurations

B.1 Consolidation of 3 requests en-route(no

transshipment

Case (a-3)

Figure B.1: En-route consolidation for triplet case (a-3)

Compute all costs for (a-3)

∆1
CiCkCj

= dCiCk
+ dCkCj

+ dCjDi
+ δ1

∆1
CiCkCj

= δ3
0 + δ1 + dCjDi
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(as δ3
0 = dCiCk

+ dCkCj
)

∆2
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= dCjDi
+ δ2 + δ3

0

∆3
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0
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0
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= dCjDk
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0

T 3
ijk = min

r=1,...,6
(∆r

CiCkCj
)

Case (a-4)

Figure B.2: En-route consolidation for triplet case (a-4)

Case (a-5)
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Figure B.3: En-route consolidation for triplet case (a-5)
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Case (a-6)

Figure B.4: En-route consolidation for triplet case (a-6)

B.2 Consolidation of Triplets(ijk) with only

one transshipment point(T)

b-1) Case of transshipment points before delivery
b-1-2-2)

Figure B.5: Triplet case with transshipment of (b-2-2)
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b-1-2-3)

Figure B.6: Triplet case with transshipment of (b-2-3)
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b-1-2-4)

Figure B.7: Triplet case with transshipment of (b-2-4)
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b-1-2-5)

Figure B.8: Triplet case with transshipment of (b-2-5)
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b-1-2-6)

Figure B.9: Triplet case with transshipment of (b-2-6)
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Figure B.10: Triplet case with transshipment of (c-2-2)
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Figure B.11: Triplet case with transshipment of (c-2-3)
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Figure B.12: Triplet case with transshipment of (c-2-4)
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Figure B.13: Triplet case with transshipment of (c-2-5)

∆1
TDjDiDk

= dDiDk
+ min

T∈∆CiDjDi

(dCiT + dTDj
+ dTDi

) + δ
′

1 = dDiDk
+ δ8

′′

0 + δ
′

1

∆2
TDjDiDk

= dDiDk
+ min

T∈∆CiDjDi

(dCiT + dTDj
+ dTDi

) + δ
′

2 = dDiDk
+ δ8

′′

0 + δ
′

2

∆3
TDjDiDk

= dDiDk
+ min

T∈∆CjDjDi

(dCjT + dTDj
+ dTDi

) + δ
′

3 = dDiDk
+ δ9

′′

0 + δ
′

3

∆4
TDjDiDk

= dDiDk
+ min

T∈∆CjDjDi

(dCjT + dTDj
+ dTDi

) + δ
′

4 = dDiDk
+ δ9

′′

0 + δ
′

4

∆5
TDjDiDk

= dDiDk
+ min
T∈∆CkDjDi

(dCkT + dTDj
+ dTDi

) + δ
′

5 = dDiDk
+ δ10

′′

0 + δ
′

5

∆6
TDjDiDk

= dDiDk
+ min
T∈∆CkDjDi

(dCkT + dTDj
+ dTDi

) + δ
′

6 = dDiDk
+ δ10

′′

0 + δ
′

6

T 5
′′′′

ijk = min
r=1,...,6

(∆TDjDiDk
r)

b-2-2-6)

195



Figure B.14: Triplet case with transshipment of (c-2-6)
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Appendix C

Additional Tables of Chapter 6

Size 100 Pair Triplet(Incl Pair) Improvement(%)
Data Set 1 1525.25 2146.10 40.70
Data Set 2 1695.07 2277.53 34.36
Data Set 3 1935.62 2591.78 33.90
Data Set 4 1473.63 1992.24 35.19
Data Set 5 1694.29 2284.95 34.86
Data Set 6 1823.18 2503.98 37.34
Data Set 7 1651.04 2262.12 37.01
Data Set 8 1369.99 1865.89 36.20
Data Set 9 1707.26 2332.18 36.60
Data Set 10 1523.10 2026.91 33.08
Average 1639.84 2228.37 35.89

Table C.1: Paired vs Triplet Consolidation Savings of Size of 100

.
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Size 150 Pair Triplet(Incl Pair) Improvement(%)
Data Set 1 2622.40 3514.90 34.03
Data Set 2 2534.48 3457.17 36.41
Data Set 3 2904.82 3926.58 35.17
Data Set 4 2619.91 3582.24 36.73
Data Set 5 2639.62 3618.08 37.07
Data Set 6 2395.04 3218.28 34.37
Data Set 7 2744.51 3762.66 37.10
Data Set 8 2517.76 3490.74 38.64
Data Set 9 2483.7 3423.94 37.86
Data Set 10 2381.42 3245.32 36.28
Average 2584.37 3523.99 36.36

Table C.2: Paired vs Triplet Consolidation Savings of Size of 150

Size 200 Pair Triplet(Incl Pair) Improvement(%)
Data Set 1 3693.61 5046.66 36.63
Data Set 2 3637.89 4678.47 28.60
Data Set 3 3684.87 5135.21 39.36
Data Set 4 3293.50 4857.01 47.47
Data Set 5 3673.58 4663.41 26.94
Data Set 6 3168.36 5042.89 59.16
Data Set 7 3620.08 4890.30 35.09
Data Set 8 3667.24 5012.42 36.68
Data Set 9 3508.98 5040.74 43.65
Data Set 10 3420.54 4927.63 44.06
Average 3536.87 4929.47 39.37

Table C.3: Paired vs Triplet Consolidation Savings of Size of 200

Set Partitioning Basic Tightening
Size 50 82.1 91.38
Size 100 162.78 170.59
Size 150 302.71 326.48
Size 200 779.67 545.26

Table C.4: CPU time Improvement by Set Partitioning-Basic Tightening
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Set Covering Set Partitioning Basic Tightening Strong Tightening
Size 50 128.52 82.1 91.38 93.1
Size 100 257.46 162.78 170.59 183.75
Size 150 478.37 302.71 326.48 306.79
Size 200 1448.95 779.67 545.26 401.54

Table C.5: CPU time Improvement by Set Partitioning-Strong Tightening

Subset tightenings for size 100 with random numbers for 10 instances are
given up to 6 subsets in the following tables.

r1 1 2 3 4 5 6 7 8 9 10 Average
41 140 165 162 199 241 208 187 149 138 135 172.4
874 122 109 110 106 116 106 115 107 130 114 113.5
1384 266 258 170 97 116 113 105 102 109 111 144.7
1578 111 110 103 112 107 111 103 132 110 115 111.4
1750 130 122 110 113 124 127 111 123 119 124 120.3
2212 179 162 156 151 143 168 157 150 145 175 158.6
3617 114 120 167 309 210 154 142 129 149 142 163.6
4319 128 118 152 145 107 108 108 112 116 106 120
4608 113 115 116 115 115 102 158 198 190 192 141.4
4664 166 97 112 117 114 126 120 122 107 109 119

Overall Average 136.49

Table C.6: CPU with Set Partitioning with Subbasic Tightening-1 for size
100
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r1 − r2 1 2 3 4 5 6 7 8 9 10 Average
41-3617 199 187 195 198 197 223 437 291 244 190 236.1
61-491 109 160 99 107 106 92 111 96 99 95 107.4

755-3395 114 95 112 94 104 97 118 96 104 92 102.6
1384-1750 183 206 213 176 150 168 265 267 154 123 190.5
1578-4608 116 143 147 107 114 110 106 96 116 112 116.7
2212-4664 110 106 123 98 107 98 107 93 111 103 105.6
2995-2042 115 104 110 122 119 164 101 114 99 120 116.8
3481-1977 112 105 107 114 131 103 167 90 99 94 112.2
4319-874 157 114 119 99 138 96 118 92 99 94 112.6
4827-486 106 106 178 137 96 105 93 97 102 133 115.3

Overall Average 131.58

Table C.7: CPU with Set Partitioning with Subbasic Tightening-2 for size
100

r1 − r2 − r3 1 2 3 4 5 6 7 8 9 10 Average
41-3617-1384 189 173 170 163 166 174 150 168 172 149 167.4
292-2482-2571 104 104 98 109 103 97 162 131 98 101 110.7
491-2995-2042 116 117 104 98 105 170 137 95 167 161 127
1578-4608-2212 97 122 102 117 105 116 107 108 102 107 108.3
1750-4319-874 184 164 122 127 119 111 111 129 103 120 129
3481-1977-61 92 103 103 104 134 98 166 98 111 112 112.1
3866-4868-95 149 154 106 155 112 118 107 146 105 106 125.8
4664-755-3395 101 112 101 109 109 136 99 116 136 103 112.2
4704-3902-153 109 115 112 119 111 152 99 108 99 100 112.4
4827-486-2691 106 106 106 158 118 119 128 113 115 106 117.5

Overall Average 122.24

Table C.8: CPU with Set Partitioning with Subbasic Tightening-3 for size
100
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r1 − r2 − r3 − r4 1 2 3 4 5 6 7 8 9 10 Average
41-3617-1384-1750 122 154 112 177 116 115 116 144 184 147 138.7
292-2482-2571-3866 108 132 148 145 147 171 112 116 92 104 127.5
917-1549-2185-4944 107 177 97 117 97 104 110 112 133 92 114.6
2212-4664-755-3395 190 169 107 100 112 122 107 97 160 115 127.9
2691-4704-3902-153 106 160 106 118 95 98 101 101 93 106 108.4
2995-2042-4827-486 113 165 97 103 90 105 104 122 103 100 110.2
3481-1977-61-491 141 156 196 109 99 96 132 160 131 97 131.7

4319-874-1578-4608 172 128 115 104 116 199 159 136 156 148 143.3
4868-95-497-1926 106 107 108 117 110 165 110 94 89 114 112

4871-1638-1869-112 115 115 98 166 145 108 99 159 95 113 121.3
Overall Average 123.56

Table C.9: CPU with Set Partitioning with Subbasic Tightening-4 for size
100

r1 − r2 − r3 − r4 − r5 1 2 3 4 5 6 7 8 9 10 Average
41-3617-1384-1750-4319 219 177 189 188 184 184 157 166 145 157 176.6
112-917-1549-2185-4944 103 114 156 194 133 134 204 118 125 155 143.6
491-2995-2042-4827-486 192 200 269 276 236 223 217 217 199 210 223.9
497-1926-4871-1638-1869 117 184 158 135 155 204 195 195 109 191 164.3
755-3395-3481-1977-61 195 231 247 244 134 115 141 158 110 128 170.3

874-1578-4608-2212-4664 221 223 173 172 162 118 159 165 151 169 171.3
2482-2571-3866-4868-95 187 208 215 226 225 148 141 201 204 133 188.8
2691-4704-3902-153-292 300 281 114 123 202 212 201 212 207 180 203.2
3953-4011-1622-633-2823 176 202 214 212 222 172 204 215 207 210 203.4
4664-291-2761-3503-1918 212 208 209 159 207 145 124 107 105 182 165.8

Overall Average 181.12

Table C.10: CPU with Set Partitioning with Subbasic Tightening-5 for size
100
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r1 − r2 − r3 − r4 − r5 − r6 1 2 3 4 5 6 7 8 9 10 Average

41-3617-1384-1750-4319-874 343 296 237 261 253 359 190 180 150 153 242.2

237-2959-3773-4791-2779-778 211 137 135 162 141 127 208 219 231 176 174.7

292-2482-2571-3866-4868-95 112 130 143 136 147 230 159 122 104 120 140.3

497-1926-4871-1638-1869-112 194 205 110 125 161 175 159 151 152 254 168.6

917-1549-2185-4944-3953-4011 104 113 211 160 134 108 206 109 117 137 139.9

1578-4608-2212-4664-755-3395 136 253 295 188 173 164 163 188 168 234 196.2

1622-633-2823-4664-291-2761 219 234 223 223 134 117 215 193 153 111 182.2

3481-1977-61-491-2995-2042 153 468 125 249 216 240 148 152 285 117 215.3

3503-1918-797-2894-2962-3057 210 182 209 189 111 144 222 212 233 227 193.9

4827-486-2691-4704-3902-153 120 133 150 190 170 214 128 263 133 193 169.4

Overall Average 182.27

Table C.11: CPU with Set Partitioning with Subbasic Tightening-6 for size
100

CPU Set Partitioning Basic Tightening Strong Tightening
Size 50 213.2 228.2 265.3
Size 100 3533.41 3843.93 5009.65
Size 150 21378.88 24135.07 29000.82
Size 200 108482.36 118171.1 133513.26

Table C.12: Comparative CPU Time for Triplet Consolidation

We ran the 10 instances of each size 10 times with set covering formulation
for paired consolidation case. The average CPU times of the 10 runs of each
sample sizes are given in below tables respectively.
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CPU Time R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average
Data Set 1 123 156 133 393 423 180 356 124 170 170 222,8
Data Set 2 102 125 142 117 107 113 114 100 77 77 107,4
Data Set 3 106 127 123 116 147 134 125 132 116 110 123,6
Data Set 4 73 86 92 110 129 104 89 93 108 111 99,5
Data Set 5 85 94 98 123 124 117 117 144 123 95 112
Data Set 6 109 103 153 135 136 116 161 134 104 125 127,6
Data Set 7 103 112 155 145 332 327 237 122 133 124 179
Data Set 8 81 74 74 93 118 83 90 78 131 134 95,6
Data Set 9 65 80 86 93 135 81 78 87 100 111 91,6
Data Set 10 104 126 105 158 128 125 122 158 113 122 126,1

Overall Average 128.52

Table C.13: CPU Times for Paired Consolidation with Set Covering Formu-
lation of Size of 50

CPU time R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average
Data Set 1 268 317 311 275 257 319 287 191 188 206 261,9
Data Set 2 250 272 283 265 277 265 297 198 203 178 248,8
Data Set 3 281 349 321 279 318 502 315 198 207 193 296,3
Data Set 4 294 285 280 234 269 275 236 182 172 165 239,2
Data Set 5 260 339 276 266 287 300 260 198 188 181 255,5
Data Set 6 246 203 196 191 270 326 251 270 254 269 247,6
Data Set 7 366 388 356 388 382 260 235 221 223 226 304,5
Data Set 8 263 304 378 252 278 326 222 194 189 178 258,4
Data Set 9 183 272 215 226 196 246 274 221 195 184 221,2
Data Set 10 190 247 240 236 229 449 265 236 161 159 241,2

Overall Average 257.46

Table C.14: CPU Times for Paired Consolidation with Set Covering Formu-
lation of Size of 100
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CPU time R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average
Data Set 1 417 456 466 516 347 329 320 313 307 297 376,8
Data Set 2 456 498 530 544 375 341 334 333 311 331 405,3
Data Set 3 614 671 630 429 406 394 389 395 381 411 472
Data Set 4 437 538 473 474 336 310 302 310 312 289 378,1
Data Set 5 758 742 666 501 506 541 463 477 470 432 555,6
Data Set 6 437 520 496 566 395 338 346 354 342 321 411,5
Data Set 7 774 745 675 550 522 494 492 510 498 460 572
Data Set 8 716 784 786 539 533 545 655 528 485 449 602
Data Set 9 478 526 524 512 410 356 358 345 319 348 417,6
Data Set 10 736 738 904 544 514 516 485 510 510 471 592,8

Overall Average 478.37

Table C.15: CPU Times for Paired Consolidation with Set Covering Formu-
lation of Size of 150

CPU time R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average
Data Set 1 1170 2026 2560 1597 1315 1725 1518 1558 1469 1513 1645,1
Data Set 2 1273 1316 1242 1289 1310 1344 1271 1287 1253 1235 1282
Data Set 3 1277 1277 2447 1612 1282 1176 1053 1341 1124 1330 1391,9
Data Set 4 1460 1679 1685 1907 1679 1511 1387 1512 1481 1448 1574,9
Data Set 5 1267 1325 1528 1342 1307 1406 1293 1343 1452 1882 1414,5
Data Set 6 1215 873 940 1135 1274 1175 980 1024 923 970 1050,9
Data Set 7 1306 1375 1657 1869 1692 1593 1526 1537 1685 1675 1591,5
Data Set 8 1857 1846 2099 1900 1734 1887 1693 1669 1639 1767 1809,1
Data Set 9 1615 1576 1606 1470 1224 1929 1772 1435 1481 1228 1533,6
Data Set 10 1092 1254 1265 1331 1243 1179 1190 999 1129 1278 1196

Overall Average 1448.95

Table C.16: CPU Times for Paired Consolidation with Set Covering Formu-
lation of Size of 200
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Appendix D

Additional Tables from
Chapter 7

Saving Variant 1 Variant 2 Variant 3 Variant 4
50-1 1029.46 1034.40 1052.91 1050.19
50-2 987.66 1000.47 1059.68 1033.22
50-3 750.75 752.62 751.45 720.02
50-4 625.21 614.30 623.41 643.67
50-5 798.42 803.68 824.51 807.05
50-6 778.71 757.85 785.16 764.08
50-7 942.79 938.13 967.00 938.21
50-8 620.78 624.34 654.69 655.60
50-9 865.40 855.74 902.09 871.05
50-10 885.17 900.78 941.70 906.91

Average 828.43 828.23 856.26 839.00

Table D.1: Saving of size 50 instances with first stopping rule

Variant TS Deviation(%)
LNS random 658.26 31.03
LNS guided 808.72 15.16

Table D.2: LNS comparison
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Instance TS Optimal Dev(%)
50-1 725.73 1171.38 38.04
50-2 818.80 1179.08 30.56
50-3 483.12 836.57 42.25
50-4 499.68 706.02 29.23
50-5 645.51 912.36 29.25
50-6 668.43 903.16 25.99
50-7 729.33 1094.44 33.36
50-8 490.60 721.99 32.05
50-9 723.73 972.99 25.62
50-10 797.72 1049.00 23.95

Average 658.26 954.70 31.03

a) LNS Random

Instance TS Optimal Dev(%)
50-1 979.72 1171.38 16.36
50-2 1018.89 1179.08 13.59
50-3 691.04 836.57 17.40
50-4 581.43 706.02 17.65
50-5 752.71 912.36 17.50
50-6 800.92 903.16 11.32
50-7 871.40 1094.44 20.38
50-8 667.71 721.99 7.52
50-9 777.05 972.99 20.14
50-10 946.34 1049.00 9.79

Average 808.72 954.70 15.16

b) LNS Guided

Table D.3: LNS variants second rule vns cpu for size 50

Instance TS Optimal Dev(%)
50-1 1067.43 1171.38 8.87
50-2 1046.74 1179.08 11.22
50-3 786.63 836.57 5.97
50-4 636.71 706.02 9.82
50-5 807.99 912.36 11.44
50-6 783.44 903.16 13.26
50-7 992.13 1094.44 9.35
50-8 657.74 721.99 8.90
50-9 910.49 972.99 6.42
50-10 933.01 1049.00 11.06

Average 862.23 954.70 9.63

a) Size 50

Instance TS Optimal Dev(%)
100-1 1929.24 2146.10 10.10
100-2 1988.74 2277.53 12.68
100-3 2308.69 2591.78 10.92
100-4 1695.55 1992.24 14.89
100-5 1989.68 2284.95 12.92
100-6 2219.95 2503.98 11.34
100-7 1938.29 2262.12 14.32
100-8 1619.46 1865.89 13.21
100-9 1999.91 2332.18 14.25
100-10 1864.43 2026.91 8.02

Average 1955.39 2228.37 12.27

b) Size 100
Instance TS Optimal Dev(%)

150-1 3147.38 3514.90 10.46
150-2 3046.97 3457.17 11.87
150-3 3336.44 3926.58 15.03
150-4 3102.10 3582.24 13.40
150-5 3059.88 3618.08 15.43
150-6 2808.01 3218.28 12.75
150-7 3357.40 3762.66 10.77
150-8 3066.27 3490.74 12.16
150-9 2940.60 3423.94 14.12
150-10 2871.98 3245.32 11.50

Average 3073.70 3523.99 12.75

c) Size 150

Instance TS Optimal Dev(%)
200-1 4487.64 5046.66 11.08
200-2 3956.66 4678.47 15.43
200-3 4474.55 5135.21 12.87
200-4 4210.55 4857.01 13.31
200-5 4187.20 4663.41 10.21
200-6 4470.62 5042.89 11.35
200-7 4309.52 4890.30 11.88
200-8 4406.52 5012.42 12.09
200-9 4367.02 5040.74 13.37
200-10 4313.92 4927.63 12.45

Average 4318.42 4929.47 12.40

d) Size 200

Table D.6: VNS Results by Second Stopping Criterion for size 50, 100, 150,
200
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Instance TS Optimal Dev(%)
50-1 1052.91 1171.38 10.11
50-2 1059.68 1179.08 10.13
50-3 751.45 836.57 10.17
50-4 623.41 706.02 11.70
50-5 824.51 912.36 9.63
50-6 785.16 903.16 13.07
50-7 967.00 1094.44 11.64
50-8 654.69 721.99 9.32
50-9 902.09 972.99 7.29
50-10 941.70 1049.00 10.23

Average 856.26 954.70 10.31

a) Size 50

Instance TS Optimal Dev(%)
100-1 1929.24 2146.1 10.10
100-2 1988.74 2277.53 12.68
100-3 2308.69 2591.78 10.92
100-4 1695.55 1992.24 14.89
100-5 1989.68 2284.95 12.92
100-6 2219.95 2503.98 11.34
100-7 1938.29 2262.12 14.32
100-8 1619.46 1865.89 13.21
100-9 1999.91 2332.18 14.25
100-10 1864.43 2026.91 8.02

Average 1955.39 2228.37 12.27

b) Size 100
Instance TS Optimal Dev(%)

150-1 2984.30 3514.90 15. 10
150-2 2902.36 3457.17 16.05
150-3 3244.38 3926.58 17.37
150-4 3118.07 3582.24 12.96
150-5 3077.8 3618.08 14.93
150-6 2604.76 3218.28 19.06
150-7 3335.30 3762.66 11.36
150-8 3122.25 3490.74 10.56
150-9 2787.91 3423.94 18.58
150-10 2676.98 3245.32 17.51

Average 2985.41 3523.99 15.35

c) Size 150

Instance TS Optimal Dev(%)
200-1 4245.23 5046.66 15.88
200-2 4019.10 4678.47 14.09
200-3 4428.12 5135.21 13.77
200-4 3961.86 4857.01 18.43
200-5 3892.52 4663.41 16.53
200-6 4093.13 5042.89 18.83
200-7 4177.55 4890.30 14.57
200-8 4213.08 5012.42 15.95
200-9 4182.71 5040.74 17.02
200-10 4224.42 4927.63 14.27

Average 4143.77 4929.47 15.94

d) Size 200

Table D.4: VNS Results by First Stopping Criterion for size 100, 150, 200

Size TS Optimal Dev(%)
50 856.26 954.70 10.31
100 1955.39 2228.37 12.27
150 2985.41 3523.99 15.35
200 4143.77 4929.47 15.94

Table D.5: Summary Results of VNS using the first stopping criterion
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Size TS Optimal Deviation(%)
50 862.23 954.70 9.63
100 1955.39 2228.37 12.27
150 3073.70 3523.99 12.75
200 4318.42 4929.47 12.40

Table D.7: Summary Results of VNS using the second stopping criterion

Instance TS Optimal Dev(%)
50-1 979.72 1171.38 16.36
50-2 1018.89 1179.08 13.59
50-3 691.04 836.57 17.40
50-4 581.43 706.02 17.65
50-5 752.71 912.36 17.50
50-6 800.92 903.16 11.32
50-7 871.40 1094.44 20.38
50-8 667.71 721.99 7.52
50-9 777.05 972.99 20.14
50-10 946.34 1049.00 9.79

Average 808.72 954.70 15.16

a) Size 50

Instance TS Optimal Dev(%)
100-1 1772.26 2146.10 17.42
100-2 1843.63 2277.53 19.05
100-3 2126.37 2591.78 17.96
100-4 1567.89 1992.24 21.30
100-5 1762.61 2284.95 22.86
100-6 2161.04 2503.98 13.70
100-7 1803.54 2262.12 20.27
100-8 1541.63 1865.89 17.38
100-9 1922.53 2332.18 17.57
100-10 1623.54 2026.91 19.90

Average 1812.50 2228.37 18.74

b) Size 100
Instance TS Optimal Dev(%)

150-1 2842.35 3514.90 19.13
150-2 2785.48 3457.17 19.43
150-3 3113.26 3926.58 20.71
150-4 2906.00 3582.24 18.88
150-5 2942.76 3618.08 18.67
150-6 2691.13 3218.28 16.38
150-7 3051.59 3762.66 18.90
150-8 2689.29 3490.74 22.96
150-9 2726.53 3423.94 20.37
150-10 2692.45 3245.32 17.04

Average 2844.08 3523.99 19.25

c) Size 150

Instance TS Optimal Dev(%)
200-1 3875.44 5046.66 23.21
200-2 3665.74 4678.47 21.65
200-3 4137.25 5135.21 19.43
200-4 3735.78 4857.01 23.08
200-5 3738.18 4663.41 19.84
200-6 3925.13 5042.89 22.17
200-7 3799.90 4890.30 22.30
200-8 4125.04 5012.42 17.70
200-9 3842.82 5040.74 23.76
200-10 3999.55 4927.63 18.83

Average 3884.48 4929.47 21.20

d) Size 200

Table D.8: LNS results for large instances- Case of experiment 1
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Instance TS Optimal Dev(%)
50-1 942.68 1171.38 19.52
50-2 1018.07 1179.08 13.66
50-3 698.69 836.57 16.48
50-4 573.49 706.02 18.77
50-5 759.77 912.36 16.72
50-6 638.86 903.16 29.26
50-7 816.21 1094.44 25.42
50-8 596.93 721.99 17.32
50-9 828.67 972.99 14.83
50-10 877.60 1049.00 16.34

Average 775.10 954.70 18.83

a) Size 50

Instance TS Optimal Dev(%)
100-1 1614.71 2146.10 24.76
100-2 1688.88 2277.53 25.85
100-3 2103.41 2591.78 18.84
100-4 1698.20 1992.24 14.76
100-5 1769.59 2284.95 22.55
100-6 1905.31 2503.98 23.91
100-7 1648.01 2262.12 27.15
100-8 1390.63 1865.89 25.47
100-9 1722.30 2332.18 26.15
100-10 1664.52 2026.91 17.88

Average 1720.56 2228.37 22.73

b) Size 100
Instance TS Optimal Dev(%)

150-1 2758.92 3514.90 21.51
150-2 2742.06 3457.17 20.68
150-3 3004.98 3926.58 23.47
150-4 2711.03 3582.24 24.32
150-5 2963.49 3618.08 18.09
150-6 2590.72 3218.28 19.50
150-7 2798.82 3762.66 25.62
150-8 2763.48 3490.74 20.83
150-9 2676.28 3423.94 21.84
150-10 2619.56 3245.32 19.28

Average 2762.93 3523.99 21.51

c) Size 150

Instance TS Optimal Dev(%)
200-1 3707.25 5046.66 26.54
200-2 3598.42 4678.47 23.09
200-3 3945.24 5135.21 23.17
200-4 3681.62 4857.01 24.20
200-5 3587.01 4663.41 23.08
200-6 3653.34 5042.89 27.55
200-7 3684.77 4890.30 24.65
200-8 3832.52 5012.42 23.54
200-9 3928.33 5040.74 22.07
200-10 3799.35 4927.63 22.90

Average 3741.79 4929.47 24.08

d) Size 200

Table D.9: LNS Results on large instances: Case of Experiment 2
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Instance TS Optimal Dev(%)
50-1 1076.63 1171.38 8.09
50-2 1081.82 1179.08 8.25
50-3 788.96 836.57 5.69
50-4 659.29 706.02 6.62
50-5 830.88 912.36 8.93
50-6 784.87 903.16 13.10
50-7 974.98 1094.44 10.92
50-8 685.57 721.99 5.05
50-9 918.95 972.99 5.55
50-10 952.12 1049.00 9.24

Average 875.41 954.70 8.14

a) Size 50

Instance TS Optimal Dev(%)
100-1 1990.62 2146.10 7.24
100-2 2061.70 2277.53 9.48
100-3 2327.27 2591.78 10.21
100-4 1782.11 1992.24 10.55
100-5 1982.80 2284.95 13.22
100-6 2250.96 2503.98 10.10
100-7 2041.18 2262.12 9.77
100-8 1626.99 1865.89 12.80
100-9 2026.11 2332.18 13.12
100-10 1861.00 2026.91 8.19

Average 1995.07 2228.37 10.47

b) Size 100

Instance TS Optimal Dev(%)
150-1 3183.43 3514.90 9.43
150-2 3210.68 3457.17 7.13
150-3 3413.18 3926.58 13.07
150-4 3104.11 3582.24 13.35
150-5 3185.93 3618.08 11.94
150-6 2849.65 3218.28 11.45
150-7 3346.9 3762.66 11.05
150-8 3046.06 3490.74 12.74
150-9 3068.55 3423.94 10.38
150-10 2933.54 3245.32 9.61

Average 3134.20 3523.99 11.02

c) Size 150

Instance TS Optimal Dev(%)
200-1 4214.03 5046.66 16.50
200-2 3974.13 4678.47 15.05
200-3 4540.53 5135.21 11.58
200-4 4200.80 4857.01 13.51
200-5 3926.89 4663.41 15.79
200-6 4370.62 5042.89 13.33
200-7 4281.23 4890.30 12.45
200-8 4238.73 5012.42 15.44
200-9 4326.69 5040.74 14.17
200-10 4248.98 4927.63 13.77

Average 4232.26 4929.47 14.16

d) Size 200

Table D.10: Hybrid Results for larger instances: Case of experiment 2
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Appendix E

Detail Results of Experiment 1
and Experiment 2- All methods

E.1 Results with Experiment 1

Size 50 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

50-1 1171.38 1067.43 8.87 979.72 16.36 1089.70 6.97
50-2 1179.08 1046.74 11.22 1018.89 13.59 1076.97 8.66
50-3 836.57 786.63 5.97 691.04 17.40 797.32 4.69
50-4 706.02 636.71 9.82 581.43 17.65 662.32 6.19
50-5 912.36 807.99 11.44 752.71 17.50 795.67 12.79
50-6 903.16 783.44 13.26 800.92 11.32 761.80 15.65
50-7 1094.44 992.13 9.35 871.40 20.38 985.13 9.99
50-8 721.99 657.74 8.90 667.71 7.52 660.37 8.53
50-9 972.99 910.49 6.42 777.05 20.14 918.76 5.57
50-10 1049.00 933.01 11.06 946.34 9.79 933.25 11.03

Average 954.70 862.23 9.63 808.72 15.16 868.13 9.01

Table E.1: Summary Results of All Methods with Experiment 1 for Size 50
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Size 100 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

100-1 2146.10 1929.24 10.10 1772.26 17.42 1889.59 11.95
100-2 2277.53 1988.74 12.68 1843.63 19.05 1966.32 13.66
100-3 2591.78 2308.69 10.92 2126.37 17.96 2324.92 10.30
100-4 1992.24 1695.55 14.89 1567.89 21.30 1806.14 9.34
100-5 2284.95 1989.68 12.92 1762.61 22.86 1970.91 13.74
100-6 2503.98 2219.95 11.34 2161.04 13.70 2124.38 15.16
100-7 2262.12 1938.29 14.32 1803.54 20.27 2030.44 10.24
100-8 1865.89 1619.46 13.21 1541.63 17.38 1643.99 11.89
100-9 2332.18 1999.91 14.25 1922.53 17.57 2044.24 12.35
100-10 2026.91 1864.43 8.02 1623.54 19.90 1799.80 11.20

Average 2228.37 1955.39 12.27 1812.50 18.74 1960.07 12.04

Table E.2: Summary Results of All Methods with Experiment 1 for Size 100

Size 150 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

150-1 3514.90 3147.38 10.46 2842.35 19.13 3085.97 12.20
150-2 3457.17 3046.97 11.87 2785.48 19.43 2978.89 13.83
150-3 3926.58 3336.44 15.03 3113.26 20.71 3361.70 14.39
150-4 3582.24 3102.10 13.40 2906.00 18.88 3161.51 11.74
150-5 3618.08 3059.88 15.43 2942.76 18.67 3211.40 11.24
150-6 3218.28 2808.01 12.75 2691.13 16.38 2741.14 14.83
150-7 3762.66 3357.40 10.77 3051.59 18.90 3317.64 11.83
150-8 3490.74 3066.27 12.16 2689.29 22.96 3038.09 12.97
150-9 3423.94 2940.60 14.12 2726.53 20.37 2955.27 13.69
150-10 3245.32 2871.98 11.50 2692.45 17.04 2882.42 11.18

Average 3523.99 3073.70 12.75 2844.08 19.25 3073.40 12.79

Table E.3: Summary Results of All Methods with Experiment 1 for Size 150
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Size 200 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

200-1 5046.66 4487.64 11.08 3875.44 23.21 4356.33 13.68
200-2 4678.47 3956.66 15.43 3665.74 21.65 4007.34 14.35
200-3 5135.21 4474.55 12.87 4137.25 19.43 4480.02 12.76
200-4 4857.01 4210.55 13.31 3735.78 23.08 4229.15 12.93
200-5 4663.41 4187.20 10.21 3738.18 19.84 4000.81 14.21
200-6 5042.89 4470.62 11.35 3925.13 22.17 4491.42 10.94
200-7 4890.30 4309.52 11.88 3799.90 22.30 4232.55 13.45
200-8 5012.42 4406.52 12.09 4125.04 17.70 4216.76 15.87
200-9 5040.74 4367.02 13.37 3842.82 23.76 4456.47 11.59
200-10 4927.63 4313.92 12.45 3999.55 18.83 4271.36 13.32

Average 4929.47 4318.42 12.40 3884.48 21.20 4274.22 13.31

Table E.4: Summary Results of All Methods with Experiment 1 for Size 200

E.2 Results with Experiment 2

Size 50 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

50-1 1171.38 1067.43 8.87 942.68 19.52 1076.63 8.09
50-2 1179.08 1046.74 11.22 1018.07 13.66 1081.82 8.25
50-3 836.57 786.63 5.97 698.69 16.48 788.96 5.69
50-4 706.02 636.71 9.82 573.49 18.77 659.29 6.62
50-5 912.36 807.99 11.44 759.77 16.72 830.88 8.93
50-6 903.16 783.44 13.26 638.86 29.26 784.87 13.10
50-7 1094.44 992.13 9.35 816.21 25.42 974.98 10.92
50-8 721.99 657.74 8.90 596.93 17.32 685.57 5.05
50-9 972.99 910.49 6.42 828.67 14.83 918.95 5.55
50-10 1049.00 933.01 11.06 877.60 16.34 952.12 9.24

Average 954.70 862.23 9.63 775.10 18.83 875.41 8.14

Table E.5: Summary Results of All Methods with Experiment 2 for Size 50
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Size 100 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

100-1 2146.10 1929.24 10.10 1614.71 24.76 1990.62 7.24
100-2 2277.53 1988.74 12.68 1688.88 25.85 2061.70 9.48
100-3 2591.78 2308.69 10.92 2103.41 18.84 2327.27 10.21
100-4 1992.24 1695.55 14.89 1698.20 14.76 1782.11 10.55
100-5 2284.95 1989.68 12.92 1769.59 22.55 1982.80 13.22
100-6 2503.98 2219.95 11.34 1905.31 23.91 2250.96 10.10
100-7 2262.12 1938.29 14.32 1648.01 27.15 2041.18 9.77
100-8 1865.89 1619.46 13.21 1390.63 25.47 1626.99 12.80
100-9 2332.18 1999.91 14.25 1722.30 26.15 2026.11 13.12
100-10 2026.91 1864.43 8.02 1664.52 17.88 1861.00 8.19

Average 2228.37 1955.39 12.27 1720.56 22.73 1995.07 10.47

Table E.6: Summary Results of All Methods with Experiment 2 for Size 100

Size 150 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

150-1 3514.90 3147.38 10.46 2758.92 21.51 3183.43 9.43
150-2 3457.17 3046.97 11.87 2742.06 20.68 3210.68 7.13
150-3 3926.58 3336.44 15.03 3004.98 23.47 3413.18 13.07
150-4 3582.24 3102.10 13.40 2711.03 24.32 3104.11 13.35
150-5 3618.08 3059.88 15.43 2963.49 18.09 3185.93 11.94
150-6 3218.28 2808.01 12.75 2590.72 19.50 2849.65 11.45
150-7 3762.66 3357.40 10.77 2798.82 25.62 3346.90 11.05
150-8 3490.74 3066.27 12.16 2763.48 20.83 3046.06 12.74
150-9 3423.94 2940.60 14.12 2676.28 21.84 3068.55 10.38
150-10 3245.32 2871.98 11.50 2619.56 19.28 2933.54 9.61

Average 3523.99 3073.70 12.75 2762.93 21.51 3134.20 11.02

Table E.7: Summary Results of All Methods with Experiment 2 for Size 150
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Size 200 VNS-3 LNS-Guided Hybrid
Instance Optimal TS Dev(%) TS Dev(%) TS Dev(%)

200-1 5046.66 4487.64 11.08 3707.25 26.54 4214.03 16.50
200-2 4678.47 3956.66 15.43 3598.42 23.09 3974.13 15.05
200-3 5135.21 4474.55 12.87 3945.24 23.17 4540.53 11.58
200-4 4857.01 4210.55 13.31 3681.62 24.20 4200.80 13.51
200-5 4663.41 4187.20 10.21 3587.01 23.08 3926.89 15.79
200-6 5042.89 4470.62 11.35 3653.34 27.55 4370.62 13.33
200-7 4890.30 4309.52 11.88 3684.77 24.65 4281.23 12.45
200-8 5012.42 4406.52 12.09 3832.52 23.54 4238.73 15.44
200-9 5040.74 4367.02 13.37 3928.33 22.07 4326.69 14.17
200-10 4927.63 4313.92 12.45 3799.35 22.90 4248.98 13.77

Average 4929.47 4318.42 12.40 3741.79 24.08 4232.26 14.16

Table E.8: Summary Results of All Methods with Experiment 2 for Size 200
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