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Abstract 

One of the key issues in transportation systems is allocating shipping orders to the most appropriate drivers, in the shortest 

time and with the maximum profit. Many studies were carried out in the transportation service procurement process for 

allocating orders, but none of them considered driver-to-driver interactions and applied information diffusion concepts as a 

framework to maximize the profit, due to the lack of a framework to model the interactions. In this paper, we present a 

weighted drivers’ collaboration network to form the interactions. To predict the behavior of drivers, a new community 

detection algorithm is developed to extract communities and their leaders, in terms of the speed and the power of receiving 

and diffusing shipping orders. Also, we present a profit maximization model using information diffusion power of 

community leaders. The results show the model is able to allocate shipping orders to the most suitable drivers, in the best 

possible time and with the highest profit. To demonstrate the performance of the developed algorithm, we present a numerical 

example. Finally, a case study is applied to solve the optimization problem. The results show that the optimized behavior of 

companies in allocating orders to drivers is based on their risk level, reputation, and the average number of their customers. 

Keywords Transportation service procurement; Drivers’ collaboration network; Diffusion optimization model; 

Overlapping community detection; Heterogeneous networks.  

1. Introduction 

Based on definitions in transportation science, the freight transportation service procurement (TSP) process involves all 

operations that are essential for acquiring freight services from an external source like planning, purchasing, logistics, 

payment, monitoring, and inventory management (Lafkihi et al., 2017). One of the important issues in TSP problem is the 

time management. In order to maximize customer satisfaction, companies try to allocate shipping orders to drivers in the 

shortest possible time. This poses two major challenges; reducing the profitability of shipping companies and customer 

dissatisfaction with the shipping experience due to driver inefficiency. First, allocating shipping orders to drivers in the 

shortest time will be cost a lot for companies. This includes marketing costs to find drivers, as well as allocating the orders 

to drivers with higher fares, both of which will reduce the company's profit. Second, allocating the orders to drivers in the 

shortest time can lead to the selection of unsuitable drivers. Drivers who, due to their lack of experience, will lead to customer 

dissatisfaction with the shipping experience. In this case, in addition to spending a lot of money to quickly allocate the orders 

to drivers, the company will not have enough knowledge about them, and this will lead to select an inefficient driver. Maybe, 

it is better for the company to allocate an order to an experienced driver. So, it is necessary to consider the two important 

factors of "cost" and "drivers appropriateness" along with the factor of "time" management by the companies. Numerous 

studies have examined the "time" and "cost" in the TSP problem, which will be discussed below, but none of them addresses 

the role of drivers in improving the performance of the transportation system. 

Drivers with common characteristics (e.g., working on a common route, vehicle or trip, etc.) form an interconnected 

community, which generally share and diffuse information related to their community organically. A transportation manager 

can first, by carefully discovering the drivers' communities and extracting their requirements, share information or news 

appropriate to each community or make policies tailored to their needs. For example; for the urban freight drivers’ 

community in Bandar Abbas city in Iran, whose main problem is the lack of diesel fuel stations and also due to the large 

volume of freight orders because of the presence of industries in the city and also the large number of drivers, has the problem 

of low and pre-determined fares rather than competitive fares. On the other hand, the communities of drivers in Babol city 

in Iran, which are mainly faced with the lack of drivers in the city, that led to high fares for shipping orders. Therefore, by 

discovering and identifying these communities, the transportation manager can design and implement tailored policies and 

decisions to solve problems of each community. 

On the other hand, companies will be able to share their shipping order news among different communities for diffusing 

them, based on drivers’ information diffusion capability within their communities. This will allow freight orders news to be 

shared at the lowest cost by companies and also organically by drivers’ community within it. It is worth mentioning that, 

https://www.researchgate.net/project/Leader-based-diffusion-optimization-model-in-heterogeneous-and-overlapping-social-networks?_sg=kg2Vcwv6SUJevxExj0u27OZiWTHurUroWbRSsOIY2aGHj336-R2BCk2k5GfRj5-QWKTdtFQ0-ZGCqrTvIXcJp49M9564LWPXmyDs
https://www.researchgate.net/project/Leader-based-diffusion-optimization-model-in-heterogeneous-and-overlapping-social-networks?_sg=kg2Vcwv6SUJevxExj0u27OZiWTHurUroWbRSsOIY2aGHj336-R2BCk2k5GfRj5-QWKTdtFQ0-ZGCqrTvIXcJp49M9564LWPXmyDs
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drivers of each community will receive information related to their community and diffuse it only within it. In addition to 

reducing the costs of allocating freight orders, this will increase the efficiency of allocation process and avoid wasting time 

to find suitable drivers, in the TSP problem. 

Also, by identifying the communication power of drivers, it is possible to evaluate the level of communication and also 

experience of drivers in each community. Drivers who are more communicative usually receive the news earlier than others 

and are also more likely to spread the news to the others (and vice versa). On the other hand, identifying and analyzing 

drivers' communication power will help predict their behavior in communities. Drivers react differently when receiving 

shipping orders news. In a community, the probability that a driver will accept or also diffuse a specific shipping order is 

different from another driver. Finally, the speed of receiving shipping orders news by drivers are different. By identifying 

and predicting the behavior of community drivers, companies will be able to use drivers with high ability of the information 

diffusion when they require a rapid diffusion within a community, or in some cases drivers with a low level of 

communication or also drivers with the high possibility of accepting shipping orders. Thus, companies will be able to manage 

the information flow within each community based on their policies, the issue that has not been addressed yet in the TSP 

problem. 

In this paper, we will try to predict the behavior of drivers in communities by modeling driver communications, detecting 

drivers’ communities and extracting the ability of information diffusion of drivers. Also, by developing an optimization 

model will manage the "time", "cost" and "drivers appropriateness" simultaneously, based on the drivers’ ability to diffuse 

information in the process of allocating shipping orders in TSP problem. 

2. Literature Review 

The body of literature includes all studies that address the concept of transportation service procurement in a 

transportation network. Many studies dealt with the subject of transportation service procurement as an essential function in 

various industries from miscellaneous aspects such as sustainability, auction mechanisms, robust optimization, business 

constraints, etc. (Xu and Huang, 2013; Zhang et al., 2015). However, different modes of transportation can be considered, 

including air, rail, road, and sea freight. In this paper, only road freight transportation service procurement is considered. 

It is clear that shippers and carriers have conflicting decisions in road transportation service procurement (Yan et al., 

2017). A shipper is the person or company who is normally the owner or supplier of commodities. Whereas, a carrier is a 

person/company that carries goods and is responsible for any possible damage to the goods during the shipping time. Carriers 

typically involve in some form of auction to bid on distinct lanes of interest. Shippers evaluate bids on lanes separately and 

then awards lanes to carriers based on numerous factors including price and commercial necessities. Therefore, the shipper 

seeks to reduce shipping costs and match demand and supply fairly and efficiently while the carrier seeks to increase the 

total revenue from shipping regarding load driver wages and costs of required fuel, equipment, and insurance. In other words, 

the content of the literature addressed the problem of road transportation procurement from carrier perspective (bid 

generation) which seeks to develop an optimal bidding strategy based on the operation cost analysis; and shipper perspective 

(winner determination problem) which aimed to determine the allocation of lanes to carriers give a set of bids. 

Mathematical programming (MP) models are among the most widely used tools in transportation systems. In this regard, 

many studies have deal with road TSP through MP. For instance, several routing models were developed in order to 

maximize the carrier’s profit from the auction (Wang and Xia, 2005; Yan et al., 2020) or to minimize the total transportation 

cost of using the company’s accessible fleet and engaging external drivers (Triki, 2021). Other modes considered effect of 

regular and occasional drivers’ behaviours on the routing costs for attaining driver fulfillment, and achieve improved 

customer satisfaction levels due to higher service accessibility for both close and distant customers (Abu Al Hla et al., 2019). 

Also, a two-stage robust formulation (Remli and Rekik, 2013) or a sampling-based two-stage stochastic programming model 

(Zhang et al., 2014) were proposed under uncertain shipment volumes.  

Besides, a bi-objective branch-and-bound algorithm and eight variants of a multi-objective genetic algorithm were 

proposed to minimize the total cost and maximize service quality (Buer and Pankratz, 2010). In another study, for the bi-

objective combinatorial auction model, a new heuristic solution method was proposed called Pareto neighborhood search 

(PNS) (Buer and Kopfer, 2014). Also, the carriers in (Yang and Huang, 2020) made the best quantity discount are able to 

get the greatest chance of being winners for frieght selection through proposing a mixed-integer nonlinear programming 

(MINP) model for the centralized planning problem (CPP) which is a kind of the winner determination problem (WDP) in 

transportation service procurement. Moreover, a deterministic model was proposed with a influential and noteworthy 

theoretical mechanism to overcome the imbalanced issue based on minimizing the service costs in WDP (Yang et al., 2019). 

Some researchers incorporated bid generation model with vehicle routing methods and stochastic optimization for 

carriers to develop a multi-round combinatorial auction of TSP by mixed-integer programming (Chi, 2015). Moreover, a 

two-stage stochastic integer programming model for the winner determination problem to hedge the shipper’s risk under 

shipment uncertainty was proposed by (Ma et al., 2010), and in a dynamic stochastic distribution context by (Feki et al., 

2016). 
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Moreover, some stochastic bid price-based optimization models were developed (Hammami et al., 2020; Kuyzu et al., 

2015; Rekik and Mellouli, 2012; Triki et al., 2014). In this regard, a single objective integer programming model that 

minimizes the total direct cost and hidden cost in a centralized procurement auction was proposed (Othmane et al., 2019). 

(Olcaytu and Kuyzu, 2019) contributed to the literature on price estimation in spot truckload markets by the development of 

load-specific truckload price-estimating methods and measuring their effect on the cost-effectiveness of carriers participating 

in the transportation network. In another study, bidders (carriers) generate their best bid (package) by using a bundled price 

to make the most of their utility and enhance the chance of winning the business via mixed integer programming for TSP 

(Yan et al., 2018b). An integrated multi-round combinatorial auction mechanism was developed for truckload TSP in which 

a winner determination problem was solved to assign profitable lanes to carriers (Kwon et al., 2005). However, some non-

price factors can be identified as influential fields in such problems including on-time performance of the carrier, availability 

of proper equipment, familiarity with shipper’s operation, and even billing accuracy (Jothi Basu et al., 2015b). For instance, 

we can refer some cases in which the mentioned non-price factors have been considered like a multi-objective model that 

simultaneously minimizes cost,  and maximizes shipper’s confidence and marketplace fairness (Ignatius et al., 2014) or 

sustainability of full truck-load transportation service procurement which was focused in transport logistics via the carrier 

assignment problem (Jothi Basu et al., 2015a). Also, the pickup and delivery problem with profits, time windows, and 

reserved requests were within a bid generation problem (Li et al., 2016). 

Other studies in this area have considered pickup and delivery problem and service time window of selective request. 

For example, a mixed integer programming model with single objective function was presented in which delivery lead time 

is considered (Mamaghani et al., 2019). In addition, for the bi-objective full truckload TSP, a two-phase evolutionary 

algorithm was developed in which the total transportation costs and transit time were minimized at the same time (Zhang 

and Hu, 2019). In another study, the carrier’s optimal bid generation problem that maximizes the profit was considered under 

combinatorial auctions (Lee et al., 2007). Also, the bid generation problem for heterogeneous truckload operations was 

solved by exact and heuristic solution methods (Hammami et al., 2019) and by exact solution with side constraints (Rekik 

et al., 2017). 

There are several studies taking into account bi-level programming to describe relationships between shipper and carrier 

decisions. For instance, some multi-objective bilevel models which were solved by particle swarm optimization were 

proposed called as MOPSO in (Yan et al., 2017) and as DBMOPSO-WD in (Yan et al., 2018a). Also, a two-stage stochastic 

mixed-integer winner determination model was formulated in combinatorial reverse auctions under disruption risks (Qian et 

al., 2020). Similarly, a bi-objective integer programming model which is solved by a branch-and-bound algorithm was 

proposed in TSP auction process (Hu et al., 2016). Overall, those who are interested in reviewing the literature on full 

truckload TSP to identify the gaps from the perspectives of researchers and practitioners can refer to the review (Jothi Basu 

et al., 2015b). 

The classification of the available related literature is reported in Table 1. As can be seen, in none of the above studies, 

the concepts of social network and the impact of driver’s human role in a transportation network have been used to diffuse 

the information of shipping orders and maximize the profit of TSP system administrators. However, for the first time, the 

drivers' collaboration networks in two monoplex and multiplex perspectives presented by (Badiee et al., 2020). But, it did 

not consider the role of drivers in maximizing companies’ profit, in TSP problem. In this paper, we will take into account 

the driver-to-driver interaction for maximizing the profit of companies by developing a new profit maximization model, 

based on information diffusion power among community leaders. On the other hand, most of the transportation network 

studies were based on the geographical information of facilities and none of them took into account the drivers’ role in TSP 

problem. These are drivers who distribute the products within a transportation chain, create traffic flows and establish 

interactions with other actors.  Therefore, studying the drivers’ role is an important issue in transportation systems, which 

has been neglected in previous studies. Also, none of the studies used drivers’ collaboration networks as frameworks or even 

a community detection algorithm as a solution method for optimizing information diffusion.  

In this paper, we will evaluate the interactions between drivers in transportation systems, in the form of a weighted driver 

collaboration network, considering the belonging of drivers to more than one community. Also, driver-to-driver 

communications will be applied to improve the performance of the system. Means, by analyzing these communicatins, dense 

groups of drivers will be extracted in the form of communities, which can be used to make proper decisions and policies 

tailored to each community. By modeling driver-to-driver communications, a new algorithm will be developed for predicting 

the behavior of community drivers, in the form of the speed and the power of each community leader in receiving and 

diffusing shipping orders. Community leaders have a direct role in diffusing shipping order news within communities and 

allocating shipping orders to suitable drivers. Finally, by predicting the bahavior of communities, a new profit optimization 

model will be presented based on information diffusion power of community leaders. Using the optimization model, it will 

be possible to allocate shipping orders to the most suitable driver, in the shortest possible time and with the highest profit, 

for companies.  
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The paper organization is as follows: the problem description is presented in section 3. The methodology, consists of the 

“network designing”, and the “extended community detection algorithm”, is presented in section 4. Section 5 shows the 

numerical examples for evaluating the developed algorithm. A case study of multiplex weighted drivers’ collaboration 

network, the results analysis and the managerial insights are provided in section 6. Conclusion and feature researches are 

presented in section 7. 

Table 1 Classification of the related literature on the mathematical programming models in the road freight transportation 

service procurement 
Feature Paper (s) 

Perspective Shipper (Buer and Pankratz, 2010), (Ma et al., 2010), (Rekik and Mellouli, 2012), (Remli and Rekik, 2013), (Buer and Kopfer, 

2014), (Ignatius et al., 2014), (Jothi Basu et al., 2015a), (Jothi Basu et al., 2015b), (Chi, 2015), (Hu et al., 2016), (Feki 

et al., 2016), (Yan et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Zhang and Hu, 2019), (Othmane et al., 2019), 

(Yang et al., 2019), (Yang and Huang, 2020), (Triki, 2021), This paper 

Carrier (Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Zhang et al., 2014), (Triki et al., 2014), (Chi, 2015), 

(Kuyzu et al., 2015), (Jothi Basu et al., 2015b), (Li et al., 2016), (Rekik et al., 2017), (Yan et al., 2017), (Yan et al., 

2018a), (Yan et al., 2018b), (Mamaghani et al., 2019), (Hammami et al., 2019), (Olcaytu and Kuyzu, 2019), (Qian et 

al., 2020), (Yan et al., 2020), (Hammami et al., 2020) 

TSP Type Bid Generation Problem (Lee et al., 2007), (Triki et al., 2014), (Kuyzu et al., 2015), (Chi, 2015), (Jothi Basu et al., 2015b), (Li et al., 2016), 

(Yan et al., 2017), (Rekik et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Hammami et al., 2019), (Mamaghani 

et al., 2019), (Olcaytu and Kuyzu, 2019), (Yan et al., 2020), (Hammami et al., 2020) 

Winner Determination 

Problem 

(Wang and Xia, 2005), (Kwon et al., 2005), (Buer and Pankratz, 2010), (Ma et al., 2010), (Rekik and Mellouli, 2012), 

(Remli and Rekik, 2013), (Buer and Kopfer, 2014), (Zhang et al., 2014), (Ignatius et al., 2014), (Jothi Basu et al., 

2015a), (Jothi Basu et al., 2015b), (Hu et al., 2016), (Feki et al., 2016), (Yan et al., 2018a), (Zhang and Hu, 2019), 

(Yang et al., 2019), (Othmane et al., 2019), (Qian et al., 2020), (Yang and Huang, 2020), (Triki, 2021), This paper 

Objective 

 Function (s) 

E
co

n
o
m

ic
al

 

Cost (Wang and Xia, 2005), (Kwon et al., 2005), (Buer and Pankratz, 2010), (Ma et al., 2010), (Rekik and Mellouli, 2012), 

(Remli and Rekik, 2013), (Buer and Kopfer, 2014), (Ignatius et al., 2014), (Zhang et al., 2014), (Chi, 2015), (Jothi 

Basu et al., 2015a), (Jothi Basu et al., 2015b), (Hu et al., 2016), (Feki et al., 2016),  (Yan et al., 2017), (Yan et al., 

2018a), (Yan et al., 2018b), (Zhang and Hu, 2019), (Yang et al., 2019), (Qian et al., 2020), (Yang and Huang, 2020), 

(Triki, 2021) 

Profit/ Revenue (Lee et al., 2007), (Triki et al., 2014), (Kuyzu et al., 2015), (Jothi Basu et al., 2015b), (Li et al., 2016), (Yan et al., 

2017), (Rekik et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Hammami et al., 2019), (Mamaghani et al., 2019), 

(Olcaytu and Kuyzu, 2019), (Yan et al., 2020), (Hammami et al., 2020), This paper 

Others (Kwon et al., 2005), (Buer and Pankratz, 2010), (Rekik and Mellouli, 2012), (Ignatius et al., 2014), (Chi, 2015), (Jothi 

Basu et al., 2015a), (Jothi Basu et al., 2015b), (Hu et al., 2016), (Yan et al., 2017), (Yan et al., 2018b), (Zhang and Hu, 

2019), (Othmane et al., 2019), (Mamaghani et al., 2019), (Qian et al., 2020) 

Modeling  

o
b
je

ct
iv

e
 

Single (Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Ma et al., 2010), (Rekik and Mellouli, 2012), (Remli 

and Rekik, 2013), (Zhang et al., 2014), (Triki et al., 2014), (Kuyzu et al., 2015), (Chi, 2015), (Jothi Basu et al., 2015a), 

(Jothi Basu et al., 2015b), (Li et al., 2016), (Feki et al., 2016), (Rekik et al., 2017), (Yan et al., 2018a), (Yan et al., 

2018b), (Mamaghani et al., 2019), (Olcaytu and Kuyzu, 2019), (Hammami et al., 2019), (Yang et al., 2019), (Yan et 

al., 2020), (Qian et al., 2020), (Hammami et al., 2020), (Yang and Huang, 2020), (Triki, 2021), This paper 

Bi/Multi (Buer and Pankratz, 2010), (Buer and Kopfer, 2014), (Ignatius et al., 2014), (Jothi Basu et al., 2015b), (Hu et al., 2016), 

(Yan et al., 2017), (Zhang and Hu, 2019), (Othmane et al., 2019) 

Stage Single (Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Buer and Pankratz, 2010), (Rekik and Mellouli, 2012), 

(Remli and Rekik, 2013), (Buer and Kopfer, 2014), (Ignatius et al., 2014), (Triki et al., 2014), (Kuyzu et al., 2015), 

(Chi, 2015), (Jothi Basu et al., 2015a), (Jothi Basu et al., 2015b), (Hu et al., 2016), (Li et al., 2016), (Feki et al., 2016), 

(Yan et al., 2017), (Rekik et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Zhang and Hu, 2019), (Yang et al., 

2019), (Olcaytu and Kuyzu, 2019), (Othmane et al., 2019), (Mamaghani et al., 2019), (Hammami et al., 2019), (Yan 

et al., 2020), (Yang and Huang, 2020), (Triki, 2021), This paper 

 Two/Multi (Ma et al., 2010), (Zhang et al., 2014), (Jothi Basu et al., 2015b), (Qian et al., 2020), (Hammami et al., 2020) 

Level Single (Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Ma et al., 2010), (Buer and Pankratz, 2010), (Rekik 

and Mellouli, 2012), (Remli and Rekik, 2013), (Buer and Kopfer, 2014), (Triki et al., 2014), (Zhang et al., 2014), 

(Ignatius et al., 2014), (Chi, 2015), (Kuyzu et al., 2015), (Jothi Basu et al., 2015a), (Jothi Basu et al., 2015b), (Li et al., 

2016), (Hu et al., 2016), (Rekik et al., 2017), (Zhang and Hu, 2019), (Othmane et al., 2019), (Mamaghani et al., 2019), 

(Olcaytu and Kuyzu, 2019), (Hammami et al., 2019), (Yang et al., 2019), (Yan et al., 2020), (Qian et al., 2020), 

(Hammami et al., 2020), (Yang and Huang, 2020), (Triki, 2021), This paper 

 Bi/Multi (Jothi Basu et al., 2015b), (Feki et al., 2016), (Yan et al., 2017),  (Yan et al., 2018a), (Yan et al., 2018b) 

Type Integer prog. (Ma et al., 2010), (Rekik and Mellouli, 2012), (Buer and Kopfer, 2014), (Jothi Basu et al., 2015a), (Jothi Basu et al., 

2015b), (Hu et al., 2016), (Zhang and Hu, 2019), (Othmane et al., 2019), (Triki, 2021) 

mixed-integer 

prog. 
(Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Buer and Pankratz, 2010), (Remli and Rekik, 2013), 

(Triki et al., 2014), (Zhang et al., 2014), (Ignatius et al., 2014), (Kuyzu et al., 2015), (Chi, 2015), (Jothi Basu et al., 

2015b), (Li et al., 2016), (Feki et al., 2016), (Li et al., 2016), (Rekik et al., 2017), (Yan et al., 2017),  (Yan et al., 

2018a), (Yan et al., 2018b), (Mamaghani et al., 2019), (Olcaytu and Kuyzu, 2019), (Yang et al., 2019), (Hammami et 

al., 2019), (Yan et al., 2020), (Qian et al., 2020), (Hammami et al., 2020) 
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mixed-integer 

nonlinear prog. 

(Yang and Huang, 2020), This paper 

Conditions 

U
n
ce

rt
ai

n
 Stochastic (Ma et al., 2010), (Remli and Rekik, 2013), (Zhang et al., 2014), (Triki et al., 2014), (Chi, 2015), (Kuyzu et al., 2015), 

(Jothi Basu et al., 2015b), (Feki et al., 2016), (Olcaytu and Kuyzu, 2019), (Qian et al., 2020), (Hammami et al., 2020) 

Fuzzy (Jothi Basu et al., 2015b), (Yan et al., 2017),  (Yan et al., 2018a), (Yan et al., 2018b), This paper 

Deterministic (Wang and Xia, 2005), (Kwon et al., 2005), (Lee et al., 2007), (Buer and Pankratz, 2010), (Rekik and Mellouli, 2012), 

(Buer and Kopfer, 2014), (Ignatius et al., 2014), (Jothi Basu et al., 2015a), (Jothi Basu et al., 2015b), (Hu et al., 2016), 

(Li et al., 2016), (Zhang and Hu, 2019), (Othmane et al., 2019), (Mamaghani et al., 2019), (Yang et al., 2019), 

(Hammami et al., 2019), (Yang and Huang, 2020), (Triki, 2021) 

Case Study Yes (Chi, 2015), (Yan et al., 2017), (Mamaghani et al., 2019), (Yan et al., 2020), (Yang and Huang, 2020), (Triki, 2021), 

This paper 

No (Wang and Xia, 2005), (Lee et al., 2007),(Ma et al., 2010), (Buer and Pankratz, 2010), (Rekik and Mellouli, 2012), 

(Remli and Rekik, 2013), (Buer and Kopfer, 2014), (Zhang et al., 2014), (Triki et al., 2014), (Ignatius et al., 2014), 

(Kuyzu et al., 2015), (Jothi Basu et al., 2015a), (Jothi Basu et al., 2015b), (Feki et al., 2016), (Li et al., 2016), (Hu et 

al., 2016), (Rekik et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Zhang and Hu, 2019), (Othmane et al., 2019), 

(Olcaytu and Kuyzu, 2019), (Hammami et al., 2019), (Yang et al., 2019), (Qian et al., 2020), (Hammami et al., 2020) 

Solution 

Approach 

E
x
ac

t 
m

et
h
o
d
s 

Branch-and-bound alg. (Lee et al., 2007), (Buer and Pankratz, 2010), (Jothi Basu et al., 2015b), (Hu et al., 2016), (Rekik et al., 2017), 

(Hammami et al., 2020) 

Constraint generation alg. (Remli and Rekik, 2013), (Jothi Basu et al., 2015b) 

Linear relaxation (Kwon et al., 2005), (Lee et al., 2007), (Yang et al., 2019), (Yang and Huang, 2020) 

Goal programming (Rekik and Mellouli, 2012), (Ignatius et al., 2014), (Jothi Basu et al., 2015b), (Othmane et al., 2019) 

column generation and 

Lagrangian based tech. 
(Lee et al., 2007) 

Social network-based 

community detection 
This paper 

H
eu

ri
st

ic
 M

et
h
o
d
s Monte carlo approxi. (Zhang et al., 2014), (Jothi Basu et al., 2015b) 

Scenario-based approxi. (Qian et al., 2020) 

Dynamic simulation-based (Feki et al., 2016), 

Decomposition-based  (Triki, 2021) 

Cost comparison-based (Triki, 2021) 

other (Wang and Xia, 2005), (Lee et al., 2007), (Triki et al., 2014), (Chi, 2015), (Jothi Basu et al., 2015a), (Jothi Basu et al., 

2015b), (Hammami et al., 2019), (Yang et al., 2019), (Yang and Huang, 2020) 

M
et

a-
 h

eu
ri

st
ic

 M
et

h
o
d
s 

Iterative coordinate search alg. (Ma et al., 2010), (Kuyzu et al., 2015), (Jothi Basu et al., 2015b), (Olcaytu and Kuyzu, 2019) 

MOPSO/ DBMOPSO-WD 

/PSO 

(Chi, 2015), (Yan et al., 2017), (Yan et al., 2018a), (Yan et al., 2018b), (Yan et al., 2020) 

TPEA (Zhang and Hu, 2019) 

Improved tabu search alg. (Mamaghani et al., 2019) 

Adaptive large neighborhood 

search 
(Li et al., 2016) 

Pareto Neighborhood search (Buer and Kopfer, 2014), (Jothi Basu et al., 2015b) 

Genetic algorithm (Buer and Pankratz, 2010), (Jothi Basu et al., 2015b), (Chi, 2015) 

  

3. Problem description 

The main research problems in this article are as follows: 

 

• Managing "time", "cost" and "drivers’ appropriateness" simultaneously, using information diffusion ability 

of drivers 

In TSP problem, "cost" and "time" are key issues. The issue of "time" is important because companies, in order to 

satisfy existing customers or attract new ones, tend to allocate orders to drivers, in the shortest possible time. This will 

affect the revenue and therefore the profitability of the companies. So, companies have to incur higher costs (such as; 

advertising, marketing, as well as higher fares) in order to deliver orders to drivers more quickly. In this regard, companies 

will face the challenge of "cost" management. Means by controlling the allocation costs they have to ensure their 

profitability. However, reducing the cost of allocating orders will be possible for companies to the extent that the quality 

of the shipping experience is not seriously compromised. In other words, to avoid facing customer dissatisfaction with 

the shipping experience, orders need to be allocated to the right and suitable drivers. Therefore, the issue of "drivers’ 

appropriateness" is important, which has not been addressed in previous studies. As a general rule, companies tend to 

allocate orders to the most appropriate drivers in the shortest possible time at the lowest cost. This issue will be highly 

depended on the policies of companies in attracting and retaining their customers. 

In this paper, the main problem is managing the "time", "cost" and "drivers appropriateness" in allocating shipping 

orders to drivers commensurate with the position, policy and risk level of companies in TSP. To solve this problem, for 

the first time, we will develop an optimization model based on communication and the "information diffusion" ability 
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among drivers. As mentioned earlier, numerous studies have been conducted on the development of profit maximization 

models in the TSP problem. But, none of them considers the role of driver-to-driver communication in improving the 

performance of the transportation system. By identifying the connections between drivers, one can use the information 

diffusion ability between them. One of the main topics which will be addressed in this article is identifying drivers' 

communication power and using it to diffuse information in order to help companies allocate the orders faster and cheaper. 

On the other hand, by identifying the "communication power" and "information diffusion ability" of drivers, the position 

of them in the transportation network will be determined, which will indicate the level of experience and efficiency and 

appropriateness of them. Because the driver who has more communication power in the transportation network is known 

as an experienced and efficient driver. Therefore, this driver has more capabilities in diffusion information. As a result, 

by using the driver's position companies will be able to diffuse shipping orders news or allocate the orders in accordance 

with their policies. Also, quantifying the information diffusion ability among drivers requires modeling the driver-to-

driver communication and predicting their behavior, in the transportation network. The subject of "predicting the behavior 

of drivers’ community", as the second major research problem, and "modeling driver-to-driver communication", as the 

third one, are presented as follows: 

• Predicting the behavior of drivers’ community 
To predict the behavior of communities, it is necessary to measure and evaluate the two factors, named the "possibility 

of diffusing information" and the "speed of diffusing information" of drivers in communities. By identifying these two 

factors, the behavior of each driver when receiving a shipping order news, whether in terms of the possibility or speed 

of/in diffusing the shipping order news and also the possibility of accepting the order will be discovered and predicted. 

So, drivers will have different reactions after receiving a shipping order news. Therefore, in order to use drivers' 

capabilities in diffusing information, it is necessary to identify both "information diffusion possibility" and "information 

diffusion speed" factors. 

Besides, the behavior of any driver is derived from the behavior of influential drivers or leaders within its community. 

It is required that, shipping order news be first shared among drivers who have the most communication and impact among 

the others, in a community. One can come to a conclusion that, identifying the community leaders is an important issue. 

In this article, the following two steps will be taken to solve the problem of predicting the behavior of drivers’ community:  

- Identifying the community leaders,  

- Identifying and evaluating the "information diffusion possibility" and the "information diffusion speed" of drivers.  

• Driver-to-driver communication modeling  

To solve the above two problems, we first need to model the communication between drivers. For this purpose, we 

will develop a drivers’ collaboration network that includes a communication graph of them. The developed drivers’ 

collaboration network should be tailored to the features of the case study used in this paper, which should include different 

types of communication between drivers, relation intensity among drivers and consider the belonging of a driver to more 

than one community. Based on the developed network, first, it will be necessary to identify drivers’ communities. For this 

purpose, an overlapping community detection algorithm will be developed. The following two steps will be taken in this 

regard: 

- Developing a drivers’ collaboration network 

- Developing an overlapping community detection algorithm 

Fig. 1 shows the research framework of this article: 

Drivers  Collaboration Network

Community Leader Detection

Behavior Prediction ModelDrivers  communication 

Model

Collaboration Network Model

Community Detection Algorithm Information Diffusion Prediction

Information Diffusion-Based 

Optimization Model

Information Flow Management

 
Fig. 1. Research framework 
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4. Methodology 

Based on the research problem issues, in this section we present the optimization model based on information diffusion 

ability, the dirver-to-driver communication model and also the driver perdiction model.     

4.1. Profit maximization model based on information diffusion among community leaders 

The profit maximization problem is one of the goals of the transportation system analysis. The profit maximization 

problem can be examined from two perspectives. First, transportation companies are looking for a suitable driver to allocate 

freight shipping orders to them, with a minimum wage. Second, companies are trying to reduce advertising costs of allocating 

freights shipping orders to drivers. In addition to the profit maximization problem, allocating shipping orders to the most 

suitable drivers in the shortest possible time is another goal. Given that, this issue has a direct effect on the level of satisfaction 

of freight owners (customers), it can also affect the company's revenue and its total profit. Many studies worked on the profit 

optimizing problem, but none of them considered taking advantages from the capacities of drivers' collaboration networks. 

In this paper, we use these capabilities to prepare an optimization model, to solve the profit maximization problems. One of 

the capabilities is the ability to manage information flows within drivers’ collaboration network, to achieves the network 

administration goals. Due to the fact that drivers’ collaboration networks are based on relationships and interactions between 

drivers, this capability can be utilized for diffusing information of shipping orders, in these networks. 

In the freight shipping allocation problem, companies are looking for the most suitable drivers to allocate shipping orders, 

minimize their advertising costs, and maximize their profit. Now, the question is how the companies can manage the 

information flow to optimize their costs and profits. In this section, a profit maximization model based on information 

diffusion among community leaders is presented to answer the question. Many studies presented optimization models for the 

diffusion optimization problem. In these studies, there is no difference among network components for publishing, accepting, 

or rejecting information. Due to the fact that people have different interests to accept, diffuse or reject information in social 

networks, overlooking these issues can take the model away from designing real conditions of the problem. In this section, 

we consider the information diffusion that is proper for each community, which is extracted from the network. This means 

that, information (e.g., shipping order news) which are not proper for the whole network, will not be diffused all over the 

network, i.e. the information will be only diffused into its related community.  

We consider an important feature of communities, called community leaders, in the process of information diffusion 

among communities. In this process, information will only be shared with community leaders, for diffusing within the 

community. Also, we construct a mechanism for diffusing information within the community by these community leaders. 

So that, information will be diffused from the community leaders to other community members, called followers, which are 

at different distances from their leaders.  

Fig. 2 shows the assumptions of the modeling in terms of the problem, objective, network, and edge type. The dark boxes 

show the specific assumptions considered in this paper. 

Problem Assumptions

Problem Type

Objective Type

Network Type

DynamicStatic

Multiple ObjectiveSingle Objective

MultiplexMonoplex

Edge Type WeightedUnweighted

 
Fig. 2.  Modeling assumptions categorization 

The symbols and parameters of the proposed model are as follows: 

- Set:  

A set of community leaders in the network. 𝐽𝐿 

- Parameters:  

Percentage of the wage received by a company. 𝜌 

Initial diffusion cost for selecting community leader 𝑐𝑘  to share freight order news to him/her.  𝛾𝑐𝑘
 

Secondary diffusion cost for delaying in diffusing the shipping order k.  𝛽𝑘 
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Threshold for accepting the shipping order k by the driver j in the community 𝑐𝑘 .  𝜀𝑗𝑐𝑘
 

Approved wage for shipping order k.  𝑊𝑘 

Community k to which the shipping order k is assigned.  𝑐𝑘  

Distance between selected leader drivers i and j in the network.  𝑑𝑖𝑗 

A binary constant, which is 1 when there was a relationship between drivers i and j in the community 𝑐𝑘 , o/w is 

0. 
𝑋𝑖𝑗𝑐𝑘

 

A possibility value which is a diffusion possibility (DP) from driver i to j.  𝑁𝑖𝑗 

A possibility value, shows the appropriateness of a company’s suggested wage of shipping order k, from the 

driver j’s point of view.  
�̃�𝑗𝑘 

The membership value of appropriateness of accepting the shipping order k by driver j.  𝜇(�̃�𝑗𝑘) 

The driver j’s threshold for accepting shipping order k, which  𝜀𝑗𝑘 ∈ [0,1]. 𝜀𝑗𝑘  

 

- Decision variables: 

 

A binary variable, which is 1 when driver j was assigned to the shipping order k, o/w is 0.  𝑌𝑗𝑘 

A binary variable, which is 1 when driver i in community 𝑐𝑘  was selected as a community leader, o/w is 0.  𝑂𝑖𝑐𝑘
 

Company suggested wage to the shipping order k. 𝑃𝑘 

 

The proposed profit maximization model can be represented mathematically as follows: 

𝑀𝑎𝑥 ∑ ∑ [𝜌 + (1 − 𝜌) ∗ (1 −
𝑃𝑘

𝑊𝑘
)] 𝑌𝑗𝑘

𝑗
𝑘

− ∑(∑ 𝛾𝑐𝑘
𝑂𝑖𝑐𝑘

𝑖

+ ∑ 𝛽𝑘 𝑑𝑖𝑗 𝑌𝑗𝑘𝑋𝑖𝑗𝑐𝑘

𝑗𝑘

) (2) 

Subject to: 

(2𝑌𝑗𝑘 − 1)[(1 − 𝑚𝑖𝑛
𝑖∈{𝐽𝐿}

(1 − 𝑁𝑖𝑗)𝑋𝑖𝑗𝑐𝑘
)𝜇�̃�𝑗𝑘

(𝑃𝑘) − 𝜀𝑗𝑐𝑘
] > 0  ∀𝑘 (3) 

∑ 𝑌𝑗𝑘 ≤ 1    
𝑘

∀𝑗 
(4) 

∑ 𝑌𝑗𝑘 ≤ 1     ∀𝑘  
𝑗

 
(5) 

∑ 𝑂𝑖𝑐𝑘
= 1  ∀𝑘  

𝑖
 

(6) 

0.5𝑊𝑘 ≤ 𝑃𝑘 ≤ 𝑊𝑘   ∀𝑘 (7) 

𝑂𝑗𝑐𝑘
, 𝑌𝑗𝑘  ∈ {0,1} (8) 

Equation (2) is the profit maximization objective function of a transportation company with two parts; total revenue and 

total cost. The first part is the total revenue of the company which contains the company’s wages and its incomes, arising 

from saving costs that should be paid to volunteer drivers.  

The second part of the objective function is the total cost, which contains initial cost and secondary cost. The initial cost 

is the cost of sharing shipping order news to community leaders to diffuse the orders into the communities. Each community 

has leaders which will be extracted from the community detection algorithm, in the next section. By sharing the freight 

shipping orders with the community leaders, the leaders will be prepared to diffuse the orders into the community drivers. 

Also, the cost of allocating shipping orders to volunteer drivers is considered as a secondary cost. Since any delay in allocating 

shipping orders to volunteer drivers will cause remarkable costs to the company, the distance between drivers to their 

community leaders is considered. So, drivers who are in a closer distance from the community leaders have a greater chance 

to get shipping orders allocated to them.  

Equation (3) shows that, if the driver j was able to receive shipping order news from at least one driver in the community 

𝑐𝑘 , and accept the order with the wage 𝑃𝑘 and with the possibility value 𝜇�̃�𝑗𝑘
(𝑃𝑘), which is greater than his “acceptance 

domain” (AD), then the shipping order k will be allocated to driver j in the community 𝑐𝑘 . Also, �̃�𝑗𝑘 is a fuzzy value of the 

acceptance affordability of the driver j, in the community k. The AD value of each driver, which is a fraction of 𝑊𝑘, is 

calculated based on his minimum distances from his community leaders, as shown in Table 2. Indeed, community leaders, 

with AD=0.9, have the greatest AD value. Means community leaders have the minimum flexibility in accepting shipping 

orders than to the approved wage 𝑊𝑘, that we refer to as “famous drivers”. 

Also, the farther we go from the community leaders, the greater possibility the drivers have to accept the shipping orders. 

In the distance value 3, there exist drivers, that we call “beginner drivers”, who are willing to accept shipping orders only 

with 0.4 of approved wage 𝑊𝑘. The above drivers’ information will be extracted at the end of the community detection 

algorithm. The acceptance affordability is shown in the form of a fuzzy value, in Fig. 3. 
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Table 2 Acceptance domain of drivers 

Minimum distance from 

community leaders 
Acceptance domain 

0 0.9 

1 0.7 

2 0.5 

3 0.4 
 

 

 

Fig. 3.  The fuzzy value of the acceptance affordability �̃�𝑗𝑘  

Equation (4) shows that the driver j can only accept one shipping order, in all communities. So, if a shipping order is 

allocated to the driver j in a community, he can not accept any other shipping order, simultaneously. Likewise, equation (5) 

depicts that the shipping order k can only be allocated to one driver.  

Equation (6) ensures that only one leader node, among the community leaders, will be selected to diffuse the shipping 

order k, in community 𝑐𝑘 . Finally, the range of 𝑃𝑘 value and the binary nature of the decision variables are shown in equations 

(7) and (8), respectively. 

4.2. Two-layer weighted drivers’ collaboration network 

The concepts of a drivers’ collaboration network was presentedby Badiee et al., (2020), using the graph 𝐺 = (𝑉, 𝐸), in 

which V is the set of drivers, as graph nodes, and E is the set of edges, showing the “similarities” between nodes. Also, they 

introduced explanations of the edges, such as: working on a shared vehicle, shared origin, or destination.  

In this section, we use the graph  𝐺 = ⟨𝑉, 𝐸, 𝐿⟩ to present the two-layers weighted drivers’ collaboration network, in which 

V is a set of nodes and E contains a set of ⟨𝑢, 𝑣, 𝑙⟩; 𝑢, 𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿, 𝑢 ≠ 𝑣, that is a type of connection between nodes u and v, 

in each layer. 𝐿 depicts the set of layers based on the connection type between nodes. Fig. 4 shows the two-layers weighted 

drivers’ collaboration network. In this figure, E represents how nodes u and v use a common vehicle, in layer 1, and have a 

common origin or destination in layer 2. In the above network, the “edge weight” shows the degree of connection between 

two nodes. This means, how much two nodes have interactions with each other in respect to their neighbor nodes. The edge 

weights of nodes u and v are shown in a binary form (𝑅𝐼𝑢𝑣 , 𝑅𝐼𝑣𝑢).  

1

5

2

3

4
67

8

Layer1

1

5

2

3

46

7

8

Layer 2

 
Fig. 4. Two-layers weighted drivers’ collaboration network 

 

So, to calculate the edge weights, we introduce the “relationship intensity (RI)” value as follows: 

Definition 1: Relationship Intensity: 

𝑅𝐼𝑢𝑣 = 𝑅𝑢𝑣
∑ 𝑅𝑢𝑖𝑖=1...𝑛

⁄  (1) 

Where 𝑅𝑢𝑖  represents the total number of observed relationships (e.g., registered bill of lading dataset) between node u 

and other neighbor nodes, over a specified period of time, in layer l. Also, 𝑅𝐼𝑢𝑣 is the relationship intensity value of node u 

with node v. 

4.3. Extended overlapping community detection algorithm based on intra-layer expansion, inter-layer merging 

(Extended-OCDEM) 

To solve the profit maximization problem, it is necessary to classify drivers into communities. Community detection 

algorithms are used to identify the hidden structure of a multiplex network. The multiplex network was presented (Tomasini, 
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2015) that were grouped into; edge colored, node colored, multiplicity, and temporary networks. The weighed drivers’ 

collaboration network is presented in the form of multiplex network as an edge-colored network.  

Based on what was stated in the problem description section, it became clear that the community detection algorithm is a 

tool to quantify the driver-to-driver communication modeling problem. In fact, what we are looking for in this problem is 

applying an algorithm to detect communities which should have the feature of overlapping communities, consider different 

connections between drivers and also different values of relation intensity between them. Therefore, by studying the literature 

of community detection methods, we select the OCDEM algorithm (Badiee et al., 2020) and develop it by improving the 

NCOS measure, using the relation intensity (RI) index for each two nodes, in the network. Some benefits of the OCDEM 

algorithm are as follows: the algorithm can determine the optimal number of the communities; considering the communities 

overlapping, so nodes can belong to more than one community; ability to solve edge-colored networks, and finally performing 

better than other algorithms. Also, the OCDEM algorithm has the ability to save the role of each node in community 

formation, at each step. In this algorithm, nodes first randomly form local communities. Then, by combining local 

communities with each other, intermediate communities are created, in each layer. Finally, by merging intermediate 

communities, final communities are created. Therefore, based on the participation information of each node in each stage of 

the community formation process, we extend the OCDEM algorithm to identify the leaders of each community. The results 

of the community leaders’ identification algorithm are the main basis for solving the problem of predicting the behavior of 

drivers' communities.  

Finally, since the development of this algorithm requires validations, we compared the extended algorithm with the 

OCDEM and other algorithms that have the properties of heterogeneous and overlapping. 

4.3.1. Preliminaries  

Consider the drivers’ collaboration network as the graph 𝐺 = ⟨𝑉, 𝐸⟩ in which V is a set of nodes and E is a set of edges 

that represents the relationship between nodes u and v. The notations of the Extended-OCDEM  algorithm are as follows: 

𝐺 A graph with node set V and edge set E. 

⟨𝑉, 𝐸, 𝐿⟩ Two layers drivers’ collaboration network. 

𝐴 Adjacency matrix. 

𝑅𝐼𝑣𝑖𝑣𝑗
 Relation intensity between nodes 𝑣𝑖 ,𝑣𝑗. 

𝐿𝐶 𝑙 Local communities set in layer l. 

𝐶𝑜𝑚𝑙(𝑣𝑖) Layer l’s communities, that node 
iv  belongs to.  

𝑁𝑠𝑙  Layer l’s nodes set.  

𝐸𝑠𝑙  Layer l’s sorted edges set. 

𝑁𝑙(𝑣𝑖) Neighbors of node 
iv  in layer l. 

𝑁𝑙(𝐶𝑘) Layer l’s communities which have common nodes with community 
kC .  

u,v The graph nodes. 

M Modularity measure. 

𝛽 Overlapping threshold. 

𝛼 Tunable parameter. 

𝛾 adjacency weight of a community. 

𝐶𝑖
𝑙 Community i in the layer l.  

𝑉𝑘 Nodes set of community k.  

𝐸𝑘
𝑖𝑛 Inner edges of community k. 

𝜌𝑣𝑖𝐶𝑘
 A binary variable that takes value 1 if node 

iv  belong to 
kC  and 0 otherwise. 

𝜑𝑣𝑘𝐶𝑚
 

Is a binary variable, which is 1 when at least one edge exists between node 
kv  (of 

kV ) of 
kC  and 

mv  of 
m kC 

, not 

only 
kv  does not belong to 

mC but also 
mv  does not belong to 

kC . Otherwise, is 0.  

𝐶 𝑙 Communities set in layer l.  

𝐶 ′ Inter-layer communities set. 

𝑁𝐶(𝑣𝑖) Communities which hold neighbors of node 
iv .  

𝐶 The graph’s final communities set.  

𝐶 ′𝑙 The refined communities set (in step 4), in layer l.  

𝐶 𝑙 The inter-layer communities set (in step 3), in layer l. 

𝐿𝐶 𝑙 The local communities set (in step 2), in layer l. 

𝐿𝐶𝑆𝐶𝑖  The communities set, that make up the final community ci. 
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𝑁𝑖(𝑢𝑞) The number of repetitions of node 𝑢𝑞 in the local communities set, that make up the final community ci 

𝑆𝑖  The set of ordered nodes in ci.  

𝑉𝑝
𝑖  Set of volunteer nodes in ci.  

𝐶𝐶𝑝
𝑖  The closeness centrality value for each volunteer nodes, in ci. 

𝐼𝑖  The leaders set in ci. 

𝜆 The coverage coefficient parameter 

The pseudo code of the Extended-OCDEM algorithm is as follows: 

01. Sort nodes regards to their centrality measure. 

02. 𝑁𝑠𝑙 = (𝑢1
𝑙 , 𝑢2

𝑙 , . . . , 𝑢𝑛
𝑙 )∀𝑙 = 1,2 

03. Set 𝐸𝑠𝑙 = 𝜙 and 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 = 𝜙. 

04. for 𝑙 = 1: 2; for 𝑖 = 1: 𝑛; for 𝑗 = 𝑖 + 1: 𝑛 

05. if  𝑢𝑗
𝑙 ∉ 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡; if 𝐴(𝑢𝑖

𝑙 , 𝑢𝑗
𝑙) > 0 

06. 𝐸𝑠𝑙 = 𝐸𝑠𝑙 ∪ {𝑒𝑖𝑗
𝑙 } 

07. Update Tabu by putting 
ju . 

08. end if; end if; end for; end for; end for 

09. for 𝑙 = 1: 2  

10. Set 𝐿𝐶𝑙 = 𝜙. 

11. for 𝐸𝑖
𝑙 ∈ 𝐸𝑠𝑙∀(𝑢, 𝑣) ∈ 𝐸𝑖

𝑙 and 𝐶𝑜𝑚(𝑢) ∩ 𝐶𝑜𝑚(𝑣) = 𝜙 

12. Set 𝐿𝐶𝑇𝑒𝑚𝑝
𝑙 = {𝑢, 𝑣} 

13.𝑁𝐶𝑙 = 𝑁𝑙(𝑢) ∩ 𝑁𝑙 (𝑣) 

14. if |𝑁𝐶𝑙 | ≥ 4; for 𝑛𝑜𝑑𝑒 ∈ 𝑁𝐶𝑙 ; if 𝑀(𝐿𝐶𝑇𝑒𝑚𝑝
𝑙 ∪ 𝑛𝑜𝑑𝑒) >

𝑀(𝐿𝐶𝑇𝑒𝑚𝑝
𝑙 ) 

15. Update 𝐿𝐶𝑇𝑒𝑚𝑝 by putting “node”. 

16. end if; end for; end if 

17. Update 𝐿𝐶 by adding 𝐿𝐶𝑇𝑒𝑚𝑝.   

18. end for; end for 

19. for 𝑙 = 1: 2 

20. 𝐶′𝑙 = 𝐿𝐶𝑙  

21. Set 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 = 𝜙 

22. for 𝐶𝑖
𝑙 ∈ 𝐶′𝑙 ; if  𝐶𝑖

𝑙 ∉ 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 

23. 𝐶"𝑙 = 𝐶′𝑙 \𝐶𝑖
𝑙  

24. for 𝐶𝑗
𝑙 ∈ 𝐶"𝑙 ; if 𝐶𝑗

𝑙 ∉ 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 

25. if 𝑁𝐶𝑊𝑂𝑆(𝐶𝑖
𝑙 , 𝐶𝑗

𝑙 ) ≥ 𝛽 

26. 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖
𝑙 ) = {𝐶𝑖

𝑙 , 𝐶𝑗
𝑙 } 

27. 𝐶𝑖
𝑙 = 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖

𝑙 ) ∪ 𝐶𝑖
𝑙 

28. Update 𝐶"𝑙 by removing 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖
𝑙) 

29. Update 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 by adding 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖
𝑙 ) . 

30. end if; end if; end for; end if 

31. for 𝑢 ∈ 𝐶𝑖
𝑙  

32. Update 𝐶𝑜𝑚𝑙(𝑢) 

33. end for 

34. 𝐶′𝑙 = 𝐶′𝑙 \𝐶𝑖
𝑙 

35. end for; end for 

 36. for 𝑙 = 1: 2 

37. Set 𝐶′𝑙 = 𝐶𝑙  

38. Set 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 𝜙 

39. for 𝑢 ∈ 𝑉𝑎𝑛𝑑𝐶𝑜𝑚(𝑢) = 𝜙; for 𝐶𝑖
′𝑙 ∈ 𝑁𝐶(𝑢) 

40. if 𝑀𝐶𝑖
′𝑙+{𝑢} > 𝑀𝐶𝑖

′𝑙−{𝑢}  

41. Update 𝐶𝑖
′𝑙 by adding node {𝑢}. 

42. Update 𝐶𝑜𝑚(𝑢) by adding node {𝑖}. 

43. end if; end for  

44. if 𝐶𝑜𝑚(𝑢) = 𝜙 

45. Update 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 by adding {𝑢}.  

46. end if; end for; end for 

47.Set 𝐶_𝑖𝑛𝑖𝑡 𝑙1 = {𝐶1
′1 , 𝐶2

′1 , . . . , 𝐶𝑛
′1} and 𝐶_𝑖𝑛𝑖𝑡 𝑙2 = {𝐶1

′2 , 𝐶2
′2, . . . , 𝐶𝑚

′2}.  

48. Set 𝑇𝑎𝑏𝑢 = 𝜙 

49. for 𝐶𝑖 ∈ 𝐶_𝑖𝑛𝑖𝑡 𝑙1; if  𝐶𝑖 ∉ 𝑇𝑎𝑏𝑢; for 𝐶𝑗 ∈ 𝐶_𝑖𝑛𝑖𝑡 𝑙2 

50. if 𝐶𝑗 ∉ 𝑇𝑎𝑏𝑢; if 𝑓
𝐶𝑖

𝐶𝑗 > 0 

51. 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖) = {𝐶𝑖 , 𝐶𝑗} 

52. Update 𝐶𝑖 by adding 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖). 

53. Update 𝐶_𝑖𝑛𝑖𝑡 𝑙2 by removing 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖). 

54. Update 𝑇𝑎𝑏𝑢 by adding 𝑈𝑛𝑖𝑜𝑛(𝐶𝑖). 

55. end if; end if; end for; end if 

56. for 𝑢 ∈ 𝐶𝑖 

57. update 𝐶𝑜𝑚(𝑢) 

58. end for 

59. update 𝐶_𝑖𝑛𝑖𝑡 𝑙1 by removing 𝐶𝑖. 

60. end for 

61. 𝐿𝐶𝑆𝐶𝑖 = 𝜙 62. for 𝐶𝑖 ∈ 𝐶(∀𝑖 = 1, . . , 𝑝) 

63. Find merged 𝐶′𝑙𝑠. (∀𝑙 = 1,2) 

64. for 𝑙 = 1: 2; for 𝐶𝑗
′𝑙 ∈ 𝐶′𝑙 (∀𝑗 = 1, . . , 𝑛) 

65. Find merged 𝐶𝑙𝑠. 

66. for 𝐶𝑚
𝑙 ∈ 𝐶𝑙 (∀𝑚 = 1, . . , 𝑘) 

67. Find communities merged set 𝐿𝐶𝑙  

68. 𝐿𝐶𝑆𝐶𝑖 = {𝐿𝐶𝑆𝐶𝑖 , 𝐿𝐶𝑙} 

69. end for; end for; end for 

70. for 𝑛𝑜𝑑𝑒𝑢𝑞 ∈ 𝐶𝑖(∀𝑞 = 1, . . , 𝑞′) 

71. 𝑁𝑖(𝑢𝑞) = 𝐶𝑂𝑈𝑁𝑇(𝐿𝐶𝑆𝐶𝑖 , 𝑢𝑞) 

72. end for 

73.𝑆𝑖 = 𝑆𝑂𝑅𝑇
𝑞=1,..,𝑞′

(𝑢𝑞), 𝑏𝑦𝑁𝑖(𝑢𝑞) 

The Extended-OCDEM algorithm can be described through six steps, as follows: 

• Step 1: Edges probing 

By calculating and sorting the “betweenness centrality” measure for all nodes, the volunteer nodes are addressed, using 

lines 1 to 8 of the algorithm.  

• Step 2: Extracting local communities  

In lines 9 to 18, using the extracted volunteer edges, the local communities of the network are formed. In this step, the 

modularity M used to create the local communities. As a result of this step, the local community set 𝐿𝐶 = {𝐿𝐶1, 𝐿𝐶2, . . . , 𝐿𝐶𝑘} 

is obtained.  

• Step 3: Intra-layer communities Merging 

Using lines 19 to 35, we evaluate the local communities for being merged. In this step, the node connectivity overlapping 

score (NCOS) is used. To address the smallest relationship between two communities, we improve the NCOS measure, 

considering the RI value, presented in eq. (1), as a weighted adjacency value between two nodes. The extended NCOS 
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measure will be able to address any relationship between two communities, including the members or non-member neighbor 

nodes relationship. The extended NCOS measure is as follows: 

𝑁𝐶𝑂𝑆(𝐶𝑖 , 𝐶𝑗) = 𝛾 [𝛼
|𝑉𝑖 ∩ 𝑉𝑗|

𝑚𝑖𝑛{|𝑉𝑖|, |𝑉𝑗|}
+ (1 − 𝛼)

|𝐸𝑖
𝑖𝑛 ∩ 𝐸𝑗

𝑖𝑛|

𝑚𝑖𝑛{|𝐸𝑖
𝑖𝑛|, |𝐸𝑗

𝑖𝑛|}
]

+ (1 − 𝛾) [
∑ (𝜑𝑣𝑘𝐶�̃�

)𝑣𝑘∈𝑉𝑘
+ ∑ (𝜑𝑣�̃�𝐶𝑘

)𝑣�̃�∈𝑉�̃�

𝑚𝑖𝑛{|𝑉𝑖|, |𝑉𝑗|} + ∑ (𝜑𝑣𝑘𝐶�̃�
)𝑣𝑘∈𝑉𝑘

+
∑ ∑ 𝑅𝐼𝑣𝑖𝑣𝑗

(1 − 𝜌𝑣𝑖𝐶𝑗
𝜌𝑣𝑗𝐶𝑖

)𝑣𝑗∈𝑉𝑗𝑣𝑖∈𝑉𝑖

𝑚𝑖𝑛{|𝐸𝑖
𝑖𝑛|, |𝐸𝑗

𝑖𝑛|} + ∑ ∑ 𝑅𝐼𝑣𝑖𝑣𝑗
(1 − 𝜌𝑣𝑖𝐶𝑗

𝜌𝑣𝑗𝐶𝑖
)𝑣𝑗∈𝑉𝑗𝑣𝑖∈𝑉𝑖

]                                            (9) 

In eq. (9), the first part computes the overlapping score between two communities. The next part computes the weighted 

adjacency level between two communities. Also, the weights are adjusted by 𝛾. As a result, if 𝑁𝐶𝑂𝑆(𝐶𝑖
𝑙 , 𝐶𝑗

𝑙) ≥ 𝛽, then these 

local communities should be merged. Also, the smaller the 𝛽 is, the more communities will be combined.  

• Step 4: Communities Refining 

After merging local communities in Step 3, it can happen that some nodes in the network exist that have not been assigned 

to any community. Thus, using communities refining, lines 36 to 46 of the algorithm, these nodes will be evaluated and 

assigned to the communities. In this step, we calculate the modularity value of the community after having assigned each 

node to it and compare this value with the modularity value of the non-assignment case. So, if the newer modularity value is 

increased, then the node will be assigned to the community.  

• Step 5: Inter-layer communities aggregating 

We have communities in two layers that should be combined to extract the final communities. Lines 47 to 60 show the 

inter-layer community aggregating step. Badiee et al., (2020) proposed the “community fitness” measure, 𝑓𝐶𝑖

𝐶𝑗
, as follows: 

Definition 2: Community fitness measure 

The fitness value of community 𝐶𝑖 is defined as follows:  

𝑓𝐶𝑖

𝐶𝑗 = 𝜌𝐶𝑖+{𝐶𝑗} − 𝜌𝐶𝑖−{𝐶𝑗} (10) 

Where 𝐶𝑖  and 𝐶𝑗 are two communities from different layers. 𝜌𝐶𝑖+{𝐶𝑗} is the redundancy value of community 𝐶𝑖  when 

community 𝐶𝑗 was added to it and 𝜌𝐶𝑖−{𝐶𝑗} is the redundancy value of the community 𝐶𝑖 without adding the community 𝐶𝑗. 

If the fitness value is positive, the two communities 𝐶𝑖  and 𝐶𝑗 should be aggregated to create the final community. The 

redundancy value of community 𝐶 can be calculated as bellow: 

𝜌𝑐 = ∑
|{𝑙: ∃(𝑢, 𝑣, 𝑙) ∈ 𝐸}|

|𝐿| × |𝑃𝑐|
(𝑢,𝑣)∈𝑃𝑐

 (11) 

• Step 6: Community leaders’ extraction 

We design the community leader extraction section, lines 61 to 73, as an extension of the OCDEM algorithm, to address 

each community leader in order to share shipping order news into the communities. As mentioned before, only the leaders 

who are able to diffuse the shipping order news into the communities. To evaluate which nodes are community leaders, we 

analyzed the Extended-OCDEM  algorithm from step 5 to step 2. For each node u in the final community i, the participation 

degree of the node in the construction of the final community i (step 5), its reconstructed communities (step 4), its inter-layer 

communities (step 3) and finally its local communities (step 2) are calculated. Also, the sum of the above values makes the 

overall participation degree of the node u. Sorting nodes based on their overall participation degree, calculating the closeness 

centrality measure for each one and reordering them, will result community leaders. 

4.3.2. Time complexity evaluation 

If we split the algorithm into six steps, the overall complexity of the algorithm is the highest complexity of each of them. 

Table 3 shows the time complexity of each step when applied to solve an instance having n nodes and m edges. 

Table 3 The complexity of the algorithm 

Descriptions Order Steps 

 𝑂(2𝑛 + 𝑚) 1 

d is the average degree of a node and 𝑑 ≪ 𝑚. 𝑂(2𝑚𝑑) 2 
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𝑘1 is the number of local communities and 𝑘1 < 𝑛. 𝑂(2𝑘1
2) 3 

 𝑂(2𝑛𝑑) 4 

𝑘2 and k2
′  are the numbers of final communities in two layers and k2 , k2

′ ≪ n. O(k2k2
′ ) 5 

k3 is the number of final communities and k1k2k3 ≪ n2. O(k1k2k3) 6 

 O(2n2) Overall 

5. Numerical example 

To evaluate the performance of Extended-OCDEM  algorithm, we use two methods called “Layer Aggregation” (Suthers 

et al., 2013), “Ensemble Clustering” (Fern and Brodley, 2004) and “mux-licod” which is applied on LICOD algorithm 

(Yakoubi and Kanawati, 2014). To extract the best results from these algorithms, the parameter value σ is set to 0.9. The 

OCDEM algorithm (Badiee et al., 2020) is also applied with the parameters α = 0.6, β = 0.35 and γ = 0.9. 

5.1. Real network datasets 

We use six real two-layer networks1 BKOFF, BKFRAT, FFTWYT, DBLP-ppc, Friendfeed-ita and “Autonomous Systems 

network2”, as reported in Table 4, to evaluate the performance of the algorithms. 

Table 4  Real networks details 

Total number of edges Number of nodes Networks ID 

2,034 40 BKOFF 1 

5,240 58 BKFRAT 2 

13,895 6,474 Autonomous Systems  3 

74,762 6,407 FFTWYT 4 

222,510 108,408 DBLP-ppc 5 

573,600 21,006 Friendfeed-ita  6 

5.2. Evaluation measures on real network 

To the best of our knowledge, supervised measures cannot be used to evaluate the performance of the algorithms, because 

multiplex networks with ground-truth partitions into communities do not exist. So, unsupervised estimation must be used, as 

bellow:  

 

- EQ: The EQ measure is as follow: 

𝐸𝑄 =
1

2𝑚
∑ ∑

1

𝑂𝑢𝑂𝑣
𝑢,𝑣∈𝐶𝑐

𝑘

𝑐=1

(𝐴𝑢𝑣 −
𝑑𝑢𝑑𝑣

2𝑚
) (12) 

Where 𝑂𝑢 is the number of communities that hold node u, 𝑑𝑢 is the degree of node, also m is the number of edges. For a 

larger EQ value, the better community detection result will be obtained.  

- Redundancy: The redundancy measure is as follow: 

𝜌𝑁𝑒𝑡𝑤𝑜𝑟𝑘 =
1

|𝐶|
∑ 𝜌𝑐

𝑐∈𝐶

 (13) 

Where, 𝜌𝑐 is calculated as Eq. 11. Using this measure, the redundancy value will be greater, when the edge contains more 

layers. 

5.3. Evaluation results 

Table 5 shows the comparison of the considered algorithms. In this table, the community size (|C|) of Extended-OCDEM 

is greater than the OCDEM algorithm, in all networks. This because of using the RI value in step 3, which obtains the smaller 

value for NCOS measure between two communities, and consequently merging less communities to each other.  

The extended OCDEM algorithm had the highest value of the EQ measure. This means that the detected communities of 

this algorithm were separated the drivers with the highest accuracy. Also, compared to other algorithms, the drivers in these 

communities have a lot of internal communication and at the same time have the least amount of communication with drivers 

in other communities. Therefore, the extended OCDEM algorithm has been able to identify communities more accurately 

than other algorithms. Also, the extended OCDEM algorithm has a better performance in grouping drivers into communities 

than the OCDEM algorithm. The reason is improving the NCOS measure by using the RI index, in this algorithm. Using RI 

index allowed the extended algorithm to consider the smallest number of communications between drivers and the identified 

communities to be separated from each other more accurately . 

 
1 https://networkdata.ics.uci.edu/ 
2 C. L. DuBois and P. Smyth, “UCI network data repository,” Web page http//networkdata. ics. uci. edu, 2008. 
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Also, the RI index considered the relations of each community driver with other drivers in its neighboring communities, 

and this caused the identified communities to have relatively more overlapping than the OCDEM algorithm. As a result, the 

Redundancy measure for the extended OCDEM algorithm, in all real networks except the BKFRAT network, has higher 

values than the other algorithms. It should be noted that, the large overlapping of drivers in the communities for the extended 

OCDEM algorithm does not contrast with the high EQ value. This is because, the extended OCDEM algorithm controls the 

accuracy of community detection by grouping drivers into more communities than other algorithms. Therefore, the number 

of communities in the extended algorithm is more than the OCDEM algorithm as well as the others . 

Table 5 The comparison of the algorithms 

Extended-OCDEM OCDEM mux-licod Ensemble Clustering Layer Aggregation Network 

ID 𝝆 EQ |C| 𝝆 EQ |C| 𝝆 EQ |C| 𝝆 EQ |C| 𝝆 EQ |C| 

0.34 0.42 9 0.33 0.41 8 0.09 0.36 7 0.15 0.32 6 0.09 0.36 7 1 

0.33 0.47 15 0.34 0.44 13 0.05 0.28 10 0.17 0.26 9 0.05 0.28 10 2 

0.35 0.43 248 0.31 0.35 265 0.09 0.39 243 0.18 0.36 287 0.07 0.29 261 3 

0.47 0.41 1719 0.47 0.38 1698 0.08 0.25 1613 0.23 0.33 1622 0.08 0.25 1613 4 

0.45 0.41 26706 0.42 0.37 26681 0.1 0.14 26598 0.18 0.35 26602 0.1 0.14 26598 5 

0.44 0.39 4489 0.43 0.35 4446 0.11 0.19 4439 0.21 0.31 4419 0.11 0.19 4439 6 

 

6. Case study 

Given that the main approach of the paper is to solve the TSP problem and extract practical insights, in the transportation 

system and in a situation where there is only information about social interactions between drivers, an attempt was made to 

use a study related to this area and also complies with the features of the paper. To solve the information diffusion among 

community leaders-based profit maximization model in the road freight drivers’ collaboration network, a case study as 

reported in Table 6 (Badiee et al., 2020) is applied. In this study, it is possible to model the communication of drivers in the 

form of drivers’ collaboration network and also to extract the relation intensity among them within the network. This table 

shows the information of issued bills of lading from Iran freight road transportation system, in one month. Based on the 

details of Table 6, we design 2-layers weighted drivers’ collaboration network as a graph 𝐺 = ⟨𝑉, 𝐸, 𝐿⟩. Edges set in layer 

one shows that two nodes u and v work on a shared vehicle at least once a month. Also, edges set in the second layer indicate 

that two nodes share at least 80 percentage of their paths during a month. The information of the weighted drivers’ 

collaboration network is shown in Table 7. 

 

Table 6 Information of issued bills of lading  

Topic Number 

Total companies  4,109 

Total number of bills of lading 1,202,756 

freights with two drivers 314,638 

Total number of drivers 209,315 

Unique vehicles 103,357 

Origins  1,390 

Destinations 3,176 

Table 7 Weighted drivers’ collaboration network 

Layer #2 Layer #1 Items 

1416 1862 Nodes 

4061 4696 Edges 

Given that, the network developed in this paper is designed in a weighted form, by calculating the 𝑅𝐼𝑢𝑣 , RI value between 

two nodes (by means of Eq. 1) we obtain the edge weights and make the weighted network. Due to the fact that, the RI value 

between two nodes v and u can be different in two layers, the RI is defined as the fuzzy number 𝑅�̃�𝑖𝑗 = (𝑎, 𝑏, 𝑏), where the 

value a is the minimum RI value between two nodes v and u and the value b is the biggest one, in the two layers. Also, the 

RI value has a direct effect on DP value 𝑁𝑖𝑗. Consequently, by extracting the RI value between two nodes u and v, the DP 

value 𝑁𝑢𝑣 will be extracted. 

6.1. Result analysis 

First, the problem of detecting communities needs to be solved and the results must be used to address the profit 

maximization model, through the developed model, as follows: 
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6.1.1. Solving Extended-OCDEM algorithm 

• Steps 1 to 5 results: final communities 

After creating the multiplex weighted drivers’ collaboration network, it is necessary to solve the Extended-OCDEM  

algorithm. The results of solving steps 1 to 5 of the algorithm are as summarized in Table 8. 

Table 8 Results of the Extended-OCDEM  algorithm for the weighted drivers’ collaboration network 

Number of 

Outliers 

Non-overlapping 

Nodes 

Number of 

Overlapping Nodes 

Number of 

Communities 
Redundancy measure 

% Overlapping nodes 

in communities 

Community 

statistics 

792 704 366 49 

0.281 83.2 CMax_Size 

0.191 69.0 Cmean_Size 

0.397 75.0 Cmin_Size 

0.283 47.7 Avg. 

 

According to Table 8, the total number of final communities in the weighted drivers’ collaboration network is 49. The 

average percentage of overlapping nodes in the communities is 47.7, i.e. only 47.7 percentage, of nodes belong to more than 

one community. Also, there are 704 nodes in the final communities that belong to only one community. Correspondingly, 

792 nodes, called outliers, do not belong to any community. According to the redundancy measure, for those communities 

with the largest size, the redundancy value is equal to 0.281, for communities with an average size the redundancy value is 

equal to 0.191 and for the communities with the minimum size this value is equal to 0.397. On average, the redundancy value 

of the entire network is equal to 0.283. 

The distribution of active nodes in the final communities is shown in Fig 5. According to the figure, about 50 percentage 

of the overlapping nodes in the weighted drivers’ collaboration network belong to only two communities, 23 percentage of 

these nodes to three communities, 10 percentage of the nodes to 4 communities and 14 percentage of the nodes belong to 

more than 4 communities. Also, the maximum number of communities in which overlapping nodes belong to is 10.  

 
Fig. 5. Dispersion of active nodes in final communities  

Table 9 shows the EQ values obtained from steps 2 to 5. The EQ value of step 2 has a very small value. This is because 

creating each local community is only based on a volunteer edge and expanding the local community through merging only 

two common nodes of this volunteer edge, without considering any other common node.  

Table 9 Comparison of EQ values  

EQ 
Layers 

Step 5 Step 4 Step 3 Step 2 

0.350 
0.269 0.159 0.077 L1 

0.299 0.237 0.064 L2 

By combining the intra-layer communities, the EQ value in step 3 has increased significantly, in two layers, compared to 

step 2. Finally, using the inter-layer aggregation in step 5, the EQ value becomes equal to 0.35. Based on the results, it can 

be concluded that the Extended-OCDEM  algorithm has a very satisfactory performance in achieving the final communities. 

One of the most important applications of community detection algorithms in transportation systems is diffusing shipping 

orders using drivers’ communities in order to find an appropriate driver, in a shortest possible time. To do this, we first need 

to extract community leaders, calculate the distances between each follower node and its leaders and finally evaluate the 

followers’ diffusion probability values by distributing the shipping order news among the leaders.  

• Step 6: Extracting communities’ leaders  

Since steps 1 to 5 of the Extended-OCDEM  algorithm divided the network into dense meaningful groups, the purpose of 

step 6 is to identify the community leaders to diffuse shipping order news into the communities. We consider the coverage 
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value λ=0.6. Fig. 6 displays the leader size of each community. The number of leaders in each community is identified as a 

binary value. For example, the binary value (7,14) indicates that in the community 7, there exist 14 drivers that are identified 

as the leaders. 

 
Fig. 6. Size of the community leaders in weighted drivers’ collaboration network. 

 

By identifying the community leaders, one can easily investigate the impressibility of each community follower by its 

community leaders. Measuring the impressibility can be done in two different ways. One of these methods is to calculate the 

distance between each community follower and its leaders. The second one is to analyze the possibility value of receiving 

shipping order news by each follower from its community leaders. The results of these two issues are explained as follows: 

• Distance from community leaders  

We calculate the time distance needed by each follower to receive news from its community leaders. It is obvious that, if 

the time distance between followers and their community leaders was shorter, then the overall time of allocating the shipping 

orders to the appropriate nodes (followers or leaders) would be even more reduced. We use the "shortest path" method to 

extract the distance between followers and their leaders.  

The dispersion of followers based on their shortest path values from the leaders is shown in Fig. 7. Averagely, for 72 

percent of community followers, the shortest path value is one, which means that when the community leaders diffuse the 

shipping orders news into the community, 72 percent of followers, will be first informed before others, in the community. 

Also, for 27 percent of community followers the shortest path value is two, and only one percent of the followers have the 

shortest path value three. For communities 2, 6, 25, 26, 43, and 48 the shortest path value is one, which means that all the 

community followers will be informed, at the first time.  

 
Fig. 7. Dispersion of followers based on their shortest paths (1, 2 and 3) from their leaders in each community 

• Followers’ information diffusion possibility  

Another way to analyze the impressibility of community followers is to calculate their DP value. The DP value is 

calculated using the RI (as per Eq. 1) of the nodes with the “product” operator, as a T-norm function. Fig. 8 displays the 

distribution of community followers based on their DP values. The DP values are explained in the form of z-number. For 

example, for community #6, the z-number value is as bellow:  
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(6, [0.6,0.7],0.58) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(#6))  ∈ [0.6,0.7]) 𝑖𝑠 0.58 

This means that, 58 percent of followers have a DP value between 0.6 and 0.7. 

Also, for community #26 we have the z-number value as follows: 

(26, [0.9,1],0.63) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(#26))  ∈ [0.9,1]) 𝑖𝑠 0.63

Which means that 63% of followers in community #26 have a DP value between 0.9 and 1. 

 

 

 
Fig. 8. Dispersion of followers based on their DP values 

 

The average DP value has a normal distribution function with 𝜇 = 0.73 and 𝜎 = 0.09, for all 49 communities, that means 

that with a DP value of 0.73, all followers will diffuse the received shipping order news between each other. 

Consider a situation that a company wants to diffuse the shipping order news to only communities whose followers have 

great dispersions (≥ 50%) in large DP values (≥ 0.8). Therefore, the desired z-number value for a community is as bellow:  

(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦, 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ≥ 0.8, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > %50) 

The dispersion of followers in each community when the DP value is smaller or larger than 0.8 is shown in Fig. 9. 
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Fig. 9. Community Followers’ Dispersion 

 

The results are extracted as follows:  

▪ Communities that have their z-number value (𝐶𝑜𝑚. 𝑖𝑑 , 𝛼 ≥ 0.8, 𝛽 ≥ %50) are as below:  

{14,26,29,34,35,38,39,41,42,43,44,45,47,48} 

 i.e. this set consists of communities that over 50 percentages of their followers have 𝐷𝑃 ≥ 0.8. So, for these communities, 

the company can easily distribute the shipping order news to their leaders, in order to find the best drivers. 

▪ Communities with the z-number value (𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑖𝑑 , 𝛼 < 0.8, 𝛽 > %50):  

{
1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20

21,22,23,24,25,27,28,30,31,32,33,36,37,40,46,49
} 

Which consists of communities that over 50 percentages of their followers have 𝐷𝑃 < 0.8. In this case, using community 

leaders to share shipping order news is not advisable. So, it is just proposed to allocate shipping orders to these communities’ 

leaders.  

6.1.2. Solving profit maximization model 

After identifying the community leaders and calculating the DP value of each community node, in this section we use the 

diffusion capacity of community leaders to select the most appropriate driver for allocating the shipping order. We solve the 

profit maximization model using information diffusion among community leaders. The results, summarized in Table 10 for 

three different values of objective function weights, report the outcomes of solving the maximization model in which the 

information of allocated shipping orders to each community is explained. Selected drivers can be community leaders or 

followers. If the selected driver was a follower, then its community leader, who diffuses shipping order to it, is specified. Fig. 

10 shows that for the optimum freight shipping wage 𝑃𝑘, the total utility decreases when the revenue part weight decreases. 

This is due to the increase of the cost part weight of the objective function. For a particular weight of the revenue part, the 

utility function value varies in different communities, due to the existence of follower nodes at different distances from their 

leaders, in that community. Accordingly, there are three types of results in the utility function value, as follows: 

- Peak: Communities in which shipping orders are allocated to the followers that have the shortest path “3” from their own 

leaders. Given such an orders-followers allocation, followers having lower wages are selected (with respect to those having 

the shortest path “1” and “2”) and the company's revenue increases. So, the objective function is in its maximum value. In 

this case, the results include communities 3, 7, 30, 32, and 42. 

- Valley: Communities in which the shipping orders are allocated to the follower nodes that have the shortest path “1” from 

their leaders. Due to the fact that the acceptance threshold of these followers is greater than the followers with the shortest 

path “2” and “3”, the shipping orders are accepted with a higher wage and, thus, the objective function is in its minimum 

value. This case involves communities 2, 6, ...., 25, 26, 43, and 48. 

- Other utility values that belong to the communities which have the followers with the shortest path “1” and “2” and the 

shipping orders are allocated to the followers with the shortest path “2”.  

However, if the weight 0.5 is chosen for both revenue and cost parts in the objective function, the optimum follower node 

will not be obtained at farther level, i.e. with the shortest path “2” or “3”. As a result, the presence of followers with the 

shortest path “2” or “3” will not lead, in this case, to higher revenue. 

 

Table 10 The shipping orders’ information assigned to each community 
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Community 

number 

W=0.5 W=0.7 W=0.9 

optimum 

wage 
leader 

assigned driver optimum 

wage 
leader 

assigned driver optimum 

wage 
leader 

assigned driver 

distance driver id Distance driver id distance driver id 

1 0.93 - 0 15 0.78 15 2 66 0.78 15 2 66 

2 0.93 - 0 22 0.86 22 1 108 0.86 22 1 108 

3 0.93 - 0 12 0.71 12 3 563 0.71 12 3 563 

4 0.93 - 0 12 0.78 12 2 41 0.78 12 2 41 

5 0.93 - 0 228 0.78 228 2 452 0.78 228 2 452 

6 0.93 - 0 281 0.86 281 1 221 0.86 281 1 221 

7 0.93 - 0 79 0.71 79 3 17 0.71 79 3 17 

8 0.93 - 0 381 0.78 381 2 46 0.78 381 2 46 

9 0.93 - 0 130 0.78 130 2 727 0.78 130 2 727 

10 0.93 - 0 309 0.78 309 2 232 0.78 309 2 232 

11 0.93 - 0 472 0.78 472 2 1016 0.78 472 2 1016 

12 0.93 - 0 6 0.78 6 2 312 0.78 6 2 312 

13 0.93 - 0 29 0.78 29 2 71 0.78 29 2 71 

14 0.93 - 0 169 0.78 169 2 40 0.78 169 2 40 

15 0.93 - 0 226 0.78 226 2 191 0.78 226 2 191 

16 0.93 - 0 170 0.78 170 2 59 0.78 170 2 59 

17 0.93 - 0 210 0.78 210 2 209 0.78 210 2 209 

18 0.93 - 0 103 0.78 103 2 186 0.78 103 2 186 

19 0.93 - 0 347 0.78 347 2 453 0.78 347 2 453 

20 0.93 - 0 428 0.78 428 2 175 0.78 428 2 175 

21 0.93 - 0 21 0.78 21 2 177 0.78 21 2 177 

22 0.93 - 0 2 0.78 2 2 17 0.78 2 2 17 

23 0.93 - 0 325 0.78 325 2 75 0.78 325 2 75 

24 0.93 - 0 244 0.78 244 2 357 0.78 244 2 357 

25 0.93 - 0 244 0.86 244 1 1031 0.86 244 1 1031 

26 0.93 - 0 182 0.86 182 1 800 0.86 182 1 800 

27 0.93 - 0 222 0.78 222 2 401 0.78 222 2 401 

28 0.93 - 0 5 0.78 5 2 378 0.78 5 2 378 

29 0.93 - 0 126 0.78 126 2 307 0.78 126 2 307 

30 0.93 - 0 371 0.71 371 3 129 0.71 371 3 129 

31 0.93 - 0 150 0.78 150 2 192 0.78 150 2 192 

32 0.93 - 0 102 0.71 102 3 1503 0.71 102 3 1503 

33 0.93 - 0 421 0.78 421 2 16 0.78 421 2 16 

34 0.93 - 0 144 0.78 144 2 572 0.78 144 2 572 

35 0.93 - 0 600 0.78 600 2 86 0.78 600 2 86 

36 0.93 - 0 385 0.78 385 2 1198 0.78 385 2 1198 

37 0.93 - 0 1074 0.78 1074 2 379 0.78 1074 2 379 

38 0.93 - 0 195 0.78 195 2 164 0.78 195 2 164 

39 0.93 - 0 207 0.78 207 2 539 0.78 207 2 539 

40 0.93 - 0 33 0.78 33 2 443 0.78 33 2 443 

41 0.93 - 0 110 0.78 110 2 373 0.78 110 2 373 

42 0.93 - 0 155 0.71 155 3 798 0.71 155 3 798 

43 0.93 - 0 185 0.86 185 1 595 0.86 185 1 595 

44 0.93 - 0 47 0.78 47 2 1213 0.78 47 2 1213 

45 0.93 - 0 480 0.78 480 2 66 0.78 480 2 66 

46 0.93 - 0 343 0.78 343 2 388 0.78 343 2 388 

47 0.93 - 0 35 0.78 35 2 72 0.78 35 2 72 

48 0.93 - 0 14 0.86 14 1 500 0.86 14 1 500 

49 0.93 - 0 935 0.78 935 2 936 0.78 935 2 936 
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Fig. 10. Utility values base on Revenue weights W 

 
 

Fig. 11 shows the optimum wage values for each community base on different revenue weights. Whenever the company 

is well-known and has its own customers, it will be too risky to spend a relatively long time for finding the most suitable 

driver. So, the company tends to investigate deeper into the community to find drivers who accept the shipping orders with 

the lowest wages. As a result, the company will consider higher value for the revenue weight, with respect to the cost part. 

This is clearly reflected in Fig. 11 in which the optimum wage values are lower than the other weights when considering 

higher values of revenue weight. 

However, if the company is a novice and does not have consolidated customers, it prefers to allocate the received 

shipping orders to the driver, as soon as possible. So, it will avoid any risk to spend a long time to find the most suitable 

driver and will tend to look for drivers at the community surface, which means community leaders, in the shortest possible 

time. Thus, as shown in Fig. 11 (red line) the optimum wage Pk is identified with higher values, which leads to minimum 

revenue for the company. 

 
Fig. 11. Community’s optimum wages base on different revenue weights W 

Fig. 12 shows that, in a risk-aversion scenario, i.e. when the company is a novice and does not have many customers, by 

choosing the revenue weight in a minimum value, the company tends to allocate shipping orders to well-known drivers, who 

are at the community surface and not in a community’s depth. For example, for the revenue weight value of 0.6, the company 

allocates 88 percent of its orders to followers with the shortest path “2” and 12 percent of its orders to communities’ leaders. 

Also, for a revenue weight of 0.5 the company allocates 100 percent of its orders to the communities’ leaders. 

On the other hand, if the company is well established and considers a large value for the revenue weight it tends to accept 

the risk of prolonging the shipping order allocating time, to look for drivers in the depths of communities who are willing to 

accept shipping orders with the lowest wage. In this situation, none of the community leaders will be involved in accepting 
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shipping orders. For example, for revenue weight values of 0.7, 0.8, and 0.9, the company allocates 12 percent of its orders 

to followers with the shortest path “1” and 78 percent of the orders to followers with the shortest path “2” and 10 percent to 

followers with the shortest path “3”. 

 

Fig. 12. Combination of the selected drivers base on different 

revenue weights (W) 

6.2. Managerial insights 

Based on the results obtained from solving the community detection algorithm and the profit maximization model, the 

managerial insights are as follows: 

• Driver appropriateness 

- In communities’ level, existing experienced drivers: Drivers with a high level of communication and also community 

leaders (with the shortest path value of 0 or 1) are at the community level. Due to their communications and experiences, 

these drivers accept shipping orders at a higher fare than other drivers in the community. Also, the possibility value of 

diffusing shipping order news for these drivers is very high. 

- In depth of the communities, novice drivers exist: Drivers who are at the depth of the communities (with shortest 

value of 3) have a low level of communication and experience compared to others. Therefore, they are willing to accept 

shipping orders at a lower fare than others. On the other hand, due to the small communication of these drivers, they 

publish the shipping order news with a less possibility when they receive it. 

• Time Management 

- Assign shipping orders to drivers at the level of communities, with the shortest time: If the company wants to deliver 

shipping orders to drivers in the shortest possible time, it must look for drivers whose exist at the level of the community 

(with the shortest path value of 0 or 1). 

- Assign shipping orders to drivers in the depth of communities, with the most time: If the time factor is not important 

for company in allocating shipping orders, it must allocate the orders to drivers in the depth of communities (with the 

shortest path value of 3). 

• Cost management 

- Allocating shipping orders in depths of communities, at the lowest cost: If the company wants to allocate shipping 

orders to drivers with the lowest cost, it should look for drivers in depths of communities (with the shortest path value 

of 3). 

- Allocating shipping orders at the level of communities, at the highest cost: If the cost factor is not important in the 

orders allocation, for the company, it tends to deliver the orders to drivers at the community level (with shortest path 

value of 0 or 1). 

By combining the above insights, the following two scenarios are derived for companies in allocating their shipping 

orders based on their brand position and risk level: 

• High-risk scenario for well-known companies 

Those companies that have a good brand position and have a larger market share, have a higher level of risk for losing 

customers due to their large number of customers. Therefore, they tend to allocate shipping orders to drivers whose are at 
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the depth of the community. These drivers accept the orders at lower fares due to their being novice. As a result, the profits 

of these companies are at their highest value. 

• Low-risk scenario for novice companies 

Novice companies that have few customers and are not willing to accept the risk of prolonging the time of allocating 

the orders, tend to deliver the orders to drivers at the level of communities in order to maximize customers satisfaction in 

their shipping experience. These drivers, who are generally community leaders, will accept the orders at a higher fare than 

others. Therefore, the profit of companies from allocating the orders will be at its lowest value. 

Finally, all companies, depending on their brand position and their risk level, can choose a combination of the above two 

scenarios in order to optimize their profit from allocating shipping orders to drivers. 

 

7. Conclusion 

In this paper, first, by developing a two-layer weighted driver collaboration network, the communication between drivers 

was modeled. The network considered different types of communication between drivers as well as the different values of 

relation intensity between drivers. To answer the problem of managing the "time", "cost" and "driver appropriateness" in 

allocating the shipping orders, for the first time we developed a profit maximization model based on the information diffusion 

ability of leaders and also followers of communities. Also, in order to take advantage of the information diffusion ability 

among drivers in the optimization model, we developed an algorithm for predicting the behavior of drivers (Step 6) and based 

on it, we extend the OCDEM algorithm. By proposing the extended OCDEM algorithm, alongside identifying the community 

leaders, the behavior of each community driver at the time of receiving order news was identified and evaluated in terms of 

the possibility of accepting the orders and also the power and the speed of diffusing order news. 

Given that the above model was an optimization model and the results of solving this model for the case study were exact, 

it can be concluded that for all 49 communities obtained from the network, the shipping orders were allocated in the shortest 

possible time, with the lowest cost and to the most suitable drivers. By solving the optimization model, the values of the 

objective function can be defined in the following two limits: 

- Maximum value of the objective function: Includes those communities where the orders allocated to drivers with a 

minimum distance of 3 from their community leaders. In this case, due to the fact that the order allocation to novice drivers 

was conducted with the lowest fare, the profit of the company was at its highest value. 

- Minimum value of the objective function: Includes those communities where the orders assigned to only one community 

leader. In this case, due to the fact that the order was allocated to the community leader with the highest amount of fare, 

the profit of the company was at its lowest value. 

We also analyzed the performance of the extended OCDEM algorithm with 4 other known algorithms in 6 real networks 

for 2 evaluation criteria. The results show that the extended OCDEM algorithm, in addition to being unique in identifying 

community leaders, performed better in detecting communities (EQ measure) than the others, due to the equipment of the 

NCOS score with the RI index. The RI index empowered the extended OCDEM algorithm to consider the smallest relation 

between driver and the others in its neighbor communities.  

Finally, by applying the diffusion optimization model on a case study of freight road drivers’ collaboration networks, 

these two significant insights were obtained: 

- Well-known companies choose high-risk scenario: Companies who are well-known and have their wide set of 

customers, tend to allocate shipping orders to drivers in depths of the communities, who can accept the orders with 

a minimum wage due to being novice. So, the total profit of these companies will be in a greater value.  

- Novice companies choose low-risk scenario: Novice companies try to allocate shipping orders to communities’ 

leaders, to avoid the risks of spending a long time to find the most suitable driver. So, the total profit of these 

companies will be in a lower value, but the shipping orders will be assigned in a shortest possible time.   

As can be noticed, the real behaviors of companies in assigning drivers to shipping orders were appropriately shown 

from the results of the optimization model. Therefore, the model outcomes give valuable visions to the transportation 

companies on how to allocate the orders to drivers based on their brand position, strategies and risk-level in order to improve 

their performance. 

The following issues are suggested for future research: 

Developing an optimization model to manage the risk of losing customers, developing a model with credit rating of 

drivers to manage the allocation of shipping orders to them, in a competitive environment, developing a multi-objective 

optimization model by considering environmental, economic and social sustainability factors.  
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